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Resumen

... los datos direccionales proporcionan una amplia variedad de problemas abiertos y

constituyen un área inagotable para desarrollar nuevos métodos estad́ısticos y herramientas

de inferencia.

Jammalamadaka y otros (2001).

La mayoŕıa de los trabajos en estadśtica se centran en datos lineales. Sin embargo, en

muchos casos, se observan datos en forma de direcciones o tiempos de ocurrencia. Este t́ıpo

de datos reciben el nombre de datos direccionales. Los datos direccionales habituales se

pueden clasificar en datos circulares, que se pueden representar como puntos en el circulo

unidad, datos toroidales, ciĺındricos o esféricos. Ejemplos t́ıpicos de datos circulares son las

rutas de migración de aves, estudiadas en bioloǵıa (véase p.e. Batschelet, 1981), o la hora del

d́ıa en la que llegan los pacientes a la sala de urgencias de un hospital. Ejemplos de datos

toroidales, o circulares-circulares, se pueden encontrar en la estructura de los ángulos de los

aminoácidos y ejemplos de datos ciĺındricos, o circulares-lineales, en la dirección y fuerza

del viento. Por último, un ejemplo de datos esféricos se tiene al medir la posición de los

observatorios en los que se ha registrado más de cierta cantidad de lluvia durante el último

año.

Los datos direccionales poseen algunas caracteŕısticas intŕınsecas que requieren técnicas

de análisis especiales. Por ejemplo, en el caso circular, es evidente que los ángulos 10o y 350o

están muy próximos, pero la media lineal de estos ángulos es 180o, cuando en realidad es

0o. Debidas a éstas y otras caracteŕısticas, principalmente topológicas, una gran mayoŕıa de

las técnicas habituales que se aplican a los datos en la recta real resultan inaplicables a este

tipo de datos y, por tanto, se han desarrollado numerosos modelos y técnicas especificas en

la literatura para este tipo de datos.

La mayoŕıa de los trabajos sobre datos direccionales en estad́ıstica se han centrado en

modelos paramétricos. Sin embargo, casi todos estos modelos son unimodales y/o simétricos,

iii



iv

de modo que en muchas situaciones reales los datos no se pueden ajustar adecuadamente us-

ando estos modelos. Por tanto, resulta muy interesante el desarrollo de otros procedimientos

alternativos más flexibles y con menos restricciones paramétricas. Hasta ahora, la literatura

existente sobre modelos no paramétricos o semiparamétricos es muy escasa reduciéndose,

básicamente, a procedimientos basados en métodos kernel en el caso no paramétrico y basa-

dos en mixturas de modelos paramétricos en el caso semiparamétrico. El principal objetivo

de esta Tesis es por tanto el desarrollo de nuevos modelos no paramétricos y semiparamétricos

que sean apropiados para datos direccionales. Esta Tesis esta organizada del modo siguiente.

En primer lugar, en el Caṕıtulo 1, se revisan las principales caracteŕısticas de los datos di-

reccionales y los principales modelos probabiĺısticos usados para estos datos. En primer lugar

se considera el caso más sencillo de la modelización circular y luego se estudian los modelos

circulares-circulares, circulares-lineales y esféricos. En cada caso, se muestran las principales

caracteŕısticas de estos datos y algunos de los modelos habituales. También, se presentan

los métodos de inferencia habituales para el caso univariante y bivariante incluyendo los

procedimientos no paramétricos.

En el Caṕıtulo 2, se presenta la primera clase de modelos propuesta, que son distribu-

ciones circulares basadas en polinomios de Bernstein circulares. Esta propuesta se basa en

extender el procedimiento de aproximación de densidades basado en polinomios de Bernstein

de Vitale (1975) al caso de datos circulares mostrando que el modelo propuesto conserva las

buenas propiedades del modelo original. En este Caṕıtulo, se introducen en primer lugar

los polinomios de Bernstein que se usan habitualmente para la interpolación de funciones

definidas sobre un intervalo cerrado y se muestran las tasas de convergencia de dicha inter-

polación. Posteriormente, se muestra cómo pueden aproximarse las funciones de distribución

y de densidad de una variable lineal usando los polinomios de Bernstein.

A continuación se describe cómo adaptar el polinomio de Bernstein definido en un in-

tervalo cerrado de la recta real al ćırculo y se muestra cómo, bajo ciertas condiciones, la

función de densidad obtenida satisface las condiciones de densidad circular introducidas en

el Caṕıtulo 1. También se obtienen los momentos trigonométricos en una forma cerrada, y

mediante un ejemplo basado en la distribución coseno, se ilustra cómo la densidad circular

obtenida mediante polinomios Bernstein converge a la verdadera densidad y la convergencia

del origen.

La principal contribución de este Caṕıtulo es el desarrollo de un procedimiento de es-

timación no paramétrico para datos circulares basado en el desarrollado por Vitale (1975).

Para ello, se propone realizar unas ciertas correcciones que permitan conseguir que la den-
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sidad circular esté bien definida. Además, se muestra que a pesar de estas correcciones, la

tasa de convergencia que es igual a la obtenida en Vitale (1975) para datos lineales y que

coincide además con la tasa de convergencia que se obtiene mediante métodos Kernel. El

procedimiento de estimación propuesto se ilustra con un conjunto de datos correspondientes

a los delitos cometidos en Chicago el d́ıa 11 de mayo de 2007.

Por último, en este Caṕıtulo, se exponen algunas conclusiones y posibles extensiones del

modelo. Estas últimas consisten en usar distribuciones beta definidas de una forma similar

en el ćırculo que, bajo ciertas restricciones, son mixturas de densidades circulares. Este

modelo constituiŕıa una alternativa semiparamétrica al modelo no paramétrico propuesto.

En el Caṕıtulo 3, se construyen dos modelos que generalizan el polinomio de Bernstein

circular al caso bivariante mediante el uso de cópulas Bernstein: un modelo circular-circular

y un modelo circular-lineal.

En primer lugar, se introduce la generalización de los polinomios de Bernstein al caso

bivariante de una forma similar a la expuesta en el Caṕıtulo 2 y se revisan la definición,

conceptos básicos y principales tipos de cópulas.

Posteriormente, se muestra mediante un sencillo ejemplo que no es posible adaptar el

polinomio de Bernstein bivariante al caso circular-circular ya que no existe un origen que

satisfaga las condiciones de continuidad en dos dimensiones. De este modo, se motiva el uso

de cópulas como herramienta alternativa para poder estimar densidades bivariantes. Como

es bien sabido, la principal ventaja de las cópulas es que permiten separar la estructura de

dependencia de las distribuciones marginales, lo cual hace posible el uso de los métodos de

estimación de distribuciones circulares univariantes desarrollados en el Caṕıtulo 2.

Siguiendo la misma ĺınea de estimación de modelos, la principal aportación de este

Caṕıtulo es el desarrollo de un procedimiento de estimación no paramétrico basado en

cópulas Bernstein emṕıricas (véase Sancetta y otros, 2004), que constituyen estimadores

no paramétricos de la estructura de dependencia entre variables continuas. Al igual que en

el caso univariante, es necesario hacer ciertas correcciones para obtener distribuciones con-

tinuas. Sin embargo, se muestra que dichas correcciones preservan la uniformidad asintótica

de las distribuciones marginales, dando lugar a modelos bien definidos.

A continuación se ilustran los procedimientos de estimación propuestos usando dos con-

juntos de datos reales de carácter medioambiental. Uno sobre las direcciones del viento

registradas por dos boyas de la NOAA situadas en el océano Atlántico y otro sobre las di-

recciones del viento y la cantidad de lluvia registrada en el observatorio de Somió en Gijón.

Se finaliza el Caṕıtulo mostrando algunas conclusiones y extensiones de los modelos.
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En el Caṕıtulo 4, se construyen dos nuevos modelos bivariantes, uno para datos circulares-

circulares y otro para datos esféricos haciendo uso de otra clase de polinomios, los polinomios

trigonométricos. Tales polinomios están basados en sumas de términos sinusoidales y el

principal problema cuando se construyen funciones de densidad basados en polinomios de

este tipo es garantizar que sean no negativas. En el caso univariante, el teorema de Fejér-Riesz

(véase Fejer, 1915) proporciona las condiciones necesarias para ello y este fue el resultado

usado por Fernández-Durán (2004) para proponer un método de aproximación de densidades

circulares univariantes. En el Caṕıtulo 4, se usan los resultados de Geronimo y otros (2004)

para generalizar este modelo al caso de datos circulares-circulares y esféricos. En particular,

para la extensión de datos esféricos, se sigue una idea original basada en Merilees (1973) y

Boer y otros (1975) para realizar una transformación (no biyectiva) de la esfera en el toro.

Los procedimientos para datos circulares-circulares y esféricos se ilustran con dos conjuntos

de datos reales. El caṕıtulo acaba con algunas conclusiones y extensiones de los modelos

propuestos.



Preface

... directional statistics provides an inquisitive reader with many open research problems

and is a fertile area for developing new statistical methods and inferential tools.

Jammalamadaka et al (2001).

Most work in statistics is centred on linear data. However, in many cases, the observed

data can be represented as directions, or periodic occurrence times. Data of this type

are called directional data. Typical directional data types are circular data, that can be

represented as points on a unit circle, toroidal data, cylindrical data or spherical data.

Examples of circular data are the departure directions of birds, or the 24 hour clock arrival

times of patients in a hospital. An example of toroidal, or circular-circular data can be

found in the structure of the dihedral angles of amino acids and an example of cylindrical or

circular-linear data can be found as the direction and strength the wind in various locations.

Finally, an example of spherical data is the position of the observatories which registered

more than a certain amount of rain during the last year.

Directional data have some intrinsic characteristics which require special statistical tools.

For example, in the circular case, it is clear that the angles 10o and 350o are very close, but

the linear mean of these angles is 180o, while the true mean is 0o. Thus, it is clear that

linear statistical measures such as the mean are not appropriate summaries of these data.

Also, due to the shape constraints of directional data, standard probabilistic models are not

usually appropriate for such data and special models have been developed for such data.

Most work in directional statistics up to now has concentrated on parametric models.

However, the great majority of such models are unimodal and / or symmetric, so that

many real data samples cannot be fitted appropriately by such models. Therefore it is

interesting to concentrate on alternative, more flexible approaches with fewer parametric

assumptions. Up to now, there has been relatively little work on non-parametric or semi-

parametric models, except for kernel density based approaches in the non-parametric case

and approaches based on mixtures of parametric models in the semi-parametric case. The
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main objective of this thesis is thus to develop new non-parametric and semi-parametric

models which are appropriate for analyzing directional data. This thesis is organized as

follows.

Firstly, in Chapter 1, we review the main characteristics of directional data and the main

probabilistic models used for these data. Firstly, we consider the simplest case of circular

modeling and then we study circular-circular, circular-linear and spherical models. In each

case, we show the main characteristics of the data and some of the most typical models. We

also present the usual, classical inference tools for both the univariate and multivariate case

and comment on non-parametric approaches to directional data modeling.

In Chapter 2, we present our first class of proposed models, that is, circular Bernstein

polynomial distributions. Our approach is based on extending the well known, Bernstein

polynomial density approximation of Vitale (1975) to the case of circular data and showing

that our model preserves the good properties of the original model.

In this chapter, we introduce the Bernstein polynomials which are usually used for in-

terpolating functions defined on a closed interval and show the convergence rate of this

interpolation. Then, following Vitale (1975), we show how to approximate the distribution

and density functions of a linear random variable using Bernstein polynomials.

Next, we describe how to adapt linear Bernstein polynomials distributions to the circle

and show how, under certain restrictions, the density functions that are obtained satisfy

the required properties of circular densities introduced in Chapter 1. Also, we derive the

trigonometric moments in a closed form and, using an example based on the cosine distri-

bution, we illustrate that the approximated density converges to the theoretical density and

the convergence of the origin.

The main contribution of this chapter is the construction of a nonparametric estimation

approach for circular data based on the one developed by Vitale (1975). In particular, we

propose to apply certain corrections in order to obtain well defined circular density functions.

Moreover, we show that even with these corrections, the convergence rate is the same that

the obtained by Vitale (1975) for linear data and it is also the same convergence rate that

is obtained using Kernel methods. We illustrate the proposed estimation procedure with a

real data set on the occurrence of crimes perpetrated in Chicago on May 11, 2007.

We finish the chapter with various conclusions and possible extensions of the model.

These extensions are based on the use of beta distributions in a similar way for the circle

such that, under certain restrictions, correspond to mixtures of circular density functions.

This model is a semi-parametric alternative to the proposed model.
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In Chapter 3, we then construct two models which generalize the circular Bernstein

polynomial to the bivariate case using Bernstein copulas: that is a circular-circular model

and a circular-linear model.

Firstly, we introduce the generalization of Bernstein polynomials to the bivariate case in

a similar way to the considered in Chapter 1 and we review the definition, basic concepts

and main types of copulas.

Then, we show using a simple example that it is not possible to adapt the bivariate

Bernstein polynomial to the circular-circular case since there do not exist an origin that

satisfies property of continuity in two dimensions. Due to this fact, we motivate the use of

copulas as an alternative tool to estimate bivariate densities. As is well known, the main

advantage of copulas is that they make possible to separate the dependence structure from

the marginal densities and this allows us to make use of the estimation methods for univariate

circular distributions developed in Chapter 2.

Using a similar approach to the developed in the previous Chapter, the main contribution

of Chapter 3 is the construction a nonparametric estimation procedure based on empirical

Bernstein copulas (see Sancetta et al, 2004), which are nonparametric estimators of the

dependence structure in continuous random variables. As considered for the univariate case,

we need to make certain corrections to obtain continuous distributions. However, we will

show that these corrections preserve the asymptotic uniformity of the marginal distributions,

such that both models the circular-circular and the circular-linear models are well defined.

Our proposed estimation procedures are illustrated using two environmental data sets,

based on wind directions and rainfall levels. We finish with some conclusions and extensions

of the models.

Finally, in Chapter 4, we construct two new bivariate models, a circular-circular model

and a spherical model, making use of another class of polynomials, that is the trigonometric

polynomials. Such polynomials are based on sums of sinusoidal terms and the key problem

when forming density functions based on polynomials of this type is to ensure that they are

non-negative. In the univariate case, the well-known Fejér-Riesz theorem, (Fejér, 1915) gives

the necessary conditions for this to occur and this result was used to derive a circular density

approximation in Fernández-Durán (2004). Here, we use results in Gerónimo et al (2004) to

generalize this model to the case of circular-circular and spherical data. In particular, for

the extension to spherical data, we have followed an original idea based on Merilees (1973)

and Boer et al (1975) to make a (non-bijective) transformation of a sphere into a torus. Our

procedures for circular-circular and spherical data are illustrated with two real data sets and
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we finish the chapter with some conclusions and extensions of our proposed models.
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Chapter 1

Introduction

Directional statistics is a part of statistics that have special treatment. In this chapter we

show its special characteristics in both the univariate and multivariate case. As we will see

below, these directions must be converted to angles in order to be analyzed. We illustrate

through an example that linear statistics do not work with this type of data and then we

give the formulae for analyzing this type of data.

The models for directional data must acquire their intrinsic properties. We will show

these properties, the typical examples of densities used for modelling directional data in one

and two dimensions and the different approaches to estimate the densities in each case.

This chapter is organized as follows. In Section 1.1, we extend the concept of circular data

and show a brief summary of its characteristics, trigonometric moments, typical models, etc.

In Section 1.2, we generalize to the multivariate case focusing on the bivariate case, that

are the torus, the cylinder and the sphere. Then, in Section 1.3, we comment briefly on

model fitting for directional data models, concentrating on the classical statistical approach.

We finish in Section 1.4 with some brief comments on semi-parametric and non-parametric

modelling for directional data.

1.1 Circular statistics

In this section, we explore the characteristics of circular data and the most important models

for data of this kind.

1
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1.1.1 Circular data

Circular data are data that can be represented as points on the circumference of a unit circle

or as a unit vector in the plane. Given a suitable choice of origin and a sense of rotation, then

data of this type can be transformed to angles. An important characteristic is that different

origins or a different sense of rotation provide different values for the same observation. A

second important property is periodicity. Suppose that a observation θ is given. Then given

a circuit of length 2pπ around the circumference of the circle, for p ∈ N, we return to the

same point, that is θ = mod (θ+ 2pπ, 2π). The consequence is that methods for analyzing

this type of data should take into account how to measure the distance between any two

observations.

Sample circular moments

Given the special properties of circular data, as noted in Section 1.1.1, then it is not surprising

that standard summary measures for linear data can often provide unreasonable results.

Example 1. Consider a sample of two observations, θ1 = 15 ◦ and θ2 = 345 ◦. Then the

linear average of these two data is simply 180 ◦, but as we can see in Figure 1.1, this value

is not a sensible summary of the location of the data.

For computing the different sample statistics we must compute the sample trigonometric

moments and use them as we will see below. The p’th sample trigonometric moment can be

defined as follows:

Definition 1. Let θ1, . . . , θn be a random sample from a circular variable Θ. The p’th sample

trigonometric moment is given by:

mp = C̄p + iS̄p

where i =
√
−1 and

C̄p =
1

n

n∑
j=1

cos pθj and

S̄p =
1

n

n∑
j=1

sin pθj.
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Figure 1.1: Linear statistics do not work

The most useful circular statistics are the sample circular mean direction and the mean re-

sultant length which are measures of circular location and concentration respectively. These

statistics are defined below.

Definition 2. Given a sample of circular data, θ1, . . . , θn, the sample circular mean direction,

θ̄, is defined as,

θ̄ =

{
arctan

(
S̄1/C̄1

)
, C̄1 ≥ 0,

arctan
(
S̄1/C̄1

)
+ π, C̄1 < 0,

(1.1)

and the mean resultant length is,

R̄1 =
√
C̄2

1 + S̄2
1 . (1.2)

In contrast to the linear mean, the circular mean does provide a correct estimate of the

average direction of the data. In particular, in the case of Example 1, it is easy to see

that the circular mean direction is equal to 0 ◦. Note also that when the data are perfectly

uniformly distributed over the circle, then the circular mean will not exist, as in this case,
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C1 = S1 = 0 and the mean resultant length will take the value 0. In contrast, when the data

are concentrated on a single point, it is easy to see that the circular mean is equal to this

point and the mean resultant length takes the value 1. Thus, low values of the mean resultant

length correspond to disperse data and high values correspond to concentrated data. Note

that many other circular statistics which measure different characteristics of the data have

been developed. For a complete review, see e.g. Fisher (1993) and Jammalamadaka et al

(2001).

Displaying circular data

There are several display options for this type of data. The most usual are the rose plot or

angular histogram, the dot plot and, given an origin about which the circle is unwrapped,

we obtain a linear histogram.

Example 2. The following plots show 200 simulated circular data generated from a cosine

distribution, see Example 4. As we can see, the sample is unimodal with a mode near to π.

Figure 1.2: Rose plot (top left), circular dot plot (bottom left) and linear histogram (bottom
right)of the cosine data.
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1.1.2 Circular random variables

The density function of a circular random variable, Θ, is defined as follows:

Definition 3. Let f(·) be the density function of a circular random variable Θ. The density

function satisfies

1. f(θ) ≥ 0, for −∞ ≤ θ <∞,

2. f(θ) = f(θ + 2πj), for all j ∈ Z,

3.
∫ ν+2π

ν
f(θ) dθ = 1, for 0 ≤ ν < 2π.

Thus, the density is a periodic, non-negative function with period 2π which integrates to

1 over any region of length 2π.

In order to define the distribution function, we must first select an origin ν. For such an

origin, the distribution function is defined in the usual way as:

F ν(θ) =

∫ ν+θ

ν

f(θ) dθ, for 0 ≤ θ < 2π. (1.3)

Trigonometric moments

Trigonometric moments for circular random variables can be computed in a similar way to

for circular data as seen in definition 1. Formally, we have the following definition.

