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Radial basis functions (RBFs) were rst used as an e cient technique for in-
terpolation of multidimensional scattered data (see [8] and references therein).
Later, it became popular as a truly mesh-free method for the solution of par-
tial di erential equations (PDEs) on irregular domains. This application of
RBFs was rst proposed by Edward Kansa [13, 14] and it is based on collo-
cation in a set of scattered nodes. The main advantages of the method are
ease of programming and potential spectral accuracy, but its main drawback
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Abstract

In this work we derive analytical expressions for the weights of
Gaussian RBF-FD and Gaussian RBF-HFD formulas for some di er-
ential operators. These weights are used to derive analytical expres-
sions for the leading order approximations to the local truncation error
in powers of the inter-node distance h and the shape parameter .

We show that for each di erential operator, there is a range of
values of the shape parameter for which RBF-FD formulas and RBF-
HFD formulas are signi cantly more accurate than the corresponding
standard FD formulas. In fact, very often there is an optimal value
of the shape parameter T for which the local error is zero to leading
order. This value can be easily computed from the analytical expres-
sions for the leading order approximations to the local error. Contrary
to what is generally believed, this value is, to leading order, indepen-
dent of the internodal distance and only dependent on the value of the
function and its derivatives at the node.

Introduction

is ill-conditioning of the resulting linear system.

To overcome this drawback a local RBF method was independently pro-
posed by several authors [17, 18, 20]. The method is based on approximating
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the solution as a linear combination of a set of identical RBF's translated to
a set of (scattered) RBF centers. However, the approximation is local, so it
is carried out within a small in uence domain instead of a global one. Thus,
the resulting linear system is sparse, overcoming the ill-conditioning of the
global method, at the cost of losing its spectral accuracy.

The local RBF method can also be considered as a generalization of the
classical FD method. In the FD method the weights are computed using
polynomial interpolation, while in the local RBF method they are computed
by tting an RBF interpolant through a grid point and a small number of
its nearest neighbors. Since both, FD and local RBF formulas are identical
in form, we will refer to the local RBF method as the RBF nite di erence
(RBF-FD) method, as in [20].

In Hermite interpolation the objective is to nd a polynomial that in-
terpolates both the value of the function at some neighboring nodes and the
value of some derivatives at the same or di erent nodes. Taking the derivative
of these interpolation formulas one derives Hermite nite di erence formulas
(HFD). Analogously to what is done with RBF-FD, we can use RBF s in-
stead of polynomials for interpolation. We will refer to the resulting method
as the RBF Hermite nite di erence (RBF-HFD) method [20].

Many of the RBFs used in practical applications contain a shape param-
eter that has to be chosen a priori. It is well known that the accuracy of
the approximated solution strongly depends on its value. Thus, the prob-
lem of how to select appropriate values for the shape parameter has been
of primary concern both from the theoretical and the application points of
view. In a recent paper [1] we derived analytical approximations to the local
approximation error for 1D and 2D di erential operators (for structured and
non-structured nodes) using multiquadrics as RBFs. These formulas were
then used to propose e cient algorithms for the selection of either an optimal
(constant) value of the shape parameter that minimizes the approximation
error [2], or an optimal (node dependent) value of the shape parameter that
minimizes the local approximation error [3]. In this paper we carry out a
similar analysis to the one performed in [1] but using Gaussians instead of
multiquadrics as RBFs. The formulas for the local approximation error that
we derive below can then be used to compute the optimal value of the shape
parameter (both constant and variable) in a way similar to that used in [2, 3].

There are not too much work relating to the RBF-FD method using Gaus-
sians as RBFs. One should mention the work of Flyer and Wright [11] and
Davydov and Oanh [9, 10] from the application point of view, and the work
of Wright and Fornberg [20, 12] and Boyd and Wang [4] from the analytical
point of view. With respect to the value of the optimal shape parameter one
should mention the work of A.H.-D. Cheng [5] which used the error formulas
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derived by Madych [15] to nd analytical expressions for the value of ¢ which
minimizes the error for a given internodal distance h. However, these formu-
las are for the global RBF method, not for the local RBF-FD method, and
in that case, the optimal shape parameter is independent of the particular
function f whose derivatives are being approximated.

