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Abstract 
 
Signature based Network Intrusion Detection 

Systems (NIDS) apply a set of rules to identify hostile 
traffic in network segments. Currently they are so 
effective detecting known attacks that hackers seek 
new techniques to go unnoticed. Some of these 
techniques consist of exploiting network protocols 
ambiguities. Nowadays NIDS are prepared against 
most of these evasive techniques, as they are 
recognized and sorted out. The emergence of new 
evasive forms may cause NIDS to fail. In this paper 
we present an innovative functional framework to 
evade NIDS. Primary, NIDS are modeled accurately 
by means of Genetic Programming (GP). Then, we 
show that looking for evasions on models is simpler 
than directly trying to understand the behavior of 
NIDS. We present a proof of concept showing how to 
evade a self-built NIDS regarding two publicly 
available datasets. Our framework can be used to 
audit NIDS. 

  
 
1. Introduction  
 

Information Technology systems have become a 
critical component in organizations that manage a 
huge amount of personal and critical data. Guarding 
those systems from hostile actions should be the main 
goal when applying security measures, but the 
continuous evolution of technologies makes this task 
difficult.  

Intrusion Detection Systems (IDS) are software or 
hardware tools that automatically scan and monitor 
events that take place in a computer or a network, 
looking for evidence of intrusion [1]. Network 
Intrusion Detection Systems (NIDS) just analyze 
network traffic captured on the network segment 
where they are installed. NIDS may seek for either 
anomalous activity (anomaly based NIDS) or known 
hostile patterns (signature based NIDS) on the 
network. Unlike firewalls they do not normally block 
packets, but raise an alert about the intrusion attempt. 

 Signature based NIDS are effective at detecting 
attacks they are prepared for (they may fail to detect 

zero-day attacks until their signatures become 
updated). This situation causes attackers to focus 
their efforts in finding evasions over the signatures of 
these systems. The concept of evasion was first 
proposed by Ptacek and Newsham [2]. The authors 
highlighted some ambiguities in network protocols 
(concretely TCP and IP) that can lead into a situation 
where NIDS and endpoint systems process packets in 
a different way. An evasion succeeds if the 
processing of the packets generates a different 
representation of the raw data in the NIDS and in the 
end systems. Data contained in TCP segments can 
encapsulate some attacks, but if the NIDS processes 
those segments differently from the endpoint, it will 
not be able to detect those attacks.  

To the best of our knowledge no new evasive 
procedures have been published since [2]. Security 
administrators adapt their systems to detect those 
well-recognized problems presented by Ptacek. Thus, 
a possible emergence of new evasive techniques 
would be critical for systems that are supposed to be 
secure. This is the motivation of our work, in which 
we present a new approach to look for evasions over 
NIDS, giving a proof of concept in which we put into 
practice our framework using an artificial scenario.  

The aim of our framework is to look for new 
evasive techniques by analyzing NIDS behavior. As 
this behavior is normally complex, and even obscure 
if the NIDS source is proprietary, our approach is to 
model it by means of Genetic Programming (GP) [3]. 
GP is a paradigm that evolves programs that are 
represented by trees, where intermediate nodes are 
functions and leafs are terminals. The evolution is 
performed by selecting the best individuals (by 
comparing them using a denominated fitness 
function) from an entire population to cross and 
mutate them, thus obtaining the next population. In 
the scenario of our work, we have evolved simple 
models (individuals) that behave as similar as 
possible to the original NIDS. Thus, a simpler 
representation of the NIDS is obtained. The GP 
model allows finding evasions otherwise difficult to 
find.   

In a previous work [4], GP was used to model a 
simple NIDS with great accuracy, using a publicly 
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available dataset. In this paper we present new 
improvements, performing evasions over that NIDS 
and corroborating the effectiveness of modeling 
NIDS with GP using another publicly available set. 

The remainder of this paper is structured as 
follows. First, the state of the art on NIDS evasion is 
presented in section 2. Second, section 3 presents the 
framework. Then, section 4 describes the goals and 
requirements of this work. Experiments performed 
and results obtained are depicted in sections 5 and 6 
respectively. Finally, our conclusions and future work 
are gathered in section 7. 
 