Definition 4. Let Θ be a circular random variable. The p’th trigonometric moment is given

by:

µ′p = E[cos pΘ] + iE[sin pΘ]

= Cp(θ) + iSp(θ)

For example, if we want to compute the mean direction and the mean resultant length

for Θ, we must use the trigonometric moment of Θ in (1.1) and (1.2), respectively, such that

the mean direction and the mean resultant length are given by:

Θ̄ =

{
arctan (S1/C1) C1 ≥ 0

arctan (S1/C1) + π C1 < 0
(1.4)

R̄1 =
√
C2

1 + S2
1 (1.5)
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Parametric circular distributions

Many parametric families of circular distributions have been developed. The simplest circular

model is the circular uniform distribution which is often used as a baseline with which to

compare more complicated models.

Example 3 ( The circular uniform distribution). This distribution assigns the same density

to every point on the circle and thus, has density function:

f(θ) =
1

2π
, for 0 ≤ θ < 2π.

The mean resultant length of this distribution is 0 and the circular mean direction is unde-

fined.

Some models have been developed specifically for circular data.

Example 4 (The cosine or cardioid distribution). The cosine or cardioid distribution (Jef-

freys, 1948) is a two parameter distribution with density function given by:

f(θ) =
1

2π
{1 + 2ρ cos (θ − µ)} , for 0 ≤ θ < 2π,

where 0 ≤ µ < 2π is the circular mean and 0 ≤ ρ ≤ 1/2 is the mean resultant length. This

distribution converges to the circular uniform distribution when ρ → 0. We shall use this

density throughout the following chapter to illustrate various features of our proposed models.

Figure 1.3 gives circular and linear density plots of the cosine density with µ = π and

ρ = 0.3. This is the density used to generate the data in Example 17.

Example 5 (von Mises distribution). This model, developed in Langevin (1907) and von

Mises (1918), is one of the most important circular distributions and has many similar

properties to the normal distribution for linear data. The von Mises density is given by:

f(θ, µ, κ) =
1

2πI0(κ)
exp [κ cos(θ − µ)] , for 0 ≤ θ < 2π,

where 0 ≤ µ < 2π is the mean direction, and 0 ≤ κ <∞ is a concentration parameter and

I0(κ) =
1

2π

∫ 2π

0

exp [κ cos(φ− µ)] dφ,
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Figure 1.3: Circular and linear density plots of the cosine density with µ = π and ρ = 0.3

is the modified Bessel function of order 0. When κ → 0, this distribution approaches the

uniform distribution and when κ→∞, it approaches a point mass at µ.

Other approaches have been devised to translate standard distributions on the real line into

circular models. One such class of models are wrapped distributions. Let g(·) be the density

of a linear random variable X. Then, we can define a density for a circular variable θ by

wrapping the real line onto the circle so that,

f(θ) =
∞∑

j=−∞

g(θ + 2πj), for 0 ≤ θ < 2π.

Example 6 (Wrapped exponential distribution). Consider an exponential density on the

line, that is,

g(x) = λe−λx, for 0 ≤ x <∞

, where λ > 0. Then, wrapping the exponential distribution as in Jammalamadaka et al

(2004) onto the circle gives

f(θ) =
∞∑
j=0

λe−λ(θ+2πj) =
λe−λθ

1− e−2πλ
, for 0 ≤ θ < 2π.

Other examples of this type of distribution are the wrapped normal (Schmidt, 1917), wrapped

t family (Pewsey et al, 2007), wrapped skew-normal (Pewsey, 2000) and wrapped Laplace
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(Jammalamadaka et al, 2004) distributions among others.

Another approach is to use offset distributions. Thus, we consider a bivariate random

variable X = (X1, X2) with support in R2 and then transform to polar coordinates (R, θ)

and integrate out over R to develop a circular distribution.

Example 7 (Offset normal distribution). Mardia (1972) assumes that (X1, X2) follow a

bivariate normal random variable with each component having mean 0 and unit variance and

correlation 0 ≤ ρ ≤ 1. Then, this leads to a circular density of form

f(θ) =

√
1− ρ2

2π(1− ρ sin 2θ)
, for 0 ≤ θ < 2π.

For other approaches see e.g. Jammalamadaka et al (2001).

1.2 Multivariate directional data

In this section, we generalize the results of the previous sections to the multivariate setting.

Here we shall consider three cases, that is circular-circular or toroidal distributions, i.e.

joint distributions of two circular random variables, circular-linear distributions, i.e. joint

distributions of one circular and one linear random variable and spherical distributions, i.e.

distributions of variables with support defined on the surface of a sphere.

1.2.1 Circular-circular models

As we showed in the previous section, the circular data can be represented as points on the

circumference of the unit circle. In this generalization, both components of the observed data

can be represented on the circumference of a unit circle. This implies that circular-circular

data can be represented on the surface of a torus that is the direct product of circles.

For displaying a circular-circular data set the unwrapped approach is simplest. This

approach consists in choosing an origin point and unwrapping the two variables to construct

a plane.

Sample trigonometric moments

The sample trigonometric moments can be defined as follows.
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Definition 5. Let (θ11, θ21), . . . , (θ1n, θ2n) be a sample from a circular-circular variable (Θ1,Θ2).

The (p1, p2)’th sample trigonometric moment is given by

1

n

n∑
j=1

ei(p1θ1j+p2θ2j) =
1

n

n∑
j=1

cos(p1θ1j + p2θ2j) + i sin(p1θ1j + p2θ2j)

= ap1p2 − cp1p2 + i(bp1p2 + dp1p2)

where

ap1p2 =
1

n

n∑
j=1

cos(p1θ1j) cos(p2θ2j)

bp1p2 =
1

n

n∑
j=1

cos(p1θ1j) sin(p2θ2j)

cp1p2 =
1

n

n∑
j=1

sin(p1θ1j) cos(p2θ2j)

dp1p2 =
1

n

n∑
j=1

sin(p1θ1j) sin(p2θ2j)

Letting p2 = 0 (p1 = 0) in the above definition gives the marginal trigonometric moments of

order p1 (p2) of the sample from Θ1 (Θ2). In contrast to the case of linear variables where

there is a standard measure of correlation, many measures of correlation for circular variables

have been proposed. For example, Fisher et al (1983) propose defining

r =

∑n−1
j=1

∑n
k=j+1 sin(θ1j − θ1k) sin(θ2j − θ2k)√∑n−1

j=1

∑n
k=j+1 sin2(θ1j − θ1k)

∑n−1
j=1

∑n
k=j+1 sin2(θ2j − θ2k)

(1.6)

and show that this correlation coefficient takes values between −1 and 1 and, when there is

no relation between the two sets of data takes the value 0. Alternative correlation coefficients

are reviewed in e.g. Rivest (1982) or Jammalamadaka et al (2001).

Circular-circular random variables

Similar to the univariate case, the density function of a circular-circular variable must satisfy

certain properties. We can define the density function of a circular-circular random variable

as follows:
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Definition 6. Let f(·, ·) be the density function of a circular-circular random variable

(Θ1,Θ2). The density function satisfies

1. f(θ1, θ2) ≥ 0, for −∞ ≤ θ <∞,

2. f(θ1, θ2) = f(θ1 + 2jπ, θ2 + 2kπ), for j, k ∈ Z,

3.
∫ ν1+2π

ν1

∫ ν2+2π

ν2
f(θ1, θ2) dθ1 dθ2 = 1, for 0 ≤ ν1, ν2 < 2π.

In order to define the distribution function we must select an origin (ν1, ν2) such that the

distribution function is given by

F ν1,ν2(θ1, θ2) =

∫ ν1+θ1

ν1

∫ ν2+θ2

ν2

f(θ1, θ2)dθ1dθ2, where 0 ≤ θ1, θ2 ≤ 2π.

Definition 7. The (p1, p2)’th trigonometric moment of a circular-circular variable (Θ1,Θ2)

can be computing using

αp1p2 =

∫ ν1+2π

ν1

∫ ν2+2π

ν2

f(θ1, θ2) cos(p1θ1) cos(p2θ2)dθ1dθ2

βp1p2 =

∫ ν1+2π

ν1

∫ ν2+2π

ν2

f(θ1, θ2) cos(p1θ1) sin(p2θ2)dθ1dθ2

γp1p2 =

∫ ν1+2π

ν1

∫ ν2+2π

ν2

f(θ1, θ2) sin(p1θ1) cos(p2θ2)dθ1dθ2

λp1p2 =

∫ ν1+2π

ν1

∫ ν2+2π

ν2

f(θ1, θ2) sin(p1θ1) sin(p2θ2)dθ1dθ2

Example 8 (Bivariate von Mises distribution). One useful distribution on the torus is the

bivariate von Mises model (Mardia, 1975). Its probability density function is proportional

to:

f(θ1, θ2) = expκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+(cos θ1,sin θ1)TA(cos θ2,sin θ2), for 0 ≤ θ1, θ2 < 2π,

where 0 ≤ µ1, µ2 < 2π, 0 ≤ κ1, κ2 < ∞ and where A is a 2 × 2 matrix. The marginal

distributions of θ1 and θ2 are von Mises if and only if either A = 0 (so that θ1 and θ2 are

independent) or κ1 = κ2 = 0 and A is a multiple of an orthogonal matrix. Figure 1.4 shows

the case where (µ1 = µ2 = π, κ1 = κ2 = 1, A = 0).
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Figure 1.4: The bivariate von-Mises density.

Example 9 (Bivariate cosine distribution with helical symmetry). In this example we show

how to implement a helical symmetry in the density of a distribution. The key step is that

the mean direction of each component is just the value of the other component. Figure 1.5

shows the density of a circular-circular version of the cosine distribution with ρ = 0.5 given

by:

f(θ1, θ2) =
1

4π2
(1 + cos(θ1 − θ2)) . (1.7)

Observe that both marginal distributions are circular uniform distributions and the the-

oretical circular correlation is one but the conditional distribution is a cosine distribution.

We can use any other circular distribution where the probability of a point depends on the

distance from the mean direction, e.g. the von Mises distribution.



12 CHAPTER 1. INTRODUCTION

The general form of these type of distributions can be obtained multiplying the angles by

a integer. Then, the general form of the cosine distribution with ρ = 0.5 is given by:

f(θ1, θ2) =
1

4π2
(1 + cos(jθ1 − kθ2)) . (1.8)

where j, k ∈ N represent the number of modes of the marginal distributions.

Figure 1.5: The bivariate cosine density

Other examples of circular-circular distribution are the uniform distribution on the torus,

the wrapped bivariate normal distribution, (Jammalamadaka et al, 1988) and for maximum

entropy circular-circular distributions (Kagan et al, 1973).
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1.2.2 Circular-linear distributions

The second type of data we shall examine in this thesis is circular-linear data, where one

component of the data is circular and the other component is linear. Given that circular

data is represented on the circumference of the unit circle and linear data is represented on

the real line, then we can represent this data on the surface of a cylinder. To display data of

this type, in a similar way to the circular-circular model, we just need to unwrap the cylinder

onto the plane.

Circular-linear random variables

We can define the density function of a circular-linear random variable as follows:

Definition 8. Let f(·, ·) be the density function of a circular-linear random variable (Θ, X).

The density function satisfies:

1. f(θ, x) ≥ 0, −∞ ≤ θ, x <∞,

2. f(θ, x) = f(θ + 2jπ, x), j ∈ Z,

3.
∫∞
−∞

∫ ν+2π

ν
f(θ, x) dθdx = 1, 0 ≤ ν < 2π.

In order to define the distribution function we must select an origin ν such that the

distribution function is given by

F ν(θ, x) =

∫ x

−∞

∫ ν+θ

ν

f(θ, x) dθdx, where 0 ≤ θ ≤ 2π,−∞ ≤ x ≤ ∞.

Example 10. An example of cylindrical distribution can be found in Mardia et al (1978),

where the density of (Θ, X) is given by:

f(θ, x) =
1

(2πI0(κ)
eκ cos(θ−µ0) 1√

2πσc
e
− (x−µc)2

2σ2c

where σ2
c = σ2(1− ρ2) and µc = µ+ σκ

1
2 (ρ1 cos(θ − µ0) + ρ2 sin(θ − µ0)) and ρ =

√
ρ2

1 + ρ2
2

for 0 ≤ µ0 < 2π, κ ≥ 0, µ ∈ R, σ > 0 and 0 ≤ ρ ≤ 1. This implies that the marginal

distribution of Θ is a von Mises distribution with parameters µ0 and κ and the conditional

distribution of X given θ is : X|θ ∼ N(µc, σ
2
c ).

Figure 1.6 shows the density with parameters (µ0 = π, κ = 1, ρ = 0.5, µ = 0, σ = 1).
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Figure 1.6: The Mardia-Sutton density with (µ0 = π, κ = 1, ρ = 0.5, µ = 0, σ = 1)

Other examples of circular-linear distributions can be found in Batschelet (1981) and

Johnson et al (1978). Also, suitable measures of circular-linear correlation are discussed in

e.g. Johnson et al (1977).

1.2.3 Spherical distributions

Spherical data are data that take values on the surface of a sphere, with radius r. Thus,

using linear co-ordinates, (x, y, z), about an origin at the centre of the sphere to represent

data points, we have that such data satisfy the constraint x2 + y2 + z2 = r2. Such data can

also be written in polar co-ordinates, (θ, φ), where 0 ≤ θ < 2π represents the longitude and
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Figure 1.7: Spherical co-ordinates

0 ≤ φ < π is the colatitude, or angle from the pole. Then we have:

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.

These two coordinate systems are illustrated in Figure 1.7, where the origin, θ = φ = 0, is

the north pole.

In order to visualize spherical data, one possibility is simply to plot the surface of the

sphere from various different viewpoints in order to see all aspects of the sphere, the so called

stereographic projections. Another option is to project the sphere onto the plane using e.g. a

Mercator projection or some other form of map projection, see e.g. Snyder (1997). However,

projections of this type will always lead to some level of distortion of the data.

Spherical random variables

Without loss of generality, we shall consider variables defined on the sphere, S, say with

radius r = 1 fixed.

Consider a spherical random variable (Θ,Φ) where Θ represents the longitude with sup-
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port [0, 2π) and Φ represents the colatitude with support [0, π). Assume that f(·, ·) is the

density function of (Θ,Φ) so that f(θ, φ) ≥ 0 for [0 ≤ θ < 2π) and [0 ≤ φ < π) and∫ 2π

0

∫ π
0
f(θ, φ) dφ dθ = 1.

Note however that case needs to be taken when interpreting the density function. Firstly,

it is important to note that if we consider the region θ < Θ < θ + dθ, φ < Φ < φ+ dφ, then

the area of this region is not dθdφ, but is instead sinφdθdφ, which we can write as dS, as it

represents an element of the surface of the sphere. Then the probability density element, that

is the proportion of values of (Θ,Φ) in the same small region, dS is given by f(θ, φ)dθdφ,

but this is not the same as f(θ, φ)dS, and is instead equal to h(θ, φ)dS where

f(θ, φ) = h(θ, φ) sinφ. (1.9)

Spherical distributions can be specified equivalently in terms of the density function f(θ, φ)

or in terms of the probability density element h(θ, φ)dS.

To interpret these two concepts, consider the following illustration. Take the surface of

the sphere and divide this in 1000 regions of equal area and similar form. If we choose one of

them randomly, all of them are equally probable and this represents the probability density

element. On the other hand, the number of regions close to the equator is greater than the

number of regions near the poles. Then we are taking into account the element of surface

like the density function.

The following examples illustrate two of the most well known spherical distributions.

Example 11 (Uniform distribution on the sphere). In this case, the probability density

element is given by:

h(θ, φ)dS =
1

4π
dS

and therefore, the density function is:

f(θ, φ) =
sinφ

4π
for 0 ≤ θ < 2π and 0 ≤ φ < π.

Example 12 (von Mises-Fisher distribution). The most well known spherical distribution is

the von Mises-Fisher distribution (Fisher, 1953) with probability density element given by:

h(θ, φ)dS = Cfe
κ(sin θ sinα cos(φ−β)+cos θ cosα)dS
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where

Cf =
κ

4π sinhκ
.

This distribution has two location parameters α and β which give us the point of rotationally

symmetry and a concentration parameter κ about this point.

Similar to the von Mises distribution, when κ → 0 the distribution tends to a uniform

distribution on the sphere and when κ→∞ the distribution tends to a point distribution at

(α, β).

Figure 1.8 shows the probability density element of the Fisher-von Mises distribution.

Figure 1.8: Probability density element of the Fisher-von Mises distribution with µ =
(0, π), κ = 1(equator)

Other well known examples of spherical models are the Watson distribution (Watson,

1965), the Kent distribution (Kent, 1982), the Wood distribution (Wood, 1982), the Bingham

distribution (Bingham, 1964), the Arnold distribution (Arnold, 1941) and the Fisher-Watson

distribution (Wood, 1988).
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1.3 Density estimation

In this section we deal with the different methods for estimating the parameters of the

distributions showed above.

From a parametric point of view, the univariate distributions can be estimated using max-

imum likelihood but only a few distributions have closed forms for the maximum likelihood

estimators. In other cases, numerical techniques will typically be needed.

Example 13. Suppose that we have a sample of data, say θ1, . . . , θn generated from a von

Mises distribution as in Example 5. Then, the log likelihood is given by:

log l(θ|µ, κ) = −n log 2πI0(κ) + κ
n∑
j=1

cos(θj − µ)

and differentiating with respect to µ gives:

∂ log l

∂µ
= κ

n∑
j=1

sin(θj − µ)

and setting this to zero implies that tan µ̂ = S1

C1
where S1 =

∑n
j=1 sin θj and C1 =

∑n
j=1 cos θj

so that µ̂ coincides with the sample circular mean direction. Note however that calculation

of the maximum likelihood estimate of κ must be done numerically, see e.g. Mardia (1972).

Another possibility is to use method of moments techniques, e.g. approximating the theo-

retical circular mean and mean resultant length using their sample counterparts.

Example 14. A cosine distribution was fitted to the data of Example 17 both by maximum

likelihood and by method of moments approaches. In the first case, the parameter maximum

likelihood estimates were µ̂ = 3.008 and ρ̂ = 0.326 and in the second case, the sample circular

mean, θ̄ = 2.974, and mean resultant length, R̄1 = 0.337 were used as parameter estimates.

Figure 1.9 shows circular and linear plots of the fitted densities.

Both fitted densities are quite close to the true, generating cosine density.

Although the method of moments approach may often be more straightforward in practice, it

will not always produce reasonable results. For example, in the case of the cosine distribution,

if R̄1 > 0.5, then the method of moments approach cannot be applied directly as the mean

resultant length, ρ ≤ 0.5 for this distribution.
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Figure 1.9: True (solid line) and fitted maximum likelihood (dashed line) and method of
moment (dotted line) based density estimates

Bayesian approaches to inference for directional data have also been developed. However,

from the Bayesian point of view, the main problem is the lack of conjugate priors. Most

research has been focused on the von Mises distribution, see e.g. Guttorp et al (1988). For

an example of Bayesian analysis for circular models other than the von Mises, see e.g. Coles

(1998).

1.4 Semi-parametric and non-parametric approaches

Most of the models that have been developed for circular and other directional data are sym-

metric and unimodal, but in many cases, directional data may not share these characteristics.

Therefore, semi-parametric or non-parametric techniques are often applied.

1.4.1 Semi-parametric models

A natural, semi-parametric extension of the basic models is to consider the use of mixtures

of distributions, of form:

fr(θ) =
r∑
j=1

wjf(θ|νj) (1.10)

where f(·|ν) is a density with parameters ν and the wj are weights satisfying 0 < wj ≤ 1

for j = 1, . . . , r and
∑r

j=1 wj = 1. Clearly, as more mixture components are included, then
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distributions of many different forms can be well approximated.

