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1 INTRODUCTION 

A noticeable amount oí recent statistica1 and econometric work has been devoted 

to consistent specification testing oí univariate regression models. Two sepa­

rate methodologies have been developed in the literature. The first approach 

consists oí comparing parametric (or semiparametric) estimates with semi or 

nonparametric estimates, as done íor instance in Hardle and Mammen (1993), 

Horowitz and Hardle (1993), Hong and White (1995), Gozalo (1993), Fan and 

Li (1996), Zheng (1996) and Rodriguez-Campos, González-Manteiga and Cao 

(1997). The second approach considers tests based on stochastic processes in· 

dexed by a "nuisance" parameter taking on an infinite number oí values. This 

testing strategy was first proposed by Bierens (1982, 1990) and considered by 

Hong-Zhi and Bin (1991), Su and Wei (1991), Delgado (1993), Diebolt (1993), 

- Andrews (1997), Bierens and Ploberger (1997), De Jong and Bierens (1994), 

Delgado and DornÍnguez (1997) and Stute (1997) among others. 

In this paper, we address the issue oí specification testing in general para­

metric econometric models. Specifica11y, we consider models defined by multiple 

conditional moment restrictions that can be nonlinear in endogenous variables. 

This includes models with nonlinear transíormations in the endogeneous vari­

ables and nonlinear in variables simultaneous equation models. In this aim, 

we simultaneously íollow the two leading methodologies applied íor specifica­

tion testing oí univariate regression models and extend them íor jointly testing 

conditional moment restrictions. As a matter oí íact, both approaches can be 

interpreted in the M-testing framework developed by Newey (1985) and Tauchen 

(1985), where unconditional restrictions are tested in place oí conditional ones. 

The restrictions we consider are tailored to ensure consistency oí the related test­

ing procedures against anyalternative. On the one hand, we consider moment 

conditions depending on unknown functions (regression curves and probability 

density functions), which can be estimated by means oí kernel smoothers or 

other nonparametric estimation techniques. On the other hand, we consider an 

infinite number oí orthogonality conditions indexed by a "nuisance" parameter. 

A test statistic can then be built as a functional oí the empirical process indexed 

by this nuisance parameter. 

We first study the asymptotic behavior oí the proposed test statistics. How­

ever, relying on1y upon asymptotic an8.1ysis in implementing those testing pro­
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cedures presents sorne difficulties. For the tests based on smoothers, the approx­

imation quality of the null distribution of the test may be poor in small samples 

and is expected to be sensitive to the choice of a smoothing (or bandwidth) 

parameter and to the dimension of exogenous variables. For the tests based on 

empirica1 processes, the problem is even more acute, as the asymptotic null dis­

tribution depends on the (unknown) data generating process and can be easi1y 

tabulated on1y in exceptional circumstances. Therefore, we propose to approx­

imate critical values of each test by "wild" bootstrap procedures, as done in 

regression contexts by Hiirdle and Mammen (1993) and Wang and Li (1996) for 

specification tests based on smoothers, and by Su and Wei (1991) and Stute, 

González-Manteiga and Presedo (1998) in specification tests based on certain 

empirical processes. Specifica11y, we propose two different bootstrap methods. 

The first one is based on test statistics obtained by plugging-in bootstraped 

analogs of the residuals in the initial statistics, as proposed in different contexts 

by Su and Wei (1991), Lewbel (1995), De Jong (1996) and Hansen (1996) among 

others. The consistency of the resulting bootstrap tests is forma11y justified and 

their behavior in sma11 samples is illustrated by means of a Monte-Carlo ex­

periment. The second method is the c1assical one, namely it uses conditional 

bootstrap to built bootstrap analogs to the sample test statistic. However, 

the formal asymptotic analysis of the resulting tests is complicated by the fact 

that the model can be nonlinear in the endogenous variables, so that a general 

asymptotic theory requires very specific conditions which are not needed when 

the model is linear in endogenous variables. We therefore discuss these difficul­

ties and provide evidences on the performances of both bootstrap methods in 

sma11 samples. 

The paper is organized as follows. In the next section, we present the tests 

statistics and discuss their asymptotic properties. In Section 3, we study the 

bootstrap tests approximations, we justify the asymptotic validity of the boot­

strap tests based on asymptotic expansions and we fina11y discuss imp1emen­

tation of the c1assical bootstrap tests. The sma11 sample performancesof the 

proposed asymptotic and bootstrap tests is studied in Section 4 by means of a 

Monte CarIo experimento Proofs are confined to the Appendix. 
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2 ASYMPTOTIC TESTS 

Suppose that Yn = {(Yi, Xi) ,i =1, ,.,' n} is a sample of independent observa­

tions, identically distributed as the vector (Y, X) ,where X = (X(l), X(2), ...,X(q»)' 

takes values in IRq and Y takes values in IRd. The variables are supposed to be 

related according to a postulated parametric model which specification is deter­

mined by conditional moment restrictions of the form 

Ho: 300 E e: Pr {E [1/1 (Y,X¡Oo) IX] =O} =1. 

Here 00 is an unlmown vector of parameters, e e IRP is the parameter space, 1/1 : 

IRd xlRq 
X IRP -+ IRm is a vector of known functions such that E 111/1 (Y, X; 00 ) 11 < 

00, where 11·11 denotes Euclidean norm. The alternative hypothesis H 1 of in­

correct specification is the negation of Ho. Most econometric models can be 

written in this formo It includes nonlinear regression models, but also general 

models that involve nonlinear transformations in the endogenous variables (e.g, 

Box-Cox transform) and nonlinear simultaneous equations models. 

It turns out that Ho is equivalent to any of the following conditions: 

3 00 E e : E [1/1 (Y, X; 00)' W1 (X)] = o, (1) 

or 

300 E e: E [1/1 (Y;X¡ 00)W2 (X, x)] = O, \:Ix E X, (2) 

where W1 (X) = E [1/1 (Y, X; 00 ) I X] f (X), W2 (X, x) = TIJ=l 1 (X(j) $ x(j») , . ,
1 (A) is the indicator function of the event A, x = (X(l), X(2) , ... ,x(q») and 

X denotes the support of X. Thus, Ho can be tested by checking any of the 

aboye conditions. Other equivalent formulations of Ho obviously exist, but they 

belong to one of the above types, i.e. they rely on an unlmown weight function 

or they specify an infinite number of orthogonality conditions depending on a 

"nuisance" parameter. 

The weight function W1 (.) depends on unknown nonparametric functions, 

hence implementation of tests motivated by (1) requires nonparametric estima­

tion. Define 1/1 (O) =1/1 (Y, X; O) and 1/Ii (O) =1/1 (Yi, Xi; O) , with k-th coordinate 

denoted by 1/I(k) (O) and 1/I~k) (O) respectively. Given a suitable estimator 8n of 

00 , the expectation in (1) can be estimated by 

1 ~ (")' ATn = - L..J 1/Ii On W 1 (Xi) , 
n i=1 
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where 

"'1 (Xi) = (n _\) hq t t/Ji (en) Kii 
.1=1 
#i 

is a kernel estimator of W1 (Xi), h =h(n) is a positive bandwidth number, 

K ii = K (Xi ~ Xi) , 

and K (.) : lRq -+ lR is a symmetric kernel function. As we will show, a properly 

rescaled version of Tn can be used as a test statistic for checking the specification 

of the econometric model. 

