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1 INTRODUCTION

A noticeable amount of recent statistical and econometric work has been devoted
to consistent specification testing of univariate regression models. Two sepa-
rate methodologies have been developed in the literature. The first approach
consists of comparing parametric (or semiparametric) estimates with semi or
nonparametric estimates, as done for instance in Hirdle and Mammen (1993),
Horowitz and Hérdle (1993), Hong and White (1995), Gozalo (1993), Fan and
Li (1996), Zheng (1996) and Rodriguez-Campos, Gonz4lez-Manteiga and Cao
(1997). The second approach considers tests based on stochastic processes in-
dexed by a “nuisance” parameter taking on an infinite number of values. This
testing strategy was first proposed by Bierens (1982, 1990) and considered by
Hong-Zhi and Bin (1991), Su and Wei (1991), Delgado (1993), Diebolt (1993),
Andrews (1997), Bierens and Ploberger (1997), De Jong and Bierens (1994),
Delgado and Dominguez (1997) and Stute (1997) among others.

In this paper, we address the issue of specification testing in general para-
metric econometric models. Specifically, we consider models defined by multiple
conditional moment restrictions that can be nonlinear in endogenous variables.
This includes models with nonlinear transformations in the endogeneous vari-
ables and nonlinear in variables simultaneous equation models. In this aim,
we simultaneously follow the two leading methodologies applied for specifica-
tion testing of univariate regression models and extend them for jointly testing
conditional moment restrictions. As a matter of fact, both approaches can be
interpreted in the M-testing framework developed by Newey (1985) and Tauchen
(1985), where unconditional restrictions are tested in place of conditional ones.
The restrictions we consider are tailored to ensure consistency of the related test-
ing procedures against any alternative. On the one hand, we consider moment
conditions depending on unknown functions (regression curves and probability
density functions), which can be estimated by means of kernel smoothers or
other nonparametric estimation techniques. On the other hand, we consider an
infinite number of orthogonality conditions indexed by a “nuisance” parameter.
A test statistic can then be built as a functional of the empirical process indexed
by this nuisance parameter.

We first study the asymptotic behavior of the proposed test statistics. How-
ever, relying only upon asymptotic analysis in implementing those testing pro-




cedures presents some difficulties. For the tests based on smoothers, the approx-
imation quality of the null distribution of the test may be poor in small samples
and is expected to be sensitive to the choice of a smoothing (or bandwidth)
parameter and to the dimension of exogenous variables. For the tests based on
empirical processes, the problem is even more acute, as the asymptotic null dis-
tribution depends on the (unknown) data generating process and can be easily
tabulated only in exceptional circumstances. Therefore, we propose to approx-
imate critical values of each test by “wild” bootstrap procedures, as done in
regression contexts by Hérdle and Mammen (1993) and Wang and Li (1996) for
specification tests based on smoothers, and by Su and Wei (1991) and Stute,
Gonzilez-Manteiga and Presedo (1998) in specification tests based on certain
empirical processes. Specifically, we propose two different bootstrap methods.
The first one is based on test statistics obtained by plugging-in bootstraped
analogs of the residuals in the initial statistics, as proposed in different contexts
by Su and Wei (1991), Lewbel (1995), De Jong (1996) and Hansen (1996) among
others. The consistency of the resulting bootstrap tests is formally justified and
their behavior in small samples is illustrated by means of a Monte-Carlo ex-
periment. The second method is the classical one, namely it uses conditional
bootstrap to built bootstrap analogs to the sample test statistic. However,
the formal asymptotic analysis of the resulting tests is complicated by the fact
that the model can be nonlinear in the endogenous variables, so that a general
asymptotic theory requires very specific conditions which are not needed when
the model is linear in endogenous variables. We therefore discuss these difficul-
ties and provide evidences on the performances of both bootstrap methods in
small samples.

The paper is organized as follows. In the next section, we present the tests
statistics and discuss their asymptotic properties. In Section 3, we study the
bootstrap tests approximations, we justify the asymptotic validity of the boot-
strap tests based on asymptotic expansions and we finally discuss implemen-
tation of the classical bootstrap tests. The small sample performances of the
proposed asymptotic and bootstrap tests is studied in Section 4 by means of a
Monte Carlo experiment. Proofs are confined to the Appendix.




2 ASYMPTOTIC TESTS

Suppose that Y, = {(¥;,Xi),i =1,...,n} is a sample of independent observa-

tions, identically distributed as the vector (Y, X) ,where X = (X, X3, . X (‘1))'

takes values in R? and Y takes values in R9. The variables are supposed to be
related according to a postulated parametric model which specification is deter-

mined by conditional moment restrictions of the form
Hy:300€©:Pr{E[y(Y,X;00) | X]=0}=1.

Here 8 is an unknown vector of parameters, © C RP is the parameter space, 9 :
R4 xRY x R? — R™ is a vector of known functions such that E ||¢ (Y; X; 6o)|| <
00, where ||-|| denotes Euclidean norm. The alternative hypothesis H; of in-
correct specification is the negation of Hy. Most econometric models can be
written in this form. It includes nonlinear regression models, but also general
models that involve nonlinear transformations in the endogenous variables (e.g.
Box-Cox transform) and nonlinear simultaneous equations models.
It turns out that Hp is equivalent to any of the following conditions:

360€0:E[Y(Y,X;00) W1 (X)] =0, (1)
or
36p€0: E[Y(Y,X;60) Wa (X,z)] =0, Yz € X, (2)

where Wy (X) = E[¥ (Y, X;00) | X] f (X), Wa (X,2) = [[}, 1 (X < 29},
1(A) is the indicator function of the event A, z = (zV,z®,...,z®) and
X denotes the support of X. Thus, Hp can be tested by checking any of the
above conditions. Other equivalent formulations of Hy obviously exist, but they
belong to one of the above types, i.e. they rely on an unknown weight function
or they specify an infinite number of orthogonality conditions depending on a
"nuisance” parameter.

The weight function W) (.) depends on unknown nonparametric functions,
hence implementation of tests motivated by (1) requires nonparametric estima-
tion. Define 1 (6) = ¥ (Y, X;6) and v, (8) = ¢ (V;, X;;8) , with k-th coordinate
denoted by %) () and ¢$k) (6) respectively. Given a suitable estimator 8, of
69, the expectation in (1) can be estimated by b

Th= 711' 21&: (én)l Wl (Xi) ’




where

n
Wi (X:) = zn—_ll)h? Z"/’j (én) Kij
2
is a kernel estimator of W1 (X;), h = h(n) is a positive bandwidth number,
Kij=K (Z(-'—;ﬁ) )

and K (.) : R? — R is a symmetric kernel function. As we will show, a properly
rescaled version of T, can be used as a test statistic for checking the specification
of the econometric model.

