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1 Introduction

This paper proposes a new methodology for the empirical analysis of the
manner in which official interest rates are determined by The Bank of Eng-
land. In particular, the framework presented here allows for the separate
study of factors affecting the magnitude of positive and negative interest
rate changes as well as their probabilities. Recently, empirical literature
has shown an increasing interest in modeling the discrete and infrequent
changes of central bank rates. Here, we extend previous research allowing
for a different characterization of the probability of positive and negative
movements in a single model1.

The proposed approach is particularly appealing as it captures the most
relevant stylized facts inherent in the behaviour of official interest rates in
the UK. Figure 1 shows the official interest rate series in monthly basis for
the period 1974:01-2004:12. Although the period of analysis is comprised of
different monetary regimes, at least, three stylized facts are always present.
Firstly, this series does not seem to be influenced by the effect of stochas-
tic noise but it is more the outcome of discrete and infrequent decisions by
the Monetary Policy Committee. This is corroborated by the 220 occasions
in which the level of the series did not change with respect to the previous
month. Secondly, two consecutive interest rate movements in opposite direc-
tion is a very rare event. This only happens in 13 occasions. The final point
refers to the different nature of positive and negative movements. We find
that, in the considered period , there have been 99 negative compared to 53
positive changes. However, the average magnitude of negative changes have
been of 61 basis points whereas the average magnitude of positive changes
has been of 98 basis points.

[INSERT FIGURE 1 HERE]
Economic literature provides some explanations for these facts. For ex-

ample, regarding the first point, Orphanides and Wilcox (2002) suggest that,
when inflation is moderate, central banks do not take any action to reduce
inflation. Instead, they wait for external shocks to obtain the desired re-
duction. For the second fact, Lowe and Ellis (1997) propose a psychological
explanation suggesting that policy makers are likely to be embarrassed by
reversals in the direction of interest rate changes as this can be interpreted
by the public as a repudiation of previous actions. Regarding the third
point, economic literature suggests the presence of asymmetric preferences
with respect to output or (and) inflation by policy makers; see, for example,
Cukierman and Gerlach (2003) and Ruge-Murcia (2003). This theory could
be used to explain the different nature of positive and negative interest rate
movements.

At the empirical level, a traditional methodology for modeling the dy-
1Gauss codes used in this analysis can be obtained from the authors upon request.
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namics of official interest rate series is the use of conventional ordered logit
and probit models; Eichengreen et al (1985) and Davutyan and Parke (1995)
are two relevant examples. In these models, the magnitude of interest rate
changes is conditioned to a set of fundamental economic variables. Hamilton
and Jorda (2002) propose a framework denoted as autoregressive conditional
hazard (ACH) models to separately analyze two separate decisions by policy
makers: 1) whether or not to change interest rates; and 2) by how much.
They specify a hazard rate associated to an interest rate change, for a given
interval, as a function of the length of time between two previous interest
rate changes and a set of economic variables. For the analysis of factors
affecting the magnitude of change they use an ordered probit model.

In our particular context, two main drawbacks of this approach can be
mentioned. Firstly, the ACH model does not differentiate between the prob-
ability law governing positive and negative changes. This is especially rele-
vant for the UK case because, as we mentioned above, negative movements
are more likely and of less magnitude than positive movements. A second
drawback is due to the fact that the two questions related to the magni-
tude and probability of change are considered in the context of two different
models that are specified and estimated separately. This is an implicit hy-
pothesis of independence of changes; the use of a single model includes the
structure of dependence among the changes.

Here, we propose a model that explains interest rate changes as a func-
tion of three fundamental economic variables: output gap and movements
in inflation and exchange rate. The parameters of the function are allowed
to change depending on a latent three state variable that drives negative,
no movement and positive interest rate interventions respectively. In turn,
the probability of being in each state is also allowed to depend on interest
rate decisions in the previous period as well as in a set of economic vari-
ables. We denote this framework as the general probabilistic and magnitude
(GPM henceforth) model for interest rate changes. The GPM model allows
us for the analysis of the different factors affecting four fundamental deci-
sions about interest rate movements: the magnitude of (1) positive and (2)
negative interest rate changes; and the probability of (3) positive and (4)
negative changes.

An additional advantage of this methodology is that specification and
estimation of the GPM model is particularly simple as it shares some similar
features with the Markov Switching model (MS hereafter) introduced by
Hamilton (1989) and later extended by Filardo (1994) and Diebold et al.
(1994) for the case where the transition probability matrix can change along
the time.

A separate contribution of the paper is the use of GPM models to define
4 different types of monetary shocks. The first two types relates to the situ-
ation where the monetary authority increases and decreases official interest
rates when no change was expected. The third and forth shocks are when
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central bankers do not change official interest rates even though a positive
and a negative change had been expected. We compute numerically the
impact of these shocks on the UK economy and compare our results with
other procedures in the literature to estimate responses to monetary shocks
such as the standard VAR approach and the generalized impulse response
function advocated by Koop et al (1996). Our methodology is proved to be
useful as results indicate substantial differences in the impact of the four
different shocks.

This paper is structured as follows. Next section provides a brief descrip-
tion of the different approaches in the literature to estimate the determinants
of changes in official interest rate set by central bankers within a reaction
function context. In the same section we present the GPM model. Estima-
tion of the model for the UK and analyses of the main results are shown in
Section 3. Section 4 explains the use of GPM to define different types of
monetary shocks and indicates how to estimate impulse-response functions
to these shocks. Section 5 analyzes results from this estimation. This sec-
tion also compares the reactions proposed here with those obtained in more
standard approaches. Conclusions are drawn in Section 6.

2 A GPM Model for Interest Rate Decisions

This section provides a brief description of the different approaches in the
literature to estimate the determinants of changes in official interest rate
set by central bankers within a reaction function context. Then, we present
the GPM model that allows for asymmetries in both the magnitude and the
probability of changes in interest rate.

Two big groups of methodologies can be mentioned for the estimation
of reaction functions of central bankers. The first of them was motivated
by the seminal paper by Taylor(1993). He showed that a simple reaction
function that uses short-term interest rate as a policy instrument responding
to movements in fundamental variables (inflation and output gap) follows
closely the observed path of the US. Federal Funds Rate in the late 1980s
and early 1990s. Following this paper, it has been a main concern in the
more recent literature to specify and estimate simple policy rules that are
also able to capture the smoothing nature of official interest rates and can
be used for policy recommendation; see Clarida et al (2000) and Orphanides
(2001) for some relevant examples. They suggest that short-term interest
rate converge to the desired rate through a partial adjustment mechanism
such as:

it = ρit−1 + (1− ρ) {α + βπt+1 + γyt+1} (1)

where it is the interest rate controlled by the monetary authority; and πt

and yt are respectively the rate of inflation and cyclical output in period t.
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A second approach relates to the characterization of the discrete and
infrequent changes in bank rates. A typical example is based on the use of
logit and probit models in which the dependent variable is referred to the
magnitude of change of overnight interest rate (instead of interest rate levels)
set by the monetary authority and assume that all the relevant conditioning
variables are included in the study; see for example Eichengreen et al (1985)
and Davutyan and Parke (1995). A clear advantage of this approach is that
it is well suited for the nature of changes in interest rates set by central
bankers.