The weight W2 (.,.) depends on the nuisance parameter x, hence (2) specifies 

an infinite number of orthogonality conditions, one for each x. The expectation 

in (2) can be estimated by 

which is an empirical process of dimension m marked by the "residual" functions 

t/Ji (On) , i = 1, .. , n. Sorne suitable function of the process Rn (.) can then be 

used for testing Ho. We wiIl consider a Cramer-von Mises type statistic, but a 

similar theory can be derived for anyother statistic based on another norm. 

The study ofthe asymptotic properties ofTn and Rn (.) requires the following 

usual regularity conditions. 

Al Under Ho. On admits the expansion, 

28n =00 +.!. tl(Yi,Xi¡OO) +op (n-1
/ ) , 

n i=1 

for sorne interior point 00 of e, a compact set in lRq , and sorne vector­

valued function l such that 

(i) E [l (Y, X¡ ( 0 )] = 0, 

(ii) Lo =E [l (Y,X¡ ( 0) l (Y, X¡ (0)'] exists. 

A2 For aIl k = 1, ... , m, t/J(k) (O) has at least two continuous derivatives in an 
• (k)

open neighborhood N (00) of 00 with respect to O, namely t/J (O) = 
8t/J(k) (O) /80' and ;p(k) (O) = 82t/J(k) (O) /8080', where E 11~(k) (00 )11 < 

00, and there exists a functionN(.) such that sUPBE.N'(Bo) 11;p(k) (0)11 :5 
N(Y,X) ,k = 1, .. ,m, with E [N (Y, X)] < oo. 
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For instance, the estímator en can be a generalized method of moments (GMM) 

estímator defined as 

ÍI. =arg ~ [t. A (X,) "'¡{O}rB. [t. A (X,) '"i (O)] • (3) 

for a suitable r x m matrix of instruments A (.) and weighting matrix En depending 

on the sample. Hence, under regularity conditions, 

where 

1. t A (Xi) ;Pi (00) ~. Mo and En ~. Bo, 
n i=l 

and;Pi (O) = (;p~1) (0)', ;p~2) (O)' ,.", ;p~m) «())')', where ;p~k) (O) = 81/J~k) (O) 180', 
k = 1,,,,m. 

2.1 ASYMPTOTIC TEST BASED ON SMOOTHERS 

We need the following mínima! assumption on the kernel function. 

K The kernel function K is even, bounded, integrable, llmllull_oo lIull q IK (u)1 = 

O, JIRq K (u) du > Oand JRq JIRq K (u) K (u + v) dudv < oo. 

Since we are not assuming that K (.) integrates to one, Tn will not estímate 

the expectation in (1), but its product with JK (u) duo This is of no relevance 

with respect to the testing procedure. However, most kernels used in practice 

integrate to one. We also assume that certain nonparametric functions belong 

to a general class, defined through a Lipschitz condition as follows. 

Definition 1 Go., el: > O, is the class 01 functions 9 (.) : IRq -+ IR, satisfying: 

there exists a p > Osuch that lor all zE IRq, sUPI/ES.
p 

Ig (y) - 9 (z)1 1lIy - zll :5 
G (z), where S~p = {y: Ily - zll :5 p}, and 9 (.) and G (.) have finite el:-th mo­
ments (or are bounded il el: = +00). 

Let O'kl (x) = E [1/J(k)1/J(I) 1 X =x] , 0'1 (x) = E [(1/J(k)t IX =x] , el:k (x) = 

E [11/J(k) I1 X =x], 'Yk (x) = E [;p(k) IX =x], k,l = 1,,,.,m and (3(x) = 

E [N 1 X = x], where the functions 1/J(k) are eva1uated at Oo. The next as­

sumption summarizes the smoothness conditions on the different nonparametric 

functions. 

5 



s 1(.) E Goo. For all k,l = l, ...,m, O'kl(') E G4, each element Of"Yk(') is in 
8 3 

G8/3, O'~ (.), Qk (.) and {3 (.) are in G2 and E [lltP(k) 11 / ] < oo. 

Finally, we impose the standard assumptions on the rate of convergence of the 

bandwidth parameter. 

To justify the asymptotic test, we first derive an asymptotic linearization of 

Tn • 

Lemma 1 Under Ho and Assumptions Al, A2, K, S, B, . 

Since the leading term in the asymptotic linearization of Tn is a degenerate 

U-statistic, its null distribution of Tn is obtained by Theorem 1 in Hall (1984). 

Theorem 1 Under Ho and Assumptions Al, A2, K, S, B, 

where V = 2E U:::;;'=l E~l O'~I (X) I (X)} IJRq K (u)2 du, 

By analogy with Tn , the variance V can be estimated by 

v. = 2 ~ ~ ~ ~ .I.~k) (O ) .I.~I) (O ) .I.(k) (O ) 01.(1) (O ) K~. 
n (_l)hqwwww'l', n '1', n 'l'J n 'l'J n 'J' 

n n k=l 1=1 i=l j=l� 
ji:i� 

Therefore, an asymptotic one-sided test can be based on the statistic tn = 
nhQ/ 

2Tn /V;,/2, as justified by the following corollary. 

Corollary 1 Under Assumptions Al, A2, K, S and B, t n ~ N(O,l) under 

Ho and tn ~ +00 under Hl assuming that Al and A2 hold with some (h in 

place 01 (JO.1 

lThe 888umption of 81 being an interior point of e is not formally needed if we consider 

directional derivatives through the interior of e in the proofs. 
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Following the line of Theorem 1'5 proof, we could similarly show that the 

test is consistent in the direction of contiguous altematives of the form 

.� g(X) 
HIn: E [ti' (Y, X; ( 0) IXI = nl / 2M/4 a.s., 

for some 80 E e, where g (.) is a generic non null function. Such alternatives 

converge to the null slower than the parametric rate n- I / 2• It is also possible 

to show that the test is able to detect altematives of the form 

H2n : E [ti' (Y, X; ( 0) IXI = TJn (X) a.s., 

for some 80 E e, where 

TJn (x) = D:nb (x'Y~ e) , 
where e is a constant and D:n , 'Yn are deterministic sequences converging to zero 

with the sample size at appropriate rates, b (.) is an integrable and continuously 

differentiable function up to second order, with band limited with h = o (-Yn) . 

The magnitude of the indefinite integral of TJ (x) is of order D:n'Yn , wlúch can be n 

ofmagnitude O (n-I / 2) or smaller by choosing the bandwidth h, D:n and 'Yn in a 

suitable way. These altematives were first proposed by Rosenblatt (1975), and 

later used by Fan (1994) in the context of testing the parametric specification 

of a density function and by Fan and Li (1997) in the context of testing the 

goodness-of-fit of a parameterized regression model. 