The weight W2 (.,.) depends on the nuisance parameter z, hence (2) specifies
an infinite number of orthogonality conditions, one for each z. The expectation
in (2) can be estimated by

Rn(z) = % i’/’; (én) Wz (X, ),

i=1

which is an empirical process of dimension m marked by the "residual” functions

Y, (9,,) , = 1,..,n. Some suitable function of the process R, (.) can then be

used for testing Hp. We will consider a Cramer-von Mises type statistic, but a

similar theory can be derived for any other statistic based on another norm.
The study of the asymptotic properties of T}, and R, (.) requires the following

usual regularity conditions.

A1l Under Hg, 8,, admits the expansion,
. 1< _
0n =60 + ;;Z(Y;,X;;Bo) +o0p (n 1/2) ,
for some interior point 8y of ©, a compact set in R9, and some vector-
valued function £ such that

(i) E[e(Y,X;60)] =0,
(ii) Lo = E [¢(Y, X;00) £ (Y, X;00)'] exists.

A2 Foral k=1,..,m, 1/:(’°) (9) has at least two continuous derivativ:)s in an
open neighborhood N (6g) of 8y with respect to 6, namely 1/;( )]

. i

9™ (8) /00" and $ (9) = 82y (6) /8086', where E“¢‘ ’(eo)" <
w(k

oo, and there exists a function N (.) such that supgea(s,) 1/;( )(0)” <

N(Y,X),k=1,.,m, with E[N (¥, X)] < co.
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For instance, the estimator fncanbea generalized method of moments (GMM)
estimator defined as

b, = arg gxéig lz A(X:)¥; (6)

i=1 i=1

5. [ijA(X.o " <o>] L

for a suitable #xm matrix of instruments A (-) and weighting matrix B, depending
on the sample. Hence, under regularity conditions,

£(Yi, Xi;00) = — (MoBoMo) ™ MyBoA (X:) ; (60) »

where

1 z Y a.8. a.8.
= ;A(X.-)w,. (60) 3 Mg and B, &3 By,
and %, (6) = (3" (0) 37 (6) ... 3™ (0), where 3 (6) = 0u® (0) /0,

k=1,.,m,

2.1 ASYMPTOTIC TEST BASED ON SMOOTHERS

We need the following minimal assumption on the kernel function.

K The kernel function K is even, bounded, integrable, imyjy|—co [[4l|* | K (u)] =
0, Jpo K (u)du >0 and fp, [, K (u) K (u+ v) dudv < 0.

Since we are not assuming that K (.) integrates to one, T, will not estimate
the expectation in (1), but its product with [ K (u) du. This is of no relevance
with respect to the testing procedure. However, most kernels used in practice
integrate to one. We also assume that certain nonparametric functions belong
to a general class, defined through a Lipschitz condition as follows.

Definition 1 G*, a > 0, is the class of functions g(.) : R? — R, satisfying:
there exists a p > 0 such that for all z € RY, supes, |9 (¥) — 9 ()| /lly — 2l <
G(2), where S, = {y: |ly — 2| £ p}, and g(.) and G(.) have finite a-th mo-
ments (or are bounded if a = +00).

Let o (z) = E [¢<’°)¢<‘> | X = z] ,ob(z) = E [(1/,(”)4 | X = a:] , o (7) =

E[|¢<’°>| |X=a:], i (z) = E[d;"" |X=a:], k1 =1,.,m and B(z) =
E[N| X =z], where the functions %*) are evaluated at 6. The next as-
sumption summarizes the smoothness conditions on the different nonparametric
functions. |




S f() € G®. For allk,l =1,..,m, ox(.) € G* each element of v (.) is in
e 18/3
G®/3,0% (.), ax (.) and ﬂ() arein G? and E ["w(k)” ] < oo.

Finally, we impose the standard assumptions on the rate of convergence of the
bandwidth parameter.

B limp .o {h + (nh")"l} =0.

To justify the asymptotic test, we first derive an asymptotic linearization of
Tno

Lemma 1 Under Hy and Assumptions Al, A2, K, S, B,

-ln-1 n
T, = (;) D> R (60) ¥ (80) Kij + Op (1) -

i=1 j=i+1

Since the leading term in the asymptotic linearization of T, is a degenerate
U-statistic, its null distribution of T}, is obtained by Theorem 1 in Hall (1984).

Theorem 1 Under Hy and Assumptions Al, A2, K, S, B,
nh??T, 4 N (0,V),
where V = 2E { i, ik, 0% (X) £ ()} fpo K ()% du.

By analogy with T;,, the variance V' can be estimated by

o= i S 3 oo (5 ) (1) 4 (o) o (ar) 3

=1 l=1 i=1 j=1
J#i

Therefore, an asymptotic one-sided test can be based on the statistic {, =
nha/2T,, V1% as justified by the following corollary.

Corollary 1 Under Assumptions Al, A2, K, S and B, t, <4, N(0,1) under
Hy and t, 2, 400 under Hy assuming that Al and A2 hold with some 6, in
place of 8.1

1The assumption of 8; being an interior point of © is not formally needed if we consider
directional derivatives through the interior of © in the proofs.




Following the line of Theorem 1’s proof, we could similarly show that the
test is consistent in the direction of contiguous alternatives of the form

y X
Hip: E[¢(},!X;00) | X] = nlg/ghq)/‘i a.8.

for some 6y € ©, where g(.) is a generic non null function. Such alternatives
converge to the null slower than the parametric rate n=1/2. It is also possible
to show that the test is able to detect alternatives of the form

H2n : E["/’(Y’X’OO) I X] =M (X) a.s.,

for some 8y € ©, where

T—-c

nn(z) —anb( P ) )
where c is a constant and a,, 7, are deterministic sequences converging to zero
with the sample size at appropriate rates, b (.) is an integrable and continuously
differentiable function up to second order, with band limited with 2 = o(7,,).
The magnitude of the indefinite integral of 7,, () is of order an7y,,, which can be
of magnitude O (n‘l/ 2) or smaller by choosing the bandwidth h, o, and v, in a
suitable way. These alternatives were first proposed by Rosenblatt (1975), and
later used by Fan (1994) in the context of testing the parametric specification
of a density function and by Fan and Li (1997) in the context of testing the

goodness-of-fit of a parameterized regression model.

2.2 ASYMPTOTIC TEST BASED ON MARKED EM-
PIRICAL PROCESSES

To justify an asymptotic test, we first derive an asymptotic linearization of
Ry (.) using a standard mean value theorem argument.

