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Abstract—Consumer devices continue to expand their capabil-
ities by connecting to digital services and other devices to form
information-sharing ecosystems. This is complex and requires
meeting connection requirements and minimal processing capa-
bilities to ensure communication. The emergence of new services,
and the evolution of current technologies, constantly redefine the
rules of the game by opening up new possibilities and increasing
competition among service providers. Paradigms such as edge
computing, softwarization of physical devices, self-configuration
mechanisms, definition of software as a code and interoperability
between devices, define design principles to be taken into account
in future service infrastructures. This work analyzes these princi-
ples and presents a programmable architecture in which services
and virtual devices are instantiated in any computing infrastruc-
ture, as cloud or edge computing, upon request according to the
needs specified by service providers or users. Considering that
the target computing infrastructures are heterogeneous, the solu-
tion defines network elements and provides network templates to
ensure it can be deployed on different infrastructures irrespec-
tively of the vendor. A prototype has been developed and tested on
a virtualized cloud-based home network relying on open source
solutions.

Index Terms—Connected consumer devices, fog computing,
orchestrator.

I. INTRODUCTION

THE ECOSYSTEM of digital services available for con-
sumer devices has been growing for years. For instance,

video streaming has continued to grow and it is expected
its traffic will reach 78% of the total traffic consumed by
Internet consumers in 2021 [1]. That growth is not only
caused by the significant increase of the available digital con-
tent, but also by the increase of the devices connected to
the Internet that are able to consume these contents, con-
sidering also mobile devices and other personal consumer
devices are becoming the preferred clients [1]. Currently,
most services targeting heterogeneous devices are Over-the-top
(OTT) services so data is sent to the user bypassing traditional
mediums. OTT services allow multiple devices to consume
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the same contents since there is no need for an underlying
service infrastructure. However, these services would perform
better using dedicated infrastructure providing an increased
user experience whereas requiring less resources. Continuing
with the video streaming example, multicast and distributed
caches can considerably reduce network bandwidth at the
backbone and improve video quality. In a future scenario,
characterized by a great diversity of devices, many poten-
tial users and available services, it would be convenient to
rely on infrastructure and to combine different transmission
mechanisms in a per-service basis. Since physical infrastruc-
ture can be expensive to deploy, it is sensible to consider
this digital service ecosystem would require using dynamic
and scalable infrastructures. Fortunately, Cloud Computing
paradigm, and its different embodiments as Edge Computing
and Fog Computing, provide such an infrastructure: capable
of dynamically instantiate services and network elements thus,
coping with the aforementioned requirements whereas reduc-
ing investment and operation costs. Nevertheless, the Cloud
Computing paradigm has several problems that require special
attention as privacy and data Lock-In (or Vendor Lock-In) [2].
Concerning privacy, new mechanisms should be developed
that ensure user data is not misused once uploaded to the
cloud. The problem of Data Lock-In is specially worrying with
regard to the dynamic infrastructure deployment. Nowadays,
cloud computing orchestrators are quite heterogeneous and
lack of reliable standard interfaces for automated deployment.
Thus, an infrastructure definition designed for a given cloud
framework is more than likely non instantiable in others.

In spite of the advantages of cloud computing, the increas-
ing number of virtualized devices in the cloud complicates
their management. Thus flexible configuration mechanisms,
advanced management, decentralized processing, and self-
organization are required. The distribution of computing
between the cloud and the devices allows moving processing
tasks to more appropriate processing infrastructures. In such a
way, tasks demanding high computing resources are offloaded
to the cloud, keeping basic services, such as graphical user
interface (GUI), on the devices that connect to those services.
This model requires consumer devices with less computational
resources and therefore devices can be cheaper and smaller,
reducing transport costs and energy consumption (since com-
plex tasks are offloaded to the cloud). Also, turning devices
into more simple versions, will not require complex software
to control them and therefore will be easier to perform com-
mon tasks as updating or maintaining them; they will be more
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secure; and development times will reduced. In this article, the
authors propose a framework that extends the network func-
tions defined in the specifications and standards of NFV [3]
for incorporating higher-level features. The goal is to extend
the virtualization of network functions with services instan-
tiation in consumer devices. Authors propose to extend the
idea of NFV instead of proposing a new design because NFV
has a great acceptance in the industry and so we will con-
tribute by expanding the NFV architecture. In this way, service
providers will have additional control of the system soft-
ware by moving some services, traditionally located on the
devices, to the cloud. However, they have to face the problem
of deploying services over multiple platforms. To overcome
this, we propose a configuration structure to declare compo-
nents, connections and configurations, in a way it provides the
ability to instantiate a given set of services in many different
infrastructures. So that this configuration can be applied at
various levels in the infrastructures, this work proposes to use
a model segmented by software layers that can be managed
through templates, configurations and interfaces blocks. Thus,
orchestrators can deploy and interconnect software parts in a
simple way regardless the environment vendor. The software
layer model also includes the use of virtualization mechanisms
to ensure software deployments over multiple infrastructures.
Self-configuration is also interesting for this work since we
propose introducing the concept of virtual ecosystem into
domestic environments and these environments require many
and complex configuration tasks. Using automatic software
management mechanisms guarantees the correct configura-
tion and duplication of services on different platforms. It also
speeds up the process. Not using these mechanisms could take
more time to complete each process and make configuration
mistakes.