2. State of the art  
 

Evasions on NIDS were first proposed by Ptacek 
and Newsham in 1998 [2]. In this seminal paper, the 
authors highlighted the existence of some ambiguities 
in the TCP and IP protocols, which allow different 
systems to implement them in a different way. An 
evasion succeeds when NIDS ignore packets which 
are going to be processed on the endpoints or vice 
versa. For example, TCP does not specify what 
should be done with TCP packets containing an 
erroneous checksum field. Implementations of the 
TCP protocol can ignore, accept or reject those 
packets. As shown in Figure 1, an evasion could 
succeed if the NIDS implementation of the TCP 
protocol differs from the endpoint implementation.  

 

 
Figure 1: example of evasion. In this example, the NIDS 
preprocessor accepts the packet containing a bad-
checksum field, while the endpoint does not, so the final 
structure after the preprocessing phase will be different. 
 

Several tools have been implemented to exploit 
the properties exposed above. Examples are 
Fragroute [5], which intercepts network traffic and 
modifies the packets before forwarding them to their 
destination, and idsprobe [6], which is a tool that 
generates traffic data from original traces. 

Many techniques have been designed to prevent 
evasions. Most of them are based on network traffic 
modification, to remove the ambiguities and establish 
a common understanding of the protocols for NIDS 
and endpoints. Watson et. al [7] propose a system 

called Protocol Scrubbing that generates well formed 
TCP data from traffic. A similar approach was 
proposed by Handley et al. [8], who introduced the 
concept of traffic normalizers. Those are intermediate 
elements that are placed in networks segments to 
remove possible ambiguities before being exposed to 
the NIDS. Because some of the evasive techniques 
are based on packet fragmentation and reassembly, 
the state of each connection and the previous packets 
must be stored and processed, in order to analyze the 
consistency of the connection. This situation 
consumes a large quantity of resources, leading into a 
bottleneck when working with high speed networks 
[9]. 

Some other solutions that do not modify the 
traffic have also been proposed. Varguese et al. [10] 
present the idea of dividing the entire signature of the 
NIDS into single smaller strings. A fast path finds 
matches with them and a slower one inspects it 
deeper if any match is found. Shankar and Paxon [11] 
propose a system that reports the NIDS about 
network topologies and the interpretation policy of 
the endpoint being monitored. Thus, NIDS can adapt 
their configuration taking into account that 
information. Snort [12] has adopted this technique in 
its IP processor (frag3). Finally, Antichi et al. [13] 
propose the use of Bloom Filters to find signature 
matching over the single received packets without the 
need of reassembly. These systems are supposed to 
improve the efficiency of the NIDS and never gives 
false negatives (detects all), but increments largely 
the number of false positives. 

A similar approach to our work has been 
presented by Mutz et. al [14]. The authors propose 
some kind of reverse engineering to obtain the 
signatures of non proprietary NIDS, so they became 
more vulnerable to attacks or evasions. Their 
principal goal is to show how keeping the signatures 
secret does not necessary increment the security of 
the NIDS. The main difference with our approach is 
that we do not focus on evading the NIDS directly 
but modeling it first. 

Genetic Programming has been proven to be a 
good paradigm in the scenario of NIDS development 
[15,16,17,18,19,20]. The main reason is that the 
functions used by GP can be defined in advance for a 
particular scenario. Accordingly, it is appropriate for 
the intrusion detection domain. In addition, previous 
work [4] demonstrates the viability of using GP to 
model a simplified NIDS with an easy to understand 
syntax and semantics.  
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3. Framework  
 

In this section we present an overall 
description of the proposed framework. Figure 2 
shows a graphical description. The main objective is 
to look for new evasion techniques on a given NIDS. 
We use GP to obtain a model that classifies as similar 
as possible to the NIDS. Due to the use of a simple 
syntax, the GP model has a simpler semantics than 
the NIDS. Looking for evasive techniques over the 
model is easier than over the NIDS. If evasions 
succeed over the model, and given that this model 
may have a quite similar behavior than then original 
NIDS, it is likely that the evasions will also succeed 
over the NIDS. Our framework is composed of a set 
of tasks described in the following sections. 

