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ABSTRACT 

Heart failure is a leading cause of death nowadays. A high proportion of patients with heart failure 

experience asynchronous myocardial contraction. Cardiac resynchronization therapy is intended to re-

establish the synchrony in the motion of the ventricles. However, about 40% of the patients do not respond 

favorable to this therapy for reasons that are not fully understood. A better knowledge of the ventricular 

flow under controlled synchrony condition is needed to understand the benefits of cardiac resynchronization 

therapy. 

The flow of blood generated by the heart is the result of synchronized electromechanical events and fluid 

dynamics processes. During diastole, filling period of the cardiac cycle, the fluid dynamics of the left ventricle 

are governed by a large vortex ring that contributes to an efficient channeling of the blood coming from the 

mitral valve and prevents blood stagnation, helping to wash out the blood mass coming into the left 

ventricle. The ultimate outcome expected from this research is to understand the dependence of the time 

evolution of this vortex on the duration of the left ventricle filling phases, and to determine how this 

dependence affects the blood flow transport in the left ventricle and global ventricular function.  

This work is part of an interdisciplinary project involving experts from different fields, ranging from 

cardiology, echocardiography and magnetic resonance imaging, to fluid dynamics, computational mechanics 

and image processing. The specific aim of this thesis is to develop a numerical code in FORTRAN95 to 

simulate the filling process of the left ventricle of the heart in order to study ventricular hemodynamic 

before and after the implantation of biventricular pacers.  

From the numerical point of view, a key factor of the flow that needs to be modeled is the existence of 

moving boundaries. The immersed boundary method implemented here allows us to deal with moving 

geometries in Cartesian structured grids, thereby requiring significantly less computational time than 

competing methods without sacrificing accuracy. A 2D flow solver based on finite differences in a standard 

geometry has been developed. The idea is to start with a simple problem where the complexity can be 

increased step by step. Computationally efficient algorithms have been used to integrate in time the Navier-

Stokes equations and to solve the linear system of equations resulting from the spatiotemporal 

discretization. The capabilities and limitations of the numerical code have been illustrated by applying the 

code to canonical flow problems. To reach the final aim of simulating numerically the filling process of the 

left ventricle of the heart, the present code should be extended to three dimensions, refined and parallelized 

to allow for multi-processors simulations. 
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RESUMEN 

Las enfermedades cardiovasculares son una de las principales causas de muerte en el mundo actual. El latido 

asíncrono del ventrículo izquierdo y derecho del corazón es el responsable de una proporción importante de 

los fallos cardiacos. La Terapia de Resincronización Cardíaca mejora la coordinación de las contracciones del 

corazón mediante marcapasos que estimulan ambos ventrículos (marcapasos biventriculares) para que se 

contraigan de manera simultánea. En torno al 40% de los pacientes no responden adecuadamente a esta 

terapia. Por ello es muy importante entender mejor cómo es el transporte de sangre en el corazón.   

El flujo que se produce en el corazón es el resultado de la sincronización de una serie de eventos 

electromecánicos y procesos fluidodinámicos. Durante la diástole, periodo del ciclo cardiaco durante el cual 

se produce el llenado del corazón, la fluidodinámica del ventrículo izquierdo está gobernada por un vórtice 

que contribuye a canalizar la sangre que viene de la válvula mitral y evita el estancamiento de la misma en el 

ventrículo. El propósito final de esta investigación es entender la dependencia de la evolución temporal de 

este vórtice durante el periodo de llenado del ventrículo y determinar cómo afecta al transporte de flujo 

sanguíneo en el ventrículo izquierdo y a la función ventricular global.  

El trabajo que aquí se presenta es parte de un proyecto interdisciplinar en el que están involucrados 

expertos de diferentes campos, abarcando desde cardiología y eco-cardiografía hasta fluidodinámica, 

mecánica computacional y procesado de imágenes. El objetivo particular de este trabajo está dentro del 

desarrollo de un código numérico en FORTRAN95 para simular el proceso de llenado del ventrículo izquierdo 

del corazón que ayudará a entender mejor los cambios en la dinámica ventricular antes y después de la 

implantación de marcapasos biventriculares. Este proyecto da los primeros pasos hacia dicho objetivo. 

Desde el punto de vista numérico, el primer asunto a superar es la existencia de fronteras que se mueven. El 

método de las fronteras embebidas usado aquí, permite tratar dicha geometría en mallas estructuras que no 

se adaptan al cuerpo requiriendo menor coste computacional que otros métodos. Se ha desarrollado un 

modelo para resolver un flujo bidimensional para una geometría estándar. La idea es comenzar con un 

problema sencillo al que se pueden ir incorporando las complejidades inherentes al problema a modelar. Se 

ha utilizado un algoritmo computacionalmente eficiente para integrar en el tiempo las ecuaciones de Navier-

Stokes y para resolver el sistema lineal de ecuaciones que resulta de la discretización espaciotemporal. Las 

capacidades y limitaciones del código numérico se ilustran por medio de una serie de ejemplos. Para 

alcanzar el objetivo final de simular numéricamente el llenado del ventrículo izquierdo del corazón, el código 

desarrollado tiene que ser extendido a tres dimensiones, refinado y paralelizado para permitir simulaciones 

con procesadores múltiples.    
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Chapter 1 

1 Introduction and aims 

Nowadays, heart failure is a challenging health problem in developed countries. In about half of the patients, 

heart failure is caused by impaired ventricular filling. Experimental studies have described complex flow 

patterns inside the human left ventricle suggesting that a large vortex ring that forms during early diastole 

contributes decisively to the overall cardiac function. This chapter is an introduction to the topic, describing 

the main features and the significance of the problem. This work is a part of a broader interdisciplinary 

project that involves experts from different fields, ranging from cardiology, echocardiography and magnetic 

resonance imaging, to fluid dynamics, computational mechanics and image processing. The general 

approach of the project is described, emphasizing on the particular aims of this particular work. At the end 

of the chapter, the structure of the work is presented. 

1.1  Introduction 
Heart disease remains a leading cause of death worldwide and has become a challenging health problem in 

developed countries. In Spain alone, more than 7 hundred thousand people suffer symptomatic heart failure 

(HF) (1). An aging population and improved survival rates of other heart diseases are associated with an 

increase of the HF incidence in the last decade (2, 3).  Cardiovascular diseases are also very costly. According 

to a study developed by researchers in the University of Oxford and published in the “European Heart 

Journal”, only in Spain the costs ascend to 7.000 million Euros per year. In Europe, about 181.000 million are 

spent on to treat cardiovascular diseases every year. 

Diastolic heart failure is caused by impaired ventricular filling and is present in about half of all heart failure 

patients (4) (5). Studies have shown that heart failure patients who do not receive effective treatments to 
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improve heart function have a poor quality of life and a high risk of death. The mortality rate for these 

individuals is high with 74 percent passing away within five years (4). Thus, better knowledge of the 

pathology and time evolution of the HF syndrome, as well as new diagnosis tools, are required. 

The dynamics of the cardiac left ventricle (LV) during diastolic filling may play a critical role in dictating 

overall cardiac health. The inherent complexity of LV diastole, in its electrical, muscular and hemodynamic 

processes, has prevented the development of tools to accurately predict and diagnose heart failure at early 

stages when corrective measures are most effective. The flow patterns inside the human LV are complex. 

Special attention should be taken to a large vortex ring that develops during early diastole and causes the 

blood inside the LV to swirl constantly until it is ejected towards the aorta. The LV vortex ring contributes to 

an efficient channeling of the blood transit coming from the mitral valve (6) and facilitates that the blood 

mass coming into the LV during one beat is washed out completely after a few beats (7), which prevents 

intraventricular blood stagnation.  

 

Figure 1.1 Vortex ring formation. Streamlines pass from the left atrium through the open mitral valve to the left ventricle, with 

asymmetric recirculation (curved arrow) round the anterior leaflet of the mitral valve. (8) 

The coordination between the timing of the LV vortex and the timing of the electromechanical events of the 

heart is an important factor that may influence the efficiency of blood flow transport through the LV (9). The 

LV vortex can only contribute to channeling blood transit towards the aorta if it is synchronized with 

myocardial relaxation and contraction. Time evolution of the LV vortex is influenced by both its intrinsic fluid 

dynamics(10), and interactions with the myocardium and valves through pressure forces(11). The 

overarching of this research is to understand the dependence of the time evolution of the LV vortex on the 

duration of the LV filling phases, and to determine how this dependence affects blood flow transport in the 

LV and global ventricular function.  

The outcome of this project could have a great impact in cardiac resynchronization therapy (CRT) by 

providing a tool to establish an individualized and optimized programming of biventricular pacers. 

CRT has shown to reduce the mortality and morbidity and improve LV function in patients with HV and LV 

systolic dysfunction (12-15). However, up to 35-40% of patients undergoing CRT do not respond favorably. 

The reasons for this are not completely known but may include inadequate criteria for patient selection and 
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suboptimal programming of the device after implantation and during follow-up (16-18). Achieving a 

favorable outcome from CRT may be dependent on proper atrioventricular (AV) and intraventricular (VV) 

delays programming, which enable the LV contraction to take place under the most appropriate preload 

conditions. Optimization of the AV and VV delays has been shown to produce improvements in cardiac 

output and it appears necessary in up to 55% of patients undergoing CRT during follow up (19-21). A better 

understanding of how blood is transported within the LV may help in the development of an efficient 

method for optimization and may increase the range of patients who can benefit from it. 

1.2  Approach 
This work is part of an interdisciplinary project that combines experimental and clinical studies in animal 

models and human volunteers with numerical simulation tools. 

The clinical side of this project is being carried out in the Non-invasive Cardiology Unit at the Hospital 

Gregorio Marañón in Madrid (Drs. Javier Bermejo and Raquel Yotti). It involves the development and 

validation of a novel noninvasive modality to display time-resolved flow maps in the LV (Aim1), and the 

application of this modality to a group of patients undergoing CRT in order to evaluate the effect of 

biventricular pacing on the dynamics of LV vortices and blood transport in the LV, and on echocardiographic 

indices of global LV function. 

The specific task addressed by the present work is the development of a numerical code which allows for 

simulating the filling flow in the left ventricle. 

 

Overarching: Understand the dependence of the time evolution of the LV vortex on the duration of the LV 

filling phases, and to determine how this dependence affects blood flow transport in the LV and global 

ventricular function 

Aim 1: To develop a novel noninvasive modalities 

to display time resolved flow maps in LV 

 

Aim 2: To evaluate the effect of biventricular pacing on 

the properties of the LV vortex and echocardiographic 

indices of global LV function in patients undergoing CRT 

2.a) Obtain conventional 

echocardiographic image 

sequences in non-ischemic 

DCM patients undergoing 

CTR and analyze them to 

evaluate the flow 

parameters for different 

pacing programmings. 

2.b) Numerical simulation 

to evaluate the effect of 

the different pacing 

programmings on the 

properties of the LV 

vortex, on blood flow 

transport in the LV and on 

echocardiographic indices 

of global function. 
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1.3  Objectives 
The main objective of this work is to develop a numerical code to simulate the filling process el the left 

ventricle. This code is intended to provide a tool to understand better the changes in ventricular 

hemodynamic after the implantation of biventricular pacers in patients undergoing CRT.  

In computational fluid dynamics, the primary issues are accuracy, computational efficiency, and, particularly 

in our case, the handling of complex geometry and moving boundaries. The immersed boundary method 

allows for dealing with such geometry in Cartesian structured grid, thereby requiring significantly less 

computational time than competing methods without sacrificing accuracy. Keeping always on mind the 

presence of immersed boundaries, this work implements a numerical approach to the problem using 

FORTRAN95. The specific tasks that were performed in the present thesis were: 

- To develop a 2D flow solver based on finite differences in a standard geometry (cavity) for validation 

purposes. 

- To design a computationally efficient method to solve the linear system of equations resulting from 

the spatiotemporal discretization. 

- Development of an interpolation technique to impose the required conditions on the immersed 

boundaries in fixed geometries. 

- To develop an efficient time integration procedure consisting of a fractional-step method in 

combination a low-storage semi-implicit Runge-Kutta method, and to optimize this technique for 

immersed boundaries. 

- To validate the code performance under certain conditions. Some examples will be presented to 

show the capabilities and limitations of the developed model. 

In order to achieve the final aim of simulating numerically the filling process of the left ventricle of the heart, 

future work should address the following tasks: 

- To refine the immersed boundary method for moving geometries. 

- To extend the implementation to three dimensions for axisymmetric geometries. 

- To develop a Multigrid Method to solve the system of equations. 

- To parallelize the code to allow for multi-processor simulations. 

Further details about future directions will be presented in section 6.2 at the end of the project. 

1.4  Content 
This work is divided in six chapters, going from general knowledge about cardiology to the particularities and 

numerical specifications of our problem.  

The first chapter presents a general description and motivation of the project. A brief introduction shows the 

importance of the problem to deal with and its practical application. The general approach to face the 

problem is presented, and the particular aim of this project is placed in this general approach. Last but not 

least, the particular objectives to be reached are defined. 
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Chapter 2 presents a qualitative description of the cardiovascular system. Basic features of the heart, blood 

and vessels need to be known in order to understand the problem. The heart requires special attention from 

its mechanical and electrical point of view because it is a key aspect on the global understanding of the 

problem. 

Chapter 3 focuses its attention in the diastole, period of the cardiac cycle that corresponds with the 

ventricular filling. The relevance of diastole and its relation with heart failure is pointed out. As in a high 

percentage of the heart failure patients the problem arises from an inappropriate synchronization of the two 

ventricles that compose the heart, the attention is concentrated in cardiac resynchronization therapy. It is 

also important to understand the hemodynamic of left ventricle filling and to know the available techniques 

that are commonly used for describing the filling process of the left ventricle. 

Chapter 4 is the first step to develop a numerical model able to simulate the blood flow transport in the left 

ventricle. A set of simplifications are carry out and justified to define the fluid dynamic model. As result, the 

domain and boundary conditions are specified.  

Chapter 5 is the core of the project and works on the development of the numerical model. The problem, 

reduced to a set of differential equations, is discretized and solved on a staggered grid following a fractional-

step method in combination a low-storage semi-implicit Runge-Kutta method. A computationally efficient 

method to solve the linear system of equations is designed and compared with other methods. Finally, the 

code is validated analyzing its solution under different conditions. First, we study a cavity flow in a square 

domain where the upper boundary is moving on the horizontal direction. The second case compares the 

analytical solution of a well-known problem with the one provided by our numerical model. Last case studies 

the response of the code to the existence of immersed boundaries. 

In the last chapter, Chapter 6, the obtained conclusions are summarized and future researching lines are 

proposed. 
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Chapter 2 

2  The cardiovascular system 

The development of a numerical model to describe the filling process of the left ventricle of the heart cannot 

be performed without understanding the basic features of the cardiovascular system. That is why this 

chapter presents a qualitative description of the circulatory system and its three functional parts: the heart, 

the blood and the vessels. As we are interested in the filling of the ventricle, we will focus on the heart, the 

responsible of pumping the blood through the system. Afterwards, we will briefly describe blood and 

vessels. 

2.1  Circulation 
The circulation is an evolutionary consequence of body size. In large organisms, diffusion is not adequate to 

supply nutrients to centrally located cells, nor to eliminate waste products. The primary role of the 

circulatory system is the distribution of dissolved gases and other molecules for nutrition, growth, and 

repair. Secondary roles have also evolved: 

• Fast chemical signaling to cells by means of circulating hormones or neurotransmitters. 

• Dissipating heat by delivering heat from the core to the surface of the body. 

• Mediating inflammatory and host defense response against invading microorganisms. 

The circulatory system of humans integrates three basic functional parts: 

• The heart (pump) 

• The blood (circulated liquid) 

• The vessels (set of containers) 
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2.1.1 Circulation cycle 

The circulation forms a closed loop, so the description can begin anywhere (see Figure 2.1). Beginning in the 

left side, the left heart receives blood that is rich in O2 and pumps this blood into the systemic arteries. 

These form a tree of progressively smaller vessels that supply fully oxygenated blood to all of the organs and 

tissues of the body. From the smallest of the systemic arteries blood flows into the systemic capillaries, 

which are roughly the diameter of a single red blood cell. It is in the capillaries that the actual exchange of O2 

and CO2 takes place. The blood that leaves the systemic capillaries carries less O2 and more CO2 than the 

blood that entered them.  

Leaving the systemic capillaries, the blood enters the systemic veins, through which it flows in vessels of 

progressively increasing size toward the right side of the heart. 

The right heart pumps blood into the pulmonary arteries, which form a tree that distributes the blood to the 

tissues of the lung. The smallest branches of this tree give rise to the pulmonary capillaries, where CO2 

leaves the blood stream and O2 enters from the air space of the lungs. Leaving the pulmonary capillaries, the 

oxygenated blood is collected in the pulmonary veins, through which it flows back to the left heart. This 

completes the circulation. The average time required for a red blood cell to complete the circuit is about 1 

minute. 

 

Figure 2.1. Plan of the circulation (22) 

It is important to point out that the flow resistance in the pulmonary system is much lower than in the 

systemic circulation. The systemic manometric pressure is about six times the pulmonary pressure and the 

systemic blood volume is ten times the pulmonary blood volume. Further details are presented in Table 2.1. 

 Table 2.1. Normal Resting Pressures and Volumes of the Systemic and Pulmonary Arteries and Veins (23) 

 P (mmHg) V(liters) 

Systemic arteries (sa) 100 1.0 
Systemic veins (sv) 2 3.5 
Pulmonary arteries (pa) 15 0.1 
Pulmonary veins (pv) 5 0.4 

Systemic system 

Pulmonary system 
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There are many factors which affect the circulation system. One example is aging, which causes stiffening of 

the arterial system with an increase in systolic arterial pressure. This sometimes leads to myocardial 

hypertrophy and prolonged relaxation (24). Exercise is other factor that has a great impact over the 

circulation cycle. During exercise, the demand of oxygen increases. This increased need of oxygen is reached 

thanks to a higher heart rate, an increased stroke volume and a higher extraction of oxygen from blood. 

Typical values are listed in Table 2.2. 

Table 2.2 Typical circulation parameters in normal conditions and with exercise (23) 

 Normal conditions With exercise 

Stroke volume (Vstroke) 0.07 l/beat 0.1 l/beat 
Heat rate (F) 80 beats/min 200 beats/min 
Cardiac output (Q) 5.6 l/min 20-25 l/min 

2.2  The heart  
2.2.1 Introduction 

The heart is the prime mover of blood. It contracts periodically and pumps blood throughout the body in two 

phases. In the first phase, diastole, the heart relaxes and fills with blood. In the second phase, systole, it 

contracts and pumps blood out as shown in Figure 2.2. 

 

Figure 2.2. Heart filling (diastole, left) and heart pumping (systole, right) (25) 

In each cycle, the left and right ventricles are first filled with blood from the left and right atria, respectively. 

Both atria operate more as passive reservoirs than as mechanical pumps. However, they do contract, and 

this contraction does enhance ventricular filling and cardiac output to a small degree. Then by the 

deceleration of the blood stream a pressure field is generated, which closes the valves between the atria and 

the ventricles (mitral valve for left side and tricuspid valve for the right). The contraction of the heart muscle 

begins and the pressures in the ventricles rise. When the pressure in the left ventricle exceeds that in the 

aorta, and the pressure in the right ventricle exceeds that in the pulmonary artery, the aortic valve in the left 

ventricle and the pulmonary valve in the right ventricle are pushed open, and blood is ejected into the aorta 
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and the lung. This is the systolic phase. The ejection continues until the deceleration of the jets of blood 

leads the pressure to close the valves. Then the muscle relaxes. The pressures decrease, and the diastolic 

phase begins (26). Figure 2.3 shows the heart components mentioned above.

2.2.2 Cardiac cycle 

The following table presents the different phases that can be identified in the cardiac cycle.

Systole
•Isovolumic contraction:
exceed the pressure in the artery and thereby open the interposing valve (pulmonary or 
aortic)

•Ejection:

Diastole
•Isolvolumic relaxation
atrial pressure and thereby opens the interposing valve (tricuspid or mitral).

•Passive filling (rapid filling phase): 
dissipating any pressure gradient.

•Diastasis (slow filling phase): 
atrium and ventricle matched. 

•Atrial contraction
pressure thus re
causing a second burst of ventricular filling.

Towards the numerical simulation of the filling process of the left ventricle of the heart

and the lung. This is the systolic phase. The ejection continues until the deceleration of the jets of blood 

o close the valves. Then the muscle relaxes. The pressures decrease, and the diastolic 

the heart components mentioned above. 

 

Figure 2.3. Heart components. (25) 

different phases that can be identified in the cardiac cycle.

Isovolumic contraction: the ventricular chamber is developing sufficient pressure to 
exceed the pressure in the artery and thereby open the interposing valve (pulmonary or 

blood is being actively expelled from the ventricular chamber.

Isolvolumic relaxation: the chamber pressure is rapidly declining until it falls below 
atrial pressure and thereby opens the interposing valve (tricuspid or mitral).
Passive filling (rapid filling phase): blood moves from the atrium to the ventricle thus 
dissipating any pressure gradient.
Diastasis (slow filling phase): there is little movement of blood as the pressures in the 
atrium and ventricle matched. 
Atrial contraction: the atrium undergoes active contraction and develops increased 
pressure thus re-establishing a pressure gradient between the atrium and ventricle and 
causing a second burst of ventricular filling.

Towards the numerical simulation of the filling process of the left ventricle of the heart 

and the lung. This is the systolic phase. The ejection continues until the deceleration of the jets of blood 

o close the valves. Then the muscle relaxes. The pressures decrease, and the diastolic 

different phases that can be identified in the cardiac cycle. 

 

the ventricular chamber is developing sufficient pressure to 
exceed the pressure in the artery and thereby open the interposing valve (pulmonary or 

blood is being actively expelled from the ventricular chamber.

: the chamber pressure is rapidly declining until it falls below 
atrial pressure and thereby opens the interposing valve (tricuspid or mitral).

blood moves from the atrium to the ventricle thus 

there is little movement of blood as the pressures in the 

: the atrium undergoes active contraction and develops increased 
establishing a pressure gradient between the atrium and ventricle and 
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Thus, during the cardiac cycle pressures and ventricular volumes are changing. Figure 2.4 presents the 

evolution of pressures and volumes in the left ventricle. 

 

Figure 2.4. Time sequence of events during a single cardiac cycle. Pressures (P) in the aorta, left ventricle (LV), and left atrium (LA). 