2.2� ASYMPTOTIC TEST BASED ON MARKED EM­

PIRICAL PROCESSES 

To justify an asymptotic test, we first derive an asymptotic linearization of 

Rn (.) using a standard mean value theorem argumento 

Lenuna 2 Under Ho and Assumptions Al, A2, 

1 n 
2Rn (x) = - L r¡ (x) +op (n-I / ) a.s., 

n ¡=I 

uniformly in x, where 

r¡ (x) = {tI'i (80) ¿l¡ (x) +E [tPi (80) ¿li (x)] l (Yi, Xi; (0)} 

with ¿l¡ (x) = W2 (Xi, x) = Il1=11 (X}i> ~ x(i» ,/or X = (Xp> , ..,X}q>)' and 

x = (x(I>, .. ,x(q»'. . 
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---- - -------------------------------------------------------

The process Rn (.) is a random element in the Skorokhod space X~l D (IRq) , 
which is defined as the space of all real functions h(.) continuous from above in 

IRq, such that for any x and every sequence {xn } approaching to x in some quad­

rant with comer x, limn _ oo h (xn ) exists. The process is extended to X~l D [IRq] 
by defining 

see Stute (1997) for a discussion of convergence in this space. Prom the expan­

sion of Lemma 2 it is straightforward to show that, for any finite s and arbitrary 

(Xl, .. , xs ), (.jñRn (Xl) ,,,,.jñRn (xs )) converges under Ho to a gaussian random 

vector (Roo (Xl) '''' Roo (xs ))' By showing the tightness of the process, we oh­

tain that .jñRn (.) converges weakly to the m-valued gaussian process R(.) with 

q parameters, whose projections on (Xl,,,,Xs ) are (Roo (Xl)' .. ,Roo (xs )), Le. a 

m-variate gaussian sheet with q parameters. 

Theorem 2 Under Ho and Assumptions Al, A2, 

where Roo (.) is a centered m-variate gaussian sheet with q pammeters and co­

variance structure E (r¡(xl)ri(x2)'], 'V xl,x2 E IRq. 

Thus, an asymptotic specification test can be based on some suitable function 

of Rn (.). We choose to study a Cramer-von Mises' type test statistic defined 

as en = n I R~ (x) Rn (x) dFn (x) = 2:;=1 Rn (X¡)' Rn (Xi). Altematively, we 

could also follow Bierens (1982) and integrate the process with respect to a 

measure different than the empirical distribution Fn (.). However, the empirical 

measure seems a natural and convenient choice. The following corollary provides 

the asymptotic behavior of en. 

Corollary 2 Under Assumptions Al and A2, en ~ IIRq Roo (x)' Roo (x) dF (x) 

under Ho, where F (.) is the distribution lunction 01 X, and en .E. +00 under 

Hl assuming that Al and A2 hold with some 01 in place 0100.2 

2The assumption of 91 being an interior point of e is not formally needed if we consider 

directional derivativas through the interior of e in the proofs. 
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The practical applicability of a test based on en is hampered by the fact that 

the limiting distribution of the test statistic under the nu11 hypothesis is case­

dependent, namely it depends of the unknown data-generating process, and 

therefore can not be tabulated. One way of solving this problern is to derive 

case-independent upperbounds of the asymptotic critical values, as proposed 

by Bierens and Ploberger (1997). Alternatively, we propose in Section 3 to 

implement bootstrap tests. 

It can be shown that the (infeasible) test based on en is consistent in the 

direction of contiguous alternatives of the form 

H3n : E [tP (Y, X j ( 0) IX] = gn~71 a.s., 

for sorne 80 E e, where 9 (.) is a nonnu11 generic function.3 Bierens and 

Ploberger (1997) and Stute (1997) show the consistency of sorne related sern­

pirical process based tests under alternatives of type H3n for regression models. 

The test based on srnoothers cannot detect alternatives like H3n, but conversely 

the test based on a marked empirical process cannot detect alternatives like H2n • 

This fact was pointed out by Rosenblatt (1975) and has been recent1y studied 

by Fan and Li (1997) comparing Bierens' test and a test based on srnoothers in 

the context of specification testing of regression rnodels. 

3 BOOTSTRAP TESTS 

The practical implernentation of the asymptotic testing procedures introduced 

in the previous section involves sorne difficulties. On the one hand, asymptotic 

tests based on smoothers can be very sensitive to the choice of the srnoothing 

parameter, while the approximation to the asymptotic null distribution can be 

slow, depending on the number of exogenous variables X in the rnodel, see e.g. 

Hardle and Marnmen (1993). On the other hand, the asymptotic behavior of en 
is not distribution free, 50 that an asymptotic test can on1y be irnplernented in 

rare circumstances.4 Therefore, bootstrap tests are sorely needed. A bootstrap 

test relies on the quantiles of a bootstrap test statistic, that are cornputed frorn 

3For H3n to be an altemative that can be distinguished from Ho at a parametric rate. the 

function 9 (.) must be orthogonal to E [,¡.. (Y, Xi (0) IX = .1. see Bierens and Ploberger (1997) 

for a discussion on this point. 
4This is the case when testing the significance oC one explanatory variable in a regression 

model. see Delgado and Domínguez (1995). 
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artificial samples generated so as they mimic sorne features of the initial sample. 

These quantiles can be approximated as accurately as desired by Monte CarIo. 

For testing procedures, it is the distribution Wlder the null hypothesis that 

is of interest, so that the bootstrap sampling must impose the satisfaction of Ho. 
In the context of regression specification tests, Hardle and Mammen (1993) and 

Stute, González-Manteiga and Presedo (1997) have pointed out the necessity 

of applying a residual based bootstrap in order to resample Wlder the null 

hypothesis of correct specification. In our general framework, the role of the 

residuals is played by the "pi'S evaluated at On' Let Vi, i = 1, ... , n be random 

numbers such that the following assumption holds. 

V The Vi's are independently distributed with bOWlded support such that 

E (Vi) =Oand E (v?) = 1, i = 1, ...n. 

The bootstrap procedure consists in generating a great number of independent 

and identically distributed random samples of Vi's satisfying Assumption V to.. . 
obtain bootstrap samples "pi = "pi Vi, i = 1, ... ,n, that therefore satisfy the 

null hypothesis. Each bootstrap sample in turn forms a basis to construct 

a test statistic and the distribution of the resulting bootstrap statistics can 

therefore be used to estimate the critical regions of the test. Such a procedure 

for obtaining artificial samples is known as "wild bootstrap" and was introduced 

by Wu (1986) in the context of heteroskedastic linear models. 

We propose two alternative methods of computing bootstrap test statistics. 

In the first method, we simply plug in the ~;'s in place of the initial "p;,'s to 

obtain a bootstrap test statistic. This naive plug-in procedure is similar to the 

one employed by Su and Wei (1991), Lewbel (1995), De Jong (1996) and Hansen.. 
(1996) in other contexts. In the second method, the bootstrapped "pi 's are used 

to obtain a resample Y~ = {(Yi"Xi), i=l, .. ,n} from the original sample 

Yn' We subsequently compute a test statistic from Y~ in the same way as the 

original test statistic has been derived from the original sample. Trus analog 

bootstrap method generalizes the method in Hardle and Mammen (1993), Wang 

and Li (1997) and Stute, González-Manteiga and Presedo (1997) in specification 

testing of regression models. The second method requires that we can retrieve 

the Yi·'s from the ~;'s, wruch may not always be possible. Moreover, it is 

computationally much more demanding than the first one. However, analog 

bootstrap tests are expected to share the excellent performances enjoyed, in 
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general, by bootstrap tests. 

