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Abstract 
 

 

   Search frictions in the goods market have proven to be a fruitful deviation from the fiction of a 

centralized Walrasian market providing a micro-foundation of the use of money as a medium of 

exchange. Moreover, persistent propagation of monetary shocks can arise in search-theoretic 

monetary models through the interaction of search-frictions in the goods and labor markets, and 

inventory holdings. 

   Here, a search-theoretic monetary DSGE model with capital and inventory investment is 
estimated, and its implications on output and inflation dynamics are contrasted with those of 

standard flexible price monetary models: a cash-in-advance and a portfolio adjustment cost 

model. Model estimation and comparison is conducted in a Bayesian way in order to account for 

possible model misspecification. 

   The search model can track inflation and output data better, as well as it dominates the other 

models in the ability to predict the autocorrelations of inflation and the persistent disinflation 

process after a technology shock. It generates a hump-shaped but not strong enough output 

response to a monetary shock. Current and near current correlations between output growth 

inflation are predicted well.       
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1 Introduction
Starting from the models of Kiyotaki and Wright [11], [12] search theory has
developed into the main paradigm of the microfoundation of money. Giving
money an essential role, i.e., the use of money augments the set of allocations1

this approach has become a useful tool for monetary theory. However, little
quantitative analysis has been undertaken so far with this kind of models2.
This paper addresses quantitatively the implications of search frictions in

the goods market for inflation and output dynamics. I consider three differ-
ent dimensions: Can a search-theoretic model track US output growth and
inflation data better than other standard flexible price monetary models?
Can it create more realistic contemporary and lagged correlations between
output growth and inflation? And: How well do dynamic responses to shocks
to money growth and technology match its empirical counterparts? Answer-
ing these questions helps us to assess whether modeling search frictions in
the goods market has the potential to improve substantially the models to
be used as laboratories to study the effects of monetary policy.
Search-theoretic monetary business cycle models explore the consequences

of search frictions in the goods market for aggregate variables in business cy-
cle frequencies, but are not tailored to fit the data. Thus, any version of this
model class is probably highly misspecified, i.e. we cannot believe that any
of these models comes close to the true data generating process (DGP). Ob-
viously, one could try to enrich a search model with many additional features
like habit formation, investment adjustment costs, sticky prices and wages,
etc so as to deal with less misspecified models in the end. Apart from the
big effort that would have to be undertaken the question arises what one
can really learn from a comparison of highly complex models where many
frictions interact with each other. To keep the models as simple as possible
I follow Schorfheide [18] in applying a Bayesian methodology that allows to
compare potentially misspecified models.
The model chosen from the class of search-theoretic monetary models

(STM) is a full fledged business cycle model with search frictions in the goods

1See e.g. Kocherlakota [13] and Wallace [22] on the issue of essentiality.
2In his lecture at the Canadian Economics Association Meetings (Hamilton 2005),

published in Shi [20], Shi gives an overview of the literature, highlighting the quantitative
contributions of Shi [19], Wang and Shi [23] , and Menner [15] and urging to conduct more
quantitative analysis in the field of monetary search-theory.
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and labor market3. The model includes capital formation and quadratic cap-
ital adjustment costs and is outlined and solved in Menner [15] 4. There
are several reasons for this choice. First, there are only few models of
the search-theoretic literature capable to address macroeconomic issues. To
study the effects of changes in money growth the early literature had to as-
sume an upper bound in money holdings.5 Shi [19] was the first to develop a
tractable search-theoretic Dynamic Stochastic General Equilibrium (DSGE)
model where prices are determined endogenously and money holdings are
not bounded. His model exhibits a persistent mechanism to propagate mon-
etary shocks that arises from the interaction of search-intensity and inventory
investment but lacks the possibility of capital formation. Allowing for cap-
ital formation as in Menner [15] potentially helps the model to propagate
shocks as it does in standard business cycle models. So, we want to allow
the search model to make use of this feature in order to match the data.
Furthermore, capital formation breaks the close link between employment
and output present in a model with fixed capital6. Since we are interested
in inflation and output dynamics we do not want to rely too heavily on out-
comes of the labor market in determining output responses and hence use a
model with capital formation.
Faig [7] has develloped recently an alternative model where the produc-

tion sector is neoclassical and capital is accumulated by using the firm’s own
product as investment. The commerce sector is separated from the produc-
tion sector. His model differs in many other details from the present model
and the analysis centers on welfare implications of money growth accross
different steady states. Transitional dynamics are not considered: he studies
only monetary policies that keep the nominal interest rate constant. A higher
nominal interest rate reduces the number of buyers and has ambiguous effects
on the number of producers and hence output.

3Search frictions in the labor market are a natural assumption in the presence of decen-
tralized goods markets. However, in the model comparison below I also consider a version
of the model with flexible labour markets.

4Without capital adjustment costs the calibrated model renders explosive dynamics.
As shown later, by contrast, the estimation procedure can lead to parameters that imply
stable dynamics also in the absence of capital adjustment costs.

5See Rupert et al. [17] for an excellent overview of the literature on search-theoretic
monetary models before 2000.

6Log-linearizing the production function yt = neNt k̄1−eN one sees immediately the pro-
portionality between log-deviations of output ŷt and employment n̂t: ŷt = eN n̂t.
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Recently, a different approach to avoid to assume bounded money hold-
ings by Lagos and Wright [14] where agents alternate visiting decentralized
and centralized goods markets has been used by many researchers. Although
some of these Lagos-Wright type models also allow for capital formation,
they assume instantaneous production, so there are no inventories. Together
with the fact that all changes in money holdings in the decentralized markets
are undone in the following centralized market, this presumably implies weak
intertemporal links and probably a weak propagation of shocks7.
The reader might ask why we do not compare the search model to models

with sticky prices and/or sticky wages8. There are several answers to this.
First, it is not that clear that costs of price adjustments on the firm level in-
duce a considerable degree of price stickiness on the aggregate level. Golosov
and Lucas [10] estimate the real effects of menu costs on the firm level to be
very small. Therefore, one might want to step back and ask what aspects of a
monetary economy lead to real effects of monetary surprises even when prices
are flexible. Frictions in the goods market and in the asset market are candi-
dates that are examined here. But even if one accepts the modelling device of
sticky prices the comparison between the search-theoretic model and a sticky
price model would be on unequal grounds9. Hence, from the class of flexible
price models a cash-in-advance (CIA) model and a portfolio-adjustment cost
(PAC) model are chosen. The former has as the only friction the constraint
on the representative household to have enough money on hand to pay for
the purchased goods, while the latter assumes, in addition, frictions in the
portfolio adjustment.
We estimate the parameters of the models to be compared using Monte