In the case of circular data, mixtures of von Mises distributions have been considered

in a number of articles, see e.g. Stephens (1969), Mardia et al (1975), Spurr et al (1991),

where a good comparison of the different methods that can be used to fit such models is

given and Mooney et al (2003). More general mixture models where the restriction that

the weights are non-negative is dropped have also been developed. In particular, Fernández

Durán (2004) developed a model based on mixtures of sin and cosine terms as in Example 15.

Generalizations of this approach to the case of circular-circular and spherical data modeling

are considered in Chapter 4 of this thesis.

Example 15 (Non-negative trigonometric polynomials). Fernández-Durán (2004) proposed

using distributions of form:

f(θ) =
1

2π
+

1

π

k∑
j=1

(aj cos(jθ) + bj sin(jθ))

where, to ensure that the distribution is non-negative, it is required that there exist coefficients

cj ∈ C for j = 0, . . . , k such that
∑k

j=0 |cj|2 = 1
2π

and aj−ibj = 2
∑k−j

l=0 cl+j c̄l for j = 1, . . . , k.

1.4.2 Non-parametric approaches

Non-parametric approaches to modelling directional data thus far have typically been based

on kernel density estimation techniques, see e.g. Wand et al (1995). The usual kernel ap-

proach corresponds to using a reference density, K, which defines the form of smoothing

and a smoothness parameter, h > 0 which governs the smoothness of the fitted density. For

example, given a sample of circular data, θ1, . . . , θn, then a kernel density estimate of f(θ)

can be constructed as

f̂(θ) =
1

nh

n∑
i=1

K

(
θ − θi
h

)
(1.11)

where K is a suitable circular density function, for example a von Mises density (Bai et al,

1988) or a quartic kernel (Fisher, 1989).

Multivariate directional data have also been modelled using kernel density methods. For

example, spherical data modelling has been considered in e.g. Hall et al (1987), Bowman

et al (1997) and Klemelä (2000) and kernel based approaches to circular-circular data are

examined in Di Marzio et al (2011).
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Typically, for kernel density methods, the choice of kernel function is not too important

to the fitted distribution, whereas the choice of bandwidth is much more critical. Low

values of the bandwidth lead to spiky density estimates and high values lead to overly

smoothed estimates. Obviously, as the sample size increases, then the bandwidth should

be decreased and it is well known that optimal bandwidth estimators of order n−1/5 lead

to density estimators f̂ which converge at the optimal rate O
(
n−4/5

)
. Optimal bandwidth

choice for the circular case is considered in Taylor (2008) and Hall et al (1987) give some

results for the spherical case.

Finally, we should note that there has been little work on alternative, non-kernel based

nonparametric approaches to directional data. For an exception, see Baldi et al (2009) who

model spherical data using spherical wavelets or needlets. In Chapters 2 and 3 of these

thesis, we introduce an alternative approach.
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Chapter 2

Circular Bernstein polynomial

distributions

Bernstein polynomials have been widely studied in numerical analysis as an approach to

interpolating functions defined on a closed interval. For a complete review see e.g. Lorentz

(1986) and Devore et al (1993).

From the statistical point of view, starting from Vitale (1975), Bernstein polynomials

have been used to approximate distribution functions defined on closed intervals. In the

context of circular data analysis, an important problem with the standard approach is that

the derived density estimators are not circular in that they do not guarantee continuity at

the origin. The main objective of this chapter is to show that the Vitale approach can

be generalized to the case of circular random variables by the use of a simple correction

which preserves the convergence properties of the standard, linear estimator. The rest of

this chapter is structured as follows.

In Section 2.1, we present a brief introduction to Bernstein polynomials and show how

they can be used for approximating a function defined on a closed interval. Then, in Section

2.2, we review the use of Bernstein polynomials in the approximation of distribution and

density functions. In Section 2.3, we define the circular Bernstein polynomial distribution

and derive the conditions which must satisfy to be a well defined circular distribution. In

Section 2.4, we derive the trigonometric moments and their recursive formula showing that

the trigonometric moments have a closed form. In Section 2.5, we analyze how to fit the

circular Bernstein polynomial distribution, deriving the necessary conditions for satisfying

the circular properties. In Section 2.6, we illustrate various aspects of the fitting of the

Bernstein polynomial distribution with both a theoretical and a practical example. In Section

23
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2.7, we then present some parametric extensions of our basic model and in Section 2.8, we

finish with some conclusions.

2.1 Bernstein polynomials

Bernstein polynomials were introduced by Bernstein (1912) in the context of providing a

simple proof of Weierstrass’ approximation theorem. They have been widely applied in

numerical analysis as interpolating polynomials for continuous functions defined on a closed

interval such as [0, 1].

A Bernstein polynomial on the [0, 1] interval can be defined via Definitions 9 and 10 as

follows.

Definition 9. The k + 1 Bernstein basis polynomials of degree k are defined as,

Pj,k(x) =

(
k

j

)
xj(1− x)k−j, for j = 0, . . . , k and 0 ≤ x ≤ 1.

In the context of probability, the basis functions are simply binomial probability mass

functions. Thus, Pj,k(x) is simply the probability of seeing j heads in k independent tosses

of a coin with the probability of heads in a single toss equal to x.

Definition 10. A linear combination of Bernstein basis polynomials, that is,

Bk(x) =
k∑
j=0

bj,kPj,k(x),

is called a Bernstein polynomial of order k. The coefficients, bj,k, are called Bernstein coef-

ficients or Bézier coefficients.

Clearly, Bk(x) can be expressed as a polynomial in x of degree less than or equal to

k. More importantly, the Bernstein polynomial is a linear combination of Bernstein basis

polynomials and Weierstrass’ approximation theorem, see e.g. Lorentz (1986), guarantees

that this basis is dense in the space of polynomials of degree k and form a partition of

the unit interval, then we can use a Bernstein polynomial with a large enough value of k

to approximate any continuous function on [0, 1] to an arbitrary precision. The Bernstein

polynomial approximation of order k for a function g(x) is defined below.
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Definition 11. Let g(·) be a function defined on the closed interval [0, 1]. Then the k’th

order Bernstein polynomial approximation of g(x) is given by:

Bg
k(x) =

k∑
j=0

g

(
j

k

)
Pj,k(x).

It is well known that letting k →∞, the Bernstein polynomial approximation converges

uniformly to the true function g. The exact convergence rate depends on the type of continu-

ity of the function g. In particular, if g is absolutely continuous with finite second derivative

at x, then,

Bg
k(x)− g(x) =

g′′(x)x(1− x)

2k
+
δ(k)

k
, (2.1)

where δ(k)→ 0 as k →∞. See e.g. Lorentz (1986) for more details.

Suppose now that g is a Lebesgue integrable function and let G(x) =
∫ x

0
g(u) du. Then,

replacing g
(
j
k

)
in the Bernstein polynomial approximation by, for instance by an integral

mean of g(x) over a small interval around the point j/k, we may use the derivative of the

Bernstein polynomial to obtain a good estimate of g(x) as follows.

Let BG
k (x) be the k’th order Bernstein polynomial approximation to G as in Definition 11.

Then, calculating the derivative of BG
k (x), we obtain the so-called Kantorovich polynomials,

Kg
k−1(x) =

d

dx
BG
k (x)

=
k−1∑
j=0

(
k

j

)
xj(1− x)k−1−jk

∫ (j+1)/k

j/k

g(t)dt (2.2)

=
k∑
j=1

(
k

j

)
xj−1(1− x)k−jj

∫ j/k

(j−1)/k

g(t)dt, (2.3)

which can be used as approximations to g(x), see e.g. Theorem 2.1.1 of Lorentz (1986).

In particular, it is known that

lim
k→∞

k
(
Kg
k−1(x)− g(x)

)
=

1

2
((1− 2x)g′(x) + x(1− x)g′′(x)) . (2.4)

Finally, we should also comment that it is straightforward to generalize Bernstein poly-

nomials to approximate functions on an arbitrary interval, say [a, b] via a standard, linear

transformation.
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2.2 Bernstein polynomial distributions

In this section, we describe how Bernstein (Kantorovich) polynomials can be used to ap-

proximate a probability distribution (density) function defined on a closed interval.

Firstly, it is important to make some remarks about Kantorovich polynomials which are

the key to the construction of the Bernstein density function.

The first remark is on the type of integrability, that is Lebesgue integrability, which

allows us to construct different functions, for example, the empirical distribution. The

second remark corresponds to the statistical perspective of the Kantorovich polynomials. As

we can see in (2.2) the k term and in (2.3) the j term complete the integration constant of

a beta distribution. Given that the sum of the integral terms for any partition of the [0, 1]

interval is 1, this implies that the Kantorovich polynomial of a density function or function

based on data is a mixture of beta distributions.

For example, consider a histogram of relative frequencies. Using the Kantorovich poly-

nomials, the resulting density is a smoothed version of the histogram, see e.g. Vitale (1975).

Now, we can formally define the Bernstein polynomial approximation for a given distri-

bution function defined on the [0, 1] interval.

Definition 12. Let X be a random variable with support [0, 1] and continuous distribution

function FX(·). Then the Bernstein polynomial distribution function of order k is defined to

be:

Bk(x) =
k∑
j=0

FX

(
j

k

)(
k

j

)
xj(1− x)k−j, for 0 ≤ x ≤ 1 and k ∈ N. (2.5)

Using the properties of the Bernstein polynomial described in the previous section, Bk(x)

converges uniformly to FX(x) as k goes to infinity. Differentiating, the associated Bernstein

density function is given by

bk(x) =
k∑
j=1

(
FX

(
j

k

)
− FX

(
j − 1

k

))
β(x | j, k − j + 1), (2.6)

where β(· | a, b) is a beta density function:

β(x | a, b) =
1

B(a, b)
xa−1 (1− x)b−1 , (2.7)

and B(a, b) = (a − 1)!(b − 1)!/(a + b − 1)!, for a, b ∈ N, is the beta function. The errors in

these approximations can be derived from (2.1) and (2.4) respectively.
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2.2.1 Non-parametric inference via Bernstein polynomials

Assume that a sample of data, x = (x1, . . . , xn), are generated from an unknown, con-

tinuous distribution, F , with associated density function, f with support [0, 1]. Then a

non-parametric approach to inference via Bernstein polynomial distributions was first de-

veloped by Vitale (1975). He suggests approximating the density, f(x), by substituting the

distribution function by the associated empirical distribution function in (2.6). This leads

to the Bernstein density estimator,

b̂k(x) =
k∑
j=1

(
F̂X

(
j

k

)
− F̂X

(
j − 1

k

))
β(x | j, k − j + 1). (2.8)

As demonstrated in Vitale (1975), recalling that the empirical cumulative distribution

function converges uniformly (in n) to the true distribution and from (2.4), it can be seen

that as long as the true density function, fX , is twice differentiable, then the bias of this

estimator is,

E
[
b̂k(x)− fX(x)

]
=

1

2k
[(1− 2x)f ′X(x) + x(1− x)f ′′X(x)] + o

(
1

k

)
, (2.9)

where, in particular the estimator is free of boundary bias as the o term is uniform in [0, 1].

Furthermore, the variance of the estimator is,

V
[
b̂k(x)

]
=

√
k

n

f(x)

2
√
πx(1− x)

+ o

(√
k

n

)
, (2.10)

Vitale (1975) further demonstrates that the optimal choice of k with respect to mean squared

error is to set k → n2/5 and shows that in this case, the estimator converges at a rate n−4/5,

which is the same rate of convergence as the alternative, kernel based estimators.

Various extensions of Vitale’s estimator have been proposed. For example, in a classical

setting, Babu et al. (2002) approximate a distribution function defined on the unit interval

using the Bernstein polynomial and then, they derive an estimator of the density function

given the smoothness of the Bernstein polynomial. Also, Kakizawa (2004) proposes a kernel

estimation method using the Bernstein polynomial modifying the kernel to avoid the bound-

ary bias and the negative values of the kernel. Other relevant articles are Gawronski et al

(1981), Gawronski (1985), Stadtmüller (1983), Leblanc (2009, 2010) and Kakizawa (2010).

In the Bayesian context, Petrone (1999a,b) developed an approach to inference via Bern-



28 CHAPTER 2. CIRCULAR BERNSTEIN POLYNOMIAL DISTRIBUTIONS

stein polynomials based on the use of Dirichlet process prior distributions. The consistency

of the Bernstein prior distribution was studied in Petrone et al (2002) and convergence rates

of the posterior distribution were later studied in Ghoshal (2001) and Walker et al (2007).

2.3 The circular Bernstein polynomial distribution

In order to define a circular Bernstein polynomial density, it is necessary to keep in mind

the properties of any circular density function and how to compute the distribution function

of a circular variable, see Chapter 1.

Consider a circular random variable Θ with support [0, 2π) and distribution function,

F ν
Θ(·), defined with respect to an origin ν. Then it is clearly straightforward to define a k’th

order Bernstein polynomial approximation to the circular density function as,

f νk (mod(θ + ν, 2π)) =
1

2π

k∑
j=1

(
F ν

Θ

(
2πj

k

)
− F ν

Θ

(
2π(j − 1)

k

))
β

(
θ

2π

∣∣∣∣ j, k − j + 1

)
.

(2.11)

However, for this to be a strictly continuous, circular density, it is necessary that,

F ν
Θ

(
2π

k

)
= 1− F ν

Θ

(
2π(k − 1)

k

)
. (2.12)

The following theorem guarantees the existence of at least one origin satisfying (2.12).

Theorem 1. Let f be a density function for a continuous, circular random variable. Then

there exists at least one point ν = νk ∈ [0, 2π) such that for any k ∈ N,

∫ ν+ 2π
k

ν

f(θ) dθ =

∫ ν

ν− 2π
k

f(θ) dθ.

Proof. Define G(ν) =
∫ ν+ 2π

k

ν
f(θ) dθ−

∫ ν
ν− 2π

k
f(θ) dθ. If there exist two points, 0 ≤ ν1 6= ν2 <

2π such that G(ν1) ≤ 0 and G(ν2) ≥ 0, then by Bolzano’s intermediate value theorem, there

exists at least one point, 0 ≤ ν0 < 2π such that G(ν0) = 0. Otherwise, suppose that G(ν) is

always positive. Then, we have,∫ ν

ν− 2π
k

f(θ) dθ <

∫ ν+ 2π
k

ν

f(θ) dθ <

∫ ν+2π

ν+2π− 2π
k

f(θ) dθ
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which is impossible, as, due to the periodicity of f , we have that∫ ν

ν− 2π
k

f(θ) dθ =

∫ ν+2π

ν+2π− 2π
k

f(θ) dθ.

Similarly, G cannot always be negative and so the theorem is proved.

The following example illustrates the convergence of the circular Bernstein polynomial

density approximation as k increases in the case that the true distribution is a cosine distri-

bution.

Example 16. Consider a cosine distribution with µ = π. Then this distribution is symmetric

about ν = 0 and therefore, taking this point as the origin, we have,

F 0
Θ(θ) =

1

2π
{θ + ρ sin(θ − π)} , for 0 ≤ θ < 2π,

and therefore, for any given k, the circular Bernstein polynomial density can be computed

explicitly.

Figure 2.1 shows the circular Bernstein polynomial density for k = 50 (dashed line),

100(dotted line) and 300(dash dot line) and the underlying cosine density function (solid

line) with µ = π and ρ = 0.3. We have seen before that the circular Bernstein polynomial

converges uniformly to f .

As k increases, the Bernstein polynomial approximation gets closer to the true density

although we can see that convergence is slower in the neighbourhood of π.

Typically, there may be more than one origin satisfying the conditions of Theorem 1 and

from now on we shall write νk to represent the set of valid origins for a circular Bernstein

polynomial approximation of order k.

Example 17. Assume that Θ has a cosine distribution with circular mean µ, so that,

f(θ) =
1

2π
{1 + 2ρ cos(θ − µ)} , for 0 ≤ θ < 2π.

Then, the density function is symmetric about θ = µ and θ = mod(µ + π, 2π) so these are

both valid origins for a circular Bernstein polynomial density approximation.

In fact, for any circular distribution which is symmetric about some point µ, then there

are valid origins at µ and mod (µ+ π, 2π). In some cases, the number of valid origins can

even be uncountable.
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Figure 2.1: Approximation of the cosine distribution (solid line) with a circular Bernstein
polynomial with degrees 50 (dashed line), 100 (dotted line) and 300 (dash dot line).

Example 18. If Θ is uniformly distributed, then for any k, the set of valid origins is νk =

[0, 2π).

It is also important to note that, for given k, the circular Bernstein polynomial approxi-

mations will typically be different with respect to the different origins.

Example 19. Continuing from Example 16, it is clear that the circular Bernstein polynomial

distribution based on the origin π can also be computed explicitly for any k. Figure 2.2

displays the Bernstein polynomial distributions for k = 50 about both the origins ν = 0

and ν = π. The approximation with origin π is closer to the underlying distribution in the

neighbourhood of π but further away in the neighbourhood of 0.

Finally, we should consider the convergence properties of circular Bernstein polynomials.

Note first that an origin, νk, for the k’th order Bernstein polynomial satisfies

D(νk|k) = F (νk − 2π/k) + F (νk + 2π/k)− 2F (νk) = 0

and, letting k →∞, we have limk→∞ k
2D(νk|k) = f ′ = 0. This implies, that for large k, the

valid origins approach the turning points of the density, f . In particular, we can see that in

the case of symmetric distributions, then we always have at least two valid origins which do
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Figure 2.2: Approximation of the cosine distribution (solid line) with circular Bernstein
polynomials of order 50 with origins 0 (dashed line) and π (dotted line).

not change for any k. Also, we have that

|f νkk (θ)− f(θ)| ≤ |f νkk (θ)− f νk (θ)|+ |f νk (θ)− f(θ)|,

where ν is such a turning point. Letting k → ∞ and noting that the second term in this

expression is the bias of the Bernstein polynomial approximation about ν, we see that the

bias and convergence rate of this approximation will typically be different to the rate of the

standard Bernstein polynomial approximation. More research needs to be done to assess the

convergence conditions of the circular Bernstein polynomial distribution.

2.4 Trigonometric moments of the circular Bernstein

polynomial distribution

Explicit formulae are available for the trigonometric moments of a circular Bernstein poly-

nomial distribution. These can be derived from the following theorem.

Theorem 2. The p’th order trigonometric moments of a circular Bernstein polynomial
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distribution are given by

µ′p =
k∑
j=1

wj (E[cos 2πpBj] + iE[sin 2πpBj]) ,

where

ωj = F ν
Θ

(
j

k

)
− F ν

Θ

(
j − 1

k

)
,

and where Bj is a beta random variable with density function β(· | j, k− j + 1) as defined in

(2.7) such that

E[cos(2πpBj)] = 1
B(j,k−j+1)

∑k−j
r=0(−1)r

(
k − j
r

)
Ip(j + r − 1) (2.13)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r

(
j − 1

r

)
Ip(k − j + r), (2.14)

E[sin(2πpBj)] = 1
B(j,k−j+1)

∑k−j
r=0(−1)r

(
k − j
r

)
Jp(j + r − 1) (2.15)

= 1
B(j,k−j+1)

∑j−1
r=0(−1)r+1

(
j − 1

r

)
Jp(k − j + r), (2.16)

where Ip(0) = Jp(0) = Ip(1) = 0, Jp(1) = − 1
2πp

and for C = 2, 3, 4, . . .,

Ip(C) =
∑bC

2
c

c=1 (−1)c−1 C!
(C−2c+1)!

1
(2πp)2c

(2.17)

Jp(C) =
∑bC+1

2
c

c=1 (−1)c C!
(C−2c+2)!

