
 A Functional Framework to Evade Network IDS

Sergio Pastrana Agustin Orfila Arturo Ribagorda
Carlos III University of Madrid Carlos III University of Madrid Carlos III University of Madrid

spastran@inf.uc3m.es adiaz@inf.uc3m.es arturo@inf.uc3m.es

Abstract

Signature based Network Intrusion Detection

Systems (NIDS) apply a set of rules to identify hostile
traffic in network segments. Currently they are so
effective detecting known attacks that hackers seek
new techniques to go unnoticed. Some of these
techniques consist of exploiting network protocols
ambiguities. Nowadays NIDS are prepared against
most of these evasive techniques, as they are
recognized and sorted out. The emergence of new
evasive forms may cause NIDS to fail. In this paper
we present an innovative functional framework to
evade NIDS. Primary, NIDS are modeled accurately
by means of Genetic Programming (GP). Then, we
show that looking for evasions on models is simpler
than directly trying to understand the behavior of
NIDS. We present a proof of concept showing how to
evade a self-built NIDS regarding two publicly
available datasets. Our framework can be used to
audit NIDS.

1. Introduction

Information Technology systems have become a
critical component in organizations that manage a
huge amount of personal and critical data. Guarding
those systems from hostile actions should be the main
goal when applying security measures, but the
continuous evolution of technologies makes this task
difficult.

Intrusion Detection Systems (IDS) are software or
hardware tools that automatically scan and monitor
events that take place in a computer or a network,
looking for evidence of intrusion [1]. Network
Intrusion Detection Systems (NIDS) just analyze
network traffic captured on the network segment
where they are installed. NIDS may seek for either
anomalous activity (anomaly based NIDS) or known
hostile patterns (signature based NIDS) on the
network. Unlike firewalls they do not normally block
packets, but raise an alert about the intrusion attempt.

 Signature based NIDS are effective at detecting
attacks they are prepared for (they may fail to detect

zero-day attacks until their signatures become
updated). This situation causes attackers to focus
their efforts in finding evasions over the signatures of
these systems. The concept of evasion was first
proposed by Ptacek and Newsham [2]. The authors
highlighted some ambiguities in network protocols
(concretely TCP and IP) that can lead into a situation
where NIDS and endpoint systems process packets in
a different way. An evasion succeeds if the
processing of the packets generates a different
representation of the raw data in the NIDS and in the
end systems. Data contained in TCP segments can
encapsulate some attacks, but if the NIDS processes
those segments differently from the endpoint, it will
not be able to detect those attacks.

To the best of our knowledge no new evasive
procedures have been published since [2]. Security
administrators adapt their systems to detect those
well-recognized problems presented by Ptacek. Thus,
a possible emergence of new evasive techniques
would be critical for systems that are supposed to be
secure. This is the motivation of our work, in which
we present a new approach to look for evasions over
NIDS, giving a proof of concept in which we put into
practice our framework using an artificial scenario.

The aim of our framework is to look for new
evasive techniques by analyzing NIDS behavior. As
this behavior is normally complex, and even obscure
if the NIDS source is proprietary, our approach is to
model it by means of Genetic Programming (GP) [3].
GP is a paradigm that evolves programs that are
represented by trees, where intermediate nodes are
functions and leafs are terminals. The evolution is
performed by selecting the best individuals (by
comparing them using a denominated fitness
function) from an entire population to cross and
mutate them, thus obtaining the next population. In
the scenario of our work, we have evolved simple
models (individuals) that behave as similar as
possible to the original NIDS. Thus, a simpler
representation of the NIDS is obtained. The GP
model allows finding evasions otherwise difficult to
find.

In a previous work [4], GP was used to model a
simple NIDS with great accuracy, using a publicly

11530-1605/11 $26.00 © 2011 IEEE

1

Cita bibliográfica
Published in: 44th Hawaii International Conference on System Science. IEEE, 2011, pp. 1-10

available dataset. In this paper we present new
improvements, performing evasions over that NIDS
and corroborating the effectiveness of modeling
NIDS with GP using another publicly available set.