Carlo Markow Chain methods to draw from the posterior distribution. By
comparing marginal data densities we find that the search-theoretic model
tracks the time series of U.S. output growth and inflation better than the

7Arouba and Wright [2] find a dichotomy between the real and monetary sector, while
Arouba, Waller and Wright [1] in a very recent paper propose different variations where
the monetary trades in the decentralized goods market have some influence on capital
formation. A comparison of the present STM model with these type models is left for
future research.

8Models with nominal rigidities are now widely used for policiy evaluation. See, for the
most prominent models Christiano, Eichenbaum and Evans [6] and Smets and Wouters
[21].

9In principle one could introduce also some price stickiness in the search model. But
this is a more elaborate task and seems to be worth while only after knowing that the
search model can explain the data as least as good as other flexible price models.
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portfolio adjustment cost model and the standard CIA model - coming close
to VAR´s with 1 to 4 lags. Loss functions are used to compare the ability
of the models to account for current, lagged and leading cross correlations of
output growth and inflation. The expected loss, or risk, a researcher incurs
when choosing the STM model is considerably lower for "lags" -1,0 and 1
than the ones he incurs when choosing one of the alternative models. How-
ever, when we look at 2 periods ahead and behind the STM model ranks
least. Moreover, while the STM model improves slightly on the CIA model
in replicating the dynamic responses to shocks to money growth and technol-
ogy, it is the PAC that minimizes the loss in this dimension with considerable
difference. The propagation mechanism of the STM model seems neither to
be strong enough to replicate the persistence present in output, nor to com-
pete with the imposed frictions on portfolio adjustment that turn out to be
estimated to be strong. On the contrary, the STM model can predict well
the persistant disinflation process after a technology shock and the autocor-
relations up to lag 4 of inflation, which neither of the two other models can.
Hence, search frictions in the goods market add a new propagation mecha-
nism to the CIA model that behaves in some dimensions similar, but in some
dimensions different to the mechanism created by frictions in the portfolio
management of consumers.
The rest of the papers is organized as follows: In Section 1 the three

models are outlined, and it is shown how they are solved, detrended and how
the policy functions are transformed into state space form. Section 2 lays
out the empirical strategy of Bayesian estimation and model evaluation. The
results of the estimation process and the model comparison are presented in
section 3. Section 4 concludes.
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2 The Models
In the following I will present the two models to be compared. Since the
reader is probably less familiar with the search-theoretic monetary model
than with the portfolio adjustment cost model I will explain the former in
more detail and restrict myself to a short exposition of the latter.

2.1 The Search-Theoretic Monetary (STM) Model

2.1.1 The Economy and its Matching Process

In the model there are two search frictions: costly search for consumption and
investment goods, as well as costly labor search. The economy is populated
by a continuum of households with measure one, denoted byH. A continuum
of goods with measure one, also denoted by H, can be produced with labor
and fixed capital as inputs to production. Each good is storable only by its
producer.Purchased investment goods can be installed as capital by incurring
an installation cost, i.e. there exists a (quadratic) capital adjustment cost.
Each household h ∈ H produces good h and wants to consume a subset of
goods different from its own product, and only goods from this subset can
be used as capital for the production of good h. This induces a need for
exchange before consumption / investment is possible. In the absence of a
centralized market with a Walrasian auctioneer households have to search for
trading partners with the desired goods. Generally, there will be no double-
coincidence of wants. The literature following Kiyotaki and Wright [11],[12]
established that in random search models under certain parametrizations
fiat money gets valuable and is the only medium of exchange. To establish
this in the present model would require a more detailed consideration of the
exchange patterns. Instead, here it is simply assumed that fiat money is
required in each transaction.
The matching in the goods market between sellers and buyers and in the

labor market between producers and unemployed is assumed to be random.
Hence, individual agents would face idiosyncratic risks: a priori, buyers do
not know whether they can find the desired consumption/investment good
and exchange it for the money and sellers do not know whether their product
will be purchased. As a consequence money holdings, inventories of unsold
goods and capital stocks would not be equally distributed among households
and hence are individual state variables, as well as the employment status
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and the number of vacancies. To avoid the need of tracking the distributions
of these individual state variables, it is assumed that the decision unit - the
household - consists itself of a continuum of different agents. The members of
the household share the purchased consumption-investment goods and regard
the household’s utility as the common objective. The household decides how
much to consume and how much to invest. All the firms of a household are
asigned the same amount of investment goods. Hence, after incurring the
installation cost, all start the next period with the same capital stock. They
also equally share workers and inventories. Finally, resource sharing of firms
within a household allows the payment of wages regardless of whether the
firms had a suitable match in the goods market. Under these assumptions
the random matching process does not create idiosyncratic risk.
The household consists of five groups: one group of members enjoys

leisure, the other four groups are active in markets: Entrepreneurs (set Ap

with measure ap), unemployed (Au, measure u) workers (Ant, measure: apnt),
and buyers (Ab, measure ab). The values of ap, u and ab are assumed to be
constant, while the number of workers apnt may vary over time. An en-
trepreneur consists of two agents: a producer and a seller. A producer in
household h hires workers from other households to produce good h, which
is sold by the seller. A worker inelastically supplies one unit of labor each
period to other households’ firms. A buyer searches with search intensity
s > 0 to buy the household’s desired good. The sellers search intensity is
normalized to 1. In the following a hat on a variable indicates that the house-
hold takes this variable and all its future values as given when making the
decisions at t.
The number of goods market matches is given by the matching function:

g (ŝ) ≡ z1 (abŝ)
α (ap)

1−α = zabŝ
α, z ≡ z1

µ
ab
ap

¶α−1
.