1
(2πp)2c−1 . (2.18)

Proof. Let Ip(j) =
∫ 1

0
cos(2πpx)xj dx and Jp(j) =

∫ 1

0
cos(2πpx)xj dx respectively for j =

0, 1, 2, . . .. Now,
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E[cos(2πpBj)] =

∫ 1

0

cos(2πpx)
1

B(j, k − j + 1)
xj−1(1− x)k−j dx

=
1

B(j, k − j + 1)

k−j∑
r=0

(−1)r

(
k − j
r

)∫ 1

0

cos(2πpx)xj−1+r dx

=

∫ 1

0

cos(2πpy)
1

B(j, k − j + 1)
(1− y)j−1yk−j dy

=
1

B(j, k − j + 1)

j−1∑
r=0

(−1)r

(
j − 1

r

)∫ 1

0

cos(2πpy)yk−j+r dy,

which gives the expressions for (2.13) and (2.14). In a similar way, the expressions (2.15)

and (2.16) can be derived, recalling that sin(2π − θ) = − sin(θ). Thus, it only remains to

demonstrate formulas (2.17) and (2.18) by induction.

Now observe that,

Ip(0) =

∫ 1

0

cos(2πpx) dx = 0,

Jp(0) =

∫ 1

0

sin(2πpx) dx = 0,

Ip(1) =

∫ 1

0

x cos(2πpx) dx =
1

2πp
[x sin(2πpx)]10 −

1

2πp

∫ 1

0

sin(2πpx) dx = 0,

Jp(1) =

∫ 1

0

x sin(2πpx) dx = − 1

2πp
[x cos(2πpx)]10 +

1

2πp

∫ 1

0

cos(2πpx) dx = − 1

2πp

Now consider Ip(C). For C ≥ 2,

Ip(C) =

∫ 1

0

xC cos(2πpx) dx

=
1

2πp

[
xC sin(2πpx)

]1
0
− C

2πp

∫ 1

0

xC−1 sin(2πpx) dx

= − C

2πp

∫ 1

0

xC−1 sin(2πpx) dx

=
C

(2πp)2

[
xC−1 cos(2πpx)

]1
0
− C(C − 1)

(2πp)2

∫ 1

0

xC−2 cos(2πpx) dx

=
C

(2πp)2
− C(C − 1)

(2πp)2
Ip(C − 2), (2.19)
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and therefore Ip(2) = 2
(2πp)2

and Ip(3) = 3
(2πp)2

which satisfy (2.17). Assume now that the

formula is valid for c = 2, . . . , C. Then,

Ip(C + 2) =
C + 2

(2πp)2
− (C + 2)(C + 1)

(2πp)2
Ip(C) from (2.19)

=
C + 2

(2πp)2
−
bC

2
c∑

c=1

(−1)c−1 C!

(C − 2c+ 1)!

1

(2πp)2c
from the induction assumption

=
C + 2

(2πp)2
+

bC
2
c∑

c=1

(−1)c+1−1 (C + 2)!

(C + 2− 2(c+ 1) + 1)!

1

(2πp)2(c+1)

=
C + 2

(2πp)2
+

bC+2
2
c∑

c=2

(−1)c−1 (C + 2)!

(C + 2− 2c+ 1)!

1

(2πp)2c

=

bC+2
2
c∑

c=1

(−1)c−1 (C + 2)!

(C + 2− 2c+ 1)!

1

(2πp)2c
,

which demonstrates (2.17).

Equally, we have the recurrence relation,

Jp(C) = − 1

2πp
− C(C − 1)

(2πp)2
Jp(C − 2) (2.20)

which implies that Jp(2) = − 1
2πp

and Jp(3) = − 1
2πp

+ 3!
(2πp)3

which satisfy (2.18). Assuming

the formula is valid for c = 2, . . . , C then,

Jp(C + 2) = − 1

2πp
− (C + 2)(C + 1)

(2πp)2
Jp(C) from (2.20)

= − 1

2πp
− (C + 2)(C + 1)

(2πp)2

bC+1
2
c∑

c=1

(−1)c
C!

(C − 2c+ 2)!

1

(2πp)2c−1

from the induction assumption

= − 1

2πp
−
bC+1

2
c∑

c=1

(C + 2)!

(C − 2c+ 2)!

1

(2πp)2c+1

=

bC+2+1
2
c∑

c=1

(−1)c
(C + 2)!

(C + 2− 2c+ 2)!

1

(2πp)2c−1
,

which demonstrates (2.18) and proves the theorem.
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From an operational point of view, in order to minimize the computational time for

computing the trigonometric moments, we suggest first computing the terms Jp(C) and

Ip(C) for C = 0, . . . , k − 1 for the required values of p using (2.18) and (2.17) and storing

the results. Then, the remaining formulae can be computed from (2.13) and (2.15). This is

due to that the trigonometric moments of the circular Bernstein polynomial have a closed

form.

2.5 Estimation for the circular Bernstein polynomial

distribution

Suppose now that we have a sample of n data, {θ1, . . . , θn} , observed from a continuous,

unknown, circular density, fΘ (θ). Then, for any origin, ν, a standard, linear Vitale estimator

could be defined by,

b̂νk(θ + ν) =
1

2π

k∑
j=1

(
F̂ ν

Θ

(
2πj

k

)
− F̂ ν

Θ

(
2π(j − 1)

k

))
β

(
θ

2π
| j, k − j + 1

)
, (2.21)

where F̂ ν
Θ(·) is the empirical distribution function defined from ν.

However, similar to (2.12), this estimator will only be circular if

F̂ ν
Θ

(
2π

k

)
= 1− F̂ ν

Θ

(
2π(k − 1)

k

)
,

and, in contrast to Theorem 1, it may be that there exists no origin ν ∈ [0, 2π) which leads

to a circular density estimate. For example, in the case that k = 2, if an odd number of

data are observed, then no origin, ν, satisfies F̂ ν
Θ (π) = 1/2. Therefore, in order to produce

a valid, circular, density estimator, a modification of the Vitale estimator is required. We

propose the following procedure.

Firstly, for a given k, we need to select a suitable origin. To do this, define

d (ν) = F̂ ν
Θ

(
2π

k

)
+ F̂ ν

Θ

(
2π (k − 1)

k

)
− 1, for 0 ≤ ν < 2π, (2.22)

which measures the difference between the first and the last weights of the beta mixture

density (2.21).

Now let ν̂k = arg min |d(ν)| be the set of origins which minimize the absolute distance
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between the first and last weights.

Then for ν̂ ∈ ν̂k, we can define a circular Bernstein polynomial estimator as

f̂ ν̂k (θ) =
1

2π

[
1

2

{
F̂ ν̂

(
2π

k

)
+ 1− F̂ ν̂

(
2π(k − 1)

k

)}
β

(
θ

2π

∣∣∣∣ 1, k)+

k−1∑
j=2

{
F̂ ν̂

(
2πj

k

)
− F̂ ν̂

(
2π(j − 1)

k

)}
β

(
θ

2π

∣∣∣∣ j, k − j + 1

)
+

1

2

{
F̂ ν̂

(
2π

k

)
+ 1− F̂ ν̂

(
2π(k − 1)

k

)}
β

(
θ

2π

∣∣∣∣ k, 1)] .
Thus, this estimator modifies the standard Bernstein polynomial estimator by averaging the

first and last weights.

Firstly, we will show that for a random sample of size n from a strictly continuous

distribution, then D = min |d(ν)| is always less than or equal to 1/n. In order to do this, we

introduce the following generalization of a continuous function taken from Burgin (2010).

Definition 13. A function f : R → R is called r-continuous at a point a ∈ R if f(x) is

defined at a and for any ε > 0 there is a δ > 0 such that for any x with |a− x| < δ, we have

that |f(x)− f(a)| < r + ε.

Thus, an r-continuous function is basically a non-continuous function with jumps smaller

than a quantity r. The following result, taken from Burgin (2010), is Bolzano’s intermediate

value theorem for r-continuous functions,

Theorem 3 (Burgin 2010). Let f : [a, b] → R be an r-continuous function. If f(a) < 0

and f(b) > 0, then there is at least one point c ∈ [a, b] such that |f(c)| < r.

Now we can demonstrate the existence of an origin ν̂ such that |d(ν̂)| ≤ 1/n.

Theorem 4. Let {θ1, . . . , θn} be a random sample from a strictly continuous, circular, ran-

dom variable, Θ, with density function fΘ (·). Then, for k = 2, 3, . . ., there exists at least

one point ν̂ ∈ [0, 2π) such that |d (ν̂) | ≤ 1/n.

Proof. Write d(ν) = d1(ν)− d2(ν) such that d1(ν) = F̂ ν
Θ

(
2π
k

)
and d2(ν) = 1− F̂ ν

Θ

(
2π(k−1)

k

)
.

For a sample from a strictly continuous density, then d1(ν) and d2(ν) are both step functions

with steps of size 1/n and therefore, d(ν) is a step function taking steps of size 1/n or 2/n

so that d(ν) is 2/n-continuous.



2.5. MODEL FITTING 37

Now, assume that there exist two points, 0 ≤ ν1 6= ν2 < 2π such that d(ν1) < 0 and

d (ν2) > 0. Then from Theorem 3 there exists at least one point, 0 ≤ ν̂ < 2π, such that

|d (ν̂)| < 2/n and recalling that d̂ (ν) is a step function, we have that |d (ν̂)| ≤ 1/n.

On the contrary, suppose that d (ν) is always positive. Observe that d1(ν) = 1
n

∑n
i=1 I(ν,ν+2π/k](θi)

and d2(ν) = 1
n

∑n
i=1 I(ν−2π/k,ν](θi) where I(θ)(a,b] is an indicator function taking the value 1

if θ ∈ (a, b] and 0 otherwise. Then, we have that,∑n

i=1
I(ν− 2π

k
,ν] (θi) <

∑n

i=1
I(ν,ν+ 2π

k ] (θi) <
∑n

i=1
I(ν+2π− 2π

k
,ν+2π] (θi) ,

which is impossible, as we have that,∑n

i=1
I(ν− 2π

k
,ν] (θi) =

∑n

i=1
I(ν+2π− 2π

k
,ν+2π] (θi) .

Equally, d (ν) cannot always be negative and so the theorem is proved.

Finally, we can bound the difference between the circular and uncorrected Vitale estima-

tors based on the origin ν̂.

Theorem 5. Let {θ1, . . . , θn} be a random sample from a strictly continuous, circular, ran-

dom variable, Θ, with density function fΘ (·) and let ν̂ ∈ ν̂k. Then we have that,∣∣∣f̂ ν̂k (θ)− b̂ν̂k(θ)
∣∣∣ ≤ k

4πn
.

Proof. We have,

f̂ ν̂k (θ)− b̂ν̂k(θ) =
1

4π

{
F̂ ν̂

(
2π

k

)
+ F̂ ν̂

(
2π(k − 1)

k

)
− 1

}(
β

(
θ

2π

∣∣∣∣ k, 1)− β ( θ

2π

∣∣∣∣ 1, k)) ,
and the maximum difference between the two estimators occurs when either θ = 0 or θ = 2π,

so that,

max
∣∣∣f̂ ν̂k (θ)− b̂ν̂k(θ)

∣∣∣ ≤ k

4π

∣∣∣∣F̂ ν̂

(
2π

k

)
+ F̂ ν̂

(
2π(k − 1)

k

)
− 1

∣∣∣∣ ≤ k

4πn
,

from Theorem 4.

Thus, as n→∞, for k <
√
n, the circular Bernstein polynomial approximation preserves

the properties of the uncorrected approximation based on the same, random origin.
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A number of comments are in order here. Firstly note that the previous theorems are

valid for any origin, ν̂, in ν̂k and that, typically, the cardinality of ν̂k will be greater than 1.

In order to define a unique origin, we suggest selecting the origin, ν̂ ∈ ν̂k, which maximizes

the (pseudo) log-likelihood estimate,
∑n

i=1 log f̂ ν̂k (θi). Of course, many alternative criteria

could also be used, e.g. maximizing the p value for some goodness of fit test.

Secondly, in order to choose k in practice, there are various possibilities. Here we propose

increasing k until standard goodness of fit tests for circular densities such as those proposed

in Watson (1961) or Kuiper (1960) do not reject the fitted density at a given significance

level (e.g. 5%), k can be increased until the fitted model is accepted. Other techniques such

as least squares cross validation, see e.g. Wand et al (1995) could also be used.

2.5.1 Tied data

If the underlying density function is not strictly continuous, then there may be multiple

observations at the same point, and in this case, it is not necessarily true that an origin

satisfying Theorem 1 exists. In practice, data will typically be observed rounded to a certain

number of decimal places when the same problem also occurs. In such cases, we propose

either adding a small, random jitter to the data to obviate the problem, or otherwise simply

selecting the origin which minimizes the distance |d(ν)|. In this latter case, as long as there

is a true origin satisfying the conditions of Theorem 1, it is straightforward to show that, for

fixed k, the difference between the Vitale and circular estimators converges almost surely to

zero.

Theorem 6. Let θ1, . . . , θn be a sample from a circular distribution, f , such that an origin

satisfying the conditions of Theorem 1 exists. Let ν̂ be chosen to minimize the distance |d(ν)|.
Then ∣∣∣f̂ ν̂k (θ)− b̂ν̂k(θ)

∣∣∣→ 0 almost surely.

Proof. If ν̂ is an origin chosen to minimize |d(ν)|, then

∣∣∣f̂ ν̂k (θ)− b̂ν̂k(θ)
∣∣∣ ≤ k

4π

∣∣∣∣F̂ ν̂

(
2π

k

)
+ F̂ ν̂

(
2π(k − 1)

k

)
− 1

∣∣∣∣
≤ k

4π

∣∣∣∣F̂ ν

(
2π

k

)
+ F̂ ν

(
2π(k − 1)

k

)
− 1

∣∣∣∣
by construction, for any origin, ν ∈ νk, satisfying the conditions of Theorem 1.
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Now, for any n and ν ∈ νk, using the triangle inequality, we have:∣∣∣f̂ ν̂k (θ)− b̂ν̂k(θ)
∣∣∣ ≤ k

4π

{∣∣∣∣F̂ ν

(
2π

k

)
− F ν

(
2π

k

)∣∣∣∣+∣∣∣∣F̂ ν

(
2π(k − 1)

k

)
− F ν

(
2π(k − 1)

k

)∣∣∣∣+∣∣∣∣F ν

(
2π

k

)
+ F ν

(
2π(k − 1)

k

)
− 1

∣∣∣∣}
=

k

4π

{∣∣∣∣F̂ ν

(
2π

k

)
− F ν

(
2π

k

)∣∣∣∣+∣∣∣∣F̂ ν

(
2π(k − 1)

k

)
− F ν

(
2π(k − 1)

k

)∣∣∣∣}
which goes to zero almost surely as n→∞ by the Glivenko Cantelli theorem.

2.6 Illustrations

In this section, we illustrate the use of the circular Bernstein polynomials from a theoretical

point of view and from a practical point of view.

2.6.1 A theoretical example: the cosine data

Here, we fitted the circular Bernstein polynomial density of degree 15 to the data of Example

17. The fitted density is given in Figure 2.3, along with the true generating density of the

data. Note that this was not rejected by the Watson or Kuiper tests at the 5% level.

It can be seen that the fitted Bernstein polynomial density estimator provides a compa-

rable fit to the maximum likelihood and method of moments estimators of Example 14.

2.6.2 Behaviour of the origins ν̂

Clearly, before the sample is taken, for a given k, the origin ν̂ is a random variable. In

standard statistical theory, it is typical that the distribution of a parameter estimator tends

to cluster around a single point as the sample size increases. However, we have seen that for

many circular distributions, there are multiple origins which lead to a valid circular Bernstein

polynomial approximation. Therefore, we might speculate that the distribution of ν̂ will tend

to centre on the set of valid origins. The following example explores the case of the cosine
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Figure 2.3: True (solid line) and fitted (dashed line) densities for the cosine data

distribution.

Example 20. We simulated 1000 samples of size 100, 1000 and 10000 respectively from the

cosine distribution with parameters µ = π and ρ = 0.3. Then, for each sample, we have

calculated the origin for the Bernstein polynomial of order k = 10. Figure 2.4 gives circular

kernel density estimates of the density of ν̂ for the three different sample sizes.

It can be seen that for n = 100, there is a large variation in the distribution of ν̂ whereas

as n increases, then the sampled origins cluster into a bimodal distribution around the true

origins ν = 0 and ν = π with the main peak at 0.

It is important to note that further research needs to be done in order to assess the

convergence properties of the origins. In particular, it is necessary to study the conditions

under which minν∈νk
|mod(ν̂k − ν, 2π)| → 0. Further research is underway on this problem.

2.6.3 A practical example: the Chicago crimes data

Here we consider data obtained from which www.chicagocrime.org which correspond to

the twenty four hour clock times of 1297 crimes perpetrated in Chicago on May 11th, 2007,

obtained from www.chicagocrime.org.

A Bernstein polynomial density approximation of order k = 20 was fitted to these data.

Also, for comparison a kernel density estimate based on a von Mises kernel and using an

optimal bandwidth as in Taylor (2008) was fitted. Figure 2.5 shows a rose plot and a
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Figure 2.4: Kernel density estimates of the density of ν̂ for samples of size 100 (dotted line),
1000 (dashed line) and 10000 (solid line).

histogram of the data and the corresponding fitted densities. The data are plotted so that

the origin is set to the fitted origin time, that is 03:59 hours.

The fitted and empirical mean direction and 17:45 hours and 17:42 hours and the fitted

and empirical mean circular resultant lengths are 0.200 and 0.189 respectively. Thus, there

is good agreement between the fitted and empirical moments.

Both the Kuiper and Watson tests were used to test the goodness of fit of the Bernstein

polynomial density and in both cases, the model was not rejected at a 5% level.

2.7 Extensions

Various extensions of the approach introduced in this chapter can be considered. Firstly, it is

important to explore in more detail the conditions for convergence of the circular Bernstein

polynomial approximation as k →∞ and for convergence of the proposed estimator in this

case.

Another possibility is to consider parametric models based on mixtures of beta distribu-

tions with both continuous and discrete parameters. These approaches are briefly reviewed

below.
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Figure 2.5: Roseplot (left hand side) and histogram of the Chicago crime data with fitted
Bernstein polynomial (solid line) and kernel density (dashed line) approximations.

2.7.1 Mixtures of scaled, shifted, beta distributions

As a parametric alternative to the previous approach, we could consider the direct modeling

of a circular variable by a mixture of scaled, shifted beta distributions.

Definition 14. Let Θ be a random variable with support [0, 2π). Then we shall say that

Θ has a scaled, shifted, beta (SSB) distribution with parameters 0 ≤ ν < 2π and α, β ∈ N,

denoted by Θ ∼ SSB(ν, α, β) if

f(θ) =

{
1

(2π)α+β−1B(α,β)
(2π + θ − ν)α−1(ν − θ)β−1 if 0 ≤ θ < ν

1
(2π)α+β−1B(α,β)

(θ − ν)α−1(2π + ν − θ)β−1 if ν ≤ θ < 2π
(2.23)

where B(α, β) is the beta function.

Clearly, we can represent the distribution of Θ as the distribution of a shifted, scaled, beta

distributed random variable, so that θ = mod (2πX + ν, 2π) where X is a beta distributed

random variable, as in (2.7).

A natural parametric generalization of the circular Bernstein polynomial model is to

assume that Θ follows a mixture of SSB distributions as follows.

Definition 15. A circular random variable Θ has a SSB mixture distribution with parameters

w = (w1, . . . , wk), where wi ≥ 0 for i = 1, . . . , k and
∑k

i=1 wi = 1, ν = (ν1, . . . , νk), where

0 ≤ νi < 2π, for i = 1, . . . , k, α = (α1, . . . , αk) and β = (β1, . . . , βk) where αi, βi ∈ N for
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i = 1, . . . , k if

f(θ) =
k∑
j=1

wjf(θ|νj, αj, βj)

where f(·|ν, α, β) is the SSB(ν, α, β) density function as in (2.23).

