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ARTICLE INFO ABSTRACT

Keywords: In recent years, convective weather has been the cause of significant delays in the European airspace. With
Thunderstorms climate experts anticipating the frequency and intensity of convective weather to increase in the future, it
Air traffic flow management is necessary to find solutions that mitigate the impact of convective weather events on the airspace system.

Data science

> . Analysis of historical air traffic and weather data will provide valuable insight on how to deal with disruptive
Machine learning

convective events in the future. We propose a methodology for processing and integrating historic traffic and

ATM data weather data to enable the use of machine learning algorithms to predict network performance during adverse
weather. In this paper we develop regression and classification supervised learning algorithms to predict
airspace performance characteristics such as entry count, number of flights impacted by weather regulations,
and if a weather regulation is active. Examples using data from the Maastricht Upper Area Control Centre
are presented with varying levels of predictive performance by the machine learning algorithms. Data sources
include Demand Data Repository from EUROCONTROL and the Rapid Developing Thunderstorm product from
EUMETSAT.

1. Introduction Network Manager (NM) (EUROCONTROL, 2019a). On days with strong

thunderstorm activity, the airspace system conditions can be highly

Convection is a well known aviation hazard; turbulence, wind shear, volatile making it difficult to balance aircraft operator demand with
lighting and hail are elements within thunderstorms that can be catas- airspace capacity. Thunderstorms can move quickly and exhibit lifecy-
trophic for aircraft. Aviation research related to thunderstorms and cles that can develop and dissipate within 1-2 h, making them difficult
convection has typically focused on flight specific solutions, e.g.: the to anticipate over longer time horizons. As a result, convective weather
development of trajectory optimisation algorithms in the presence of has been typically managed during the execution of a flight (at a more
thunderstorms (Sauer et al., 2014; Zhang et al., 2017; Hentzen et al., tactical level), having significant impact on the efficiency of the Air

2018; Gonzélez-Arri.bfis et al., 2019; Seenivasan et al 2020); or the  Traffic Management (ATM) system. In 2018, 4.8 million minutes of
development of decision support tools to analyse active flights in the en route ATFM delay were due to adverse weather in the European
en route environment and find simple and efficient route corrections airspace, a 124 percent increase vs 2017 (EUROCONTROL, 2019b).
around convective weather (McNally et al., 2015). In the United States, In the top 10 days of convective activity over Europe in 2018, more
the Federal Aviation Admlmstratlop regularly pubpshes a Na.tlonal than 1 million minutes of en route delay were accumulated due to
Severe Weather Playbook. The National Playbook is a collection of adverse weather, with the cost of ATFM delay estimated at €100 per
Sev'ere Weather Av91dance Plan (S,WAP) rout'es thaF have been pre- minute (Cook and Tanner, 2015), weather has a significant financial
validated and coordinated with the impacted air traffic control centres. impact on the ATM system
H in E h ANSPs each control tion of th . N . .
.owever, 1L BUTOPe, W ere many. SPs each contro . a por 1.0 n ot the Performing ATFM operations in a convective weather environment
airspace, a network wide perspective focused on reducing the impact of is particularly complex due to the dynamic nature of thunderstorms
adverse weather on the Air Traffic Flow Management (ATFM) process . y ; . ¥ . . .
and their effect on air traffic demand and airspace capacity. At dif-

is lacking. . . - - . . .
ferent time horizons, the weather information available widely varies.

Proper execution ATFM requires well organised collaboration be- " ime hor " her inf ) lies heavil
tween stakeholders, including aircraft operators, Air Navigation Service For s orFer time horizons, t e weather in ormatl?n relies heavily on
observations and extrapolation of radar and satellite images; data can

Providers (ANSPs), Meteorological (MET) service providers and the
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be provided every 15 min proving to be fairly accurate but limited by
the forecast time horizon, typically less than one hour. For longer time
horizons (3 to 48 h ahead), where ATFM processes are put in place,
weather information relies on numerical weather prediction (NWP)
products with varying accuracy. However, the large computational
effort required to run NWP tools results in limitations in spatiotemporal
granularity and the refresh rate of the forecast, typically around 12 h
(6 h in Limited Area Models), all in all resulting in forecasts that are
not capable of accurately capturing convective phenomena. Detecting
capacity-demand imbalances in the airspace network due to weather
should be done on a continuous basis over varying time horizons and,
when possible, up to 2 days ahead of operation (covering, thus, both
the pre-tactical and tactical ATFM phases).