Isovolumic contraction (A), ejection (B), isovolumic relaxation (C) and filling (D). LVV=left ventricle volume. (27)  

The heart is a system of two pumps linked in series. The muscular wall of the left ventricle is thicker and 

more powerful than that of the right ventricle. The interventricular septum welding the two pumps together 

is even thicker. The thick muscular walls of the ventricles are mainly responsible for exerting the pumping 

function of the heart.  

The mechanism right ventricular emptying involves three motions (Figure 2.5): 

1. The longitudinal axis of the right ventricle shortens when spiral muscles pull the tricuspid valve ring 

toward the apex. 

2. The free wall of the right ventricle moves toward the septum in a bellows-like motion. 

3. The contraction of the deep circular fibers of the left ventricle forces the septum into a convex 

shape, so that the septum bulges into the right ventricle. This bulging of the septum stretches the 

free wall of the right ventricles over the septum. 

These three motions are well suited for ejecting a large volume, but not for developing a high pressure. The 

right ventricle ejects the same blood volume as the left ventricle, but it does so at much lower 

intraventricular pressure. 
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Figure 2.5. Right ventricle contraction. 

The mechanical action for the left ventricle occurs by a dual motion (Figure 2.6) 

1. Constriction of the circular muscle layers reduces the diameter of the chamber, progressing from the 

apex to the base (akin to squeezing a tub of toothpaste) 

2. Contraction of the spiral muscles pulls the mitral valve ring toward the apex, thereby shortening the 

long axis. 

The first mechanism is the more powerful and is responsible for the high pressures reached in the left 

ventricle. The conical shape of the lumen gives the left ventricle a smaller surface to volume ration than the 

right ventricle and contributes to the ability of the left ventricle to generate high pressures. 

 

Figure 2.6. Left ventricle contraction 

Atrial contraction normally makes only a minor contribution to the filling of the two ventricles (about 10% of 

left ventricular filling)  when the subject is at rest because most of ventricular filling occurs prior to atrial 

contraction as blood passively flows from the pulmonary veins, into the left atrium, then into the left 

ventricle through the open mitral valve.  At high heart rates, however, the atrial contraction may account for 

up to 40% of ventricular filling. The contraction of the atria is a useful safety factor in at least two 

circumstances. During tachycardia, when the diastolic interval (and thus the interval for passive filling) is 

short, the atrial contraction can provide a much needed boost. Atrial contraction is also contributes to 

ventricular filling in certain pathologic conditions.  

Events on the right and the left sides do not occur simultaneously. Cardiac rhythm results from electrical 

impulses that begin in the sinoatrial (SA) node. As the SA node is located in the right atrium, atrial 

contractions occurs earlier in the right atrium than in the left. Ventricular contraction starts slightly earlier 
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on the left atrium, and the mitral valve closes before the tricuspid valve does. The right ventricle has shorter 

period of isovolumetric contraction because it does not need to build up as much pressure to open its 

outflow valve and initiate ejection. Thus, the pulmonary valve opens slightly ahead of the aortic valve. 

Ejection from the right ventricle lasts longer than that from the left. Isovolumetric relaxation is briefer in the 

right heart than in the left. 

2.2.2.1 Pressure - Volume cycle 

Representing the pressure and volume of the left ventricle throughout a cardiac cycle the different phases of 

the cardiac cycle can be clearly observed.  

 

Figure 2.7. Pressure - volume cycle. 

2.2.2.1.1 Ventricular filling (ABC) 
Point A represents the instant at which the mitral valve opens. As the mitral valve opens, the ventricle begins 

to fill passively because atrial pressure is higher than ventricular pressure. Despite the rapid entry of blood 

ventricular pressure falls during the interval AB because the ventricular muscle is continuing to relax. During 

the segment BC the LV volume is doubled with a modest rise in pressure due to the high compliance of the 

ventricular wall during the late diastole. 

2.2.2.1.2 Isovolumetric contraction (CD) 
Point C represents the closure of the mitral valve. The pressure increases at constant volume to a value 

about equal to the aortic end-diastolic pressure. 

2.2.2.1.3 Ventricular ejection (DEF) 
Point D represents the opening of the aortic valve, so the ventricle can now begin to shorter and eject blood. 

Contraction continues during the interval DE increasing the pressure. E represents the instant at which the 

ventricular muscle starts to relax, decreasing the pressure. Point F represents end-diastolic volume and 

pressure.  

2.2.2.1.4 Isovolumetric relaxation (FA) 
Point F represents the closing of the aortic valve. Ejection has ended and the ventricular pressure falls due to 

the relaxation. At the end of the isovolumetric relaxation, the mitral valve opens and the cardiac cycle starts 

all over again with the ventricular filling. 
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2.2.2.2 Cardiac muscle 

Cardiac muscle makes up the wall of the heart. It is comprised by cells that are called cardiomyocytes. The 

cardiomyocytes are made up of myofibrils. A sarcomere is the basic unit of a muscle myofibril. Myocytes are 

joined to one another via intercalated disks that allow communication between the cells such that there is a 

sequential contraction of the cells from the bottom of the ventricle to the top.  This makes possible the 

maximal ejection of blood from the ventricle during contraction. The functional properties of cardiac muscle 

(how much tension it can develop, how rapidly it can contract) depend on many factors, but especially on 

two properties intrinsic to the cardiac myocyte: 

1. Initial sarcomere length (a convenient index is the end-diastolic volume). 

2. Force that the contraction myocytes must overcome (a convenient index is the arterial pressure that 

opposes the outflow of blood from the ventricle).  

2.2.2.3 Factors affecting the performance of the heart 

The performance of the heart depends on such factors as the degree of filling (preload), arterial pressure 

(after-load) and heart rate. Contractility provides an intrinsic measure of heart performance independent of 

these extrinsic factors. The contractility is the slope of the end-systolic pressure relation. Effects of these 

parameters on the cardiac cycle are summarized on Table 2.3. 

Table 2.3 Factors affecting the heart performance 

Factor Related with… Change in… Effect 

Contractility Intrinsic measure End systolic pressure-
volume relation 

Stroke volume increases increasing 
contractility 

Preload Initial sarcomere length Degree of filling or end 
of diastolic pressure 

Stroke volume increases increasing 
preload 

After-load Aortic pressure Arterial pressure Stroke volume and ejection fraction 
decrease when increasing after-load 

2.2.3 Electric system 

Every contraction of the heart muscle needs an electric stimulation, so the heart must have a center that 

generates a periodic electrical signal which is conduced to every muscle cell.  

 

Figure 2.8. Electrical heart system (28) 
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Normal cardiac rhythm results from electrical impulses that begin in a special group of cells that form the 

sinoatrial node (SA) (Figure 2.8), also called the sinus node. Located in the right atrium of the heart, the 

sinoatrial node cells act as the heart's natural pacemaker, being the main electric generating station of the 

heart. The term pacemaker activity refers to the spontaneous time-dependent depolarization of the cell 

membrane that leads to an action potential. Any cardiac cell with pacemaker activity can initiate a 

heartbeat. The pacemaker with the highest frequency will be the one to trigger an action potential that will 

propagate throughout the heart. 

From the SA node, the cardiac electric signal spreads radially throughout the right atrium along ordinary 

myocardial fibers at a conduction velocity of approximately 1 m/s. In the meantime, a special bundle of 

fibers carries the signal directly from the SA node to the left atrium and three other bundles conducts the 

signal directly from the SA node to the le atrioventicular node (AV). The AV node is a substation of the signal 

transmission. Because the intrinsic pacemaker rate of the AV node is slower (around 40 beats/min) than that 

of the SA node (60 beats/min), it does not set the heart rate. Its pacemaker activity is considered secondary, 

but if the SA node fails, the AV node can assume control of the heart and drive it successfully.  

When the signal from SA node reaches AV node, it is delayed for a certain period of time that is essentially 

for allowing the ventricles to finish filling with blood before contraction and ejection occur. From the AV 

node, the impulses travel through a system of specialized heart tissue, the bundle of His. Located in the wall 

that separates the two ventricles, this conducting system splits to form the right and left bundle branches 

that travel to the respective ventricles. Via this conducting pathway, powerful electrical jump-start signals 

are delivered to the ventricular muscle of the heart. In the healthy heart, these impulses travel at the same 

speed so that the two ventricles contract at the same time and oxygen-rich blood from the lungs is pumped 

throughout the body. Left and right bundle branches divide into further branches called Purkinje fibers, 

spread over both ventricles. Electric signal propagates fast in the Purkinje fibers at speed of 1 to 4 m/s. 

Purkinje fibers have the slowest intrinsic pacemaker rate (20 beats/min or less), thus, these fibers are very 

unreliable as pacemakers.  

The last stage of electric transmission is done by the cardiac muscle itself thanks to the semblance of 

syncytium between cardiac muscle cells, transmitting the signal from one cell to the other. The speed of 

signal transmission in the myocardium is 0.3 to 0.4 m/s. As summary, Figure 2.9 presents the different 

tissues involved in the generation and transmission of the electric signal. 

 
 

TISSUE CONDUCTION 

VELOCITY 

(m/s) 

PACEMAKER 

RATE 

(beats/min) 

SA node 0.05 60 
Atrial 

pathways 

1 -- 

AV node 0.05 40 
Bundle of 

His 

1 -- 

Purkinje 

system 

4 20 

Ventricular 

muscle 

0.5 -- 

 

Figure 2.9. Conduction velocity and pacemaker rate in different cardiac tissues. (23) 
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The conduction system within the heart is very important because it permits a rapid and organized 

depolarization of ventricular myocytes that is necessary for the efficient generation of pressure during 

systole. The time (in seconds) to activate the different regions of the heart are shown in Figure 2.10. Atrial 

activation is complete within about 0.09 sec following SA nodal firing. After a delay at the AV node, the 

septum becomes activated. All the ventricular mass is activated by about 0.23 seconds. 

 

Figure 2.10. Cardiac activation times (seconds) (29) 

2.2.3.1 Electrocardiogram 

The electrocardiogram (ECG or EKG) is the standard clinical tool used to measure the electrical activity of the 

heart. A typical ECG tracing of the cardiac cycle (heartbeat), as the one presented on Figure 2.11, consists of 

a set of waves, segments and intervals described in Table 2.4. 

 

Figure 2.11. Electrocardiogram. (26) 

Table 2.4. Electrocardiogram components description 

Waves 

P wave 
Reflects spreading from the right atrium to the left atrium of 
the main electrical vector during normal atrial depolarization. 

80ms 

QRS complex 

Reflects the rapid depolarization of the right and left 
ventricles. They have a large muscle mass compared to the 
atria and so the QRS complex usually has much larger 
amplitude than the P-wave. 

80 to 120ms 

T wave Represents the repolarization (or recovery) of the ventricles. 160ms 

U wave 

It is normally visible in 50 to 75% of ECGs. It is typically low 
amplitude, and, by definition, follows the T wave. It 
represents the repolarization of the papillary muscle. 
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Intervals 

RR interval 

The interval between an R wave and the next R wave is the 
inverse of the heart rate. Normal resting heart rate is 
between 50 and 100 beats/min 

0.6 to 1.2s 

PR interval 

It is measured from the beginning of the P wave to the 
beginning of the QRS complex. It starts at the beginning of 
the atrial contraction and ends at the beginning of the 
ventricular contraction. Reflects the time the electrical 
impulse takes to travel from the sinus node through the AV 
node and entering the ventricles. The PR interval is therefore 
a good estimate of AV node function.  

120 to 200ms 

QT interval 

It is measured from the beginning of the QRS complex to the 
end of the T wave. A prolonged QT interval is a risk factor for 
ventricular tachyarrhythmias and sudden death. The QT 
interval indicates how fast the ventricles are repolarized, 
becoming ready for a new cycle. 

300 to 430ms 

ST interval 
It is measured from the end of the QRS complex to the end 
of the T wave. 

320ms 

QRS interval It indicates how fast the ventricles depolarize. <110 ms 

Segments 

PR segment 

Connects the P wave and the QRS complex. This coincides 
with the electrical conduction from the AV node to the 
bundle of His to the bundle branches and then to the 
Purkinje Fibers. This electrical activity does not produce a 
contraction directly and is merely traveling down towards 
the ventricles and this shows up flat on the ECG.  

50 to 120ms 

ST segment 
It connects the QRS complex and the T wave. Represents the 
period when the ventricles are depolarized. 

80 to 120ms 

 

The electrical described before are associated with contraction of the ventricles as Figure 2.12 shows.  

 
Figure 2.12. Time sequence of events during a single cardiac cycle (27) 

R 

Q S 
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When the natural electric system of the heart is not able to develop the pacing activity, the ventricular 

function has to be restored by applying artificial electrical impulses. Cardiac resynchronization therapy (CRT), 

a technology that simultaneously paces both the left and right ventricles, has emerged as an important 

treatment tool for heart failure patients with reduced LV function and ventricular dyssynchrony 

(uncoordinated beating of the ventricles). CRT requires a proper programming of the atrioventricular (AV 

delay) and intraventricular delay (VV delay). The AV delay is the time between the atrial beat and the 

corresponding ventricular paced event, this is, the P-R interval. VV timing refers to the synchronization of RV 

and LV contractions. It measured from electrical delay between tip of RV lead and LV lead during intrinsic 

conduction. Further details will be given in section 3.5. 

2.2.4 Heart valves 

The human heart has four valves: the tricuspid (T), pulmonic (P), aortic (AO) and mitral (M). They lie 

essentially in a plane. AO (ejection) and M (filling) valves are going to be analyzed in detail because they are 

the ones that control the ejection and filling of blood in the left ventricle.   

2.2.4.1 Mitral valve 

The mitral valve consists of two thin membranous cusps of roughly trapezoidal shape that originate from the 

slightly elliptical mitral ring. In the open structure these membranes form a scalloped, cone-like structure. 

The M valve regulates the entrance of blood in the left ventricle. 

When operating, the membranes are pushed open at a stage of diastole when the pressure in the left atrium 

exceeds that of the left ventricle. Then, a jet of blood rushes in from the left atrium into the left ventricle, 

impinges on the ventricular wall, and is redirected towards the aortic valve in the LC vortex ring. Thus, the 

blood stream is decelerated in its path and a positive pressure gradient is created. Towards the end of 

diastole, the pressure acting on the ventricular side of the mitral valve membranes becomes higher than that 

acting on the side of the membranes facing the left atrium. The net force acts to close the valve. In a normal 

heart, closure occurs without any backward flow or regurgitation. The papillary muscles play no role at all in 

opening and closing the valve. 

2.2.4.2 Aortic Valve 

The aortic valve consists of three thin, crescent-shaped cusps, which in the open position are displaced 

outward and toward the aorta. In the closed position the three cusps come together to seal the aortic 

orifice. The pulmonary valve has a similar structure. The AO valve regulates the exit of blood from the left 

ventricle.  

The operation of the AO valve can be modeled with the sinus of Valsalva as it is shown in Figure 2.13 

(Bellhouse and Bellhouse 1969,1972). The flow issuing from the ventricle immediately upon opening of the 

valve at the inception of systole is split into two streams at each valve cusp. Part of the flow is directed into 

the sinus behind the valve cusp, where it forms a vertical flow before re-emerging, out of the plane of the 

figure, to rejoin the main stream in the ascending aorta. 

When the aortic pressure rises sufficiently so that deceleration of the flow occurs, and adverse pressure 

gradient is produced. The higher pressure causes a greater flow into the sinus, which carries the cusp toward 

apposition. The peak deceleration occurs just before the valve closure. The vertical motion established 

earlier upon the opening of the valve has the merit of preventing the valve cusp from bulging outward to 
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contact the walls of the sinuses. The open sinus chamber thus can be supplied with fluid to fill the increasing 

volume behind the vale cusps as they move towards closure.  

 

Figure 2.13. Flow pattern within the sinus of Valsalva (26) 

2.3  Blood 
Blood is a complex fluid (its main components are presented in Figure 2.14) whose properties are 

significantly affected by the arrangement, orientation and deformability of red blood cells. In practice, the 

effective characteristics of the blood depend on several physiologic factors such as fibrinogen concentration, 

hematocrit (proportion of blood volume that is occupied by red blood cells), vessel radius, linear velocity and 

temperature. 

 

Figure 2.14. Blood composition 

The most common method of determining the consistency of a flowing liquid uses the relation between 

shear stress and time rate of shear strain (or shear rate). If the flow is constant in time, then the ratio of 

shear stress to shear rate is the viscosity. When flows are changing with time, such as blood flow in some 

parts of the human circulation, the liquid generally demonstrates both a viscous and an elastic effect, both 

of which determine the stress-to-strain rate relationship. The parameters that describe the flow properties 

of complex fluids like blood are the viscosity and the elasticity. The viscosity is related to the energy 
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dissipated during flow primarily due to sliding and deformation of red blood cells and red blood cell 

aggregates. The elasticity is related to the energy stored during flow due to orientation and deformation of 

red blood cells.  

Blood viscosity and elasticity depend on the rate of flow or shear rate. The changes in viscosity and elasticity 

are a result of changes in the arrangement, orientation and stretching of the red blood cells. The viscoelastic 

profile of normal human blood can be divided into three regions: a region of low shear rates, Region 1, 

where normal red blood cells will aggregate in a space efficient manner. The cells are in large aggregates and 

as the shear rate increases, the size of the aggregates diminish. A region of mid-shear rates, Region 2, where 

the internal stress due to pressure is sufficient to separate aggregated cells causing breakage of aggregates. 

Increasing shear rate causes the cells to orient in the direction of flow. And a region of high shear rates, 

Region 3, where the increasing shear rate causes normal red blood cells to stretch or deform and align with 

the flow.  

 
Figure 2.15. Human blood viscosity and elasticity (30) 

In the mayor vessels, including the heart, blood behaves as shown in Region 3, so it is approximately a 

Newtonian fluid with constant viscosity and no elasticity. 

2.4  Vessels 
The vascular system is not a system of rigid tubes. Moreover, the anatomy and functions of the various 

segments of the vasculature differ greatly from one to another. Three groups can be distinguished: 

• Arteries (distribution system) 

• Microcirculation through capillaries (diffusion and filtration system) 

• Veins (collection system) 
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2.4.1 Vessels flow description 

If blood vessels were rigid tubes, so that the resistance (R) were constant, and if the driving pressure were 

also constant throughout the cardiac cycle, we could describe the blood flow (F) using a simple Ohm´s law-

like relationship.  

∆� � � · � 

However, because blood vessels are compliant (so that R varies with pressure) and because both aortic 

pressure and flow vary during the cardiac cycle, arteries cannot be described in this way. As a result, the 

ratio ∆�/� is not longer a resistance, but a complex quantity called the mechanical impedance that depends 

on the classical resistance, as well as the compliance and the inertial properties. Because of these properties, 

pressure and flow waves are not the same in different vessels.  

The cardiac cycle causes pressure waves in the aorta and peripheral vessels. The mean arterial pressure falls 

very slightly increasing distance from the heart although the peak pressure increases and an important 

secondary pressure oscillation appears during diastole. Thus, although the pressure waves are distorted, 

they are not damped. 

In terminal arteries and arterioles, damping predominates over distortion. The damping is produced due to: 

- As there are many parallel vessels with a large aggregate wall area, the aggregate compliance 

increases, damping the pressure wave. 

- The smaller arteries have a smaller radius and thus a far greater resistance, which means arterial 

pressure must fall in proportion to the much higher resistance. 

By the time the blood reaches the capillaries, the damping is so severe that pulsations do not normally 

occur. Nevertheless, blood flow in systemic capillaries can exhibit slow oscillations, unrelated to the cardiac 

cycle. Pulmonary capillaries are an exception because upstream vessels are short and they have low 

resistance and high compliance. 

Systemic veins also have pressure waves originated through three mechanisms: 

- Retrograde action of the heartbeat during the cardiac cycle, synchronized to the cardiac cycle. 

- The respiratory cycle. During inspiration, the diaphragm descends, causing intrathoracic pressure to 

decrease and intra-abdominal pressure to increase. Consequently, the venous return from the head 

and upper extremities transiently increases, as low-pressure vessels literally suck blood into the 

thoracic cavity. Simultaneously, the venous flow decreases from the lower extremities because of 

the relatively high pressure of the abdominal veins during inspiration. Therefore, during inspiration, 

pressure in the jugular vein falls while pressure in the femoral vein rises. 

- The contraction of skeletal muscles. 
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Chapter 3 

3 Diastology 

Diastolic Heart Failure is recognized as a major health problem. Only with an increased knowledge and 

understanding of the pathophysiology of diastolic function and diastolic heart failure (DHF) can effective 

management strategies be developed. This knowledge can be applied to patients with DHF to decrease 

mortality and morbidity of this important cause of heart failure. In order to achieve this purpose, this 

chapter focuses on the hemodynaimcs of LV filling and its relation to diastolic function. We will then proceed 

to describe how artificial stimuli can help to restore the ventricular function when the normal pacemaker is 

unreliable. In approximately 30% of patients with heart failure, the two ventricles beat slightly out of phase. 

That is why the attention is focused in the description of the cardiac resynchronization therapy (CRT) which 

allows to re-coordinate the beating of the two ventricles by pacing both ventricles simultaneously. 

3.1 Ventricular diastolic filling and function 
3.1.1 Definition of diastole 

Cardiac function is critically dependent upon diastolic physiologic mechanisms to provide adequate LV filling 

(cardiac input) in parallel with LV ejection (cardiac output) both at rest and during exercise. Mechanically, 

diastole is considered to begin when the pressure within the left ventricle begins to fall—that is, during the 

isovolumic relaxation phase. The left ventricular pressure will continue to fall rapidly, the mitral valve will 

open when the left ventricular pressure falls below the left atrial pressure. In the normal heart, the active 

relaxation of the LV wall causes a suction effect after mitral valve opening that causes rapid early filling. Left 

ventricular relaxation will normally end in the first third of filling so that the subsequent filling is dependent 
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upon the passive tissue properties as well as contributions from ventricular interaction and pericardial 

restraint. The normal left ventricle is composed of completely relaxed cardiomyocytes and is very compliant 

and easily distensible, offering minimal resistance to LV filling over a normal volume range. The filling 

process in this phase is slower and is called diastais. At the end of diastole, atrial contraction will restore the 

full preload of the ventricle before the onset of contraction. Atrial contraction near the end of diastole 

contributes 20 – 30 % to total LV filling volume and increases diastolic pressures by less than 5 mmHg. As a 

result, LV filling can be accomplished by very low filling pressures in the left atrium and pulmonary veins, 

preserving a low pulmonary capillary pressure (< 12mmHg) and a high degree of lung distensibility. 