However, as pointed by Hamilton and Jorda (2002), an important draw-
back of this methodology is the presence of a potentially significant serial
correlation in the latent residuals. A solution to this problem can be found
in the autoregressive conditional duration (ACD henceforth) model of Engle
and Russel (1997) and Engle (2000). In the ACD model, previous length of
time between events are taken to forecast future durations.

Starting from this consideration, Hamilton and Jorda (2002) proposed
their autoregressive conditional hazard (ACH) model. In this case, their in-
terest is not on the length of time between events but on the probability of
an interest change tomorrow given the information up today. In their frame-
work they study separately two types of decisions by central bankers: 1) the
decision on whether or not to change interest rate; and 2) the magnitude
of change. For the first one, they specify and estimate an ACH model in
which the hazard rate for interest rate change in a given period depends on
a vector of fundamental variables. The second decision, on the other hand,
is evaluated using an ordered probit model for the magnitude of change.
However, an important problem to apply the ACH approach to the analysis
of interest rate changes in the UK arises: while the observation of changes
seems to indicate that the probability of positive is clearly different to neg-
ative movements, ACH models make no distinction between the probability
law goberning positive and negative interest rate movements.

Here, we propose a simple model in which probability of positive and neg-
ative interest rate movements are treated differently. Moreover, in contrast
to the ACH model that studies the probability and magnitude of change in
two separate models, the GPM model integrates these two decisions into a
single framework.

For clarity of exposition, given the nature of interest rate movements, a
good description of the series is given by the following equation

it =





it−1 + α1 + γ1
1∆πt + γ1

2yt + γ1
3∆et + σ1ut if st = 1

it−1 if st = 2
it−1 + α2 + γ2

1∆πt + γ2
2yt + γ2

3∆et + σ3ut if st = 3
, (2)

where ∆ indicates the difference operator; et denotes the foreign exchange
rate included to account for open market considerations in the interest rate
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rule2; ut is the error component; and st is a variable that takes values 1,2,
and 3 when there is a negative change, no change, and a positive change in
interest rate at time t respectively.

Two points must be mentioned at this stage. First, the inclusion of
∆πt instead of πt must be empirically justified on econometric grounds and
indicates that the monetary authority cares about the stabilization and not
the level of inflation. Second, model (2) can be easily generalized to allow
for lagged explanatory variables. These two points will be more specifically
outlined in the following section.

Notice that a main feature of model (2) is that positive and negative
interest rate changes are affected differently by fundamental variables. How-
ever, although specification (2) is a plausible representation of the data, if
the interest of the analyst is to study what factors affect interest rate move-
ments, then it is necessary to define the probability law governing these
changes. Therefore, for our purpose it is useful to consider the process to
be influenced by an unobserved latent variable, s∗t , that drives interest rate
movements. This variable has two possible interpretations. First, it can be
an indicator on how prone central bankers are to perform positive or nega-
tive interest rate changes. Also, it can be used to evaluate the probability of
positive and negative interest rate changes at period t given the information
at t − 1. In other words, in our model we are supposing that we know the
variable s∗t at time t − 1, but not at time t. In other words the variable
st and s∗t are referred to the same phenomenon, but their interpretation is
different: st is observable, whereas s∗t is latent. In practice, predicting s∗t we
try to forecast the state st before that it was observable.

Then, the GPM model can be defined as:

it =





it−1 + c1 + β1
1∆πt + β1

2yt + β1
3∆et + σ1εt if s∗t = 1

it−1 if s∗t = 2
it−1 + c2 + β2

1∆πt + β2
2yt + β2

3∆et + σ3εt if s∗t = 3
, (3)

where εt is a standard Normal disturbance and the rest of components has
been previously defined.3

To define the probability of being in one of the three states, let {pij}i,j=1,2,3
denotes the transition probability P (s∗t = j/s∗t−1 = i). We assume that s∗t
follows a three-state Markov change with transition matrix:

2In this case et is defined as the number of US dollars to one British pound. Hence,
positive values of ∆et means a bigger value of British pound with respect to US dollar.

3The exposition of this model is analogous to the model with changes in regime pre-
sented by Hamilton (1994), Chapter 22. He observes a different evolution of the volume
of dollar-denominated accounts held in Mexican banks before and after 1982. Then, he
argues that although it is possible to estimate a different model for these two periods,
the change in regime should not be considered as the outcome of a perfectly foreseeable
deterministic event but a random variable.
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P =




p11 p21 p31

p12 p22 p32

p13 p23 p33


 (4)

where pi3 = 1−∑2
j=1pij .

The described framework in (3)-(4) is a standard MS model where the
only peculiarity is the absence of a stochastic error term in state s∗t = 2.4

MS models were initially introduced by Hamilton (1989) and later extended
by Filardo (1994) and Diebold et al. (1994) for the case where the transition
probability matrix can change along the time, depending on some observed
variables zt. In this case, we need some specification for the probabilities
pij,t. Filardo (1994) uses the following logistic functions for the 2-states case:

pii,t =
exp(φi + ztϑi)

1 + exp(φi + ztϑi)
(5)

where φi and ϑi (i = 1, 2) are unknown parameters. Of course, the choice of
zt is crucial and implies computational efforts and complications in the like-
lihood function. Filardo (1998) indicates the condition to select zt to avoid
estimation problems; in general a sufficient condition to justify the use of
Hamilton filter (Hamilton, 1990) in a time varying transition probability
Markov Switching (TVTP-MS hereafter) model to develop the maximum
likelihood estimation, is that the elements in zt are conditionally uncorre-
lated with st. This is a plausible assumption according to our empirical
analysis in the following section.

Here, we also extend the specification of Filardo to a 3-states case, using
a multinomial logit:

pij,t =
exp(φij + ztϑij)

1 +
∑2

h=1exp(φih + ztϑih)
(6)

Details about estimation of the model are confined to Appendix 2.
The described framework allows for the separate analysis of four different

decisions by central bankers: the probability of (1) an increase and (2) a
decrease in interest rate; the magnitude of (3) a positive and (4) a negative
interest rate change. The remaining of this paper shows the estimation of
the proposed model for the UK and, based on this, we study the transmission
of monetary shocks to fundamental interest rate shocks.

4Notice that an intuitive methodology to estimate the transition probabilities could be
just counting the proportion of events in which the observable state, st, is i at time t− 1
and j at time t. However, in our particular case, probabilities obtained in this way are
very similar to those obtained using the approach advocated by Hamilton (1989).

7



3 Estimation of a GPM Model for the UK

For the interest rate estimation, we use UK data on inflation, the output
gap, nominal exchange rates and the overnight interest rate set by the Bank
of England. Here, inflation is measured by the seasonal difference of the
price of consumer goods and services in logs. Output is measured by the
seasonally adjusted Industrial Production Index (IPI)5. The natural output
level is the Hodrick-Prescott (HP) trend of the logged IPI. Then, the output
gap is computed as the difference between the logged IPI and its HP trend.
Nominal exchange rate is measured as first differences of the log of US/UK
foreign exchange rate All series are in monthly frequencies and they are
defined for the sample period 1974:01 to 2004:12.