Suppose 71~ is the bootstrap statistic which distribution, conditional on the 

sample, is used íor approximating the distribution oí 71n (Le. 71n can be en or t n ). 

Suppose that under Ha. 71n -
d 

71. First we must show that under Ha, 71~ -
d" 

71 

in probability (a.s.) where ~ in probability (a.s.) means weak convergence in 

bootstrap distribution in probability (a.s.) according to the íol1owing definition. 

Definition 2 Define Pr* (.) = Pr (. IYn). Let 71~ be a bootstrap test statistic. 

It is said that 71~ converges weakly (almost surely) in bootstrap distribution to 

the random variable 71, with distribution function H (.), and it is denoted by 

71~ ~ 71 in probability (almost surely), whenever the sequence of random vari­

ables Pr* (71~ $ z) converges to H (z) in probability (almost surely), for every 

continuity point z of H (.) . 

Since under Ha, the conditional distribution oí 71~ consistent1y estimates the 

distribution oí 71n' we can use the quantiles, obtained from the empirical dis­

tribution oí the Monte CarIo sample oí 71~. as estimators oí the corresponding 

quantiles oí 71n' To ensure consistency oí the bootstrap test, the bootstrap 

statistic 71~ only needs be bounded in probability (or a.s.) under H 1• For the 

smooth test, the test statistic is asymptotically pivotal, and hence converges 

under the alternative hypothesis to the same distribution as under the null hy­

pothesis. For the empírical process based test, the limiting distribution oí the 

test statistic depends upon the data generating process under H 1 as wel1 as 

under Ha. 

3.1 PLUG-IN BOOTSTRAP TESTS 

The plug-in version on the smooth test approximates the distribution oí tn by 

the conditional distribution oí the bootstrap statistic 

hq/2T.* 1 ( ) -1 n-l n 
•• n n • n ~ ~ 100.' A 

tn = ff;"' where Tn = hq 2 LJ LJ ,pi ,pjKij. 
V Vn i=l j=i+l 

The plug-in version on the empírical process test approximates the distribu­

tion oí en by the conditional distribution oí the bootstrap statistic 

n 1 n 

c~ =¿ ~ (Xi)' ~ (Xi), where ~ (x) =- ¿ r; (x) and 
i=l n i=l 
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The next two theorems formal1y justify the use of the bootstrap tests. 

Theorem 3 Under V, Al, A2, K, S and B, 

t~ !!: N (0,1) in probability 

under Ho, and under Hl assuming that Al and A2 hold with some 81 in place� 

0/80 ,� 

Theorem4 Let i(8) = 8l(Y,X¡8)/88. Assume that SUP8EN'(8ollli(8)112 <� 

t (Y, X) with E [t (Y, X)] < 00 and that V holds. Then, under Ho and As­

sumptions Al, A2, 

dO i 'c~ -+ ~(x) ~(x)dF(x) a.s, 
IRq 

and under Hl, assuming that Al and A2 hold with some 81 in place 0/80, 

c~!!: r R:x, (x)' R:x, (x) dF (x) a.s.,JlRq 

where R;, (.) is a gaussian process centered at zero and with the same covariance 

structure than ~ (.) with 81 in place 0/80. 

3.2 ANALOG BOOTSTRAP TESTS 

When there are as many equations as response variables, Le., when m = d, 

it can be possible to obtain a resample y~ = {(yt, Xi), i =1, .. , n} from the 

bootstrapped ;¡,;'s. Asswne that 1/J (Y, Xi 8) = 1/J has an unique solution for Y = 

Y(1/J, Xi 8) in a neighborhood of 80 under Ho and in a neighborhood of 81 under 

Hl. A closed form of the solution is, in general, not available, but nwnerical 

methods can be used. Hence we obtain Yi- by solving 1/J (Yi-, Xii 8n) =;¡';, i = 
1, oo, n. The bootstrap analog of 8n in (3) is the solution to 

I1n-n = argmm<Pn. - ( 8)' Bn<Pn- ( ) 8 ,
8Ee 

where <P~ (8) = n-l E~=l A (Xi) 1/J (}i-, Xii 8) . In practice, the extremum esti­

mator 8: may not actual1y be located, but rather the outcome of finitely many 
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iterations of some iterative procedure. A convenient form of Gauss-Newton 

iteration towards the solution is 

A_(l) A 1 n • (
for k = 2,3, ... , where en = en and M~ (e) = n- Ei=l A (Xi) 1/1 Yi-, Xi; e) . 

Let us denote Z~ = OpA (1) a.s. (or in probability) ifVe > O, Pr- (IZ~I > e) Q.~p) 
0.5 By construction, we have 

where 

Therefore, the one-step estimator 9:(2) is consistent in bootstrap law, in the 
A_(2) A 

sense that en = en + OpA (1) a.s., whenever 

M~ (B~) =M~ (9n ) + OpA (1) a.s., V B~: B~ =9n + OpA (1) a.s. 

Similarly for all k 2= 2, 9:(k) is consistent in bootstrap law as 

c~- = t R~- (Xi)' ~- (Xi), with ~- (x) = .!. t 1/1;- (é:) ai (x) ,� 
i=l n i=l� 

and 

hq/2T.-- 1 n n , 
-- n n • h T.-- '"' '"' .1,-- (e--) .1,-- (e--) Kt n = ~,W1t n = n(n_l)hq~~'f'i n 'f'j n ij,� 

yVñ j=l� 

Yo- = 2 ~ ~ ~ ~ .I,~(") (0-) .I,~(l) (0-) .I,~(") (0-) .I,~(l) (0-) K~., 
n n(n-l)hqLJLJLJLJ'f', n 'f', n 'f'J n 'f'J n 'J 

,,=11=1 i=lj=l
j:Fi 

5In this subsection, one can read almost surely (or in probability) any time we use a.s. 

13 



For regression models, which are linear in the endogenous variables, the formal 

asymptotic analysis of bootstrap analogs of the test statistics is almost similar 

to the one of bootstrap tests based on asymptotic expansions. However, in the 

general case where the econometric model allows for nonlinear transformation 

in the endogenous variables, the analysis is much more complicated. One could 

derive some primitive assumptions that imply validity of our bootstrap tests, 

similar to those established by Hall and Horowitz (1996). We prefer not to 

address this issue, but rather we provide some conditions that ensure consistency 

of the tests based on c~" and t~" and discuss the implications for practical 

implementation of the tests. 