For the practicing physician it is difficult to understand or measure in isolation the contribution of the 

multiple interrelated components of the cellular and mechanical mechanisms comprising diastole. From a 

simplistic standpoint, clinical diastole is the process or phase where the heart, as a global operating 

chamber, relaxes and fills with blood in preparation for the next contraction. The simplified definition of 

diastole from a clinical point of view is an interrelated sequence of events: relaxation, suction, filling, and 

atrial contraction. 

3.1.2 Measurements of diastolic function 

Comprehensive assessment of ventricular diastolic function is a complex process. Full elucidation generally 

requires invasive measurements, such as left ventricular end diastolic pressure, the time constant of 

isovolumic LV relaxation, the pressure volume relationship of the ventricle at end diastole, and mean left 

atrial pressure. Such invasive measurements are inappropriate for routine clinical purposes, and thus 

diastolic function is generally assessed using Doppler Echocardiography, largely through the observation of 

transmitral and pulmonary venous flow, supplemented by myocardial velocity and color M-mode Doppler 

information.  

Particle Image Velocimetry (PIV) is other of the methods broadly used for fluid visualization. In this 

technique, the fluid is seeded with tracer particles which, for the purpose of PIV, are generally assumed to 

faithfully follow the flow dynamics. It is the motion of these seeding particles that is used to calculate 

velocity information of the flow being studied. Figure 3.1 shows an example of this technique. In figure A, 

the Echo freeze frames represent the divergence-free velocity vector on the scan-plane, superimposed to 

the reconstructed Doppler representation. Figure B shows parametric representations of steady streaming 

field with superimposed velocity vectors (arrows) and the steady streaming in-plane streamlines along the 

divergence-free velocity field. C represents the pulsatile strength field with superimposed pulsatile in-plane 

streamlines. 

 

Figure 3.1. Flow data by digital PIV from the apical long axis view. LVOT, left ventricular outflow tract; MV, mitral valve. 
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Other widely used techniques to measure the diastolic function are contrast angiographic filling curves 

based on frame-by-frame volume calculations or radionuclide high resolution time activity curves. 

In order for these noninvasive indices to be useful for interfering actual diastolic function of the heart, it is 

critical to establish a conceptual framework that reflects the physical and physiological determinants of 

intracardiac blood flow. Clinical experiments in volunteers and patients can be helpful in understanding 

general trends in the relationships between invasive parameters and noninvasive measurements, but a more 

comprehensive approach can be potentially obtained with computer simulations that invoke realistic 

descriptions of chamber and valvular functions and enable to study the effect of different phenomena in a 

systematic way. The reason for this is that flows of blood through different parts of the circulatory system 

are interdependent. A change in a single parameter affects flow throughout the system. Section 3.2 will 

provide a description of this conceptual framework to relate the actual diastolic function of the heart and 

the indices to modulate its behavior. 

3.2  Flow propagation inside the ventricle 
Since the mid 1980s, researchers have worked to develop models of the heart with increasing complexity, 

beginning from a very simple isolated model of the mitral valve used to understand the mitral pressure half-

time; to models incorporating more realistic diastolic characteristics of the ventricle and atrium; to models 

that simulated the cardiac chambers and valves, as well as the peripheral and pulmonary vasculature; to 

most recently a simulation that links knowledge of basis myocyte and fiber function to the gross architecture 

of the heart. 

Three major phenomena develop simultaneously during filling:  

1. An intraventricular gradient appears at the beginning of LV filling. 

2. The blood column slows after exiting the mitral valve while continuing as laminar flow toward the 

apex. 

3. Finally vortices start appearing due to propagation of the blood column past the tips of the mitral 

leaflets, while the left ventricle continually changes its size.  

During the rapid filling phase (E wave), a jet starts its propagation through the mitral valve into the 

ventricular chamber. Driven by this jet, a vortex ring is formed around the jet just downstream from the 

mitral orifice. During filling, the vortex ring travels toward the middle of the expanding ventricle, while a 

weak vortex is formed within the aortic outflow tract, which dissipates late during diastasis. After the vortex 

ring reaches de middle of the ventricle, its anterior part becomes stationary, while the posterior part 

continues forward. During atrial contraction (A wave), a new, weaker vortex ring that encompasses a part of 

the outflow tract is formed, while the posterior side of the initial vortex ring continues to move into the 

posterior apical region of the ventricle. At the end of the filling, the posterior part of the second vortex ring 

merges with the first one, forming a large vortex in the posterior apex. Creation of vortices plays a crucial 

role in mitral valve closure and in the transfer of blood toward the apex and then into the LV outflow tract.  

These vortex can be seen when the heart is imaged by echocardiography with high-frequency transducers, 

or after the contrast injection, and can be quantified by magnetic resonance and mapping (31). Figure 3.2 

presents an example of the use of PIV technique (more details about the technique, section 3.1.2) in the 
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monitoring of cardiac cycle in the left ventricle. In the early diastolic period (A), an irrotational flow 

associated with early left ventricular (LV) filling dominated the vector representation of flow. In diastasis, a 

relatively apically located vortex was seen (B, arrow). This was followed by a late filling phase that was 

characterized by an irrotational flow obscuring the vortex (C). In the early isovolumic contraction (IVC) 

period, the vortex was relocated in the proximity of the anterior mitral leaflet in the LVOT region (D, arrow). 

During the late IVC period, the vortex persisted in the left ventricular outflow tract region and directed flow 

towards aortic valve (E). With the aortic valve opening and ejection (F), the vortex dissipated with continued 

flow from apex to left ventricular outflow tract.  

 

Figure 3.2 Time sequence analysis of LV flow during diastole and IVC period in normal subjects. Early diastole: 16 ms after mitral 

valve opening (A); diastasis: 142 ms after mitral valve opening (B); late diastole: 298 ms after mitral valve opening (C); IVC-1: 16 

ms after mitral valve closure (D); IVC-2: 80 ms after mitral valve closure (E); ejection: 102 ms after mitral valve opening (F) (32) 
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3.3 Doppler assessment of diastolic LV 
filling 

3.3.1 Introduction 

Because of their noninvasive nature and ease of use, echo-Doppler techniques have become the accepted 

clinical standard for assessing LV diastolic function. They provide information about a great number of 

parameters which define diastolic function: 

- Mitral inflow velocities 

- Pulmonary venous flow 

- Flow durations, isovolumic times 

- Mitral regurgitation velocity 

- Flow propagation (color MM) 

- Doppler tissue imaging 

- Volume loading and unloading 

- Respiratory variations 

- Exercise 

This section explains the basis of the Doppler Normal Mitral flow and Doppler Tissue Imaging techniques 

because they are the most widely use to measure the flow through the mitral valve. This velocity profile will 

be used as input when developing the fluid dynamic model. Color M-mode is also briefly presented because 

it provides a spatiotemporal distribution of the velocity providing useful information when analyzing patients 

with different heart diastolic disease, showing the importance of knowing the flow behavior. Finally, the 

normal pulmonary flow is also explained because it is commonly used when evaluating diastolic dysfunction. 

3.3.2 Normal transmitral Doppler flow velocity pattern 

Doppler echocardiography provides a noninvasive means to study LV diastolic function by recording 

transmitral blood flow velocities versus time. These velocity waveforms are determined by the complex 

interplay of hemodynamics (instantaneous pressure differences) and several other factors. 

 

Figure 3.3. Mitral inflow velocities profile on pulse wave Doppler. A-velocity, atrial component of mitral filling; DT, deceleration 
time; E-velocity, IVRT, early diastolic mitral inflow velocity.(33) 
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Figure 3.4 diagrammatically shows the normal transmitral Doppler flow velocity pattern and the parameters 

which can be measured. The isovolumic relaxation period (IRP) is the interval between aortic valve closure 

(Ac) and the onset of LV filling at mitral valve opening (Mo). The time interval between the end of the 

outflow tract velocity and the onset of the mitral inflow velocity waveform represents IRP. During relaxation 

there is a pressure cross-over between left atrial and left ventricular pressure, which causes the mitral valve 

to open and rapid filling to occur (E wave). E wave acceleration is directly determined by LA pressure and 

inversely related to myocardial relaxation. In this part of the cardiac cycle LV relaxation is still ongoing 

causing a continuing drop in LV pressure. The area under the E wave is the time velocity integral (TVI) and 

reflects the contribution of the rapid filling phase in the LV diastolic filling. The viscoelastic properties and 

compliance of the myocardium then come into play, raising LV pressure and resulting in a decreased 

transmitral flow velocity.  The deceleration time (DT) is a measure of how rapidly early diastolic filling stops. 

It is represented by the time-interval between the E peak and a point on the baseline where the descending 

limb crosses the baseline. There is an inverse relationship between the mean LA pressure and DT. Inertia 

effects may cause continued forward low velocity flow during mid-diastole. DT becomes shorter when LV 

compliance decreases. The higher LA pressure during its contraction causes an increase in velocity (A wave) 

and is an important parameter of diastolic function. The A wave is associated with atrial contraction and is 

an important index of diastolic function. The area under the A wave is the time velocity integral (TVI) and 

reflects the contribution of atrial contraction to LV diastolic filling.  

 

Figure 3.4. Left ventricle and left atrium pressure and mitral valve flow (MVF)  

Thus, the quantitative measurements that can be made from the Doppler velocity curve include: 

- Maximum velocities: The E velocity, the A velocity, and their ratio 

- Velocity-time integrals: Total, early diastolic, atrial contribution and their ratios 

- Time intervals: The isovolumic relaxation time (IVRT), the total duration of diastole, the deceleration 

time, and the atrial filling period. The measure of the IVRT is useful in determining the severity of 

diastolic dysfunction, particularly in serial studies of patients on medical therapy or with disease 

progression. Impaired relaxation is associated with a prolonged IVRT whereas decreased compliance 

and elevated filling pressures are associated with a short IVRT. 

- Measures of acceleration and deceleration: The time from onset of flow to the E velocity, the 

maximum rate of rise in velocity and the slope of the early diastolic deceleration. 

Combining Doppler left ventricular inflow velocity data with the cross-sectional area of the mitral annulus, 

additional filling parameters that can be calculated include: 

- Peak filling rates: Peak rapid filling rate, atrial peak filling rate and their ratio. 
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- Stroke volume: This is, the volume of blood pumped from one ventricle of the heart with each beat 

- Fractional filling rates: For example, first third filling fraction or the ratio of early to late filling. 

3.3.3 Doppler tissue velocity imaging. 

Tissue Doppler imaging (TDI) is an echocardiographic technique employing the Doppler principle to measure 

the velocity of myocardial segments and other cardiac structures (34).  Alteration of filters and scales 

permits use of the modality to measure high amplitude, low velocity data from moving muscle - these 

adjustments permit tissue Doppler imaging (TDI). 

TDI allows quantitative assessment of the motion of the myocardium (middle of the three layers forming the 

wall of the heart) and is particularly helpful in quantifying ventricular long axis function. TDI can be used to 

assess both regional and global left ventricular function. Measuring myocardial velocities gives information 

about regional ventricular contractility, while, as a consequence of the relative immobility of the cardiac 

apex, the measurement of mitral annular velocities provides information on longitudinal left ventricular 

function. Regardless of the site of the measurement, the normal TDI profile has a characteristic appearance, 

consisting of systolic and diastolic myocardial motion (Figure 3.5). Systolic motion often has two peaks, S′ 

and Sm. S′ reflects isovolumic contraction, while Sm occurs during ejection. Diastolic velocities, seen as 

troughs, consist of early and late myocardial movement (Em and Am). These correspond to passive ventricular 

filling and atrial contraction, as do the E and A waves of transmitral flow. Mitral annular velocities are less 

preload dependent than conventional Doppler indices of mitral inflow although the diastolic waveforms are 

not entirely preload independent (34). 

 

Figure 3.5 TDI  trace obtained from the mitral annulus. Am, late (atrial) diastolic myocardial motion; Em, early diastolic myocardial 

motion; S′, early systolic myocardial motion; Sm, late systolic myocardial motion. 

3.3.4 Color M-mode transmitral flow 

Color Doppler M-mode echocardiography provides a spatiotemporal map of blood distribution (v(s,t)) within 

the heart, with a typical temporal resolution of 5ms, a spatial resolution of 300 microns, and a velocity 

resolution of 3cm/s. Assessment of diastolic flow propagation has offered novel information about LV filling 

dynamics and has been applied in a variety of clinical conditions. Since the initial description by Jacobs (35) 

and later Brun (36) ,computer simulation (37) , in vitro modeling (38) and animal (31, 39) and clinical studies 

(31, 36, 39-41) have improved the understanding of the determinant of the velocity of flow propagation into 

S’ 

Sm 

Am 
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the LV (Vp) but also have shown the complexity of this index. Vp appears to be relatively independent of 

loading conditions and therefore may overcome one of the main limitations of Doppler-based techniques 

(31, 36, 41, 42). 

Figure 3.6 shows a representative recording of the M-mode color Doppler flow mapping of the mitral inflow 

and the left ventricular pressure (LVP). The time constant of isovolumic LV pressure decay (t) was smaller 

and the minimum value of the first derivative of LV pressure curve (dP/dtmin) was greater when the early 

diastolic mitral flow propagation velocity (Vp) was greater in each cardiac cycle. 

 

Figure 3.6. M - mode color Doppler for the mitral inflow (43) 

3.3.5 Normal Pulmonary vein Doppler Flow velocity pattern 

The normal pulmonary vein flow pattern is sketched in Figure 3.7. It is usually biphasic with a predominant 

systolic forward flow (S wave) and a less prominent diastolic forward flow wave (D wave). Occasionally, 

there may be a triphasic flow pattern with two distinct systolic flow waves of which the initial flow into the 

left atrium results from atrial relaxation followed by a further inflow due to the increase in pulmonary 

venous pressure. The D-wave occurs when there is an open conduit between the pulmonary vein, LA and LV 

and reflects the transmitral E wave. A retrograde flow wave into the pulmonary vein (AR wave) occurs during 

atrial contraction and its amplitude and duration are related to LV diastolic pressure, LA compliance and 

heart rate. In normal subjects, the amplitude of the AR wave is generally less than 25 cm/sec and its duration 

is shorter than the A wave of the transmitral A wave.  

 

Figure 3.7. Pulmonary vein flow 



 

 

 

3.4  Diastolic heart
3.4.1 Introduction 

Heart failure can be defined physiologically as an inability of the heart to provide sufficient forward output 

to meet the perfusion and oxygenation requirements of the tissues while maintaining normal filling 

pressures (44). Chronic heart failure can be divided into two broad categories: systolic heart failure (SHF) and 

diastolic heart failure (DHF). In systolic heart failure, there is reduced cardiac contractility, whereas in 

diastolic heart failure there is impaired cardiac relaxation and abnormal ventricular filling

Cardiovascular Health Study and the Strong Heart Study, both in the 

for DHF at 55% and 53% respectively than SHF. 

health problem, especially in the elderly, who have a high incidence of LV hypertrophy (LVH). 

The main characteristics and clinical manifestations 

Table 3.1. 

Table 3.1. Characteristics and c

There has been increasing recognition that diastolic ventricular function often plays an essential role in the 

clinical manifestations of disease in patients with a wide range of cardiac disorders. For example, many 

patients with clinical heart failure have normal systolic function with predominant diastolic dysfunction. 

Diastolic dysfunction may be an early sign of cardiac diseases (as in hypertension), often antedating clinical 

or echocardiography evidence of systol

explain the difference in clinical symptoms between patients with similar degrees of systolic dysfunction

Despite this new appreciation of the importance of both systole and diastole in maintaining normal 

cardiovascular physiology, the role of LV diastolic function in health and disease is 

understood. Physical examination echocardiograpy (ECG), chest radiographs and laboratory studies are 

unreliable in diagnosis diastolic heart failure in most individuals, and invasiv

properties and pressures are impractical in clinical practice. Therefore, at present, assessing the type and 

degree of LV diastolic dysfunction relies on evaluating the pattern of LV filling

presented in sections 3.1.2 and 3.3

understand the dynamics of the process and improve the treatment of patients undergoing cardiac therapy

SHF

•Characteristics
•Progressive chamber dilation
•Eccentric remodeling
•Dominant abnormalities in systolic 
functions

•Clinical manifestations
•Decreased cardiac output
•Increased heart rate
•Peripheral vasoconstriction

heart failure 

Heart failure can be defined physiologically as an inability of the heart to provide sufficient forward output 

to meet the perfusion and oxygenation requirements of the tissues while maintaining normal filling 

. Chronic heart failure can be divided into two broad categories: systolic heart failure (SHF) and 

In systolic heart failure, there is reduced cardiac contractility, whereas in 

diastolic heart failure there is impaired cardiac relaxation and abnormal ventricular filling

Cardiovascular Health Study and the Strong Heart Study, both in the United States, show a greater incidence 

for DHF at 55% and 53% respectively than SHF. Diastolic heart failure is now recognized as a major national 

health problem, especially in the elderly, who have a high incidence of LV hypertrophy (LVH). 

acteristics and clinical manifestations of diastolic and systolic heart failure 

Characteristics and clinical manifestations of SHF and DHF 

There has been increasing recognition that diastolic ventricular function often plays an essential role in the 

clinical manifestations of disease in patients with a wide range of cardiac disorders. For example, many 

patients with clinical heart failure have normal systolic function with predominant diastolic dysfunction. 

Diastolic dysfunction may be an early sign of cardiac diseases (as in hypertension), often antedating clinical 

or echocardiography evidence of systolic dysfunction. In addition, the degree of diastolic dysfunction may 

explain the difference in clinical symptoms between patients with similar degrees of systolic dysfunction

Despite this new appreciation of the importance of both systole and diastole in maintaining normal 

the role of LV diastolic function in health and disease is 

understood. Physical examination echocardiograpy (ECG), chest radiographs and laboratory studies are 

unreliable in diagnosis diastolic heart failure in most individuals, and invasive measurement of LV diastolic 

properties and pressures are impractical in clinical practice. Therefore, at present, assessing the type and 

degree of LV diastolic dysfunction relies on evaluating the pattern of LV filling with the different techniques 

3.3. The development of a model to simulate L

process and improve the treatment of patients undergoing cardiac therapy

Progressive chamber dilation

Dominant abnormalities in systolic 

Decreased cardiac output

Peripheral vasoconstriction

DHF

•Characteristics
•Normal LV volume
•Concentric remodeling
•Abnormalities in diastolic relaxation, 
filling and/or distensibility

•Clinical manifestations
•Shortenest of breath at rest or with 
exertion

•Peripherical edema
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Heart failure can be defined physiologically as an inability of the heart to provide sufficient forward output 

to meet the perfusion and oxygenation requirements of the tissues while maintaining normal filling 

. Chronic heart failure can be divided into two broad categories: systolic heart failure (SHF) and 

In systolic heart failure, there is reduced cardiac contractility, whereas in 

diastolic heart failure there is impaired cardiac relaxation and abnormal ventricular filling. The 

United States, show a greater incidence 

Diastolic heart failure is now recognized as a major national 

health problem, especially in the elderly, who have a high incidence of LV hypertrophy (LVH).  

of diastolic and systolic heart failure are summarized in 

 

There has been increasing recognition that diastolic ventricular function often plays an essential role in the 

clinical manifestations of disease in patients with a wide range of cardiac disorders. For example, many 

patients with clinical heart failure have normal systolic function with predominant diastolic dysfunction. 

Diastolic dysfunction may be an early sign of cardiac diseases (as in hypertension), often antedating clinical 

ic dysfunction. In addition, the degree of diastolic dysfunction may 

explain the difference in clinical symptoms between patients with similar degrees of systolic dysfunction(45). 

Despite this new appreciation of the importance of both systole and diastole in maintaining normal 

the role of LV diastolic function in health and disease is not completely 

understood. Physical examination echocardiograpy (ECG), chest radiographs and laboratory studies are 

e measurement of LV diastolic 

properties and pressures are impractical in clinical practice. Therefore, at present, assessing the type and 

with the different techniques 

The development of a model to simulate LV filling will help to 

process and improve the treatment of patients undergoing cardiac therapy. 

Concentric remodeling
Abnormalities in diastolic relaxation, 
filling and/or distensibility

Clinical manifestations
Shortenest of breath at rest or with 
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3.4.2 Definition of diastolic dysfunction 

A variety of cardiac diseases can cause the development of abnormal diastolic function, abnormal 

cardiovascular remodeling, and the development of DHF. The mechanisms by which cardiovascular disease 

causes these outcomes include hemodynamic alterations, inhomogeneous contraction and relaxation, 

myocardial ischemia, and LV concentric remodeling and hypertrophy. These mechanisms can act individually 

to alter diastolic function but often act together to cause the development of DHF (44).  The end result of 

impairment of either relaxation or filling is that intracardiac pressures need to increase inappropriately to 

achieve adequate left ventricular filling volumes for the next systolic contraction. 

In the clinical scheme, diastolic dysfunction is any abnormality that causes impaired relaxation (and 

decreased ventricular suction), poor filling, or loss of atrial contraction. One or more of these abnormalities 

results in increased pressures to achieve an adequate filling volume. This translates into ‘‘diastolic 

dysfunction’’ and results in the signs and symptoms of heart failure. 

3.4.3 Causes of diastolic dysfunction 

The major abnormalities in LV diastolic function that contribute to or occur during the development of DHF 

include: 

- Slowed, delayed and incomplete myocardial relaxation 

- Impaired rate and extent of LV filling 

- Shift of filling from early to late diastole 

- Decreased early diastolic suction/recoil 

- Augmented LA pressure during the early filling 

- Altered passive elastic properties of the left ventricle, resulting in an increased passive stiffness and 

decreased diastolic distensibility 

- Inability to sufficiently augment cardiac output during exercise 

- Inability to sufficiently augment relaxation during exercise 

- Inability to utilize the Frank-Starling mechanism during exercise. Frank-Starling mechanism states 

that the greater the volume of blood entering the heart during diastole, the higher the preload, the 

more stretched the sarcomeres will be, the higher the force generated by the myocardium and the 

greater the volume of blood ejected during systole.  

- Increased diastolic LV, LA and pulmonary venous pressures at rest of during exercise.  

