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Abstract—Real fusion system applications can be required to 
operate on wide areas for long periods of time. Adaptation is a 
basic capability under these circumstances. This paper presents a 
maritime surveillance platform designed to be flexible and 
robust. It features online configuration capabilities allowing to: 
(a) change the applied algorithms, (b) modify the operating 
parameters of the running algorithms, (c) tune the 
characterization of the available sensors. These configurations 
can be applied to limited spatial regions and time spans. This 
allows to use powerful or more specific configurations for 
localized scenarios (risks, clutter, alarms), or account for 
exceptional situations that can affect sensors, such as weather 
anomalies. 

Keywords—adaptive fusion; context-aided fusion; maritime 
surveillance; quality metrics 

I. INTRODUCTION 

A. Maritime surveillance needs 
The priorities for Vessel Traffic Services (VTS) are 

oriented to efficient vessel transits with the best possible order 
and safe navigation, improving upon current operational 
procedures on the waterway. The general goal of any support 
system is providing enhanced operator situational awareness to 
overcome the limitations of traditional methods (direct sight, 
littoral radar, voice communication, etc). Another expected 
functionality is the detection of abnormal situations 
accordingly to expected behaviours (smuggling, route 
deviations, intrusions in non-authorized areas, etc).  

To this goal, there are many sources providing raw sensor 
data in maritime domain which must be integrated to provide 
real-time decision support to operators. Data from cooperative 
sources (AIS transponders in vessels) must be correlated with 
non-cooperative sensors, such as shore radar, high-frequency 
radars or video (optical/infrared/satellites). However, sensory 
data alone can be insufficient to understand complex scenarios 
like harbours, and additional contextual information would be 
necessary to build a correct and complete description of 
situation.  

B. Context and fusion for maritime surveillance. Previous 
works 
Context information contains the complementary 

knowledge to understand situations. Context, defined as those 

information pieces that accompanies the focal entities of 
interest [1], is a key knowledge to understand their current 
states, predicted or any other inference process within 
information fusion.  

The use of context in fusion systems is a quite hot topic in 
information fusion research. The use of static context in 
algorithms can be done at design time with off-line 
configuration processes. Physical context can be seen as the 
most direct use of context, when this information is helpful to 
model the performance of entities and data sources in the 
environment. In maritime domain there are abundant examples 
of context exploitation [2-4], such as geographic knowledge of 
the coastline, currents, tides, bathymetry, weather, sea state and 
ice, etc, which enables better prediction of vessels behaviour. 
So, in con-tracker system [5,6], water depth in channels 
(calculated from tabulated tidal height plus bathymetric depth) 
affects the motion of vessels, together with marked channel 
information, maximum speeds, restricted areas, etc. 

Another aspect where context can be very useful is in track 
management, a particular case of level-4 fusion adaptation. 
Context can be exploited to adapt and improve the sensor 
fusion process accordingly to the situation [7-9]. For instance, 
feedback strategies –i.e. commands flowing from contextual 
situation level to the data fusion node–can yield improvement 
in adverse conditions, such as high traffic or heavy clutter 
scenarios with small probability of target detection [10]. In this 
work, a system allowing the automatic tuning or selection of 
algorithms (multi-algorithm fusion) based on contextual 
configuration is shown. It has been used to allow fine design of 
fusion performance accordingly to context configuration and 
inclusion of on-line events directly interacting with the tracking 
and fusion algorithms. It features online configuration 
capabilities allowing to: (a) change the applied algorithms, (b) 
modify the operating parameters of the running algorithms, (c) 
tune the characterization of the available sensors. These 
configurations can be applied to limited spatial regions and 
time spans. This allows to use powerful or more specific 
configurations for localized scenarios (risks, alarms), or 
account for exceptional situations that can affect sensors, such 
as weather anomalies. 
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Fig. 1. General structure of configurable fusion 
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• Limited memory of past actions to avoid cyclic
switching behaviors.

Since the developed software is intended to serve as 
support system for human operators, the philosophy here is that 
sometimes a wrong but stable answer is preferable over a 
constantly changing situation: if two vessels cross their 
trajectories and the system switches their labels, it will not 
switch them back until some time has passed, and the 
evidences supporting the decision are strong enough. 