For the sake of illustration, we first show the estimation of a Taylor rule
in the spirit of Clarida et al (2000) and Orphanides (2001) similar to the one
in (1). Given our set of data, we estimate this equation by Hansen’s (1982)
Generalized Method of Moments (GMM) using as instruments twelve lags
of the policy instrument and the policy targets (output and inflation). The
following expression reports the main results (standard errors are between
brackets):

it = 0.97
(0.01)

it−1 + (1− 0.97
(0.01)

)
{

3.49
(1.10)

+ 59.88
(13.39)

πt+1 + 76.52
(49.69)

yt+1

}
(7)

with R2 = 0.970.
It is important to notice that the estimation of the autoregressive pa-

rameter in this expression is very close to 1. In fact, this could be consid-
ered an unbalanced regression as it is clearly integrated of order one ( I(1)
henceforth); πt is on the borderline I(1)/I(0); and yt is I(0)6. Important
problems related to the interpretation and statistical inference in this type
of regressions can be found in Banerjee et al (1993).

Therefore, it seems reasonable to estimate an interest rate equation
where the dependent variable is the magnitude of change instead of levels
of interest rates. Initially, we estimate this simple linear model

∆it = −0.022
(0.030)

+ 5.552
(5.375)

∆πt + 3.199
(1.634)

yt − 5.163
(1.249)

et + 0.584ut (8)

with a poor fitting (R2 = 0.047).
5There is considerable evidence in the literature that, in the UK, short-term move-

ments in manufacturing output are strongly correlated with movements in other output
components; see Salazar et al. (1997) for a discussion.

6The integration order can be inferred from the observation of figures and correlogrames
of the series. Also, we developed simple ADF tests for these series finding that the value
of the test is -2.93 for it; -6.56 for yt; and -3.22 for πt. MacKinnon (1991) critical values
for rejection of hypothesis of a unit root are respectively -3.99, -3.42 and -3.13 at the 1%,
5% and 10% significant level.
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Three points must be mentioned at this stage. First, although, in equa-
tion (8), the parameter associated to ∆πt is not significantly different from
zero at the 0.05 level, we include this variable to be consistent with the
common practice of considering the rate of inflation to estimate interest
rate equations in the previous literature; see, inter alia, Eichengreen et al
(1985) and Davutyan and Parke (1995). The equation is specified with ∆πt

instead of πt because the estimated coefficient associated to πt is clearly
less significant than the coefficient associated to ∆πt. Besides, variable ∆πt

will play a fundamental role in the estimation of the GPM model as we will
prove later. Thus, from specification (8), we interpret that central bankers
move interest rates to stabilize inflation and not to control its level. Second,
nominal exchange rate are included to account for open market considera-
tion in the interest rate rule. In fact, the estimated parameter associated
to this variable is significantly different from zero at the conventional lev-
els. The third point relates to adding lagged components in expression (8).
We considered this possibility but, in our case, the BIC criterion (Schwarz,
1978) suggests to adopt a model without lagged variables.

In general, the sign of the estimated parameters in this equation is con-
sistent with economic insight. More specifically, positive changes in cyclical
output and first differences in inflation lead an increase of it and a bigger
value of the currency pushes it down. A potential drawback in this inter-
pretation is that one may argue that dependent and independent variables
in (8) are determined simultaneously. To deal with this issue, we test the
null hypothesis of exogeneity with a Hausman (1978) test accepting the
null hypothesis for all the explanatory variables at the conventional signif-
icance levels. This result is consistent with economic insight as one can
assume that central bankers have contemporaneous monthly information on
exchange rate, inflation and output gap; see, for example, Bernanke and
Blinder (1992) and Wright (2002).

The presence of regimes in equation (8) is formally tested by using the
nonparametric Bayesian approach of Otranto and Gallo (2002)7. In this
procedure, we have used three different priors for the number of states,
represented in Table 1 by the parameter A; higher A corresponds higher
prior probability on a larger number of regimes. We can note that all the
cases favor the presence of 3 regimes, according with the hypothesis of model
(2); in addition the cases relative to 1 and 2 regimes are excluded.

[INSERT TABLE 1]
The first column in Table 2 reports the estimates of model (3) with

fixed transition probabilities. To obtain the final specification we eliminate
variables whose estimated parameters are not significantly different from
zero at the 5% significant level in a step-wise procedure. Note that the
magnitude of a contractionary monetary policy is more affected by concerns

7A more formal description of this procedure is confined to Appendix 2.
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about the state of cyclical output. However, the magnitude of expansionary
policies are more affected by movements in inflation. Also, the smoothed
probabilities, obtained by the Hamilton filter, show a good inference on the
regime as they generally assign an high probability to the correct regime for
each time.

Results of this estimation are consistent with economic literature and
with the comments in Section 1. In particular, the low values of p13 and
p31 indicate that two interest rate movements in opposite direction are very
unlikely. Secondly, negative movements are more likely than positive ones.
From the estimated probabilities, the expected permanence in regime 1 is
1.9 months, in regime 2 is 3 months, in regime 3 is 1.6 months8. Finally, the
most likely action after a positive movement is no movement whereas after
a negative movement, the most likely action is another negative movement.

[INSERT TABLE 2]
Results for the estimation of model (3) with TVTP-MS are shown in the

second column of Table 2. We run a number of different experiments, not
explicitly reported here, checking if variations in the estimated transition
probabilities can be explained by different sets of fundamental variables.
The only case in which probabilities are significantly affected by, at least,
one of the fundamental variables was the third row of the transition prob-
ability matrix. Hence, we estimate the model with the following transition
probability matrix:

Pt =




p11 p12 p13

p21 p22 p23

p31,t p32,t p33,t




where the last row is parameterized as:

p31,t =
exp(φ13)

1 + exp(φ13) + exp(φ23 + ϑ23πt−1)

p32,t =
exp(φ23 + ϑ23πt−1)

1 + exp(φ13) + exp(φ23 + ϑ23πt−1)

p33,t = 1− p31,t − p32,t =
1

1 + exp(φ13) + exp(φ23 + ϑ23πt−1)

In this case, the Likelihood Ratio test favors the TVTP model with re-
spect to the MS model with fixed transition probabilities (the corresponding
p-value is equal to 0.005).

Interestingly, although the level of inflation does not have a significant
impact in the magnitude of interest rate changes, it clearly affects the prob-
ability of changes. In particular, after a positive interest rate movement
the probability of no movement in the next period increases when inflation
rate decreases. Hence, we can only observe two contractionary movements

8The expected permanence in the regime j is given by 1/(1− pjj).
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in a row when inflation is high. This result is consistent with the insight in
Orphanides and Wilcox (2002). They suggest that the monetary authority
only moves interest rates to counteract incipient increases of inflation and
when inflation is moderate but still above the long run objective central
bankers do not take any action to reduce inflation. Instead , they wait for
external shocks to obtain the desired reduction of inflation.