3.4.4 Assessment of diastolic dysfunction 

Diastolic function can be assessed using the following measurements: 

- Left ventricular pressure decline, quantified by the rate of isovolumic relaxation. When the 

isovolumic relaxation is abnormal, LV pressure declines slower 

- Left ventricle filling dynamics where the three diastolic filling phases can be distinguished: rapid 

filling of the left ventricle, during which dV/dt reaches it maximum and the peak filling rate occurs; a 

slow filling phase (diastasis), during which there is little change in LV volume and atrial systole phase, 

during which active atrial contraction fills the left ventricle and allows it to attain its end diastolic 

volume. Important diastolic parameters include the peak filling rate, the time to peak filling rate, the 

rapid filling fraction (percent of total stroke volume reached during rapid filling) and the percent 

contribution of atrial systole to LV filling.  
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- Passive elastic stiffness properties. In patients with DHF, the diastolic pressure-volume curve is 

shifted up and left, indicating an increase in passive stiffness and a decrease in distensibility of the 

left ventricle.  

3.4.5 Stages of diastolic dysfunction 

The New York Heart Association (NYHA) Functional Classification provides a simple way of classifying the 

extent of heart failure. It places patients in one of four categories based on how much they are limited 

during physical activity. The stages of diastolic dysfunction are graded from I to IV. 

- Grade I: It is called abnormal relaxation pattern and it is the mildest form of diastolic dysfunction. 

This pattern may develop normally with age in some patients and many grade I patients will not 

have any clinical signs or symptoms of heart failure.   

- Grade II: It is called pseudonormal filling dynamics. This is considered moderate diastolic dysfunction 

and is associated with elevated left atrial filling pressures. These patients more commonly have 

symptoms of heart failure and many have left atrial enlargement due to the elevated pressures in 

the left heart.  

- Grade III and IV: They are called diastolic restrictive filling dynamics. These are both severe forms of 

diastolic dysfunction and patients tend to have advanced heart failure symptoms. The presence of 

either class III or IV diastolic dysfunction is associated with a significantly worse prognosis. These 

patients will have left atrial enlargement and many will have a reduced left ventricular ejection 

fraction indicating a combination of systolic and diastolic dysfunction. 

No one single echocardiographic parameter can be used to obtain an accurate diagnosis of diastolic heart 

failure. Multiple echo parameters have been proposed including mitral inflow velocity patterns, pulmonary 

vein flow patterns, tissue Doppler measurements, and M-mode echo measurements (see Figure 3.8). 

Algorithms have been developed which combine multiple echocardiographic parameters to diagnose 

diastolic heart failure (46). 

  

Figure 3.8. Diagrams (left) and recorders (right) showing typical mitral valve flow (MVF), pulmonary vein flow (PVF), tissue 

Doppler mitral annulus velocity (TDI) and color M-mode patterns of the various stages of diastolic heart failure (46).  
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3.5  Pacing and diastolic heart failure 
3.5.1 Introduction 

When the normal autonomous pacemaking activity is altered, it becomes essential to restore ventricular 

function. This can be done by applying an artificial stimulus, through the use of a pacemaker, to heart 

muscle. Pacemakers generate an electrical charge through electrodes that produce action potentials in 

myocardial cells. These action potentials, stimulate the surrounding myocardium (capture), and a wave of 

electrical discharge (depolarization) moves from the electrode to energize cardiac chambers (44).  

Different types of pacemakers can be distinguished according to the chamber being paced, the chamber 

being sensed, and the response of the pacemaker to the sensed impulse. Since the advent of pacing therapy 

in 1958, tremendous improvement in technology has produced more sophisticated, efficient and compact 

pacemakers. The pacing sites, pacing modes and baseline heart function influence diastolic heart function, 

and various authors have reported the effects of pacing on one or more diastolic function parameters. 

Today, thanks to developments in microelectronics, the devices are smaller, the programming options wider, 

and the pacing leads thinner but longer lasting than before. All these developments, in both hardware and 

software, have aimed at the primary goal of appropriate electrical correction of pulse and conduction 

defects in such a way as to simulate the natural, inherent electrical function of the heart as closely as 

possible and to satisfy the patient’s needs while minimizing side effects. In addition, increased device 

longevity and the elimination of major and minor complications resulting from treatment have also been the 

constant aims of both manufacturers and physicians. 

3.5.2 Cardiac resynchronization therapy 

In approximately 30% of patients with heart failure, an abnormality in the heart's electrical conducting 

system (called an "intraventricular conduction delay" or bundle branch block) causes the two ventricles to 

beat in an asynchronous fashion. That is, instead of beating simultaneously, the two ventricles beat slightly 

out of phase. This asynchrony greatly reduces the efficiency of the ventricles in patients with heart failure, 

whose hearts are already damaged. 

Cardiac resynchronization therapy (CRT, which is alternative called biventricular pacing) re-coordinates the 

beating of the two ventricles by pacing both ventricles simultaneously. A CRT device sends small, 

undetectable electrical impulses to both ventricles to help them beat together in a more synchronized 

pattern. This improves the heart's ability to pump blood and oxygen to the body. 

 

Figure 3.9. CRT. 1. Pacemaker generator;2. Right atrial pacer wire;3. Right ventricular pacer wire; 4. Left ventricularpacer wire(47). 
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Early studies with CRT demonstrated its ability to improve the symptoms, the exercise capacity, and the 

feeling of well-being of many patients with moderate to severe heart failure. Additional studies showed that 

CRT can improve over time both the anatomy and function of the heart - tending to reduce the size of the 

dilated left ventricle, and improving the energy usage of the heart. However, up to 35-40% of patients 

undergoing CRT does not respond favorably. The reasons for this are not completely known but may be 

dependent on proper programming, which enable the LV contraction to take place under the most 

appropriate hemodynamic conditions. An understanding of the positive and negative effects of pacing is 

imperative in order to appropriately apply pacing modalities and appropriate configurations when treating 

patients. Although in many instances a predictable result can be anticipated when applying pacing therapy 

to a given condition, it is important to recognize that interrogation of ventricular function (systolic and 

diastolic) is necessary to confirm the anticipated results. A better mechanical understanding of how blood is 

transported in the LV may help in the development of an efficient method for optimization 

3.5.2.1 Optimization of atrioventricular (AV) delay and diastolic function 

The AV delay is the time between the atrial beat and the corresponding ventricular paced event. A long AV 

delay gives the ventricle a lot of “opportunity” to beat on its own before the ventricular output pulse is 

delivered. If AV timing is too long, intrinsic and dyssynchronous ventricular activity can break through. When 

AV timing is too short ventricular filling time may be cut short and hemodynamics can be impaired. The goals 

of AV optimization are: 

- Allow adequate time for passive filling of the ventricles 

- Allow adequate time for a complete atrial contraction 

- Allow for ventricular contraction 

An optimal and appropriate AV delay should result in optimum filling of the left ventricle without 

interruption of the A wave, thereby allowing complete diastolic filling. To optimize left ventricular filling in 

these patients, the AV delay must be programmed short enough to avoid premature mitral valve closure 

with mitral regurgitation, and long enough to avoid left atrial cannon waves. Optimization of AV timing is not 

only critical to achieve optimal resynchronization therapy, and in turn LV function, but it may enable some of 

the non-responder patients to improve functionally and hemodynamically.(48, 49) 

Rokey et al. found an inverse relation between the effectiveness of atrial contraction and early diastolic 

filling (E wave). It was postulated that at a short AV delay, atrial contraction is aborted and the left atrium 

remains with a larger residual volume at end diastole. During systole, LA volume and pressure increase 

further, resulting in a higher AV pressure gradient after mitral opening and thus an increase in peak inflow 

rate. The opposite occurs with enhanced atrial emptying and an improved atrial filling fraction brought 

about by optimizing the AV delay. (50) 

Studies have shown that optimization of AV delay results in improved NYHA functional class as well as 

greater cardiac output (51). An optimum AV delay is programmed when the end of the Doppler A wave 

(corresponding to LA contraction) occurs just before the onset of aortic systolic Doppler flow. Ritter et al. 

and others have reported simple and practical AV delay algorithms. Ritter´s method includes setting the AV 

delay to an inappropriately short then long AV interval and measuring a surrogate of the atrial electrical 

mechanical delay (QA) interval at each setting. This is accomplished by measuring the interval between the 

onset of the Q wave and the termination of the mitral A wave (52). 
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The iterative technique to AV delay optimization also requires the recognition of A wave truncation. Mitral 

inflow is recorded at programmed long sensed AV delay, such as 150 msec, then AV delay is decreased by 

intervals of 10-20 msec until the A – wave begins to truncate. Once the A – wave truncation is seen, AV delay 

is lengthened in 10 msec steps until there is no truncation. This generates an optimized AV delay when 

ventricular contraction occurs just at the end of the atrial contribution. 

3.5.2.2 Optimization of intraventricular (VV) delay and diastolic function 

VV timing refers to the synchronization of RV and LV contractions. Intraventricular dyssynchrony contributes 

to impairment of cardiac function. The goal of VV timing optimization is to get the ventricles to contract as a 

unified whole. 

Current generations of CRT devices also allow for optimization of ventricle to ventricle (VV) timing. In 

patients with heart failure and LV dyssynchrony, proper timing of the intraventricular pacing interval (VV 

interval) may further optimize LV function. Although the proper timing of the VV interval is clearly beneficial 

in select patients, a definite benefit of this feature has not yet been proved. Specific measurements for 

ventricular dyssynchrony correlate with hemodynamic changes in patients with biV pacing compared with 

simultaneous biV pacing increases cardiac output and decreases mitral regurgitation in patients with heart 

failure (53, 54). 

Van Gelder et al. studied LV dp/dt in patients with severe LV dysfunction. They were able to elicit additional 

increase in dp/dt after optimizing the VV interval (3% - 8%). Maximum dp/dt was achieved with pacing “LV 

first” in 44 patients; simultaneous right and LV” pacing in 6 patients; and “RV pacing first” in 3 patients. Such 

benefit has attributed to improved LV synchrony, resulting in a change in preload and reduction in mitral 

regurgitatition (55). 

It has been suggested to be an intraventricular delay that reduces LV dyssynchrony and/or maximizes LV 

systolic function. Sogaard et al. evaluated the impact of sequential CRT with individualized intraventricular 

delay programming. Simultaneous CRT was better than “no CRT” in reducing delayed longitudinal 

contraction (DLC) (from 45% to 23%, p<0.01) and increasing ejection fraction (EF) (from 22% to 29%, p<0.01). 

However, optimum sequential CRT (preactivation of the left ventricle in 9 patients and of the right ventricle 

in 11) caused a further reduction in the extent of DLC from 33% to 23 % and increase EF from 29% to 33%. 

Without any further optimization of AV delay, the diastolic filling time increased from 430 ± 88 msec during 

simultaneous CRT to 460 ± 80 msec during optimum sequential CRT (56).  

All these approaches neglect the fact that the fact that the flow has its own fluid timings. They only think in 

terms of pressures but nobody has looked at how the fluid is actually transported. LV vortices act as a 

conduction belt for blood that enters the ventricle. Better knowledge of the dynamics of these vortices may 

contribute to increase our understanding of the effects of AV and VV delays. The development of a model to 

simulate LV filling will allow us to modify the delays and check how the efficiency of the filling depends on 

that. We want to be able to optimize CRT not based on how the signals should be in a healthy heart but on 

which is the way to optimize a sick heart. 
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Chapter 4 

4 Fluid dynamic model 

Previous chapters described the great complexity of the cardiac cycle in general and the diastole in 

particular. This chapter justifies a set of simplifications that will allow the problem to be posed in the form of 

equations. The development of a numerical code to simulate the blood flow transport in the left ventricle 

has a great importance because the current protocols for CRT for patients with DHF are not successful. A 

simplified model can be used as a guideline to identify the values of time delay between pulses that optimize 

the filling of the LV of a given patient. 

4.1  Introduction 
Modeling the intraventricular flow is demanding because ventricular motion affects blood flow, but blood 

flow itself affects ventricular motion. McQueen & Peskin (57) model cardiovascular tissue as being elastic, 

having essentially uniform mass density, and apply a modified form of the Navier-Stokes equations to the 

four chambered heart and great vessels. Using a supercomputer their solution provides fluid, wall and valve 

motion as a function of space and time. Their computed results are consistent with flow attributes observed 

in vivo via cardiac MRI. Kovacs (57) focuses on the physiology of diastole. The suction pump attribute of the 

filling ventricle is modeled as a damped harmonic oscillator. The model predicts transmitral flow-velocity as 

a function of time. Full fluid-structure interaction models are being developed in which movement of the 

blood and muscle is not known a priori but is computed during the simulation. Furthermore, most 

commercially available software programs allow only small strain deformations (up to 5%) and are 
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inadequate for cardiac modeling, where strains may exceed 50%. Currently, no model can predict the impact 

of structural changes of LV shape on flow propagation within the LV. 

Some simplification is possible with computational fluid dynamics models, where LV motion is prescribed 

based on images from echocardiography or magnetic resonance imaging, but these models lack fluid 

feedback on the myocardium. Using the contour of the clinical Doppler ecocardiographic E and A-wave as 

input, solution of Navier Stokes equations allows calculating intraventricular diastolic flow. The specific aim 

of this project is to develop a numerical code to evaluate the effect of the AV and VV delays on blood flow 

transport in the LV, in particular, to understand the effect of these timings on the properties of the vortex 

that is formed in the LV, under the following working simplifications: 

- The flow entering the ventricle is imposed. 

- The motion of the left ventricle is prescribed, ignoring fluid-structure interaction. 

4.2  The inlet flow 
Oxygenated flow coming from the pulmonary systems enters into the left ventricle through the mitral valve 

during diastole at a certain speed that can be measured using non-invasive techniques such as the ones 

described in section 3.1.2. The most widely used imaging modalities are the ones based on the use of 

ultrasounds (Doppler techniques, section 3.3). Figure 4.1 shows a typical normal transmitral Doppler flow 

velocity pattern. 

 

Figure 4.1. Mitral valve velocity profile 

The normal E velocity in healthy, young individuals is approximately 1 m/s with an A velocity of 0.4 to 0.2 

m/s, reflecting the normally small contribution of atrial contraction to left ventricular diastolic filling. If 

diastole is long enough, a period of no inflow, or diastasis, between the two flow curves is seen. 

Even in normal individuals, the pattern of left ventricular diastolic filling varies with age, loading conditions 

and heart rate. With age, there is a gradual reduction in E velocity, prolongation in the rate of early diastolic 

deceleration, and increase in A velocity so that the ratio of E to A velocity changes from greater than 1 in 

young individuals, to approximately 1 at ages 50 to 60, to less than 1 in older normal individuals. 

An increased preload result in an increase in E velocity and decreased preload has the opposite effect. When 

diastole is short (i.e., with a rapid heart rate), the A velocity becomes superimposed (or summated) on the 

down-slope of the E velocity, resulting in an apparent higher A velocity. At very high heart rates, only a single 

E/A peak may be seen. This happens for instance in neonates. These variations in the normal pattern of left 

ventricular diastolic filling should be recognized to avoid an inappropriate interpretation of an 
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“abnormality”. Table 4.1 shows how these parameters vary from normal patients to patients with different 

grade of diastolic heart failure. 

Table 4.1. Assessment of diastolic dysfunction through transmitral Doppler velocities (46) 

 Normal Grade I Grade III and IV 

IRP  <40 yrs 70±12 ms >110ms <60ms 
        >40 yrs 80±12 ms >110ms <60ms 
DT 200±32 ms >240ms <150ms 
E-Wave 0.85±0.15 m/s <0.50m/s >1.20m/s 
A-Wave 0.55±0.15 m/s <0.50m/s <30m/s 
E/A ratio >1 <1 >2 

 

We are seeking for a general knowledge about the influence of AV and VV delays on LV hemodynaimcs 

under a whole range of conditions, so transmitral Doppler velocities will be enough to make up the inlet 

profile. This profile will have a parabolic shape as shows Figure 4.2.  

 

Figure 4.2. Inlet profile 

4.3  The domain 
During diastole, the ventricle relaxes and fills with blood, increasing its volume from about 50 ml at the end 

of systole to 120 ml at the end of diastole. Parameters such as end-diastolic dimension (EDD), end-systolic 

dimension (ESD) or interventricular septal end diastolic dimensions (IVSd) are commonly used to describe its 

shape. Studies show how shape and size of the left ventricle varies from patient to patient and it has a great 

influence in the performance of the heart (58).  

In addition, it should be taken into account that the left ventricle undergoes complex motions. The 

myocardium (the middle of the three layers forming the wall of the heart) is anatomically and functionally 

inhomogeneous (59). The left ventricular (LV) wall is composed of both longitudinal and circular myocardial 

fibers. Normal systolic contraction occurs with the activity of both longitudinal and circular myocardial fibers 

(61, 62). However, the longitudinal fibers contract earlier than the circular fibers. As a result, early in systole 

(in the period of isovolumic contraction), the left ventricle undergoes geometric deformation, becoming 
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more spherical (63). Then, with contraction 

shape. 

The model proposed here ignores the complexity of the shape and movement of the ventricle, assuming that 

the ventricle is a paraboloidic chamber wit

blood is entering into the domain, the volume has to increase in a way which assures that 

because blood is considered an incompressible fluid.

Figure 4.3. Example of a model of the left ventricle of the human heart. University of Leeds. Mathematics Applie
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. Then, with contraction of the circular fibers, the left ventricle recovers its cylindrical 

ignores the complexity of the shape and movement of the ventricle, assuming that 

chamber with a movement such that the mass is conserved. This is, when 

blood is entering into the domain, the volume has to increase in a way which assures that 

compressible fluid.  
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Chapter 5 

5 Numerical model 

This section presents the numerical approach to the problem described in previous chapters. The problem, 

reduced to a set of differential equations, is discretized and solved on a staggered grid following a fractional-

step method in combination with a low-storage semi-implicit Runge-Kutta method. We also use a 

computationally efficient method to solve the linear system of equations. At the end of the chapter, some 

examples validate the performance of the code. 

5.1  Introduction 
 

Previous chapters have provided the knowledge required to understand and simplify the filling process of 

the left ventricle of the heart. This is only the first stage when developing a numerical simulation of LV flow. 

The steps to be followed are summarized in Figure 5.1. First, the problem is formulated as a set of 

differential equations through the definition of a mathematical model. The discretization of the domain and 

the continuous governing equations transforms the problem into a discrete set of algebraic relations. 

Afterwards, a numerical procedure is invoked to solve the obtained linear system and obtain the local 

solution to the original equations. This set of equations can be solved providing a solution. Validation of this 

solution is a crucial step to assure its accuracy. 
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Figure 5.1. Strategy for the development of a numerical model 

This chapter will follow the same structure described in Figure 5.1. 

5.2  Mathematical model 
The starting point of any numerical method is the mathematical model, i.e. the set of equations and 

boundary conditions which define the problem to solve. In this particular case, where blood is considered to 

be a fluid with constant density and viscosity (see section 2.3), Navier-Stokes (Eq. 5.1 and Eq. 5.2) equations 

should be solved in order to simulate the filling process of the left ventricle.  

� · 	
 � 0 Eq. 5.1 

� 
�	
�� � 	
 � · 	
� � ��p � � ∆	
 Eq. 5.2 

Expressing the equations in a conservative two dimensional-Cartesian (x,r) form, the problem becomes, 

����� � ������ � ������� � � ���� � 1�� 
������� � ������� � Eq. 5.3 

����� � ������ � ������� � � ���� � 1�� 
������� � ������� � 

 

Eq. 5.4 

where x and r are two Cartesian coordinates. We have preferred this notation to the standard (x,y) notation 

because the code will be extended to 3D cylindrical coordinates (x,r,θ) in later stages of the project. 

The boundary conditions are determined by the movement of the walls and the flow in the mitral valve. 

When using conventional techniques, geometric complexity combined with moving boundaries requires 
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regeneration or deformation of the grid during the simulation, leading to a considerable increased of the 

computational difficulties. The discretization proposed here is based on the use of the Immersed Boundary 

method, which is able to handle more effectively the difficulties associated with the existing boundary 

conditions. 

In two-dimensional incompressible flows, the formulation in terms of stream function – vorticity �� �  ! is 

usually favorable. This work adopts a formulation based on velocity – pressure (v -p) due to several reasons. 

First of all, despite of currently having a bidimensional flow, the code will be extended in the future to the 

third dimension and this can only be performed maintaining a v – p formulation. In addition, this formulation 

is more compatible with the use of immersed boundaries (it is hard to impose boundary conditions on the 

vorticity), which allows an easily implementation of the numerical solution.    

5.3  Mesh discretization 
5.3.1 Introduction 

In computational fluid dynamics, the primary issues are accuracy, computational efficiency, and, specially, 

the handling of complex geometry. The appropriate selection of the grid has a great influence over these 

issues. A grid that is not well suited to the problem can lead to unsatisfactory results, instability or lack of 

convergence. Thus, it is important to define a numerical grid which will establish the discrete locations at 

which the variables are to be calculated. Two approaches can be followed when facing this task (64) : 

- Body conformal grids, which employ structured or unstructured grids that conform the body. 

- Non body conformal grids, where the body would still be represented through some means such as 

a surface grid, but the grid would be generated with no regard to this surface grid. The governing 

equations will then be discretized using a certain discretization technique, for example, finite 

differences, without resorting to coordinate transformation or complex discretization operators. 

 

Figure 5.2. Body conformal grid (left) and non body conformal grid (right) (64) 

5.3.2 Types of grids 

In order to select the best way of solving the particular problem studied here, it is important to understand 

the main features of the available alternatives. This section attempts to summarize its basic characteristics. 

5.3.2.1 Body conformal grids 

As it has been outlined before, body conformal grids employ structured or unstructured grids which fit their 

shape to the body. In structured grids, members of a single family do not cross each other and cross each 
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member of the other families only once. Unstructured grids are much more flexible and can fit an arbitrary 

solution domain boundary. The selection of one or other type of grids depends on the problem. Table 5.1 

compares the basic features of structured and not structured grids. 

Table 5.1. Comparison between structured and not structured grids. 

