
Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 1

Brain Computer Interface

María Madrid Sobrino

Telecommunication Engineering (Visiting Student)

Abstract - The paper presents an EEG-based brain-computer interface (BCI) in which subjects

could select a picture from a set on a computer screen. The application is centred on detecting

steady-state visual evoked potentials (SSVEP) in EEG signals recorded on the scalp of the subject.

BCI2000 software platform is used in this project as a basis for the whole system. The platform

will link its modules and the developed ones needed to achieve the closed-loop BCI system.

In this context, a C++ computer application with 16 targets and a MATLAB signal processing

module were then implemented using the proposed method. In offline tests for a set of

frequencies with differences of amplitude up to 15 dB, detection was achieved. Detection was also

achieved in online tests.

1. Introduction

1.1 BCI concepts

A brain-computer interface (BCI) is a communication system in which the user’s intention is

conveyed to the external world without involving the normal output pathways of peripheral

nerves and muscles [1]. The concept of a brain-computer interface stems from a need for

alternative, augmentative communication, and control options for individuals with severe

disabilities, though its potential uses extend to rehabilitation of neurological disorders, brain-

state monitoring, and gaming [2].

Nowadays, there are two approaches to carry a BCI system out. A BCI is called

invasive if the signal acquisition system (i.e. electrodes) needs to be implanted directly into

the brain. In another case, the system could be developed without surgery and the signal

acquisition system would be placed over the scalp. In this case, the BCI is called non-

invasive. The most practical and widely applicable are those based on non-invasive

electroencephalogram (EEG) measurements recorded from the scalp. These EEG

measurements provide information from the brainwaves by recording the electrical activity

along the scalp. However, Magnetoencephalography (MEG) and functional magnetic

resonance imaging (fMRI) have both been used successfully as non-invasive BCIs [3, 4].

Non-invasive BCI’s based on EEG generally utilize either event-related potentials

(ERPs) such as P300, visual evoked potentials (VEP) measures or steady-state visual evoked

potentials (SSVEP) [2]. ERPs are electrocortical potentials generated in the brain during the

presentation of stimulus. The stimulus could be generated by a sensor or a psychological

event. It generates a time delay wave in EEG that can be detected after processing EEG

signals [5]. On the other hand, VEP consist of fewer waves, namely, those deriving from the

activity of the cerebral cortex [6]. Different wave forms generated by visual stimuli can be

distinguished on the basis of the latency of their appearance. VEP potentials are called

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 2

“transient” because the slow rate of stimulation allows the sensory pathways to recover or

“reset” before the next stimulus appears. When visual stimuli are presented at a constant rate

that is rapid enough to prevent the evoked neural activity from returning to base line state, the

elicited response becomes continuous and is called the steady-state visual evoked potential

(SSVEP). At rapid stimulation rates, the brain response to the stimulus becomes

sinusoidal [6].

The implemented BCI presented here uses the SSVEP paradigm. SSVEP-based BCI’s

rely on the psychophysiological properties of EEG brain responses produced during the

periodic presentation of a flickering stimulus [7]. When the stimulus is being presented the

subject’s brain produces EEG signals that resonate at the stimulus rate and its multipliers. In

some research works (such as [8]) phase has also been use as a distinctive parameter for a

particular RVS. The effectiveness of SSVEP-based BCI designs is due to several factors like

the high signal-to-noise ratios that could be achieved [2] and the short training required.

However, certain stimulation frequencies can provoke epileptic seizures and induce fatigue

[9].

1.2. Introduction to the approach

In order to increase the usability and the possibilities of a SSEVP-based BCI, a classification

application is proposed. Each command or target is associated with a repetitive visual

stimulus (RVS) that has a distinctive frequency [9]. A total of 4 stimuli are simultaneously

presented to the user who selects a target by focusing his/her attention on the corresponding

stimulus.

The application presented allows the user to select within 16 choices. The choices are

shown into 4 expandable groups. This way, 16 choices are available by using only 4

commands. However, selecting one picture entail a double selection. First, the user selects

one of the 4 groups and once the group is expanded he/she selects the desired picture.

Screenshots of the application are shown below in Figure 1 and Figure 2.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 3

Figure 1: Application overview before selection

Figure 2: Application overview after the first selection

To fully build a BCI system from scratch developers need to care about the data

acquisition, the processing of the obtained data and the stimuli presentation. By grouping

these modules, a BCI closed loop is constituted. This loop can be sustained by open source

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 4

software platforms-such as BCI2000 [10] or OpenViBE [11], which provide a variety of data

acquisition systems, brain signals, and study/feedback paradigms.