 
3.1. Generation of the datasets 
  

The GP modeling process at issue requires a 
labeled dataset. This dataset must represent as well as 
possible real traffic. Due to the necessity of 
generating different traffic profiles, a controlled 
environment is required. Generated traffic should 

include normal (simple web requests, remote 
connections, web navigation, etc) and intrusive 
(malicious) traffic. Traffic is processed by means of 
data mining techniques to extract the most significant 
features. It also needs to be labeled in order to 
identify it as normal or hostile.  

 Obtained traffic should be exposed to the NIDS, 
which analyzes the dataset looking for intrusive 
actions. Output given by the NIDS is appended to its 
corresponding processed frame. Thus, the obtained 
dataset is composed of registers with the form: 

 
 

F1,F2,F3,...,FN,L,O  
 
Where each Fi is the field i of the trace (for 

example, the source port, the flag bits, the amount of 
data exchanged, etc.), L is the label which indicates 
the nature of data (normal or attack) and O is the 
output given by the NIDS (normal or intrusion).  

The overall dataset is then divided into smaller 
sets, one being the GP training subset and the 
remainder the GP testing subsets.  

   

Figure 2: Overall scheme of the proposed framework 
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3.2. Modeling the NIDS 
 
As we have mentioned, in our framework GP is 

used to model the behavior of NIDS. First, values for 
some Genetic Program parameters are established. 
This process can be made manually or automatically, 
for example using a cross-validation technique [21]. 
This technique consists of performing the GP 
modeling phase several times, by using different 
combination of parameters. The entire dataset is 
randomly divided into 10 subsets, called folds. Each 
training phase is performed with one fold, using the 
remainder to test the evolved model. When all folds 
have been used to train a different model, it is taken 
as final combination of parameters the one that gives 
the best results in test. The principal advantage of 
using this technique is that we explore several 
combinations of parameter values so we can assure 
that we are using an optimum values for them, as the 
training phase is performed with all the different 
subsets (folds) of the entire dataset, so it does no 
depends on an initial selection, but in the complete 
dataset. 

The election of a good fitness function is a critical 
component when using GP. Because we are searching 
classification models, an optimum fitness function 
can be the classification error, that is, the rate that 
indicates how many traces has been correctly 
classified, not taking into account whether those 
traces are positives or negatives. Once the parameters 
are fixed, we obtain the NIDS models by training 
them with the entire training subset (which has to be 
considerably bigger than the remainder, used for 
testing). Then, we perform the test of the obtained 
models using the testing set. Results must be stored to 
be processed afterwards. 

 Because the GP search is heuristic, it is 
appropriate to perform the training phase several 
times, using different random seeds, taking the results 
for the best individual (the one that has produced the 
best test results) and the average of the individuals. 
Using different random seeds covers a bigger 
searching space. 

A manual optimization of the model is then 
performed. The tree model obtained has normally 
redundant branches or nodes, so performing a 
pruning phase could be interesting to improve the 
efficiency of the model. Although the improvement 
of the efficiency is not a primary objective to be 
satisfied, the prune of the tree largely simplifies 
models semantics, which is in fact the core of this 
framework. The output of this phase must be a model 
easy to understand and interpret, whose behavior 
must be as similar as possible to the NIDS. 

 

3.3. Analysis and design of evasive techniques 
 
Once the model is obtained, it is analyzed in order 

to discover some points of the internal structure of 
the NIDS, thus conceiving an idea of its behavior. 
Mainly, the model indicates which are the fields that 
the NIDS takes into account to classify traces. This 
information is used to perform a brute force 
modification of those fields.  