The rest of the article is divided into the following sec-
tions: Section II analyzes the relevant conceptual changes
in service architectures, Section III contains the state of the
art, Section IV shows the proposed architecture, Section V
presents results, and Section VI comments on the conclusions
of the article.

II. PROBLEM DOMAIN

This section describes the problem of orchestrating virtual
infrastructure in the aforementioned scenarios; which are the
limits of current solutions; what changes may alleviate the
problem in future service architectures. To better understand
the limitations and proposed solutions, let define the user roles
involved in such scenarios. Usually in this context, exist the
figure of the cloud provider (CP) which provides infrastructure
to service providers (SPs). SPs host their services on CP infras-
tructure. SPs use software components developed by software
manufacturers (SM) to compose services and then the SPs sell
those services to service customers (SC) which are consumers
of services offered by SPs.

A. Infrastructure Definition

Device softwarization is becoming more important with
time. SPs have not only migrated a large part of their services

to the cloud, but also have begun to migrate applications
to the cloud which were designed to work on smart physi-
cal devices. Consumer devices, such as smartphones, tablets,
smart TVs, etc., currently contains a large amount of soft-
ware that can easily be moved to the cloud to improve service
quality. In addition, an emerging trend is to move the func-
tionality of physical devices to the cloud to take advantage of
the benefits of the cloud as well as extend the capabilities of
devices by reducing maintenance and energy costs [4]. Besides
the virtualization of devices, it is also possible to replicate
home networks in a transparent way. So, virtual applications
previously instantiated on user premises will behave in the
same way once virtualized. Thus, the broadcast domain and
latency of the virtual network segments mimic the behavior
of a traditional wired/wireless consumer network. We call it
Virtual Home Personal Network (VHPN).

VHPNs provide mechanisms for exchanging information
relevant using standard layer-2 protocols. VHPNs are com-
posed of a virtual ecosystem similar the physical world where
users interact with software applications in a similar way as
they do with traditionally home networks, whereas SPs are
able to reduce CAPEX and OPEX.

Virtual consumer ecosystems of networks and services are
of paramount importance to define a new generation of value-
added services. However, they are complex to configure,
deploy, test and operate. Due to that, it is required to define
a mechanism to simplify these tasks as much as possible, and
the concept of Infrastructure as Code (IaC) can be one of these
mechanisms. IaC is intended to specify a given infrastructure
and automate its deployment [5]. Several embodiments of IaC
rely on domain-specific languages (DSL) to define infrastruc-
ture thus, a given ecosystem, containing networks, devices and
services, could be recreated on several cloud environments.

However, although there are multiple alternatives prov-
ing such domain-specific languages that define infrastructure
compatible with several cloud platforms, the variety of IaC
initiatives require developers to have a good knowledge of
the target cloud infrastructures. The work presented in this
article, proposes a generic framework compatible with many
cloud platforms to alleviate this problem.

B. Interface Standarization

SPs rely on a set of basic services running in the back-
end that are needed for the operation of contracted services
(back office). Currently, these basic services can be composed
of a set (of tens or hundreds) of independent microservices
responsible for the operation of a part of the business service.
Usually, these services are encapsulated in a service layer con-
trolled from an interface that abstracts the complexity of the
internal operation and allows interaction with external enti-
ties. This set of services is called Operation Support System
(OSS) [6] and allows to monitor, control, analyze, and manage
of services. In addition, OSS interacts with services responsi-
ble for commercial activities, customer relations, billing, etc.
Those services make up the Business Support Systems (BSS).

Traditionally, SPs have designed the OSSs in a closed man-
ner to meet only a particular purpose and without taking
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into account standard specifications. So, there are proprietary
interfaces that limit scalability and interaction with third-party
systems and are often monolithic systems that hinder migra-
tion to cloud environments. In addition, there are no guidelines
on how to integrate new technologies such as SDN and NFV
into OSS. It is important since NFV and SDN infrastructures
need to dynamically move resources between different points
in the network to satisfy variations in traffic. In addition, tra-
ditional OSS systems are not dynamic and may not be able to
respond to changes in real-time service conditions. To address
these issues, the virtualization of OSS and the use of the cloud
are the keys, because they increase the flexibility and scala-
bility of the systems while reducing operating costs and also
facilitate the mobility of services among cloud vendors.