The paper is organized as follows: in Section 2 it is described the RBF-
FD and RBF-HFD formulation; in Section 3 it is shown the weights and
the local truncation errors, rst for the RBF-FD method (subsections 3.1.1,
3.1.2, 3.1.3) and then for the RBF-HFD method (subsections 3.2.1, 3.2.2).
In Section 4 it is discussed the main conclusions of the work.

2 RBF-FD formulation
2.1 RBF-FD method

In this section we describe how the RBF-FD formulas are derived and how
the weights can be exactly computed. Consider a di erential operator L] |
and a stencil consisting of n scattered nodes x; Xs X, . For a given
node x =x; (1 j n), the di erential operator can be approximated by

the formula .

Llu(x;)] iu(x;) (1)
i=1
where ; are the weighting coe cients. In the standard FD formulation,
these coe cients are computed using polynomial interpolation. In the RBF-
FD formulation, RBF interpolants are used instead. Thus,

n

ux)=  ; (x x) (2)

i=1

where is the euclidean norm and (7) is some radial function. The
unknown weighting coe cients ; can be determined by solving the system
of linear equations,

Ll(x x5 )= i (x x) k=1 n (3)

which is obtained doing some algebra after substituing (2) in (1). It is well
known [19] that the Gaussian function is a positive de nite RBF and, there-
fore, the linear system resulting from interpolation is always invertible. For
conditionally positive de nite RBFs (like generalized multiquadrics) a poly-
nomial term has to be added in order to guarantee invertibility of the resulting
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system (a constant for standard multiquadric). However, although it is not
needed for invertibility, adding a constant term  to the RBF interpolant (2)
guarantees that a constant function is interpolated exactly. In this case, the
unknown weighting coe cients ; can be calculated by solving the system of
linear equations

where is a constant related to

2.2 RBF-HFD method

In the RBF-HFD method the accuracy of the approximation (1) is increased
without increasing the size stencil. In this case, given a stencil with n nodes

X] Xo x,, and a subset X| Xo X; 1 Xjq1 X,, Wwith m <
n nodes, the di erential operator L[] is approximated at x = x; by the

formula
n m

Llu(x;)] iu(x;) + L Llu(xp)] (5)
i=1 p=1
where ; and , are the weighting coe cients. These coe cients are com-
puted using Hermite RBF interpolants,

ux)= i (x x )+ Ll (x x ) (6)

i=1 p=1

In this case, the unknown weighting coe cients can be determined by solving
the system of linear equations (7) obtained after substituing (6) in (5) and
operating,

Ll (xx x5 )]= i (xe X )+ pﬁ[ (xx xp )]
i:ln p=1 . <7>
Lol (xo x)l= oLl (x x )+ LLLl (x x, )]
i=1 p=1
where k£ =1 nand s =1 m. As in the previous section, a constant

term () should be added in the Hermitte RBF interpolant (6) to guarantee
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that these RBF-HFD formulas are exact for constants. In this case, the
system of equations to be solved are

Ll (= x5 )] = i (xe x )+ LECxe % )]+
i=1 p=1
LL] (x5 x5 )] = Ll (x5 x )]+ LL (x5 x5 )] (8)
=1 p=1
i =0
i=1
where k£ =1 n,s=1 m and is a constant related to

3 Weights and Truncation Error

In this section, we derive analytical expressions for the weights of RBF-FD
and RBF-HFD formulas using Gaussians as RBFs,

(x xj)=ep ? x x;° 9)

where is the shape parameter. We consider RBF-FD formulas for rst and
second order derivatives in 1D, and for the Laplacian in 2D, using equispaced
nodes in all cases. Only rst and second order derivatives formulas in 1D
are derived for the RBF-HFD method. The weights are functions of the
inter node distance h and the shape parameter . They are obtained using
Mathematica. Contrary to what happened with multiquadrics [1], in which
case the weights were written as Taylor series expansions in powers of h,
for Gaussians it is often possible to write them as short analytical formulas.
These coe cients are then used to derive analytical expressions for the

leading term of the local truncation error in the limit h 1, which is
de ned as
n(X0) = : u(x;)  Llu(xo)]
i=1
for the RBF-FD method and
n(Xo) = iu(xi) + SLluxp)] Llu(xo)]
i=1 p=1

for the RBF-HFD method. In the tables we use the notation O (h"P( 2)) to
indicate that the terms that have been neglected are of order A" f:o a; ¢,
where a; are constants.