The remainder of this paper is structured as
follows. First, the state of the art on NIDS evasion is
presented in section 2. Second, section 3 presents the
framework. Then, section 4 describes the goals and
requirements of this work. Experiments performed
and results obtained are depicted in sections 5 and 6
respectively. Finally, our conclusions and future work
are gathered in section 7.

2. State of the art

Evasions on NIDS were first proposed by Ptacek
and Newsham in 1998 [2]. In this seminal paper, the
authors highlighted the existence of some ambiguities
in the TCP and IP protocols, which allow different
systems to implement them in a different way. An
evasion succeeds when NIDS ignore packets which
are going to be processed on the endpoints or vice
versa. For example, TCP does not specify what
should be done with TCP packets containing an
erroneous checksum field. Implementations of the
TCP protocol can ignore, accept or reject those
packets. As shown in Figure 1, an evasion could
succeed if the NIDS implementation of the TCP
protocol differs from the endpoint implementation.

Figure 1: example of evasion. In this example, the NIDS
preprocessor accepts the packet containing a bad-
checksum field, while the endpoint does not, so the final
structure after the preprocessing phase will be different.

Several tools have been implemented to exploit
the properties exposed above. Examples are
Fragroute [5], which intercepts network traffic and
modifies the packets before forwarding them to their
destination, and idsprobe [6], which is a tool that
generates traffic data from original traces.

Many techniques have been designed to prevent
evasions. Most of them are based on network traffic
modification, to remove the ambiguities and establish
a common understanding of the protocols for NIDS
and endpoints. Watson et. al [7] propose a system

called Protocol Scrubbing that generates well formed
TCP data from traffic. A similar approach was
proposed by Handley et al. [8], who introduced the
concept of traffic normalizers. Those are intermediate
elements that are placed in networks segments to
remove possible ambiguities before being exposed to
the NIDS. Because some of the evasive techniques
are based on packet fragmentation and reassembly,
the state of each connection and the previous packets
must be stored and processed, in order to analyze the
consistency of the connection. This situation
consumes a large quantity of resources, leading into a
bottleneck when working with high speed networks
[9].

Some other solutions that do not modify the
traffic have also been proposed. Varguese et al. [10]
present the idea of dividing the entire signature of the
NIDS into single smaller strings. A fast path finds
matches with them and a slower one inspects it
deeper if any match is found. Shankar and Paxon [11]
propose a system that reports the NIDS about
network topologies and the interpretation policy of
the endpoint being monitored. Thus, NIDS can adapt
their configuration taking into account that
information. Snort [12] has adopted this technique in
its IP processor (frag3). Finally, Antichi et al. [13]
propose the use of Bloom Filters to find signature
matching over the single received packets without the
need of reassembly. These systems are supposed to
improve the efficiency of the NIDS and never gives
false negatives (detects all), but increments largely
the number of false positives.

A similar approach to our work has been
presented by Mutz et. al [14]. The authors propose
some kind of reverse engineering to obtain the
signatures of non proprietary NIDS, so they became
more vulnerable to attacks or evasions. Their
principal goal is to show how keeping the signatures
secret does not necessary increment the security of
the NIDS. The main difference with our approach is
that we do not focus on evading the NIDS directly
but modeling it first.

Genetic Programming has been proven to be a
good paradigm in the scenario of NIDS development
[15,16,17,18,19,20]. The main reason is that the
functions used by GP can be defined in advance for a
particular scenario. Accordingly, it is appropriate for
the intrusion detection domain. In addition, previous
work [4] demonstrates the viability of using GP to
model a simplified NIDS with an easy to understand
syntax and semantics.

2

2

3. Framework

In this section we present an overall
description of the proposed framework. Figure 2
shows a graphical description. The main objective is
to look for new evasion techniques on a given NIDS.
We use GP to obtain a model that classifies as similar
as possible to the NIDS. Due to the use of a simple
syntax, the GP model has a simpler semantics than
the NIDS. Looking for evasive techniques over the
model is easier than over the NIDS. If evasions
succeed over the model, and given that this model
may have a quite similar behavior than then original
NIDS, it is likely that the evasions will also succeed
over the NIDS. Our framework is composed of a set
of tasks described in the following sections.