Clearly, the trigonometric moments of the SSB mixture model can be derived explicitly

from the results in Section 2.4.

Assume now that we observe a sample of data, θ = {θ1, . . . , θn} to which we wish to fit

a mixture of SSB distributions. Firstly, it is important to note that it is straightforward

to calculate the maximum likelihood parameter estimates when the data are fitted by a

single SSB distribution. For a given origin, ν, the maximum likelihood estimates of the

beta parameters, α and β, may be calculated by first rescaling the data onto the data to

the [0, 1) interval and then calculating the unconstrained maximum likelihood estimates

using, for example the MATLAB routine, betafit. Then the constrained maxima may be

found by simply checking the likelihoods at the pairs of integer valued α and β around the

unconstrained maxima. Finally, the global maxima may be estimated by using the same

procedure over a grid of values of ν.

For fitting a k dimensional mixture distribution, then various approaches are possible.

One possibility is to use the EM algorithm, see e.g. Dempster et al (1977), McLachlan et al

(2000) but we have found that this procedure is very sensitive to the choice of initial values

and thus, we prefer to use an alternative procedure based on direct likelihood maximization.

Firstly, when k = 2, or k = 3, it is possible to directly maximize the likelihood function in

terms of the component weights, w, by searching over a grid of values of ν,α,β although for

higher dimensional mixtures, this procedure is too computationally intensive. In these cases,

we use an iterative algorithm which automatically finds a (local) maximum. Given that we

wish to fit a mixture of k > 3 terms, we assume that we have calculated the maximum

likelihood estimates for the k − 1 dimensional mixture and proceed by setting the initial

values, (νi, αi, βi) for i = 1, . . . , k − 1 equal to the maximum likelihood estimates for this

model and then estimating all component weights and the parameters, (νk, αk, βk) of the

k’th mixture component by direct likelihood maximization using a grid search procedure.

Then, the parameters of components 2, . . . , k are fixed and the weights and (ν1, α1, β1) are

re-estimated by direct likelihood maximization, the parameters of components, 1, 3, . . . , k

are fixed and the weights and (ν2, α2, β2) are re-estimated and so on until convergence. We

find in practice that this algorithm usually converges to the global maximum likelihood,
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due to the fact that the different beta components are well distinguished from each other

due to the discreteness of the beta parameters. Thus, the main mixture terms are usually

well identified in low dimensional mixtures and the effect of adding an extra component is

essentially that of fitting a new component which well fits a small amount of the observed

data.

Finally, in order to select the number of terms to include in the SSB mixture model, we

use the Akaike information criterion (AIC), see Akaike (1974).

We have estimated a mixture of two SSB distributions for the Chicago crime data. Figure

2.6 show the data and the fitted density for this data. Note that the origin in this figure is

the time 00 : 00 hours.

Figure 2.6: Histogram of the Chicago crime data with fitted mixture of SSB distribution
with integers parameters

If we eliminate the constraint that the parameters α and β of the SSB must be integer

vectors, we add more flexibility to the model. However, the closed form expressions for the

trigonometric moments are lost.

As commented previously, for the model to be circular, the continuity property at the

origin must be maintained. This implies that the SSB mixture model must be composed of

a mixture of (a uniform density and) beta densities with parameters αi, βi ≥ 1.

We have estimated a mixture of two SSB distributions for the crime data using the first

model. Figure 2.7 show the data and the fitted density for this data. As we can observe one

of the terms has a parameter which is practically 1. There also appears to be little difference

in the fit as compared to the previous model.
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Figure 2.7: Histogram of the Chicago crime data with fitted mixture of SSB distribution
with continuous parameters

2.7.2 Other extensions

Further extensions of the circular Bernstein polynomial model can be considered. Firstly, one

possibility is to consider using kernel based estimators to substitute the empirical distribution

function in the circular Bernstein polynomial estimator, as in Kakizawa (2004, 2010) for the

linear case. Another possibility is to consider Bayesian estimation of the circular Bernstein

polynomial model, based on generalizing the approach of Petrone (1999a,b).

Another extension is to extend the model to higher dimensions. For example, the d-torus

is the direct product of d circles. Then, we must define the properties and theorems for

these surfaces. However in the most of these cases the data used must be simulated and the

resulting model is only interesting from a theoretical point of view.

From a practical point of view, we could also consider the sphere and adapt the procedure

to this surface we must be careful with the Lebesgue measure for the sphere (sin θdθdφ) to

define correctly the spherical Bernstein polynomial.

Finally, we could consider the estimation of bivariate circular circular and circular linear

distributions with given marginal distributions via the use of Bernstein copulas, see e.g.

Sancetta et al (2004), in which at least one marginal is estimated by a circular Bernstein

polynomial model. This approach is implemented in the following chapter.
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2.8 Conclusions

The main conclusions of this chapter can be summarized as follows. The Bernstein polyno-

mial and the Kantorovich polynomials can approximate any continuous function defined on

a closed interval with an arbitrary precision and in particular they can be easily adapted to

the estimation of circular distributions.

In particular it is demonstrated that for a strictly continuous circular random variable,

then a Bernstein-Kantorovich density approximation can always be derived. It is also shown

that given a sample of circular data from a strictly continuous variable, then a simple, circular

generalization of the Vitale (1975) density estimator can be derived and that this preserves

the convergence properties of the standard Vitale estimator.

Finally, we have shown that various parametric extensions of the circular Bernstein poly-

nomial model, can be developed and have illustrated them on a real data set.



Chapter 3

Bernstein copulas and applications to

directional data

In the previous chapter we developed an approach to the non-parametric modeling of uni-

variate circular data. Here, we shall extend this to the case of bivariate data. In particular,

we shall consider two possibilities, that is the modeling of the bivariate distribution of two

circular variables and the modeling of the joint distribution of a circular and a linear variable.

There have been a number of parametric approaches to analyzing distributions of this

type, see e.g. Batschelet (1981), Mardia et al (1978), Johnson et al (1978), Kagan et al.

(1973), Mardia (1975) and Jammalamadaka et al (1988).

To develop a nonparametric approach to these types of data, we combine nonparametric

estimates of the marginal densities of the circular and linear components with the use of a

modification of a class of nonparametric copulas, known as empirical Bernstein copulas, to

model the dependence structure.

Copulas can be viewed as a tool for constructing a multivariate distribution in such a way

that the individual marginal distributions can be defined separately from their dependence

structure making use of Sklar’s theorem (Sklar, 1973). In particular, empirical Bernstein

copulas (see e.g. Sancetta et al., 2004), are based on multivariate Bernstein polinomials and

have been used as smooth approximations of unknown copulas, as they are defined on the

unit hypercube.

Along this chapter we show how circular-linear and circular-circular distributions can be

constructed via empirical Bernstein copulas showing that for this type of data the gener-

ated distribution satisfy certain continuity constraints to be well behaved bivariate distri-

butions. Following the orientation of this thesis, we have designed an algorithm which is

47
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non-parametric in all its stages. As we describe below, we use a non-parametric estimation of

the distribution function as the linear distribution and the circular Bernstein polynomial for

the circular distribution. Observe that for the empirical Bernstein copula model the depen-

dence structure estimated with the copula function depends on the data observed. Similar

to the circular Bernstein polynomial, when we use data, we must to impose that the weights

in the boundary cells are equal. Then, for constructing a well behaved bivariate distribution

we must correct the weights. We will show that these corrections preserves the uniformness

of the marginal distributions.

This chapter is organized as follows. In Section 3.1 we introduce the bivariate Bernstein

polynomials. In Section 3.2 we show the concept of copula and summarize briefly the types

of existing copulas. In Section 3.3 we show that the generalization of Theorem 1 in two

dimension does not hold and motivate the use of copulas for constructing the bivariate

distribution where both marginal distributions are circular. We define the circular-circular

model based on copulas and describe how to estimate it in a non-parametric way. In Section

3.4 we define the circular-linear model based on copulas and describe how to estimate it in a

non-parametric way. In Section 3.5 we illustrate these two models with environmental data

and finalize this chapter showing the conclusions and possible extensions in Section 3.6.

3.1 Bivariate Bernstein polynomials

Here, we generalize the results of the previous chapter for the univariate Bernstein polyno-

mials to the bivariate case, which is the basis for much of the work presented in the following

sections.

Definition 16. Let k1, k2 ∈ N and let g(·, ·) be a function of two variables, each with support

[0, 1]. Then the polynomials:

Bg
k1,k2

(x1, x2) =

k1∑
j1=0

k2∑
j2=0

g

(
j1

k1

,
j2

k2

)
Pj1,k1(x1)Pj2,k2(x2), (3.1)

where Pj,k(x) represents a Bernstein basis polynomial as defined in (9), are called the bivari-

ate Bernstein polynomials of g.

As in the univariate case, see Section 2.1, it is well known that for a continuous function,

g, then the Bernstein polynomials converge uniformly to g as k1, k2 →∞. For more details

see e.g. Lorentz (1986).
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3.1.1 Bivariate Bernstein polynomial distributions

As in the previous chapter, once we have introduced the bivariate Bernstein polynomial, we

now illustrate how it can be used for modelling bivariate distribution functions. Clearly, a

Bernstein polynomial approximation for a bivariate distribution function of two variables,

each with support on the unit interval can be derived from Definition 16.

Definition 17. Let X = (X1, X2) be a bivariate random variable with support in [0, 1]2 and

continuous bivariate distribution function FX (·). Then the bivariate Bernstein polynomial

approximation to F of order k = (k1, k2) is defined as:

Bk (x1, x2) =

k1∑
j1=0

k2∑
j2=0

FX

(
j1

k1

,
j2

k2

)
2∏
i=1

(
ki
ji

)
xjii (1− xi)ki−ji . (3.2)

An approximation to the density function can then be derived by differentiating.

Definition 18. For a bivariate distribution function, FX(·, ·) as in Definition 17, then the

associated bivariate Bernstein density function of order k = (k1, k2) is:

bk (x1, x2) =

k1∑
j1=1

k2∑
j2=1

wj1,j2
2∏
i=1

β(xi|ji, ki − ji + 1) (3.3)

where, β(·|·) is the beta density function as given in (2.7) and,

wj1,j2 = FX

(
j1 − 1

k1

,
j2 − 1

k2

)
+FX

(
j1

k1

,
j2

k2

)
−FX

(
j1 − 1

k1

,
j2

k2

)
−FX

(
j1

k1

,
j2 − 1

k2

)
. (3.4)

Observe that the weight, wj1,j2 , in (3.4) is the probability that an observation belongs

to the region
(
j1−1
k1
, j1
k1

]
×
(
j2−1
k2
, j2
k2

]
. Therefore, the bivariate Bernstein density is a smooth

approximation of the true bivariate density function.

Finally, it is straightforward to see by integrating out that the marginal distribution of

each variable is a univariate Bernstein polynomial as in (2.6). Thus, we have:

bk1 (x1) =

∫ 1

0

bk1,k2(x1, x2) dx2

bk2(x2) =

∫ 1

0

bk1,k2(x1, x2) dx1. (3.5)

Note finally that given sample (linear) data, a bivariate Bernstein polynomial density
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estimate can be constructed either by substitution of the empirical cumulative distribution

function for the theoretical distribution function in (3.3) or by using smoothed, kernel based

estimators as in Tenbusch (1994).

3.2 Copulas

Often, we wish to model the joint distribution of two, or more, random variables in the

case that the marginal distributions are known. The copula function provides the way to

construct such a distribution.

Definition 19. A bivariate copula is a joint distribution on [0, 1]2 such that both marginal

distributions are uniform on the interval [0, 1]. Specifically, C : [0, 1]2 → [0, 1] is a bivariate

copula if:

1. For all u ∈ [0, 1], then C(0, u) = C(u, 0) = 0,

2. For all u ∈ [0, 1], then C(1, u) = C(u, 1) = u,

3. For every u1, u2, v1, v2 ∈ [0, 1], where u1 ≤ u2 and v2 ≤ v2 then

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The final property in the above definition is the bivariate equivalent to the condition that

a univariate distribution function is non-decreasing. Sklar’s (1973) theorem, which is given

below, shows that a given joint distribution function can be defined in terms of a copula

function and the marginals.

Theorem 7 (Sklar 1973). Let F be the distribution function of a bivariate random variable,

X = (X1, X2) with marginal distribution functions F1 and F2. Then there exists a copula,

C, such that

F (x1, x2) = C(F1(x1), F2(x2)).

Conversely, for any univariate distribution functions, F1 and F2 and any copula, C, the func-

tion F is the distribution function of a bivariate random variable with marginal distributions

F1 and F2. Furthermore, if F1 and F2 are continuous, then C is unique.

For continuous random variables X1 and X2 with marginal distribution functions F1

and F2 and copula function C, then clearly, the joint density function can be derived from
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Theorem 7 as:

f (x1, x2) = c (F1 (x1) , F2 (x2))
∏2

i=1 fi (xi) , (3.6)

where the f1(·) and f2(·) are the marginal density functions of X1 and X2 respectively and

c is the density function of the copula which is given by

c(u, v) =
∂2

∂u∂v
C(u, v). (3.7)

Equally, the copula density function can be derived from the joint and marginal density and

distribution functions as

c (u, v) =
f
(
F−1

1 (u) , F−1
2 (v)

)
f1

(
F−1

1 (u) f2

(
F−1

2 (v)
)) . (3.8)

Various parametric forms for copulas have been considered as in the following examples.

Example 21. The simplest copula is the product copula, C(u, v) = uv, when we have

F (x1, x2) = F1(x1)F2(x2). Therefore, in the case of continuous variables, this copula char-

acterizes independence between X1 and X2.

Two of the most popular approaches are the Gaussian and Archimedean copulas.

Example 22. The Gaussian copula function is defined by

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v))

where u, v ∈ [0, 1] and Φ(·) denotes the standard, normal cumulative distribution function

and Φρ(·, ·) is the distribution function of a standard, bivariate normal random variable with

correlation ρ.

Using this copula, one can define a bivariate distribution function with the same depen-

dence structure as the standard bivariate normal distribution function but with non-normal

marginal distributions.

Example 23. An Archimedean copula is defined by

C(u, v) = Ψ
(
Ψ−1(u) + Ψ−1(v)

)
for a generator function, Ψ and its generalized inverse, Ψ−1.
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Many other parametric families of copulas have been developed. See e.g. Nelsen (1999)

for a good review.

3.2.1 The empirical and empirical Bernstein copulas

When data are generated from an unknown underlying distribution function, the empirical

data distribution can be transformed into an empirical copula so that the marginal distribu-

tions become uniform, see e.g. Nelsen (1999). Formally, given a sample, {(x11, x21), . . . , (x1n, x2n)}
from the joint distribution of (X1, X2), then the empirical copula function can be defined as

follows.

Firstly, we transform the original data into a sample (ui, vi) = (F̂X1(x1i), F̂X2(x2i)), for i =

1, . . . , n, where F̂X(·) and F̂Y (·) are consistent estimators of the true marginal distributions,

FX(·) and FY (·), respectively. The transformed values now form a sample on [0, 1]2. Then,

the empirical copula distribution function is defined as

Ĉn (u, v) =
1

n

n∑
i=1

I (ui ≤ u, vi ≤ v) , (3.9)

for 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Note that by construction, the empirical copula is a valid distribution function. However,

it has marginals which are uniform only asymptotically as n → ∞ and therefore is a valid

copula only asymptotically. Clearly, the empirical copula is not a smooth function. A

smoothed version can be obtained via the Bernstein polynomial approximation (see e.g.

Sancetta and Satchell, 2004) as follows.

Given a sample, (ui, vi) for i = 1, . . . , n, calculated by transforming the original data as

above, then using Theorem 7, there exists a copula which can be approximated with the

empirical Bernstein copula of order k = (k1, k2), which is defined as:

ĈB (u, v) =
1

n

k1∑
j1=0

k2∑
j2=0

n∑
i=1

I

(
ui ≤

j1

k1

, vi ≤
j2

k2

)(
k1

j1

)
uj1 (1− u)k1−j1

(
k2

j2

)
vj2 (1− v)k2−j2 .

(3.10)

Clearly, using (3.6), the corresponding empirical Bernstein copula density is given by,

ĉB (u, v) =

k1∑
j1=1

k2∑
j2=1

pj1j2β (u | j1, k1 − j1 + 1) β (v | j2, k2 − j2 + 1)
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where

pj1j2 = I

(
j1 − 1

k1

< ui ≤
j1

k1

,
j2 − 1

k2

< vi ≤
j2

k2

)
. (3.11)

As with the empirical copula, the empirical Bernstein copula is a copula in the asymptotic

sense since,

lim
n→∞

k1∑
j1=1

pj1j =
1

k2

, for j = 1, . . . , k2 (3.12)

and

lim
n→∞

k2∑
j2=1

pjj2 =
1

k1

, for j = 1, . . . , k1. (3.13)

Further properties are examined in Sancetta et al (2004), Pfeifer et al. (2009) and Bouezmarni

et al. (2010). In particular, using the properties of Bernstein polynomials, Sancetta et al

(2004) demonstrate that in the case k1 = k2 = k, then the bias of the empirical Bernstein

copula is d/k + o(1/k) for some finite constant d and give the optimal choices for k under

mean squared error loss.

In the following sections, we show how the Bernstein copula can be adapted for use in

the case of circular-circular and circular-linear distributions.

3.3 Circular-circular distributions constructed via em-

pirical Bernstein copulas

In this section, we shall develop an approach to Bernstein polynomial based approximation

of the density of a bivariate, continuous, circular-circular, random variable, Θ = (Θ1,Θ2) .

A natural possibility would be to try to see if bivariate Bernstein polynomial distributions,

as outlined in Section 3.1.1 could be applied for some origin ν = (ν1, ν2) such that the

corresponding Bernstein polynomial approximation is properly circular.

3.3.1 Direct modeling via bivariate Bernstein polynomial distri-

butions

Suppose that f is a strictly continuous, bivariate circular-circular density function. Then,

given an origin, ν, from Definition 18, a Bernstein polynomial approximation of f of order
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k = (k1, k2) is given by:

bνk (θ1, θ2) =

k1∑
j1=1

k2∑
j2=1

wj1,j2
2∏
i=1

β
(
θi
2π
| ji, ki − ji + 1

)
where

wj1,j2 = FνΘ

(
2π
j1 − 1

k1

, 2π
j2 − 1

k2

)
+ FνΘ

(
2π
j1

k1

, 2π
j2

k2

)
− FνΘ

(
2π
j1 − 1

k1

, 2π
j2

k2

)
− FνΘ

(
2π
j1
k1

, 2π
j2 − 1

k2

)
.

However, as in the univariate case, not all origins will give a valid, strictly continuous density

approximation. ν is a valid circular origin for a Bernstein polynomial distribution of order

k if: w1,j = wk1,j for j = 1, . . . , k2 and wj,1 = wj,k2 for j = 1, . . . , k1. Note that in particular,

we have w1,1 = w1,k2 = wk1,1 = wk1,k2 .

Unfortunately, it is easy to find counterexamples of strictly continuous distributions where

no valid origin for the Bernstein polynomial approximation exists as the following.

Example 24. Consider a bivariate cosine density defined by

f(θ1, θ2) =
1

4π2
(1 + 2ρ cos(θ1 − θ2)) , for θ1, θ2 ∈ [0, 2π).

Then the corresponding distribution function with respect to the origin (0, 0) is

F (θ1, θ2) =
θ1θ2

4π2
+

ρ

2π2
[cos(θ1 − θ2) + 1− cos θ1 − cos θ2] , for θ1, θ2 ∈ [0, 2π).