The motivation behind this research is to obtain better understand-
ing of the ATFM process around convective weather events. While
it is well understood that convective weather is disruptive to ATFM
operations, being able to characterise the network imbalances due
to weather can be quite complex. We strongly believe that in order
to improve the ATFM process during convective weather, it is first
necessary to quantify key aspects such as the changes in demand,
the changes in capacity, and the effectiveness of regulations. The
research presented in this paper is a first attempt at applying data-
driven methods to better understand the problem. To do so, we will rely
on machine learning algorithms. By collecting historical data related to
traffic demand, ATFM regulations, traffic trajectories, weather forecast,
and storm observations we will build machine learning algorithms to
better predict the demand and the regulations due to weather in a given
sector.

Applying machine learning and machine learning techniques to
ATM is an extremely active area of research, and has proved to useful
in applications such as, just to mention a few: predicting controller
workload (Gianazza, 2017), trajectory prediction (Marcos et al., 2017;
Ferndndez et al., 2017; Gallego et al., 2019), identifying anomalous
events leading to unsafe arrivals (Jarry et al., 2020), predicting arrival
times (Wang et al., 2018), and the characterisation of trajectory adher-
ence to standard routes in complex airspace volumes (Carmona et al.,
2020). Similarly, the use of machine learning to enhance weather pre-
diction is also an active area of research. Convolution LSTM networks
and support vector machines have proven successful for nowcasting ap-
plications (Xingjian et al., 2015; Han et al., 2017), as well as forecasting
techniques that combine NWP and observations as input (Mecikalski
et al., 2016). Applying machine learning techniques on numerical
weather models has proved to enhance thunderstorm prediction beyond
the nowcasting range up to 15 h in advance (Kamangir et al., 2020).
The use of ensemble forecasting techniques has also made it possible
to provide a probabilistic thunderstorm forecast up to multiple days in
advance (Bouttier and Marchal, 2020).

Despite the vast research activity on machine learning applications
to ATM or convective weather (and, of course, other disciplines) in the
last years, the tackling of problems combining both fields exhibits a
significant gap. In particular, and to the best of authors’ knowledge,
such combined application (ATM and convective weather) of machine
learning techniques are non-existing today in the literature.

The main contribution of this paper is the integration of data sources
capturing traffic and weather conditions, as an initial building block
to improve air traffic flow management processes during convective
weather events. We analyse the historical data (aerial traffic, ATFM
regulations, and thunderstorm activity), quantify the impact and as-
sociated performance, and try to understand and discuss the ATFM
operational complexities. We build and compare various supervised
regression and classification learning algorithms, namely logistic re-
gression, decision tree, random forest, and a neural network, to find
functional relationships that can predict three features that are relevant
to ATFM processes, i.e., sector entry count, weather regulations in
a particular sector, and regulated traffic entry counts. Results are
presented for the Maastrict Upper Area Control Centre airspace using
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data covering a period of 68 days (some of them with significant storm
activity) in May-June-July 2018.

The paper is structured as follows: The data sources used, the data
processing methods, and the final data set we have considered are de-
scribed in , Section 3, and Section 4. The machine learning algorithms
are presented in Section 5. The results obtained in the MUAC use case
are presented and discussed in Section 6. Finally, some conclusion are
drawn in Section 7.

2. Data sources

In building the machine learning algorithms we utilised a dataset
composed of historical weather observations and historical traffic in-
formation. In using actual weather observations rather than forecasts to
build our models, we are assuming we have access to “perfect weather
forecast”. It is acknowledged that this is an unrealistic assumption that
is not compatible in an operational context. However, we believe that
any relationships that exist between weather and traffic will be more
easily captured by using actual weather observations.

2.1. Weather observations

Geostationary satellites with orbital periods that match the earths
rotation provide continuous observation of specific regions of the Earth.
Visual and infrared satellite imagery captures vital information re-
garding cloud cover, water vapour and temperature that allow for
monitoring and tracking of weather.