The industry has worked to create a reference model
to interconnect different types of systems. Organizations as
the International Telecommunication Union (ITU-T) part of
Telecommunications Management Network (TMN) [7] and
the ETSI [8] published guidelines to implement OSS/BSS
systems. We have analyzed these guidelines and they are only
high-level specifications that contain few details for imple-
mentation, so its adoption was poor. In addition, we have not
found another reference implementation, therefore, the use of
these guidelines can lead to integration problems between the
parties.

As a solution, two initiatives emerged to solve this problem:
Next Generation OSS (NGOSS) by Telemanagement Forum
(TMF) and OSS through Java OSS/J. NGOSS defines a
framework that can be used for designing of OSS systems.
OSS/J offers standards-based interface design Guidelines
(APIs OSS/J) for OSS system development.

However these solutions have unresolved issues such as:
i) respond to changes/events of the service in real-time; ii) OSS
should automatically support both device, static services and
network adapter modelling; iii) OSS must be able to work in
conjunction with NFV orchestrator and both must interpret the
operating policies in the same way because both can modify
resources through the NFV infrastructure (NFVI) interfaces.
The solution showed in this article proposes an architecture
that approaches those needs.

C. System Autoconfiguration

The ability to autoconfigure systems is a very attractive
issue for the industry for the benefits it brings. In this work,
self-configuration is a concept of special interest because it
facilitates the management and maintenance of a multitude
of services and systems while drastically reducing the work-
load of the operators. For us, a virtual ecosystem in the
home network is made up of user devices that could interact
with each other and with remote services hosted in the cloud
forming a large digital ecosystem. This ecosystem requires
a large number of components, so it is necessary to have
mechanisms with ability of self-configuration and constant
adaptation. For this reason, it is necessary to use: flexible
architectures, re-usable software blocks instead of specific
software, use standards definitions rather than creating new
ones, have capabilities for service lifecycle management, and

work with open components from multiple vendors instead of
vendor-specific solutions.

The industry tries to adapt to these needs and proposes solu-
tions through its standardization bodies (SDO) such as ETSI.
ETSI defined the MANO architecture [9] to allow the man-
agement and automatic control of services which belong to
multiple providers located at different domains. An orchestra-
tor or controller in charge of managing a large system has to
deal with a large number of applications and domains which
is really complicated. To address the problem of autoconfig-
uration ONAP uses a divide and conquer strategy [10]. It
proposes to decompose large systems into smaller and man-
ageable subsystems distributed over different providers which
collaborate for a greater purpose. In other words, it prevents
a single orchestrator to manage the resources of all the ele-
ments involved in the system by proposing that each subsystem
controls the resources of its domain through a local orchestra-
tor. This model requires communication between the different
local orchestrators so that they are able to work together.
Therefore, it is necessary to have APIs well specified and
common information models. ETSI has provided interfaces to
MANO but MANO is focused to work with network devices
such as switches, firewalls (FWs), Set-Top Box (STB), residen-
tial gateway (RGW), etc. but they do not directly contemplate
the inclusion of smart devices. NFV has been thinking to work
mainly with network devices such as FWs, routers, RGWs, etc.
Due to the trend of softwarization of devices and the need to
connect services of the Internet with smart devices, the inclu-
sion of new general-purpose devices within the NFV domain
is emerging. This article considers these needs and proposes
mechanisms to be able to deploy virtualized smart devices in
an NFV infrastructure.

D. From Cloud to Edge Computing

The cloud computing paradigm has become the first choice
to deploy services and infrastructure. Resource elasticity,
low cost and pay-per-use makes cloud computing an ideal
ecosystem to ensure cost effectiveness.

In spite of these advantages, the emergence of new dig-
ital services, the increase of the necessary computational
resources for service and the importance of the user con-
text for the functioning of the services have generated the
need to design digital services more personalized. In other
words, services require optimizing responsiveness and hav-
ing information about the user’s context. A solution to meet
these needs is to move digital services to a physical location
close to the customer to improve: i) response times through the
reduction of latency and increased throughput; ii) take and pro-
vide with local information to applications to adapt themselves
to the local context; iii) refine security mechanisms accord-
ing to the local scope (security policies adapted to the local
scope or subject to legal laws of the region) and the consump-
tion of digital services in which information does not flow
through the Internet. These requirements fit perfectly with edge
computing and SPs aware of those requirements try to bring
their services to consumers. In order to maximize the approx-
imation of services to users, SPs may contract third-party
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data centers on which to deploy services. But that can be a
problem because, in an ideal scenario, local data centers will
be composed by heterogeneous well-defined interfaces and
standard-based management modules that allow the control
of services. However, data center providers have their infras-
tructure, optimized and adapted to their needs, and SPs have
to take into account the characteristics of each virtualization
platform. For this reason, when they design their services, they
have to ensure the operation of the environment of execution
on which their services are deployed. This article presents in
the following sections an approach to solve the problem of
interoperability.