3.3. CIRCULAR-CIRCULAR DISTRIBUTIONS 55

Given the origin, ν, then we can calculate the weights:

w11 =
1

k1k2

+
ρ

2π2

(
cos (ν1 − ν2) + cos

(
ν1 +

2π

k1

− ν2 −
2π

k2

)
− cos

(
ν1 − ν2 −

2π

k2

)
− cos

(
ν1 +

2π

k1

− ν2

))
wk11 =

1

k1k2

+
ρ

2π2

(
cos

(
ν1 −

2π

k1

− ν2

)
+ cos

(
ν1 − ν2 −

2π

k2

)
− cos

(
ν1 −

2π

k1

− ν2 −
2π

k2

)
− cos (ν1 − ν2)

)
w1k2 =

1

k1k2

+
ρ

2π2

(
cos

(
ν1 − ν2 +

2π

k2

)
+ cos

(
ν1 +

2π

k1

− ν2

)
− cos (ν1 − ν2)− cos

(
ν1 +

2π

k1

− ν2 +
2π

k2

))
wk1k2 =

1

k1k2

+
ρ

2π2

(
cos (ν1 − ν2) + cos

(
ν1 −

2π

k1

− ν2 +
2π

k2

)
− cos

(
ν1 − ν2 +

2π

k2

)
− cos

(
ν1 −

2π

k1

− ν2

))

In a first step we analyze when the weights w1k2 and wk11.

wk11 − w1k2 = cos

(
ν1 −

2π

k1

− ν2

)
+ cos

(
ν1 − ν2 −

2π

k2

)
− cos

(
ν1 −

2π

k1

− ν2 −
2π

k2

)
− cos (ν1 − ν2)− cos

(
ν1 − ν2 +

2π

k2

)
− cos

(
ν1 +

2π

k1

− ν2

)
+ cos (ν1 − ν2) + cos

(
ν1 +

2π

k1

− ν2 +
2π

k2

)
= cos (ν1 − ν2)

(
cos

(
−2π

k1

)
+ cos

(
−2π

k2

)
− cos

(
−2π

k1

− 2π

k2

)
− cos

(
2π

k2

)
− cos

(
+

2π

k1

)
+ cos

(
+

2π

k1

+
2π

k2

))
+ sin (ν1 − ν2)

(
sin

(
2π

k1

)
+ sin

(
2π

k2

)
− sin

(
+

2π

k1

+
2π

k2

)
+ sin

(
+

2π

k2

)
+ sin

(
+

2π

k1

)
− sin

(
2π

k1

+
2π

k2

))
= 2 sin (ν1 − ν2)

(
sin

(
2π

k1

)
+ sin

(
2π

k2

)
− sin

(
+

2π

k1

+
2π

k2

))
= 2 sin (ν1 − ν2)

(
sin

(
2π

k1

)(
1− cos

2π

k2

)
+ sin

(
2π

k2

)(
1− cos

2π

k1

))
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The difference is zero when k1 = k2 = 2 and for k1, k2 > 2 the second term is always

positive and the difference is zero only when ν1 = ν2 or ν1 = ν2 + π. Now we compute the

difference between w11 and wk11 using the constraint ν1 = ν2 found in the previous step. If

we use ν1 = ν2 + π the difference will have the opposite sign.

w11 − wk11 = cos (0) + cos

(
2π

k1

− 2π

k2

)
− cos

(
−2π

k2

)
− cos

(
2π

k1

)
− cos

(
−2π

k1

)
− cos

(
−2π

k2

)
+ cos

(
−2π

k1

− 2π

k2

)
+ cos (0)

= 2 + cos

(
+

2π

k1

− 2π

k2

)
+ cos

(
−2π

k1

− 2π

k2

)
− 2 cos

(
−2π

k1

)
− 2 cos

(
−2π

k2

)
= 2 + cos

(
+

2π

k1

)
cos

(
2π

k2

)
+ sin

(
+

2π

k1

)
sin

(
2π

k2

)
+ cos

(
2π

k1

)
cos

(
2π

k2

)
− sin

(
2π

k1

)
sin

(
2π

k2

)
− 2 cos

(
−2π

k1

)
− 2 cos

(
−2π

k2

)
= 2 + 2 cos

(
+

2π

k1

)
cos

(
2π

k2

)
− 2 cos

(
−2π

k1

)
− 2 cos

(
−2π

k2

)
= 2

(
cos

(
2π

k1

)
− 1

)(
cos

(
2π

k2

)
− 1

)
> 0 for k1, k2 > 1.

Therefore, in the case of the bivariate cosine distribution, then no valid origin for a circular

Bernstein polynomial density approximation exists.

3.3.2 Modeling using the Bernstein copula

As an alternative, we propose modeling a circular-circular distribution using circular Bern-

stein polynomial distributions to approximate the marginals and then adapting the standard

Bernstein copula to approximate the underlying copula function.

Given a set of bivariate circular-circular data, {(θ11, θ21) , . . . , (θ1n, θ2n)} , we use a two-

step approach to estimation of the joint density.

Firstly, we obtain estimations of the marginal circular densities, F̂ ν̂1
q1

(θ1) and F̂ ν̂2
q2

(θ2) ,

using the circular Bernstein estimator introduced in the previous chapter.

Secondly, using the sample of data in the unit square given by{
(u11, u12) =

(
F̂ ν̂1
q1

(θ11) , F̂ ν̂2
q2

(θ21)
)
, . . . , (u1n, u2n) =

(
F̂ ν̂1
q1

(θ1n) , F̂ ν̂2
q2

(θ2n)
)}

,

we obtain the corresponding empirical Bernstein copula, ĉB (·, ·), as in (3.11), where in this
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case, the weights are given by

pj1j2 =
1

n

n∑
i=1

I

(
j1 − 1

k1

< F̂ ν̂1
q1

(θ1i) ≤
j1

k1

,
j2 − 1

k2

< F̂ ν̂2
q2

(θ2i) ≤
j2

k2

)
,

for j1 = 1, . . . , k1 and j2 = 1, . . . , k2.

The simple Bernstein copula will typically not lead to the obtention of a strictly contin-

uous, bivariate density function. For the density to be continuous, it is required that:

p1j2 = pk1j2 , for j2 = 1, . . . , k2, (3.14)

pj11 = pj1k2 , for j1 = 1, . . . , k1. (3.15)

which will not in general be true. Therefore, similar to the procedure outlined in the previous

chapter, we propose using the following corrections:

p̃1j2 = p̃k1j2 =
p1j2 + pk1j2

2
, for j2 = 2, . . . , k2 − 1,

p̃j11 = p̃j1k2 =
pj11 + pj1k2

2
, for j1 = 2, . . . , k1 − 1,

p̃11 = p̃1k2 = p̃k11 = p̃k1k2 =
p11 + p1k2 + pk11 + pk1k2

4
,

and p̃j1j2 = pj1j2 for j1 6= 1, k1 and j2 6= 1, k2 which leads to a modified Bernstein copula, say

c̃B (·, ·).

An important result is that these corrections conserve the property that the marginal

distributions are asymptotically, uniformly distributed on the [0, 1]2 interval so that the

corrected copula approximation is still an asymptotic copula. In order to see this, observe

that the initial matrix of weights,

P =


p11 p12 · · · p1k2

p21 p22 · · · p2k2
...

...
. . .

...

pk11 pk12 · · · pk1k2

 (3.16)

which verifies the limiting properties (3.12) and (3.13), is transformed into the corrected
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matrix:

P̃ =


p11+pk11+p1k2+pk1k2

4

p12+pk12
2

· · · p11+pk11+p1k2+pk1k2
4

p21+p2k2
2

p22 · · · p2k2+p21
2

...
...

. . .
...

p11+pk11+p1k2+pk1k2
4

pk12+p12
2

· · · p11+pk11+p1k2+pk1k2
4

 (3.17)

which also verifies (3.12) and (3.13) because in the limit the sum by rows and columns is

equal to k−1
1 and k−1

2 , respectively. For example, the sum of the first row of P̃ is:

lim
n→∞

k2∑
j2=1

p̃1,j2 = lim
n→∞

(
p11+pk11+p1k2+pk1k2

4
+

p12+pk12
2

+ · · ·+ p11+pk11+p1k2+pk1k2
4

)
= lim

n→∞

p11+p12+···+p1k2
2

+ lim
n→∞

pk11+pk12+···+pk1k2
2

=
1

k1

and the same result is obtained for the last row. Also, for the first column, we obtain:

lim
n→∞

k1∑
j1=1

p̃j11 =
p11+pk11+p1k2+pk1k2

4
+

p21+p2k2
2

+ · · ·+ p11+pk11+p1k2+pk1k2
4

= lim
n→∞

p11+p21+···+pk11
2

+ lim
n→∞

p1k2+p2k2+···+pk1k2
2

=
1

k2

.

And the results for the remaining rows and columns follow in the same way.

Once we have shown that the empirical Bernstein copula is well defined with the correc-

tions made and that we have constructed a strictly continuous circular-circular distribution,

we can define the bivariate Bernstein density estimate as:

f̂B (θ1, θ2) = c̃B

(
F̂ ν̂1
q1

(θ1) , F̂ ν̂2
q2

(θ2)
)
f̂ ν̂1q1 (θ1) f̂ ν̂2q2 (θ2) . (3.18)

As commented earlier, the Bernstein copula captures the dependence structure between

both variables. Therefore it is straightforward to evaluate the conditional distribution of θ1

given θ2 as follows:

f̂B (θ2|θ1) =

[
k1∑
j1=1

k2∑
j2=1

p̃j1j2β
(
F̂ ν̂1
q1

(θ1) | j1, k1 − j1 + 1
)
β
(
F̂ ν̂2
q2

(θ2) | j2, k2 − j2 + 1
)]

f̂ ν̂2q2 (θ2)

As a final comment on the uniqueness of this model, Sklar’s (1959) theorem establishes

that the copula function is unique if the marginal densities are continuous. When we are
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using continuous distributions defined on the real line, the cumulative distribution functions

are defined in a unique form. However, in the case of circular distributions this property

does not hold, except in the case of the circular uniform distribution. Thus, when different

origins are selected, then different estimations of the copula will be made which will lead to

slightly different approximations to the joint density.

3.4 Circular-Linear distributions constructed via em-

pirical Bernstein copulas

In this section, we consider a second extension of the circular Bernstein polynomial, to the

case of circular-linear distributions. As for the circular-circular case, we propose the use

of nonparametric methods to estimate the marginal densities and the use of an adapted,

empirical Bernstein copula to fit the dependence of the two variables.

Assume we have a sample of i.i.d. data, say {(θ1, x1) , . . . , (θn, xn)}, generated from an

unknown, circular-linear distribution.

Then, as previously, we can use a two-step estimation procedure for fitting the joint

distribution where, in the first step, the marginal densities are estimated and then, in the

second step, the dependence structure is estimated via Bernstein copulas.

Assuming that the marginal distribution of the circular variable may not be easily fitted

by a parametric model, then the circular Bernstein estimator, F̂ ν̂
k (θ) , explained in Chapter

2, can be used to estimate this density. In the case of the linear model, any appropriate para-

metric or nonparametric approach could be applied. We shall write F̂X(·) for the estimated

distribution function.

In the second step, we need to define an estimator of the copula. Given the sample of data

in the unit square,
{

(u11, u21) =
(
F̂ ν̂
k (θ1) , F̂X (x1)

)
, . . . , (u1n, u2n) =

(
F̂ ν̂
k (θn) , F̂X (xn)

)}
,

we consider the empirical Bernstein copula given by,

ĉB (u1, u2) =

k1∑
j1=1

k2∑
j2=1

pj1j2

2∏
i=1

β (ui | ji, ki − ji + 1) , (3.19)

where

pj1j2 =
1

n

n∑
i=1

I

(
j1 − 1

k1

< F̂ ν̂
k (θi) ≤

j1

k1

,
j2 − 1

k2

< F̂X (xi) ≤
j2

k2

)
, (3.20)

for j1 = 1, . . . , k1 and j2 = 1, . . . , k2.
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For the joint distribution to be strictly continuous, then it is necessary that

p1j2 = pk1j2 , for j2 = 1, . . . , k2, (3.21)

but in many cases, this condition will not be satisfied. Therefore, we propose using the

following correction,

p̃1j2 = p̃k1j2 =
p1j2 + pk1j2

2
,

for j2 = 1, . . . , k2, and p̃j1j2 = pj1j2 for j1 6= 1, k1 which ensures a strictly continuous circular-

linear estimated density.

In a similar way to the circular-circular case, it can be easily demonstrated that this

copula approximation preserves the asymptotic uniformity of the marginal distributions, as

this can be seen as a particular case of the result of the previous section when one of the

variables does not need correction.

Then, the bivariate Bernstein density estimate is :

f̂B (θ, x) = c̃B

(
F̂ ν̂
k (θ) , F̂X (x)

)
f̂ ν̂k (θ) f̂X (x) (3.22)

The conditional density function of the linear variable given the value of the circular

variable can be easily obtained from (3.22) as:

f̂B (x|θ) =

k1∑
j1=1

k2∑
j2=1

p̃j1j2β
(
F ν̂
k (θ) | j1, k1 − j1 + 1

)
β
(
F̂X (x) | j2, k2 − j2 + 1

)
f̂X (x)

and the conditional cumulative distribution function is:

F̂B (x|θ) =

k1∑
j1=1

k2∑
j2=0

p̃∗j1j2β
(
F ν̂
k (θ) | j1, k1 − j1 + 1

)
β
(
F̂X (x) | j2 + 1, k2 − j2 + 1

)
where

p̃∗j1j2 =

j2∑
j=0

p̃j1j (3.23)

and p̃∗j10 = 0.
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3.5 Illustrations

In this section we illustrate both the circular-circular model and the circular-linear model.

We shall use two practical examples based on weather data.

3.5.1 Circular-circular data: wind directions

In the first illustration we analyze data on wind directions observed from 2007 to 2009

at two buoys situated off the Atlantic coast of the USA at 43◦47’0” N 68◦51’18” W and

43◦58’6” N 68◦7’42” W with labels MISM1 y MDRM1 respectively which shall be referred

as Θ1 and Θ2. These data are available from the National Data Buoy Center website at

http://www.ndbc.noaa.gov/.

The two buoys have been chosen such that the distance between them is relatively small

(33.35 nautical miles or 61.77 km) and they share several features, such as similar distance

to land. Figure 3.1 shows circular Bernstein polynomial fits of the marginal densities of the

wind directions at the two buoys. It can be seen that, as we might expect, the distribution

of wind directions at the two sites are very similar.

Figure 3.1: Marginal densities of the wind directions at buoys MISM1 (top) and MDRM1
(bottom)

The data have been cleaned to erase any missing values and after this, the data set

contained 24807 observations.
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Although, obviously, these data form a time series, we shall not consider time series

modeling here and shall only concentrate on modeling the joint density of the wind directions

without taking the time dependence into account. As a first step, we tested the hypothesis

that the two variables were independent using the approach of Alvo (1998). This test rejected

the hypothesis of independence at an α = 0.01 level which implies that it makes sense to

consider using our approach to estimate the joint density of the two variables.

Figure 3.2 shows the estimated density of the circular-circular model. For better visual-

ization, we have moved the origins of the Bernstein polynomials to the center of the graph.

As we can observe, there is a high correlation between the two variables and we may assume

that the distributions of wind directions at both buoys are very similar.

Figure 3.2: Density function for the circular-circular model, f(θ1, θ2).

To illustrate this feature, we have computed the conditional densities for both buoys.

Figure 3.3 shows the conditional distribution of Θ1|Θ2 and Figure 3.4 shows the conditional

distribution of Θ2|Θ1. As can be seen in both graphs, we have the same density along the

main diagonal of the graph. This indicates the behavior of one of the buoys as a function of

the other. The distributions are useful from a operational point of view, suppose that two

ships departing from the nearest ports to each of the buoys and one of them is temporarily

disabled for maintenance. Observing the conditional probability we can assign a route in
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which the fuel consumption of both boats can be optimized.

Figure 3.3: Conditional density function, f(θ1|θ2)

To summarize this example, we have modeled the wind direction in two nearby buoys

showing the high correlated wind flow between these two sites under the lack of distorting

elements such as mountains, etc. Observe that this correlation could be viewed as spatial

correlation.

3.5.2 Circular-linear data: wind directions and rainfall

Many variables can influence the climate at a certain site, but from a meteorological point

of view, most studies focus on wind direction and related variables such as rainfall.

For analyzing this relationship, we have chosen daily observations of rain and wind di-

rection taken from 6/11/94 to 31/1/2009 at the observatory site at Somı́o, near Gijon in

northern Spain, at latitude 43◦32’17”N, longitude: 5◦37’26”W and 30 metres above sea level.

These data are available from http://infomet.am.ub.es/clima/gijon/.

The wind direction is measured in degrees from 0 to 359 and rainfall is measured on a

grid of 0.2 liters per square meter.

At the site, rain was recorded on about 49.2% of the days. Figure 3.4 shows histograms
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Figure 3.4: Conditional density function, f(θ2|θ1)

and circular Bernstein polynomial fits of the marginal density of the wind direction for the

whole data set and conditioning on the weather being dry or rainy.

It can be seen that there is some difference between the estimated density fits. This may

be explained by the fact that sea winds are often associated with rainfall, whereas winds

coming from the land to the sea, are more regularly associated with dry weather in Spain.

This suggests that it is sensible to model the joint density of the wind direction, Θ, and the

level of rainfall, X, by conditioning as:

f(θ, x) = f(θ|X = 0)P (X = 0) + f(θ, x|X > 0)P (X > 0).

Then, we can estimate P̂ (X > 0) = 0.492, P̂ (X = 0) = 0.508 and use a circular Bernstein

polynomial, f̂ ν̂k (θ|X = 0) to estimate the density of Θ given that there is no rain, as in the

middle diagram of Figure 3.5.

Finally, we can use the copula approach outlined in this chapter to estimate the joint

density of X and Θ conditional on there being rain. In particular, we use the circular

Bernstein copula density outlined in Chapter 2 to estimate the marginal density of Θ, as in

the bottom diagram of Figure 3.5 and then apply a cubic spline smoothed density estimate of

the marginal density of the level of rainfall and finally use the circular-linear copula outlined

here to estimate the joint density.

Similar to the first illustration, we first carried out a hypothesis test for independence
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Figure 3.5: Marginal densities of wind direction: whole data set (top), dry days (middle),
rainy days (bottom).

between the two variables. This was rejected at an α = 0.01% level which suggests that

there is dependence between the two sets of data.

In this case we have used the Bernstein polynomial of degree 51, with origin 255o approx-

imately. We have constructed the figures with this origin represented as 0 and we increase

the index clockwise.

Figure 3.6 shows the estimated joint density, where for better visualization we only illus-

trate the density for rainfall levels of up to 2mm. We have used cubic splines to interpolate

the values of the function where there are not data (remember that the data analyzed in this

example are discretized over a grid of 0.2) to obtain a smooth function. As we can observe

in the figure there are two modes corresponding to East and West approximately. As we

commented earlier, the orography of this part of Spain (the Cantabrian Mountains) implies

that surface winds head East or West, when orographic rain is produced.

Figure 3.7 shows conditional distribution functions of the level of rainfall given that wind

directions equal to the two modes of the previous figure. The solid line corresponds to the
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Figure 3.6: Fitted bivariate density function, f(x,θ|X > 0)

origin (0) and the dotted line corresponds to the West (195o). As we can see in the figure the

behavior is different due to that the cold fronts which produces intense rains termed frontal

rains comes from West to East.

For a better visualization of this effect, Figure 3.8 shows a contour plot of the conditional

distribution of the rainfall level given the wind direction. We show the lines corresponding

to the 0.5, 0.75, 0.90 and 0.95 percentiles. Observing the graph, when the wind direction

is East(0) there is more probability of heavy rain than when the wind comes from other

directions.

To summarize this example, rainy days are very influenced by the orography of this part

of Spain. Two types of rain predominate, that is firstly, orographic rain which happens

when humid winds encounter a mountain range and producing small quantities of rain and

secondly, cyclonic or frontal rains induced by low pressure systems which come from West

to East and are associated with heavy rain. As we can observe in Figure 3.7, the conditional

rainfall level distribution for the East direction has a heavy tail.
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Figure 3.7: Conditional Distribution functions, F(x|θ,X > 0) given the two modal wind
directions.