3.1 RBF-FD formulas

To check the validity of the formulas given in this subsection, we use
u(x) = sin (|[x|[*),

as test function, where ||x|| is the euclidean norm. Equations (3) and (4) are
used to compute the coefficients needed to approximate the corresponding
operator L[] at zg = 0.4 and x¢ = (0.4,0.4) in 1D and 2D, respectively. For
each formula we compute the absolute value of the error as a function of the
shape parameter € and the node distance h, and compare it with the leading
term of the local truncation error that we derive in the limit eh < 1.

3.1.1 First derivative

h=0.05

Figure 1: Local truncation error 7;, for the RBF-FD first derivative as func-
tion of € (left side) and h (right side) using structured stencils with (a) n = 3,
(b) n=25, (¢) n=17, and (d) n = 9 nodes. Solid lines: local truncation error
computed solving numerically (3). Dashed lines: leading order formulas of
the errors given in Table 1.



Table 1: RBF-FD rst derivative.

Three nodes

0 0
! 5 2h (csch ( 2h?) + sech ( 2h?))
2
3 bu (20) + 6 2u (zg) + O (hAP( %))
Five nodes
0 0
] 2h 14 ¢ csch (3 2h2)
2,04 2K2
2 sinh(2 2h?)+sinh(4 2h?)+sinh(6 2h?)
4
5 b u) () +20 *u () + 60 *u (zg) + O (h°P5( %))
Seven nodes
0 0
| 2h €3 " £ 2cosh ( 2h?) esch (4 2h?)
2,02 2p2 14e2 2h2+e4 2p2
2 sinh(2 2h2)+sinh(4 2h%)+sinh(6 2h2)+sinh(8 2h2)
2,09 252
+3 sinh(2 2h2)4+2sinh(4 2h2)+2sinh(6 2h2)+2sinh(8 2h2)+sinh(10 2h2)+sinh(12 2h?)
2he? 2h2csch(6 2h2)
3 2(1+2cosh(2 2h2)+cosh(4 2h2)+cosh(6 2h?2))
7 % uVID (20) 4+ 42 2uY) (20) 4+ 420 *u (z0) + 840 Su (z9) + O (RSPy( 2))
Nine nodes
0 0
4 42 14 4p3 6 6n 191 8h7 107,9
1 5n 5 15 5 90 T O( h )
1 4 2hp 4 4p3 16 K5 104 8h7 107,9
2 5n 5 15 5 TE O( h )
4 12 2h 34 4p3 18 OhK5 531 8hA7 107,9
3 105k 35 35 35 0 T O( h )
1 2 2h 38 4h3 32 645 316 K7 107,9
4 280h 35 105 35 315 T O( h )
7
9 B2 w3 (20) + 72 2uVID (2g) + 1512 4u(V) (o) 4+ 10080 Ou  (w0) + 15120 Bu (z) +O h1OP5( 2)




Table 1 shows the weights and the corresponding local truncation errors
for RBF-FD formulas to approximate the rst derivative in 1D. Exact ex-
pressions are given for 3, 5 and 7 equispaced nodes. For 9 equispaced nodes
the exact formulas are too long and therefore we only include their series ex-
pansions in the limit A 1. The results for 3 and 5 nodes are in agreement
with those previously derived in Appendix A of reference [4].