Lemma 2 Under Hy and Assumptions Al, A2,

R, (z) = %in (z) + op (n“/2) as.,

i=1

uniformly in z, where
(@) = {#: (60) A () + B [ (80) 24 (2)] 1 (%, Xii 60)}

. !
with & (z) = Wy (Xi,2) = [Tiey 1 (xy) < z(i)) forX = (X;(‘)’ ..,X§q)) and

z = (z0),.,z@)",




The process R, (.) is a random element in the Skorokhod space xZ,D (R7),
which is defined as the space of all real functions h(.) continuous from above in
RY, such that for any z and every sequence {z,} approaching to z in some quad-
rant with corner z, limn—eo h (Zn) exists. The process is extended to xJ2, D [RY]
by defining

n
R,(~o0) =0, and R,(c0) = %Zwi (9,.) ,
i=1

see Stute (1997) for a discussion of convergence in this space. From the expan-
sion of Lemma 2 it is straightforward to show that, for any finite s and arbitrary
(z1,.,Ts), (VARn (21}, -, /2R (z,)) converges under Hy to a gaussian random
vector (Reo (1), .., Reo (Z5)). By showing the tightness of the process, we ob-
tain that \/nR,, (.) converges weakly to the m-valued gaussian process R(.) with
q parameters, whose projections on (z, .., ,) are (R (Z1) , .-, Reo (Zs)), i€. &
m-variate gaussian sheet with ¢ parameters.

Theorem 2 Under Hy and Assumptions A1, A2,
VAR, () = R () on x, D[RY],

where R (.) is a centered m-variate gaussian sheet with ¢ parameters and co-
vartance structure E [r.~ (z1) 7 (.’1.‘2)’] , Vz1,25 € RY.

Thus, an asymptotic specification test can be based on some suitable function
of R, (.). We choose to study a Cramer-von Mises' type test statistic defined
as ¢, = n [ Rl (z) Rn(z) dFn(z) = Yo, R (Xi)' Rn (X:). Alternatively, we
could also follow Bierens (1982) and integrate the process with respect to a
measure different than the empirical distribution F, (.). However, the empirical
measure seems a natural and convenient choice. The following corollary provides
the asymptotic behavior of c,.

Corollary 2 Under Assumptions Al and A2, cn Jge Roo (z)' Reo () dF (z)
under Hy, where F () is the distribution function of X, and ¢, 5 +0o0 under
H, assuming that A1 and A2 hold with some 6, in place of 6g.2

2The assumption of 6 being an interior point of © is not formally needed if we consider
directional derivatives through the interior of © in the proofs.




The practical applicability of a test based on ¢, is hampered by the fact that
the limiting distribution of the test statistic under the null hypothesis is case-
dependent, namely it depends of the unknown data-generating process, and
therefore can not be tabulated. One way of solving this problem is to derive
case-independent upperbounds of the asymptotic critical values, as proposed
by Bierens and Ploberger (1997). Alternatively, we propose in Section 3 to
implement bootstrap tests.

It can be shown that the (infeasible) test based on ¢, is consistent in the
direction of contiguous alternatives of the form

H3n: E[¥ (Y, X;60) | X] = g;(iz/{'z')' as.,

for some 8y € ©, where g(.) is a nonnull generic function.® Bierens and
Ploberger (1997) and Stute (1997) show the consistency of some related sem-
pirical process based tests under alternatives of type Hj,, for regression models.
The test based on smoothers cannot detect alternatives like H3,, but conversely
the test based on a marked empirical process cannot detect alternatives like Hy,,.
This fact was pointed out by Rosenblatt (1975) and has been recently studied
by Fan and Li (1997) comparing Bierens’ test and a test based on smoothers in
the context of specification testing of regression models.

3 BOOTSTRAP TESTS

The practical implementation of the asymptotic testing procedures introduced
in the previous section involves some difficulties. On the one hand, asymptotic
tests based on smoothers can be very sensitive to the choice of the smoothing
parameter, while the approximation to the asymptotic null distribution can be
slow, depending on the number of exogenous variables X in the model, see e.g.
Hérdle and Mammen (1993). On the other hand, the asymptotic behavior of ¢,
is not distribution free, so that an asymptotic test can only be implemented in
rare circumstances.* Therefore, bootstrap tests are sorely needed. A bootstrap
test relies on the quantiles of a bootstrap test statistic, that are computed from

3For H3, to be an alternative that can be distinguished from Hp at a parametric rate, the
function g (.) must be orthogonal to E [¢ (Y, X;6p) | X = .], see Bierens and Ploberger (1997)
for a discussion on this point.

“This is the case when testing the significance of one explanatory variable in a regression
model, see Delgado and Dominguez (1995).




artificial samples generated so as they mimic some features of the initial sample.
These quantiles can be approximated as accurately as desired by Monte Carlo.

For testing procedures, it is the distribution under the null hypothesis that
is of interest, so that the bootstrap sampling must impose the satisfaction of Hy.
In the context of regression specification tests, Hirdle and Mammen (1993) and
Stute, Gonzilez-Manteiga and Presedo (1997) have pointed out the necessity
of applying a residual based bootstrap in order to resample under the null
hypothesis of correct specification. In our general framework, the role of the
residuals is played by the v,’s evaluated at 8,. Let V;, i = 1,...,n be random
numbers such that the following assumption holds.

V The V;’s are independently distributed with bounded support such that
E(V;)=0and E(V?) =1,i=1,..n.

The bootstrap procedure consists in generating a great number of independent
and identically distributed random samples of V;’s satisfying Assumption V to
obtain bootstrap samples JJ: = JJ,V;, i = 1,..,n, that therefore satisfy the
null hypothesis. Each bootstrap sample in turn forms a basis to construct
a test statistic and the distribution of the resulting bootstrap statistics can
therefore be used to estimate the critical regions of the test. Such a procedure
for obtaining artificial samples is known as “wild bootstrap” and was introduced
by Wu (1986) in the context of heteroskedastic linear models.

We propose two alternative methods of computing bootstrap test statistics.
In the first method, we simply plug in the 1];:’5 in place of the initial 9;’s to
obtain a bootstrap test statistic. This naive plug-in procedure is similar to the
one employed by Su and Wei (1991), Lewbel (1995), De Jong (1996) and Hansen
(1996) in other contexts. In the second method, the bootstrapped fb: 's are used
to obtain a resample ), = {(Y*,X:), i=1,..,n} from the original sample
Yn. We subsequently compute a test statistic from )7 in the same way as the
original test statistic has been derived from the original sample. This analog
bootstrap method generalizes the method in Hirdle and Mammen (1993), Wang
and Li (1997) and Stute, Gonzélez-Manteiga and Presedo (1997) in specification
testing of regression models. The second method requires that we can retrieve
the Y;*'s from the fb:’s, which may not always be possible. Moreover, it is
computationally much more demanding than the first one. However, analog
bootstrap tests are expected to share the excellent performances enjoyed, in
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general, by bootstrap tests.