The idea is to automate the process by changing 
the value of the fields that are present in the GP 
model, generating new modified traces.  Before 
changing the value, it should be assured that traces 
with the new value remain being attacks and still 
coherent with the protocols. For that purpose, a set of 
rules must be established and fulfilled, indicating 
which variables can be changed and which values can 
be set to them. New valid values are given for those 
fields in hostile traces which were previously 
detected by the NIDS (true positives), establishing a 
new dataset composed by old and new (modified) 
traces. Then, the NIDS is applied to those new 
modified traces. New false negatives would indicate 
that the evasions performed have been successful. 
The process is repeated for each field that appears in 
the GP model, and also multiple simultaneous 
changes (to more than one field at the same time) can 
be done. 
 
4. Proof of concept. Specific goals  
 

The two main objectives of the proof of concept 
presented are first, to corroborate that GP can be a 
good paradigm to model NIDS, and second, to find 
evasions over the NIDS analyzing the corresponding 
GP model. For that purpose, we have created a basic 
NIDS based on the C4.5 algorithm [22]. This 
algorithm is a supervised learning classifier whose 
output is a tree.  

A simplification of the framework has been made 
to fulfill our goals. Instead of creating a specific 
dataset, in this work we have opted to use the only 
two publicly available datasets that are labeled (as 
normal or intrusive). Previous work [4] used one of 
them, the Lawrence Berkley National Laboratory 
(LBNL) dataset [23]. Results showed that with an 
accuracy of 96%, the behavior of a self-built NIDS 
can be modeled by reducing its complexity. In this 
work, we improve the study by using a different 
dataset, the KDD-99 [24], derived from raw traffic 
captured during MIT/LL 1998 evaluation [25]. A 
complete description of the fields can be found in 
[26]. The use of an extra dataset corroborates that the 
accuracy of using GP to model a NIDS is not limited 
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to one scenario and attack (the LBNL using port 
scanning attacks), but also to another that uses 
several kind of attacks. It is obvious that these 
datasets are both quite old, taking into account the 
fast growth of the complexity in the Information 
Technologies. However, they have been widely used 
in the literature [15,16,23] and they provide a huge 
set of labeled traces. Thus, it is useful for providing 
insight into the problem at issue and to analyze if the 
idea is sound. 

After obtaining models for each dataset, we are 
challenged to find real evasions over the original 
C4.5 based NIDS, by firstly looking for them over 
each GP model. We look for evasions by modifying 
the value of one or more fields of the traces and 
exposing them to the original NIDS. We must choose 
fields and values in such a way that the traces remain 
coherent with protocols, being still attacks (for 
example, if we change the bit of some TCP flag in a 
port scanning attack, we are not evading the NIDS 
and attacking the endpoint, but transforming the 
malicious trace into a normal one). For that purpose, 
we need to analyze the nature of the attacks we are 
working with. It is also needed that traces to be 
modified are true positives. An evasion is considered 
successful if, after the modification of the trace, the 
NIDS does not detect it as an intrusion. 

 
5. Experimental work 
 

Figure 3 shows a scheme of the modeling phase. 
At first the datasets are prepared. The LBNL provides 
both normal and portscanning traffic, captured in 
various days at different hours. We use five different 
raw traffic files, processing them in order to take just 
TCP traffic. Thus, we establish five datasets 
containing labeled traces from both malicious and 
normal nature. These traces are composed of the 
fields (Fi )  of the TCP header.  

In the case of the KDD dataset, we have taken 
10% of the original traces, preprocessed them in 
order to make the output binary (i.e. normal or 
intrusion) and normalizing the non-numerical fields.  

We use the weka tool [28] to obtain the C4.5 
based NIDS (step 1 in Figure 3). For that purpose, we 
randomly choose a subset of each dataset to perform 
the training phase, testing over the remainder. This 
testing phase provides, for each trace, the output 
given by the NIDS, i.e. if it has properly classified 
the trace or not. This information is appended to each 
trace, obtaining the final dataset (step 2 in the Figure 
3). We perform another division of the dataset, in this 
case to obtain two new different subsets, one to be 
used in the GP training phase and another one to test 
the individuals (step 3 in the Figure 3). 