Figure 1 shows the corresponding error (solid line) forn =3 5 7 and 9
when the weights are computed by solving numerically the linear system (3).
This error is compared with the approximate error given by the formulas in
Table 1 (dashed line). Notice that the agreement is excellent up to the point
where the linear system to numerically compute the weights (3) becomes ill-
conditioned and round-o errors deteriorate the accuracy of the numerical
solution. However, it should be emphasized that, in the case of Gaussians, it
is not necessary to numerically solve (3) in order to get the weights. Instead,
the analytic formulas given in Table 1 can be directly used. In that case the
actual local error is undistinguishable from the approximate error given by
the formulas in Table 1. The left part of Figure 1 shows the absolute value
of the error as a function of the shape parameter for h = 0 05. The accuracy
increases with decreasing . For small ( at RBFs) it is well known that
RBF-FD formulas approach standard nite di erence formulas [7]. This fact
can be clearly observed in the gure which shows how the error approaches
the standard nite di erence error when 0.

Notice also that there is a range of values of the shape parameter, , for
which RBF-FD formulas are more accurate than standard nite di erences.
In particular, there is an optimal value, *, for which the local truncation
error is zero to leading order. Since the value of T can be accurately esti-
mated from the formulas in Table 1, it is possible to use the RBF-FD method
to accurately solve PDE problems following the same approach described in
references [2, 3| for multiquadrics.

The right part of Figure 1 shows the absolute value of the error as a
function of the inter node distance h for = 5. Notice that the error behaves
as O(h™ 1) in agreement with the formulas in Table 1.

3.1.2 Second derivative

Table 2 shows the weights and the corresponding truncation errors for RBF-
FD formulas to approximate the second derivative in 1D using the standard
formulation which is not exact for constants (3). As in the previous case,
exact expressions are given for 3, 5 and 7 equispaced nodes. For 9 equispaced
nodes only their series expansions in the limit A 1 are included.

Figure 2 shows the numerical error (solid line) in the approximation of



Table 2: RBF-FD second derivative: non exact for constants

Three nodes

2 24 “h2csch? ( 2h?)

412 (1 + coth ( 2h?)) csch ( 2h?)

B ) (o) +12 2u (w9) + 12 *u(zo) + O (RAPs( 2))

Five nodes

4h? sech? ( 2h?)  Besch? ( 2h%) 42

1
2

4 4p? cosh( 2h2) coth( 2hQ)(coth( 2h2)+1)
2 cosh(2 2h2)+1

1p2et 2h2050h2 (2 2h2)
2 cosh(2 2h?)+1

% uVD (o) + 30 2uTV) (2q) + 180 *u (w0) + 120 Su(zg) + O (RSPy( 2))

Seven nodes

o 32 2h2(cosh(2 2h?)+2)
(2cosh(2 2h2)+1)?

5 *h? (coth ( 2h%) + 1) esch ( 2A?) (sech (2 2R?) 4 2)

49 2h%csch® ( 2h?) 4+ 9 2h2sech® ( 2h?) 36

Bl

ap2e2 207 02 P24 o0 202 Ly ogen® (2 2h2)
2 cosh(2 2h?)+2cosh(4 2h?)+1
29 *h? cseh? (3 2h2)
2(2 cosh(2 2h2)+cosh(4 2h?)+cosh(6 2h?)+1)

’TGO wVIID (26) 4+ 56 2u(VD (20) + 840 *uV) (20) 4 3360 Su (xo) + 1680 Su(zg) + O h3Ps( 2)

Nine nodes

205 224 Shg 4 415 8+O(h10 12)

72h2
5}% + % 4h§ 4 28?; 6 + 2697%6 8 + 1912: 10 +0 (hw 12)
5% % 8f§254 + 32?; 6 + 1527%6 8 3522; 10 +0 (hw 12)
ﬁ + % + 7611625‘; 12;1; 6 7977,265ep8 153;1; 10 + O(hlo 12)
s B aT a4 S0 )

—3*{20 w X (20) 490 20V IID (24) + 2520 4wV (24) + 25200 SuTV) (2q) + 75600 Bu (xg) + 30240 Cu(zg) +0 A1OPs( ?)