 STRUCTURED GRIDS NON STRUCTURED GRIDS 

TYPE OF GEOMETRY Simple Complex 
GRID GENERATION Easy Difficult 
CELD COMPUTATIONAL EFFORT  Low High 
NUMBER OF CELLS High Low 
FLEXIBILITY Low High 
DATA STRUCTURE Regular -> higher computing 

efficiency 
Irregular -> lower computing 
efficiency 

NUMERICAL SCHEME Possible alignment grid/flow -> 
low order schemes low errors 

No Possible alignment grid/flow-> 
high order schemes always 

5.3.2.2 Non body conformal grids: Immersed Boundaries 

The immersed boundary method allows for the solution of problems with complex geometry in a Cartesian 

structured grid. It is applicable to complex geometries while requiring significantly less computation than 

competing methods without scarifying accuracy. Moreover, as the computational domain is very simple and 

independent from the geometry very different problems can be solved with minimum variations in the 

implementation. 

The basic idea of this method is to consider the discretization of a simple, fictitious computational domain 

obtained by eliminating the complex object of interest. In order to obtain a realistic simulation, the effect of 

the presence of the object on the flow must be included in the problem. Imposition of boundary conditions 

of the IB is the key factor in developing an IB algorithm. It also distinguishes different methods. In the 

“continuous forcing approach”, the forcing due to the existence of boundaries is incorporated into the 

continuous equations before discretization, whereas in the second approach, which can be called the 

“discrete forcing approach”, the forcing is introduced after the equations are discretized. An attractive 

feature of the continuous forcing approach is that it is formulated independent of the underlying spatial 

discretization. On the other hand, the discrete forcing approach very much depends on the discretization 

method. However, this allows direct control over the numerical accuracy and stability. 

The IB method was first developed by Peskin in 1972 to simulate cardiac mechanics and associated blood 

flow. In Peskin’s formulation, the fluid equations (incompressible Navier-Stokes equations) are solved on 

uniform Cartesian grids and the elastic fibers of the heart walls are immersed in the flow: fluid and fiber 

exert time varying forces on one another. A Lagrangian coordinate system moving with the local fluid 

velocity is attached to the fibers and tracks their location in space; the information about the position of the 

fibers and their forcing on the fluid is transferred to the Eulerian underlying mesh where the flow solutions is 

obtained. In this procedure, the resulting forcing consists of delta functions located on the first cells external 

to the immersed body which, therefore, cannot be adequately represented on a finite size mesh. For this 

reason, a smooth transition between the external fluid and internal body cells is introduced which is 

equivalent to spreading the delta functions over a narrow band (typically three or four nodes) across the 

boundary (57, 65-67). 
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Since Peskin introduced this method, numerous modifications and refinements have been proposed and a 

number of variants of this approach now exist. Briscolini and Santangelo (68) used an immersed boundary 

approach to compute the unsteady 2D flow around circular and square cylinders at Reynolds numbers up to 

1000 whereas Goldstein, Handler and Sirovich (69) considered the 2D start up flow around a circular cylinder 

and 3D plane and ribbed-turbulent channel flow. In these works, the IB approach is used in conjunction with 

spectral methods and the forcing is applied in a band (consisting of three to four computational nodes) 

around the interface. All of them fit in what it has been called before continuous forcing approach. 

Mohd-Yushof (70) suggested a discrete forcing approach that introduces a body-force "# such that the 

desired velocity distribution is obtained at the boundary. In principle, there are no restrictions on the 

velocity distribution of the boundary. The method costs no more than the base computational scheme. 

Fadlun applied this approach to a three dimensional finite-difference method on a staggered grid and 

showed that the approach was more efficient than the continuous forcing. 

Nowadays, the challenge for the IB method lies in the representation of the wall boundaries and in providing 

an adequate near wall flow field resolution. 

5.3.3 Choice of the grid 

In body conformal grids, the alignment between the grid lines and the body surfaces allows better control of 

the grid resolution in the vicinity of the body and this has implications for the increase in grid size with 

increasing Reynolds. On the other hand, for anything but the simplest geometries it is difficult to generate 

the grid. In addition, in flows with moving boundaries the grid has to be generated each time step as well as 

the procedure to project the solution onto this new grid. 

Using the IB method the grid generation is greatly simplified and the body motion relatively simple due to 

the use of a stationary, non-deforming Cartesian grid. In addition, the per grid point operation cost is small 

due to the absence of additional terms associated with grid transformations. On the other hand, imposing 

boundary conditions is not straightforward and ramification of the boundary treatment on the accuracy and 

conservation properties of the numerical scheme is not obvious. 

Figure 5.3 presents the approaches available when deciding the discretization method. As the left ventricle is 

moving during its filling process, the use of IB is appropriate. There are possible options to impose the 

boundary conditions considering a discrete forcing approach: 

- Indirect Boundary Conditions approach, where the forcing extends into the fluid region due to the 

use of a distribution function and the details of the implementation depend strongly on the 

numerical algorithm used to discretize the governing equations. 

- Direct Boundary Conditions approach, where the computational stencil near the immersed 

boundary is modified to directly impose the boundary condition on the IB.  

Direct Boundary Conditions imposition is the approach to be used because it has been shown to be simpler 

and more efficient (70). 
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5.3.4 Variable arrangement on the grid

Before turning to the discretization, it is important to select the points in the domain at which the values of 

the unknown dependent variables are to be computed

The obvious choice is to store all the variables at the same set of grid points and to use the same control 

volumes for all variables. Such a grid is called 

equations are essentially identical, the number of coefficients that must be computed and stored is 

minimized and the programming is simplified by this choice.

There is no need for all variables to share the same grid and a 

advantageous. Choosing an arrangement as the one presented in

interpolation with the collocated arrangement, can be calculate

without interpolation. Both the pressure and diffusion terms are very

difference approximations without interpolation, since the pressure nodes lie 

velocity derivatives needed for the diffusive terms are readily computed at the faces.
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Figure 5.3. Mesh discretization techniques. 

arrangement on the grid 

Before turning to the discretization, it is important to select the points in the domain at which the values of 

the unknown dependent variables are to be computed. 

The obvious choice is to store all the variables at the same set of grid points and to use the same control 

volumes for all variables. Such a grid is called collocated (Figure 5.4). Since many of the terms in each of the 

equations are essentially identical, the number of coefficients that must be computed and stored is 

minimized and the programming is simplified by this choice. 
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Figure 5.4. Collocated grid 

There is no need for all variables to share the same grid and a staggered arrangement 

advantageous. Choosing an arrangement as the one presented in Figure 5.5, several terms that require 

interpolation with the collocated arrangement, can be calculated to a second order of approximation 

without interpolation. Both the pressure and diffusion terms are very naturally approximated by central 

difference approximations without interpolation, since the pressure nodes lie at the face centers and the 

velocity derivatives needed for the diffusive terms are readily computed at the faces.
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Figure 5.5. Staggered grid 

The strong coupling between the velocities and the pressure in this kind of grids helps to avoid some types of 

convergence problems and oscillations in pressure and velocity fields (71). Furthermore, staggered meshes 

do not display spurious pressure modes and they have been shown to locally conserve, mass, momentum, 

kinetic energy, and circulation to machine precision. 

In this case, the spatial discretization is performed on a staggered grid with the pressure p in the cell 

midpoints, the velocities ux placed on the horizontal cell interfaces, and the velocities ur placed on the 

vertical cell interfaces.  

When considering the field p, ux and ur, care has to be taken about interior and boundary points. Any point 

truly inside the domain is an interior point, while points on or outside boundaries are boundary points. The 

fields have the following sizes: 

Table 5.2. Size of the fields. 

Field quantity Interior Resolution Resolution with boundary points 

Pressure P nx x nr (nx+2) x(nr+2) 
Velocity component ux (nx-1) x nr (nx+1) x(nr+2) 
Velocity component ur nx x (nr-1) (nx+2) x(nr+1) 

  

Figure 5.6 shows a sketch of the mesh.  
 
 

 
 

Figure 5.6. Mesh 
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5.4  Discretization of the equations 
5.4.1 Spatial discretization 

One has to select the approximations to be used in the discretization process, i. e. a method of 

approximating the differential operators by a system of algebraic equations for the variables of interest. 

There are many approaches, but most compatible with immersed boundary method are: 

- Finite difference (FD), where approximations for the derivatives at the grid points have to be 

selected. 

- Finite volume (FV), where one has to select the methods of approximating surface and volume 

integrals. Rather than pointwise approximations on a grid, FV approximates the average integral 

value on a reference. 

- Finite element (FE), where one has to choose the shape functions (elements) and weighting 

functions. 

The choice influences the accuracy of the approximation. A compromise between simplicity, ease of 

implementation, accuracy and computational efficiency has to be made. Table 5.3 compares these 

approximation techniques in terms of speed, cost and versatility. 

Table 5.3. Basic features of finite approximation techniques 

 Speed Cost  Versatility 

Finite difference High High Low 
Finite volume Medium Medium Medium 
Finite element Low Low High 

 

Spatial discretization is closely linked to the grid discretization. This work uses a Finite Different method in a 

staggered matrix as explained in section 5.3. 

5.4.1.1 Approximating derivatives 

Spatial discretization of Navier-Stokes equations requires the approximation of first and second derivative.  

Finite differences can approximate second derivatives on a grid point by a centered stencil. 


�������$,& � �����!$,& ' �$(),& � 2�$,& � �$+),&,��  Eq. 5.5 

If the flow variable is stored in a large column vector, then the above approximation can be represented as a 

large sparse block matrix.  

The first derivative on a grid point can be approximated by a centered stencil, 

-��
��.$,& � ����!$,& ' �$+),& � �$(),&2,�  Eq. 5.6 
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-����.$,& � ����!$,& ' �$,&+) � �$,&()2,�  
This, however, can yield spurious oscillations, as shown in many textbooks on numerical analysis. Here the 

staggered grid comes into play. Assume the point of interest is the value of ��� in the middle between the 

points �$+),& and �$,& instead of the value in the position of �$,&. Then the approximation  

����!$+)�,& ' �$+),& � �$,&,�  

Eq. 5.7 

����!$,&+)� ' �$,&+) � �$,&,�  
is a stable centered approximation to  ��� and ��� in the middle between the two points. In the staggered 

grid this position happens to be the position of �$,&. 

The calculation of the non linear terms requires the use of first derivatives. This calculation is the only case 

where the discretization on the staggered grid does not work directly. For instance, the product ���� , which 

appears in the advection term of the �� equation, 

������! � �������! Eq. 5.8 

is not directly defined in the grid points. This is solved by using linear interpolation so that 

���/////$ � ����!$+)�,& � 
��$,& � ��$+),&2 �
�
 

Eq. 5.9 ��///& � ��$,&+)� � ��$,& � ��$,&+)2  

��///$ � ��$+)�,& � ��$,& � ��$+),&2  

where the over-bar with superscript i indicates a i-direction averaged quantity; and the over-bar with 

superscript j indicates a j-direction averaged quantity. Non linear terms can be written as 

�� 0���/////$1 � ��2��///&��///$3 Eq. 5.10 

and discretized as defined by Eq. 5.6. Discretization of the advection terms in the ur momentum equation is 
analogous, yielding to: 

��2��///&��///$3 � �� 0���/////&1 Eq. 5.11 

5.4.2 Temporal discretization 

The integration procedure consists of a fractional-step method with certain peculiarities that make it 

suitable for the implementation of the immersed boundary conditions. First, the theoretical basis of the 

procedure is presented. Then, the details of the fractional step method are described. 
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5.4.2.1 Theoretical basis 

Being 	# and p dimensionless velocity and pressure fields which satisfy Navier-Stokes equations in a 

computational domain Ω, representing H the non linear terms and L the laplacian linear operator, the 

equations to be solved are, 

� · 	# � 0                                          x5# 6 Ω Eq. 5.12 

�	#�� � 8�	#! � 1�� 9 · �	#! � �p     x5# 6 Ω Eq. 5.13 

Defining 	#: and p* as the approximate solutions of the previous equations which satisfy, 

�	#�� � �	#:�� � ��;                                   x5# 6 Ω Eq. 5.14 

�	#:�� � 8�	#:! � 1�� 9 · �	#:! � �p:      x5# 6 Ω Eq. 5.15 

where ; is a potential function that enforces continuity of 	# (Eq. 5.12). Applying the divergence to Eq. 5.14, 

the following Poisson equation is obtained for ; 

��; � ���	#:!�� . Eq. 5.16 

The boundary conditions for 	#: are equal to those for 	# 

	#:  � =.555#                           x5# 6 ∂Ω Eq. 5.17 

In addition, the following condition holds, 

	#�x5#, ?∆�! @ 	#:�x5#, ?∆�!                         x5# 6 Ω Eq. 5.18 

��x5#, ?∆�! @ �:�x5#, ?∆�!                        x5# 6 Ω Eq. 5.19 

where n is a natural number.  Eq. 5.13, Eq. 5.15, Eq. 5.18 and Eq. 5.19 lead to 

�	#�� �x5#, ?∆�! @ �	#:�� �x5#, ?∆�!                   x5# 6 Ω Eq. 5.20 

which is equivalent to  

�;�x5#, ?∆�! @ 0.                                            x5# 6 Ω Eq. 5.21 

Defining the problem this way, the estimated error on all the points of the domain Ω is, 

�;�x5#, ? A �! � B�∆�!                                 x5# 6 Ω Eq. 5.22 

��x5#, �! @ �:�x5#, �! �   B�∆�!                        x5# 6 Ω Eq. 5.23 

	#�x5#, �! @ 	#:�x5#, �! �   B�∆��!                       x5# 6 Ω Eq. 5.24 
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The fundamental difference between this method and classical fractional step methods defined by Spalart or 

by Kim and Moin (72, 73) is associated with the term p* in Eq. 5.15 and the imposition of the restriction Eq. 

5.19. This involves: 

- The error in the boundary conditions for the velocity is B�∆��!, no matter the boundary conditions 

for ;  and 	#:.  

- The boundary conditions for 	# are the same as those for 	555#:, thus the immersed boundary method 

can be easily applied. 

- The velocity correction due to ; is B�∆��! in all Ω and not only in ∂Ω. 

5.4.2.2 Integration procedure 

The integration procedure is essentially that described in Verzicco and Orlandi (74) and it consists of a 

fractional-step method in combination with a hybrid third-order Runge–Kutta scheme. The advantage of the 

third order Runge–Kutta scheme with respect to other time-integration procedures is the improved stability 

condition. Indeed in this scheme each time step is advanced through three sub-steps thus implying three 

times more operations than the common second-order schemes; nevertheless the third-order Runge–Kutta 

is still advantageous since it does not require extra storage and at the same computational cost as other 

second-order schemes, the present scheme yields an error which is generally smaller. Eq. 5.13 can be 

temporally discretized through the following three sub-steps scheme.  

�$C+) � �$C∆� � �DC82�$C3 � EC82�$C()3 � FC�� 9 · 2�$C3 � GC�� 9 · 2�$C+)3 � �FC � GC! ∂HpI+)      l � 1,2,3 Eq. 5.25 

Where the index i � 1,2 denotes x and r respectively, and l � 1,2,3 denotes the sub-step. The scheme is 

fractionated in the following fashion: 

Sub-step 1: 

�M$ � �$N∆� � �D)8��$N! � F)�� 9 · ��$N! � G)�� 9 · ��M$! � �F) � G)! ∂HpO      
�$� � �M$∆� � ��F) � G)! ∂H;) 

∂H�$� � 0 P  ∂H�;) � ∂H�M$�F) � G)! 

p� � pO � ;) � 1�� G)�F) � G)! ∂H�M$ 

Eq. 5.26 

 

Sub-step 2: 

�MQ$ � �$�∆� � �D�82�$�3 � E�8��$N! � F��� 9 · 2�$�3 � G��� 9 · 2�MQ$3 � �F� � G�! ∂Hp�      
�$R � �MQ$∆� � ��F� � G�! ∂H;� 

Eq. 5.27 
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∂H�$R � 0 P  ∂H�;� � ∂H�MQ$�F� � G�! 

pR � p� � ;� � 1�� G��F� � G�! ∂H�MQ$ 
 

Sub-step 3: 

�MQ$ � �$N+)
∆� � �DR82�$R3 � ER82�$�3 � FR�� 9 · 2�$N+)3 � GR�� 9 · 2�MQ$3 � �FR � GR! ∂HpR      

�$� � �MQ$∆� � ��FR � GR! ∂H;R 

∂H�$N+) � 0 P  ∂H�;R � ∂H�MQ$�FR � GR! 

pO+) � pR � ;R � 1�� GR�FR � GR! ∂H�MQ$ 

Eq. 5.28 

The super-indexes 1,2 and 3 denote the value of the variable at the beginning of each time sub-step, the 

tildes indicate the intermediate values of the velocities at each sub-step and the super-indexes n,n+1 

indicate the value of the variables at the beginning of each time step. The velocity field is corrected through 

the use of the potential function ; at the end of each sub-step to impose null divergence. The accuracy of 

the numerical scheme depends on the selection of the constants DC , EC , FC  and GC. To achieve a third order 

accuracy the numerical scheme should match the Taylor expansion of 	# (Eq. 5.29) to third order.  

	#�� � ∆�! � 	#��! � ��V	#!V∆� � 12 ���V	#!V∆�� � 16 ��RV	#!V∆�R � X�∆�Y! Eq. 5.29 

This gives a system of 43 equations and 11 unknowns. 26 of this equations are dependent, thus, we have to 

solve a system of 17 equations and 11 unknowns. If we force the length of the sub-steps to be the same for 

the convective and viscous terms(72), 

F) � G) � D)    F� � G� � D��E�     FR � GR � DR�ER Eq. 5.30 

This reduces the system to a system with 8 unknowns and 8 equations. The equations are (72): 

First order 

D) � D� � DR�E� � ER � 1 Eq. 5.31 

Second order 

DR�D) � D��E�! � D)�ER � D�! � 12 Eq. 5.32 

D)G) � D)�D��E�! � G��D��E�! � �DR�ER!�D)�D� � E�! �  GR�DR�ER!  � 12 Eq. 5.33 
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Third order 

D)D�DR � 16 Eq. 5.34 

D)��D��ER! � DR�D) � E) � D�!� � 13 Eq. 5.35 

GRZ�DR�D) � D��E�! � D)ER[ � D)D��DR�ER! � D)D��DR � ER! � D)D�G�  � 16 Eq. 5.36 

DRZD)G) � �D��E�!�D)�G�![ � D)G)�D��ER! � 16 Eq. 5.37 

\�D)�G� � GR!�D� � E�! � �G)�GR!D)�GR�]ER �\�D)�G� � GR!DR � �G)�G�!D)�G��]E� �\�D)�GR � G�!D� � �G)�GR!D)�GR�]DR 

�\�G) � G�!D)�G��]D��G)�D) � 16 

Eq. 5.38 

Unfortunately this nonlinear system of equations (Eq. 5.31-Eq. 5.38) apparently does not have solution. If we 

sacrifice the last equation (Eq. 5.38) the scheme is still third-order on the non-linear terms and second order 

on the viscous term. There is then a one-parameter family of such schemes. A good compromise between a 

low residual for Eq. 5.38 and the desire to have fairly even sub-steps is (72), 

F) � 2996       F� � � 340       FR � 2996  

Eq. 5.39 

G) � 37160       G� � 524       GR � 160 

D) � 815       D� � 512       DR � 34 

                      E� � � 1760      ER � � 512 

5.4.3 Immersed boundaries 

5.4.3.1 Description of the method 

The discrete forcing method, suggested by Mohd – Yusof (70), introduces a body force "# such that the 

desired velocity distribution =5# is obtained at the boundary Ω. In principle, there are no restrictions on the 

velocity distribution on the motion of Ω.  

�$N+) � �$Nc� � �8d$ � "$ Eq. 5.40 

Where �8d$ contains convective and viscous terms and the pressure gradient. The forcing "$ is zero inside 

the fluid and is non-zero in the ghost cell zone which is used to represent the presence of complex boundary. 

Ghost cells are defined as cells inside the solid that have at least one neighbor inside the fluid. 
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The velocity �=$N+)! and pressure fields can be extrapolated to the ghost cells using nearby fluid points and 

associated boundary information. Thus, the boundary condition at the IB is enforced through the use of 

ghost cells. As example, if the forcing "$ must yield to �$N+) � =$N+), where =$ is the velocity at the 

boundary. 

"$ � ��8d$ � =$N+) � �$Nc�  Eq. 5.41 

5.4.3.2 Numerical procedure 

The numerical procedure has the following steps: 

- Detect the boundary and determine the adjacent ghost cells. 

- Extrapolate to find the value of the fluid at the ghost cell value required to impose the boundary 

condition implicitly. 

- Obtain the predicted field (intermediate velocity �5#:) of the fractional step procedure. 

- Solve the potential correction (φ) Poisson equation to satisfy the continuity equation 

- Update the velocity field to the next time sub-step. 

The computational domain is divided into three regions: the physical domain, body domain and the ghost 

cell domain. They are illustrated in Figure 5.7. The physical domain is the flow region. The ghost cells lie just 

inside the body adjacent to computational nodes in the flow domain and they are the points where the 

boundary conditions will be imposed 

 

 

 

 

 

Figure 5.7. Physical domain, ghost cell domain and body domain. 

5.4.3.3 Interpolation techniques  

The expressions given for the forcing would be correct if the position of the flow variables on the grid 

coincided with the immersed boundary. This in general is not for complex curvilinear geometries. In 

particular, in the present case, where a staggered grid is used, even if the boundary coincided with the 

position where one velocity component was defined, this would not be the case for the other components. 

Therefore, an interpolation procedure would be needed anyway. For each ghost cell, an interpolation 

scheme that introduces the boundary condition of the IB is then devised. 

A number of options are available for constructing the interpolation scheme (75). The simplest possibility is 

to select the grid points closest to the immersed boundary and to apply the forcing as if the position of the 

unknown and the boundary were coincident. In fact, in this case there is no interpolation and the geometry 

is described in a stepwise way. Note also that the surface is somewhat diffused since the 2 velocity boundary 

Physical Domain 

Ghost Cell Domain 

Body Domain 
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conditions are applied at different locations. This section studies two of the available interpolation 

techniques: the Inverse Distance Weighted Method and Linear Interpolation. 

5.4.3.3.1 Inverse Distance Weighted Method 
The original inverse distance weighted interpolation method is due to Shepard (76). The basic Shepard’s 

method is: 

f�x, r! � ∑  h��, �!fijhk)∑  h��, �!jhk)  Eq. 5.42 

Where  h��, �! � ,hl � ��� � �h!� � �� � �h!�!l and � is typically – 2, although other values may be 

used. � can be also replaced by �h and could be different for each k, where k goes from one to the number 

of points used to interpolate. 