3.1. Generation of the datasets

The GP modeling process at issue requires a
labeled dataset. This dataset must represent as well as
possible real traffic. Due to the necessity of
generating different traffic profiles, a controlled
environment is required. Generated traffic should

include normal (simple web requests, remote
connections, web navigation, etc) and intrusive
(malicious) traffic. Traffic is processed by means of
data mining techniques to extract the most significant
features. It also needs to be labeled in order to
identify it as normal or hostile.

 Obtained traffic should be exposed to the NIDS,
which analyzes the dataset looking for intrusive
actions. Output given by the NIDS is appended to its
corresponding processed frame. Thus, the obtained
dataset is composed of registers with the form:

F1,F2,F3,...,FN,L,O

Where each Fi is the field i of the trace (for

example, the source port, the flag bits, the amount of
data exchanged, etc.), L is the label which indicates
the nature of data (normal or attack) and O is the
output given by the NIDS (normal or intrusion).

The overall dataset is then divided into smaller
sets, one being the GP training subset and the
remainder the GP testing subsets.

Figure 2: Overall scheme of the proposed framework

3

3

3.2. Modeling the NIDS

As we have mentioned, in our framework GP is

used to model the behavior of NIDS. First, values for
some Genetic Program parameters are established.
This process can be made manually or automatically,
for example using a cross-validation technique [21].
This technique consists of performing the GP
modeling phase several times, by using different
combination of parameters. The entire dataset is
randomly divided into 10 subsets, called folds. Each
training phase is performed with one fold, using the
remainder to test the evolved model. When all folds
have been used to train a different model, it is taken
as final combination of parameters the one that gives
the best results in test. The principal advantage of
using this technique is that we explore several
combinations of parameter values so we can assure
that we are using an optimum values for them, as the
training phase is performed with all the different
subsets (folds) of the entire dataset, so it does no
depends on an initial selection, but in the complete
dataset.

The election of a good fitness function is a critical
component when using GP. Because we are searching
classification models, an optimum fitness function
can be the classification error, that is, the rate that
indicates how many traces has been correctly
classified, not taking into account whether those
traces are positives or negatives. Once the parameters
are fixed, we obtain the NIDS models by training
them with the entire training subset (which has to be
considerably bigger than the remainder, used for
testing). Then, we perform the test of the obtained
models using the testing set. Results must be stored to
be processed afterwards.

 Because the GP search is heuristic, it is
appropriate to perform the training phase several
times, using different random seeds, taking the results
for the best individual (the one that has produced the
best test results) and the average of the individuals.
Using different random seeds covers a bigger
searching space.

A manual optimization of the model is then
performed. The tree model obtained has normally
redundant branches or nodes, so performing a
pruning phase could be interesting to improve the
efficiency of the model. Although the improvement
of the efficiency is not a primary objective to be
satisfied, the prune of the tree largely simplifies
models semantics, which is in fact the core of this
framework. The output of this phase must be a model
easy to understand and interpret, whose behavior
must be as similar as possible to the NIDS.

3.3. Analysis and design of evasive techniques

Once the model is obtained, it is analyzed in order

to discover some points of the internal structure of
the NIDS, thus conceiving an idea of its behavior.
Mainly, the model indicates which are the fields that
the NIDS takes into account to classify traces. This
information is used to perform a brute force
modification of those fields.

The idea is to automate the process by changing
the value of the fields that are present in the GP
model, generating new modified traces. Before
changing the value, it should be assured that traces
with the new value remain being attacks and still
coherent with the protocols. For that purpose, a set of
rules must be established and fulfilled, indicating
which variables can be changed and which values can
be set to them. New valid values are given for those
fields in hostile traces which were previously
detected by the NIDS (true positives), establishing a
new dataset composed by old and new (modified)
traces. Then, the NIDS is applied to those new
modified traces. New false negatives would indicate
that the evasions performed have been successful.
The process is repeated for each field that appears in
the GP model, and also multiple simultaneous
changes (to more than one field at the same time) can
be done.

4. Proof of concept. Specific goals

The two main objectives of the proof of concept
presented are first, to corroborate that GP can be a
good paradigm to model NIDS, and second, to find
evasions over the NIDS analyzing the corresponding
GP model. For that purpose, we have created a basic
NIDS based on the C4.5 algorithm [22]. This
algorithm is a supervised learning classifier whose
output is a tree.