The Rapid-Development Thunderstorm (RDT) algorithm was devel-
oped by Meteo-France within the EUMETSAT NWC-SAF framework.
The RDT algorithm employs primarily geostationary satellite data to
provide information about clouds related to significant convective sys-
tems from the mesoscale (200-2000 km) down to hundreds of me-
tres (Lee et al., 2020).

The RDT product covers the geographical region of Europe, and
outputs storm data on a 15 min interval. For each cloud cell, the RDT
product defines a series of parameters capturing the location, shape,
movement, severity, and life cycle phase.

In our research we focus on parameters defining the altitude of the
cloud top, the contour coordinates of the top cloud and shelf cloud, the
severity of the storm, and the location of the overshoot if present. Fig. 1
shows a thunderstorm schematic identifying the various storm features
and a sample of the RDT product.

2.2. ATM data

The Demand Data Repository (DDR) from EUROCONTROL was used
to analyse historical demand and airspace environment. DDR provides
the most accurate picture of past pan-European air traffic demand. The
ALLFT files from DDR include an abundance of information for each
flight by modelling of the filed, regulated and current flight plans and
trajectories. For our research we use data from the Current Tactical
Flight Model (CTFM), the CTFM uses a combination of the last filed
flight plan and available radar data to compute the closest estimate of
the flight trajectories handled by controllers on the date of operations.
More specifically, we make use of the CTFM airspace profile, this profile
provides information on the ATC unit airspaces and elementary sectors
the aircraft encountered throughout the flight; the data provides the
time, location and altitude of the entry and exit points for a flight as
it traverses the various elements that make up the European airspace.
Fig. 2 shows a graphical representation of the data extracted from
DDR. Additionally, we also utilise DDR data relating to the regulations
that occurred. From the ALLFT files we are able to know if a flight
was regulated and which regulation was most penalising. From the
environment files we are able to see regulation specific data, including
the location, time and reason for the regulation.
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(b) Rapidly Developing Thunderstorm (RDT) product visualisation.

Fig. 1. Convective cell schematic 1(a) and RDT visualisation 1(b). Fig. 1(b) shows data from June 7th, 2018 at 15:30. Hatch pattern contours indicate shelf clouds, colours

represent storm severity, while an “X” indicates the location of overshoots.
Source: https://commons.wikimedia.org/wiki/File:Supercell.svg.

DDR Trajectory Data
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(a) Filed and Current trajectory for flight from LFBO to EHAM.

DDR Airspace Data

(b) Map of Flight Information Regions in western Europe .

Fig. 2. Flight trajectory data 2(a) and airspace data 2(b) extracted from EUROCONTROL’s Demand Data Repository.

3. Data processing

A challenge in performing any type of met-ATM analysis is inte-
grating the various types of weather and traffic data. In this particular
instance, the weather data is provided in the form of polygons defined
by the RDT product. As mentioned in the previous section, each RDT
polygon contains information regarding characteristics of the storm. In
the case of the DDR traffic data, there is data specific to flights and
data specific to airspace sectors. In order to build a machine learning
algorithm it is necessary to integrate the various data types onto a
common domain.

Our idea is to integrate the various data sources onto a 4 dimen-
sional grid. One can imagine splitting the airspace into discrete volumes
of airspace defined by longitude, latitude, altitude and time window
(see Fig. 3).

Storm polygons and cloud top altitude provided by the RDT product
can be projected on the 4D grid, enabling us to identify grid elements
which contain a storm, along with the associated storm characteristics
such as severity or overshoots. Airspace geometry data from the DDR
environment files can also be projected onto the grid to define sectors
as a set of grid elements. 4D flight trajectories can also be represented
as the set of grid elements intersect.
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Fig. 3. User defined grid will determine the scale at which traffic and weather features
are extracted.

In processing each data type it is important to consider the granular
scale of the grid, as the choice in spatial temporal granularity will
impact the data and what the machine learning algorithms are capable
of learning. For our analysis we used a spatial definition of 0.1 x 0.1
degrees in latitudinal-longitudinal, and a non-uniform altitude distribu-
tion that would give us more granularity in the upper airspace. Our grid
ended up with 6 altitude levels, these are defined in Table 1. The table
indicates the altitude ranges in pressure level, used in processing the
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Table 1
Altitude level definition.