[INSERT FIGURE 2]
For robustness, two kind of experiments were run and not explicitly

reported to save space. Firstly, given that one can argue that central bankers
should consider real instead of nominal exchange rates, we estimate the GPM
model including real exchange rate without any significant change in the
results. The second type of experiments regards to the presence of different
monetary regimes for the whole period of analysis. A particularly important
one is known as the ”hard” Exchange Rate Mechanism from October 1990
to September 1992. During this regime, The Bank of England sacrificed
domestic control to fix exchange rates with respect to the Deutsche Mark. To
evaluate the influence of this period in our results, we eliminate observations
belonging to this period from our sample and estimated the GPM model
again. However, results were qualitatively similar to those reported in Table
2. We also run the estimation considering only the most recent observations
from January 1993 to December 2004. In this case, results about changes in
the magnitude of interest rate remain similar and the only significant change
is that transition probabilities do not depend on any variable. This can be
explained for the low and stable inflation level in the most recent period. In
any case, main results in the subsequent analysis about the effect of interest
rate shocks are not affected when only this period is considered.

4 Monetary Policy Shocks in a GPM Model

Consider a linear vector autoregression (VAR) for a n-dimensional vector,
Yt

Yt= C + B1Yt−1+... + BpYt−p+at, Eata′t= Σ, (9)

where: p is a positive integer; Yt is a (nx1) vector of jointly determined vari-
ables and includes, at least, a monetary instrument; Bi is a (nxn) matrix
of parameters; and at is a vector of zero mean, serially uncorrelated distur-
bances whose symmetric variance-covariance matrix has typical element σij .
Efficient estimates of the parameters of such a system with common degrees
can be obtained by running OLS equation by equation (see, for example,
Lütkepohl, 1993).

From model (9) it is not possible to compute the dynamic response
function of Yt to the fundamental shocks in the economy. This because
the elements of at are, in general, contemporaneously correlated and one
cannot presume that they correspond solely to a particular (single) economic
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shock. To deal with this issue, a structural model is typically considered for
economic analysis. Such a model is defined by

A0Yt= Λ + A1Yt−1+... + ApYt−p+εt, (10)

where Eεtε
′
t= A0ΣA′

0= I, an nth order identity matrix. The parameter
matrices and errors in (9) and (10) are linked by: Bi= A−1

0 Ai; C = A−1
0 Λ;

and at= A−1
0 εt with εt being a (nx1) vector of orthogonal and standardized

structural disturbances.
Once consistent estimators of the Bi’s in (9) are obtained, one can es-

timate Σ from the fitted residuals. All the information about the matrix
A0 is contained in the relationship Σ = A−1

0

(
A−1

0

)′. However, A0 has n2

parameters while the symmetric matrix, Σ, has at most n(n + 1)/2 dis-
tinct elements. Christiano et al. (1999) provide a detailed discussion of this
identification problem. In order to identify the structural model one usually
imposes a set of linear restrictions across the elements of the individual rows
of A0. The concomitant order condition, (i), specifies that it is necessary to
specify at least n(n−1)/2 restrictions, to get a sufficient condition for identi-
fication. Together with this condition, it is necessary, (ii), that the diagonal
elements of A0 be positive. However, these conditions are still not sufficient
for identification. It is also necessary to ensure, (iii), that a neighborhood
of A0 cannot contain other matrices that fulfil the aforementioned condi-
tions. This is ensured by imposing the additional restriction that the matrix
derivative with respect to A0 of the equations defining Σ = A−1

0

(
A−1

0

)′ is
of full rank. By doing this, local identification is established. For global
identification it is necessary to impose that there be no other matrices that
fulfil the three restrictions (i)-(iii) in a neighborhood of A0. However, if
the identification problem only involves systems of linear equations, local
identification obtains if, and only if, global identification obtains.

When the model is identified, assuming Yt to be covariance-stationary,
one can use model (10) to compute analytically the responses of variables
in Yt to fundamental monetary shocks in different periods. Moreover, these
reactions are symmetric and independent of the history of the process. How-
ever, if, at least, one of the equations in a system is non linear, impulse
response functions can only be estimated by using numerically intensive
methods; and the impact of fundamental shocks may depend on the sign
and size of the shock as well as on the history of the process. Koop et al
(1996) provide a discussion on this issue and propose a methodology based
on Monte Carlo simulation of an equation system.

Hamilton and Jorda (2002) propose an alternative methodology, based
on their ACH model, to evaluate the effect of monetary shocks. To describe
this procedure, notice that a monetary shock can be defined as:

εi,t = it −E(it/Ωt) (11)
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where εi,t is the fundamental shock related to the equation for interest rate
and Ωt refers to all the available information to the monetary authority up
to period t.

The shock in expression (11) can be written as:

εi,t = it − it−1 − (E(it/Ωt)− it−1) . (12)

Expression (12) indicates that there are two types of monetary shocks that
cannot be distinguished in standard VAR models. The first one relates to
the situation where the monetary authority changes official interest rates
(it − it−1 6= 0) when no change was expected (E(it/Ωt) − it−1 = 0). The
second one is when central bankers fail to change official interest rates (it−
it−1 = 0) even though a change (E(it/Ωt)− it−1 6= 0) had been expected.

However, a key difference of this model with the one developed by Hamil-
ton and Jorda (2002) is that our model is entirely asymmetric and treats dif-
ferently the probability of expansionary and contractionary monetary policy.
Then, we can extend the previous definition allowing for the differentiation
of 4 different types of monetary shocks in the following way

εi,t = (it − it−1)+︸ ︷︷ ︸
Shock 1

+ (it − it−1)−︸ ︷︷ ︸
Shock 2

− (E(it/Ωt)− it−1)
+

︸ ︷︷ ︸
Shock 3

− (E(it/Ωt)− it−1)
−

︸ ︷︷ ︸,
Shock 4

(13)
where (xt)

+ is a function that takes value xt if xt > 0 and zero otherwise;
similarly (xt)

− takes value xt when xt < 0 and zero otherwise.
Hence, using our GPM model, we estimate the effect of four different

types of monetary shocks. The first two represent respectively an increase
and a decrease in the official interest rates when no change is expected.
Shocks 3 and 4 represent no change in interest rate when a positive and
negative movements are respectively expected. In GPM models, these four
events are not forced to have the same effect. An explanation of how to
estimate the effect of these shocks follows.

Suppose that we are in period T and we want to estimate the effect on the
economy of a certain value of iT at different time horizons. Variables in YT

can be split into two different groups: those that react with one lag delay to
iT , denoted by Y1,T ; and those that react contemporaneously to iT ; denoted
by Y2,T . The first thing to do is to estimate the value of the variables that
react contemporaneously to iT , Ŷ2,T (iT ). Using this information we use
linear equations to predict the value of Y1,T+1 (iT , ΩT ). The value îT+1 is
then obtained using the GPM model described in Section 2. Iterating in
this manner, we can compute

ŶT+k(iT ) =
(
Ŷ1,T+k (iT , ΩT+k) , îT+k(iT ), Ŷ2,T+k (iT , ΩT+k)

)′
. (14)
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Then, we can easily extend the procedure in Hamilton and Jorda (2002)
to answer the questions: what difference does it make if the Bank of England
raises (decreases) the official interest rate by 25 basis points during month
T compared to the case in which it had kept it constant? To measure these
two questions we compute the following expressions:

(0.25)−1
[
ŶT+k(iT ) |iT =iT−1+0.25 −ŶT+k(iT ) |iT =iT−1

]
, (15)

(0.25)−1
[
ŶT+k(iT ) |iT =iT−1−0.25 −ŶT+k(iT ) |iT =iT−1

]
. (16)

We can also compute what would happen if we predicted a positive and
negative change in official interest rates but no change occurred from the
following expression:

(wT )−1

[
ŷT+k/T (iT ) |iT =iT−1 −ŷT+k/T (iT ) |

iT =(̂iT/T−1)
+

]
, (17)

(wT )−1

[
ŷT+k/T (iT ) |iT =iT−1 −ŷT+k/T (iT ) |

iT =(̂iT/T−1)
−

]
, (18)

where

wT =

{ (
iT−1 − îT/T−1

)−1
if

∣∣∣iT−1 − îT/T−1

∣∣∣ > 0.05
0 otherwise

.