Let B = ab/ap be the buyers/sellers ratio. The matching rate per unit of
search intensity is gb (ŝ) ≡ zŝα−1, so that a buyer finds a desirable seller at a
rate sgb, and a seller meets a desirable buyer at a rate gs (ŝ) ≡ zBŝα. Thus
the measure of the set of buyers with suitable matches, Ab∗, is sgbab and that
of sellers with suitable matches, Ap∗, is gsap.
Each buyer j having found a seller −j with his desired good exchanges

m̂t (j) units of money for q̂t (−j) units of good −j, which implies a price of
good −j in this match of P̂t (j) = m̂t (j) /q̂t (−j) and an average price of
goods of P̂t.
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Each producer j can create vacancies vt with a cost ofΥ (vt). Unemployed
workers have to search for a job and they do this supplying one unit of search
effort inelastically. A worker supplies inelastically one unit of labor each
period and receives a wage Ŵ in units of money. There is an exogenous
constant job separation rate δn.
The matching function in the labor market is linearly homogeneous.

The number of matches between firms and unemployed workers is given by
(apv̂)

A (u)1−A and the number of matches per vacancy is µ (v̂) ≡ (apv̂/u)A−1.

2.1.2 The Household’s Decisions

At the beginning of period t each household receives a lump sum monetary
transfer τ t from the central bank.The household distributes the available
money Mt evenly among the buyers. Then the four active groups go to their
respective markets and do not meet until the end of the period. At the end of
the period the members of the household arrive at home carrying their trade
receipts and residual balances and profits, respectively. They consume alto-
gether the fraction of the bought goods who was dedicated for consumption
and share the rest among the firms to increase each firm’s capital stock. Also,
goods inventories and employees are shared among the household’s firms. Fi-
nally, the money not spent by the buyers, the wages earned and the profits
are added to the money balance of the household for next period’s shopping.
Households decide at the beginning of each period about their consump-

tion ct, their total investment xt and next period’s total capital stock Kt+1,
as well as on the amount of ’fiat’ money in the next periodMt+1. We impose
symmetry within a household, i.e. that each member of a group is assigned
the same stocks of capital and money and the same decision rules. Thus,
each buyer will receive mt+1 = Mt+1/ab units of money and each firm will
have a capital stock kt+1 = Kt+1/ap. Households choose the buyers’ search
intensity st, the number of vacancies for the firms vt, and the inventory level
and the amount of labor in each of their firms in period t+ 1, it+1 and nt+1.
The quitting rate δn and the depreciation rates of inventories δi and capital
δk are assumed to be constant. The individual firm’s production technology
has the form f i(n, k) = ΨeN

t neNt k1−eNt , where eN < 1. For convenience denote

f (nt, Kt) ≡ f i
³
nt,

Kt

ap

´
= F0Ψ

eN
t neNt K1−eN

t the individual firm’s production

function in terms of K, where F0 = aeN−1p .
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In their decision households take the sequence of terms of trade and wagesn
q̂t, m̂t, Ŵt

o
t≥0
as given, as well as {M0,K0, i0, n0}. Since both buyers and

sellers have a positive surplus from trade, it is optimal for households to
chooseMt+1, Kt+1, nt+1 and it+1 such that in period t+1 every buyer carries
the required amount of money m̂t+1 and that every seller has q̂t+1 units of
good h to be sold. The assumptions M0 ≥ m̂0ab and i0 + f (n0,K0) ≥ q̂0
ensure that buyers and sellers carry the necessary amounts of money and
goods also in period 0.
Finally we have to specify preferences. We assume log utility in consump-

tion, the disutility of working one unit of time is denoted by ϕ, the disutility
of a buyer’s search intensity is φ(s) = ϕ(0.5 · s)1+1/eφ, and the disutility of
maintaining a vacancy is Υ(v) = K0v

2.
Households choose the sequence {ct, xt, st, vt,Mt+1,Kt+1, it+1, nt+1}t≥0 to

maximize their expected lifetime utility:

maxE0

( ∞X
t=0

βt [ln (ct)− | An | ϕ− | Ab | φ (st)− | Ap | Υ (vt)]
)
( PH )

subject to:

ct + xt +
b

2

µ
xt
Kt

− δk

¶2
Kt ≤| Ab∗t | q̂t (1)

Kt+1 ≤ (1− δk)Kt + xt (2)

Mt

ab
≥ m̂t, on Abt∗ (3)

it + f (nt, Kt) ≥ q̂t, on Apt∗ (4)

Mt + τ t − | Ab∗t | m̂t + | Ant | P̂tŴt

+ | Ap∗t | m̂t − | Ap | P̂tŴtnt ≥Mt+1, (5)

| Ap | [(1− δn)nt + vtµt − nt+1] ≥ 0 (6)

(1− δi)
£| Ap | [it + f (nt,Kt)]− | Ap∗t | q̂t

¤ ≥| Ap | it+1 (7)
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The first constraint states that the household´s consumption and invest-
ment (plus quadratic investment cost) has to be bought by buyers which
successfully meet a trading partner and have been endowed with sufficient
money for the purchase of q̂t each. The second one is the usual capital accu-
mulation equation. The third condition represents a minimum money hold-
ings constraint for each suitably matched buyer, while the third is a similar
trading restriction for suitably matched sellers: each should have a sufficient
stock of inventory and newly produced goods to satisfy the demand of the
costumer. The law of motion of money balances states that money holdings
at the beginning of period t+1 are no bigger than money holdings at the
beginning of period t augmented by the monetary injection minus the money
spent plus wages earned and cash receipts from firms. Next, a household can
not allocate more workers of other households to its firms than those who
worked in firms of the household in period t and have not quitted plus the
newly hired workers. Inventories in period t+1 consist of the fraction of the
excess supply of goods in period t that has not depreciated.