Franke and Little (77, 78) suggested a method which is used extensively in this work where the weighting 

coefficients are defined as: 

 h��, �! � -� � ,h�,h .l
 Eq. 5.43 

where R represents the maximum ,h. Eq. 5.43 can be re-written using a dimensionless weighting coefficient  m$ � no��,�!∑ np��,�!qprs  , so that 

f�x, r! � t  m$��, �!fH
j

$k)  Eq. 5.44 

Dirichlet boundary conditions 

The boundary condition for the velocity is, 

	#:  � =5#                           x5# 6 ∂Ω Eq. 5.45 

Because the sparse structure of the matrix needs to be conserved in order to allow for the efficient 

numerical solution f the resulting algebraic problem, only the immediate neighbors to the ghost points can 

be used when interpolating. 

 

  

 

 

 

 

Figure 5.8. Stencil 
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	#:u�xv, rv! �  mw	#:x �  mj	#:y �  mzv| �  m}	#:~ �  m�	#:� Eq. 5.46 

At most, two out of four original boundary points lay in the physical domain for the particular case of a 

circle, thus, Eq. 5.46 is simplified to,  

	#:u�xv, rv! �  m)	#:) �  m�	#:� �  mz=5# Eq. 5.47 

where 1 represents the node in the r direction (east or west, depending on the location in the circle) and 2 

represents the node in the x direction (north or south). 

 

  

 

 

 

Figure 5.9. Three points interpolation. 

This condition can be simply imposed when the viscous terms are calculated implicitly, by substituting in 

every ghost point the original equation with the boundary equation (Eq. 5.48). 

� m)	#:)� m�	#:� � 	#:u�xv, rv! �  mz=5# Eq. 5.48 

Neumann boundary conditions 

To enforce mass conservation, we impose that the normal derivative of the velocity correction is null, this is: 

∂O; � 0                                            x5# 6 ∂Ω Eq. 5.49 

This is equivalent to imposing ;v � ;v:, where G: is the symmetric point in the direction normal to the 

boundary and it does not have to belong to the mesh.(See Figure 5.10). 

 

 

 

 

 

Figure 5.10. Neumann boundary conditions 

Following the same procedure that the one described for Dirichlet boundary conditions, 

;v �  m);) �  m�;� �  mv:;v: Eq. 5.50 

The boundary equation that is going to replace the Poisson equation in the ghost cells is: 

B 

F1 

F2 G 

B 

F1 

F2 G 

G* 



Chapter 5: Numerical model 

 

 

73 
 

� m);) �  m�;� � ;v�1 �  mv:! � 0. Eq. 5.51 

This way of imposing the boundary condition for ; presents problems at some particular points. When the 

ghost cell is on the boundary,  mv:~1,   m)~0,   m�~0, and thus, the boundary condition is 0=0 and the matrix 

becomes singular. By simply forcing  G: to be separated a certain distance from G, this problem disappears 

while keeping the numerical scheme second order. Mathematically, this procedure is expressed as: 

;v: � ;| � �∂O;!|,zv: � �∂�O;!|2 ,zv: � � � 

;v � ;| � �∂O;!|,z� � �∂�O;!|2 ,z�� � � 

Eq. 5.52 

Thus, 

;v: � ;v � �∂�O;!|2 �,zv: � � ,z��! � � Eq. 5.53 

Since the coefficients introduced in the ghost cell positions are generally much smaller than the ones coming 

from the discretization of Navier-Stokes equations in the physical domain, it is advisable to multiply the 

boundary condition equation by 1/dx2 or 1/dr2, to make sure that all the coefficients in the matrix have the 

same order of magnitude. If all the terms of the matrix are of the same order of magnitude, we avoid errors 

due to finite floating point accuracy. 

5.4.3.3.2 Linear interpolation 
One simple option is bilinear interpolation where a generic flow variable can be expressed with reference to  

Figure 5.11 as 

f�x, r! � �z � �)� � �����R�� Eq. 5.54 

The coefficients �$ can be expressed in terms of the nodal values 

� � �()f Eq. 5.55 

 

 

 

 

 

  

 

Figure 5.11. Linear interpolation. 

The four coefficients in the above equation can be evaluated in terms the values of " at fluid nodes �), �� 
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also be used instead of �). Note than �)and �� are the intercepts with the r- and x- lines passing through the 

ghost point, respectively.  

A less accurate, linear interpolation scheme (i.e., �R � 0 ) would not employ the fluid in node �R and 

therefore would retain sparse form of the matrix, which is well suited for line-solution techniques (71, 79). 

Linear interpolation preserves the second-order accuracy of the overall numerical scheme. Although 

polynomials of higher degree are expected to be more accurate, they often lead to boundedness problems 

and numerical instabilities. 

As a staggered grid is being used, different weighted coefficients at the boundary for each velocity 

component and pressure have to be found. Thus, it is required to solve a different linear system for each 

variable. The staggered grid arrangement increases the required storage. However, the increase is not 

significant since the boundary has one less dimension than the domain. 

Dirichlet boundary conditions 

A certain velocity needs to be specified at the boundary using a three points linear interpolator, so 

v�x, r! � �z � �)� � ��� Eq. 5.56 

Following the notation specified in 5.4.3.3.2, M can be defined as a 3x3 matrix whose elements can be 

computed from the coordinates of the three points. 

� � �1 �z �z1 �) �)1 �� ��
� Eq. 5.57 

The coefficients Ci can then be calculated as � � M-1f. It is convenient to evaluate the matrices M at each 

point initially and store them for its usage during the solution procedure if the boundaries are not moving. If 

the boundaries are moving, M needs to be recalculated at every time step. The value of f in the ghost points 

can now be interpolated as function of Ci and the location of the ghost point. 

	#:u�xv, rv! �  m)���, �, �!	#:) �  m����, �, �!	#:� �  mz���, �, �!=5# Eq. 5.58 

The major drawback with this interpolation is that large negative weighting coefficients are encountered 

when the boundary point is close to one of the fluid nodes. Although algebraically correct, this can lead to 

numerical instability, i.e., the absolute value at the ghost point may be greater than the nearby fluid point 

values and the solution may not converge. A way to remedy this difficulty is to use the image of the ghost 

node inside the flow domain to ensure positive weighting coefficients. The point G* is the image of the ghost 

node G through the boundary as shown in Figure 5.10. The variable is evaluated at the image point using the 

interpolation scheme. The value at the ghost node is then "� � 2"z � "�:.(79) 

Neumann boundary conditions 

The pressure correction boundary condition requires the wall normal derivative to be zero at the boundary. 

The normal derivative on the boundary can be decomposed as: 

∂O; � ∂�;n�� � ∂�;n�m � 0                                           x5# 6 ∂Ω Eq. 5.59 

where nM�,� are the components of the unit vector normal to the boundary. Since they are known, the 

computation of the normal gradient at any point is straightforward, using the matrix M is defined as: 
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� � �0 sin ��z! �����z!1 �) �)1 �� ��
� Eq. 5.60 

So the linear system that provides the coefficients Ci is, 

��z�)��
� � �0 sin ��z! �����z!1 �) �)1 �� ��

�() �∂O;|;);�
� Eq. 5.61 

The pressure correction can be now imposed at the boundary points as a function of geometrical 

parameters. 

;v��, �! �  m)���, �, �!;) �  m����, �, �!;� �  m|���, �, �! ∂O;|;    i � 1,2, B Eq. 5.62 

5.4.3.3.3 Internal treatment of the body 
For the internal treatment of the body there are several possibilities but the external flow is essentially 

independent of the internal conditions. A first possibility is to apply the forcing inside the body without any 

smoothing. This is equivalent to imposing the velocity distribution inside the body with the pressure that 

adjusts accordingly. An alternate approach consists of leaving the interior of the body free to develop a flow 

without imposing any condition. In this case the flow pattern inside the body will be different from the 

previous case, but this internal flow pattern is irrelevant and the external flow is unchanged. 

5.4.4 Properties of the numerical scheme 

The solution method should have certain properties. The most important ones are summarized below. 

5.4.4.1 Consistency 

The discretization should become exact as the grid spacing tends to zero. The difference between the 

discretized equation and the exact one is called the truncation error. For a method to be consistent, the 

truncation error must become zero when the mesh spacing ∆� P 0 and/or ∆�, ∆� P 0. Even if the 

approximations are consistent, it does not necessarily mean that the solution will became the exact solution 

of the differential equation.  

5.4.4.2 Stability 

A numerical solution method is said to be stable if it does not magnify the errors that appear in the course of 

the numerical solution process.  

5.4.4.3 Convergence 

A numerical method is said to be convergent if the solution of the discretized equations tends to the exact 

solutions of the differential equations as the grid spacing tends to zero. 

For non-linear problems stability and convergence are difficult to demonstrate. Therefore convergence is 

usually checked using numerical experiments. Section 5.6 presents some examples that validate the code 

and demonstrate its convergence. 
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5.5  Solution of the algebraic system of 
equations 

5.5.1 Introduction 

The potential correction and the implicit discretization of the viscosity terms require linear systems to be 

solved every time step. If the immersed boundaries are neglected and the time step is constant, neither the 

geometry nor discretization change with time and, thus, the corresponding system matrices remains the 

same throughout the whole time course of the simulation. This means that all matrices can be constructed in 

an initialization step. However, since the time step is different at each step, to improve convergence, certain 

terms of the matrices need to be changed. In addition, the presence of moving immersed boundaries 

involves changes every step. The current code computes matrices and modifications due to immersed 

boundaries at each time step, although an improvement is possible if the portion of the problem that does 

not experience any change is defined at the beginning instead of every step. 

As outlined before, the result of the discretization process is a system of linear algebraic equations. An 

efficient method for solving linear systems of algebraic equations is thus needed. The matrices derived from 

partial differential equations are always sparse, i.e. most of their elements are zero. All of the non-zero 

elements of the matrices are on a small number of well defined diagonals (Figure 5.12). Taking advantage of 

this property, one can greatly simplify the task of solving the system. The matrix that defines the system to 

solve has the structure presented in Figure 5.12, where the brown and orange diagonals, which correspond 

to the derivatives in the r direction, are separated nx positions from the main diagonal (yellow). 
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Figure 5.12. Matrix structure 

The matrices act on the corresponding field quantities ux, ur and the correction φ. Pressure by itself is not 

defined. What affect the fluid are the pressure gradients. Thus, the matrix operator action on φ has to be 

modified so that it becomes regular, while still yielding a correct solution for the pressure. This is achieved by 

adding 1 to the last entry. The proof is as follows. 

Let  55# � �0, … ,0,1!�. Thus  55# 55#� is a matrix with its only nonzero entry being a 1 in the last position. Let A be 

the Neumann-Poisson matrix, i.e. ��# � 0. The new modified Poisson matrix is � � � �  55# 55#�. Let �5# be an 

arbitrary vector. Then, 
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B�5# � A�5#���# � � 55#��5#!  55#  � .N� ��#   Eq. 5.63 

This sum can only equal 0 if �5# � 0. Hence B has full rank. It remains to show that for any right hand side �5#, 

which is admissible (i.e. �5# � �# ), the solution to ��5# � �5# satisfies ��5# � �5#. First note that due to Eq. 5.63, �() 55# � �#. Hence, 

AB() � �B �  55# 55#�!B() � I �  55# 55#�B() � I �  55#�#�  Eq. 5.64 

And consequently AB()�5# � �5#. 

A system of equations can be solved following two possible families of techniques: 

- Direct methods: attempt to solve the problem by a finite sequence of operations, and, in the 

absence of rounding errors, would deliver an exact solution 

- Iterative methods: attempt to solve a problem by finding successive approximations to the solution 

starting from an initial guess.  

Iterative methods are usually the only choice for nonlinear equations. However, iterative methods are often 

useful even for linear problems involving a large number of variables, where direct methods would be 

prohibitively expensive. The long term objective is the implementation of a multigrid method that will be 

based on the iterative methods here analyzed. The development of such method is quite involved, specially 

in conjunction with immersed boundaries, and will not be done here. The scope of this project is not 

developing a multigrid method but defining and evaluating the iterative methods that will be implemented 

in the future in this multigrid scheme. 

The aim of this section is to present how different solvers behave when trying to find the solution of the 

discretized equations set out in section 5.4.  First of all, the basic characteristics of the most commonly used 

direct solvers are described. Then, a set of iterative solvers based on Gauss Seidel methods are presented 

and evaluated. Furthermore, the possibility of taking advantage in terms of storage of the sparse structure of 

the matrix and the possibility of using more complex iterative methods (Krylov subspace methods) will be 

analyzed. A brief introduction of what a multigrid method is will finish with the descriptive part to start a 

quantitative evaluation of the implemented solvers.  

5.5.2 Direct methods 

5.5.2.1 Gauss elimination 

Gauss elimination is the basic method for solving linear systems of algebraic equations. Two steps can be 

clearly distinguished. First of all, the original matrix should be transformed into an upper triangular matrix by 

forward elimination. Then, the upper triangular system of equations resulting from forward elimination can 

be easily solved.  

The number of operations required to solve a linear system of n equations by Gauss elimination is 

proportional to n3/3. The bulk of this effort is in the forward elimination phase. The back substitution 

requires only n2/2 arithmetic operations and is much less costly than the forward eliminations. The 

extremely high cost of this method warrants the search for more efficient special solver for matrices, such as 

the sparse ones arising from the discretization of differential equations. In addition, Gauss elimination does 

not vectorize or parallelize well, which constitutes a strong limitation.  
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5.5.2.2 Lu decomposition 

LU decomposition has it fundamentals in Gauss elimination. Any matrix A, subject to some generic 

limitations that can be ignored here, can be factored into the product of lower (L) and upper (U) triangular 

matrix (A=LU). The existence of this factorization allows the solution of the system of equations in two 

stages: 

�� � � P                 ¡� � ¢                      9¢ � � Eq. 5.65 

The advantage of LU factorization over Gauss elimination is that the factorization can be performed without 

knowing the forced terms. As a result, if many systems involving the same matrix are to be solved, 

considerable savings can be obtained by performing the factorization first.  

5.5.3 Iterative methods 

The high accuracy provided by direct methods in exchange for their cost is normally not needed because the 

discretization error is usually much larger than the accuracy of computer arithmetic. A numerical just 

somewhat more accurate than the discretization suffices. 

In an iterative method, one guesses a solution, and uses the equation to systematically improve it. If each 

iteration is cheap and the number of iterations is small, an iterative solver will cost less than a direct 

method. 

A set of splitting methods are going to be implemented, where the matrix A is split in two parts such that 

A=M+N. Rewriting Ax=b as Mx=-Nx+b, the following iterative algorithm is proposed: 

�£h+) � �¤£h � � Eq. 5.66 

The task at hand is thus to select the splitting A=M+N such that converges to the desired tolerance in a small 

number of iterations k while the matrix M is such that is relatively easy to solve. Various choices for this 

splitting are discussed below, based on the simple partitioning of A defined such that A=L+D+U, where L is 

strictly lower triangular, D is diagonal, and U is strictly upper triangular.  

5.5.3.1 Methods analyzed in this study 

5.5.3.1.1 Jacobi 
The Jacobi method takes MJ=D and NJ=U+L, resulting in: 

£h+) � ¥()Z��9 � ¡!£h � �[ Eq. 5.67 

As D is a diagonal matrix, D-1 is trivial to compute. The convergence is guaranteed if A is diagonally dominant. 

However, for the typical high dimensional linear equations of interest for splitting methods, convergence of 

Jacobi method is unacceptably slow so this method is not going to be implemented.  

5.5.3.1.2 Gauss Seidel 
The Gauss-Seidel method (GS) takes MGS=D+L and NGS=U resulting in Eq. 5.68 which may be solved at each 

iteration by back substitution.  

£h+) � �¥ � 9!()Z�¡£h � �[ Eq. 5.68 
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Again, if A is diagonally dominant convergence is guaranteed. Since larger portion of the system is included 

into the implicit part (MGS) convergence is generally faster following the GS approach than the Jacobi 

approach. 

Convergence of the plain GS method described here is still, in general, unacceptably slow for it to be of 

practical use as is. Nonetheless, when implemented properly it forms the foundation for the most efficient 

techniques available for solving large linear systems derived from elliptic PDEs, as it will be studied later 

(Sections 5.5.4.1). 

5.5.3.1.3 Successive Overrelaxation (SOR) 
The SOR method is an iterative method based on the GS approach with MSOR=D+L and NSOR=U, written in the 

form: 

£h+) � £h � ¦�£h+) � £h! Eq. 5.69 

Thus, 

�¥ � 9!£h+) � 2�1 � ¦!¥ � �1 � ¦!9 � ¦¡3£h � ¦� Eq. 5.70 

for some relaxation parameter  ¦ 6 �0,2!. Doing that, the convergence can be accelerated significantly. 

Generally, the larger the grid the larger the optimum over-relaxation factor. For values of ¦ less than the 

optimum, the convergence is monotonic and the rate of convergence increases as ¦ increases. When ¦ is 

exceeded, the convergence rate deteriorates and the convergence is oscillatory. When the optimal over-

relaxation factor is used, the number of iterations is proportional to the number of grid points in one 

direction, reaching a substantial improvement. 

5.5.3.1.4 Red/Black Gauss Seidel 
As it has been outlined before, as the origin of the system to solve comes from a cell centered finite 

differences discretization, all of the non-zero elements of the matrices then lie on a small number of well 

defined diagonals (See Figure 5.12). Choosing the appropriate mesh size, A is checkerboard (thus, aij=0 when 

i+j=even and i≠j) and the problem can be reordered in a particularly attractive structure for the application 

of Gauss-Seidel iterations shown in Figure 5.13.  

 

Figure 5.13. Re-ordered matrix 

Where n is the dimension of the linear system, ne the number of even elements and no the number of odd 

elements. De and Do are diagonal matrices that contain the elements of the main diagonal of A. Fe and Fo 

contain the rest of the terms of A. The problem to solve now can be presented as it is shown in Eq. 5.71. 

§¥� ���� ¥�¨ §����¨ � §����¨ Eq. 5.71 
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Application of the Gauss Seidel method to this permuted checkerboard system, taking 

�©z � §¥� 0�� ¥�¨ and ¤©z � §0 ��0 0 ¨ Eq. 5.72 

yields to an iterative method that can be written as the repeated application of two distinct sub-steps that 

are symmetric in the even and odd variables. 

¥�£ªh+) � ���£«h � �� � Sub-step 1: £ªh+) � ¥�()2���£«h � ��3 Eq. 5.73 

¥�£«h+) � ���£ªh � �� � Sub-step 2: £«h+) � ¥�()2���£ªh � ��3 Eq. 5.74 

The alternate application of the Jacobi method to the two sets of nodes gives an overall method with the 

same convergence properties as the Gauss Seidel. The nice feature of the Red-Black Gauss-Seidel solver is 

that it vectorizes and parallelizes well, since there are interdependencies in either sub-step. Thus, unlike the 

Gauss-Seidel method, as during each of its two sub-steps the calculations are decoupled, they may be 

performed in any order.  

The solver to implement will be used in three different cases during the calculation process: 

- Calculation of the viscous terms in the x direction.  

- Calculation of the viscous terms in the r direction.  

- Calculation of the potential correction.  

Because a staggered matrix is being used, in each of these sections the dimension of the system to solve is 

slightly different.  

Table 5.4. Dimensions 

Step Mesh dimension System dimension n nx* nr* 

Viscous terms x nx - 1, nr (nx – 1)nr, (nx – 1)nr (nx – 1)nr nx-1 nr 
Viscous terms r nx, nr-1 nx(nr-1), nx(nr-1) nx(nr-1) nx nr-1 
Potential correction nx,nr nxnr,nxnr nxnr nx nr 

 

In order to apply this method, aij=0 when i+j=even and i≠j. As it can be seen in Figure 5.12, for each row i, 

only the elements ai,i-nx*, ai-1,i , ai,i , ai+1,i and ai+nx*,i are different from zero.  Thus, the checkerboard structure 

of the matrix will be guaranteed if nx* is an odd number. This purpose can be easily achieved if a new row is 

added to the original staggered structure when defining the velocities in the x direction imposing the 

appropriate boundary conditions (see Figure 5.14). 

 

Figure 5.14. Mesh re-definition 

Former mesh limits 

New mesh limits 



 

 

 

The new dimensions of the computational domains 

checkerboard structure is enough with assuring that the main dimension (nx) is an odd number.

Table 5.5. New d

Step Mesh dimension

viscux nx, nr 
viscur nx, nr-1 
press nx,nr 

 

Figure 5.15shows the matrix structure before and after ordering it. As the matrix is sparse, it is important to 

take into account that many of the elements of Fe and Fo are zero, and special care should 

defining the code to achieve an efficient computation.
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Note that it is also possible to implement the algorith

operators. Though the system is considered in a reordered form in the conceptualization of the scheme, the 

system does not actually need to be reordered to apply the two step procedure that implements it

considerably the computational cost

5.5.3.1.5 Convergence criteria and iteration errors
When using iterative solvers, it is important to know when to quit. The most common procedure is based on 

the difference between two successive iterat

by some norm, is less than a pre-selected value. 

that a proper normalization is essential.

The convergence criteria presented here is based on the residual defined as, 

nx 
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of the computational domains are the ones defined Table 5.5. In order to achieve a 

checkerboard structure is enough with assuring that the main dimension (nx) is an odd number.

New dimensions compatible with checkerboard structure 

Mesh dimension System dimension n nx*

nxnr, nxnr nxnr nx 
nx(nr-1), nx(nr-1) nx(nr-1) nx 
nxnr,nxnr nxnr nx 

shows the matrix structure before and after ordering it. As the matrix is sparse, it is important to 

take into account that many of the elements of Fe and Fo are zero, and special care should 

defining the code to achieve an efficient computation. 
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to implement the algorithm without performing this redefinition in the original 

Though the system is considered in a reordered form in the conceptualization of the scheme, the 

system does not actually need to be reordered to apply the two step procedure that implements it

considerably the computational cost. 

criteria and iteration errors 
When using iterative solvers, it is important to know when to quit. The most common procedure is based on 

the difference between two successive iterations. The procedure is stopped when the difference, measured 

selected value. This difference may be small when the error is not small 

a proper normalization is essential. 