The mentioned general-purpose systems enable to design, test and use BCIs. The

present project uses BCI2000 as basis for the development. Both signal processing module

and application module were built and then integrated into the BCI2000 platform.

2. Background

The major part of the background of this project is presented along the Introduction section;

however, there is some specific research about particular features that is presented below.

A comparison between different performances was carried out in order to see what

system achieved the best operation. Table 1 shows the results. Note: ITR stands for Iteration

Transfer Rate.

Table 1: Performance overview

Source Method
ITR

[bits/min]
Freqs. [Hz] Targets

Time per

selection [s]

Jia et al. [8] Fourier coefficient projections 60 10, 12, 15 15 2.5*

Wang et al. [12] Power spectrum analysis 74.5 10, 11, 12 16 3.08

Parini et al. [13]
Spatial Filtering and Channel

Combining
51.47 6, 7, …, 17 4 2

Bin et al. [14]
Canonical Correlation analysis

(CCA)
58 6.7, 7.5, 8.6, 10, 12, 15 6 2

*Data length of each trial is 2s and there is 0.5 rest time after each selection.

When looking for information about electrodes positioning, 3 papers were examined.

These papers presented SSVEP based BCI’s and different electrodes configuration according

to the international 10–20 system. Table 2 shows the positioning they applied.

Table 2: Electrode positioning overview

Source Number of electrodes Electrode positions

Lalor et al. [2] 2 O1, O2

Martinez et al. [15] 5 CPz, Pz, POz, P1, P2, Fz

JJ Vidal et al. [16] 6 Pz-Oz, O1-Oz, O2-Oz, I-Oz, Oz-A, Fz-Pz

3. Methods

3.1. BCI2000 and system overall

BCI2000 software platform was chosen as basis for the developed Brain Computer Interface.

BCI2000, as seen in its website [10], is a general-purpose system for brain-computer interface

research and it is free for academic and research institutions. It can also be used for data

acquisition, stimulus presentation, and brain monitoring applications. BCI2000 supports a

variety of data acquisition systems, brain signals, and study/feedback paradigms. BCI2000

also facilitates interactions with other software such as MATLAB.

BCI2000 comes out of the box with proven support for different data acquisition

hardware, signal processing routines, and experimental paradigms [10]. So, the developer

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 5

could just have his/her own BCI built system by simply installing the provided software and

connecting one of the supported acquisition hardware.

The BCI2000 platform is composed by four modules. These modules handle acquisition

of brain signals (i.e., Source module), processing of these brain signals (Signal Processing

module), user feedback (i.e., User Application module), and the interface to the investigator

(i.e., Operator module), respectively. The Operator module is just the GUI (Graphical User

Interface) seen by the researcher. One of the goals for BCI2000 is for each module to be as

independent of the others as possible. As mentioned before, there is no need to replace or

build any of those modules in order to achieve a working system; however, in order to

achieve an SSVEP-based BCI, the application module was replaced. The Signal Processing

module was also replaced in order to test the viability and the performance when using the

MATLAB engine. Figure 3 shows an overall of the developed system, including the relevant

modules of BCI2000 and their interactions with the designed approach.

To set the BCI2000 environment, the latest binary release can be downloaded and later

installed. The source code could also be downloaded and then built by following the guide

provided by BCI2000 team available at [17].

Figure 3: System overall. BCI2000 platform and MATLAB engine in light grey; Developed parts in dark grey.

3.2. Signal Processing module

BCI2000 Signal Processing module acts like a black box to the rest of the system - it receives

brain signals from the Signal Source and sends control signals on to the Application. BCI2000

allows developers to use several ready-to-use signal processing modules integrated in the

platform but it also allows producing our own module. There are two possibilities when

developing a signal processing module for BCI2000; either building a C++ module integrated

in BCI2000 or performing the signal processing in MATLAB which will interact with

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 6

BCI2000, receiving input data and returning the output of the processing back to it as shown

above in Figure 3.

In the case described here, the MATLAB signal processing was used rather than

building a C++ integrated module. For this purpose BCI2000 provides a convenient and

simple programming interface detailed now. The signal processing component is

implemented as a set of MATLAB scripts in the format described by BCI2000. The

MatlabSignalProcessing module implements a mechanism for using the MATLAB engine

within the BCI2000 pipeline. While BCI2000 is running, each block of data is pushed to the

MATLAB engine and a well-specified MATLAB function (i.e. *.m file) is executed. The

most relevant MATLAB scripts that could be implemented are listed and detailed below.

 bci_Construct: Performs any states and parameters initialization. Requests

BCI2000 parameters and states by returning parameter and state definition lines.

 bci_Preflight: Used to check parameters for consistency. Also, it reports output

signal dimensions.

 bci_Initialize: Determination of filter coefficients.

 bci_StartRun: Used to reset filter state at the beginning of each run.

 bci_Process: Process a signal input (a single data block) according to the signal

processing chain, and return the result of processing in a signal output variable.