III. RELATED WORK

A. Interoperability and Interfaces

To address the interoperability problem, systems offer
interfaces to connect with them from external entities.
Section II-B exposes the efforts made by organizations to
design a layer of basic OSS/BSS services with standardized
interfaces to the communication between the backend of the
internal services of a system with external entities and expand
or reconfigure them as discussed in Section II-C.

Interoperability requires the management and control of
the operation of complex systems through well-defined
interfaces. In this direction, ETSI was the first to define a
framework for the management and orchestration of NFV
services through the MANO-NFV specification [9]. From this
specification have emerged implementation [11] efforts as
Tacker [12], OPENFV, Open Baton, OPEN-O, OpenMANO
and T-NOVA [13].

All these implementations act as a black box encapsulat-
ing all the operations necessary for the proper provisioning
of the services that they offer. From the point of view of
the SPs, these solutions allow consumers to choose those
that best suit their needs. However, this situation has a
dark side since the migration of a service to another plat-
form can be a problem due to interoperability problems,
which implies the execution of manual integration tasks,
migration and others. The industry has tried to solve these
problems with high-level interfaces based on the OSS/BSS
initiative. For years, OSS/BSS systems were developed pri-
vately and some standards developing organization (SDO)
have tried to create specifications for these interfaces, like the
Organizations as the International Telecommunication Union
(ITU-T) under the banner of Telecommunication Management
Network (TMN) [7] and the ETSI [8]. However, these works
present high-level guidelines without defining an API in detail
and since the lack of definition of a reference data model
makes it impossible to interoperate services between different
operators [14]. The MEF Forum has noticed the new needs of
the OSS/BSS layer of the current emerging systems (mainly
SDN and NFV), and has defined an intermediate layer called
Lifecycle Service Orchestration (LSO) [10]. LSO provides
a model of abstraction for services, resources and products
which hides the complexity of the technologies and network
layers associated with applications and services. LSO is cur-
rently in the process of certification and inclusion of new

products in its catalog of compatible systems and has a long
way to go to consolidate its acceptance in the world of the
industry.

In conclusion, for communication via interfaces is necessary
to use a common data model in addition to have well-defined
interfaces. We think that this requirement complicates com-
munication between systems. So, this work proposes to use a
model segmented by software layers and also the management
of each layer through templates, configurations and interfaces
blocks.

B. From Physical Devices to Virtual Devices

Section II-A has commented on the importance of advances
in device virtualization. It also exposes how the variety of
infrastructure providers poses a compatibility issue because it
requires a device definition for each infrastructure and how
virtualization of devices tries to alleviate this problem. This
approach is not new, the benefits of convergence between com-
munication networks and computer resources are clear [15].
In fact, some works propose approximations to carry func-
tions of CPE devices to the core of the network [16], [17]
and [18]. This is motivated by a tendency to move device
functions to the cloud [16] and [17]. In [16] and [17] explain
the concept of virtualizing devices in the cloud. They pro-
pose to move part of the customer premises equipment (CPE)
functions to the data center located in the core of the network
as a virtual CPE (vCPE). It is based on a minimal hardware
device located at the edge of the network while most of the
intelligence stays in the cloud. Nevertheless, as time goes by,
this concept has gone further and has tried to integrate into
the NFV ecosystem [18] where the inclusion of the Home
Gateway in a VNF is proposed. So, it may be connected to
other VNFs forming service function chain (SFC) [19]. This
complies with the guidelines generated by the ETSI. The ETSI
has published application scenarios for its NFV model inte-
grated by CE devices [20]. This has been a starting point for
other researchers who are investigating classifying services
according to their complexity. For example, by moving the
complex software pieces to the cloud while the most basic
services are executed on the local device [21] and [22]. Other
works analyze the most appropriate functions to virtualize [21]
and [22]. And other works define operating policies focused
on reducing energy expenditure and depending on these poli-
cies and operating conditions at a given time, the solution will
decide where to deploy the virtualized node [23]. All these
contributions indicate a clear interest in the virtualization of
devices and the NFV infrastructure. However, we have not
found works that propose the inclusion of smart devices on
NFV or any kind of mechanism to be able to manage them.
Our solution proposes a mechanism with the capacity to work
with this type of device without problems.