The convergence criteria presented here is based on the residual defined as,  

� � � � �� 

Figure 5.15. Matrix re-order 
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Though the system is considered in a reordered form in the conceptualization of the scheme, the 

system does not actually need to be reordered to apply the two step procedure that implements it reducing 

When using iterative solvers, it is important to know when to quit. The most common procedure is based on 

. The procedure is stopped when the difference, measured 

his difference may be small when the error is not small so 

Eq. 5.75 

(nx-1)/2 
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One termination criterion (being  ¬ the accepted tolerance) is, 

­�h­­�®­ ¯ ¬ Eq. 5.76 

which can be related to the error (Eq. 5.77), 

� � � � �: Eq. 5.77 

in terms of the condition number °��! :  

­�­­�®­ ¯ °��! ­�­­�®­. Eq. 5.78 

It could be possible to establish a convergence criterion based on the error instead of the residual. As the 

condition number of the matrices to deal with can be small, a criteria based on the residual will provide a 

more realistic measure of solver accuracy. 

The termination criterion (Eq. 5.76) depends on the initial value and may result in unnecessary work when 

the initial guess is good and a poor result when the initial iterate is far from the solution. For this reason, the 

following iteration criterion can be redefined as: 

­�h­­�­ ¯ ¬ Eq. 5.79 

Eq. 5.76 and Eq. 5.79 are the same when x0=0, which is a common choice.  

The problem arises when the solution (x) is a small value compared to the forcing term b. Then, the criterion 

defined in Eq. 5.79 could be not good enough to determine the level of accuracy, replacing the previous 

expression by the one presented in Eq. 5.80. This criterion involves additional computation that will be 

deeply studied in section 5.5.4.1. 

­�h­­�h­ � ¬ Eq. 5.80 

5.5.3.1.6 Comparative analysis of iterative methods 
This section shows the convergence features of the proposed iterative methods (Gauss Seidel (GS), 

Successive Over-relaxation (SOR) and Red/Black Gauss Seidel (RB) as function of the number of iterations. 

Further analysis will be performed in section 5.5.4.1, comparing the performance of direct and iterative 

methods as a function of multiple variables. Table 5.6 presents predictions for the order of magnitude of the 

number of iterations corresponding to each method. 

Table 5.6. Estimated number of iterations as function of the mesh dimension 

Method Number of iterations 

GS nx2/2 
SOR nx 
RB nx2/2 
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Evaluating the iterative solvers for different mesh sizes and defining the error as: 

��� � ­�� � �­�­�­�  Eq. 5.81 

The number of iterations required to achieve an error of 10-2 are the ones presented on Table 5.7. 

Table 5.7. Number of iterations required to achieve err<10
-2

 

Mesh size  

RB 

Iterative Method 

GS 

 

SOR 

7x7 425 386 55 
27x27 8580 7766 1600 
47x47 28844 25459 4927 
67x67 40155 29936 3658 

Figure 5.16 shows how the actual number of iterations is much higher than the predictions (dotted lines) 

because the system to be solved is bad conditioned. Even though, it can be appreciated how GS and RB have 

simmilar convergence features while SOR requires a considerable lower amount of iterations to achive the 

solution and these convergence features are proportional to the expected ones.  

 

Figure 5.16. Number of iterations as function of the mesh dimension (Simulation6) 

It is also interesting to point out how the SOR requires less iteration for a 73x73 mesh than for a 43x43. This 

effect can be explained by considering the dependence of the optimum over-relaxation factor with the mesh 

size. The simulations here have been performed for a fixed over-relaxation factor of w=1.7 which leads in a 

more efficient way the solution for higher mesh sizes. Finally, Figure 5.17 shows the evolution of the error 

for a fixed mesh of dimension 73x73 for the three analyzed methods. 
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Figure 5.17. Variation of error with the iterations for a 73x73 mesh 

5.5.3.2 Sparse Iterative Methods 

When storing and manipulating sparse matrices on a computer, it is convenient and often necessary to use 

specialized algorithms and data structures that take advantage of the sparse structure of the matrix. Data is 

easily compressed, and this compression results in significantly less computer data storage usage and lower 

times required to access the data in the memory of the computer. 

FORTRAN provides a library for working with sparse matrices which is called SPARSEKIT. It includes general 

sparse matrix manipulation routines as well as a few iterative solvers. It allows the use of preconditioners 

base on LU factorization, which will solve the problem shown in Figure 5.16 of requiring a huge number of 

iterations to achieve the solution. It provides basic iterative solver such as CG (Conjugate Gradient Method), 

FOM (Full Orthogonalization method) or GMRES (Generalized Minimum Residual Method). Most of these 

iterative methods are Krylov subspace methods and they are among the most successful methods currently 

available in numerical linear algebra. 

Krylov subspace methods work by forming an orthogonal basis of the sequence of successive matrix powers 

times the initial residual. The Krylov sequence  generated by an n-by-n matrix A and a vector b of dimension 

n is the linear subspace spanned by the images of b under the first r powers of A (starting from A0 = I),  

±���, �! � ��²?³�, ��, ���, … , ��()�´ Eq. 5.82 

Starting with a vector, b, one computes Ab, then one multiplies that vector by A to find A2
b and so on. Thus, 

these algorithms avoid matrix-matrix operations, but rather multiply vectors by the matrix and work with the 

resulting vectors.  
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Because the vectors tend very quickly to become almost linearly dependent, methods relying on Krylov 

subspace frequently involve some orthogonalization scheme, such as Lanczos iteration for Hermitian 

matrices or Arnoldi iteration for more general matrices. 

5.5.3.3 Multigrid 

The basis for the multigrid method is the convergence behavior of iterative methods. Some of these 

methods produce errors that are smooth functions of the spatial coordinates. After a few iterations, the 

rapidly varying components of the error have been removed and the error becomes a smooth function of 

the spatial coordinates. If the error is smooth, the update can be computed on a coarser grid, which means 

lower computing cost and faster convergence. This suggests that much of the work can be done on coarser 

grids. Thus, multigrid is a solution method for linear systems based on restricting and extrapolating solutions 

between a series of nested grids as the ones presented in Figure 5.18. 

 

Figure 5.18. Series of nested grids to apply multigrid method 

There are many variations of multigrid algorithms, but the important steps to perform among the levels of 

the multigrid scheme are: 

- Smoothing. Performs a few iterations with a method that gives a smooth error on the fine grid, 

reducing high frequency errors. 

- Restriction. Restricts the residual to a coarser grid and performs iterations of the correction 

equation on the coarser grid.   

- Interpolation or Prolongation.  Interpolates a correction computed on a coarser grid into a finer 

grid. 

When designing a multigrid method there are many parameters that can be selected more or less arbitrarily: 

the number of successively coarser grids, the smoothing kernel, the number of iterations on each grid, the 

order in which the various grids are visited, and the restriction and interpolation schemes are the most 

important of these. The rate of convergence does, of course, depend on the choices made but the range of 

performance between the worst and the best methods is probably less than a factor of two (71). 

The iterative methods proposed in section 5.5.3 are completely compatible with this multigrid philosophy 

achieving a much better performance. Other methods such as Strongly Implicit Procedure (SIP), Alternating 

Direction Implicit method (ADI) or Conjugate Gradient methods can me also implemented in a multigrid 

scheme(80, 81). Although these methods usually reach the solution with lower amount of iterations they 
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require more complex and costly operations. For example, SIP requires computing an incomplete LU 

factorization which is an expensive operation. Conjugate Gradient methods are originally thought to solve 

symmetric systems of equations so the implementation it the problem studied here could involve some 

problems. In addition, it is important to keep in mind that the solver should be compatible with the 

existence of immerse boundaries which makes the problem more complex. 

5.5.4 Quantitative analysis 

After describing the differences, advantages and disadvantages of direct and indirect methods, it is possible 

to perform a proper comparative evaluation of the methods. First, the direct method provided by LAPACK 

package will be tested against the iterative methods described in section 5.5.3. It will be shown that these 

methods are not a valid alternative without further improvements. That is why a set of Sparse Iterative 

Methods provided by SPARSEKIT package are tested and shown to be the best alternative to solve the 

system of algebraic equations. 

Table 5.8. Methods compared in the quantitative analysis 

DIRECT METHODS ITTERATIVE METHODS 

 

 

LAPACK 

TRADITIONAL ITERATIVE METHODS 

- Gauss Seidel (GS) 

- Red Black (RB) 

- Successive Over Relaxation (SOR) 

SPARSE ITERATIVE METHODS. SPARSEKIT 

- GMRES (Krylov subspace method) 

 

5.5.4.1 Direct Methods versus Traditional Iterative Methods 

5.5.4.1.1 Introduction 
This section compares the solution and the computational cost of the direct solution achieved by the LAPACK 

package and the solution achieved by traditional iterative methods, when those methods are applied to 

solve the Poisson equation that calculates the potential function which corrects the velocities to assure 

continuity.  

LAPACK is a set of routines for solving linear equations systems written in Fortran90. The same package 

includes routines to solve least-squares solutions of linear systems of equations, eigenvalue problems, and 

singular value problems. Dense and banded matrices are handled by this package, but not general sparse 

matrices. In all areas, similar functionality is provided for real and complex matrices, in both single and 

double precision. There are multiple on-line resources which allow an easy management and outstanding of 

LAPACK routines as the one provided by the University of Colorado, Department of Computers Science (82). 

Although these routines have been implemented in a highly efficient way, they are not designed to solve a 

sparse problem such as the present one so further improvement is required.  
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Figure 5.19. Searching engine for LAPACK subroutines,(82)  

Gauss Seidel, Successive Over-Relaxation and Red/Black Gauss Seidel are the chosen iterative methods to be 

compared with the LAPACK solver. When programming these iterative methods, the sparse structure of the 

matrix is taken into account in order to avoid unnecessary operations but it is not taken into account in 

terms of storage. In other words, all the elements of the matrices have been stored but only the non-zero 

operations have been performed. It is important to keep in mind that the long term aim is to establish a 

multigrid method based on the presented iterative methods. Thus, although in the current state LAPACK 

seems to be a competitive alternative, the implementation of multigrid will involve a great improvement of 

the iterative methods. 

5.5.4.1.2 Comparison 
The elapsed time is the time required by the CPU to perform the operations and it is the parameter that will 

be compared to evaluate the solvers. The results presented on Table 5.9 are obtained performing 

simulations for different mesh sizes.  

Table 5.9. Elapsed time in seconds required by each solver for different mesh dimensions 

Mesh size System dimension LP (s) RB (s) GS (s) SOR (s) 

17x17 289x289 0 0,54 0,47 0,37 
27x27 729x729 0.05 4,61 4,14 1,13 
37x37 1369x1369 0.22 40,99 37,62 7,30 
47x47 2209x2209 0.78 168,77 149,38 29,27 
57x57 3249x3249 2.35 265,08 156,77 7,81 
67x67 4489x4489 5.46 993,26 735,30 90,67 

 

Looking at these data, the iterative methods have an unacceptably slow behavior.  

The operations performed by the iterative methods can be divided in two groups: 

- Actual iteration, following the method that correspond to each solver, this is, Gauss Seidel, SOR or 

Red/Black Gauss Seidel. 

- Computation of the error, defined as µ¶�p(·µ¸µ�pµ¸ . 
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Thus, the total time required by the iterative solver can be expressed as: 

¹��²º ¹�»� � ¼���²���? ��»� � ½���� ��»���²���? ��»� Eq. 5.83 

 As shown in Table 5.9, most of the computational time is actually invested on the error calculation (see 

Table 5.10) 

Table 5.10. Elapsed time and error calculation time for different system dimension (n) 

n 
RB RB GS GS SOR SOR 

Total time Error time Total time Error time Total time Error time 

289 0,54 0,19 0,47 0,13 0,37 0,03 

729 4,61 4,14 4,14 3,75 1,13 0,77 

1369 40,99 39,89 37,62 36,68 7,30 6,85 

2209 168,77 167,37 149,38 147,08 29,27 28,48 

3249 265,08 261,32 156,77 154,90 7,81 7,38 

4489 993,26 985,77 735,30 729,37 90,67 89,48 

Thus, the convergence criteria for the iterative method should be improved in order to obtain a criterion 

which consumes fewer resources. In addition, it is not required to calculate the error every single iteration. It 

could be done every certain amount of iterations reaching a substantial acceleration of the code.  

Plotting the time that the solver is solving the linear system, this is, substracting the time to calculate the 

error (Figure 5.20), it is easy to appreciate how when increasing the dimensions of the mesh, the difference 

between using an iterative method and a direct method start to decrease. In fact, for larger mesh sizes the 

iterative method will provide the solution faster with an acceptable level of accuracy. When introducing 

these iterative methods in a multigrid structure the problem will converge even faster, rendering the option 

of a direct method complete senseless. Remind that only the iteration time is taken into account here, so 

developing an efficient convergence criteria is a key point to reach significant results. 

 

Figure 5.20. Total time for LP and iteration time for iterative solvers in seconds required for different mesh dimensions 
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5.5.4.1.3 Conclusions 
Analyzing the results, the following conclusions can be obtained: 

- The LAPACK subroutines are too slow when dealing with the large meshes that we anticipate will be 

required in later stages of this project.  

- Although SOR seems to be faster the other iterative methods, its implementation is not efficient 

because the optimum over-relaxation parameter depends on the mesh size. When w differs from its 

optimal, the convergence rate deteriorates and the convergence is oscillatory. 

- RB has approximately the same convergence features than GS. The nice feature of the Red-Black 

Gauss-Seidel solver is that it both vectorizes and parallelizes well, since there are no data 

dependencies in either step.  

- All the iterative methods that were implemented take advantage of the sparse structure of the 

matrix and do not perform the operations on elements which are zero. Because of this feature, care 

should be taken when introducing immersed boundaries to make sure that the structure of the 

matrix is conserved. Further improvement is possible if the sparse structure is also taken into 

account in terms of storage, i.e., only the non-zero elements are stored.  

- The establishment of an efficient convergence criterion is a key aspect to develop in order to 

achieve competitive iterative methods.   

- A multigrid scheme will potentially introduce a great improvement in the current iterative methods. 

5.5.4.2 Full Direct Methods versus Sparse Iterative Methods 

The difference between sparse and full methods is the way they deal with the data. As it has been explained 

in section 5.5.1, the matrix to deal with has a sparse structure. While the whole matrix to solve has a size of 

(nx · nr, nx · nr), the number of non-zero elements is slightly lower than 5 · nx · nr. This means that the 

maximum mesh size that can be solved increases as, 

�nx · nr!¾¿�,ÀÁII � Â5 · �nx · nr!¾¿�,ÃÄ¿�ÃÅ Eq. 5.84 

Considering a memory of 2GB and a mesh where nx=nr, the maximum size that a full solver can handle is 

nx=nr=128. Using sparse methods the maximum size increases up to nx=nr=6553. More important than the 

storage requirements, the computational time required to reach the solution is also dependent in which 

method we use. Section 5.5.4.1 shows that traditional iterative methods are not a competitive alternative 

because the system is badly conditioned and the solver requires too many iterations to converge, which 

motivates the usage of modern iterative methods known as Krylov subspace methods (Section 5.5.3.2). 

Combinations of preconditioners and iterative solvers have been tested. The best results have been achieved 

by using a MILU0 preconditioned and GMRES solver, obtaining a substantial improvement with respect to 

the use of a full direct method.  

Table 5.11. Time comparison between iterative sparse solver and direct full solver 

Mesh Solver Sparse – Iterative method Solver Full – Direct Method 

64x64 0.1 s 4.9 s 
128x128 0.7 s 260 s 
256x256 4 s (Out of memory) 
320x320 9.6 s (Out of memory) 
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5.6  Validation of the code 
5.6.1 Introduction 

This section attempts to evaluate the code performance under different conditions presented on Table 5.12. 

First, we study a cavity flow in a square domain where the upper boundary is moving on the horizontal 

direction. This validates our approach for the stationary state. In order to analyze the time evolution, the 

second case compares the analytical solution of a well-known problem with the one provided by our 

numerical model. Last case studies the response of the code to the existence of immersed boundaries 

analyzing what happens when a circle is introduced in the domain under different conditions.  

Table 5.12. Cases  

Case Boundary Conditions Mesh size Re CFL 

CASE 1 Cavity flow ur(x=0,r)=1 128x128 100 0.1 

CASE 2 Vortex Oseen vortex at (x,r)=(0.5,0.5) 256x256 5 0.1 

CASE 3 Immersed circle 

3.a) ur(x=0,r)=1 253x253 1 0.1 

3.b) Oseen vortex at (x,r)=(0.5,0.5) 253x253 1 0.1 

3.c) Translation circle. urcircle=0.05 253x253 12 0.1 

3.d) Rotation circle. ωcircle=0.1 253x253 20 0.1 

 

Numerical solutions of the fluid flow are only approximate solutions. In addition to the errors that might be 

introduced by the assumptions made in the mathematical formulation of the problem, in programming or 

setting the boundary conditions. Before starting the validation of the code, it is important to estimate the 

value of the error. Numerical solutions always include three kinds of systematic errors: 

- Modeling errors, which are defined as the difference between the actual flow and the exact solution 

of the mathematical model. These errors depend on the assumptions made in deriving the transport 

equations for the variables. Since the Navier-Stokes equations represent a sufficiently accurate 

model of the flow here investigated these errors are considered negligible. 

- Discretization errors, defined as the difference between the exact solution of the conservation 

equations and the exact solution of the algebraic system of equations obtained by discretizing these 

equations. Discretization errors depend on the mesh size (Δx,Δr) and the length of the time step Δt. 

There are three sources for discretization errors: 

o Time stepping: The Runge-Kutta integration scheme gives an error of O(Δt3) 

o Spatial discretization: Second order finite differences give an error O(Δx2, Δr2) 

o Boundary conditions: IB gives an error that goes as O(Δx2, Δr2) 

The global error is the maximum of these errors. If Δx~Δr and CFL~1, Δt ~ Δx/u~ Δx, the global 

discretization error is O(Δx2) ~ O(Δr2) ~ O(Δt2). 

- Iteration errors, defined as the difference between the iterative and exact solutions of the algebraic 

equations system. The solver has been implemented to guarantee that iteration error is lower than 

discretization error, so they can be neglected. 
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5.6.2 CASE 1: Cavity flow. 

A classical test problem is numerical simulation of a laminar or turbulent flow of an incompressible viscous 

fluid in a square cavity with the upper moving boundary (see         Figure 5.21). It has long since been a 

testing area for approbation of approximation schemes for terms in initial equations as well as of 

computational models and methods. A large number of calculation data concerning this problem have been 

accumulated. We are going to compare here the results provided by our code with the ones given by a code 

from the Applied Mathematics Massachusetts Institute of Technology (MIT) and some available 

experimental data. 

 

 

 

        Figure 5.21. Cavity flow. 

Figure 5.22 presents pressure and velocity distribution for a cavity flow at Re=100. Black lines represent our 

solution and the contours correspond to MIT solution. It can be seen how both solutions agree well.  

  

Figure 5.22. Pressure and velocity fields. 

Figure 5.23 shows the evolution of ur along a vertical axis that cuts the cavity at r=0.5. Numerical solutions 

and experimental data fit. 

 

Figure 5.23. Velocity profile (r direction) at r=0.5. 
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5.6.3 CASE 2: Lamb-Oseen vortex 

5.6.3.1 Introduction 

The goal of this research is to understand the dependence of the time evolution of the LV vortex ring on the 

duration of the LV filling phases, and to determine how this dependence affects blood flow transport in the 

LV and global ventricular function. Thus it is interesting to test how the code behaves in the presence of a 

vortex. In order to reach this purpose, the evolution a simple vortex where the analytical solution is well 

known is going to be studied. Valuable information about the code performance can be obtained when 

comparing the analytical solution with the numerical one. The vortex is introduced in a square cavity with a 

size L much larger than the radius of the vortex. 

 

 

 

 

 

Figure 5.24. Vortex. 

5.6.3.2 Lamb-Oseen vortex 

The simplest viscous vortex, this is, the Lamb-Oseen vortex will be the flow initial condition. The code should 

be able to reproduce the evolution of the vortex that is predicted by the analytical solution. This section 

briefly summarizes how to solve the Navier-Stokes equations to achieve the analytical expressions that 

governs the vortex behavior.    

5.6.3.2.1 Velocity and pressure 
The Lamb-Oseen vortex is a two dimensional flow with circular symmetry, the radial velocity is null while the 

azimuthal velocity is perpendicular to the radial direction and independent of the angle. Thus, the Navier 

Stokes mass conservation equation does not provide any valuable information. Applying conservation of 

momentum in the azimuthal direction a differential equation for 	Æ is obtained (Eq. 5.85).  

ÇÈÉÇV kÊ ÇÇ� Ë1� ��� ��	Æ!Ì Eq. 5.85 

The solutions will be sought in the form 	Æ Í G �NÎ  as �√ÊV P ∞, and 	Æ analytic at r=0. The singular behavior 

is then smoothed out in a boundary layer core of radius �√Ñ�! . One of the exact solutions for this equation 

that satisfies the requirements is, 

	Æ � Γ®2Ó� 21 � �(�¸/YÊV3 Eq. 5.86 

Where Γ® is the circulation contained in the vortex and √4Ñ� can be redefined as rc, the core radius of the 

vortex. Thus, angular velocity can be expressed as, 

x 

r 

Vortex 
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	Æ � Γ®2Ó� 21 � �(�¸/�Ô̧ 3 Eq. 5.87 

The integration of the conservation of momentum in the radial direction provides an analytical expression of 

the pressure: 

� 	Æ�� � 1� ���� � 0 P � � Õ �	Æ�� ,� Eq. 5.88 

� � 14 Γ®�
Ó� Ö

×� 12�� � �(�¸�Ô̧�� � �(��¸�Ô̧2�� � ½� -1, 2���Ø� .
�Ø� � ½� -1, ���Ø�.

�Ø� Ù
Ú Eq. 5.89 

Where Ei is the exponential integral function, defined as 

½��², �! � Õ �(V��(ÛÜ
) ,�. Eq. 5.90 

By simply projecting the velocity in Cartesian coordinates, the analytical velocity and pressure can be 

introduced as initial flow conditions. 

  

Figure 5.25. Initial flow conditions (from left to right, ux,ur,p) 

Introducing the initial condition for pressure is not strictly required. Part of the pressure is computed 

explicitly and then it is corrected. However, if the pressure is introduced in the initial condition the error in 

the first steps is expected to be smaller because the pressure correction is smaller.  

Equations for pressure and velocity require two parameters in order to define the vortex: the circulation 

contained in the vortex (Γ®) and the core radius of the vortex (�Ø). They should be selected on a way that 

assures that the vortex is small compared with the cavity dimensions to be able to compare numerical and 

analytical solutions due to the fact that the analytical expressions are valid for an unbounded domain. 