Suppose 7}, is the bootstrap statistic which distribution, conditional on the
sample, is used for approximating the distribution of ,, (i.e. 7,, can be ¢, or t,;).
Suppose that under Hy, 7, 4 7. First we must show that under Hp, 7y, 4 7
in probability (a.s.) where %, in probability (a.s.) means weak convergence in
bootstrap distribution in probability (a.s.) according to the following definition.

Definition 2 Define Pr*(-) = Pr(- | Vn). Let 13, be a bootstrap test statistic.
It is said that 0}, converges weakly (almost surely) in bootstrap distribution to
the random variable 1, with distribution function H (.), and it is denoted by
I 4 7 in probability (almost surely), whenever the sequence of random vari-
ables Pr* (n}, < z) converges to H (z2) in probability (almost surely), for every
continuity point z of H (.).

Since under Hp, the conditional distribution of 7}, consistently estimates the
distribution of 7),,, we can use the quantiles, obtained from the empirical dis-
tribution of the Monte Carlo sample of n};, as estimators of the corresponding
quantiles of n,,. To ensure consistency of the bootstrap test, the bootstrap
statistic 7;, only needs be bounded in probability (or a.s.) under H;. For the
smooth test, the test statistic is asymptotically pivotal, and hence converges
under the alternative hypothesis to the same distribution as under the null hy-
pothesis. For the empirical process based test, the limiting distribution of the
test statistic depends upon the data generating process under H; as well as
under Hy.

3.1 PLUG-IN BOOTSTRAP TESTS

The plug-in version on the smooth test approximates the distribution of ¢, by
the conditional distribution of the bootstrap statistic

nhd/2T* 1\ 7P O s
th = —===, where T; = —( ) ¥; ¥; Kij.
Vv Vn ha\2 I'Z=;j=lz'i:-1

The plug-in version on the empirical process test approximates the distribu-
tion of c,; by the conditional distribution of the bootstrap statistic

¢ = ‘Z;:R; () B (X), where Ry (2) = £ 317 2) and

i=1

11




20 = (bt [E (o) )] (. xs8) .
The next two theorems formally justify the use of the bootstrap tests.
Theorem 3 Under V, Al, A2, K, S and B,
th 4N (0,1) in probability

under Hy, and under H, assuming that Al and A2 hold with some 8, in place
Of 00.

. . 2
Theorem 4 Let i(6) = 8l(Y,X;6) /06. Assume that supsen(s,) z(o)” <

L(Y,X) with E [L (Y, X)] < oo and that V holds. Then, under Hy and As-
sumptions Al, A2,

ch L / Roo (z)'Roo (z)dF (z) a.s,
R4
and under H,, assuming that Al and A2 hold with some 6, in place of 8q,
crn LN / Rl (z)' RL, (z)dF (z) a.s.,
R9

where R, (.) is a gaussian process centered at zero and with the same covariance
structure than Re, (.) with 8) in place of 8p.

3.2 ANALOG BOOTSTRAP TESTS

When there are as many equations as response variables, i.e., when m = d,
it can be possible to obtain a resample Y: = {(¥;*,X;), i =1,..,n} from the
bootstrapped 9; 's. Assume that ¥ (Y, X;6) = 9 has an unique solution for Y =
Y (¥, X;0) in a neighborhood of 8, under Hy and in a neighborhood of 8, under
H,. A closed form of the solution is, in general, not available, but numerical
methods can be used. Hence we obtain Y;* by solving ¥ (Y,", Xi; én) =9;,i=
i, ..,n. The bootstrap analog of 8, in (3) is the solution to

A% —_ . - ’ -
on = arg lénélg ¢n (0) Bﬂ¢n (0) ’
where ¢;, () = n~1 Y1, A(X:) ¥ (Y7, X;;6) . In practice, the extremum esti-

mator 9:, may not actually be located, but rather the outcome of finitely many
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iterations of some iterative procedure. A convenient form of Gauss-Newton

iteration towards the solution is

é;(k+l) - é‘(k) (M,: (én),BnM; (9,,)) - M (A ) B.dn ( n(k)) )

for k =2,3,..., where 0.0 =8, and M (6) = n=1 S, A(X:) ¥ (¥, X;6).
Let us denote Z}; = 0,- (1) a.s. (or in probability) if Ve > 0, Pr* (| Z;| > ¢) a-2(p)
0.5 By construction, we have

A=)« ).

1—1

where
€, (6) = — (M; (8) BuM; (8)) ™" My (8) BnA (X:) ¥ (Y7, Xi:6) -

. ~%(2) , . . .
Therefore, the one-step estimator 0:,( ) is consistent in bootstrap law, in the
an(2 R
sense that 6’:,( ) = 8, + 0p- (1) a.s., whenever

My (B) = M5 (0a) + 05 (1) @5, ¥ 8} 1 8 =B +0p- (1) 25,
Similarly for all £ > 2, 9:,(k) is consistent in bootstrap law as
k) 2\ 1 O, (s
Jn (e,, e,,) =7 ;e,.,, (e,,) +0,- (1) as.
!
Let ;" (6) = (vi"® (6 4" (0) .., ;"™ (6)) = (¥, Xi6) and
é:, = 9:,(k) for some k > 1. The bootstrap analogs of ¢, and t, are thus

o = SR (XY Ry (X, with Ry (2) = Zw @ n) Ai(a),

=1 1—1
and
[ 2 e e ~'
t;‘=2§q—AT‘l-, WithT;‘: 1)hq ZZ¢ ( ) ¢;‘( ) H
7 =i |

m m n n

= e ()i (B) v () () %

s=1 [=1 i=1 j=1
J#i

5In this subsection, one can read almost surely (or in probability) any time we use a.s.
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For regression models, which are linear in the endogenous variables, the formal
asymptotic analysis of bootstrap analogs of the test statistics is almost similar
to the one of bootstrap tests based on asymptotic expansions. However, in the
general case where the econometric model allows for nonlinear transformation
in the endogenous variables, the analysis is much more complicated. One could
derive some primitive assumptions that imply validity of our bootstrap tests,
similar to those established by Hall and Horowitz (1996). We prefer not to
address this issue, but rather we provide some conditions that ensure consistency
of the tests based on c;;* and t}* and discuss the implications for practical
implementation of the tests.