Altitude Level

Pressure Range Altitude Range

(hPa) FL
5 <200 >390
4 200-250 390-340
3 250-300 340-300
2 300-400 300-240
1 400-700 240-100
0 700-Surface 100 - Surface

storm data, and flight level, used in processing the traffic and sector in-
formation. In processing the data, we kept the spatial granularity fixed,
however we experimented with different granularities in the temporal
scale. Given the RDT product provides data in 15 min intervals, this
was a logical time window to use. Additionally, we also processed the
data using a 1 h time window.

Figs. 4 and 5 show examples of the RDT and DDR data projected
onto the 4D grid.

4. Model architecture

Our dataset consisted of 68 days of historical traffic and weather
data from May 4th through July 10th 2018. Although weather and
traffic data was available for the entire pan-European airspace, we
narrowed our focus of our models to the Maastricht Upper Area Control
Centre (MUAC). Using the 4D grid we constructed time series represen-
tations of the features that will become inputs to the models as well as
the outputs. The weather and traffic information in grid form covering
the 68 day period for the entire pan-European airspace consisted in a
data volume of roughly 35 GB, however a time-series representation of
only the MUAC airspace scaled down to 200 MB.

4.1. Model features

The weather input to our models were based on the storm char-
acteristics from the RDT product. Using the 4D grid we were able to
define the storm characteristics that occurred with MUAC. Considering
that MUAC extends vertically from FL 245 to FL660, we estimated
the volume by only considering the air-blocks in altitude levels 2-5,
as described in Table 1. Based on the 4D grid, 14,596 airblocks were
used to represent the MUAC airspace volume, the weather features were
formulated as the fraction of airblocks where the feature was present.
The complete list of weather features used for our models is provided
below:

Overshoot - Number of overshoots in MUAC

Storm Cell - Fraction of MUAC airblocks containing a storm cell
Shelf Cloud - Fraction of MUAC airblocks containing the shelf
cloud of storm cell

Low - Fraction of MUAC airblocks with low storm severity
Moderate - Fraction of MUAC airblocks with moderate storm
severity

High - Fraction of MUAC airblocks with high storm severity
Very High - Fraction of MUAC airblocks with very high storm
severity

Not Defined - Fraction of MUAC airblocks with storm severity
“not defined”

Besides the eight weather features described above, we also in-
cluded features related to the day of the week and hour of the day. The
time related input features were encoded using a binary categorical rep-
resentation. For example, the day of the week Tuesday is represented
as [0, 1, 0, 0, O, O, O]. Similarly, hour of the day was encoded using
a vector with 24 elements. Given the highly cyclic behaviour of air
traffic, these time related features would allow our models to capture
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the weekly and daily patterns in the data, and in a sense, the demand
on the sector.

Given that 68 days of data were available, using a 15 min time
window interval resulted in a dataset containing 6528 samples. A
second dataset was also formulated using a one hour time window
temporal scale, this 1 h dataset contained 1632 samples. In the case of
the 1 h dataset, the values in model features related to weather were
averaged hourly. For example, in the case of the “Storm Cell” feature,
if the 15 min values for fraction of MUAC volume containing a storm
cell were [.40,.30,.10,0], the hourly value would equal .20, an average
of the four values.

4.2. Learning tasks

Using the supervised learning technique implies that we have data
representative of the model output that can be used to train the model.
Traffic data from the DDR ALLFT and environment files were used to
formulate the model output data. In this paper we propose three sepa-
rate supervised learning tasks; two regression and one classification.

4.2.1. Entry count

The first learning task is to use the weather features to predict
the entry count for the MUAC airspace. Entry count is defined as the
number of flights entering in a sector during a selected time period.
Using the DDR airspace profiles, a list of the flights entering in the
MUAC was obtained. We would expect that during convective weather
events the entry count of the sector would be reduced. This learning
task can be categorised as a supervised learning regression problem
since we want the algorithm to provide us with numerical estimate of
the entry count.