Figure 2: Same as Figure 1 but for the RBF-FD second derivative (non exact
for constants).

the second derivative with n = 3,5,7 and 9 using the standard formulation
(3) which is not exact for constants. The numerical results are compared
with the approximate error given by the formulas in Table 2 (dashed line).
The left part of Figure 2 shows the absolute value of the error as a function
of the shape parameter for h = 0.05, and the right part shows the absolute
value of the error as a function of the inter node distance h for e = 5. In the
first case, the accuracy increases with decreasing € and approaches standard
finite differences for small e. Notice that there is an optimal value, e*, for
which the local truncation error is zero to leading order. In the second case,
the error behaves as O(h"™!) in agreement with the formulas in Table 2.
Table 3 shows the weights and the corresponding local truncation errors
for RBF-FD formulas to approximate the second derivative in 1D using the
standard formulation which is exact for constants (4). In this case, exact
expressions are only given for 3 equispaced nodes. For 5,7 and 9 equis-
paced nodes we only include their series expansions in the limit eh < 1.
Figure 3 shows the corresponding error (solid line) for n = 3,5,7,9, and
compares it with the approximate error given by the formulas in table 3
(dashed line). Both results coincide until the system of equations (3) be-
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Table 3: RBF-FD second derivative: exact for constants

Three nodes

423700 g 2p240 00

4e3 2h° 4 3¢1 %h% 4]

2 23 "% g 2p240 tHt

4e3 *h* 3¢t 2h% ]

BTV (2) 410 2u (z9) + O (h*Pa( 2))

Five nodes

5 28 2 83h2 4 46
212 15 90 ‘I'O(h )

4 56 2 13h2 4 46
3h2+ 45 135 +O(h )

1 14 2 197h2 4 4 6
12h2 45 540 +0 (h )

% uVD (0) + 28 2uTV) (30) + 140 *u (zo) + O (hSP3( 2))

Seven nodes

49 27 2 237h2 4 199n* 6 6 8
18h2 14 + 140 + 300 +O(h )

3 81 2 333h2 ¢ 533h% 6
55 +

6 8

2h2 56 560 400 +0 (h )
3 81 2 8012 ¢ 127h% 6 6 8

2012 140 1400 + 200 +0 (h )

1 27 2 897h2 4 439h* 6 6 8
90h?2 + 280 2800 + 1200 +O(h )

I8y VIID (g0 + 54 2uVD (20) + 756 udV) (2g) + 2520 Su (w0) + O (h3Py( 2))

Nine nodes

722(252 % 25[118’; - + 3523; : 1733536017}156 - +0 (hs 10)
B S 000 )
S BT ML TS 08 1)
b+ 7 S S 000 )
aw M SRES mEEteo0e

3’1120 w) (z) + 88 2uVIID (z5) + 2376 40V (20) 4+ 22176 SuV) (zg) + 55440 3u (x9) + O hl0Ps5( ?)




Figure 3: Same as Figure 1 but for the RBF-FD second derivative (exact for
constants).

comes ill-conditioned. As in the previous cases, the existence of an optimal
shape parameter, et which makes the error zero to leading order, can be
clearly observed.

For h < 1 the error resulting from the formulation which is exact for con-
stants (4) and from the formulation that is not exact (3) coincide (see figures
2 and 3 and tables 2 and 3). Notice however, that the error corresponding
to the formulation which is non exact for constants (table 2) contains some
extra terms. For instance, in the case of three nodes, the error for the non
exact case includes a term proportional to ¢! while the error corresponding
to the exact case does not (table 3). Thus, for values of € of order unity or
larger, the two formulations may differ significantly.

3.1.3 Laplacian

Tables 4 and 5 show the weights and the corresponding local truncation error
for the RBF-FD laplacian formulas with 5 and 9 nodes (non exact and exact
for constants, respectively). Notice that in the non exact case (Table 4), the
expressions for the weights and the local error are equivalent in both cases.
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h=0.05 e=bH

GA (5 nodes)

5 [| — — — MQ (5 nodes)

Figure 4: Local truncation error 7 for the RBF-FD laplacian (non exact for
constants) as function of € (left side) and A (right side) using n = 5 structured
stencils. Solid line: Gaussians. Dashed line: multiquadrics.