IV. SOLUTION ARCHITECTURE

The design principles of the architecture were defined con-
sidering the requirements presented in the previous section.
This section describes: design principles, architecture proposed
and potential limitations of this work.
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Fig. 1. Challenges, enablers and design principles. Adapted from [24].

A. Principles of Design

In Fig. 1, the enablers are presented to face the challenges
presented in the previous section. Based on these enablers the
proposed solution has used them as design principles.

1) Devices without hardware. The device virtualization
allows adding additional capacities to simple devices
reducing capital expenditures (CAPEX).

2) Non-proprietary hardware and software. The proposed
solution can be deployed over any virtualized environ-
ment avoiding: i) the vendor lock-in problems; ii) use
of proprietary firmware installed on devices; iii) limited
updates, etc.

3) Dynamic rewiring mechanisms. It uses software-defined
network mechanisms allowing dynamically deploying,
configuring and controlling networks. This allows to
adapt the network according to the traffic and the load
of the nodes.

4) Infrastructure defined by code. The specification of
network elements through an infrastructure language
allows: to independently deploy software pieces on the
platform and guarantee the operation regardless of the
environment where is executed.

5) Orchestration for multiple systems. Application
developed through microservices, modules and software
components allows to compose a multitude of services
through the orchestration of them.

6) Awareness for the use of standard APIs. Using well-
defined interfaces facilitates interconnection with third-
party systems. So, it also reduces the time to market,
improving interoperability and facilitating the under-
standing of systems.

B. Architecture Design

Fig. 2 shows the architecture proposed in this arti-
cle. Our approach allows working with the NFV architec-
ture [25] and with NFV Management and Orchestration (NFV
MANO) [9] components. The solution is divided into two main
blocks: i) Infrastructure Monitoring and Management system
(IMOM); ii) INFrastructure Orchestration and Deployment
system (INFORD).

1) Infrastructure Monitoring and Management System:
IMOM is a framework which offers to SPs the necessary tools

to define, build and deploy service infrastructures. IMOM can
be used by SPs to configure their own infrastructure and then
deploy services. In addition to service providers, SMs and
admin users can also access IMOM to deploy and config-
ure software through the BSS layer. Each of the user profiles
has limited access to the platform depending on the role
assigned to the user. BSS layer has a user management service
located in the Customer Management block which manages
user access to IMOM services. CM provides a Web access
panel common to all users. When a user is authenticated by
the system, a dashboard is displayed with the actions available
to the user depending on their role. IMOM provides a catalog
of services in the layer called Business Support System (BSS)
and configures and deploys necessary components (by means
of the INFORD systems) according to the options selected by
each SP.

Fig. 2 shows the layers that compose the IMOM archi-
tecture. These layers allow SPs to materialize their business
models in the form of interconnected services which are
deployed using INFORD.

The Business Support Services layer pursues the moneti-
zation of the platform via SC information stored, the catalog
of available services in the platform and information related
to transactions made by SC. SP creates requests of services
and software stored in the repository and those requests
accepted by Business Support Services layer are then han-
dled by the Services Layer (SL). The SL is in charge
to deploy services required, it is composed of the follow-
ing: Provision Service (PS), Configuration Service (CS) and
Monitoring Service (MS). PS and CS together form the orches-
trator and are responsible to provide orchestration mechanisms
to configure INFORD. The work of the orchestrator is crit-
ical because it is responsible for the proper functioning of
the services. It takes into account factors such as: the life
cycle of each service, the characteristics of each software
component and the configuration of the multiple platforms on
which the service can be deployed. From this information,
the orchestrator generates deployment configuration and exe-
cution scripts to facilitate orchestration tasks. In this work, we
propose a model segmented by software layers to facilitate
the management of services where each layer has a specific
mission and works independently. We have identified four lay-
ers (see Fig. 3): Domain Network layer, Cluster layer, Node
layer and Host layer. The Domain Network Layer (DNL)
contains the highest level elements called deployment units
(DU). DUs are software containers where virtual smart devices
(vSDs), applications and services have been deployed. Each
DU is composed of a set of microservices configured to work
together to provide the functionality to external elements via
its interface. An example of microservices orchestration can be
found in the popular microservices container systems (MCS),
which have tools capable of managing multiple containers
in order to form an application. DNL provides a framework
where containers run. DNL contains the VUN described in
Section IV-B2. The Cluster layer (CL) provides to DNLs a
homogenized execution framework independent of the lower
layers. CL also facilitates scalability and provides methods to
manage the life cycle of the DUs. The Node layer (NL) has
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Fig. 2. This figure shows the two main blocks of architecture presented in this article and the relationship. IMOM provides mechanisms for specifying and
deploying services in INFORD. INFORD provides a multiplatform software environment where to deploy services defined in IMOM.