2.1.3 Solution of the model

Optimality conditions can be derived which together with the laws of motion
for money balances, employment and inventories (5) - (7) determine the
solution to this decision problem, once the terms of trade are specified and
the equilibrium conditions are imposed10. The terms of trade are determined
by Nash bargaining.
A symmetric search equilibrium is defined as a sequence of household’s

choices {Γht}t≥0, Γht ≡ (xt, st, vt,Mt+1,it+1, nt+1,Kt+1)h, expected quantities

in trade
n
X̂t

o
t≥0

, X̂t ≡
³
m̂t, q̂t, Ŵt

´
, terms of trade {Xt}t≥0 and expected

average variables (ŝt, v̂t), such that

(i) these variables are identical across households and relevant individuals;

(ii) given
n
X̂t

o
t≥0

and (M0, i0, n0,K0), {Γht}t≥0 solves (PH) with (s, v) =
(ŝ, v̂);

(iii) Xt is a solution to the Nash bargaining process;

(iv) X̂t = Xt ∀ t ≥ 0.
10See Menner [15] for details.
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2.2 The Portfolio Adjustment Cost (PAC) Model

Out of the class of flexible price monetary models I take as benchmark a
cash-in-advance model with portfolio adjustment costs (PAC). The model
is discussed in detail in Christiano [4], Christiano and Eichenbaum [5], and
Nason and Cogley [16]. The model economy is populated by a representative
household, a firm and a financial intermediary. At the beginning of period t,
the household holds the entire money stock Mt of the economy and decides
how much money to deposit as savings deposits D at the bank and how
much to hold as cash Q. The household has to decide its split into liquid and
illiquid assets before shocks are known. Or put it different, after the shocks
are known the household decides on cash holdings and deposits for the next
period: Qt+1 and Dt+1 = Mt+1 − Qt+1. Cash does not pay interest but is
needed to buy consumption goods. Deposits earn an interest rate rd. The
bank receives a monetary injection and lends it together with the deposits
at rate rf to the firm. Since the household cannot change its deposits after
a surprise change in the monetary injection, the additional funds have to
be absorbed by the firm, which in turn reduces the interest rate. Thus,
this liquidity effect arises from the ’limited participation’ of the household
in the asset market. To render this effect more persistent Christiano and
Eichenbaum [5] assume in addition to this limited particiaption setup that
portfolio management is time consuming and therefore reduces utility by
foregone leisure to the amount of:

p̃t = α1

·
exp

µ
α2

·
Qt

Qt−1
−m∗

¸¶
+ exp

µ
−α2

·
Qt

Qt−1
−m∗

¸¶
− 2
¸

(8)

After observing the shocks the household chooses consumption Ct, labour
supply N s

t , and next periods money stockMt+1. The household receives wage
payments WtN

s
t from the firm in the form of cash before consumption goods

are purchased. The cash-in-advance constraint says that all consumption
purchases must be paid for with cash at hand:

PtCt ≤ Qt +WtN
s
t (9)

At the end of the period the household gets back its saving deposits
together with interest and receives the firm´s and the bank´s net cash inflow
as dividends Ft and Bt, respectively.
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In the beginning of period t after shocks are known the household chooses
Ct, N

s
t ,Mt+1 and Qt+1 to maximize its discounted expected lifetime utility:

max
Ct,Ns

t ,Mt+1,Qt+1

E0

( ∞X
t=0

βt (1− φ) ln (Ct) + φ ln (1−N s
t − p̃t)

)
s.t. PtCt ≤ Qt +WtN

s
t

Qt ≤Mt

Mt+1 = (Qt +WtN
s
t − PtCt) +

¡
1+ rdt

¢
(Mt −Qt) + Ft +Bt(10)

The firm accumulates capital and hires labour services from the household
and pays the wage bill out of the money borrowed from the bank. Then it
produces using a Cobb-Douglas technology, and with the sales receipts it pays
back the loan plus interest. Profits are paid as dividends to the household.
Since the firm is owned by the household which values a unit of nominal
dividends in terms of the consumption it buys next period its objective is to
maximize the expected lifetime dividends discounted by date t+1 marginal
utility of consumption. Hence the firm chooses next periods capital stock
Kt+1, labour demand Nd

t , loans Lt, and dividends Ft to solve the problem:

max
Lt,Nd

t ,Ft,Kt+1

E0

( ∞X
t=0

βt+1
Ft

Ct+1Pt+1

)
s.t. Ft ≤ Lt + Pt

£
(ΨtNt)

eN K1−eN
t − xt

¤−WtN
d
t − Lt

³
1+ rft

´
Kt+1 ≤ (1− δk)Kt + xt

WtN
d
t ≤ Lt (11)

The financial intermediary is also owned by the household and solves:

max
Bt,,Lt,Dt

E0

( ∞X
t=0

βt+1
Bt

Ct+1Pt+1

)
s.t. Bt ≤ Dt + Lt

³
1+ rft

´
−Dt

¡
1+ rdt

¢− Lt + τ t,

Lt ≤ Dt + τ t, (12)

where τ t =Mt+1 −Mt is the monetary injection of the central bank.
Markets clear when Nd

t = N s
t , PtCt = Mt + τ t, (ΨtNt)

eN K1−eN
t = Ct +

Kt+1 − (1− δk)Kt. In equilibrium also rft = rdt must hold.
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2.3 The Cash-in-Advance (CIA) Model

For the purpose of model comparison it is convenient to use a version of the
CIA model that can be generated from the PAC model by changing just two
assumptions. First, there are no costs to adjust ones portfolio, i.e. p̃t = 0.
Second, there is no limited participation in asset markets because agents get
to know the realisation of the money growth shock before they make their
decision on deposits. This leads to the modified maximization problem of
the household:

max
Ct,Ns

t ,Mt+1,Dt

E0

( ∞X
t=0

βt (1− φ) ln (Ct) + φ ln (1−Ns
t )

)
(13)

subject to the same constraints as above, where Qt has to be replaced by
Mt −Dt. Since p̃t = 0, the parameters α1 and α2 get obsolete.