3.6 Conclusions and extensions

In this chapter, we have illustrated how to use a nonparametric approach to construct a

bivariate distribution with at least a component of circular type as an alternative to the usual,

parametric models for these types of data. We have applied the empirical Bernstein copula

as described in Sancetta et al (2004) and introduced appropriate corrections to guarantee

that the constructed bivariate distribution is strictly continuous. Our approach has been

illustrated with real data examples based on wind direction and rainfall data.

An important feature is that as in the univariate case, the fitted copulas depend on

the chosen origins for estimating the marginal densities of the circular variables, although

conditional on the origins, the copula is unique. Note also that although here we have

used the circular Bernstein polynomials to estimate these marginal distributions, in the case

of circular data, in principle any other approach could be used without altering the basic

properties of the estimator.

Various extensions of our approach are possible.

Firstly, the selection of the values of k = (k1, k2) is an open problem. Here, we have

chosen the recommendation of Sancetta et al (2004) which provides a relatively smooth fit,
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Figure 3.8: Contour plot of F (X ≤ x|θ,X > 0)

but it would be interesting to explore further possibilities. Secondly, it would be interesting

to consider alternative approaches to non-parametric copula estimation. One procedure

would be to use multidimensional, non-negative Fourier series as an approximating function.

Finally, it would be interesting to explore the possibility of using time varying copulas so

that our approach could be incorporated in time series models for estimating wind directions.

Also, it would be interesting to look at multivariate copulas so that other climatic variables

could also be included



Chapter 4

Toroidal and spherical distributions

based on positive Fourier Series

In the previous chapter we used Bernstein polynomials and Bernstein copulas to construct

models for bivariate, circular-circular (toroidal) and circular-linear (cylindrical) random vari-

ables.

In this chapter we shall consider an alternative approach to constructing bivariate distri-

butions via the use of another, well known approximating polynomial, that is the trigonomet-

ric polynomial which can be thought of as a partial sum of the terms in a Fourier series. We

will use this approach to construct two distributions, firstly, a circular-circular distribution

and secondly, a distribution defined on the surface of a unit sphere.

This chapter is organized as follows. In Section 4.1, we introduce Fourier series and

non-negative trigonometric sums which are the most important tools for the results in this

chapter. Then, in Section 4.2, we show how to construct distributions for directional data

based on positive trigonometric sums. In particular, we briefly comment the approach of

Fernández Durán (2004) for constructing circular distributions via non-negative trigono-

metric sums, and then we introduce new models for circular-circular and spherical random

variables.

Illustrations are provided in Section 4.3 and then we finish with some conclusions and

extensions in Section 4.4.

69
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4.1 Fourier series and trigonometric polynomials

In this section we briefly review the basic results and properties of Fourier series and trigono-

metric polynomials. In particular, we concentrate on polynomials which have the property

of being non-negative which implies that they can be applied as density functions for direc-

tional data. Proofs of results and further details are given in e.g. Walker (1988) and Stein

et al (1971).

4.1.1 Univariate Fourier series and their properties

The Fourier series of a continuous, integrable, periodic function is defined as follows.

Definition 20. Let g(·) be a real valued, periodic, function integrable in [0, 2π]. Let

aj =
1

π

∫ 2π

0

cos(jθ)g(θ) dθ for j = 0, 1, 2, . . .

bj =
1

π

∫ 2π

0

sin(jθ)g(θ) dθ for j = 1, 2, . . .

Then the infinite sum:

g∗(θ) =
a0

2
+
∞∑
j=1

aj cos(jθ) + bj sin(jθ)

is called the Fourier series of g. The coefficients, aj, bj are called the Fourier coefficients.

Under certain regularity conditions, e.g. if g is square-integrable on [0, 2π), then the

Fourier series converges to the function almost everywhere. In particular, when the derivative

of g is square integrable, then the Fourier series converges uniformly to g.

Fourier series can also be expressed in compact form using complex numbers. Thus, we

can write

g∗(θ) =
∞∑

j=−∞

gje
ijθ, (4.1)

where gj ∈ C is defined as

gj =
1

2π

∫ 2π

0

g(θ)e−ijθdθ (4.2)

and i =
√
−1.
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From Definition 20, the coefficients, gj in (4.1) are related to (aj, bj) in Definition 20 via

aj = gj + g−j

bj = i(cj − c−j)

cj =


1
2
(aj − ibj)

1
2
a0

1
2
(a−j + b−j).

Various useful properties of univariate Fourier series and their coefficients are given below.

Theorem 8. The set of functions eij, j ∈ N form an orthonormal basis for the space of

square integrable functions, L2[−π, π],∫ π

−π
eijθeikθdθ = 2πδjk (4.3)

where δjk is the Kronecker delta,

δjk =

{
1 if j = k

0 otherwise
. (4.4)

Theorem 9 (Riemann-Lebesgue lemma). For an integrable function, g(·), then limj→∞ aj =

limj→∞ bj = 0.

The next two properties, known as Parseval’s theorem and Plancherel’s theorem, assume

that g(·) is square integrable.

Theorem 10 (Parseval’s theorem). If g(θ) ∈ L2([0, 2π]) then

∞∑
j=−∞

|gj|2 =
1

2π

∫ 2π

0

|g(θ)|2dθ (4.5)

Theorem 11 (Plancherel’s theorem). Given a sequence of coefficients dj for j = −∞, . . . ,∞
satisfying:

∞∑
j=−∞

|dj|2 <∞ (4.6)

then there is a unique function g(·) ∈ L2([0, 2π)) such that gj = dj for j = −∞, . . . ,∞.
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If (some of) the above properties are satisfied, then the function g can often be well

approximated by truncating the Fourier series. These truncated Fourier series are called

trigonometric polynomials.

Definition 21. Let g(·) be a real valued, periodic, function integrable in [0, 2π]. Then the

sum

g∗k(θ) =
k∑

j=−k

gje
ijθ (4.7)

where the Fourier coefficients are calculated using (4.2) is called the trigonometric polynomial

approximation of g(θ) of order k.

Parseval’s theorem implies that the trigonometric polynomial is the optimal polynomial

approximation in the sense of the following theorem.

Theorem 12. The trigonometric polynomial g∗k(θ) is the unique, best, trigonometric poly-

nomial of degree k approximating g(θ), in the sense that, for any trigonometric polynomial

approximation of degree k, say R∗k(θ) 6= g∗k(θ), then

‖ g∗k(θ)− g(θ) ‖2<‖ R∗k(θ)− g(θ) ‖2

where the subscript 2 denotes the L2 norm.

4.1.2 Non-negative trigonometric polynomials: The Fejér-Riesz

theorem

In the statistical context of defining a trigonometric polynomial approximation of a density

function, then it is important to ensure that the approximating function is non-negative.

The following result due to Fejér (1915) and Riesz (1916) gives the conditions under which

a trigonometric polynomial is non-negative.

Theorem 13 (Fejér-Riesz Theorem). A trigonometric polynomial g∗k(θ) as in Definition 21

that assumes only non-negative real values for all real θ is expressible in the form

g∗k(θ) =
∣∣p∗k (eiθ)∣∣2

for some polynomial p∗k(z) =
∑k

j=0 pjz
j, where z, pj ∈ C for j = 0, . . . , k. In the non-singular

case, the polynomial can be chosen so that it is stable, i.e. that it has no roots in the unit
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disc, D = {z : |z| < 1} and then is unique except for a multiplicative constant of modulus

one.

The exact form of a non-negative trigonometric polynomial can be found using results in

e.g. Dimitrov (2002). There it is shown that non-negative trigonometric polynomials have

the form:

|p∗k(eiθ)|2 =
a0

2
+

k∑
j=1

(aj cos(jθ) + bj sin(jθ)) (4.8)

where:

a0 = 2
n∑
k=0

|pk|2 (4.9)

aj − ibj = 2

k−j∑
l=0

pj+lp̄l. (4.10)

4.1.3 Bivariate Fourier series and trigonometric polynomials

It is straightforward to generalize Definition 20 for a univariate Fourier series to the bivariate

case.

Definition 22. Let g(·, ·) be an integrable, periodic function of two variables and integrable

in [0, 2π]2, the infinite sum

g∗(θ1, θ2) =
∑
j,k∈Z

gjke
ijθ1eikθ2

is called the Fourier series of g(θ1, θ2), where

gjk =
1

4π2

∫ 2π

0

∫ 2π

0

g(θ1, θ2)e−ijθ1e−ikθ2dθ1dθ2

are the Fourier coefficients of g(θ1, θ2).

The properties of the bivariate Fourier series mirror those of the univariate series outlined

earlier.

Theorem 14. The set of functions ei(jθ1+kθ2), j, k ∈ N is an orthonormal basis for the space
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of square integrable functions L2[0, 2π]2∫ 2π

0

∫ 2π

0

ei(jθ1+kθ2)ei(lθ1+mθ2) dθ1dθ2 = 4π2δjk,lm (4.11)

where δ is the Kronecker delta

δjk,lm =

{
1 if j = l and k = m

0 otherwise
.

Theorem 15 ( Riemann-Lebesgue lemma). Under the hypothesis that g(θ1, θ2) is integrable,

the Fourier coefficients tend to zero, that is

lim
|j|,|k|→∞

gjk = 0, (4.12)

Under the assumption that g(·, ·) is square integrable, we also have bivariate versions of

Parseval’s theorem and Plancherel’s theorem.

Theorem 16 (Parseval’s theorem). If g(θ1, θ2) ∈ L2([0, 2π]2) then

∑
j,k∈Z

|gnm|2 =
1

4π2

∫ 2π

0

∫ 2π

0

|g(θ1, θ2)|2dθ1dθ2 (4.13)

Theorem 17 (Plancherel’s theorem). Given the sequence of coefficients djk for j, k ∈ Z
satisfying

∞∑
j=−∞

∞∑
k=−∞

|djk|2 <∞ (4.14)

then there is a unique function g(x, y) ∈ L2([0, 2π]2) such that gjk = djk for j = −∞, . . . ,∞
and k = −∞, . . . ,∞.

The truncated Fourier series give the trigonometric polynomials.

Definition 23. Let g(·, ·) be an integrable, periodic function of two variables and integrable

in [0, 2π]2, then the finite sum

g∗lm(θ1, θ2) =
l∑

j=−l

m∑
k=−m

gjke
ijθ1eikθ2
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is the trigonometric polynomial of order (l,m), where the coefficients, gjk are derived as in

Definition 22.

As in the univariate case, Parseval’s theorem implies that the trigonometric polynomials

are optimal in the sense of the following result.

Theorem 18. The trigonometric polynomial g∗jk(θ1, θ2) is the unique, best approximating,

trigonometric polynomial of degree (j, k) in the sense that, for any other trigonometric poly-

nomial of the same degree, say R∗jk(θ1, θ2) 6= g∗jk(θ1, θ2), we have

‖ g∗jk(θ1, θ2)− g(θ1, θ2) ‖2<‖ R∗j,k(θ1, θ2)− g(θ1, θ2) ‖2 (4.15)

where the subscript 2 denotes the L2 norm.

Various results for the convergence rate of trigonometric polynomials can be derived

which depend on the continuity properties of the underlying function. In particular, we have

the following theorem.

Theorem 19. If g(θ1, θ2) belongs to L2([0, 2π)2), then the bivariate trigonometric polynomial

of Definition 23 converges to g(θ1, θ2) in L2([0, 2π)2), that is,

lim
j,k→∞

‖ g∗jk(θ1, θ2)− g(θ1, θ2) ‖2→ 0. (4.16)

4.1.4 The two dimensional Fejér-Riesz theorem

In this section we show the conditions required for a bivariate trigonometric polynomial to

be positive, see e.g. Geronimo et al (2004) for further details.

Generalizing Theorem 13, we might expect that a positive trigonometric polynomial,

g∗jk(θ1, θ2) can be expressed as

g∗jk(θ1, θ2) =
∣∣p∗jk (eiθ1 , eiθ2)∣∣2

where

p∗jk(θ1, θ2) =

j∑
l=0

k∑
m=0

plme
ilθ1eimθ2

is a stable polynomial. However, this is not in general the case and further restrictions are

necessary to provide a non-negative polynomial. The following lemma, Theorem 1.1.1 in

Geronimo et al (2004) is needed for the main theorem.
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Lemma 1 (Geronimo and Woerdeman, 2004). Assume that we are given complex numbers

clm for l = 0, . . . , j and m = 0, . . . , k. There exists a stable polynomial with no roots in D2,

p∗(z, w) =

j∑
l=0

k∑
m=0

plmz
lwm for z, w ∈ C

with p00 > 0 and its spectral density function

h(z, w) =

(
p∗(z, w)p∗

(
1

z̄
,

1

w̄

))−1

has Fourier coefficients clm for l = 0, . . . , j and m = 0, . . . , k if and only if there exist complex

numbers clm for (l,m) ∈ {1, . . . , j}×{−k, . . . ,−1} such that the (j+1)(k+1)×(j+1)(k+1)

doubly indexed Toeplitz matrix

Γ =


C0 · · · C−j
...

. . .
...

Cj · · · C0

 ,

where

Cl =


cl0 · · · cl,−k
...

. . .
...

clk · · · cl0

 for l = −j, . . . , j

and c−l,−m = c̄lm has the following two properties:

1. Γ is positive definite.

2. The (j + 1)k × (j + 1)k submatrix of Γ obtained by removing scalar rows 1 + l(k + 1)

for l = 0, . . . , j and scalar columns 1, 2, . . . k + 1 has rank jk.

In this case one finds the column vector

(p2
00 p00p01 · · · p00p0k p00p10 · · · p00p20 · · · · · · p00pjk)

T

as the first column of the inverse of Γ.

The following result, Theorem 1.1.3 in Geronimo et al (2004), shows when the Fejér Reisz

theorem can be generalized to the two dimensional case.
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Theorem 20 (Geronimo and Woerdeman, 2004). Let g∗jk(θ1, θ2) be a positive, bivariate

trigonometric polynomial on [0, 2π)2 given by

g∗jk(θ1, θ2) =

j∑
l=−j

k∑
m=−k

glme
ilθ1eimθ2 . (4.17)

There exists a stable polynomial p∗jk
(
eiθ1 , eiθ2

)
(with no roots in D2) such that

g∗jk(θ1, θ2) = |p∗jk
(
eiθ1 , eiθ2

)
|2, (4.18)

if and only if the matrix Γ, as in Theorem 1 constructed from the Fourier coefficients, clm of

the reciprocal of g∗jk satisfies condition 2 of Lemma 1. In that case, the polynomial is unique

up to multiplication with a complex number of modulus 1.

Finally, we need to represent the coefficients of the bivariate trigonometric polynomial in

terms of the coefficients of the stable polynomial p∗jk
(
eiθ1 , eiθ2

)
by expanding (4.18). Thus,

we have:

|p∗jk(eiθ1 , eiθ2)|2 = p∗jk(e
iθ1 , eiθ2)p∗jk(e

iθ1 , eiθ2) = p∗jk(e
iθ1 , eiθ2)p∗jk(e

−iθ1 , e−iθ2))

=

j∑
l1=0

k∑
m1=0

pl1m1e
il1θ1eim1θ2

j∑
l2=0

k∑
m2=0

pl2m2
e−il2θ1e−im2θ2

=

j∑
l1=0

k∑
m1=0

j∑
l2=0

k∑
m2=0

pl1m1pl2m2
ei[(l1−l2)θ1+(m1−m2)θ2]

Now writing g∗jk(θ1, θ2) = |p∗jk(eiθ1 , eiθ2)|2, we have:

g∗jk(θ1, θ2) = a00 +

j∑
l=1

(al0 cos(lθ1) + bl0 sin(lθ1)) +
k∑

m=1

(a0m cos(mθ2) + b0m sin(mθ2)) +

j∑
l=1

k∑
m=1

(alm cos(lθ1 +mθ2) + blm sin(lθ1 +mθ2)) + (4.19)

(clm cos(lθ1 −mθ2) + dlm sin(lθ1 −mθ2))
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where

a00 =

j∑
l=0

k∑
m=0

plmplm =

j∑
l=0

k∑
m=0

|plm|2 (4.20)

al0 − ibl0 = 2

j−l∑
ϕ=0

k∑
ψ=0

pϕ+l,ωpϕ,ψ (4.21)

a0m − ib0m = 2

j∑
ϕ=0

k−m∑
ψ=0

pϕ,ψ+mpϕ,ψ (4.22)

alm − iblm = 2

j−l∑
ϕ=0

k−m∑
ψ=0

pl+ϕ,m+ψpϕ,ψ (4.23)

clm − idlm = 2

j−l∑
ϕ=0

k∑
ψ=m

pl+ϕ,ψ−mpϕ,ψ (4.24)

Finally, we show how to compute the complex coefficients of the bivariate trigonometric

polynomial in a easy way defining the stable polynomial p∗jk(·, ·) in matrix form.

Let P be a double indexed Toeplitz matrix given by

P =


C0 0 · · · 0

C1 C0 · · · 0
...

...
. . .

...

Cn Cn−1 · · · C0


where

Cl =


pl,0 0 · · · 0

pl,1 pl,0 · · · 0
...

...
. . .

...

pl,k pl,k−1 · · · pl,0

 for l = 1, . . . , j,

where pl,m are the coefficients of the stable polynomial. Observe that the first column of P

has the same lexicographic ordering as the stable polynomial p∗jk(z, w), see e.g. Geromimo

et al (2004).

Then, if we compute S = P̄TP, we obtain that the first column of S are the complex

coefficients of the bivariate trigonometric polynomial with the same lexicographic ordering

and the coefficients (ei(lz−mw)) are the l’th element of the first row of the m’th block, that is
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the ((m+ 1)j + 1, k + 1)’th element of S.

4.1.5 Fourier series on the sphere

Let g(θ, φ) be a continuous function defined on the surface of the unit sphere where 0 ≤ θ <

2π is the longitudinal angle and 0 ≤ φ < π is the colatitude. Then, we could try to use

a direct Fourier series expansion of g, but it is known that this can exhibit problems such

as the Gibbs phenomenon at the poles and lack of convergence see e.g. Boer et al (1975).

Therefore, following Merilees (1973) and Boer et al (1975), an alternative approach can be

based on transforming the sphere into a torus.