A simplification of the framework has been made
to fulfill our goals. Instead of creating a specific
dataset, in this work we have opted to use the only
two publicly available datasets that are labeled (as
normal or intrusive). Previous work [4] used one of
them, the Lawrence Berkley National Laboratory
(LBNL) dataset [23]. Results showed that with an
accuracy of 96%, the behavior of a self-built NIDS
can be modeled by reducing its complexity. In this
work, we improve the study by using a different
dataset, the KDD-99 [24], derived from raw traffic
captured during MIT/LL 1998 evaluation [25]. A
complete description of the fields can be found in
[26]. The use of an extra dataset corroborates that the
accuracy of using GP to model a NIDS is not limited

4

4

to one scenario and attack (the LBNL using port
scanning attacks), but also to another that uses
several kind of attacks. It is obvious that these
datasets are both quite old, taking into account the
fast growth of the complexity in the Information
Technologies. However, they have been widely used
in the literature [15,16,23] and they provide a huge
set of labeled traces. Thus, it is useful for providing
insight into the problem at issue and to analyze if the
idea is sound.

After obtaining models for each dataset, we are
challenged to find real evasions over the original
C4.5 based NIDS, by firstly looking for them over
each GP model. We look for evasions by modifying
the value of one or more fields of the traces and
exposing them to the original NIDS. We must choose
fields and values in such a way that the traces remain
coherent with protocols, being still attacks (for
example, if we change the bit of some TCP flag in a
port scanning attack, we are not evading the NIDS
and attacking the endpoint, but transforming the
malicious trace into a normal one). For that purpose,
we need to analyze the nature of the attacks we are
working with. It is also needed that traces to be
modified are true positives. An evasion is considered
successful if, after the modification of the trace, the
NIDS does not detect it as an intrusion.

5. Experimental work

Figure 3 shows a scheme of the modeling phase.
At first the datasets are prepared. The LBNL provides
both normal and portscanning traffic, captured in
various days at different hours. We use five different
raw traffic files, processing them in order to take just
TCP traffic. Thus, we establish five datasets
containing labeled traces from both malicious and
normal nature. These traces are composed of the
fields (Fi) of the TCP header.

In the case of the KDD dataset, we have taken
10% of the original traces, preprocessed them in
order to make the output binary (i.e. normal or
intrusion) and normalizing the non-numerical fields.

We use the weka tool [28] to obtain the C4.5
based NIDS (step 1 in Figure 3). For that purpose, we
randomly choose a subset of each dataset to perform
the training phase, testing over the remainder. This
testing phase provides, for each trace, the output
given by the NIDS, i.e. if it has properly classified
the trace or not. This information is appended to each
trace, obtaining the final dataset (step 2 in the Figure
3). We perform another division of the dataset, in this
case to obtain two new different subsets, one to be
used in the GP training phase and another one to test
the individuals (step 3 in the Figure 3).

Table 1 shows the performance of the NIDS
created for both the LBNL dataset and the KDD. As
can be observed, in the case of the LBNL, NIDS are
tending to classify the traces as intrusive, so its
detection rate and its false alarm rate are both very
high. However, the NIDS built with the KDD has
lower rates, which indicates that it is more likely to
classify the traces as normal. So, given that the NIDS
which are going to be modeled are very different in
nature, the first goal of our proof of concept, which
was to prove the feasibility of using GP to model
NIDS goes a step further.

 Detection rate False Alarm rate
LBNL 99% 65%
KDD 82.43% 0.1%

Table 1: Performance of the self-built, c4.5 based NIDS.
In the case of the LBNL, the rates correspond with the
average of the five raw traffic files.

GP works with trees that represent programs

(called individuals in GP terminology) to be evolved.
Each intermediate node of the tree is a function, and
each leaf is a terminal. The terminals we use are both
fields of the traces and real numbers. Table 2 shows
the functions used for intermediate nodes. It is
important to note that the election of these functions
helps to produce simple individuals.