Table 1 shows the performance of the NIDS 
created for both the LBNL dataset and the KDD. As 
can be observed, in the case of the LBNL, NIDS are 
tending to classify the traces as intrusive, so its 
detection rate and its false alarm rate are both very 
high. However, the NIDS built with the KDD has 
lower rates, which indicates that it is more likely to 
classify the traces as normal. So, given that the NIDS 
which are going to be modeled are very different in 
nature, the first goal of our proof of concept, which 
was to prove the feasibility of using GP to model 
NIDS goes a step further.  

 
 Detection rate False Alarm rate 
LBNL 99% 65% 
KDD 82.43% 0.1% 

Table 1: Performance of the self-built, c4.5 based NIDS. 
In the case of the LBNL, the rates correspond with the 
average of the five raw traffic files.  

  
GP works with trees that represent programs 

(called individuals in GP terminology) to be evolved. 
Each intermediate node of the tree is a function, and 
each leaf is a terminal. The terminals we use are both 
fields of the traces and real numbers. Table 2 shows 
the functions used for intermediate nodes. It is 
important to note that the election of these functions 
helps to produce simple individuals. 

 
Name Description 
ADD Addition of two numbers 
AND And logic operation between two numbers 
DIV Division between two numbers, or 0 if the 

denominator is 0 
GT Compares both values. Returns 1 if the first is 

greater, 0 in the other case 
LT Compares both values. Returns 1 if the first is 

lower, 0 in the other case 
MULT Multiplication of two numbers 

OR Or logic between 2 numbers 
MAX Returns the maximum of two values 
MIN Returns the minimum of two values 
RL Bitwise rotation in one position of a value 

NOT Not logic operation between two values 
IF Returns the second child if the first one is 

positive or 0, or the third child if the first one is 
negative 

Table 2: GP function set 
 
The models are created by first evolving them 

using a training subset (step 4 in Figure 3), using the 
remaining subsets to test whether the obtained 
models have a good performance with different 
traffic from the one used to evolve them (step 5 in 
Figure 3). In the training phase, that is, when 
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evolving the models, we use an Island Model [3], 
where different evolutionary environments are 
thrown in parallel. Thus, every 20 generations, the 
best individual of each environment (island) migrates 
to another island. Some of the fields obtained under 
an island are moved to another, in order to improve 
the variability of the global evolution.  

One critical component in GP is that it performs a 
heuristic search. Accordingly seven different seeds 
have been used over each training subset, thus 

obtaining seven different evolved individuals. Then, a 
testing process is performed with each individual. In 
the following section the best and average result for 
each model is shown. Each individual represents one 
different NIDS model, and because they must be as 
simple as possible, a maximum depth of 4 is 
established. Therefore, each individual have at most 
81 nodes including functions and terminals (the 
maximum number of children of a node, 3, at the 
power of 4).  

 

 
 

Figure 3. Graphical description of the experimental work performed. Firstly (1), the C4.5 
based NIDS is created with one subset of the dataset (in LBNL, we create 5 different NIDS 
using the 5 different used files). Then (2), some other traffic files are presented to the 
NIDS in order to obtain its output for each trace, which is appended at the end of the 
traces. The labeled traces files are divided into a training file and several testing files (3). 
The training file is used to evolve (train) the GP model (4), which is later tested with the 
testing files in order to obtain statistics of its output (5). 
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As it was previously stated, one of the goals of 

this proof of concept is to corroborate that GP is a 
good paradigm to be used when modeling the NIDS. 
In order to compare with some other techniques, we 
have obtained models using two different techniques. 
Concretely, we have used the Naïve Bayes approach, 
which is a specific Bayesian classifier which assumes 
strong independence among fields [29] and whose 
output is not a tree, but a probabilistic model. The 
second method used is the C4.5 algorithm, which is 
the one used to create the NIDS under study, but 
limiting its maximal tree depth to 4 (as done in GP). 
It is obvious that the C4.5 algorithm will reach better 
results if its maximal depth would not be limited to 4, 
because it is the algorithm used to obtain the original 
NIDS. However, this limitation of the maximal depth 
is needed to assure that the complexity of the models 
to be compared is similar. Table 3 shows the 
classification error achieved by the three approaches 
when classifying the LBNL traces as done by the 
self-built, C4.5 based NIDS. As can be seen, the GP 
model achieves the best performance. 