As suggested in Hamilton and Jorda (2002), the effect of the weight wT

in expressions (17) and (18) is to ignore observations for which no change
was expected and to rescale forecast errors into units comparable to (15)
and (16).

5 Impulse-Response Analysis for the UK.

This section presents and analyses the transmission of interest rate shocks
to the variables of interest. More specifically, we study the effect of the four
types of shocks defined in the previous section and we compare them with the
analysis of monetary transmission derived from more standard techniques,
such as the use of linear VAR models as proposed by Sims (1980) and the
Generalized Impulse Response functions advocated by Koop et al (1996).

We start with the specification of a standard linear VAR model similar
to (9) as a benchmark case. Structural system is identified by imposing the
recursiveness assumption. We choose this scheme because it is simple and its
widespread use makes results comparable to previous studies. In our case,
the variables considered in Yt are (in this order) the annual rate of inflation,
πt; output gap, yt; the US/UK foreign exchange rate in first differences, ∆et;
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first differences of interest rates in the long run, ∆Rt; first differences of the
overnight interest rate set by the Bank of England, ∆it; and first differences
of the monetary aggregate M0, ∆Mt. This order assumes that overnight
interest rate do not have contemporaneous impact on macroeconomic vari-
ables such as πt, yt, et and Rt. It also assume that these variables affect
the behaviour of monetary policy makers contemporaneously. For example
Bernanke and Blinder (1992) and Wright (2002) both hypothesize recursive
structures with similar forms. The inclusion of Rt and Mt is to have a more
complete description of the monetary transmission process. Rt is also impor-
tant because it includes expectations about inflation; see Dale and Haldane
(1995).

Reactions to one standard deviation interest rate shock for πt, yt, et

and it using a simple VAR model with two lags are exhibited in Figure
3. First thing to notice is that reactions are consistent with the empirical
literature on monetary transmission for the UK; see for example Dale and
Haldane (1995). More concretely, inflation increases substantially even in
the medium and long term after a positive shock in interest rate; cyclical
output decreases after the first month and the value of the currency increases
after a positive movement in interest rate.

[INSERT FIGURE 3]
The estimated inflation reaction after a positive monetary shock on the

official interest rates is a controversial result. This outcome is known in
the literature as the price puzzle and has been found by Dale and Haldane
(1995) and Wright (1998) amongst others. One possible explanation for
this is that the monetary authority sets policy by using private information
that is not shared by the rest of the economy and cannot be captured in
a VAR model. Hence, when The Bank of England increases interest rate,
economic agents interpret this as a signal for future inflation pressures. In
order to test this hypothesis, we included the inflation forecast provided by
the Bank of England since 1993 in a linear VAR model estimated for the
period 1993:01-2004:12. However, price reactions estimated from this model
are very similar to the one shown in Figure 3. An alternative explanation is
suggested by Dale and Haldane (1995) and Tillmann (2006) among others.
In an oligopolistic market, a tight monetary policy affects the capital market
raising firms’ marginal costs and, henceforth, pushing inflation up. This is
known in the literature as the cost channel of monetary transmission.

We developed a number of different experiments to check for robustness
of the estimated reactions. For example, 1) the number of lags was changed
to 4, 6 and 8; 2) the model was estimated for different subperiods; 3) the case
without the inclusion of Rt, Mt and both (Rt and Mt) in the VAR model
were also considered; 4) different combinations to order the variables under
the recursiveness assumption were tried; and 5) two alternative VAR models
using levels of price and first differences of inflation instead of inflation were
estimated. However, results were qualitatively similar in all cases.
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For our second benchmark case, we considered a similar VAR system in
which all the equations are linear except the equation for the official interest
rate set by the Bank of England. More specifically, our equation for the
official interest rate was substituted by our estimated GPM model. Then,
we used the methodology developed by Koop et al (1996) to estimate the
effect of shocks of different sign and size. A detailed description of the use
of this methodology for our particular case can be found in Appendix 3.
Figure 4 shows reactions to interest rate shocks of different sign and size
under this approach. The size of the shock , (u), is measured in terms of
the standard deviation of the structural residual. A visual inspection of the
figure reveals that reactions are qualitatively similar to those in the linear
case. Moreover, we do not find significant evidence of asymmetric responses
to shocks of different size and sign.

Two points must be mentioned about responses obtained in this way.
First, although the procedure in Koop et al (1996) allows for the distinc-
tion of the effect of shocks of different size and sign, however this approach
is not as general as the one described in the previous section that allows
for the identification of 4 different types of shocks depending on the pre-
vious expectations about interest rate movements. Second, the standard
approach to estimate generalized impulse response functions in nonlinear
models advocated by Koop et al (1996) is not a very accurate procedure
in our particular context. The reason is that it ignores the nature of the
official interest rates assuming in the simulation that this variable is affected
by stochastic random shocks in all the periods.

[INSERT FIGURE 4]
Figure 5 shows reactions to a positive and a negative movement in inter-

est rate by 25 basis points when no movement is expected (shocks 1 and 2 in
Section 4). The effect of responses to negative movements are multiplied by
-1 to make it comparable to responses to positive movements. On the other
hand, Figure 6 exhibits reactions to no movement in interest rate when a
positive and negative movement is expected (shocks 3 and 4 in Section 4).
As we did before, the effect of reactions to shock 4 are multiplied by -1 to
make them comparable to the effect of shock 3. A detailed description of
how these reactions are obtained can be found in Appendix 3.

[INSERT FIGURE 5]
[INSERT FIGURE 6]
Two important features must be highlighted. First, the effect of shocks

3 and 4 are negligible when they are compared to the effect of shocks 1 and
2. These results are consistent with those in Hamilton and Jorda (2002).
Second, negative interest rate movements have a bigger effect compared to
positive movements. These two features provide valuable economic intu-
itions. The first one can be used to explain why interest rate remains at
the same level for long periods of time even when changes are expected by
economic agents. The reason for this is simply that the effect of this kind
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of shock on the economy is negligible. The second one present a new expla-
nation for the asymmetric effect of positive and negative monetary shocks.
The explanation of this asymmetry is straightforward. In our framework
a negative movement in interest rate increase the expectation about sub-
sequent negative movements in a near future, however this effect is not so
strong for positive movements.

6 Concluding Remarks

This paper presents a methodology for the statistical analysis of the dis-
crete and infrequent changes in the official interest rates set by the Bank
of England. The clear advantage of our methodology is that it allows us to
differentiate the probabilistic law of positive and negative interest rate move-
ments. Our estimation results are consistent with the observed stylized facts
of the official UK rates. More specifically, it shows that negative changes
are more likely than positive ones and that two consecutive movements in
opposite direction is a very unlikely event. Moreover, when transition prob-
abilities are allowed to depend on fundamental economic variables we find
that the probability of two consecutive positive changes in interest rate is
an increasing function of inflation rate.