2.4 Specification of Shocks and Detrending

The model economies are subjected to two exogenous shocks. The monetary
injection takes place at the beginning of the period such that money growth
follows an AR(1) process:

ln γt = ρM ln γt−1 + εM t, where γt =Mt+1/Mt. (14)

The production technology is prone to a technology shock. Recall, the
production function was assumed to be f(nt, Kt) = F0 (Ψtnt)

eN K1−eN
t in the

search-theoretic model and f(Nt, Kt) = (ΨtNt)
eN K1−eN

t in the PAC model.
We assume in both cases that labour augmenting technological progress fol-
lows a random-walk with drift:

ln(Ψt ) = ζ + ln(Ψt−1 ) + εΨ t . (15)

The vector of innovations εt = [ εΨ t , εM t]
0 is assumed to be i.i.d.

N (0 ,Σ e) with Σe = diag(σ2Ψ, σ
2
M).

To get a stationary economy we detrend all real variables by deviding
by Ψt . In the search model the multipliers are detrended by multiplying
with Ψt. In the CIA and the PAC model, nominal variables and prices are
transformed by Pt = PtΨt/Mt, Ξt/Mt, where Ξt = [dt, lt,Wt]. It can be
shown that a steady state equilibrium exists in the detrended variables.
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2.5 State-Space Representation

Collecting the observable variables of interest, namely output growth and
inflation in a vector yt we can represent the log-linearized equations defining
equilibrium in state-space form by:

yt = Υ0 +Υ1 st +Υ2 εt

st = Φ1st−1 + Φ2 εt (16)

where st is a vector of percentage deviations of detrended model variables
from their respective steady state value.
The system matrices Υi and Φi are then nonlinear functions of the struc-

tural DSGE parameters θ, and the DSGE models generate a joint probability
distribution for the data YT = [y1,...yT ]0.

3 Empirical Strategy

3.1 Dealing with Model Misspecification

Our primary aim is to compare the empirical fit of different estimated DSGE
models. Although their theoretical structure intends to capture various fea-
tures of reality like capital formation, the use of money and several frictions,
they are still highly stylized and we cannot claim that they are close to the
true data generating processes (DGP) of our real world data. Schorfheide [18]
proposed a Loss-function based Bayesian approach that allows to deal with
this problem of misspecification and that will be used in the present paper:
Using a highly-parametrized reference model that fits the data considerably
well one can construct a combined DGP by averaging the models under con-
sideration and the reference model. Deviations of model characteristics (e.g.
second moments or impulse response functions) from the ones implied by the
proposed DGP are then quantified via different loss functions.

3.2 Evaluation Procedure

Traditional Bayesian Model Comparison is based on the calculation of pos-
terior odds ratios. Assigning prior probabilities to the models considered,
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the posterior model probabilities can be calculated by

πi = p(Mi/Y ) =
πi0p(Y/Mi)P
i πi0p(Y/Mi)

, (17)

where p(Y/Mi) is the marginal data density

p(Y/Mi) =

Z
p(Y/θ(i),Mi)p(θ(i)/Mi)dθ(i), (18)

that is, the integral of the posterior (likelihood p(Y/θ(i),Mi) times the prior
p(θ(i),Mi) ) over the parameter space. Since

ln p(YT /Mi) =
TX
t=1

ln p(yt/YT−1,Mi), (19)

the log of the marginal data density can be interpreted as predictive score,
i.e. as the one-step-ahead forecasting performance of model Mi.
The posterior odds ratio is then the ratio of two posterior model probabil-

ities. Note, that these odds do not change by the introduction of a reference
model since its effect on the denominator in 17 cancels out when calculating
the odds ratio. The model with the higher odds could be choosen as the
model that better fits the data in the above mentioned sense. This corre-
sponds to use a (0,1) loss function, that assigns a loss of 0 to the model with
higher odds and 1 to the others. When dealing with potentially misspecified
models this is probably not a good criterion, since it does not give the re-
searcher a measure of how much he looses in choosing one misspecified model
over another.
The proposal of Schorfheide [18] uses loss functions to quantify the devi-

ations of some characteristics of the model with the ones obtained from the
assumed combined DGP. His methodology is charactarized by 3 steps.

Step 1
Compute posterior distributions p(θ(i)/Y,Mi) for the model parameters and
calculate posterior model probabilities as in 17

Step 2
As the population characteristics ϕ are a function of the model parameters
θ(i) one can generate a posterior distribution of ϕ conditional on model Mi

by drawing from the posterior distribution of θ(i).
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These posteriors p(ϕ/Y,Mi) are then combined to the overall posterior of ϕ
by the mixture

p(ϕ/Y ) =
3X

i=0

πip(ϕ/Y,Mi), (20)

where the weights are determined by the posterior model probabilities.

Step 3
Loss functions are introduced that penalize deviations of DSGE model pre-
dictions ϕ̂ from population characteristics ϕ. The optimal predictor of ϕ -
based only on model Mi - is

ϕ̂i = argmin ϕ̃∈Rm
Z

L(ϕ, ϕ̃)p(ϕ/Y )dϕ. (21)

The three DSGE models are then judged according to the expected loss (risk)
of the predictor ϕ̂i under the overall posterior distribution p(ϕ/Y ) :

R(ϕ̂i/Y ) =

Z
L(ϕ, ϕ̂i)p(ϕ/Y )dϕ. (22)

The posterior risk R(ϕ̂i/Y ) provides an absolute measure of how well model
Mi predicts the population characteristic ϕ, while risk differences across
DSGE models give us a relative measure of model adequacy, allowing a
quantitative model comparison. We could, therefore, choose the model that
minimizes the posterior risk.

Loss functions
1) Quadratic loss function

Lq(ϕ, ϕ̂) = (ϕ− ϕ̂)0W (ϕ− ϕ̂), (23)

whereW is a positive definitem ×m weight matrix. As shown in Schorfheide
[18], the posterior risk then deponds only on the weighted distance between
ϕ̂ and the expectation of ϕ with respect to the overall posterior, E [ϕ/Y ],
but not on higher moments of the posterior distribution11.

11In this paper I use an identity matrix as weight matrix, although one could give more
or less importance to some of the characteristics in the vector ϕ, to mimic, for instance,
the different importance RBC researchers give to certain second moments in their informal
comparison of simulated and actual data.