III. GENERAL APPROACH: ZONAL CONFIGURATION OF 
ALGORITHMS AND PARAMETERS 

The term “zonal configuration” defines a set of data 
structures that relates a set of algorithms and their parameters 
with spatial regions where they must be applied. Each tracker 
has its own configuration, which can be changed independently 
from the other trackers. 

On its simplest form, the zonal configuration of a tracker is 
limited to a single default configuration applied to its whole 
operating area. TABLE I. describes an example configuration 
for a radar tracker: 

TABLE I. SAMPLE BASE CONFIGURATION FOR RADAR LOCAL TRACKER 

Config 'default'  

|-gating:  

  |-sigma_factor: [char] '3'  

  |-min_box: [char] '50'  

  |-type: [char] 'radarSimpleGating'  

|-filter:  

  |-max_accel: [char] '0.15'  

  |-type: [char] 'kalman'  

|-confirmation:  

  |-N: [char] '7'  

  |-M: [char] '8'  

  |-type: [char] 'confirmationNOutOfM'  

|-deletion:  

  |-N: [char] '4'  

  |-M: [char] '6'  

  |-type: [char] 'deletionNOutOfM'  

|-association: 

  |-type: [char] 'hungarianAlgorithm' 

This configuration specifies the technique/algorithm to be 
applied on each one of the configurable tracking steps, along 
with the desired parameter values. 

Starting from this point, the implemented system allows to: 

• Modify the value of any parameter. E.g.: change the
N/M values of the deletion algorithm to improve
behavior on high-clutter conditions.

• Change any of the selected technique/algorithm. E.g.:
Switch from Kalman filtering algorithm to an
Interactive Multiple Model (IMM) filter, with the
appropriate logic to do the hand-over between
algorithms (state/covariance initialization and other
parameters depending on each algorithm).

• Add a new spatial region that will have a different
configuration (and also remove existing regions, or
change their algorithms/parameters).

Such events can take place at any time, and are applied as 
soon as possible while guaranteeing the integrity of the data 
and processes.  

A. Representing configurations and zones 
The zonal configuration of each individual tracker is based 

on the information defined in a mix of XML files (for 
algorithms/parameters), and KML files (for the zones). KML 
(Keyhole Markup Language) is an XML-based standard 
language for describing geographical or geolocalized data.  

Every element receives an identifier that can be used for 
referencing it. These files are translated to a tree-like structure 
where the root represents the default configuration, and the 
leaves are regions of the space with a specific configuration.  

The zonal configuration can be changed at any time 
through an API call that sends a message to the affected 
modules. Modifications in the zonal configuration are reflected 
as an update of the corresponding tree. The sent message 
indicates the affected trackers (referenced by its assigned 
sensor), which configuration/parameterization must be applied, 
and over which zone. 

As a working example: assume TABLE I. represents the 
default configuration of a radar tracker associated to Radar 1 
(see Fig. 7), as loaded from the XML configuration file. The 
same file defines a partial configuration called “smallGating”, 
which affects the maximum distance between two tracks that 
can considered associable, keeping the same algorithm 
“radarSimpleGating”: 

TABLE II. ADDITIONAL PARTIAL CONFIGURATION FOR A RADAR LOCAL 
TRACKER 

Config 'smallGating'  

|-gating:  

  |-sigma_factor: [char] '2'  

  |-min_box: [char] '20'  

  |-type: [char] 'radarSimpleGating' 

A human operator monitoring Radar 1 may notice than the 
performance in the port, a crowded zone, is degraded. A 
possible solution is to apply the “smallGating” configuration to 
reduce association ambiguity. Thus, at time t=120 seconds, a 
configuration message with the following information is 
injected into the system: 

Configuration event 

|-sensor_id: 1  

|-zone_id:   'Port' 

|-config_id: 'smallGating'  

As a result, the zonal configuration for this radar local 
tracker from t=120s in advance has the following morphology: 
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Fig. 4. Configuration transition 
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Fig. 6. Example of fusion quality metrics for a synthetic scenario. 

C. Quality metrics for self-evaluation and adaptation 
Finally, as part of the operator toolset, the sensor fusion 

system extracts some statistics that can be used to assess its 
correct functioning and detect anomalous situations that can be 
alleviated by a change of configuration. These metrics are 
based on analysing typical fusion events, including: 

• Average filter residual: the residual error of Kalman-
like filters. It is a measure of prediction models fitness
with respect to observations.