Name Description
ADD Addition of two numbers
AND And logic operation between two numbers
DIV Division between two numbers, or 0 if the

denominator is 0
GT Compares both values. Returns 1 if the first is

greater, 0 in the other case
LT Compares both values. Returns 1 if the first is

lower, 0 in the other case
MULT Multiplication of two numbers

OR Or logic between 2 numbers
MAX Returns the maximum of two values
MIN Returns the minimum of two values
RL Bitwise rotation in one position of a value

NOT Not logic operation between two values
IF Returns the second child if the first one is

positive or 0, or the third child if the first one is
negative

Table 2: GP function set

The models are created by first evolving them

using a training subset (step 4 in Figure 3), using the
remaining subsets to test whether the obtained
models have a good performance with different
traffic from the one used to evolve them (step 5 in
Figure 3). In the training phase, that is, when

5

5

evolving the models, we use an Island Model [3],
where different evolutionary environments are
thrown in parallel. Thus, every 20 generations, the
best individual of each environment (island) migrates
to another island. Some of the fields obtained under
an island are moved to another, in order to improve
the variability of the global evolution.

One critical component in GP is that it performs a
heuristic search. Accordingly seven different seeds
have been used over each training subset, thus

obtaining seven different evolved individuals. Then, a
testing process is performed with each individual. In
the following section the best and average result for
each model is shown. Each individual represents one
different NIDS model, and because they must be as
simple as possible, a maximum depth of 4 is
established. Therefore, each individual have at most
81 nodes including functions and terminals (the
maximum number of children of a node, 3, at the
power of 4).

Figure 3. Graphical description of the experimental work performed. Firstly (1), the C4.5
based NIDS is created with one subset of the dataset (in LBNL, we create 5 different NIDS
using the 5 different used files). Then (2), some other traffic files are presented to the
NIDS in order to obtain its output for each trace, which is appended at the end of the
traces. The labeled traces files are divided into a training file and several testing files (3).
The training file is used to evolve (train) the GP model (4), which is later tested with the
testing files in order to obtain statistics of its output (5).

6

6

As it was previously stated, one of the goals of

this proof of concept is to corroborate that GP is a
good paradigm to be used when modeling the NIDS.
In order to compare with some other techniques, we
have obtained models using two different techniques.
Concretely, we have used the Naïve Bayes approach,
which is a specific Bayesian classifier which assumes
strong independence among fields [29] and whose
output is not a tree, but a probabilistic model. The
second method used is the C4.5 algorithm, which is
the one used to create the NIDS under study, but
limiting its maximal tree depth to 4 (as done in GP).
It is obvious that the C4.5 algorithm will reach better
results if its maximal depth would not be limited to 4,
because it is the algorithm used to obtain the original
NIDS. However, this limitation of the maximal depth
is needed to assure that the complexity of the models
to be compared is similar. Table 3 shows the
classification error achieved by the three approaches
when classifying the LBNL traces as done by the
self-built, C4.5 based NIDS. As can be seen, the GP
model achieves the best performance.

 GP Naïve Bayes C4.5Classification error 4 % 37.4% 8.6 %
Table 3. Comparison of the three methods used
to model the NIDS in terms of classification
error for the LBNL dataset. The GP model is
the best one of the seven different models
obtained.

At this point (final step in Figure 3) several GP

individuals are obtained for the LBNL dataset (35
individuals in total, five datasets and seven
individuals for each one) and the KDD (one dataset, 7
individuals). In order to evade these models, we are
interested in changing traces corresponding to true
positives. We analyze the models manually looking
for any field that, when changed, will make the NIDS
to fail in the detection. It is possible that there is no
possible change that causes the evasion of the NIDS.
In this case, we should repeat the modeling process
(by changing some field or the fitness function) in
order to obtain another model over which we would
look for new evasive methods.

6. Results

One of the objectives proposed in this work is to
verify that using GP it is possible to model NIDS
accurately, thus obtaining easier to understand
models which, working as white box, allows us to

understand the behavior of the NIDS and to find new
ways to evade detection. Table 4 shows the statistics
obtained in the GP modeling phase. The third column
is calculated by dividing the number of nodes of the
GP models by the number of nodes of the C4.5 tree.
For both cases, we have calculated the medium nodes
of all the obtained GP models (7 for the KDD case,
and 35 for the LBNL). As we can see, we obtain a
great complexity reduction with a slight classification
error.