Fig. 3. Illustrates the position of the Domain Network layer, Cluster layer,
Node layer, and Host layer in the stack of layers.

an operating system image which provides a standard execu-
tion environment on which CL or DNL is executed. Finally,
Host layer (HL) has the capacity to support one or more Node
layers. It is composed of a hypervisor that allows the man-
agement of the life cycle of NL. To manage the stack of
software layers described there are several initiatives such as
TOSCA[26] or NetConf/Yang [27] and [28] where the oper-
ator would define a set of configuration files to specify the
architecture and deploy it. However, those mechanisms are
rigid because they use templates which have static content
and are written for a configuration with a specific objective.
In the case of updating that configuration, it is necessary to
manually enter the changes in the template. In order to solve
this problem, we have developed the Configuration Domain
concept (CD) which is compatible with DNL, CL, NL and
HL. Each CD is composed by 3 blocks which are: templates,
configuration and interfaces blocks.

The template block has schemes to define components of a
domain. Each schema defines the component to be instantiated
through a template with a basic configuration. Configuration
block contains settings which must be applied to each of
the components instantiated through templates. The interface
block specifies the access points that allows to connect a

component with other components instantiated. The composi-
tion of layers in CD facilitates to manage software by levels. It
allows to work with an incremental configuration model where
elements are instantiated from the lowest level (such as virtual
machines, containers, etc.) to the highest levels (applications
or services). Our solution implements this mechanism and SPs
are able to deploy complex systems over INFORD. To achieve
this, the SP selects the services required from the Data Layer
repository. Afterward, the orchestrator (composed by PS and
CS) is in charge of calculating the necessary configuration to
deploy those services. This requires the orchestrator to take
into account the technical characteristics of the infrastructure
where INFORD will be deployed. Decomposing a system in
different software layers has advantages because the orches-
trator is able to work with each layer in a particular way. Each
layer defines its own data model and operating rules for that
domain. This approach fits very well with semantic technolo-
gies able to infer actions and generate a workflow of tasks
according to rules and objectives defined [29].

Fig. 4 shows the structure which defines the process of
deployment and configuration of the services and software ele-
ments. In this structure, the template section shows the files
that define the element to be created, the section can have
several definitions for the same component but using differ-
ent frameworks and tools which facilitate its deployment in
multiple environments (for example frameworks). In Fig. 4, the
reader can see that the element can be instantiated in microser-
vices container systems, or it can be installed in a baremetal
environment using tools to set up and manage computers. If
a virtualized environment is necessary then it could use some
virtualization tool to create the necessary environment before
installing the software. It is possible to include more tools
that specify the deployment of the software elements but the
orchestrator will only use those suits. The configuration sec-
tion is intended to refine settings that could not be completed
by the templates section through the use of scripts. Finally,
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Fig. 4. Shows a definition of a software element stored in the Data Layer.

the interface block contains a specification of how other com-
ponents or services have to connect to this component once it
has been deployed.

The structure showed in Fig. 4 is also valid for configur-
ing and displaying the different layers shown in Fig. 3. It
is only necessary to adjust the template and the appropriate
configuration for the desired layer.

The Monitoring Service (MS) measures the quality of the
services offered to SC. The MS receives information from the
data repository and generates statistics and reports.

Finally, the Data Layer (DL) provides three independent
repositories in which different data can be persisted. The
Repository Definition Infrastructure (RDI) persists information
concerning software elements and services. The Repository
Clouds (RC) stores the inventory of INFORD infrastructures
registered and the Repository Data (RD) to store historical
information about the operation of each instantiated service.

2) Infrastructure Orchestration and Deployment System:
INFORD offers a virtualized and flexible environment. Its
objective is to deploy a service ecosystem oriented to satisfy
the requirements of SP. The architecture of INFORD and its
relation with IMOM is shown in Fig. 2.

INFORD has two layers. The lower layer, called Virtualized
Network Manager (VNM), is the closest to SC. VNM is
responsible for providing resources to create a virtual ecosys-
tem in the cloud composed of the representation of consumer
devices and services. Consumer devices are represented by
Software Virtualization Device (sVD). sVDs are abstractions
that allow SC devices to interact with other components rep-
resented as part of the ecosystem. In this way, components
can transparently interact between them regardless of whether
they are physical or virtual devices. This virtual environment
is called Virtual User Network (VUN) which contains virtual
devices connected to a virtual network.