4.2.2. Regulated entry count

The second learning task is to predict the regulated entry count
for the MUAC airspace within the time window. Because a flight can
be regulated for various reasons and various locations throughout the
European network, we limit the definition of “regulated entry count”
to aircraft whose most penalising regulation was declared by MUAC
and for weather reasons. From the DDR ALLFT files, it is possible to
see the most penalising regulation for each flight entering MUAC. We
would expect that convective weather events in the MUAC would be
correlated with the number of aircraft that are penalised by weather
regulations. One could also think of this value of “regulated entry
count” as a proxy for the rate applied to the weather regulation. Given
that we want the algorithm to provide us with a numerical value, this
learning task can be also categorised as a supervised learning regression
task.

4.2.3. Active weather regulation

Our last learning task is to predict if a weather regulation will be
active in the MUAC airspace within the time window given the weather
conditions. From the DDR environment files we were able to obtain a
list of all the regulations that were active in the MUAC airspace. MUAC
is a large and complex airspace that can simultaneously activate various
regulations to mitigate its various traffic flows. In an attempt to simplify
the problem, we treat this task as a binary and try to predict only if a
weather regulation is active. Given our algorithm has to chose from one
of two options or “classes”, this learning task can be categorised as a
supervised learning binary classification problem.

To get a better understanding of the data, Fig. 6 provides a vi-
sual representation of the model features and learning tasks for four
consecutive Tuesdays with varying weather conditions in the MUAC.
In each graph, the colourful shaded areas along the bottom represent
the severity and percentage of airspace volume containing storms as
indicated by the left vertical axis. The black line and dashed red line
indicate the MUAC entry count and regulated entry count respectively.
Entry count values can be read using the right vertical axis. The light
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Fig. 5. 4D flight trajectory and sector geometry data from DDR projected onto 4D grid.

blue vertical shaded regions on the graphs, indicate that a weather
regulation is active within the MUAC. From the figures for May 22nd
and May 29th, we can observe that both days experienced afternoon
storms, causing weather regulations to become active, and an increase
in regulated traffic. The graph for May 29th shows more severe weather
covering a larger portion of the airspace, the graph shows a reduced en-
try count into the airspace, with the majority of traffic being regulated.
The image for June 5th, shows a weather regulation active during the
afternoon resulting in an increase in the regulated entry count. While
not visible on the graph, the data shows a very small percentage of
airspace volume contained weather. We can assume a storm on the
edge of the airspace caused the regulation. The image corresponding
to June 12 shows a day without any storms or weather regulations.

Fig. 7 shows a graphical representation of the entire data set.
The weather related features are shown in blue, while the dependent
variables representative of the learning tasks are shown in green. From
the figure we can notice several peaks for the various weather features,
these peaks correspond with storm activity in the MUAC airspace. The
figure represents the data using a 15 min time window. Fig. 8 provides

a diagram showing the flow of input data, machine learning models,
and outputs.

5. Machine learning algorithms

The first step in developing the algorithms was to split the data
into training and testing subsets, an 80/20 training to testing split ratio
was chosen. Given the data set consisted of a time series covering the
68 day period from May 4th, 2018 to June 10th, 2018, a sequential
split of the data would have been preferred; using the first portion
of the time series to train the models and the remaining portion for
testing. However, because the majority of the convective activity in
our dataset occurs in the two week period between May 28th and June
11th (depicted in Fig. 7), splitting up the data sequentially would not
have provided us with a similar number of convective events between
training and testing. Due to having a limited amount of data, we chose
to use a random split of our data, implying that every time interval
observation is treated as independent. It is acknowledged that treating
each time interval as independent is an unrealistic assumption, however
we believed the models would still capture the trends due to weather.
Given the two types of supervised learning problems, a set of regression
algorithms was chosen to predict the Entry Count and the Regulated
Entry Count in MUAC, and a different set of algorithms was chosen for
the classification task of predicting if a weather regulation was active.

In our analysis we experimented with four types of machine learning
techniques suitable for regression and classification; Multiple Linear/
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referred to the web version of this article.)

Logistic Regression, Decision Trees, Random Forests, and Artificial
Neural Networks.