Figures 4 and 5 show the local truncation error obtained using the cor-
responding analytical weights of Tables 4 and 5 for n = 5 (solid line) and
compare it with the local truncation errors obtained numerically with multi-
quadrics (dashed line). As it is shown in the figures, the rates of convergence
are equivalent in both cases. This is due to the fact that the local trunca-
tion errors are polynomials of the same degree n in the shape parameter e
(see Tables 4 and 5 and [1]). As e — 0, the local truncation error becomes
equivalent since they both approach to standard finite differences.

Regarding accuracy, there are not advantages on using either multiquadrics
or Gaussians, in general. However, for a specific function there might be
significant differences associated to the fact that the location and/or the ex-
istence of the optimal shape parameter will change from using either one or
the other. In this particular example, the error using multiquadrics is slightly
smaller than with Gaussians. Note that the location of the optimal shape
parameter is different.
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h=0.05 =5
10 : ;10 :
GA (5 nodes)
5 [| — — — MQ (5 nodes) 1 1

Figure 5: Same as Figure 4 but for the RBF-FD laplacian (exact for con-
stants)
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Table 4: RBF-FD laplacian: non exact for constants. Notice that o= .

Five nodes

0 4 %4 *h2csch® ( 2h?)
1234 “h? (1 + coth ( 2h?)) csch ( 2h?)

5 by w0 (x0) +u®D(xo) + 2R ulO(x0) +u® (x0) +2 "hu(xo) + O (A Py( %))

Nine nodes

0 4 %4 *h2csch? ( 2h?)
1234 “h? (1 + coth ( 2h?)) csch ( 2h?)
5678 0

9 % u(40)(X0)+u(04)(X0) + 2h2 U(QO)(XO)+U(02)(XO) 492 4h2u(X0)—|—O(h4P3( 2))
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Table 5: RBF-FD laplacian: exact for constants

Five nodes

16 2¢3 *h* 2p2pe

0 2¢2 2h? g3 2h? L ped 2h?
2,2 2,2
4237 2p2qe ThT
1234 262 2p2 863 2h2+564 2h2+1
h? 40 04 3 27,2 20 02 4 2
5 D) u( )(Xo) +U( )(Xo) + 1 h u( )(Xo) —i—u( )(Xo) + O(h PQ( ))
Nine nodes
16 2¢3 2h% 2520 %% g2y 2R 2,20 0 2R 52,200 2R sz %A% 252000 %K% 0y 4y 43 1 2 g
0 e 2h2 4 3 3e 2}12+5e2 2}12+363 2h2+1 Z
4 203 2h2 2524 65 2h2+eep2h2(1 9 2h2)+263 2h2( 27,2 1)+64 252 (5 27,2 1)+1
1234 (e 212 1)%(e 212 41) (2 22 43¢2 22 41)°
42606 %1 2 20 (g 2p2 o inh( 212)41) 1
5678

(e 2p2 1)3 (36 2h2+5€2 2}L2+363 2h2+1)2

o g 3u0x0) 20 (x0) +3ul® P (x0) + 3 20w (x0) +ulO(x0) + O (RP( 7))
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Table 6: RBF-HFD rst derivative

Three nodes

0 0
2 2hed Ph* 4 2p24et PR
1 8 2]2¢4 2h2 4 o8 202
e 2 (2 2p? cosh(2 2h2) sinh(2 2h2))
1 4 2h2 sinh(4 2h2)
3 2l uM (o) L 2Rt (zg) 4 htu (zo) + O (RCP3( %))

3.2 RBF-HFD formulas

To check the validity of the formulas given in this subsection, we use again

u(z) = sin 2?

as test function, and use equations (7) and (8) to numerically compute the
coe cients needed to approximate the rst and second derivatives at o = 1
using the 1D stencil of Figure (6), where the double circle represents the
subset  for these equations.

O—C—0

Figure 6: RBF-HFD stencil

For each formula we compute the absolute value of the error as a function
of the shape parameter and the node distance h, and compare it with the
leading term of the local truncation error in the limit h 1.