As can be seen in Fig. 5, the main component of the
VUN is the Local Network Management (LNM), its func-
tion is to manage the connections between devices connected
to the VUN. LNM basically consists of a switching compo-
nent with a control plane governed by a Software Defined
Network (SDN) stack. The advantage of integrating NFV and

Fig. 5. The figure shows an example of VUN composed of several home
devices.

SDN technologies makes it possible to benefit from emerging
security mechanisms such as [4] and [30].

The VUN is ideal for instantiating several virtual devices as
firewalls, residential gateways, network attached storage and
management portal among others. Other devices showed in
Fig. 5 such as STB, Dev1 and Dev2, are the representation
of physical devices. In general, every consumer device, such
as tablets, smartphones, SmartTVs . . . willing to interact with
virtual services will be instantiated as an SVD.

The VUN is connected to the physical network by means of
a Private Access Channel (PAC) component. The PAC is a set
of SDN rules which tunnels the traffic from the user network
to the VNM. If either a consumer device changes its network
or a new consumer device is added to the VUN, a PAC is
created.

The Application Management (AP) layer provides software
components (such as virtual devices or services) to the VUN
so that they are instantiated on the network and can be used by
customers. To be precise, the Application Provisioning Service
(APS) is responsible for providing a service catalog. APS pro-
vides to SC with a search engine of applications based on a
semantic search engine adapted from [31]. The APS does not
only provide software to be installed on consumer devices, but
also virtual devices and services. The APS relies on two dif-
ferent catalogs: the Device Application Catalog service (DAC)
and Cloud Application catalog service (CAC). The DAC ser-
vice provides the necessary client software (if any) that should
be installed in consumer devices to interact with virtual devices
located in VUN. The CAC service contains components to be
deployed in the VUN as storage, servers. . .

3) IMOM and INFORD Working Together: Our solution is
the point of union that integrates different participants in the
ecosystem of digital services that currently exist. Each of the
participants has a specific role and interacts with the platform
in a different way, see Fig. 6.

The BSS layer is the common entry point for different
IMOM users. The BSS layer consists of a set of services seg-
mented by user profiles. Each user profile is defined by the
operations that can perform. Thus, operations related to the
publication and maintenance of software component reposi-
tories are the responsibility of MS. The MS will connect to
the platform through the BSS layer and will only be able to
interact with those services used to publish and update com-
ponents. In the same way, SPs will only be able to access
the software components and actions allowed (to publish and
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Fig. 6. Illustrates the role of the different components during application/service request and instantiation.

deploy services over infrastructures in IMOM). The publica-
tion or update of software components on the platform requires
that SM provides complementary information to specifies and
defines the characteristics of each component. This process is
necessary for orchestration tasks and to manage the catalog
of services. In the case of SPs, the process is similar for the
publication and updating of services.

When a SP wants to deploy a service, it makes a request
to the orchestrator indicating services to be deployed. The
orchestrator requests information from the repositories about
the definition of each service and technical characteristics of
the INFORD platform where they will be deployed. Then, it
generates the optimal configurations to carry them out.

Finally, the SCs are the other users who will connect to the
platform to consult the catalog of available services and will
contract those that are of interest to them.

Once the resources have been contracted, INFORD instan-
tiates the VUN of each user from the IMOM specification
received. An user can add devices/services to their VUN and
those, thanks to the Application Management (AM), will auto-
matically be instantiated and configured. In addition, a device
can demand access to an application or service to fulfill its pur-
pose. The device sends a request to the orchestrator through
an application management interface (infrastructure layers).
The request should be resolved to a specific description for
the involved orchestrator. Thus, the orchestrator will rely on
the framework to get that description and will fetch every nec-
essary component from appropriate repositories (maintained
by SMs and SPs). After that, applications or services are going
to be accessed by the devices.

It is possible that a consumer device demands access to
an application or service, service advertised by a SP. Then,
the device requests services to the SP, the SP connects to
the orchestrator which determines the computing infrastruc-
ture to be used. Then, the orchestrator deploys the service and
redirects the device to the infrastructure selected or increase
the available resources to cope with the demand. And the

orchestrator will fetch every necessary component from the
appropriate repositories (maintained by manufacturers and
SPs). After that, the device will be able to access the applica-
tion or service. The orchestrator before deploying/instantiating
a service will query information about SLAs. Thus, the orches-
trator will configure the service with the parameters defined
in the SLA corresponding to the service to be deployed.

V. IMPLEMENTATION AND RESULTS

This section shows a prototype for evaluation with different
configuration options. Several analyzes have been performed
to compare the behaviour of the solution under multiple
infrastructures.