Thus, consider (θ, φ) ∈ [0, 2π)2 and define the transformation

g̃(θ, φ) =

{
g(θ, φ) φ ∈ [0, π)

g(θ + π, 2π − φ) φ ∈ [π, 2π)
(4.25)

Clearly, g̃ is continuous and periodic with period 2π in both θ and φ and therefore, g̃ can be

represented using a bivariate Fourier series,

g̃∗(θ, φ) =
∑
j,k∈Z

g̃jke
ijθeikφ

where

g̃jk =
1

4π2

∫ 2π

0

∫ 2π

0

g̃(θ, φ)e−ijθe−ikφ dθ dφ

as in Definition 22. Note that the imposed symmetry implies the following conditions on the

coefficients:

g̃j−k = (−1)j g̃jk (4.26)

g̃−jk = (−1)j ¯̃gjk (4.27)

g̃−j−k = ¯̃gjk (4.28)

Then, we can apply the results of Section 4.1.4 incorporating the symmetries in (4.26)-

(4.28) to derive the form of the trigonometric polynomial approximation to g̃. Thus, consider

the expression g̃∗jk(θ, φ) =
∣∣p∗jk(θ, φ)

∣∣2. We have:
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|p∗jk(eiθ, eiφ)|2 =

j∑
l=0

k∑
m=0

plmplm +
k∑

m=1

((
j∑
l=0

k−m∑
ψ=0

pl,m+ψpl,ψ

)
eiωφ +

(
j∑
l=0

k−m∑
ψ=0

pl,m+ψpl,ψ

)
e−iωφ

)

+

j∑
l=1

((
j−l∑
ϕ=0

k∑
m=0

pϕ+l,mpϕ,m

)
eiνθ +

(
j−l∑
ϕ=0

k∑
m=0

pϕ+l,mpϕ,m

)
e−iθν

)

+

j∑
l=1

k∑
m=1

((
j−l∑
ϕ=0

k−m∑
ψ=0

pϕ+l,m+ψpϕ,ψ

)
ei(νθ+ωφ) +

(
k−m∑
ψ=0

j−l∑
ϕ=0

pϕ+l,m+ψpϕ,ψ

)
e−i(νθ+ωφ)

)

+

j∑
l=1

k∑
m=1

((
j−l∑
ϕ=0

k∑
ψ=m

pϕ+l,ψ−mpϕ,ψ

)
ei(νθ−ωφ) +

(
k∑

ψ=m

j−l∑
ϕ=0

pϕ+l,ψ−mpϕ,ψ

)
e−i(νθ−ωφ)

)

which can be shown to be reducible to the real form:

|p∗jk(eiθ, eiφ)|2 = a00 +

j∑
l=1

(al0 cos(lθ) + bl0 sin(lθ)) +
k∑

m=1

a0m cos(mφ) (4.29)

+

j∑
l=2,l even

k∑
m=1

(alm cos(lθ) cos(mφ) + blm sin(lθ) cos(mφ)) (4.30)

+

j∑
l=1,l odd

k∑
m=1

(alm cos(lθ) sin(mφ) + blm sin(lθ) sin(mφ)) (4.31)

where

a00 =

j∑
l=0

k∑
m=0

plmplm =

j∑
l=0

k∑
m=0

|plm|2 (4.32)

al0 − ibl0 = 2

j−l∑
ϕ=0

k∑
m=0

pl+ϕ,mpϕ,m (4.33)

a0m − ib0m = 2

j∑
l=0

k−m∑
ψ=0

pl,m+ψpl,ψ (4.34)

alm − iblm = 4

j−l∑
ϕ=0

k−m∑
ψ=0

pl+ϕ,m+ψpϕ,ψ (4.35)

Finally, we can derive the trigonometric polynomial estimate of the original function,

g∗jk(θ, φ) as g∗jk(θ, φ) = g̃∗jk(θ, φ) for 0 ≤ θ < 2π and 0 ≤ φ < π. Given that the conditions of
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Theorem 1 are verified, the polynomial approximation is positive.

4.2 Distributions for directional variables based on pos-

itive trigonometric polynomials

In this section, we illustrate how the previous results may be used to construct densities

for directional data. Firstly, we briefly mention the univariate case which was considered

in Fernández Durán (2004) and then consider new models for circular-circular and spherical

data.

4.2.1 Univariate circular trigonometric polynomial distributions

Fernández Durán (2004) showed how to apply the Fejér-Riesz theorem to derive a valid

distribution for univariate, circular data.

Definition 24. A circular variable, Θ, has a circular distribution based on non-negative

trigonometric sums if it has density

f(θ|j, k,p) =
1

2π
+

k∑
j=1

aj cos(jθ) + bj sin(jθ) for θ ∈ [0, 2π),

where p = (p0, . . . , pk) and pj ∈ C for j = 0, . . . , k are such that

k∑
j=0

|pj|2 =
1

2π

ak − ibj = 2

k−j∑
l=0

pj+lp̄l

This distribution can be thought of as an alternative to the circular Bernstein polynomial

distribution studied in Chapter 2. Both models are based on approximating polynomials

and increasing the degree of these polynomials should provide a good approximation to a

continuous circular distribution. Further properties are given in Fernández Durán (2004).
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4.2.2 A circular-circular or toroidal distribution

Consider an unknown, strictly positive, continuous, circular-circular continuous density func-

tion f(θ1, θ2) defined on the bitorus, θ1, θ2 ∈ [0, 2π)2. Using the results of the previous sub-

section, this density function can be approximated by a bivariate trigonometric polynomial

which can be factored as the sum of squares of the absolute value of the stable polynomials

given in (4.19).

The first step is to normalize the bivariate trigonometric polynomial to have integral

value one. If we integrate (4.19) over the domain [0, 2π)2, we find∫ 2π

0

∫ 2π

0

|p∗nm(θ1, θ2)|2dθ1dθ2 = 4π2a00, (4.36)

this implies from (4.20) that a00 =
∑j

l=0

∑k
m=0 |plm|2 = 1

4π2 . Therefore, the resulting distri-

bution is the following.

Definition 25. Assume that we have a stable polynomial p∗jk(·, ·) satisfying condition 2 of

Lemma 1. Then, the associated circular-circular density function is:

f(θ1, θ2|j, k, p∗) =
1

4π2
+

j∑
l=1

(al0 cos(lθ1) + bl0 sin(lθ1))

+
k∑

m=1

(a0m cos(mθ2) + b0m sin(mθ2))

+

j∑
l=1

k∑
m=1

(alm cos(lθ1 +mθ2) + blm sin(lθ1 +mθ2))

+

j∑
l=1

k∑
m=1

(clm cos(lθ1 −mθ2) + dlm sin(lθ1 −mθ2))

where the coefficients satisfy the conditions (4.20)-(4.24).
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Trigonometric moments

It is easy to compute the trigonometric moments of this distribution. Given the orthogonality

properties of the terms of a Fourier series, we have:

E[cos(lθ1)] = 2π2al0 (4.37)

E[sin(lθ1)] = 2π2bl0 (4.38)

E[cos(mθ2)] = 2π2a0m (4.39)

E[sin(mθ2)] = 2π2b0m (4.40)

E[cos(lθ1) cos(mθ2)] = π2 (alm + clm) (4.41)

E[cos(lθ1) sin(mθ2)] = π2 (blm − dlm) (4.42)

E[sin(lθ1) cos(mθ2)] = π2 (blm + dlm) (4.43)

E[sin(lθ1) sin(mθ2)] = π2 (clm − alm) (4.44)

Model fitting

Let (θ11, θ21), . . . , (θ1n, θ2n) be a random sample from a circular-circular distribution. Then,

in order to fit a trigonometric polynomial density approximation, we can use a restricted

maximum likelihood estimation approach. Thus, first, we maximize the likelihood function,

p̂∗ = arg max
n∑
i=1

log f ∗jk(θ1i, θ2i|p∗) (4.45)

over the set of stable polynomials, p∗, subject to f ∗jk(θ1, θ2|p∗) > 0 for all (θ1, θ2) in [0, 2π)2.

In other words, we must verify in each iteration of the optimization algorithm (i.e. linear

search, sqp) that the movement direction in the set of stable polynomials generate a positive

trigonometric polynomial. We suggest using the uniform distribution (i.e. p00 = 1
2π

) as

starting point.

If the derived density approximation, f̂ ∗jk(θ1, θ2) is positive for all (θ1, θ2) in [0, 2π)2 then

this is clearly a global maximum given the uniqueness of the stable polynomial.

Goodness of fit and model choice

The most practical tool for goodness of fit testing is to apply a simple χ2 test. To do this,

we must select an origin and reversing the operations the toroidal distribution is expanded
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on a plane of size [0, 2π]2. Then, we select two orders, m1 and m2 and divide the [0, 2π]2

interval in m1 ×m2 equally sized cells and then, to do the test.

In order to select the order of the trigonometric polynomial to be applied, we suggest

starting with the trigonometric polynomial approximation of lowest order that is not rejected

using the goodness of fit test and then applying standard model choice criteria such as AIC

or BIC to see if higher order polynomials provide better fits. Another possibility is to use the

suggestions about the number of terms retained when the trigonometric polynomials have

been used for data defined on the real line, see Hart(1985) and Diggle et al (1986) to try to

find a good starting point.

4.2.3 Spherical distributions

The bivariate trigonometric polynomial outlined in Section 4.1.5 may be applied to derive

a density function directly. However, it seems more natural in this context to estimate the

function h, where

f(θ, φ) = h(θ, φ) sinφ.

This is the approach we shall take here.

First, we make the transformation X = cos Φ when dx = − sinφ dφ. As we have seen in

Section 1.2.3, the surface element of the sphere arises in natural form when this change of

variables is made. This transformation is used to construct maps using a cylinder tangent to

the equator and is known as the Lambert cylindrical equal area projection, see e.g. Snyder

(1997). Then we can define the function

H(θ, x) = h(θ, cosφ)

which takes values on [0, 2π) × (−1, 1]. Finally, we transform this function into a function

of a toroidal variable, (Θ, Y ) using (4.25) and defining

H̃(θ, y) =

{
H(θ, y) y ∈ (−1, 1]

H(θ + π, 2− y) y ∈ (1, 3]

for θ ∈ [0, 2π) and y ∈ (−1, 3]. Finally, with suitable rescaling, a positive, trigonometric

polynomial expansion of H̃ as outlined in Section 4.1.5 can be used to generate a spherical
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density function. Thus, we obtain:

H̃(θ, y) =
1

4π
+

j∑
l=1

(al0 cos(lθ) + bl0 sin(lθ)) +
k∑

m=1

a0m cos(myπ/2)

+

j∑
l=2,leven

k∑
m=1

(alm cos(lθ) cos(myπ/2) + blm sin(lθ) cos(myπ/2))

+

j∑
l=1,lodd

k∑
m=1

(alm cos(lθ) sin(myπ/2) + blm sin(lθ) sin(myπ/2))

where alm and blm for l = 0, . . . , j and m = 0, . . . , k are given by (4.32)-(4.35).

As we can see in the previous set of equations, the functional form of the extension to

the torus has two spheres projected onto the cylinder. Applying the previous result to the

sphere, we must take a primary half (the [0, 2π)× [−1, 1) interval) and undo the change of

variables to obtain a density function on the sphere given by:

f(θ, φ|p) = ĥ(θ, φ) sin(φ)

= sin(φ)

(
1

4π
+

j∑
l=1

(al0 cos(lθ) + bl0 sin(lθ)) +
k∑

m=1

a0m cos(mφ)

+

j∑
l=2,leven

k∑
m=1

(alm cos(lθ) cos(mφ) + blm sin(lθ) cos(mφ))

+

j∑
l=1,lodd

k∑
m=1

(alm cos(lθ) sin(lφ) + blm sin(lθ) sin(mφ))

)

where plm ∈ C for l = 0, . . . , j and m = 0, . . . , k where aij and bij for l = 0, . . . , j and

m = 0, . . . , k are given by (4.32)-(4.35).

Estimation

Let (θ1, φ1, ..., θn, φn) be a random sample from a unknown spherical distribution Θ. The

problem is to find a stable polynomial in order to construct the probability density function

f̂jk(θ, φ) using the procedure described above such that the probability density element of
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the resulting spherical distribution maximize the log-likelihood of the sample.

max
n∑
j=1

log f̂(θj, φj) (4.46)

Observe that we are estimating the coefficients which maximize the log-likelihood func-

tion. Then, in each step of the optimization process we have to compute the log-likelihood on

the primary region and and verify that h is positive or we have to compute the log-likelihood

on the sphere and verify that the probability density function is positive.

As we commented previously, the stable polynomial is unique if a00 > 0. Then, the final

step is to verify that (4.32) is satisfied which ensures that the integral of the probability

density distribution is 1.

From a practical point of view, the torus version gives us an extra characteristic, multi-

plying the size of data by 2. Let us consider a small data set, say 100 observations. When

we mirror the sphere, we have reflected the data and we have the double of observations,

200. Then we have more degrees of freedom given by the symmetries of the extended region

to fit the model given that the number of parameters to be estimated are the same in both

the model based on original region and the model based on the extended region.

We must observe that we are using an approximating polynomial. So, for large enough

data sets we can approximate the underlying distribution independently of the properties of

the distribution, i.e. rotational symmetry, bimodality, etc.

Similar to the toroidal distribution, there is no a general goodness of fit test for verifying

if the estimated distribution fits well the data. However, one sensible approach as in Mardia

et al (1999) is to use Lambert’s projection to divide the sphere into regions of equal area

and then apply a standard χ2 goodness of fit test.

4.3 Illustrations

In this section we illustrate the circular-circular and spherical models described in this chap-

ter with two real data sets.

4.3.1 Circular circular data

Here, we study the data on wind directions at two nearby buoys previously analyzed in

Section 3.5.1. Bivariate trigonometric polynomial density estimators of various orders were
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considered. In particular, Figure 4.1 shows the fitted density estimates based on using

trigonometric polynomials of degrees (2,2) and (4,4) in the first row and (6,6) and (8,8) in

the second row respectively.

Figure 4.1: Estimated densities f(θ1, θ2)

As with the Bernstein polynomial based approaches, there is a tradeoff between smooth-

ness and performance. When the degree of the trigonometric polynomial is increased, there

is a tendency to overfit the data. In this case we have selected the bivariate trigonometric

polynomial density of orders (8,8) as optimal model.

We also carried out chi-squared goodness of fit tests of the previous models by partitioning

the domain into 14× 14 and 15× 15 equally sized regions. In all 4 cases, the null hypotheses

that the sampled data were generated from the proposed distributions were not rejected at

a 5% confidence level.

In order to compare the trigonometric polynomial density fit with the copula based



88 CHAPTER 4. DISTRIBUTIONS BASED ON FOURIER SERIES

Bernstein polynomial density fit studied in Chapter 3, Figure 4.2 shows the circular-circular

distribution obtained with both approaches; the empirical Bernstein copula (first row) and

the optimal bivariate trigonometric polynomial of degrees (8,8) (second row). Both models

give similar fits to the data and appear to capture the underlying distribution quite well.

As we can observe in the Figure 4.2 the bivariate trigonometric polynomial density is

smoother than the circular-circular density using the empirical Bernstein copula. This is

due that the selected model in the bivariate trigonometric polynomial density of order (8,8)

has 162 parameters and each circular Bernstein polynomial density has a similar number

of parameters when we add the number of weight of the copula we have a proportion of

estimated parameters of approximately 1:8.

Figure 4.2: Densities of the circular-circular model using copulas and bivariate trigonometric
polynomials
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4.3.2 Spherical data

Here, we analyze a data set presented in Example 6.4 of Fisher et al (1987). The data

correspond to 221 orientations of joint planes in Triassic sandstone at Wanganderry Lookout,

New South Wales. Figure 4.3 shows the data defined on the sphere from four different

viewpoints. As we can see in the figure there are several points where the data are more

concentrated.

Figure 4.3: Dot plot of the data)

We applied the trigonometric polynomial based estimator of the spherical distribution

using polynomials of various orders. We carried out goodness of fit tests on the models

presented below and we considered only those models which were not rejected at a 5%

significance level

Model selection was carried out using the AIC. Under this criterion, the optimal model
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is rotationally symmetric as in Figure 4.4.

Figure 4.4: Rotationally symmetric spherical density approximation

As we can observe in Fisher et al (1987) the model of reference is a girdle form distribu-

tion which is rotationally symmetric and the number of parameters grow exponentially. This

implies that the selected order of longitude is zero. When we increase this order we can cap-

ture the points on the sphere which are clustered and visualize the position the observations

near the pole as can be seen in Figure 4.3.2.

4.4 Conclusions and extensions

Here, we have shown how bivariate Fourier series can be used to construct two new distri-

butions defined on the surface of the bitorus, that is a circular-circular density model, and
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Figure 4.5: Estimated density at 4 degrees longitude and 10 degrees latitude.

on the sphere. These distributions are based on the sum of squares of the absolute value of

stable polynomials. Our approach has been illustrated with real data examples.

Typically spherical data are modelled using spherical harmonics, see Müller (1966).

Therefore, it would also be interesting to examine the possibilities of using positive spherical

harmonic formulae to approximate density functions on the sphere.

Following the formulation of meteorological models, it would be interesting to extend

these models to temporal data. An example, given in Geronimo et al (2004) is the con-

struction of bivariate autoregressive filters using stable polynomials. Then, we can use a

factorization of multivariate, positive, Laurent polynomials (Geronimo et al 2006) where

three dimensions are used. We might factorize with respect to time and the other two

dimensions to give us the distribution.
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[47] Langevin P. (1907) Magnétisme et théorie des électrons. Ann. Chim. Phys., 5, 71–127.

[48] Leblanc, A. (2009). Chung-Smirnov property for Bernstein estimators of distribution

functions. J. Nonparametr. Stat., 21, 133–142.

[49] Leblanc, A. (2010). A bias-reduced approach to density estimation using Bernstein

polynomials. J. Nonparametr. Stat., 22, 459–475.

[50] Lorentz G.G. (1986). Bernstein polynomials. New York: Chelsea Publishing Company.

[51] Mardia, K.V. (1972). Statistics of Directional Data. New York: Academic Press.

[52] Mardia, K.V. (1975). Statistics of directional data (with discussion). J. R. Stat. Soc. B,

37, 349–393.

[53] Mardia, K.V. and Jupp, P.E. (1999). Directional Statistics. Chichester: Wiley.

[54] Mardia, K.V. and Sutton, T.W. (1975). On the modes of a mixture of two von Mises

distributions. Biometrika, 62, 699–701.



BIBLIOGRAPHY 97

[55] Mardia, K.V. and Sutton, T.W. (1978). A model for cylindrical variables with applica-

tions. J. R. Stat. Soc. B, 40, 229–233.

[56] McLachlan J. and Peel, D. (2000) Finite Mixture Models. New York: Wiley.

[57] Merilees, P.E. (1973). The pseudo-spectral approximation applied to the shallow water

equations on a sphere. Atmosphere, 11, 13–20.

[58] Mooney A., Helms P.J. and Jolliffe I.T. (2003). Fitting mixtures of von Mises distribu-

tions: a case study involving sudden infant death syndrome. Comput. Stat. Data An.,

41, 505–513.

[59] Müller, C. (1966). Spherical Harmonics, Berlin: Springer.

[60] Nelsen R.B. (1999). An Introduction to Copulas. Berlin: Springer.

[61] Orszag, S.A. (1974). Fourier series on spheres. Mon. Weather Rev., 102, 56–75.

[62] Petrone, S. (1999a). Random Bernstein polynomials. Scand. J. Stat., 26, 373–393.

[63] Petrone, S. (1999b). Bayesian density estimation using random Bernstein polynomials.

Can. J. Stat., 27, 105–126.

[64] Petrone, S. and Wassermann, L. (2002). Consistency of Bernstein polynomial posteriors.

J. R. Stat. Soc. B, 64, 79–100.

[65] Pewsey A. (2000) The wrapped skew-normal distribution on the circle. Commun. Stat.,

Theor. M., 29, 2459–2472.

[66] Pewsey A., Lewis, T and Jones M. C. (2007). The wrapped t family of circular distri-

butions. Aust. NZ. J. Stat., 49, 79–91.

[67] Pfeifer. D., Straßburger, D. and Philipps, J. (2009) Modelling and simulation

of dependence structures in nonlife insurance with Bernstein copulas. Paper pre-

sented at the 39th International ASTIN Colloquium, Helsinki. Available from

http://www.staff.uni-oldenburg.de/dietmar.pfeifer/PfStPh09rev4.pdf.

[68] Riesz, F. M. (1916). Uber die Randwerte einer analytischen Funktion, Quatrieme Con-

gres des math. scandinaves, 27–44.



98 BIBLIOGRAPHY

[69] Rivest, L.P.(1982). Some statistical methods for bivariate circular data. J. R. Stat. Soc.

B, 44, 81–90.

[70] Rudin, W. (1963). The extension problem for positive-definite functions. Illinois J.

Math., 7, 532–539.

[71] Sancetta, A. and Satchell, S. (2004). The Bernstein copula and its applications to model-

ing and approximating of multivariate distributions. Econometric Theory, 20, 535–562.

[72] Schmidt, W. (1917). Statistiche Methoden beim Gefügestudium Kristalliner Schiefer.
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