3.2.1 First derivative

Table 6 shows the exact values of the weights and the corresponding local
truncation errors for RBF-HFD formulas to approximate the rst derivative
in 1D using the three node stencil shown in gure 6.

Figure 7 shows the corresponding numerical error (solid line) and com-
pares it with the approximate error given by the formula in Table 6 (dashed
line). Notice that the agreement is excellent up to the point where the linear
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h=0.05 =5

T
!
10° ! 10° i
I/
107 1072 .
|t Il
107 107 .
e
5 A -6 !
107°} \ 10°} f .
/ /
! !
|
!
2 |
10 ; 2 Il:l 2 10_3 —4 : 2
10° 10 10 10 107
€ h

Figure 7: Local truncation error 7 for the RBF-HF'D first derivative as func-
tion of € (left side) and h (right side) using the stencils of Figure 6. Solid
line: local truncation error computed solving numerically (7). Dashed line:
leading order formula of the error given in Table 6.

system to numerically compute the weights (7) becomes ill-conditioned and
round-off errors deteriorate the accuracy of the numerical solution. The left
part of Figure 7 shows the absolute value of the error as a function of the
shape parameter for h = 0.05. The accuracy increases with decreasing e.

It has been shown that RBF-FD formulas approach standard finite dif-
ference formulas in the limit ¢ — 0 [7]. Wright and Fornberg [21] studied
RBF-HFD formulas and concluded that although there are not similar rigor-
ous results for RBF-HFD formulas in the limit € — 0, they expected similar
results to hold. In fact, taking the limit e — 0 in the weights given in table
6 results in oy = £3/4, a1, = —1/4, which agrees with the results in Table
3, page 538 of [6].

It can be clearly observed that there are two distinct values of € for which
the error is zero to leading order. One of them occurs before the appearance of
ill-conditioning and is accurately predicted by the approximate error formula.
The other occurs in the region of ill-conditioning and, therefore, can not be
seen with the numerical results.

The right part of Figure 7 shows the absolute value of the error as a

18



function of the inter node distance h for € = 5. Notice that the error be-
haves as O(h*) in agreement with the formula in Table 6. Notice that the
RBF-HFD formula with three nodes contains five weights (three of them in-
dependent). Thus, it should be compared to the RBF-FD formula for five
nodes, which also contains five weights (three of them independent). Both
have the same error dependence with h and with €, although the RBF-HFD
three nodes formula appears to be slightly more accurate than the RBF-
FD five nodes formula. In fact, as ¢ — 0 the RBF-HFD local truncation
error approaches —(1/120)h*u®) while the corresponding RBF-FD formula
approaches —(1/30)h%u(®).

3.2.2 Second derivative

h=0.05 s
I Fi
)
10°
(a)
1072} 1
(b)
Il
107}
3
107} y
!
1y
!y
!y
8 —8
10 ' 10 L '
107 10° 107 107
£ h

Figure 8: Same as Figure 7 but for the RBF-HFD second derivative: (a)
formulation (7) non exact for constants, and (b) formulation (8) exact for
constants.

Table 7 shows the weights and the corresponding local truncation errors to
approximate the second derivative in 1D using the three node stencil shown
in figure 6. Results are shown both for the formulation which is not exact for
constants (7) and for the formulation which is exact for constants (8). In this
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Table 7: RBF-HFD second derivative

Three nodes: non exact for constants

2,2 2,2 2,2 2,2
22 16 2p24e8 TR 400t FRT 42,2 2,06 202 g 6,6 90 dpdyg 22 9 102 ThT g9 656 55 454104 22 o 4