• Average period between track updates: it helps to detect
bad conditions or failures in the data sources, when
compared to nominal update rates.

• Unassociated measures ratio: it is strongly related with
the false positives rate of sensors. It also detects bad
sensor behaviors, or can thus be used for adjustment of
this parameter, if needed.

• Predicted tracks ratio: tracks that have not been updated
with a measure/detection in the last cycle. It can be
indicative of unusual amounts of false tracks and also
sensor malfunctioning.

• Out-of-sequence data arrival: detect problems in data
links

• Fusion break and track recombination: operators may
want to inspect the scenario where these events took
place. A high number of such events can be indicative
of a malfunction in the fusion logic.

• Number of tracks: this value is expected to be stable,
with small variations over time. Sudden changes can be
related with a problem in sensor data acquisition or with
a fusion logic malfunction.

Fig 6 shows an example in an illustrative scenario. Around 
t=3500s, the fusion logic breaks a system track, and the 
expelled component (a radar track) is immediately assimilated 
by another system track. This is a typical situation: one radar 
tracker performs a wrong association and exchanges the labels 
for two crossing vessels, but the fusion logic at global tracker 
notices the inconsistency (when the residual is significant) and 
rearranges the exchanged components at t=5000s. 

Later, around t=5000s, an abnormally long sequence of 
break/recombination events indicates a conflictive situation 
where fusion decisions are leading to an unstable output. In 
current implementation, a human operator can be noticed about 
the conflict so that he can tune the fusion parameters (for 
instance, increase maximum distance between components 
within a system track). Future lines of work involve developing 
an automatic response to such situations. 

IV. PERFORMANCE ANALYSIS

A. Demonstration tool and analysis scenarios 
A number of different tests have been defined to assess the 

system, mainly border cases like vessels crossing at certain 
distance and angle, vessels traveling at some distance from 
sensors to evaluate sensors precision impact on tracking, 
vessels doing complex manoeuvres, and so on. Performance 
evaluation is a critical aspect to validate solutions in this 
domain [12,13]. For designing this kind of scenarios, we 
developed a tool that helps defining complex maritime 
surveillance scenarios meeting all those requirements. This tool 
uses a geographical map representation that allows placing and 
drawing different entities like sensors, trajectories, mask zones, 
and both distance and angles rulers. In the following are briefly 
described those different configurable entities. 

• Trajectories: defined by a set of waypoints, each one
containing geodesic coordinates, speed, and turn rate.
Moreover, it is possible to configure starting track
delays in any waypoint, so it is easier to fine adjust
trajectories, stops, and crossing distances accordingly to
the situation to be simulated.

• Sensors: in this version they are basically Radar and
AIS stations. A radar sensor is defined by some
parameters like its position, period, maximum range,
and precision both in azimuth and range. An AIS station
instead only contains its maximum range from its
location (the other parameters are in the simulated ship
equipment).

• Distances and Angles: for monitoring distances and
angles between tracks trajectories, tracks and sensors,
and other custom locations. It is especially useful when
monitoring crossing tracks, and it is required some
specific crossing distance.

• Spatial Masks: for defining custom algorithms or
algorithms parameters for certain zones. Masks are
defined as polygons over the map, so it is easy to mask
a seaport, a seaway, etc.

 A sample screenshot of this tool presenting a simulated 
maritime scenario with different elements is shown in Fig. 
7. A video sample with more details is also available at1.
This tool not only allows displaying and configuring those 
different elements, it also supports trajectory and sensor 
detections simulation. In this way it is possible monitoring 
distances between tracks and sensors in real time as the 
simulation is executed. Once the simulation works as 
expected, the final step is exporting the result to files 

1 https://www.youtube.com/watch?v=ytqfizjD-vU 
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containing sensors, tracks, and zones, so they can be 
reproduced and processed by algorithms and tools like 
those described in this paper. 

 
Fig. 7. Screenshot of scenario edition tool. It displays a simulated maritime 

surveillance scenario that configures two tracks with their trajectories (in 
white and red), and a radar (yellow) and AIS station (blue) with a given 
coverage area. Also a sample mask is defined in white for seaport 
boundaries. 

B. Analysis scenarios 
In Fig. 8 we can see a representation of the scenario used to 
make all the test and algorithms analysis. 
 