(a) Multiple Linear Regression: is used to determine the mathematical
relationship between two or more explanatory variables and one depen-
dent variable. It is an extension of ordinary least-squares regression but
with more than one explanatory variable. The multiple linear regression
model for dependent variable y and k explanatory variables x, x,,..x;
can be expressed as

Yi=PBo+Bixji + Paxpp+ -+ Prxy + €,

fori =1,2, ...n, given n observations where f, is a constant, 8, f,, ..
are slope coefficients and ¢ is the model deviation or error term. For
the classification case, logistic regression uses a similar formulation and
enables the modelling binary outcomes. In logistic regression, we can
find a linear relationship between the explanatory variables and the
log-odds of an event, defining the probability of success as p and the
probability of failure as (1 — p). The model can be formulated using the
equation below:

p
I-p

log( )=Bo+ Bixiy + Baxpp + -+ Prxig

(b) Decision Trees: are a popular supervised learning technique that can
be used for both regression and classification problems. A decision tree
predicts the target function based on several independent variables. The
decision tree works by splitting the training dataset into subsets that
contain similar values of the dependent variable. The decision tree is
created starting with a single root node, at each node the data is split
into two or more child nodes based on the data feature values. The

Number of Aircraft

Number of Aircraft

Percentage of MUAC Airspace with Storms

Percentage of MUAC Airspace with Storms
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data splits are performed with the goal of maximising the information
gain using the concept of entropy from information theory. Where the
entropy (H) and the information gain (/G) after splitting set S on
attribute A are defined as

H(S) = )" —p(c)log,p(c);
ceC

IG(A,S) = H(S) = Y pHH ().
teT

In the entropy equation, S is the data for which entropy is being
calculated, C represents the set of classes in S, and p(c) is the proportion
of the number of elements in class ¢ to the number of elements in set S.
In the information gain equation T represents the subsets created from
splitting set S and p(z) is the proportion of the number of elements in
subset ¢ to the number of elements in set S.

(c) Random Forest: is an ensemble machine learning technique also suit-
able for regression and classification problems based on the Decision
Tree theory. In a Random Forest, multiple decision trees are created
using a random subsamples of the entire dataset with replacement. The
final algorithm prediction comes from the average prediction from the
multiple trees, or “forest”.

(d) Neural Networks (NN): are machine learning techniques that attempt
to mimic the structure of the human brain with an interconnected net-
work of neurons or nodes. The nodes in the network are organised using
multiple layers. NN architecture will have one input layer consisting of
the model features, one or more hidden layers, and an output layer. The
nodes in the model are connected with edges, each with an associated
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weight representative of strength of the connection. The output of each
node can be defined using the following equation:

Output = f(wy - X| +wy - Xy + - +wy - Xy +b),

where w represents the weight associated with the connection, and X
is the input value, k is the number of inputs and b is a biased term.
The function f is a non-linear activation function based on the sum
of its inputs. In our models we use the rectified linear unit activation
function:

f(x) = max(0, x).

During the training phase of the NN model, the connection weights
are adjusted to minimise a loss function between the final output and
the target function.

All of the models used in the analysis were developed using existing
data science libraries in python. Below we provide a brief description
on the architecture of each algorithm.

5.1. Supervised regression learning

Four algorithms were chosen to perform the learning task of pre-
dicting the Entry Count and Regulated Entry Count into the MUAC. The
same algorithm architectures were used to fit the 1 h and 15 min time
interval datasets. The input data for each learning task was the same
and consisted of weather features and time features relating to day of
the week and hour of the day. The time related data was treated as a
categorical features, resulting in 7 features for day of the week and 24
features for hour of the day. The final input to our models consisted of
39 features, 8 weather features and 31 time features. In the case of the
15 min time interval data set, an extra feature was added to account
for the minutes.

5.1.1. Multiple linear regression

The python library statsmodels was used to create a multiple linear
regression model using ordinary least squares.

5.1.2. Decision tree regressor

The DecisionTreeRegressor function from python library Scikit-learn
was used to create the decision tree regression model. The max depth
parameter, which defines the maximum path length from the tree root
to a leaf, was set to 20.