Let us first consider the test based on c~". Assume that for any O: (which 

may depend on the bootstrap sample) such that e: = 8n + Op. (1) a.s., and any 

measurable function S (.), 

1 ~ . ( -") 1 ~ . ( A )- L,¿S (Xi) t/J Yi",Xii8n = - L,¿S(Xi)t/J Yi",Xii8n +Op. (1) a.s. (4) 
n i=l n i=l 

and 

E" {~tS(Xi),p (Yi",Xii8n) } = ~ tS(Xi),p (Yi,Xii8n) +op(l) a.s., 

(5) 

where E" (-) = E (,1 Yn)' Then, it is straightforward to prove that ~"(x) = 

R~ (x )+op. (1) a.s. UIÚformly en x. The above conditions are therefore sufficient 

for the validity ofthe bootstrap test based on c~. Condition (4) can be shown to 

follow assuming that t/J (.) fulfills conditions similar to Assumption 3 of Hall and 

Horowitz (1996). Condition (5) is satisfied choosing appropriate Vi's, and the 

particular parametric form of t/J (.) can help to determine a suitable procedure 

to generate these random numbers. Moreover, when certain information on the 

data generating process is available, the Vi's can be chosen in a standard way. 

For instance, if the conditional density of t/J (Y, X j 8) given X is symroetric, 

we can choose Vi such that Pr(Vi = 1) = Pr(Vi = -1) = 1/2, so that the 

right-hand side of (5) equals 

14 



4 

which is a.s. equivalent to n-1 E~=1 S (Xi);P (Yi, Xi; Ón ) under classical regu­

larity conditions. 

Different conditions are required for the validity of the test based on t~". 

Assume that for any 8~ and O: such that 8~ = en + op. (1) a.s. and O: = 
en + op. (1) a.s., 

a.s., (6) 

a.s., (7) 

v,; =Vn +op. (1) a.s. (8) 

It is then easy to prove under the other regularity assumptions of Theorem 3 

that T~" = T~ + op. (1) a.s. Fol1owing the proof of Theorem 3, (6) holds if 

Sin =Sin + op. (1) a.s., where Sin = ( n ) -1 I: 1/1i (On) ;Pi (On) Kij,� 
2 i<j� 

and (7) holds under a similar condition. Again, if the conditional density of 

1/1 (Y, Xi O) given X is symmetric, choosing the distribution of the V/s that 

assigns equal probability to 1 and -1 ensures (6)-(8). 

MONTE CARLO STUDY 

To investigate the small sample behavior of the tests we have proposed, we have 

performed Monte Carlo simulations for a wel1-studied model with a nonlinear 

transformation in the endogeneous variable, namely the arcsinh transformation. 

This model was proposed by Burbidge, Magee and Robb (1988) as an alternative 

to the Box-Cox transformation, and was used by Robinson (1991) among others. 

The hypothesis of interest here writes 

Ho : 3 (AO' 0:0, (30) : Pr {E [arcsin~(AOY) - 0:0 - f30X IX] =O} = 1. 

We consider the design 

arcsin h(2Yi) . . 
2 =1 + 2Xi +sm(61l'Xi) + Ui, t = l, ... ,n, 
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where the Ui'S are iids N (O, 0.5) and independent1y distributed of the Xi'S 

which are iids N (0,1). The null hypothesis DGPo corresponds to é = O. We 

investigate three alternatives DGPl , DGP2 and DGP3 corresponding to é = 1,2 

and 3 respectively. Increasing é, we obtain higher frequency alternatives that 

are more difficult to distinguish from pure noise. 

The parameters are estimated by GMM with objective function as in (3) 

and vector of instruments A (Xi) = (l,Xi ,Xl)' and Bn = h For the tests 

based on smoothers, we choase the bandwidth following the rule-of-thumb, Le. 

as h =dn- l / 5 for different values of d. Three different sample sizes, n =50,100 

and 250, are considered. Tables 1 to 4 report results obtained for each of 

the considered data generating processes using the five tests proposed in this 

paper. In each cell are reported the empirical frequencies of rejections of the 

null hypothesis at a 10% (first row) and a 5% (second row) nominallevel. 

The empirical sizes of our tests are reported in Table 1. The tests based on 

t n and t~ are undersized for large and moderate bandwidths, Le. for d between 

2 and 0.5, irrespective of the sample size. Better empirical sizes are obtained for 

smaller bandwidths. On the whole, the smooth tests based on t n and t~ lead 

to very similar results. Thus the plug-in bootstrap test does not seem able to 

improve on the size performances of the asymptotic smooth test for small and 

moderate samples. Similarly, the test based on c~ is undersized in small samples, 

while its performance improves when the sample size grows. In contrast, the 

bootstrap analogs of the two tests exhibits empirical sizes very clase to nominal 

sizes. This is attained even for a sample size as small as 50, and for the smooth 

test irrespective of the bandwidth choice. 

We now turn to the study of the empirical power. Under the first alternative 

DGPl (Table 2), the three smooth tests exhibits very good performances. For 

a sample size of 50, empirical power is lower for very small bandwidths. When 

the sample size is 100 or higher the empirical power is greater than 85% for any 

bandwidth and attains 95% in most cases. In contrast, the test based on c~ has 

quite small power against DGPl for n = 50 or 100. This is largely corrected by 

the bootstrap analog version of the test, whose empirical power increases with 

the sample size. 

Under the second alternative which has higher frequency than DGPl , the 

power of the three smooth tests deteriorates for small samples and large band­

widths. Indeed oversmoothing makes it difficult to detect high1y variable pe­
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riodic alternatives and bootstrap methods are not suitable to correct for this 

effect. However, the performance of all three tests highly improve for a rood­

erate sample size of 250. The comparison of Tables 1 and 2 indicates that the 

empirical power of the test based on c~· is also sensitive to the frequency of the 

alternative. 

Results under alternative DGPa (Table 3) confirm these first findings. For 

bandwidths constants greater than 1.5, the three smooth tests perform poorly 

even for a sample size of 250. However,. their empirical power is acceptable in 

small samples for a bandwidth constant less than 1 and close to 1 for a sample 

size of 250. The empirical power curve of these tests exlúbits an inverse U­

shape with respect to the smoothing nurober, with a maximuro attained by 

undersmoothing relative to the rule-of-thurob. This fact has already be noted 

for other smooth specification tests, see Hart (1996). The test based on c~ 

has low power for samples of size 50 and 100. This is partly corrected by the 

bootstrap analog version of the empirical process based test. 

To suro up, our results call for some caution in using plug-in bootstrap 

tests. For the smooth test, large undersrooothing is required to obtain good size 

and power properties. For the empirical process test, moderate sample sizes 

are necessary. In contrast, the bootstrap analogs of these tests appear to enjoy 

much better properties, though they are computationally more demanding. The 

bootstrap analog of the smooth test is able to correct for too small empirical 

sizes of the asymptotic test, and this for a large range of bandwidths. Therefore, 

only power considerations should drive the choice of the bandwidth parameter 

for the analog bootstrap tests. For alternatives of varying frequencies, slight 

undersmoothing with respect to the usual rule-of-thurob seems on the whole to 

lead to better results. Similarly, among the eropirical process based tests, the 

analog bootstrap form appears to enjoy an accurate size and good empirical 

power under alternatives with different frequencies. 
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APPENDIX 

(k) (k) A(k) (k) (A) . (k) . (k)
Renceforth, '!/Ji = '!/Ji (00) ,'!/Ji = '!/Ji On, '!/Ji = '!/Ji (00),� 