The model is used to define four different types of economic shocks and
estimate their separate effects on inflation, output gap, nominal exchange
rates and overnight interest rates. Two main results were found. Firstly,
changing interest rates when no change is expected have a much bigger eco-
nomic effect than failing to move interest rates. A similar result was found
by Hamilton and Jorda (2002). Secondly, negative changes almost double
the economic impact of positive change. An explanation for this asymmet-
ric effect is that after a negative interest rate movement the probability of
subsequent negative movements is higher than the probability of positive
changes after a positive movement.
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Appendix 1
This appendix describes the time series considered.

• Economic activity: the industrial output of production industries (IOP):
all production industries. Seasonally adjusted Period: 1974:01-2004:12.
Source: National Statistics (www.statistics.gov.uk).

• Price: long term indicator of price of consumer goods and services.
Not seasonally adjusted. Period: 1974:01-2004:12. Source: National
Statistics (www.statistics.gov.uk).

• Exchange rate: US/UK exchange rate. Not seasonally adjusted. Pe-
riod: 1974:01-2004:12. Source: Federal Reserve of St. Louis (re-
search.stlouisfed.org).

• Official Interest Rates at the last day of each month. Not season-
ally adjusted. Period: 1974:01-2004:12. Source: Bank of England
(www.bankofengland.co.uk).

• Monetary Aggregate: M0 wide monetary base (end period). Season-
ally Adjusted. Period: 1974:01-2004:12. Source: National Statistics
(www.statistics.gov.uk).

• Long term interest rates: 20 years rates. Par yield - per cent per
annum. Not seasonally adjusted. Period: 1974:01-2004:12. Source:
National Statistics (www.statistics.gov.uk).

• Inflation forecast from the Bank of England. Not seasonally adjusted.
Period: 1974:01-2004:12. Source: Bank of England (www.bankofengland.co.uk).

All series are in monthly basis.

Appendix 2
This appendix describes the procedures to estimate a MS model via

the Hamilton (1990) and Kim (1994) filter (Section A) and to apply the
nonparametric Bayesian approach of Otranto and Gallo (2002) to detect
the number of regimes.

A: Estimation of a Markov Switching Model
The estimations of the unknown parameters contained in the MS and

TVTP-MS models can be obtained by the maximum likelihood method.
The way to obtain the likelihood function is described in Hamilton (1990);
we recall its formulation, reminding to Hamilton (1990) and Kim (1994) for
details.
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Let us recall our GPM model:

it =





it−1 + c1 + β1
1∆πt + β1

2yt + β1
3∆et + σ1εt if s∗t = 1

it−1 if s∗t = 2
it−1 + c2 + β2

1∆πt + β2
2yt + β2

3∆et + σ3εt if s∗t = 3
, t = 1, ..., T

(19)
where εt is a standard Normal disturbance, whereas the switch from a state
to another is driven by a Markov Chain with transition probability matrix:

P =




p11 p21 p31

p12 p22 p32

p13 p23 p33




in the case of MS model, or:

Pt =




p11,t p21,t p31,t

p12,t p22,t p32,t

p13,t p23,t p33,t




in the case of TVTP-MS model.
The likelihood function is given by:

L =
T∏

t=1

f(it|Ψt−1)

where Ψt represents the information available at time t. The density func-
tion f(it|Ψt−1) is a mixture of Normal densities; in fact:

f(it|Ψt−1) =
3∑

j=1

3∑

i=1

f(it, s∗t = j, s∗t−1 = i|Ψt−1) = (20)

=
3∑

j=1

3∑

i=1

f(it|s∗t = j, s∗t−1 = i,Ψt−1) Pr
(
s∗t = j, s∗t−1 = i|Ψt−1

)
=

=
3∑

j=1

3∑

i=1

f(it|s∗t = j, s∗t−1 = i,Ψt−1) Pr
(
s∗t = j|s∗t−1 = i

)
Pr

(
s∗t−1 = i|Ψt−1

)

In the final equation the three elements of the products are easily obtained.
The first one, f(it|s∗t = j, s∗t−1 = i,Ψt−1), is the Normal density:

1√
2πσ2

j

exp


−

(
it − it−1 − cj − βj

1∆πt − βj
2yt − βj

3∆et

)2

2σ2
j


 .

Note that in (19) the equation referred to the second state is deterministic.
To provide maximum likelihood estimates we have supposed that, when
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s∗t = 2, the variable (it − it−1) is Normal with mean 0 and variance 10−9;
in this way we can have a stochastic equation to estimate the transition
probabilities relative to state 2, but with a variance practically equal to
zero.

The second element of the product in (20), Pr
(
s∗t = j|s∗t−1 = i

)
, is the

parameter pij of the transition probability matrix for the MS model, or
the element pij,t of the time varying transition probability matrix in the
TVTP-MS model.

Finally, Pr
(
s∗t−1 = i|Ψt−1

)
is the so-called filtered probability of the

state at time t−1, obtained via the Hamilton (1990) filter. Given a starting
value Pr(s∗0 = 0) each element is obtained by the recursive formula:

Pr (s∗t = j|Ψt) =
3∑

i=1

Pr(s∗t = j, s∗t−1 = i|Ψt) =

=
3∑

i=1

f(it|s∗t = j, s∗t−1 = i,Ψt−1) Pr
(
s∗t = j|s∗t−1 = i

)
Pr

(
s∗t−1 = i|Ψt−1

)

f(it|Ψt−1)

Furthermore, the filtered probabilities can be used to make inference on
the state for each time t, assigning to the regime j the observation at time
t for which Pr (s∗t = j|Ψt) is the highest one. A similar function is covered
by the smoothed probabilities Pr (s∗t = j|ΨT ), where the probability at each
time is conditional on the full information available. This is a sort of ex
post inference with respect to the filtered probabilities, which represent a
simultaneous inference on the regime. For details on the algorithm to obtain
the smoothed probabilities, see Kim (1994).

B: The Nonparametric Bayesian Method to Detect
the Number of Regimes

In this section we describe the nonparametric Bayesian approach of
Otranto and Gallo (2002) to detect the number of regimes in a time series.
The advantage of this procedure with respect to other specific approaches
for MS models (such as Hansen, 1992 or Garcia, 1995) is that it is not a
formal test (requiring an estimation procedure), but a sort of identification
procedure based on the data set available made at the beginning of the
study. In addition, it can include the eventual a priori knowledge of the
researcher on the data set and does not require strong hypotheses.