5.6.3.2.2 Vorticity and circulation 
The motion of a fluid is described by the velocity field. The curl of the velocity is called the vorticity,  55#��#, �!. 

It has a great significance and importance for the description and understanding of fluid flows and allows a 

more economical description of the structure and the evolution of the fluid flow (83). 

 55# � � Ý 	# Eq. 5.91 
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Considering the Lamb-Oseen vortex, the vorticity is a function of radial distance r and time t in the plane 

defined by x-r coordinates, 

 � Γ®4ÓÑ� 2�(�¸/YÊV3 Eq. 5.92 

A scalar function of considerable importance in the description of vortex flows is the circulation Γ around a 

simple closed curve, defined as de line integral of the velocity. 

Γ � Þ 	# · ,º# Eq. 5.93 

It follows from Stokes theorem that the circulation around a reducible curve is equal to the flux of vorticity 

through an open surface bounded by the curve, that is, 

Γ � Þ 	# · ,º# � ß  55# · ?5#,d Eq. 5.94 

 

Applying this definition to the flow here considered, the analytical expression of the circulation is, 

Γ � Þ 	# · ,º# � Õ 	Æ�,��à
® � Γ®21 � �(�¸/YÊV3 Eq. 5.95 

5.6.3.2.3 Non-dimensional parameters 
The analysis in the pressing sections suggests a set of parameters to be established when defining a vortex: 

the core radius, the viscosity of the flow, the circulation contained in the vortex, the time origin… The 

performance of a non-dimensional study of the equations is the base of a proper analysis of these 

parameters. If the initial circulation and initial core of the vortex are the fundamental variables, the non-

dimensional variables and parameters are the ones presented in Eq. 5.96.   

	Æ� � 	Æ�Ø®Γ® ; �̂ � ��Ø®�
Γ®� ;  m �  �Ø®�Γ® ; ΓQ � ΓΓ® ; rM � ��Ø® ; �̂ � �� � �®!Γ®�Ø®�  ; �� � Γ®Ñ rMâ � �Ø�Ø® � ã4�̂�� ; Eq. 5.96 

The initial core of the vortex (�Ø®) is determined by selecting the time origin �®. This time origin is just a tool 

to define the initial size of the vortex. If �® � 0 , the initial core of the vortex is zero and the problem is 

singular, thus, �® ä 0. The initial core of the ratio is then defined as, 

�Ø��! � å4Ñ�� � �®!      �Ø® � �Ø�� � 0! � å4Ñ�® Eq. 5.97 

Taking this into account, the non-dimensional equations for the velocity, pressure vorticity and circulation 

are, 

	Æ� � 12Ó�̂ 
1 � �(©��̂¸YVæ � Eq. 5.98 
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�̂ � 14Ó�
Ö
ç×� 12�̂� � �(©��̂¸YVæ�̂� � �(©��̂¸�Væ2�̂� � ��4�̂ Ë½� 
1, ���̂�

2�̂ � � ½� 
1, ���̂�
4�̂ �Ì

Ù
èÚ Eq. 5.99 

 m � ��4�̂Ó 
�(©��̂¸YVæ � Eq. 5.100 

ΓQ � 
1 � �(©��̂¸YVæ � Eq. 5.101 

5.6.3.3 Code evolution 

In order to validate the code, it is important not only to obtain the appropriate response in terms of the fluid 

dynamics variables, but also to assess the performance in terms or resolution: how does the error decrease 

when the grid is refined of the CFL condition reduced. In this section, the fluid dynamic response of the code 

is going to be analyzed first. Once it is clear that the behavior is appropriate, the resolution will be studied. 

Figure 5.1 presents the non-dimensional parameters used for the simulations of all the cases studied.  

Table 5.13. Non-dimensional parameters. 

 éê ëìê íê CFL 

Fluid dynamics analysis Pressure 1 23 · 10(R 68.1 · 10(î 0.1 
Vorticity 1 8 · 10(R 7.6 · 10(î 0.1 
Circulation 1 16 · 10(R 30.3 · 10(î 0.1 

Resolution analysis 1 Z2 · 10(R, 23 · 10(R[ Z0.5 · 10(î, 68.1 · 10(î[ 0.1 

Temporal analysis 1 16 · 10(R 30.3 · 10(î [0.05,5] 

 

5.6.3.3.1 Fluid dynamics analysis 

Pressure 

In order to assess the accuracy of the numerical solution, the evolution of pressure in one particular point is 

monitored over time. In principle, any point could be selected. If the point is far enough from the walls and 

the vortex is small compared with the dimension of the cavity, the numerical and analytical solution fit well 

as shown in Figure 5.26. It is interesting to see how the code initially needs some time to converge to the 

analytical solution. Afterwards, numerical and analytical solution fit until the effect of the walls is felt at the 

point in which the pressure is measured, in this case, the center of the grid. The difference in the absolute 

value of pressure is not worrying because what matter is the pressure gradients and not its absolute value. 
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Figure 5.26. Time evolution for the numerical and analytical pressure at the center of the vortex.  

As it has been outlined before, it is not strictly required to impose an initial condition in pressure, but it 

should provide faster convergence. However, in this particular case, as in the first time step the flow suffers 

a great disturbance due the presence of walls, imposing initial conditions does not lead to any improvement 

as it can be appreciated in Figure 5.27. The left panel represents the pressure distribution in the three first 

steps when the initial condition is the pressure determined by the analytical expression. The right panel 

considers a uniform initial condition for pressure.  
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Figure 5.27. Pressure distribution for the three first time steps. Left: p(t=0)=panalytical; Right: p(t=0)=0.  

Vorticity 

As described before, vorticity has a great significance and importance for the description and understanding 

of fluid flows. A very stable vortex is inserted in the fluid as initial condition. In absence of walls, the vorticity 

will decrease as predicted by Eq. 5.100. 

The walls will behave as source of vorticity and will disturb the solution. As the velocity at the walls has to be 

zero, the vorticity generated at the walls has to have opposite sign to the flow vorticity. Eq. 5.28 shows the 

vorticity distribution for three different times.  ��, �!/ �� � 0, �! as function of �/�Ø clearly show that the 

solution matches with the analytical one at t=0, but as time advances, the boundary layer formed in the 

walls introduces negative vorticity in the flow. 
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Figure 5.28. Vorticity distribution for iteration 1, 50 and 100 (from top to bottom). 
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When the time increases over a certain value, the distortion of the walls is spread over the full domain and 

analytical and numerical solution differ. Eq. 5.29 shows the time evolution of the vorticity in the core of the 

vortex, this is, for r=0. 

 

Figure 5.29. Time evolution of the vorticity for r=0. 

Circulation 

The circulation along any closed line in the flow field is an integral magnitude which is useful to describe and 

determine if the code is providing coherent results. The line selected to evaluate this circulation is the line at 

which the velocity is maximum. As expected, the circulation has fluctuating values at the beginning, while 

the stroke of the first is corrected. Then, it follows the analytical solution until the effect of the walls 

becomes predominant and its dissipation leads to zero circulation. This behavior is presented in Figure 5.30. 

 

Figure 5.30. Evolution of the circulation along the line of maximum velocity. 
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5.6.3.3.2 Resolution analysis 
Once it is clear that the code is providing coherent results from the fluid dynamics point of view, it is 

important to evaluate the influence of the resolution in time and space.  

Spatial resolution 

Spatial resolution is defined as function of the grid size: 

,� � 1nx      ,� � 1nr Eq. 5.102 

The initial ratio of the core is defined as function of the mesh size as follows:  

�Ø� � °�ï���?� ð ?�!      Eq. 5.103 

Thus, compromise between k big enough to describe accurately the vortex and small enough to be able to 

ignore the effect of the walls for a certain period of time is to be achieved for a certain mesh dimension. 

As it has been described in section 5.6.3.2 different magnitudes can be analyzed to determine the code 

performance. Circulation is the one selected here because it provides an integral measure of the flow. Figure 

5.31 represents the evolution of circulation with time in dimensionless variables for different values of k. k 

lower than 2 yields to inaccurate solutions at short times because at t=0 the resolution is insufficient to 

properly describe the vortex. It is important to notice how even for low values of k, the solution converges to 

the analytical in a reasonable period of time because the effective k increases when increasing the vortex 

size. The effect from the walls travels fast through the flow until the circulation drops to zero.   

 

Figure 5.31. Circulation evolution with time for different initial core radius. 
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Temporal resolution 

Time step is defined as function of the CFL, grid size and velocities as:  

,� � ��9 ð »�? - ,�max �²�����!! , ,�max �²�����!. Eq. 5.104 

Increasing the CFL, the time step increases and the solution converges faster. The problem arises when CFL is 

too high so the problem does not converge. Thus, the stability of the numerical scheme will limit the 

temporal resolution. In addition, the error is proportional to ���9!N, where n is the order of the scheme. 

That is why CFL should remain small even if the code is stable. 

Euler 

In the original integration scheme non linear terms were discretized following Explicit Euler and viscous 

terms with Implicit Euler. Figure 5.32 and Figure 5.33 show how when CFL decreases the temporal resolution 

increase and analytical and numerical solution fit better. 

 

Figure 5.32. Circulation evolution with time for different CFL.Euler. 

 

Figure 5.33. Circulation evolution with time for different CFL.Euler. (zoom) 

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(t+t
0
) Γ0

/r
c0
2

Γ/
Γ 0

 

 

Analytical
Num. CFL=5
Num. CFL=1
Num. CFL=0.5
Num. CFL=0.1
Num. CFL=0.05

10
-1

10
0

10
1

10
2

0.65

0.7

0.75

0.8

(t+t
0
) Γ0

/r
c0
2

Γ/
Γ 0

 

 
Analytical
Num. CFL=5
Num. CFL=1
Num. CFL=0.5
Num. CFL=0.1
Num. CFL=0.05



Towards the numerical simulation of the filling process of the left ventricle of the heart 

 

 

102 
 

Runge-Kutta (RKWT) 

The integration scheme described in section 5.4.2 allows the usage of higher CFL. Figure 5.34 and Figure 5.35 

are the analogous to Figure 5.32 and Figure 5.33 using Runge-Kutta integration procedure instead of Euler. 

 

Figure 5.34. Circulation evolution with time for different CFL. Runge-Kutta. 

 

Figure 5.35. Circulation evolution with time for different CFL. Runge-Kutta. (zoom) 
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5.6.4 CASE 3: Immersed circle 

5.6.4.1 Introduction 

The aim now is the evaluation of the immersed boundaries analyzing the solution when a circle is introduced 

into the domain. The capabilities and limitations of the interpolation technique implemented on the 

boundaries are shown and some conclusions about how to define the boundary and the interior points are 

reached. The circle is evaluated under four conditions: 

- Circle in presence of a cavity flow. This example will help us to achieve some conclusions about how 

to impose the conditions on the boundary and on the interior point of the body. 

- Circle in presence of a vortex. This example shows how the code is able to identify and to be adapted 

to a body introduced on the domain. 

- Moving circle. This example evaluates the code performance when the immersed body is moving. 

Translational and rotational movements have been analyzed.  

 

 

 

 

 

Figure 5.36. Immersed circle. Case 3a (Circle + moving boundary), Case 3b (Circle + vortex) and Case 3c (Moving circle) 

5.6.4.2 Case 3a. Circle in presence of a cavity flow 

This section analyses one more time the flow that appears on a fluid in a square cavity with the upper 

moving boundary. This flow is used a tool to identify the best way of imposing the boundary conditions and 

treating the internal points of the body. 

5.6.4.2.1 Boundary definition 
Ghost points (these are, nodes in which the conditions of the immersed boundary are imposed) need to be 

identified. Two approaches are available: 

- First approach: Ghost points belong to the Fluid Domain. Thus, it is guaranteed that points inside the 

boundary satisfy the boundary conditions but there is a set of points in the fluid domain close to the 

boundary where we impose the boundary conditions instead of solving the Navier-Stokes equations.  

- Second approach: Ghost points belong to the Body Domain. Thus, the Navier-Stokes equations are 

solved in the entire fluid domain. These points have a value such that the conditions on the 

boundary are satisfied.  

The following sketch clarifies both approaches. 
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Figure 5.37. Ghost point identification 

As interpolation usually provides more accurate results than extrapolation, the selection of the ghost cells 

inside the domain drives to better results. In the particular case of the circle, two types of ghost points can 

be distinguished: 

- Ghost points type A: Interpolation to impose boundary conditions can be performed with nodes 

which belong to the fluid domain (Figure 5.38, blue points). 

- Ghost points type B: At least one of the nodes used to interpolate has to belong to the solid (Figure 

5.38, red points). 

 

Figure 5.38. Ghost point identification 
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If only type A points are selected to impose the boundary conditions, big portions of the surface of the circle 

are not properly defined in terms of boundary conditions. Taking both types of nodes the solution is better. 

Using internal points of the body to interpolate the value of the ghost cell does not involve any 

inconvenience.  

5.6.4.2.2 Internal treatment of the body 
The two options analyzed here are: 

- To impose the velocity distribution inside the body (Case 1). 

- To leave the interior of the body free to develop a flow without imposing anything (Case 2). 

The numerical simulations performed show how the imposition of certain conditions inside the body leads to 

problems when dealing with the pressure. The problem does not converge and the pressure rises to very 

high values at certain points. When the interior of the body is free of immersed conditions, this problem 

disappears. As an example, Figure 5.39 presents the pressure distribution obtained for both cases. 

  

Figure 5.39. Pressure distribution imposing velocity inside the body (left) and leaving the interior flow free (right) 

Obviously, the solution is not properly achieved. Even though, analyzing the velocity distributions obtained 

following both approaches, the differences are small.  

Figure 5.40 presents the pressure (first row), velocity in x direction (second row) and velocity in r direction 

(third row). The first column corresponds to the case in which the conditions inside the body are imposed 

and the second column leaves free the flow inside the body. The third column shows the difference between 

them.  The flow is the one that appears when the lower wall is moving, for a Re=1. The circle is centered 

close to the moving wall. It can be appreciated how the pressure is increasing every time step at different 

rates if the velocity is imposed or not inside the immersed body. This could involve a problem in the way of 

solving the singularity of the pressure. If we compare the standard deviation of the pressure instead of 

absolute values (Figure 5.41), both approaches yield to similar results. This means that we are reaching the 

solution  
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Figure 5.40. Pressure and velocity distribution imposing conditions imposing the velocity distribution inside the body (left) and 

leaving the interior of the body free (central column). Difference between them (right) 

 

Figure 5.41. Standard deviation of the pressure as function of iterations for both approaches. 
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Figure 5.42 presents the sum of the square of the velocity at each point of the domain as function of the 

iteration number. The sum of the square of the velocity multiplied by ,� · ,� gives the kinetic energy of the 

flow.  Both approaches achieve similar values.  

 

Figure 5.42. Sum of the square of the velocity at every cell. 

Percentage differences among the monitored quantities are shown in Figure 5.43. 

 
Figure 5.43. Difference of the standard deviation of the pressure and the square of the velocity between both approaches. 
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5.6.4.3 Case 3b. Circle in presence of a vortex 

Choosing an appropriate position for the vortex and the circle, the flow analysis in presence of a vortex can 

provide valuable information of the code behavior in terms of symmetry. As section 5.6.4.2.2 concludes that 

it is better to leave free the internal points of the body, the results here presented do not impose any 

condition at the inner points. Vortex and circle are placed at the same vertical, so the resultant flow should 

be symmetric with respect to the vertical axis as Figure 5.44 shows.  

 

Figure 5.44. Velocity in r (left) and x (right) direction. Vortex and circle placed at the same vertical 

The representation of the velocity vectors field provides an easier outstanding of the flow behavior. 

 

Figure 5.45. Velocity vectors field. 

Section 5.6.2 points out the significance of vorticity, so this magnitude is here analyzed too. Figure 5.46 plots 

the vorticity distribution. As expected, it is symmetric with respect to the vertical axis which goes through 

the center of the core and the circle. 
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Figure 5.46. Vorticity. Vortex and circle placed at the same vertical 

5.6.4.4 Cases 3c and 3d. Moving circle 

5.6.4.4.1 Translation movement 
Although the immersed boundary imposition needs to be improved before being able to accurately describe 

the behavior of a moving body introduced into the domain, it is possible to check if everything done until the 

moment is coherent.  

The first trivial verification to perform is just checking that if a static body is introduced in a stand flow, the 

velocity and pressure solution is zero. This test assures that the introduction of an immersed boundary does 

not affect the solution or introduce unknown terms that could be omitted if this simple check is not 

performed. 

One more aspect to define is the resolution at the border. The geometry and way of defining the points to 

impose the boundary conditions play a key role when the flow is produced due to the movement of the 

immersed boundary. Figure 5.47 presents the velocity in r direction, when a body moving at ur =1 is 

introduced in the flow. The border is correctly defined, but at certain angles (especially at 90º and 270º) 

there are points of the border where the velocity is not imposed.  

 

Figure 5.47. Boundary velocity. 
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Figure 5.48 presets the velocity field produced when a moving circle is introduced in the domain. The circle is 

moving in r direction at a sped ur=0.05. 

 

Figure 5.48. Velocity in x and r direction. Circle moving on r direction at ur=0.05. 

 

The representation of the velocity as a vector provides a faster interpretation. Figure 5.49 presents the 

velocity vectors field. On the left side, the absolute velocity is plotted. On the right, the velocity of the 

moving body is subtracted to de velocity field. 

  

Figure 5.49. Velocity vectors. Absolute velocity (left) and relative velocity (right) 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
x

 

 

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
r

 

 

-0.01

0

0.01

0.02

0.03

0.04

0.05



Chapter 5: Numerical model 

 

 

111 
 

Once the velocity field is known, the calculation of the stream function is immediate. Figure 5.50 presents 

the stream function.  

 

Figure 5.50. Stream lines.  Absolute value (left) and relative value (right) 

Figure 5.51 plots the pressure distribution. As the circle is moving to the right, an overpressure appears on 

the right part of the circle while the pressure on the left decreases. 

 

Figure 5.51. Pressure distribution 
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5.6.4.4.2 Rotation movement 
This section analyses what happens when the circle is moving at a constant rotation speed. Due to the 

geometry and the fact that there is not translation movement, the boundary position does not change with 

time so the problem can be solved with less computational effort: the interpolation coefficients and 

positions of the boundary points only need to be calculated once. The problem now arises with resolution. 

As the movement of the flow is initiated due the viscous efforts that appear because of the rotation of the 

circle, the viscous boundary layer plays a main role. In order to solve this boundary layer, a lot of points are 

required in the vicinity of the boundary and it is not feasible to solve the problem with the current 

implementation. Figure 5.52 presents the velocity distribution in x and r direction. 

 

Figure 5.52. Velocity. Circle rotating at a speed w=CFL 

Plotting the velocity vectors it can be appreciated how flow is not adapted to the conditions imposed by the 

body.   

 

Figure 5.53. Velocity vectors 
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Chapter 6 

6 Conclusions and future work 

This chapter remarks the conclusions reached along the work and the future lines to address the issues 

raised. 

6.1  Conclusions 
In the present work we have developed a 2D solver of the Navier-Stokes equations with an immersed 

boundary method to model complex boundaries. This solver is the first step towards the simulation of the 

filling process of the left ventricle. The main conclusions that can be extracted from this work are sorted in 

three groups. The first one corresponds to the immersed boundary method, the second one to the solution 

of the linear system of equations and the third one corresponds to the integration scheme. 

1. Immersed boundaries 

a. The usage of the immersed boundary method enables to handle moving boundaries with 

less computational cost than competing methods. 

b. Having studied the available approaches to impose immersed boundaries, we conclude that 

direct forcing imposition is simpler and more efficient.  

c. Inverse weighting distance method is a simple approach to interpolate the boundary 

conditions with an acceptable accuracy.  

d. Regarding the internal treatment of the body, the best approach is leaving the interior of the 

body free to develop a flow without imposing any restriction other than the boundary 
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condition. The imposition of a forcing inside the body makes the problem more rigid and 

promotes the appearance of spurious pressure peaks.  

2. Solution of the linear system of equations 

a. Direct methods are prohibitively expensive when the number of variables is large.  

b. Traditional iterative methods such as Jacobi and Gauss Seidel, without preconditioning, 

require too many iterations to reach the solution. They are not a competitive alternative to 

direct methods. 

c. Sparse iterative methods are beneficial because they require less computer data usage.  

d. Krylov subspace iterative methods, even with the simplest preconditioning scheme, are 

more adequate to solve the linear system of equations. 

3. Temporal integration scheme 

a. We implemented an integration method consisting of a fractional-step method in 

combination with a semi-implicit Runge-Kutta method achieves third order precision in the 

convective terms and second order in viscous and pressure terms, requiring lower storage 

capability than traditional third order Runge-Kutta methods. 

b. The implemented fractional-step Runge-Kutta method allowed us to work with longer time 

steps than other methods, thereby decreasing the computational cost of the problem. 

c. The method is compatible with the immersed boundary method because the pressure 

correction does not change the velocity imposed at the boundary. 

6.2  Future work 
In order to achieve the eventual aim of simulating numerically the filling process of the left ventricle, future 

work should address the following tasks: 

1. To refine the immersed boundary method for moving geometries. This task will be accomplished by 

the following sub-tasks: 

a. To fully understand the problems shown in the examples. In particular, we have to 

determine if the problem that arises in the rotational circle is solved when the size of the 

mesh decreases. 

b. To develop a tool that enables the introduction of a general geometry and identifies the 

points to impose the boundary conditions.  

c. To study the possibility of using different interpolation techniques which increase the 

accuracy. 

2. To extend the implementation to three dimensions for axisymmetric geometries. The use of a mesh 

with axial symmetry is important because of two reasons: 

a. It is compatible with the work performed until the moment. 

b. It allows using of Fourier Spectral Method in the azimuthal direction. Using Fourier, we are 

exact on the derivatives calculations and the matrices that correspond to the viscous terms 

in the third direction are diagonal. Thus, instead of solving a system of dimension n3, we can 

solve n systems of size n2, which is much simpler.   

The singularity that appears in axisymmetric geometries at r=0 needs to be solved. 
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3. To develop a Multigrid Method to solve the linear system of discretized equations. The use of 

Multigrid Method will accelerate the convergence rate of the iterative method that currently solves 

the system of linear equations. 

4. To parallelize the code to allow for multi-processor simulations dividing the large problem into 

smaller ones than can be solved concurrently. 
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