5.1.3. Random forest regressor

The RandomForestRegressor function from python library Scikit-learn
was used to create random forest model. Similar to the decision tree
model the max depth was set to 20. The random forest model uses
an ensemble of decision trees to make its prediction. The number of
estimator parameter, which defines the number of trees in the ensemble
was set to the default value of 100.
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5.1.4. Neural network regressor

The neural network model was built using the python library keras.
The model contained one input layer, four hidden layers with sizes
30, 15, 9, 3 and one output layer. All nodes in the model used a
rectified linear activation function. The model was trained with the
Adam (Adaptive Moment Estimation) optimiser and a mean absolute
error loss function. Prior to training the input data was scaled using a
StandardScaler function. During training 20 percent of the training data
was used to validate.

5.2. Supervised classification learning

The following four algorithms were chosen to perform the learning
task of predicting if a weather regulation was active in the MUAC
airspace within a time window given the weather conditions.

5.2.1. Logistic regression
The LogisticRegression function from the python library Scikit-learn
was used to build the classification model.

5.2.2. Decision tree classifier

The DecisionTreeClassifier function from python library Scikit-learn
was used to create the decision tree classification model, similar to the
regression case, a max tree depth of 15 was selected.

5.2.3. Random forest classifier
The RandomPForestRegressor function from python library Scikit-learn
was used to create the random forest classification model.

5.2.4. Neural network classifier

The MLPClassifier function from the Scikit-learn was used to build
the neural network model. The model contained four hidden layer
of sizes 30, 15, 9, 5 and one output layer. All nodes in the model
used a rectified linear activation function. The model was trained
with the LBFGS (Limited-Memory Broyden-Fletcher-Goldfarb—Shanno)
optimiser using a log-loss function. Prior to training the input data was
scaled using a StandardScaler function. During training 20 percent of
the training data was used for validation.

6. Results

We present results for each of the three learning tasks described in
Section 5 and the two time interval data sets. The same training/testing
data split was used to fit each of the algorithms, for each learning task.
In the case of the supervised regression type learning tasks (entry count
and regulated entry count), the actual vs predicted plots are shown
along with the corresponding values of R-squared (R?) and Root Mean
Squared Error (RMSE). For the classification task of determining if a
weather regulation was active, a confusion matrix is shown for each
algorithm tested.

6.1. Entry count results

Fig. 9 shows results for the learning task of predicting the entry
count for the MUAC airspace given the weather conditions. Results
indicate that all machine learning algorithms do a fairly good job as
estimating how many aircraft will enter the airspace within the time
window given the weather conditions, however the Random Forest
and Neural Network algorithms work best for this problem. Given the
highly cyclical traffic pattern in MUAC airspace, it is possible that the
strong correlation in the results may be due to the features reflecting
the day of the week and hour of the day. Furthermore, the data shows
the algorithms are better at predicting entry count using an hourly time
interval. This improved prediction in the hourly dataset is likely due to
the reduced variability in entry count for in hourly time intervals when
compared to 15 min intervals.
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6.2. Regulated entry count results

Results for the learning task of predicting the number of aircraft
entering the MUAC under a weather regulation is presented in Fig. 10.
From the figure, it is evident that a correlation exists between the
weather condition and the number of regulated aircraft. For this task,
we can notice the Random Forest algorithm performs best, followed
by the Decision Tree and Neural Network. The results in this task, are
not as accurate as in the previous task of predicting total entry count,
however, given the correlation values in the data we can conclude the
weather features are influencing the model predictions. Furthermore,
the results suggest that the models perform better when using the more
precise 15 min time window interval weather data.

6.3. Weather regulation activation

Fig. 11 shows the prediction of an active weather regulation in
the MUAC airspace. The confusion matrices gives insight into the
classification skill of the four algorithms. Ideal values for a matrix are
1 in the upper left (True Negatives) and lower right (True Positives)
corners, and 0 in the upper right (False Negatives) and lower left (False
Positives). In our data, a label of 1 indicates a weather regulation
was active. From the figure we can see that again the Random Forest
Algorithm seems to perform best, giving the right percentage of True
Positives. Again, the data suggest that the algorithms show better skill
with the more precise weather information of 15 min time interval
dataset.