16



2) Lp loss function

Lp(ϕ, ϕ̂) = I {p(ϕ/Y ) > p(ϕ̂/Y )}, (24)

where I denotes the indicator function that is equal to one if x > xo, and zero
otherwise. This loss function penalizes point predictions that lie in regions
of low posterior probability. If the posterior is unimodal, the expected Lp

loss tells us how far the model prediction lies in the tails of the posterior
distribution, similar as are doing usual p-values.

3) Lχ2 loss function

Lχ2(ϕ, ϕ̂) = I {Cχ2(ϕ/Y ) < Cχ2(ϕ̂/Y )}, (25)

where

Cχ2(ϕ/Y ) = (ϕ− E [ϕ/Y ])0V −1ϕ (ϕ− E [ϕ/Y ])}, (26)

and Vϕ is the posterior covariance of ϕ under p(ϕ/Y )

Lχ2 and Lp-loss are identical, if the posterior distribution of ϕ is Gaussian.
In general, under the Lp-loss models are compared based on the height of
the posterior density at ϕ̂, while under Lχ2 the comparison is based on the
weighted distance between ϕ̂i and the posterior mean E [ϕ/Y ].

Optimal predictors:
The optimal predictor for Lq is the posterior mean of ϕ under model

Mi, whereas for the other two loss functions ϕ̂i depends on the shape of the
posterior distribution. Since the predictor ought to be calculated only by
information contained in p(ϕ/Y,Mi), the latter replaces p(ϕ/Y ) in 21, and
it follows that the optimal predictor ϕ̂i for the Lp-loss is the posterior mode
of p(ϕ/Y,Mi) and for the Lχ2-loss it is the posterior mean E [ϕ/Y ].
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3.3 Specification of the Priors

Most priors for common parameters are taken from Schorfheide [18], for
the rest of common parameters a wider prior distributions is assumed, s.t.
the prior means used there and the calibrated values in Menner [15] are
equally likely. Model-specific parameters of the STM model are centered
around calibrated values. Table 1 provides a summary of the assumed prior
distributions:

Table 1 Name Range Density Mean SE

All Models: eK [0, 1] Beta 0.3560 (0.0200)
β [0, 1] Beta 0.9930 (0.0030)
ζ R Gaussian 0.0085 (0.0030)
γ R Gaussian 0.0100 (0.0025)
ρM [0, 1] Beta 0.6000 (0.2230)
δ [0, 1] Beta 0.0165 (0.0080)
σA R+ InvGamma 0.712 %∗ (2.000∗)
σM R+ InvGamma 0.600 %∗ (2.000∗)

CIA / PAC: φ [0, 1] Beta 0.6500 (0.0500)
Only PAC: κ R+ Gamma 50.000 (20.000)
Only STM: eΦ R+ Gamma 0.5000 (0.2500)

α [0, 1] Beta 0.5000 (0.2000)
A [0, 1] Beta 0.6000 (0.0500)
B [0, 1] Beta 0.5263 (0.0500)
z [0, 1] Uniform 0.5000 (0.2887)
δn [0, 1] Beta 0.0600 (0.0050)
b [0, 500] Uniform 250.00 (144.33)
ϕ0 [0, 100] Uniform 50.000 (28.877)
Υo [0, 1] Uniform 0.5000 (0.2887)
σ [0, 1] Beta 0.5000 (0.2000)
δi 0.0072 fix 0.0072 (0.0000)
u 0.0447 fix 0.0447 (0.0000)
ap 0.0069 fix 0.0069 (0.0000)

Notes: The parameter ϕ of the STM is determined from steady state con-
ditions since n∗ is normalized to 100. Note also, that eK = 1 − eN , and
δ = δk − ζ.

18



4 Results

4.1 Parameter estimates

Since the posteriors of the DSGE models do not belong to a well-known
class of distributions, it is impossible to draws from the posterior directly.
Instead we can only evaluate numerically the product of prior and likelihood.
Hence a random walk Metropolis-Hastings algorithm, is used to generate
draws from the posterior distributions. Technical details on how to generate
draws and statistics from the VAR and DSGE posteriors are thoroughly
explained in the appendix of Schorfheide [18]. In the following, I only note
in what aspects I differed from his approach. Convergence of the Metropolis-
Hastings algorithm could be achieved for the CIA and the PAC model very
quickly, so I generated 90.000 draws from the posterior and discarded the first
10.000, while for the STM model I had to generate 300.000 draws, of which I
discarded the first 220.000. Thus for each model we have 80.000 valid draws
from the posterior parameter distribution The algorithm works as follows: At
each iteration s, a candidate parameter vector ϑ(i) is drawn from a jumping
distribution Js(ϑ(i)/θ

s−1
(i) ). Then the ratio r between the posterior at ϑ(i) and

the posterior at θs−1(i) is calculated. The jump from θs−1(i) to ϑ(i) is accepted
(θs(i) = ϑ(i)) with probability min(r, 1) and rejected (θ

s
(i) = θs−1(i) ) otherwise.

For the CIA and PAC models I use the same jumping distribution as in
Schorfheide [18], i.e. a Gaussian with mean θs−1(i) and variance c2Σ̃(i), where

c = 0.2 and Σ̃(i) is the inverse Hessian at the posterior mode. In the case of the
STM model I choose a uniform distribution as jumping distribution. Since
jumps are then bounded, it happens to be easier to achieve convergence of the
Metropolis-Hastings algorithm where there are many parameters to estimate.
The spread of the jump distribution was chosen parameter by parameter to
achieve an average acceptance rate of about 40%, which has found to be a
good choice for models with many parameters. Recursive mean plots and
potential scale reduction factors (see Gelman et al. [8]) have been used to
assess convergence. The potential scale reduction factors were less than 1.005
for all models. Therefore, we consider the number of draws as large enough to
conduct inference. Posterior means and standard errors are calculated from
the output of the Metropolis-Hastings algorithm and are shown in Table 2.
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We present the results of two different versions of the search-theoretic
monetary model: STM1 stands for the complete search-theoretic monetary
model featuring capital adjustment costs and search-frictions in the labor
market. Alternatively, model STM2 is analyzed, where some parameters are
fixed such that there are no capital adjustment costs and the labor market is
very flexible due to extremely low hiring costs. This second model variant is
considered for two reasons. First, as we can see in Table 2., many parameters
of the full STM model are estimated very poorly. Especially the capital ad-
justment cost parameter b, and some variables related to the labor market,
like the hiring cost Υ0, and the bargaining power of workers σ. Second, once
we decide to fix these parameters where the data is quite uninformative, it
makes sense to use a parametrization that makes the models more compa-
rable. Since the CIA and the PAC model do not feature capital adjustment
costs, we can set b = 0 to shut down this feature in the STM model as well.
In order to bring the STM model closer to the two competitors regarding the
labor market, we can reduce substantially the frictions by setting Υ0 = 1E-6.
A low bargaining power of workers makes wages correspond mainly to the
marginal product of labor, as in Walrasian markets. Moreover, we normalize
ϕ0 to 0.5 in order to avoid unreasonable low values for eΦ.
Consider first the estimation of the common model parameters. All of