 Best Average Complexity

reduction
LBNL 4 % 12.5 % 86%
KDD 3 % 8.6 % 98%
Table 4. Statistics of the GP classification
phase. The first two columns show the
classification error measured for the NIDS
model for both the best individual and the
average of the individuals obtained. The third
column shows the reduction in complexity
achieved by the average GP trees compared to
the original C4.5 tree.

This reduction of complexity allows us to take a

look at how the NIDS works. Realize that, being the
C4.5 an algorithm whose output is a tree, it could be
possible to understand its behavior by examining this
tree. However, as Table 4 shows, GP trees are less
complex than those of C4.5, being easier to
understand. Once obtained the models, we look for
possible evasive points over them. For instance, we
show in Figure 4 an example of an obtained model
for the KDD dataset. In this case, classification is
made by dividing the variable 13 (the number of
compromised conditions [24]) by the variable 6 (the
number of data bytes from destination to source). As
described in Table 2, if the denominator of the
division is 0, a 0 is returned. In order to change that
condition, we can change the variable 6 in order to
modify the classification, thus setting it to a non-zero
value.

Figure 4: A GP model example

Before changing the value, we must realize that

traces with the new value remains producing the
original attack. For that purpose, we analyze a KDD
attack, Neptune, which consists on a SYN Flooding
attack. The attacker sends to the victim several SYN
packets, indicating that a new connection is required.

DIV

VAR13 VAR6

7

7

The victim must store information about each new
connection that is being established, storing it in a
buffer which, after receiving several SYN packets,
will be overloaded. This attack can be distinguished
from normal traffic by looking for a number of
simultaneous SYN packets destined for a particular
machine that are coming from an unreachable host. A
NIDS can monitor the size of the TCP connection
data structure and alert a user if this data structure
approximates its size limit [27].

The field dst_bytes, which we modify to perform
the evasions, is not taken into account when
generating the Neptune attack, so we can modify it in
the traces without disturbing the condition of attack.
On the one hand, sending traces with all the fields
having the same value, but the destination bytes, we
are performing the same attack. On the other hand,
we have realized that changing to 100 the value of the
field, the detection of the attack is evaded in all the
traces of the training subset which belong to this
attack. In summary, we are performing one attack
that originally was detected by the NIDS, but after
the changes, remains undetected, thus evading the
NIDS detection engine. This situation, in a real
environment, would be critical for systems that are
receiving a huge amount of data, because if the NIDS
is able to detect that a Neptune attack is happening,
some actions could be taken. But if the detection does
not succeed, that is, if the NIDS is evaded, the
endpoint system buffer would be overloaded, thus
producing a Denial of Service as the state of new
benign incoming connections would not be stored.

Regarding LBNL, malicious traces are part of a
port scanning attack. The aim of this attack is to
probe the open ports of the victim system, in order to
find open doors to perform a posterior attack. It is
normally done by sending simple SYN packets over
each of the ports that are being scanned, analyzing
the response to that requests, so it can be determined
whether the port is open, close or filtered (by a
firewall) [30].

One variant of port scanning, used for example by
Nmap [30] is based on the value of the window size
field of a TCP header. This variant is called TCP
Window Scan. The attacker examines the window
size value on packets received with the RST bit set
on, and depending on this value, it can be determined
the nature of the system being attacked.

In a similar process as the one explained for the
KDD dataset, we have realized that changing the
window size value to 34 (see Figure 5) we can evade
the NIDS detection of some attack traces (around a
69 % of them) in 2 of the 5 models we are working
with. A deeper analysis of the models would allow us
to improve the effectiveness of the evasions, for

example by changing more than one field. The
packets that we are modifying to evade the NIDS has
the RST bit set to 0, so we can assure that they are
not belonging to a TCP Window Scan attack. As we
are changing the value of the Window Size field in
those traces with the RST bit being 0, we assure that,
after the change, the port scan attack is still
succeeding, but in this case without being detected by
the NIDS. This situation in a real environment would
provoke that the port scanning phase, which is the
previous step to any other more critical attack, could
be performed with no alert from the NIDS.

Figure 5: An evasion example, showing the original
and modified trace. Last character indicates whether
the NIDS has properly classified the trace (-) or not (+).
Second last character shows that both traces are
malicious (M). In boldface it is shown the change
performed to the window size field.