   GP Naïve Bayes C4.5Classification error 4 % 37.4% 8.6 %
Table 3. Comparison of the three methods used 
to model the NIDS in terms of classification 
error for the LBNL dataset. The GP model is 
the best one of the seven different models 
obtained.   
 
At this point (final step in Figure 3) several GP 

individuals are obtained for the LBNL dataset (35 
individuals in total, five datasets and seven 
individuals for each one) and the KDD (one dataset, 7 
individuals). In order to evade these models, we are 
interested in changing traces corresponding to true 
positives. We analyze the models manually looking 
for any field that, when changed, will make the NIDS 
to fail in the detection. It is possible that there is no 
possible change that causes the evasion of the NIDS. 
In this case, we should repeat the modeling process 
(by changing some field or the fitness function) in 
order to obtain another model over which we would 
look for new evasive methods.  

 
 

6. Results 
 

One of the objectives proposed in this work is to 
verify that using GP it is possible to model NIDS 
accurately, thus obtaining easier to understand 
models which, working as white box, allows us to 

understand the behavior of the NIDS and to find new 
ways to evade detection. Table 4 shows the statistics 
obtained in the GP modeling phase. The third column 
is calculated by dividing the number of nodes of the 
GP models by the number of nodes of the C4.5 tree. 
For both cases, we have calculated the medium nodes 
of all the obtained GP models (7 for the KDD case, 
and 35 for the LBNL). As we can see, we obtain a 
great complexity reduction with a slight classification 
error.  

 
 Best  Average Complexity 

reduction 
LBNL 4 % 12.5 % 86% 
KDD 3 % 8.6 % 98% 
Table 4.  Statistics of the GP classification 
phase.  The first two columns show the 
classification error measured for the NIDS 
model for both the best individual and the 
average of the individuals obtained. The third 
column shows the reduction in complexity 
achieved by the average GP trees compared to 
the original C4.5 tree. 

 
This reduction of complexity allows us to take a 

look at how the NIDS works. Realize that, being the 
C4.5 an algorithm whose output is a tree, it could be 
possible to understand its behavior by examining this 
tree. However, as Table 4 shows, GP trees are less 
complex than those of C4.5, being easier to 
understand. Once obtained the models, we look for 
possible evasive points over them. For instance, we 
show in Figure 4 an example of an obtained model 
for the KDD dataset. In this case, classification is 
made by dividing the variable 13 (the number of 
compromised conditions [24]) by the variable 6 (the 
number of data bytes from destination to source). As 
described in Table 2, if the denominator of the 
division is 0, a 0 is returned. In order to change that 
condition, we can change the variable 6 in order to 
modify the classification, thus setting it to a non-zero 
value.  

 
 
 
 

 
Figure 4:  A GP model example 

 
Before changing the value, we must realize that 

traces with the new value remains producing the 
original attack. For that purpose, we analyze a KDD 
attack, Neptune, which consists on a SYN Flooding 
attack. The attacker sends to the victim several SYN 
packets, indicating that a new connection is required. 

DIV 

VAR13 VAR6 
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The victim must store information about each new 
connection that is being established, storing it in a 
buffer which, after receiving several SYN packets, 
will be overloaded. This attack can be distinguished 
from normal traffic by looking for a number of 
simultaneous SYN packets destined for a particular 
machine that are coming from an unreachable host. A 
NIDS can monitor the size of the TCP connection 
data structure and alert a user if this data structure 
approximates its size limit [27]. 