PROOF OF LEMMA 1� 

Notice that Tn = ¿;;'=1 T~k), where 

T(k) = (n) -1 ~ ~ H(k) (Z' Z.) +2v,(k) +V;(k)
n 2� W W n "J 1n 2n , 

i=1 j=i+1 

v,(k) = 1 ~~ '!/J(k) (~~k) -'!/J~k») K .. 
1n n(n-1)hqWW ' J J 'J'

i=1 j=1
#i 

V;(k) = 1 ~ ~ (~~k) _ .,.(k») (~~k) _ .,.~k») K ... 
2n n(n-1)hqWW ' 'f', J 'f'J 'J 

i=1 j=1
#i 

Rence, it suffices to prove that V1~) = Op (n-1) and V2~) = Op (n- 1) 1 for all 

k=l, ...,m. 
Using a mean value theorem argument, 

(k) = (AOn - °)' S1n + (A0n - 00)' S2n (A0n - 00) ,V1n 

where 

_ 1 ~~ (k)' (k)�
S1n - n (n _ 1) M ~~ '!/Ji '!/Jj Kij,� 

,=1 J=1 
#i 

The order of S1n is obtained applying Lemma 3.1 of Powell, Stock and Stocker 

(1989), which is reported below. 

Lemma 3 Consider aU-statistic oftheform Un = (~r1 ¿~:11 ¿J=i+l Hn (Zi, Zj), 

where Hn (Zi, Zj) is a symmetric kernel and the ZiS are iids observations. Let 

qn (Zi) =E[Hn (Zi,Zj) I Zi], ijn =E(qn (Zi)) andUn = ijn+2n- 1¿~=1 [qn (Zi) - ijn]. 
2Jf E (iIHn (Z1,Z2)1i ) =o(n), then Un =Un +op (n-1/2). 
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Since Sln is a U-statistic with symmetric kernel 

we have 

1 [(O (k»)2 (k»)2E (IIHn (Zl' Z2)1I 2) = h2qE tP1 tP2 K122] 

1 [( o (k») 2 J ]= hq E tP1 O'kk (Xl + hu) f (Xl + hu) K (u) 2du 

1 [( o (k»)2 ] J 2 ( 1 ) = hqE tP1 O'kk (X¡) K (u) du + o hq 

=O (~q) =o(n) 

by Assumptions B and S, together with Holder's inequalityo As iin = 0, we 

obtain by Lemma 3 

Sln = ~ tqn (Z,:) + op (n-1/2) , 
1=1 

with qn (Zi) = h-q (tP~k) E b'k (Xj) Kij IXi] + E [tP~k) Kij I Xi] 'Yk (Xi)) /2. Now 
it is easy to check that 

so that Sln = Op (n-1/2) by applying a centrallimit theorem argumento The 

order of S2n is obtained using Assumptions A2 and S and applying standard 

kernel.manipulations as follows: 

E \S2nl ~ ~q E {ltPik) IN (l'2, X2) IK121}� 
1� 

= hqE{N(l'2,X2)E[Ckk(X1)IK1211 Z2]} 

= E {N (l'2, X2) Ckk (X2) f (X2)} JIK (u)1 du + 0(1) 

= O (1) o 

Hence, we obtain V1<:) = Op (n- 1 ) by Assumption Al. 

Using a mean value theorem argument, 

V2n(k) = (~(}n - (}a.)' S3n (~(}n - (}a) , 
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where 

1 ~~[.(k) ··(k)- (A )][.(k) .. (k)(~)(A )]'
San = n (n _ 1) M f=t ~ '!/Ji + '!/Ji (9n) 9n - 90 '!/Jj + '!/Jj 9n 9n - 90 Kij, 

j:fii 

We can decompose San in different terms, and reasoning as before it is easy to 

check that San = Op (1), so that V2~) = Op (n- 1) •• 

PRQOF OF THEOREM 1 

By Lemma 1, 

Therefore, by Assumption B, it suffices to establish the asymptotic normality 

of the first term in (9). Lemma 3 is useless now, because we have a degenerated 

U-statistic. Thus, we make use of a result for degenerate U-statistic, which is 

stated below. 

Lenuna 4 (Hall, 1984) Let Un be as in Lemma 3, where E [Hn (Zi, Zj) IZi] = 
Oa.s. Define Gn (Z1. Z2) =E [Hn (Za, Z1) Hn (Za, Z2) IZ¡, Z2]. JI 

. E[Gn (Z1,Z2)2] +n-1E[Hn (Z¡,Z2)4] 
lim 2 =O, 

n-oc {E [Hn (Z1,Z2)2]) 

then 

m m m m

E[Gn (Z1,Z2)2] = LLL LAkk'll' 
k=1 1=1 k'=11'=1 
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where each Akk'll' is equal to 

4q
h- E {C1kk' (Xl) C111' (X2) E [K13K23C1kl (X3) IXl, X2]E [K13K23C1k'l' (X3) IXl. X2]} 

= h2qE1 {C1kk,(Xl)C1ll,(X2) K(u)K (X2 -h Xl)[/. U+ C1kl(Xl+hu)f(Xl+hu)du] 

[/ K (u') K (U' + X2 ~ Xl ) C1k'l' (Xl +hu') f (Xl + hu') dU']} 

= ~q E {C1kk' (Xl) C111' (Xl + hv) [/ K (u) K (u + v) C1kl (Xl + hu) f (Xl + hu) dU] 

[/ K (u') K (u' +v) C1k'l' (Xl +hu') f (Xl +hu') dU'] f (Xl + hv) dV} 

=~q E {C1kk' (Xl) C1ll' (X¡) C1kl (Xl) C1k'I' (Xl) f3 (Xl)} 

[/ / / K(u)K(u+v)K(u')K(u'+v) dUdU'dV] +o(h-q) 

= O (~q)' 
using Assumption S. Second, 

E [Hn (Z¡,Z2)2] 

m m 1 ( X)2 )= (;t; h2qE K (X
1 ~ 2 C1kl (Xl) C1kl (X2) 

= ~t ~qE ( C1kl(Xl) / K (u)2 C1kl (Xl +hu)f(Xl+hu) dU) 

mmI/ (1)=L L hq E [C1~, (Xl) f (Xl)] K (u)2 du + O (h-q) = O hq . 
k=ll=l 

Third, denoting K[(Xl - X2)/hj by K 12• 

E [Hn (Zl. Z2)4] 

= ~t ~~ h~qE [Kt21/J~k)1/J~k)1/J~k')1/J~k')1/J~l)1/J~l)1/J~l')1/J~l')] 

.::; f:f: f: f: h~q II {E [h-qKt2 C1: (X¡) C1: (X2)]} 1/4 
k=ll=l k'=ll'=l pE{k,l,k',l'}� 

3q�::; f: f: f: f: h~q II {E [C1: (Xl) C1: (Xl) f (Xl)]}1/4 + O (h- )� 
k=l l=l k'=ll'=l pE{k,l,k' ,l'}� 

::; O (h~q) . 
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Therefore, 

by Assumption B 1 and Lemma 4 al10ws to conclude. • 

PROOF OF COROLLARY 1 

Let us first consider the properties of Tn under H l • Notice that Tn = 
"m 'T'(k)� hL.,.,k=l .L n ,w ere 