This approach is based on the idea that the data {x1, ..., xT } are gen-
erated from an unknown number k of Normal densities; let us denote with
θt =

(
µt, σ

2
t

)
the parameter vector containing the mean and the variance of

the density referred to xt. Let us assume that θt follows an unknown distri-
bution G belonging to a class of distributions F . Following a nonparametric
Bayesian approach (Ferguson, 1973), we can put a class of priors on F which
should cover every kind of prior for F and be analytically manageable (An-
toniak, 1974). The Dirichlet process, introduced by Ferguson (1973), is the
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instrument chosen for this purpose. In other terms, we assume that θt is
generated from an unknown distribution G, following a Dirichlet process
D (AG0), where A is a hyperparameter which regulates the prior proba-
bilities on the number of regimes k, and G0 is a bivariate distribution; in
particular we suppose that:

σ−2
t ∼ G (a/2, b/2) ,

µt|σ2
t ∼ N (

m,σ2
t τ

)
.

where G is a Gamma distribution and N is a Normal distribution; a, b, and
m are hyperparameters to be chosen; the precision parameter τ follows an
Inverse Gamma distribution:

τ−1 ∼ G
(

w

2
,
W

2

)

The choice of A is fundamental because the prior distribution for the
number k of regimes depends on it; this prior is expressed by (Antoniak,
1974):

nakA
k/A(n),

where nak is the first type Stirling number in absolute value (tabulated in
Abramowitz and Stegun, 1972, p. 833) and A(n) = A(A + 1)...(A + n− 1).
In addition, the expected value of k depends only on A and n; in fact:

E (kn) =
n∑

i=1

A/(A + i− 1) ≈ A

[
log

(
n + A

A

)]
.

Therefore, if we have some expectation about the number of regimes, we can
choose the A that fits this expectation. In addition, from it we can obtain the
conditional distribution p (θt|Θ[−t]), where Θ[−t] =

{
θ1, ...θt−1, θt+1..., θT

}
:

p (θt|Θ[−t]) =
A

A + T − 1
G0 (θt) +

1
A + T − 1

T∑

j=1,j 6=t

δθj (θt) .

There is a probability A
A+T−1 that θt is different from the other terms in

ΘT and a probability 1
A+T−1 that θt is equal to the j-th term in the matrix

ΘT ≡ (θ1θ2. . . θT ). Of course, if there are nj terms of the sample equal to
θj , the probability that θt= θj would be nj

A+T−1 .
Otranto and Gallo (2002) use the Gibbs sampling approach of Esco-

bar and West (1995) to estimate the empirical posterior distribution of
k. This procedure provides the estimation of the posterior distribution
p (θt|Θ[−t] ,YT , ), where Θ[−t] denotes

{
θ1, ...θt−1, θt+1..., θT

}
and XT repre-

sents the available observations; the mode of the distribution of the distinct
values of the parameters can be considered as an estimate of the number
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of regimes k. In the rest of this Appendix we list the steps of the Gibbs
sampling procedure, the posterior distributions used and the values of the
fixed hyperparameters.

Gibbs sampling steps:

1) choose a starting value for ΘT , call it Θ0
T drawing every θt from

Gt

(
θ0
t

)
;

2) sample θ1 from (θ1|Θ[−1] ,XT ), θ2 from (θ2|Θ[−2] ,XT ), ..., θT from
(θT |Θ[−T ] ,XT ), obtaining a new ΘT . The last θt sampled is inserted imme-
diately in Θ[−(t+1)] for the subsequent draw;

3) iterate step 2 until convergence, obtaining the first element ΘT (1) for
the first replication;

4) repeat step 2) N times, obtaining ΘT (2), ..., ΘT (N);
5) enumerate the k distinct values in ΘT (i) and construct the empirical

posterior distribution p (k|XT );
6) the mode of p (k|XT ) is the number of regimes for the switching model.

Posterior Distributions

p (θt|Θ[−t] ,XT ) = q0Gt (θt) +
T∑

j=1,j 6=t

qjδθj (θt) ,

where Gt (θt) is the bivariate Normal-Inverse Gamma, with components:

σ−2
t ∼ G [(a + 1) /2, βt/2] ,

µt|σ2
t ∼ N

(
zt, Zσ2

t

)
.

and:

q0 ∝ A
Γ [(1 + a) /2]
Γ (a/2) a1/2

{
1 + (xt −m)2 / [(1 + τ) b]

}−(1+a)/2
[(1 + τ) b/a]−1/2 ,

qj ∝ exp
[
− (xt − µj)

2 /
(
2σ2

j

)] (
2σ2

j

)−1/2 , j = 1, . . . , T

with q0 + ... + qt−1 + qt+1 + ... + qT = 1;

βt = b + (xt −m)2 / (1 + τ) ,

zt = (m + τxt) / (1 + τ) ,

Z = τ/ (1 + τ) .

(
τ−1|ΘT

) ∼ G
(

w + k

2
,
W + K

2

)
,

where k is the number of different components of ΘT and K =
∑k

i=1
(µi−m)2

σ2
i

.
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Hyperparameters

The hyperparameters are the same used in Otranto and Gallo (2002),
who assign large probabilities to a large set of parameters. They are:

m = 0; a = 4; b = 50; w = 4; W = 1.

Appendix 3
This appendix describes the procedure to estimate impulse-response

functions to monetary shocks. The structure of this appendix is as follows.
Section A describes the necessary steps to compute generalized impulse-
response functions along the lines of Koop et al (1996). Section B explains
the steps followed to compute the economic effect of positive and negative
movements in interest rates when no movement was expected. Section C
explain the computation of the effect of the decision of not to change official
interest rates when positive and negative change was expected.

A. Estimation of the Impulse Response Function
This appendix describes the procedure to estimate the impulse-response

function along the lines of Koop et al (1996). Here, this procedure is con-
sidered for the analysis of reactions to monetary shocks for the variables
of interest. The steps followed in order to obtain the generalized impulse-
response function are described next.

• The first step is to estimate a linear VAR system by OLS in reduced
form for all the equations except for the overnight interest rate that is
estimated from the GPM model.

• We picked a vector of starting values xt−1 for the simulation of the
system.

• We picked a sample of 6-dimensional shocks. This is done by using the
inverse of a Cholesky factorization of the estimated covariance matrix.
This transforms the residuals of the model in contemporaneous inde-
pendent shocks (εt). That is, ε̂t = P−1ât, where ât are the residuals
of the different equations and P is the lower triangular Cholesky de-
composition of the residuals. Then we drew R unordered collections of
these shocks randomly and independently (with replacement) which is
denoted by

{
ε̂
(j)
1 , ε̂

(j)
2 , ..., ε̂

(j)
k

}
, where j = 1, ..., r. The residuals thus

obtained were recovered by â
(j)
t = P ε̂

(j)
t . We also considered the same

sample of R shocks, except that a shock of standard error size s was
imposed on the fifth element of ε̂

(j)
1 . The reason for this is that we

need to analyze the effects of a shock in ∆it. The sample of residuals
recovered was denoted by â

(j)∗
t .
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• We simulated the evolution of Yt+k using xt−1 and one sample of resid-
uals â

(j)
t+k. The values thus obtained were denoted by Y j

t+k(xt−1, â
(j)
t+k),

k = 1, ...,K.

• We simulated the evolution of Yt+k using xt−1 and one sample of resid-
uals â

(j)∗
t+k . The values thus obtained were denoted by Y j

t+k(xt−1, â
(j)∗
t+k),

k = 1, ...,K.

• The last two steps were repeated R times for each of the samples to
form an average of each individual component.