The field dst_bytes, which we modify to perform 
the evasions, is not taken into account when 
generating the Neptune attack, so we can modify it in 
the traces without disturbing the condition of attack. 
On the one hand, sending traces with all the fields 
having the same value, but the destination bytes, we 
are performing the same attack. On the other hand, 
we have realized that changing to 100 the value of the 
field, the detection of the attack is evaded in all the 
traces of the training subset which belong to this 
attack. In summary, we are performing one attack 
that originally was detected by the NIDS, but after 
the changes, remains undetected, thus evading the 
NIDS detection engine. This situation, in a real 
environment, would be critical for systems that are 
receiving a huge amount of data, because if the NIDS 
is able to detect that a Neptune attack is happening, 
some actions could be taken. But if the detection does 
not succeed, that is, if the NIDS is evaded, the 
endpoint system buffer would be overloaded, thus 
producing a Denial of Service as the state of new 
benign incoming connections would not be stored. 

Regarding LBNL, malicious traces are part of a 
port scanning attack. The aim of this attack is to 
probe the open ports of the victim system, in order to 
find open doors to perform a posterior attack. It is 
normally done by sending simple SYN packets over 
each of the ports that are being scanned, analyzing 
the response to that requests, so it can be determined 
whether the port is open, close or filtered (by a 
firewall) [30].  

One variant of port scanning, used for example by 
Nmap [30] is based on the value of the window size 
field of a TCP header. This variant is called TCP 
Window Scan. The attacker examines the window 
size value on packets received with the RST bit set 
on, and depending on this value, it can be determined 
the nature of the system being attacked.  

In a similar process as the one explained for the 
KDD dataset, we have realized that changing the 
window size value to 34 (see Figure 5) we can evade 
the NIDS detection of some attack traces (around a 
69 % of them) in 2 of the 5 models we are working 
with. A deeper analysis of the models would allow us 
to improve the effectiveness of the evasions, for 

example by changing more than one field. The 
packets that we are modifying to evade the NIDS has 
the RST bit set to 0, so we can assure that they are 
not belonging to a TCP Window Scan attack. As we 
are changing the value of the Window Size field in 
those traces with the RST bit being 0, we assure that, 
after the change, the port scan attack is still 
succeeding, but in this case without being detected by 
the NIDS. This situation in a real environment would 
provoke that the port scanning phase, which is the 
previous step to any other more critical attack, could 
be performed with no alert from the NIDS. 

 
 
 

 
 
 
Figure 5:  An evasion example, showing the original 
and modified trace. Last character indicates whether 
the NIDS has properly classified the trace (-) or not (+). 
Second last character shows that both traces are 
malicious (M). In boldface it is shown the change 
performed to the window size field. 
 
7. Conclusions and future work 
 

Currently, NIDS are prepared to detect a huge 
variety of attacks. Some of them, like Snort, take into 
account the possibility of being evaded with the 
techniques exposed by Ptacek and Newsham in 1998 
[2]. However, they are not prepared to new evasive 
forms that can appear. 

 In this paper we present a new framework to look 
for evasions over a given NIDS. The core of the 
framework is to model the NIDS using Genetic 
Programming to obtain an easier to understand 
individual which works as similar as possible to the 
NIDS. This model allows the understanding of how 
the NIDS classifies network data. Once this model is 
obtained, we can look for some way of evading the 
NIDS detection by changing some of the fields of the 
packets. The final aim of using our framework is not 
to break the detection of the NIDS, but to analyze 
NIDS robustness. 

We have tested our framework by using a simple 
NIDS based on the C4.5 algorithm over the only two 
publicly available datasets that have their records 
labeled. We have shown the effectiveness and degree 
of reduction of the complexity when using GP to 
model the behavior of the NIDS. Taking advantage of 
this reduction, we have provided evasions over the 
original C4.5-based NIDS. Concretely, we have 
found evasions that allow attackers to perform a SYN 
flooding attack and a port scanning attack to systems 
in such a way that the NIDS would not detect them. 

445,4533,20483,5207,7,0,1,0,0,1,0,64240,58274,0,M,- 
 
445,4533,20483,5207,7,0,1,0,0,1,0,34,58274,0,M,+ 
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This situation would provoke critical situations under 
a real scenario.  

We have two main objectives for incoming work. 
One is to create our own dataset, as explained in the 
section 3.1, to perform the experiments. The other is 
to analyze if these techniques can be applied 
straightly to model a commercial NIDS. 
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