them are estimated quite precisely. For the CIA and PAC model the main
difference to the results in Schorfheide [18], is that the mean of the parameters
β and δ, for which the prior distribution has been widened, changes slightly.
The discount factor is reduced, implying an annualized real interest rate of
5% and 10% respectively. The depreciation rate of capital δ increases and
achieves more plausible values. The STM models’ estimates for the real
interest rate are much lower and much higher for δ, while the money growth
rate and hence inflation is estimated lower. The autocorrelation of money
shocks turn out somewhat smaller in the STM models, and there is also a
small reduction in the capital share. The biggest difference is in the trend
of technology growth which is estimated twice as high in the search models.
Moreover, the data assigns a high portfolio adjustment cost parameter κ for
the PAC model. Switching from STM1 to STM2 leaves the other search-
model specific parameters almost untouched, only eΦ adjusts itself to a lower
value, and all parameters are estimated sufficiently precise. Hence apart from
the calculation of the posterior model probabilities, where the results are also
reported for the full search model, I will only consider model STM2 in the
model comparison below.
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4.2 Model Comparison

4.2.1 Posterior Model Probabilities

The first row of Table 3 shows the assumed prior model probabilities. Since
we are ignorant about the best lag length to choose for the VAR, we use
a mixture of lags 1 to 4. So, to each model a prior probability of 1/4 is
assigned. The two versions of the search-theoretic model are analyzed al-
ternatively. Again, STM1 stands for the complete search-theoretic monetary
model featuring capital adjustment costs and search-frictions in the labor
market while in STM2 there are no capital adjustment costs and the labor
market is very flexible due to extremely low hiring cost.
Marginal data densities can only be calculated analytically for the VARs.

Rows 3 and 4 show therefore two approximations of the marginal data density
used in the literature. The Laplace Approximation uses the Hessian at the
posterior mode to calculate a penalty on the value of the posterior at the
mode, while the modified harmonic mean (Geweke [9]).is simulation-based.
The two approximations give similar values, except for the case of the STM2

model and in this case, since I base the further calculations on the harmonic
mean approximation, the posterior probability will be lower than if I would
have used the Laplace approximation.
We see that the VAR(3) has a posterior probability of nearly 100%. The

other models contribute very little to the overall DGP. Nonetheless, we can
compute the standard posterior odds with respect to the CIA model and we
see that the latter outperforms the PAC model by a factor 90.000, but the
search models do better. Their predictive score reaches nearly the one of the
other VARs in the case of the full search model, and outperforms the one of
the CIA model by 1E+11. But there odds are still far from the odds of the
VAR(3). Finally, the PAC model performs slightly better in comparison to
the analysis in Schorfheide [18], a result that is in line with the robustness
analysis reported therein.
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4.2.2 Comovement and Autocorrelation

Let’s turn to the loss function analysis of second moments. Remember, that
from now on we drop model STM1 from our analysis. Consider first the
cross-correlation of GDP growth and the inflation rate. Table 4 presents the
results for these correlations up to 2 leads and 2 lags. The first two rows
show the upper and lower bound of the 90% intervals of highest posterior
density. Mode predictions of the CIA and PAC models of the contempora-
neous correlation fall outside this interval, which is reflected in a very high
Lp risk, whereas the STM model predicts the contemporaneous correlation
of output growth and inflation very well. It does better also for 1 lag or 1
lead, but fails to hit the 90% interval for 2 lags. Here and in the case of 2
leads the ranking of the models is CIA, PAC and then STM.

Correlation (∆GDP t , Inflation t+h)

Table 4 Model h = - 2 h = - 1 h = 0 h = 1 h = 2

90% Interval (U) 0.0364 0.0565 -0.0488 0.0250 0.1014
90% Interval (L) -0.2968 -0.2794 -0.3660 -0.3019 -0.2403

Mode Predection CIA 0.0008 0.0018 -0.5741 -0.0283 0.0274
PAC 0.0081 0.0216 -0.4897 0.0079 -0.0023
STM 0.0971 -0.0315 -0.1361 -0.1704 -0.1571

Lp-risk CIA 0.7265 0.7555 0.9737 0.5648 0.0000
PAC 0.7572 0.8365 0.9445 0.7575 0.1452
STM 0.9525 0.4644 0.2363 0.0000 0.4754

The STM model is even more successful if we look at the autocorrelations
of inflation up to 4 lags as reported in Table 5. While the mode predictions
of the other two models lie outside the 90% interval for all lags, the ones
of the search model lie all inside. This is reflected in a Lp risk of roughly 1
for the CIA and PAC model and considerably lower Lp risk for the search
model. Hence, with respect to unconditional moments the search model
mostly outperforms its competitors.
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Autocorrelation of Inflation: Corr (Inflation t , Inflation t−h )

Table 5 Model h = 1 h = 2 h = 3 h = 4

90% Interval (U) 0.8877 0.8661 0.8376 0.7922
90% Interval (L) 0.6435 0.5863 0.5175 0.4301

Mode Predection CIA 0.4210 0.3627 0.3138 0.2723
PAC 0.4650 0.4009 0.3470 0.3016
STM 0.8223 0.6661 0.5404 0.4404