Let us first consider the test based on ¢}*. Assume that for any 8, (which
may depend on the bootstrap sample) such that 8, = 8y + op- (1) a.s., and any
measurable function S(.),

1 . . e _1 n . ) .
;;S(Xt)w(yt ,Xiyen) - ;ZS(Xt)‘d) (}: ,X;,e,,) +op. (]_) a.s. (4)

i=1

and

E* {;1; iS(Xi)ib (Y;,Xi;én)} = %is (X;-)Q; (Y,-,Xi;é,,) +o,(1) as.,
" - (8)

where E* (-) = E (- | Vn). Then, it is straightforward to prove that Rj*(z) =
Ry, (z)+0p- (1) a.s. uniformly en z. The above conditions are therefore sufficient
for the validity of the bootstrap test based on ¢},. Condition (4) can be shown to
follow assuming that 9 (.) fulfills conditions similar to Assumption 3 of Hall and
Horowitz (1996). Condition (5) is satisfied choosing appropriate V;’s, and the
particular parametric form of 1 (.) can help to determine a suitable procedure
to generate these random numbers. Moreover, when certain information on the
data generating process is available, the V;'s can be chosen in a standard way.
For instance, if the conditional density of ¥ (Y, X;6) given X is symmetric,
we can choose V; such that Pr(V; =1) = Pr(V; =-1) = 1/2, so that the
right-hand side of (5) equals ’

% 2:; S(X:) ¥ (Y ({bi,x,-;é,,) X é,,) + % iz:;s (X)) (Y (—{b‘-, X;; é,,) X é,,) ,

14




which is a.s. equivalent to n=' 3" §(X;) ¥ (Y,-,X.-; 9,,) under classical regu-
larity conditions.

Different conditions are required for the validity of the test based on ¢*.
Assume that for any 8, and 8, such that 8, = 6, + op- (1) a.s. and §, =
B+ 0p- (1) 28.,

-1
S = ( ’2’ ) Y v (é,,) ; (85) Kij = Ope (n"l/z) as,  (6)

i<j

-1
§5n = ( : ) Z¢: (9:,) 1/1; (é;) Kij = Op- (n_l/z) a.s., )

i<j

V2 =V +0pe (1) aus. ®)

It is then easy to prove under the other regularity assumptions of Theorem 3
that T;* = T,; + 0p- (1) a.s. Following the proof of Theorem 3, (6) holds if

S, =81m + 0p~ (1) a.s., where Sin = ( 127' )—1 Z% (én) W (91:) K,
i<y

and (7) holds under a similar condition. Again, if the conditional density of
¥ (Y, X;0) given X is symmetric, choosing the distribution of the V;'s that
assigns equal probability to 1 and -1 ensures (6)-(8).

4 MONTE CARLO STUDY

To investigate the small sample behavior of the tests we have proposed, we have
performed Monte Carlo simulations for a well-studied model with a nonlinear
transformation in the endogeneous variable, namely the arcsinh transformation.
This model was proposed by Burbidge, Magee and Robb (1988) as an alternative
to the Box-Cox transformation, and was used by Robinson (1991) among others.
The hypothesis of interest here writes

Hy : 3 (Mo, @0, Bo) :Pr{E [ﬁ’ﬂ;‘i“—y) —ag— X | x] = o} =1.
0
We consider the design
f’—w =1+ 2X; +sin (67X;) +ui, i =1,..,7,
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where the u;’s are iids N (0,0.5) and independently distributed of the X;’s
which are iids N (0,1). The null hypothesis DGP, corresponds to § = 0. We
investigate three alternatives DGP,, DGP; and DG P; corresponding to § = 1,2
and 3 respectively. Increasing §, we obtain higher frequency alternatives that
are more difficult to distinguish from pure noise. _

The parameters are estimated by GMM with objective function as in (3)
and vector of instruments A (X;) = (l,X,-_,X,?)' and B, = I3. For the tests
based on smoothers, we choose the bandwidth following the rule-of-thumb, i.e.
as h = dn~1/5 for different values of d. Three different sample sizes, n = 50,100
and 250, are considered. Tables 1 to 4 report results obtained for each of
the considered data generating processes using the five tests proposed in this
paper. In each cell are reported the empirical frequencies of rejections of the
null hypothesis at a 10% (first row) and a 5% (second row) nominal level.

The empirical sizes of our tests are reported in Table 1. The tests based on
tn and t;, are undersized for large and moderate bandwidths, i.e. for d between
2 and 0.5, irrespective of the sample size. Better empirical sizes are obtained for
smaller bandwidths. On the whole, the smooth tests based on {, and t; lead
to very similar results. Thus the plug-in bootstrap test does not seem able to
improve on the size performances of the asymptotic smooth test for small and
moderate samples. Similarly, the test based on ¢}, is undersized in small samples,
while its performance improves when the sample size grows. In contrast, the
bootstrap analogs of the two tests exhibits empirical sizes very close to nominal
sizes. This is attained even for a sample size as small as 50, and for the smooth
test irrespective of the bandwidth choice.

We now turn to the study of the empirical power. Under the first alternative
DGP, (Table 2), the three smooth tests exhibits very good performances. For
a sample size of 50, empirical power is lower for very small bandwidths. When
the sample size is 100 or higher the empirical power is greater than 85% for any
bandwidth and attains 95% in most cases. In contrast, the test based on ¢}, has
quite small power against DGP; for n = 50 or 100. This is largely corrected by
the bootstrap analog version of the test, whose empirical power increases with
the sample size.

Under the second alternative which has higher frequency than DGP;, the
power of the three smooth tests deteriorates for small samples and large band-
widths. Indeed oversmoothing makes it difficult to detect highly variable pe-
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riodic alternatives and bootstrap methods are not suitable to correct for this
effect. However, the performance of all three tests highly improve for a mod-
erate sample size of 250. The comparison of Tables 1 and 2 indicates that the
empirical power of the test based on c;;* is also sensitive to the frequency of the
alternative.

Results under alternative DGP; (Table 3) confirm these first findings. For
bandwidths constants greater than 1.5, the three smooth tests perform poorly
even for a sample size of 250. However, their empirical power is acceptable in
small samples for a bandwidth constant less than 1 and close to 1 for a sample
size of 250. The empirical power curve of these tests exhibits an inverse U-
shape with respect to the smoothing number, with a maximum attained by
undersmoothing relative to the rule-of-thumb. This fact has already be noted
for other smooth specification tests, see Hart (1996). The test based on c;,
has low power for samples of size 50 and 100. This is partly corrected by the
bootstrap analog version of the empirical process based test.