T.(k) _ (n) -1 ~ ~ H(k) (Z' Z.) +2v,(k) + v,(k) 
n - 2� L..J L..J n "J ln 2n , 

i=l j=i+1 

and H~k) (Zi, Zj) = h-q.,p~k) (B¡) .,pJk) (lh) Kij , 

v,(k) = 1 ~~ o/.(k) «(J ) (ol/k) _ ol.(k) «(J )) K .. 
1n (_l)hq L..JL..J'f/, 1 'f/J 'f/J 1 'J'� 

n n i=l j=l� 
#i 

v,(k) = 1 ~~ (ol/k) _ ol.(k) «(J )) (ol.~k) _ ol.(k) «(J )) K ... 
2n n(n-1)hq L..JL..J 'f/, 'f/, 1 'f/J 'f/J 1 'J 

i=l j=l
ji=i 

Reasoning as in the proof of Lemma 1 and using Al with (J1 in place oí (Jo, we 

can easily show that V1<:) = op (1) and ~<:) = op (1) , all k = 1, OO" m. Now using 

Lemma 3 and a centrallinút theorem argument, we have 

~ (;) -1 t j~l H~k) (Zi, Zj) 

m 
2= LE[H~k)(ZiIZj)] +Op (n- l

/ ) 

k=l 

2 = f:: E [E2 [.,p(k) (Y, X; (J1) IX] f (X)] JK (u) du + Op (n- l
/ ) • 

k=l� . 

Tlús shows that Tn converges to a strictly positive limit under H1. 

By a similar reasoning, it is easily shown that, either under Ho or H¡, 

• 2 ~ ~ ~ ~ ~(k)~(I)~(k)~(I) 2 
Vn = n (n -1) M L..J L..J ~ ~.,pi .,pi .,pj .,pj K ij =V + op (1). 

k=l /=1 '=1 J=l .
ji=i 
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Corollary 1 then follows. • 

PROOF OF LEMMA 2 

Lemma 2 follows straightforwardly after app1ying a mean value theorem 

argument, the Lindeberg-Levy centrallimit theorem and the strong 1aw of 1arge 

numbers.• 

PROOF OF THEOREM 2 

The convergence of the finite dimensional distributions of Rn(.) follows from 

Lemma 2 and app1ying the Linderberg-Levy centrallimit theorem. Thus, the 

theorem follows by proving tightness. 

Let DI = (s,t] = xZ=I(Sj,tj], D2 = (s',t'] = xZ=I(sj,tj] two neighbars 

intervals in IRq, Le., they abut and far sorne j E {1, 2, .. ,q}, they have the same 

jth-face x ki:j(Sk , tk] = Xki:j(S~, t~]. Let Wn(t) be any empirical process on 

D[IRq]. Define 

Wn(D¡) = L ... L (_I)q-¿;pep Wn (SI +el(tl - s¡)"'" Sq +eq(tq - Sq)). 
e¡=O,1 eq =O,1 

(10) 

By Condition (2.1.8) in Gaenss1er and Stute (1979), a sufficient condition 

for tightness in D[IRq] is 

where J.L (.) is an arbitrary measure with continuous marginals and a, b and e 
are arbitrary constants such that b > 1 and e ~ O. Using Markov inequality, a 

sufficient condition for (11) is 

(12) 

Without 10ss of generality we will prove tightness for q = 2. Frorn Lemrna 2, 

we can write 

Rn(t) = ~(t) +~(t), 

where 
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with k-th coordinate denoted by ~(k), j = 0, 1, i.e. ~(k) (t) = ~ ~i=l 1/J~k) 6.i(t), 
l(k) [. (k) ] 1 n .~) •

and ~ (t) = E 1/Ji (Oo)6.i (t) ñ¿i=l l(l'i,XijOO) , where 1/Ji (00) 15 the 

k-th row in ;Pi (00) . Then, applying definition in (10) to ~(k) (.), 

.¡ñ~(k) (DI) = ~ t1/J~k) (6.i(t l ,t2) - 6.i(Sl,t2) - 6.i(t l ,S2) + 6.i(Sl,S2)) 
yn i=l 

1 ~ (k)= eL" 1/Ji 6.i (DI)' (13) 
yn i=l 

where 6.¡(Dj) = 1 (Xi E Dj ) . Lemma 5.Un Stute (1997) assures that if {(ai, ,Bi)}i.:l 

are n iid square integrable random vectors with E(a¡) = E(,Bd = 0, then 

E ( (i;o¡)' (i;11¡r) "nE(0;11;) + 3n(n - 1)E(o1)E(I1;). (14) 

Let ai = 1/J~k) 6.i (D¡) and ,Bi = 1/J~k) 6.i (D2) , then a¡,B~ =°and applying (14) 

we get 

n 2E ( ( R~(k) (DI)) 2 (R?~k) (D2)) 2) :5 3n(:2- 1) E (1/J~k) 6.1 (D¡)) 2 E (1/J~k) 6.1 (D2)) 2 

:5 3 (E ([1/J~k)r 6.¡(Dl U D2))) 2 . 

Then (12) holds for ~(k)(.) and this process is tight for arbitrary k = 1, .. ,m. 

Because the index parameter in R],,(k) (t) is included in a deterministic continu­

ous bounded function, it is straightforward to check that it is tight. 

Recall that a sequence of stochastic process {Wn , n =1, ... , +oo} is said to 

be tight if and only if for every e > 0, there exists a compact set K such that 

SUPn Pr {Wn E K} > l-e, i.e. ifthere exists a compact set of the sample space 

where the process is included, with arbitrary high probability unifonn1y in n. 

Let Kj(k) be the compact sets that includes each ~(k) (.) with arbitrary high 

probability, j = 0, 1, k = 1, ... ,m. By Tychonoff Theorem (see Dudley, 1989, Th 

2.2.8), the set K(k) = {c(k) = (cO, cl ) : & E Kj(k), j = 1, 2} is compact within 

the product topology. Because summation is a continuous operator in D[IRq ], it 

preserves compactness and the set K(k)+ = {c(k)+ = cO+ cl : (cO,cl ) E K(k)} 

is compacto Therefore, the process ~k)(.) is tight. By Tychonoff Theorem 

again, the set K = {c = (c(1)+,c(2)+, .. ,c(m)+) : c(k)+ E K(k)+, k = l, .. ,m} 

is compact within the product topology. Since Rn (t) E K with arbitrary high 

probability uniformly in n, it is tight and the proof is completed. • 
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PROOF OF THEOREM 3 

Henceforth, .,p;(k) = v¡.,p~k) (Oa) and ~;(k) = v¡.,p~k) (O) and E* [.1 == E [.IYn]. 