Lp-risk CIA 1.0000 1.0000 1.0000 0.9996
PAC 0.9998 0.9999 1.0000 0.9979
STM 0.5219 0.3811 0.8046 0.8633

4.2.3 Impulse Response Functions

In this subsection we compare impulse responses to a transitory and a perma-
nent shock. In the VAR, they are identified via a standard long-run identifica-
tion scheme as in Blanchard and Quah [3]. In the models, they correspond to
a shock to money growth and technology12. Figure 1 plots the results. Dot-
ted lines correspond to the 90% intervals of the impulse responses stemming
from the assumed DGP the solid line is the corresponding mean response.
The dash-dotted line represents the responses of the CIA model, the dashed
line the ones of the PAC model and the dotted line with "+" shows the
impulse responses of the search model.
A monetary shock does not induce strong output responses in the CIA

model, and they go in the wrong direction. Assuming limited participation
in asset markets and portfolio adjustment costs, as the PAC model does, is
sufficient to get a hump shape output response. But also search-frictions in
the goods market do the job, although not on impact and with less magni-
tude. Inflation does not show much persistence in the data after a transitory

12We normalize the magnitude of the structural shocks by their long-run effects rather
than by use of the estimated parameters σM and σA, that correspond to an estimation
procedure that resulted in insignificant posterior probability. Thus, we consider a transi-
tory (monetary) shock that increases the price level by 1% and a permanent (technology)
shock that increases output by 1%.
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shock, but this might depend on the identification scheme.While the CIA and
the PAC models capture well the inflation response, the STM model shows
a more persistent inflation response to a monetary shock than appear to be
in the data.
Turning to the output effects of a permanent shock we see a large 90%

interval, and the response of the STM model is close to the upper bound for
various periods, while the other models’ responses lie moreless symmetrically
at some distance to the mean output response: the CIA (PAC) model over-
(under-)predicts the mean response, but still doing better than the search
model. The latter, however, has a strong advantage in predicting the inflation
response to a permanent shock. After few periods it resembles the mean
response, while inflation in the other models goes back to steady state rapidly.

Figure1
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To quantify the ability of the models to predict dynamic responses we
turn again to the loss function analysis. Table 6 presents the Lq risk and
the Lκ2-risk, together with the Cκ2-statistic used for the calculation of the
latter for the four different impulse responses (lags 1 to 12 jointly). The
weighting matrix W in the calculation of the Lq risk is the 12×12 identity
matrix scaled by the factor 1/12. The Lq and the Lκ2statistics confirm the
visual impression from Figure 1. Looking at the first column we see that
the STM model improves slightly on the CIA model but is poorer than the
PAC model in predicting the impulse response of output to a monetary shock
when using the Lq criterion. Things are different considering the Lκ2-risk.
The STM does much worse, and in contrast to the result in Schorfheide [18]
the CIA model performs slightly better than the PAC. This result seems
to be sensitive to the precision of the calculation of the inverted Hessian at
the mode. With respect to responses of inflation to a money shock both
criteria give the same ranking: the PAC model dominates the CIA model,
which outperforms the search model. Output effects of technology shocks
give again mixed results. While with Lq risk we have the same ranking as
before, with Lκ2 loss the STM model ranks between PAC and CIA models.
A striking feature of column 4 is the large losses the latter models incur when
looking at the ability to predict inflation responses to a technology shock.
Here, the STM model clearly outperforms its competitors.

Table 6 Model d ln GDP/d εM d ∆ln P/d εM d ln GDP/d εA d ∆ln P/d εA

Lq-risk CIA 0.0556 0.0016 0.0192 0.0057
PAC 0.0214 0.0012 0.0046 0.0037
STM 0.0514 0.0021 0.0357 0.0010

Cκ2 CIA 4.7692 17.557 37.300 126.967
PAC 4.7750 14.231 14.956 87.291
STM 33.116 90.436 28.765 11.383

Lκ2-risk CIA 0.4122 0.8449 0.9545 0.9943
PAC 0.4127 0.7924 0.8208 0.9887
STM 0.9417 0.9899 0.9330 0.7225

27



5 Conclusion
This paper presents the results of a Bayesian model comparison to provide
a quantitative assessment of the role of search-frictions in the goods market.
Both, the complete STM model with and without capital adjustment costs
and labor search frictions, outperform their two competitor models by their
predictive score measured by the marginal data density. One alternative
model considered is a standard cash-in-advance model on which the search
model improves on in nearly all of the considered dimensions. Search in the
goods market adds a propagation mechanism that results in hump shaped
output responses to a monetary shock, and that generates a persistent dis-
inflation after a technology shock. Contemporaneous and lagged and leaded
correlations of inflation and output growth can be predicted considerably
better, although not so for longer lags and leads. Finally, the search model
predicts very well the autocorrelations of inflation, while the CIA model can
not. Thus, search frictions in the goods market do make a difference.
The additional frictions imposed on the portfolio choice of the consumers

in the PAC model act also as a mechanism to propagate monetary shocks
persistently - at least with respect to output. Its response to a monetary
shock is more pronounced and more persistant than the response of output
in the STM model. But the PAC model cannot predict the persistant disin-
flation process after a technology shock. Together with the CIA model it is
more able to trace the response of inflation to a monetary shock. The pre-
dictions of all models for the output response to technology shocks lie well
within the wide 90% intervalls, so we can hardly discriminate amongst them.
The PAC model shares with the CIA model the failure to predict the au-
tocorrelations of inflation and the contemporaneous correlations of inflation
and output growth. So, with respect to the question whether the frictions in
the goods market or the frictions in the asset market provide a better model
to predict characteristics of the data, this analysis cannot be decisive.
Given the poor estimation of the complete search-theoretic model, further

attempts to estimate the model on the basis of more data series and more
structural shocks seem to be a precondition for further empirical analysis with
this search-theoretic monetary business cycle model. Once a good estimation
of the parameters is achieved one can confront the model with many more
business cycle stylized facts and see what features of the model contribute to
what extent to the ability to predict certain characteristics. The results of
the calibrated model look promising to justify this further effort.
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