A. Target Scenario Emulation

This section presents an architecture and the main compo-
nents of the prototype developed. Figure 7 shows a diagram
of the location and connection of the components. The pro-
totype developed consists of a Smart video service (SVS)
that manages users, provides the multimedia catalogue and
streams video. Users interact with SVS through a graphical
interface (GUI) based on responsive Web templates. When a
user requests a video through the GUI, the controller com-
ponent (CC) receives an http request with data in the body,
those data have a json structure which contains metadata
with information about the player. Then, the CC connects to
the BD component to obtain stored patterns that help decide
which video is most appropriate by taking into account those
metadata. Next, CC retrieves the video according to its char-
acteristics from the repository component, and finally, the
video is delivered to the end-user through the Web Server
component.

The SVS has been defined through configuration templates
in the IMOM Data Layer. Template configuration makes it pos-
sible to deploy the SVS over different execution environments.
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Fig. 7. Architecture for testing the proposed solution. The video service
is deployed over IMOM. IMOM can be deployed over Bare metal or virtu-
alized infrastructure. The services are consumed concurrently by users. The
administrator plans the SVS deployment via IMOM and finally deploys it
over INFORD.

B. Performance Analysis

Unlike other works, the proposed solution does not improve
performance for services or applications that are deployed in
the proposed architecture. The target is to improve the com-
patibility, management and deployment of applications and
services. For this reason, this section presents a comparison
of the operation of a service in different test environments.
For this reason, we have defined three types of test envi-
ronments. The first test environment (B) consists of a bare
metal server, the second test environment (L) consists of an
OS-level virtualization layer (such as Linux Container [32]),
and finally, the third test environment (D) consists of an OS-
level virtualization layer oriented to microservices (such as
Docker [32]).

To analyze how the prototype works, we have used the open
source benchmarking tool JMeter [33] to measure response
times and connection time for each request with a different
number of concurrent users. The test carried out involves the
connection and viewing of multimedia content by each simu-
lated user. The test simulates 125 concurrent users who were
progressively making requests reaching their maximum load at
20 seconds. We have measured the load of the system accord-
ing to the time taken to establish each connection. The goal
is to analyze how the connect times vary by increasing users
who access the service.

For this, we use Figure 8 where we show the connection
times of each of the environments to facilitate their compari-
son. As you can see in the Figure 8, the measurements obtained
for each of the environments are very similar. To analyze the
results from a different perspective we have created figure 9
which shows the histogram of the connection times obtained
for each test environment. The reader can see how the most
requests are resolved before 10 msg and also the measures
obtained from the different testing environments are not very
different.

The B environment presents the best results with slightly
shorter times than virtualized environments D and L. This
result is expected because, despite the optimization of virtual-
ization environments, the virtualization layer that encapsulates
the software inside introduces a small delay in process-
ing tasks. The L environment is slightly faster than the

Fig. 8. Illustrates a comparison of the connection times obtained in the tests
for each infrastructure depending on the number of users. Nomenclature: B
is Bare metal infrastructure. L is Linux Containers infrastructure and D is
microservices containers infrastructure.

Fig. 9. Illustrates histograms of the connection times for each tested infras-
tructure. Nomenclature: B is Bare metal infrastructure. L is Linux Containers
infrastructure and D is microservices containers infrastructure.

D environment. We think it may be due to the features of
the software used for virtualization. We are aware that there
are many virtualization options but the goal of this work is not
to measure the performance of each of the possible options.
Our objective is to verify the flexibility to be able to deploy
services in different environments. And we’ve also been able
to check the behaviour of the same service over different envi-
ronments. The performance conclusions obtained by these tests
may be used by software architects to decide which envi-
ronment is best suited to deploy services. For this decision,
assessing performance is an important factor but the char-
acteristics and properties of each runtime environment will
also need to be taken into account. Because each virtualiza-
tion technology provides special properties and therefore, each
of them is ideal for specific situations and requirements.

VI. CONCLUSION

In this work, we propose a programmable architecture capa-
ble of instantiating services and multimedia home devices in
the cloud. Due to the heterogeneity of cloud infrastructures, the
proposed architecture uses virtualization mechanisms to solve
interoperability and lock-in problems adapting to multiple
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cloud environments, even edge-based infrastructures comput-
ing. However, the ability to adapt to multiple infrastructures is
complex, and traditional orchestrators used to deploy software
have limitations that reduce their reach to certain platforms.
This work proposes to use a model segmented by software lay-
ers and also the management of each layer through templates,
configurations, and interfaces blocks. This allows orchestra-
tors to be able to deploy and easily interconnect software
parts. We believe that our solution will allow home users
to enjoy new digital services at a lower price and higher
quality. While infrastructure management is easier for service
providers, software manufacturers, and cloud providers.
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