16 21248 2h2 yocd 2h2 1 42,2 2.2 202 36 454132 252 2 266 2h2 o 4pd iy 4
2263 717 48 6RO 6 4pt 10 2h24et Ph7 (2 4Rt 2 2h241) 262 h7 (8 4Rt 6 2h241)+1
16 2h2+4e8 2h? 42¢4 2h2 (1 4 2p2)24e2 202 (36 4p4432 2h2 2) 266 2hT(2 4pd41)+1
327 g Apt 4 2p24e2 Pn? (8 2n2 2)+et 2h2(2 tht 4 2R241)41
16 2h2+e8 2h? 12¢4 2h% (1 4 2p2)% 42 Ph2 (1 36 4hA432 2h2 2) 2e6 h7(2 Apdyl1)41

o=tV (zg) 2 2RV () 2 Ahtu (o) 2 Ch'u(wo) + O (RCPy( %))

Three nodes: exact for constants

12 842 | 3021h% * +0 (h4 6)

5h2 125 T 3125
42 2 30212 4 46
h2 + 355 125 6250 +0 (h )

1 21h%2 677h* 4 46
10 125 om0 T o (h )

sV (zg) & 2RV (zo) £ h'u (o) + O (RSPs( %))
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last case, only the series expansions of the coe cients in the limit h 1
are included. It should be pointed out, that in the limit 0 the weights
given in table 7; o= 12 (5h%), =6 (5h?), 1= 1 10, coincide
with the results obtained with standard nite di erence formulas (see Table
3, page 538 of [6]).

Figure 8 shows the numerical error (solid line) in the approximation of the
second derivative with three equispaced nodes, using both the formulation
which is non exact for constants (7) and the formulation which is exact for
constants (8). The numerical results are compared with the approximate
error given by the formulas in Table 7 (dashed line). There is an excellent
agreement between the two results.

The left part of Figure 8 shows the absolute value of the error as a function
of the shape parameter for h = 0 05, and the right part shows the absolute
value of the error as a function of the inter node distance h for = 5. Notice,
that in the case of the formulation which is not exact for constants, there are
two values of for which the error is zero to leading order; * 22674 and

*08922. For the formulation which is exact for constants there is only
one value, * 09129, for which the error is zero to leading order. Similarly
to what happened with the rst derivative, the error dependence on A and
of these RBF-HFD formulas using three nodes (three independent weights),
equals the corresponding error dependence of RBF-FD formulas using ve
nodes (three independent weights). However, in the limit 0 the accuracy
of the RBF-HFD ( (1 200)h*u(®)appears to be slightly better than
RBF-FD ( (1 90)h*u(®).

4 Conclusions

In this work we derive analytical expressions for the weights of RBF-FD
and RBF-HFD formulas for rst and second derivatives in 1D, and for the
Laplacian in 2D using Gaussians as RBFs. Results are presented for 3, 5, 7
and 9 nodes in the case of RBF-FD formulas in 1D, and for 5 and 9 nodes
in the case of RBF-FD formulas in 2D. For the case of RBF-HFD formulas
we compute the weights for rst and second order derivatives, using three
equispaced nodes only. These weights are then used to derive analytical
expressions for the leading order approximations to the local error in powers
of the inter-node distance h. We show that the agreement of these formulas
with the actual numerical error is very good.

We also show that for each di erential operator, there is a range of values
of the shape parameter for which RBF-FD formulas and RBF-HFD formulas
are signi cantly more accurate than the corresponding conventional nite
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di erence formulas. In fact, very often there is an optimal value of the
shape parameter T for which the error is zero to leading order. This value
can be easily computed from the analytical expressions for the leading order
approximations to the local error. Contrary to what is generally believed,
this value is, to leading order, independent of the internodal distance and
only dependent on the value of the function and its derivatives at the node.

The results presented in this paper can be used to e ciently solve PDE
problems using RBF-FD or RBF-HFD formulas, by selecting a constant op-
timal value of the shape parameter (as was done in [2]| for multiquadrics) or
by selecting a node-dependent optimal shape parameter (as was done in [3]
for multiquadrics).

It should be also emphasized that, contrary to what happened with mul-
tiquadrics [1], for Gaussians it is often possible to write the weights as exact
analytical formulas. Thus, it is not necessary to numerically solve the lin-
ear system de ning the weights and, thereby, the problem of ill-conditioning
which appears often when using these techniques, can be completely avoided.
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