7. Conclusions and future work

Currently, NIDS are prepared to detect a huge
variety of attacks. Some of them, like Snort, take into
account the possibility of being evaded with the
techniques exposed by Ptacek and Newsham in 1998
[2]. However, they are not prepared to new evasive
forms that can appear.

 In this paper we present a new framework to look
for evasions over a given NIDS. The core of the
framework is to model the NIDS using Genetic
Programming to obtain an easier to understand
individual which works as similar as possible to the
NIDS. This model allows the understanding of how
the NIDS classifies network data. Once this model is
obtained, we can look for some way of evading the
NIDS detection by changing some of the fields of the
packets. The final aim of using our framework is not
to break the detection of the NIDS, but to analyze
NIDS robustness.

We have tested our framework by using a simple
NIDS based on the C4.5 algorithm over the only two
publicly available datasets that have their records
labeled. We have shown the effectiveness and degree
of reduction of the complexity when using GP to
model the behavior of the NIDS. Taking advantage of
this reduction, we have provided evasions over the
original C4.5-based NIDS. Concretely, we have
found evasions that allow attackers to perform a SYN
flooding attack and a port scanning attack to systems
in such a way that the NIDS would not detect them.

445,4533,20483,5207,7,0,1,0,0,1,0,64240,58274,0,M,-

445,4533,20483,5207,7,0,1,0,0,1,0,34,58274,0,M,+

8

8

This situation would provoke critical situations under
a real scenario.

We have two main objectives for incoming work.
One is to create our own dataset, as explained in the
section 3.1, to perform the experiments. The other is
to analyze if these techniques can be applied
straightly to model a commercial NIDS.

Acknowledgment

This work was partially supported by CDTI,
Ministerio de Industria, Turismo y Comercio of Spain
in collaboration with Telefonica I+D, Project
SEGUR@ CENIT-2007 2004.

8. References

[1] R. Bace and P. Mell, "NIST Special Publication on
Intrusion Detection Systems", 800-31, 2001

[2] T. H. Ptacek and T. N. Newsham, "Insertion, evasion
and denial of service: Eluding network intrusion detection,"
Technical report, 1998.

[3] J. R. Koza, ''Genetic Programming: On the
Programming of Computers'', M. Press, Ed.Cambridge,
MA, USA, 1992.

[4] S. Pastrana, A. Orfila, and A. Ribagorda, “Modeling
NIDS evasion with Genetic Programming”, on the
Proceedings of The 2010 International Conference on
Security and Management, SAM 2010, Las Vegas, Nevada,
USA, July 11-15, 2010

[5] D. Son. (2002) Fragroute. [Online].
http://www monkey.org/~dugsong/fragroute/

[6] L. Juan, C. Kreibich, C.-H. Lin, and V. Paxson, "A Tool
for Offline and Live Testing of Evasion Resilience in
Network Intrusion Detection Systems," in DIMVA '08:
Proceedings of the 5th international conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, Paris, France, 2008, pp. 267-278.

[7] D. Watson, M. Smart, R. G. Malan, and F. Jahanian,
"Protocol scrubbing: network security through transparent
flow modification," IEEE/ACM Transactions on
Networking, vol. 12, pp. 261--273, 2004.

[8] M. Handley, C. Kreibich, and V. Paxson, "Network
instrusion detection: Evasion, traffic normalization and
end-to-end protocol semantics," in Proceedings of the 10th
Conference on USENIX Security Symposium-Volume 10,
2001, p. 9.

[9] M. Vutukuru, H. Balakrishnan, and V. Paxson,
"Efficient and Robust TCP Stream Normalization," in SP

'08: Proceedings of the 2008 IEEE Symposium on Security
and Privacy, Washington, DC, USA, 2008, pp. 96--110.

[10] G. Varghese, J. A. Fingerhut, and F. Bonomi,
"Detecting evasion attacks at high speeds without
reassembly," in SIGCOMM '06: Proceedings of the 2006
conference on Applications, technologies, architectures,
and protocols for computer communications, Pisa, Italy,
2006, pp. 327--338.

[11] U. Shankar and V. Paxson, "Active Mapping:
Resisting NIDS Evasion without Altering Traffic," in SP
'03: Proceedings of the 2003 IEEE Symposium on Security
and Privacy, Washington, DC, USA, 2003, p. 44.