The scenario contains three target and four sensors, it is 
important to realize that some of the sensors are detecting the 
targets in the limit of their maximum range, with their poorest 
resolution and accuracy. Some targets are equipped with AIS 
transponder, whose data is fused with radar sensors following 
the logic described. 
 
Targets begin in separated places, and their trajectories 
converge later to the same area, where the targets maneuver to 
keep certain separations and avoid conflicts. TABLE IV. 
describes the targets appearing in this scenario. 
 

TABLE IV.  DESCRIPTION OF VESSELS IN THE ANALYZED SCENARIO 

Target Dimensions 
W/L/H 

Distance Speed AIS 
Transponder 

Target1 50/110/14 m 14 km 20 m/s Yes 
Target2 40/60/5 m 26 km 30–15 m/s No 
Target3 8/20/5 m 17.5 km 25 m/s No 

There are four sensors that can detect some stretch of target 
trajectories. They are described in TABLE V.  

 

 
Fig. 8. Simulated scenario for analysis 

TABLE V.  DESCRIPTION OF SENSORS IN THE ANALYZED SCENARIO 

Sensor Type Reach 
5 Radar 55 km 
6 Radar 23 km 
7 Radar 22 km 
4 AIS 255 km 

 

1) Objectives (test maneuvering targets in different áreas 
with algorithms) 

 
The principal objective of this section is illustrating some 

system possibilities to improve the result in different situations. 
So, we are going to show the scenario´s result with a default 
configuration and then, we will do different tests with others 
algorithms or different values in the parameters, to compare the 
results. 
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2) Results using default settings 

 
Fig. 9. Association results with default parameters 

As we can see in figure 9, the system generates the fused 
results with some errors. Most of the errors come from the 
upper track, with some discontinuities due to bad association in 
one or more sensors. For instance, in figure 10 we can see the 
output data coming from a radar tracker, sensor 5, which loses 
target trajectory in the manoeuvres. 

 
Fig. 10. Association results  

In figure 11, the number of created and deleted tracks is 
displayed, as part of quality metrics.  

.   
Fig. 11. Tracking results with enlarged association 

To resolve this situation, there are several options. One of 
these options is changing the gating parameter with a bigger 
size for association. Another option is using a more advanced 
tracker like IMM´s algorithm. That algorithm will do a better 
adjustment based on target´s manoeuvring models. 

3) Results. Modify gating criterion in maneuver zone 

 
Fig. 12. Tracking results with enlarged association in zone 

Figure 12 represents the result of the scenario after 
applying the new settings in gating´s parameter, accordingly to 
the defined area. The configuration is applied only when the 
track gets into the defined area and we can notice the correct 
association that sensor 5 does when gate is increased. 

The possibility to change the parameters depend the area 
where targets are, this possibility allows specifying the best 
configuration for the different situations, without 
compromising the rest of the scenario. 

4) Results. Use IMM in maneuver zone 

 
Fig. 13. Tracking results with alternative tracker in zone 

Next, Fig. 14 illustrates the mode probabilities for IMM 
algorithm. Until time 520 approximately, target follows a 
straight trajectory with no manoeuvres and probabilities are 
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constant, while the algorithm reacts to manoeuvres appearing 
from this time. 

Fig. 14. IMM mode probabilities 

The green line specifies the probability of the mode 2 along 
the time and the red one corresponds with mode 1.  

5) IMM weight with different probabilities.
The parameters associated to the IMM filter were changed 

in the defined area (transition probabilities), with results shown 
in next figure. 

Fig. 15. IMM mode probabilities with different configurations 

Finally, in the following figure, we can compare results 
with different algorithms. The one that has a lower error since 
second 520 approximately (time when the target enters the 
zone 1) is the execution with the IMM algorithm and the red 
one (track 99), is the execution with Kalman and bigger 
association gate configuration.   

Fig. 16. Tracking error with alternative filters (Kalman, IMM1, IMM2) 

CONCLUSIONS 

The system presented in this work has been designed to 
provide highly configurable sensor fusion logic, where the 
algorithms and parameters can be modified accordingly to 
predefined areas and also on-line from operator commands, 
taking care of smooth transitions in the changes of 
configuration. Some simulated scenarios have been analysed to 
illustrate the capability to be adapted and solve typical tracking 
problems in representative situations. 
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