Y t+k(xt−1, at+k) =
1
r

r∑

j=1

Y j
t+k(xt−1, â

(j)
t+k), k = 1, 2, ...,K (21)

Y t+k(xt−1, a
∗
t+k) =

1
r

r∑

j=1

Y j
t+k(xt−1, â

∗(j)
t+k), k = 1, 2, ..., K (22)

• We took the difference of the two averages to form a Monte Carlo
estimate of the reaction function to a monetary shock.

• This process was repeated B times and the estimate reaction is an
average of these. Here K is set at 36, B at 500 and R at 500.
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B. Estimation of Responses to Shocks 1 and 2.
This part describes a procedure to estimate economic reactions to mon-

etary shocks 1 and 2 in expressions (13). The following steps have been
followed:

• The first step is to estimate a linear VAR system by OLS in reduced
form for all the equations except for the overnight interest rate equa-
tion that is estimated from the GPM model.

• We picked a vector of starting values, xT , for the simulation of the
system. xT is a vector that includes πT , yT , ∆eT , ∆RT , ∆iT , ∆MT .
In the fifth element of this vector we impose the restriction iT = iT−1

and the new vector is denoted by x∗T .

• We impose the restriction iT = iT−1±0.25 in the fifth column of vector
xT and it is denoted by x∗∗T .

• Based on the recursiveness assumption, we simulated the evolution of
Yt+k using x∗T . The values thus obtained were denoted by Y j∗

t+k(x
∗
T ),

k = 1, ...,K.

• Based on the recursiveness assumption, we simulated the evolution of
Yt+k using x∗∗T . The values thus obtained were denoted by Y j∗∗

t+k(x∗∗T ),
k = 1, ...,K.

• The last two steps were repeated B times for each of the samples to
form an average of each individual component.

Y
∗
t+k(x

∗
T ) =

1
B

B∑

j=1

Y j∗
t+k(x

∗
T ), k = 1, 2, ..., K (23)

Y
∗∗
t+k(x

∗∗
T ) =

1
B

B∑

j=1

Y j∗∗
t+k(x∗∗T ), k = 1, 2, ..., K (24)

• The normalized response to shocks 1 and 2 are computed as

(0.25)−1
[
Y
∗∗
t+k(x

∗∗
T )− Y

∗
t+k(x

∗
T )

]
(25)

• Here K is set at 36 and B at 10, 000.

C. Estimation of Responses to Shocks 3 and 4.
This part describes a procedure to estimate economic reactions to mon-

etary shocks 2 and 3 in expressions (13). The following steps have been
followed:
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• The first step is to estimate a linear VAR system by OLS in reduced
form for all the equations except for the overnight interest rate equa-
tion that is estimated from the GPM model.

• We picked a vector of starting values xT−1 for the simulation of the
system. xT−1 is a vector that includes πT−1, yT−1, ∆eT−1, ∆RT−1,
∆iT−1, ∆MT−1.We also pick the values xT that corresponds to the
selected xT−1.

• Using xT−1, we compute E[iT /ΩT−1] = îT/T−1 from the GPM model.
Then, we differentiate two cases depending on whether îT/T−1 − iT is
positive or negative. We denote these two cases as shocks 3 and 4. In
both cases we computed the associated weight wj

k as

wj
T =

{ (
iT−1 − îT/T−1

)−1
if

∣∣∣iT−1 − îT/T−1

∣∣∣ > 0.05
0 otherwise

• We impose the restriction iT = îT/T−1 in the fifth column of vector xT

and it is denoted by x∗∗T . In the fifth element of this vector we impose
the restriction iT = iT−1 and the new vector is denoted by x∗T .

• Based on the recursiveness assumption, we simulate the evolution of
Yt+k using x∗∗T . The values thus obtained were denoted by Y j∗

t+k(x
∗∗
T ),

k = 1, ...,K.

• Based on the recursiveness assumption, we simulated the evolution of
Yt+k using x∗T . The values thus obtained were denoted by Y j∗

t+k(x
∗
T ),

k = 1, ...,K.

• The last two steps were repeated B times. Then, we classify separately
the values Y j∗

t+k(x
∗
T−1), Y j∗∗

t+k(x∗∗T−1) and wj
T belonging to the types of

shocks 3 and 4. We denote by B1 the number type 3 shocks and by
B2 the number of type 4 shocks, (B1 + B2 = B). Then, we compute

B1∑

j=1

(
wj

T

)−1 [
Y ∗

t+k(x
∗
T−1)− Y ∗∗

t+k(x
∗∗
T−1)

]
(26)

B2∑

j=1

(
wj

T

)−1 [
Y ∗

t+k(x
∗
T−1)− Y ∗∗

t+k(x
∗∗
T−1)

]
(27)

• Here K is set at 36 and B at 20, 000.
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Tables and Figures

Table 1: Posterior distributions of the number of regimes of ∇it correspond-
ing to three different priors; 500 Gibbs sampling replications

Number of Regimes
A 1 2 3 4 5 6

0.150 0.000 0.000 0.672 0.274 0.046 0.008
0.220 0.000 0.000 0.440 0.404 0.134 0.022
0.465 0.000 0.000 0.760 0.204 0.032 0.004

Table 2: Estimates of MS and TVTP-MS models (standard errors in paren-
theses)

Parameters MS TVTP-MS
c1 -0.380 (0.021) -0.379 (0.022)
c3 0.078 (0.121) 0.070 (0.122)

β1,1 13.675 (3.416) 14.087 (3.236)
β2,3 9.483 (6.077) 9.818 (5.900)
β3,1 -2.603 (0.883) -2.641 (0.896)
β3,3 -12.733 (4.149) -12.651 (4.099)
σ2

1 0.018 (0.004) 0.018 (0.004)
σ2

3 1.249 (0.187) 1.228 (0.182)
p11 0.476 (0.078) 0.485 (0.080)
p12 0.406 (0.078) 0.408 (0.082)
p21 0.083 (0.025) 0.079 (0.025)
p22 0.669 (0.032) 0.670 (0.032)
p31 0.119 (0.044)
p32 0.524 (0.056)
φ31 -1.217 (0.544)
φ32 1.254 (0.428)
ϑ32 -12.018 (4.630)

Log-Likelihood 1923.45 1927.348
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Figure 1: Official Interest Rates in the UK
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Figure 2: Transition probabilities given s(t-1)=3: p(31,t) (bold line), 
p(32,t) (black line), p(33,t) (gray line).
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The second column shows the effect of two shocks of size u=2 and u=-2 on official interest rate. To make results comparable,  reactions to shocks  of size u=2 are multiplied by -1.

(*) u refers to the size of the shock in terms of the stardard deviation of the structural residuals.

Figure 4. Comparable Reactions to Monetary Shocks 
using the Approach in Koop et al (1996) (*)

 The first column shows the effect of two shocks of size u=1 and u=2 on official interest rate. To make results comparable,  reactions to shocks  of size u=1 are multiplied by 2.
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(*) Reactions to negative interest rate movements are multiplied by -1. 

Figure 5. Comparable Reactions to a Positive and Negative
 Interest Rate Movement by 25 Basis Points when no Movement is Expected (*)  
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(*) Reactions to no movement in interest rates when a negative movement is expected is multiplied by -1. 

Figure 6. Comparable Reactions to no Change in Interest Rate 
when Positive and Negative Movements are Expected (*)  
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