6.4. Feature importance

In an attempt to understand the influence of the weather features
on the model predictions, the impurity-based feature importance metric
for the Random Forest models is presented. In this section we focus
only on the Random Forest algorithm since it outperformed the others
in each of the three learning tasks. The feature importance is a built-in
model attribute that indicates how well the selected feature can divide
the data into separate sets with similar responses. While the feature
importance values may be biased towards high cardinality features,
and the statistics are specific only to the training data set, they still
provide some insight into the models. From Fig. 12 we can see that in
the case of predicting Entry Counts, the most relevant features relate
with hour of the day, specifically OH, 23H, 1H, 2H and 3H. These
features are times where the MUAC entry counts drop drastically, thus
it is not surprising that the model ranks these features as high when
predicting entry count. For this specific learning task, Top Cloud is the
most important weather feature ranking 12th overall. It is interesting
to note that this feature ranks higher than those dealing with the day
of the week. In the case of the predicting Regulated Entry Count, the
weather related features Shelf Cloud and Top Cloud stand out from
the rest. This seems to indicate that the model prediction for this
learning task is based primarily on percentage of airspace volume being
taken up be convective weather. Lastly, the task of predicting if a
Weather Regulation is Active is perhaps the most sensitive to weather,
with the top seven ranking features being weather related. As in the
case of predicting Regulated Entry Count, the Shelf Cloud and Top
Cloud features seem to be most important. The high ranking feature
importance of the Shelf Cloud and Top Cloud features seem to indicate
that the volume of airspace being occupied be convection is perhaps
more important than the severity. In the future, if we intend to build
similar models using weather forecasts, it will be important to correctly
predict the location and altitude of the convective weather.

Overall, the results indicate that there is a relationship between
the weather data and the traffic patterns in the MUAC. While the
degree of skill and correlation varies by learning objective, being able
to predict how the current system will respond given a weather input
is an important first step in determining the adjustments that need
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to be made to improve ATM performance. While we may be able to
estimate the system response in terms of entry counts and whether
a weather regulation is active, we still lack information on whether
the estimated system response is an appropriate response. However,
supposing critical situations in the system exhibit similar responses, the
models may be useful in detecting these critical situations.

7. Conclusion and future work

In this paper we set out to demonstrate a methodology for integrat-
ing historical weather and air traffic data. A time series representation
of the traffic and weather situation over 68 days was obtained. Prelim-
inary implementation of multiple machine learning algorithms show
correlation exists between weather conditions and characteristics in
the MUAC airspace. Initial results varied for depending on learning
task and the Random Forest algorithm proved to perform better than
Linear Regression, Decision Tree and Neural Network architectures,
however models need to be refined and tested with additional datasets
to validate their accuracy. Results also provide some insight into how
the temporal granularity of the data can impact the results.

The next steps in our research will focus on refining several of the
assumptions that are currently made. With the use of actual forecasts,
we will move away from the assumption of having a “perfect weather
forecast”. Rather than using storm observations, we envision having
probabilistic weather forecast as inputs to our machine learning mod-
els. These probabilistic storm forecasts will be the output of ongoing
parallel work, in which we integrate data from numerical weather
prediction tools and storm observations to develop machine learning
algorithms for weather prediction. Machine learning has already started
making advances in the area of meteorology to improve the accuracy
of weather forecasts, we aim to leverage these knowledge gains to
improve the ATFM process.

Second, we want to improve our assumption of treating each inter-
val in our time series as independent samples, it is obvious that events
such as storms and regulations occurring at a given time instance will
impact what happens at future instances. In the future we aim to build
model architectures that are able to capture the time dependencies
relating to how far in the future a prediction is being made, while
incorporating all the traffic and weather information available at the
time of prediction.

Lastly, we hope to improve the representation of traffic and reg-
ulation data. Air traffic patterns in the MUAC, or any other airspace
are complex. Being able to discern between the traffic flows and traffic
volumes within a sector would greatly enrich the quality of the data,
enabling improved model performance and prediction of specific traffic
characteristics.

The ultimate goal is to accurately predict the system response given
the weather information. By having improved weather forecast and
better understanding how that weather will impact the traffic, we hope
to improve the air traffic flow management operations.
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