To sum up, our results call for some caution in using plug-in bootstrap
tests. For the smooth test, large undersmoothing is required to obtain good size
and power properties. For the empirical process test, moderate sample sizes
are necessary. In contrast, the bootstrap analogs of these tests appear to enjoy
much better properties, though they are computationally more demanding. The
bootstrap analog of the smooth test is able to correct for too small empirical
sizes of the asymptotic test, and this for a large range of bandwidths. Therefore,
only power considerations should drive the choice of the bandwidth parameter
for the analog bootstrap tests. For alternatives of varying frequencies, slight
undersmoothing with respect to the usual rule-of-thumb seems on the whole to
lead to better results. Similarly, among the empirical process based tests, the
analog bootstrap form appears to enjoy an accurate size and good empirical
power under alternatives with different frequencies.
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APPENDIX

- (k) 5 k k
Henceforth, 9{ = 9{? (60), 37 = 4{® (8), 9 = 9° (00) .
PROOF OF LEMMA 1

Notice that T, = Y pv; TS, where

—-1n-1
n k k
() = (2) T3 H® (20 2;) + 2V + VO,

=1 j=i+1

and HY (2;,2;) = h“’«/JE")«/Jﬁ-")Ka,-,

(")
V(k) - 1) = ZZ¢(’°) ( ¢(k)) i

i=1 j=1
J#i

Vin = n(n—l)hq ZZ( - v?) (¢§k) W) K

i=1 j=1
J#i

Hence, it suffices to prove that V) = O, (n=1) and V;¥) = O, (n™1), for all
k=1,..,m
Using a mean value theorem argument,

v = (8- e) Stn+ (bn - 00)'52:: (6n - ?0) ’

where
(k). (k)
Sln n(n—-l)hq;z;dj ¢ 11)
g
St = = 0 WY (B0) Ki [P = 0] < = 0]
n(n-—l)hq £ £ Kij, |[6n =0 °
J#

The order of Sy, is obtained applying Lemma 3.1 of Powell, Stock and Stocker
(1989), which is reported below.

Lemma 3 Consider a U-statistic of the form U, = )_1 ,—1 ,—1+1 Hn (21, Z;),

where Hy, (2;,Z;) is a symmetric kernel and the Z;s are tids observations. Let

Gn (Z:) = E[Hn(Zi, Z5) | Zi), @ = E (gn (Z:)) and Un = Gnt+2n71 iy [9n (Z3) — Gl -

If E (| Hn (21, Z2)I°) = o(n), then Uy = U + 0p (n71/2).
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Since Sy, is a U-statistic with symmetric kernel
Ho (21, Z2) = (945" Ko + o909 Kia) /2,

we have

E(IHa (2, 2)|°) = 75 B [(’”gk)) (4°) & ]

= —E [(’ﬁik)) /akk (Xy + hu) £ (X; + hu) K (4) 2du]
[(¢§k)) - (Xl)] / K@) dusto ( 1 )

=0 (%) = o(n)

by Assumptions B and S, together with Holder's inequality. As §, = 0, we
obtain by Lemma 3

Sin =230, (20 + 0y (w79),
i=1

with gn (Z) = ™1 (¢$k)E [ve (X3) K | Xi] + E [¢§~k)Kij | X,-] Tk (X,-)) /2. Now
it is easy to check that

E[22(2)] = E [or (X) 72 (X) £ (X)] / K (u) du+o(1) = O(1),

so that Sin = Op (n71/2) by applying a central limit theorem argument. The
order of Sy, is obtained using Assumptions A2 and S and applying standard
kernel manipulations as follows:

E|San| £ -,%;E{|¢gk)| N (Y2, Xz) |K12|}
= BN (%5, %) Eles (X:) [Kua] | Z3])
= E{N (Y2, X2) ax (X2) f (Xz)}/|K (u)| du+0(1)
=0(1).

Hence, we obtain V{¥) = O, (n~!) by Assumption Al.
Using a mean value theorem argument,

v = (0 - 00) San (é,, - 00) ,
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where
= L B 00 - )] B+ () -]
J#t

ool - s [pu-] < -4

We can decompose S3y, in different terms, and reasoning as before it is easy to
check that S3, = O, (1), so that 1/2(":) =0, (-n—x) B
p F OF THEQREM 1 ’

By Lemma 1,
-1n-1
nh9/2T,, = nh/? (2) > h“'Zw"”w("’K 240 (h?).  (9)
=1 j=i+l

Therefore, by Assumption B, it suffices to establish the asymptotic normality
of the first term in (9). Lemma 3 is useless now, because we have a degenerated
U-statistic. Thus, we make use of a result for degenerate U-statistic, which is

stated below.

Lemma 4 (Hall, 1984) Let U, be as in Lemma 3, where E [Hn(2:,2;) | Zi] =
Oa.s. Define Gn(21,22) = E[Hn(Z3,21) Hn (23, 22) | 21, 23] . If

[G,, (Zl,Zz) ] +n-1E [H (21, Za) ]

[H (21, 23) ]

n=—00

then
nUp,

2{E [Ha (2, 22)2] }

7 > N@,1).

In our case, H, (21, 22) = k=9 S 94l K5, First,

m m m m

[G (Z1,Zz)2] Y3NN M

k=1l=1k'=1l'=1
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where each Ay is equal to

h~YE {opr (X1) 0w (X2) E [K13K230kt (X3) | X1, X2) E [K13Kaaokr (X3) | X1, Xa)}

= E {aw (X0)ow (X2) [ [kwE (u + 2 ;X‘) Tl (Xa + hu) £ (X1 + hu) du]

T / K(u)K (u' + @) orr (X1 +hu') f (X1 + hat) du'] }

= %E {Ukk’ (X1) ow (X1 + hv) [/K(u)K(u +v) ok (X1 + hu) f (X1 + hu) du]

r/K () K (v +v)opr (X1 + ') £ (X1 + ho) du'] f(X1+ ho) d'u}
= 32 {oww (X2)ow (X3) om () o (X2) £ (X2)}
[///K(u)K(u-{-v)K(u')K(u’ +v) dudu’dv] +0(h79)

1
-0 ().
using Assumption S. Second,

E [Hn (24, Z2)2]
S A
=1

Z;};E (Uk[ (Xl)/K(u)2ok[ (X1 +h‘u)f(X1-+ hu) du)

=1

i
NE

x
[
-

I
NSE

x
[
-

m

ZT,IEE [ok (X1) 7 (X1)] /K(u)2 du+o(h™?) =0 (%) .