Notice that r.; = L:~1 r.;(k), where 

where 

r.*(k) = (n) -1 ~ ~ h7q.I.~(k).,.~(k)K-. 
n 2� L...,¡ L...,¡ J 'f', 'f'J 'J'� 

a=1 j=i+1� 

v,*(k) = 1 ~ ~ .I.~(k) (;':~(k) _ .,.~(k») K-. 
In n(n-l)ML...,¡L...,¡'f" 'f'J 'f'J 'J'� 

a=1 j=1�
j:Fa 

v;*(k) = 1 ~ ~ (;':~(k) _ .,.~(k») (;':~(k) _ .,.~(k») K- .. 
2n n (n _ 1) hq L...,¡ L...,¡ 'f', 'f', 'f'J 'f'J 'J 

a=1 j=1
j:Fa 

We will prove that V1~k) = 0p. (n-1) and V2*~k) = 0p. (n-1) in probability for 

all k = 1, ... , m. Using a mean value theorem argument, 

where 

1 n n 
S* = '" '" .,.~(k).i.~(k)K-. 

In n(n-l)ML...,¡L...,¡'f" 'f'J 'J'� 
a=1 j=1�

j:Fa 

. *(k) . (k)� .. *(k) .. (k)
.,pj =.,pj Vj, and.,pj (O) =.,p (lj*,Xj;8)Vj. Since E*(Vj\-jv) = O for 

j =F J~ Sin and S2n are degenerate U-statistics. Hence, E* [Sinl = Oand 

1 ]2 n� 2n
E* [s*2] = '" '"E* [.,.~(k) :,.~(k) K,]

1n [n(n -1) M� L...,¡L...,¡ 'f', 'f'J 'J 
a=1 j=1

j:Fa 
1 ] 2 n n k 2 • (k) 2 

= [n(n-l)M ttf;(.,p~») (.,pj ) Kaj. 

#a 
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Now, using similar arguments than in the proof of Lemma 1, 

2 q
E [E" [Si~]] = [n (n ~ 1) hq rn(n -1)O(h

q
) = O(n- h- ), 

so that Sin = Op' (n- 1h-q/ 2 ) in probability. Similarly, we can prove that 

E" IS2n 1 = Op' (1) in probability, so that S2n = Op. (1) in probability. As 

(O - 90) = Op (n- 1/ 2) , we get that nhq/2Vl~k) = op. (1) in probability. Simi­

larly, nhq/2V2~k) = op. (1) in probability. . 

Concerning asymptotic normality, we will treat the case where m = 1 for 

the sake of simplicity, so that we consider 

T~ = (;) -1 ~ j~1 H~ (Zi, Zj) = (;) -1 ~ j~1 hjQ1/Ji1/JiKij, 

Notice that E" [H~ (Zi, Zj) IVi] = O, for all i. Let us define 

cr; == E" [T~] 

= (;) -2 ~ ,t.,~'-~, E' [H; (Z¡, Zj) rr. (Z" Z,-)l 

Q 2= (;) -2 t t hj 2 (1/Ji)2 (1/J j ) KJ; = n(n ~ l)hQVn , 
\=1 )=1

j'¡"i 

G1 == (;) -4~ j~1 E" [H~4 (Zi,Zj)] 

2 4
= E (VI ) (;)-4~j~1 hj4Q1/Jt1/J1Kt, 
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By Proposition 3.2 in De Jong (1987), we have O'~IT~ !!: N (0,1) in probability 

if GI, G2 and G3 are of lower order in probability than (0'~)2. Now, GI, G2 and 

(0'~)2 are positive and it is not difficult to check, as in the proof of Theorem 1, 

that 

E [(.r,.)'] =E [ (;) -, t,~hj" (vd (",)'Kl']' 
= n-SO [n2h-3q +n3h-2q +n4h-2q ] = O(n-4h-2q ), 

E [Gil = O (n-6h-3q ) , 

E [G21 = O (n-5h-2q ) , 

E IG31 = O (n-4 h-q
) • 

Rence, the condition is fulfilled and we get the desired resulto It is straightfor­

ward while cumbersome to check the result for arbitrary m.• 

PROOF OF THEOREM 4 

Using the independence ofthe sequence {Vi}, we obtain the covariance struc­

ture 

nE- (~(XI)~ (X2)') = .! t Ti (Xl) Ti (X2)' , 
n i=l 

where Ti (x) = ~iD.i (x) + (~ L~=l ;Pi (On) D.i (x)) 1(Yi, Xi; On) .By A2, Slut­

sky theorem and the strong law of large numbers, 

so the process has the same covariance structure. Let>' E IRm such that 11>'11 = 1. 

To obtain gaussianity, we check the conditions of the Lindeberg-Feller central 

limit theorem. Define 

Ti (x) =O' (x) bn (x) din (x), where din (x) =n-I / 2>.'Ti (x) Vi/Un (x) , 

bn (x) = Un (x) /0' (x) ,u~ (x) = >.'n-l L~=l Ti (x) Ti (X)' >. and 0'2 (X) = >.'E (Ti (x) Ti (x)') >.. 
The triangular array {din (x) : i = 1, ... ,n, n = 1, ... +co} has rows elements 

that are independent conditional1y on Ym with 
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and 

Var' [t,di. (X)] = &~2 (x) ,\'n-1 t,f.(X) f; (x) ,\Var' [\'tJ = 1 "s. 

Let ky =sup IViI. We can check that the Lindeberg condition holds íor din (x) 

with probability one as íollows 

n 

LE* [di~ (x) 1 (Idin (x)1 > é)]� 
i=l� 

= ~u~2 (x) A' tri (x) ri(x) AE* [Vil (In-1/ 2A'ri (x) Vi/un (x)1 > é)]� 
i=l� 

~ ~u;;2(x)A':tri(x)r~(x)AkYE* [1 (In-1/ 
2A'ri (x)/un (x)1 > é)] 

i=l 

~ ~u~2 (x) A' tri (x)ri(x) Aky 1 (IA'ri (x) /Un (x)1 > én1/ 
2)� 

i=l� 

= ;u~2 (x)A' t Ti (x) T~ (x)Aky 1 (IA'Ti (x) /0"n (x) I> én1
/ 
2) + op (1) a.s. 

1=1 

= op (1) a.s. 

Hence E~=l din (x) .!!.. N (O, 1m ) almost surely. Since bn (x) ~. 1, applying 

Slutsky theorem gives that R~ (x¡) !. N (O, O" (x)) with probability one. The 

convergence oí the vector (~(X1), '" ~ (xs )) can be proved using analogous 

methods. Thereíore, the convergence oí finite dimensional distributions follows 

almost surely. 

Tightness oí the k-th coordinate oí Rn (x) is shown using Condition (2.1.8) 

in Gaenssler and Stute (1979). We define the vector 

1 n 

R~* (x) =- L ;Pilli (x) Vi 
n i=l 

with k-th coordinate denoted by ~(k)* (x) . Applying Equation (10) as in (13) 

we denote 

r.: O(k)* () 1 ~ A (k) () • 2 
yn~ Dj = r.: L..J '!/Ji lli Dj Vi, J = 1, . 

yn i=l . 

where D1, D2 are two neighbors intervals. Thus a slight extension oí the argu­
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ments in Lemma 5.1 in Stute (1997) yields 

for some constant e > o and (12) holds for ~(k). (.) with probability one. 

Using the same arguments as in Theorem 2, tightness of the k-th coordinate is 

extended to the whole process ~ (x).• 
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