[12] M. Roesch, "Snort - Lightweight Intrusion Detection
for Networks," in LISA '99: Proceedings of the 13th
USENIX conference on System administration, Seattle,
Washington, 1999, pp. 229--238.

[13] G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F.
Vitucci, "Counting Bloom Filters for Pattern Matching and
Anti-Evasion at the Wire Speed," IEEE Network Magazine
of Global Internetworking, vol. 23, no. 1, pp. 30-35, 2009.

[14] D. Mutz, C. Kruegel, W. Robertson, G. Vigna, and R.
A. Kemmerer ''Reverse Engineering of Network
Signatures'', in Proceedings of the AusCERT Asia Pacific
Information Technology Security Conference, Gold, 2005

[15] A. Orfila, J. M. Estevez-Tapiador, and A. Ribagorda,
"Evolving High-Speed, Easy-to-Understand Network
Intrusion Detection Rules with Genetic Programming," in
EvoWorkshops '09: Proceedings of the EvoWorkshops
2009 on Applications of Evolutionary Computing,
Tübingen, Germany, 2009, pp. 93--98.

[16] J. Blasco, A. Orfila, and A. Ribagorda, "Improving
Network Intrusion Detection by Means of Domain-Aware
Genetic Programming," in , Krakow, Poland, 2010.

[17] G. Folino, C. Pizzuti, and G. Spezzano, "GP Ensemble
for Distributed Intrusion Detection Systems," in ICAPR,
2005, pp. 54-62.

[18] S. Mukkamala, A. Sung, and A. Abrham, "Modeling
intrusion detection systems using linear genetic
programming approach," in IEA/AIE'2004: Proceedings of
the 17th international conference on Innovations in applied
artificial intelligence, Ottawa, 2004, pp. 633--642.

[19] S. Peddabachigari, A. Ajith, C. Grosan, and J. Thomas,
"Modeling intrusion detection system using hybrid
intelligent systems," Journal in Network Computer
Applications, vol. 30, no. 1, pp. 114-132, 2007.

[20] M. Crosbie and E. Spafford, "Applying Genetic
Programming to Intrusion Detection," in Working Notes for
the AAAI Symposium on Genetic Programming, 1995, pp.
1-8.

9

9

[21] R. Kohavi, ''A Study of Cross-Validation and
Bootstrap for Accuracy Estimation and Model Selection'',
in IJCAI: International Joint Conference on Artificial
Intelligence, Volume 2, Issue 1, 1137--1143, 1995

[22] J.R. Quinlan, ''C4.5: Programs for Machine Learning
(Morgan Kaufmann Series in Machine Learning)'', Morgan
Kaufmann, 1993

[23] Lawrence Berkley National Laboratory and ICSI.
(2005) LBNL/ICSI Enterprise Tracing Project. [Online].
www.icir.org/entreprise-tracing/

[24] S. Hettich and S. Bay. (1999) The UCI KDD Archive.
[Online]. http://kdd.ics.uci.edu

[25] I. Fraf, R. Lippmann, R. Cunningham, D. Fried, J.
Kendall, S. Webster, and M. Zissman, “Results of DARPA
1998 offline intrusion detection evaluation”, 1998,
DARPPA PI Meeting, Cambridge, Massachusetts, USA.

[26] W. Lee and S.J. Stolfo. “A framework for constructing
features and models for intrusion detection systems”, ACM
Transactions on Information and System Security, vol. 3,
no. 4, pp 227-261, 2000

[27] A.C. Smith and K. Kendall Thesis, “A Database of
Computer Attacks for the Evaluation of Intrusion Detection
Systems”, in Proceedings DARPA Information
Survivability Conference and Exposition (DISCEX), 1999,
12--26

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, I. H. Witten, ''The WEKA Data Mining
Software: An Update'', in SIGKDD Explorations, Volume
11, Issue 1,2009

[29] N. Friedman, D. Geiger, M. Goldszmidt, “Bayesian
Network Classifiers”, Machine Learning, vol. 29, issue 2,
pp 131-163, 1997

[30] Nmap. [Online]. HYPERLINK ''http://nmap.org/''

10

10