=1 l=1
Third, denoting K[(X; — X2)/h] by Kia,

E [H,, (21, 22)4]

I
NgE

x

s (Kl 10040

I
NE
\Ma
\5,13

-
1
-
x
Il
-
e
]
-

I {EBKhet () of ()]}
pe{k,d k')

H {E [o5 (X1) 05 (X1) £ (X1)] }1/4 + 0 (h™39)
pe{k Lk 1}

-
I
-
x
T
I
-
-
Il
-

IA

M I M2
NERANGE
INSENGE
INGERINGE
- F-

a
|
(o
-
[
-
a
It
-
-
I
-

AN
o
~
-

[~)
~—
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Therefore,

- E[G,, (21,22)2] +n7'E [an(zl'zﬂﬂ = lim (h‘1+(nh")_l) =o0(1),
neo {E[Ha(2:,22)]} T

by Assumption B, and Lemma 4 allows to conclude. M

P F OF COROLLARY 1

Let us first consider the properties of T, under H;. Notice that T,, =
S Tns ), where

-1n-1
n
T® = (2) Y Z H® (Z:,Z;) + 2V + Vi,
i=1 j=i+l

and H® (Z;, 2;) = -9y (6,) w4 (61) K,

v = e O o) (7 - 00) K

i=1 j=1
J#i

n

U = i 3 60 -8 00) (47 )

i=1 j=1
J#i

Reasoning as in the proof of Lemma 1 and using A1 with 8; in place of 89, we
can easily show that Vl(,’f) = 0p (1) and Vz(,’f) =0p(1),all k =1,...,m. Now using
Lemma 3 and a central limit theorem argument, we have

£()E 5 s

k= i=1 j=i+l

- Z=:1E [ch) (Z, zj)] +0, (n—1/2)
= iE [E2 [w(k) (Y, X;6,) |X] f(X)] /K(u) du+ O, (n—1/2) )
k=1 ’

This shows that T, converges to a strictly positive limit under H;.
By a similar reasoning, it is easily shown that, either under Hy or Hy,

m m n

Va = n(n—1)he 1) ha ZZZZE’E,‘)&!)@;H%D K =V+4o,(1).

k=1 [=1 i=1 j=1 .
J#
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Corollary 1 then follows. W

PROOF OF LEMMA 2

Lemma 2 follows straightforwardly after applying a mean value theorem
argument, the Lindeberg-Levy central limit theorem and the strong law of large
numbers. W

F OF M 2.

The convergence of the finite dimensional distributions of R, (.) follows from
Lemma 2 and applying the Linderberg-Levy central limit theorem. Thus, the
theorem follows by proving tightness.

Let Dy = (s,t] = x{_,(s5,t5], D2 = (¢,t'] = x§_,(s},t}] two neighbors
intervals in R, i.e., they abut and for some j € {1,2,..,q}, they have the same
Jth-face xixj(sk,te] = Xkpj(s),t;]. Let Wy(t) be any empirical process on
D[RY)]. Define

Wn(Dl) = Z s Z (—l)q—z”c? Wa (31 + el(tl - 51), c*ySq + e¢1(t¢1 - sq)) .

e1=0,1  ¢g=0,1

(10)

By Condition (2.1.8) in Gaenssler and Stute (1979), a sufficient condition
for tightness in D[RY] is

Pr (W, (D1)] > & |Wa (D2)| > 6) < C67° (u(Dy U D2))° (1)

where 4 (+) is an arbitrary measure with continuous marginals and a, b and C
are arbitrary constants such that b > 1 and C > 0. Using Markov inequality, a
sufficient condition for (11) is

E (|Wa (D1)|[Wa (D2)|)? € C(u(D1U D2)). (12)

Without loss of generality we will prove tightness for ¢ = 2. From Lemma 2,

we can write

Ra(t) = RY() + Ry(t),

where
R0 = = 3 biult)
i=]

R = E [ (60) 840] 2 1%, X0
i=1
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with k—th coordinate denoted by R, ji=0,1ie. R3®) @)= ;}_1 1,0(") Aq(t),
and RY®(t) = MW%ma]zHunmm)mm¢,%lnm
k-th row in 4, (o) . Then, applying definition in (10) to R (),

vaRY®) (D) = \/— Eib(k) (Asltr,t2) = Ai(s1,12) — Au(tr, 52) + Di(s1,8))

i=1

ZWA@) (13)

1—1

where A; (D;) = 1(X; € D;). Lemma 5.1in Stute (1997) assures that if {(a;, 8;) }7y

are n iid square integrable random vectors with E(a;) = E(B,) = 0, then
n 2 n 2
E ((z) () ) < nB(al) +Snn - DEGE@D. (4
i=l i=1

Let o; = 1,b§k) A; (D) and B; = 1,b$k) A; (D7), then a%ﬁf = 0 and applying (14)
we get

w5 (R0 00" (R (09)") < 22D (v a0 00) B (v a1 (02)’

<3 (E ([¢(1k)]2 Ay (DU DQ)))z.

Then (12) holds for R?,(k)(.) and this process is tight for arbitrary k = 1, .., m.
Because the index parameter in RM® (t) is included in a deterministic continu-
ous bounded function, it is straightforward to check that it is tight.

Recall that a sequence of stochastic process {W,, n =1,...,4-00} is said to
be tight if and only if for every € > 0, there exists a compact set K such that
sup, Pr{W,, € K} > 1—¢, i.e. if there exists a compact set of the sample space
where the process is included, with arbitrary high probability uniformly in n.
Let K7(%) be the compact sets that includes each R4 (.) with arbitrary high
probability, j = 0,1, k = 1,...,m. By Tychonoff Theorem (see Dudley, 1989, Th
2.2.8), the set K®) = {c®) = (0, c!) : ¢ € K(¥), j = 1,2} is compact within
the product topology. Because summation is a continuous operator in D[RY], it
preserves compactness and the set K3+ = {db+ = 0 4 ¢t : (&, ct) € KB}
is compact. Therefore, the process R¥)(.) is tight. By Tychonoff Theorem
again, the set K = {c = (c(M*,c@+ . cm+) : )+ ¢ KW+, k = 1,..,m}
is compact within the product topology. Since R, (t) € K with arbitrary high
probability uniformly in n, it is tight and the proof is completed. M
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PROOF OF THEOREM
Henceforth, ¥;® = V;y{® (69) and ;™ = v;p® (5) and E* [] = E[|Vu).
Notice that Ty = Y v, T3®), where

T =120 + 270 1 v,

where

-ln—-1 n
Tu(k) _ [T —q,1%(k),, #(k)
0= (5) % 2 me R,

i=1 j=i+1

. 1 TN u (k) (A .
vtk = O ZZ'f’s (k) (wj(k) _ wj(k)) Kij

i=1 j=1
J#i

n n
w(k) _ 1 TER) _ g B (20 _ R g
Vi = w4 (9 -0i®) (35 - ) K.
J#i
We will prove that V;;¥) = O,- (n~!) and V3® = 0,. (n~1) in probability for
all k =1,...,m. Using a mean value theorem argument,

Vil = (b - oo)' Stn+ (Bn - oo)' S3n (B0 =60),

where
. _ 1 n n w(k) o #(k)
Sin = n(n—1)he ZZ“’% ¥ Ky
i=1 j=1
J#i
S* = 1 n n w(K) - w(k) = a 0 < é p
= n(n—1)he Z Z¢i ¥; (9,,)1{,5, ” n = 0” = “ n~ 0”,
i=1,_1i
g

J # 7, Si, and S3,, are degenerate U-statistics. Hence, E*[S},] =0 and

. e 1 2 n n T oa(k) o 2
E*[S1%] = [n(Tl)h"] ZZ E [¢.-""¢,-"" K;,-]

i=1 j=1
J#i
2 n n ]
= [m] Z‘;; (¢Sk))2 ('»b.g‘k))zK,-j.
J#i
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Now, using similar arguments than in the proof of Lemma 1,

2
B[ [533)] = [ gy i~ DO = 0(a~2h7),

so that 87, = Op- (n*h=9/2) in probability. Similarly, we can prove that
E*|83,] = Op-(1) in probability, so that S5, = O,- (1) in probability. As
(@ - 00) = O, (n=1/2), we get that nh?/2V;;®) = o_. (1) in probability. Simi-
larly, nh9/ 2V2'n(k) = 0p- (1) in probability. .

Concéming asymptotic normality, we will treat the case where m = 1 for
the sake of simplicity, so that we consider

-ln-1 n

=-ln-1 n
T* = (’2‘) >N Hi(z,2) = (’2‘) > by K,
i=1 j=i+1 i=1 j=i+1

Notice that E* [H}; (Z;, Z;) |V;] =0, for all i. Let us define
ol =E* [f,":]

-2n-1 n n-1 n
- (’2‘) S 5SS B H (2, 2) Hi (24.25)]

i=1 j=i4l t=1 j=i41

-2 n n
- (3) ZX e R = e

i=1j=1
J#i

-4n-1 n
Gi= (’2‘) S B [HE (2 2)]
i=l j=i+l
—4n-1

= E* (V) (’2‘) 3o 3 hytuivikd,

=1 j=i+1

-4 n-2 n-1 n

GQE(’;) Y Y B H2(225) B2 (2, 20)]

i=1 j=i+1 k=j+1

—4n-2 n-1 n
=50 (5) XY 3 KK,

i=l j=i+l k=j+1

-4n-3 n-2 n-1 n
n - »
(2) z Z z z E* [H; (Zt,ZJ)H; (Z,',Zk) Hn (Zl’zj) Hn (Zl’Zk)]
i=l j=i+l k=j+1l=k+1
-4 n-3 n—-2 n-1 n
) o0 ST > hyyiyivivi Ky KK K.

i=1 j=i+1 k=j+1i=k+1
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By Proposition 3.2 in De Jong (1987), we have a;lf,: oN (0,1) in probability
if G1, G2 and G3 are of lower order in probability than (a?‘)z. Now, G1,G2 and
(a;",)z are positive and it is not difficult to check, as in the proof of Theorem 1,
that

-2 n n

] =5|(;) TXwmesrw)K
i=1 j=
J#i
=n"80 [n?h~3 + n3h~% + nth~2] = O(n~*h"%),
E[G1] = O (n~8h=%),
E[Gi]=0 (n‘sh""q) ,
E|Gs| =0 (n™h™9).
Hence, the condition is fulfilled and we get the desired result. It is straightfor-
ward while cumbersome to check the result for arbitrary m. W

PROOF OF THEQREM 4
Using the independence of the sequence {V;}, we obtain the covariance struc-
ture

1. R
nE" (R (@) B o)) = 2 DA @) (aa)'
where 7; (z) = 9,0 (z) + (ﬁ YIS (9,.) A (a:)) ! (Y X é,.) . By A2, Slut-
sky theorem and the strong law of large numbers,

nE* (R;, (z1) Ry, (z2)') 3 E (ri (z1) ri (z2)')

so the process has the same covariance structure. Let A € R™ such that ||A| = 1.
To obtain gaussianity, we check the conditions of the Lindeberg-Feller central
limit theorem. Define

77 (2) = 0 (2) ba (3) d (2) , where dj, () = n=Y/2X'; (z) Vi/8n (2)

ba (z) = 6a (2) /o (), 6% (2) = Xn~t o 74 () 74 (z) Aand 02 (z) = N'E (ri (@) 7 (2)) M

The triangular array {d},(z):i=1,..,n, n=1,... + oo} has rows elements
that are independent conditionally on Y, with

E*[d}, (2)] = n™/2X'F; (z) E* [Vi] /& (z) = 0 &5,
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and

[Z (m)] 22 (z) Mn? ZF,- (z) 7 (z) AWVar* [V;] = 1 as.

i=1 i=1

Let kv = sup|V;|. We can check that the Lindeberg condition holds for dj,, ()
with probability one as follows

3" E* [d32 (2) 1 (/dja (2)] > 6)]

=1
= %a;? (z) N ‘iﬁ (z) 7, (z) AE* [m (|n'1/2)\'1‘-,~ (z) Vi/6n (m)| > 5)]
i—l
%a; (2) A'Zr. @)% @ M E* [1 (|03 (2) /80 ()] > 6)
%&; (z) ,\'Zr. (z) 7] (z) My (|,\'1=,- () /n ()| >5n1/2)

I—l
= L2 )X S @) ) Mo (s (@) ()] > E012) 0, (1) a5
i=1

=0, (1) a.s.

Hence Y0, df, (z) 4N 0, ) a.lmost surely. Since b, (z) =+ 1, applying
Slutsky theorem gives that R}, (z;) 4N (0,0 ()) with probability one. The
convergence of the vector (R}, (z1),.., R, (zs)) can be proved using analogous
methods. Therefore, the convergence of finite dimensional distributions follows
almost surely.

Tightness of the k—th coordinate of R, (z) is shown using Condition (2.1.8)
in Gaenssler and Stute (1979). We define the vector

RO-( ) == Zd)tA (IL‘) V
t=l
with k—th coordinate denoted by RY¥)* (z) . Applying Equation (10) as in (13)
we denote
VARI®* (D;) = Zw‘”A- Dy) Vi =12
t—l '

where Dy, D; are two neighbors intervals. Thus a slight extension of the argu-
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ments in Lemma 5.1 in Stute (1997) yields

n . 2 .
w2 (R (D) R (D2)) < 5 zE (3. 00v) B (1800 V;)

1#]

n 2
[g S B (;bﬁ"’A‘- (D1 U D2) V.-)z]
i=1

IA

i=1

2
C = -
[; PIAEILNT Dz)]
2

as [E (¢$k)2A‘. (D1 U Dz))]

for some constant C > 0 and (12) holds for R3*)* () with probability one.
Using the same arguments as in Theorem 2, tightness of the k—th coordinate is
extended to the whole process R (z). M
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