Parameters are used by BCI2000 to configure the signal source, signal processing and

application modules. States refer to the states of operation that apply to a BCI2000 system as

a whole.

If either of the bci_Preflight, bci_Initialize or bci_Process function is not available, a

warning will be displayed to the user. Therefore, these functions must be implemented for the

system to work. More information about the functions listed above can be found in [18, 19].

Still, it is easy to underestimate the effort required to transform an existing offline

implementation of a signal processing algorithm into a functional online implementation.

While BCI2000 tries to make the transformation as simple as possible, it cannot remove the

effort required to deal with chunks of data, which implies the need of buffering - rather than

having immediate access to a continuous data set, it may be necessary to maintain an

additional data buffer – and also the need of dealing with the MATLAB interface,

maintaining a consistent state between subsequent calls to the processing script [20]. This

need of buffering is present in the bci_Process script. It sustains this effort by using a

scrolling buffer. Once a new block of data is received from the previous module the oldest

received block of data is dumped and replaced by the new one.

The simple implemented signal processing method applies the following processes

chain to the data obtained in the acquisition module. There is a band-pass filter which isolates

the frequencies of the stimuli presented by the SSVEP application. Then, after performing the

power spectrum of the filter output, the power at each stimulus frequency is used as output.

This operation is executed for each channel, producing a matrix output with dimensions

channels x number of stimuli which will later adapted to the format required by BCI2000.

Figure 4 shows below a graphical description of the signal processing chain for each channel.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 7

Figure 4: Signal processing scheme

As the size of the blocks passing between BCI2000 is uniform, the output signal

dimensions must be the same as input signal dimensions, which are channels x blockSize. The

signal outputted by the described signal processing has different dimensions so, before send it

to the next module, it is expanded to the right dimensions by adding 0 padding. The block size

is freely configurable by the user. The number of channels is typically fixed by the acquisition

module. Nevertheless, the user/developer can later choose how many channels to use in the

Config option provided in the Operator module.

Once BCI2000 is running with the MATLAB filter, a MATLAB command line window

will open. In that command line window the developer can type commands that will show the

variables that BCI2000 communicates to the MATLAB engine [21]. It is important to make

sure that BCI2000 connects with the MATLAB engine. It’s necessary to verify that the

BCI2000 files are placed in the C/ directory and check the PATH variable as mentioned in

[22]. Administrator privileges are also necessary.

Detailed information about the developed MATLAB scripts and code can be found in

Appendix 1 at page 20.

3.3. Application Module

The application was built in C++ using the Qt Creator IDE [23]. Qt Creator is a cross-

platform integrated development environment (IDE). Qt Creator runs on Windows,

Linux/X11 and Mac OS X desktop operating systems, and allows developers to create

applications for multiple desktop and mobile device platforms. Qt Creator is freely accessible

for download, either alone or as part of the Qt SDK. By simply installing the downloaded

package from its webpage the development tool will be available.

Qt Creator comes with a GUI designer which provides an easy way to create the

graphical user interface needed for the SSVEP application. To start a new project like the

present one the developer needs just to click the Create project option and selects then Qt Gui

Application. After that, refer to the Design option to begin the GUI design. For code writing,

refer to the option Edit.

When building an application for SSVEP stimulation, is important to take into account

the number of targets or commands. Increasing the number of targets offers a higher number

of possible commands but can decrease classification accuracy and speed [9]. The application

developed in this project allows the user to select within 16 choices as explained before in the

introduction. The main window, which presents the SSVEP stimulation, is shown in Figure 1.

The MainWindow class constitutes the main graphical interface of the SSVEP application. It

presents the four targets in the screen and provides a graphical list of the selected pictures. It

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 8

also has a start button and four selection buttons in case the selection via BCI2000 fails and

shows an upper menu that allows the user the configuration of the application.

When developing the four flicker targets, multithreading programming was needed in

order to guarantee the correct flicker. If only timers were used the flicker would be incorrect

and faulty, so for each target a thread containing a timer became mandatory. This way, every

timer is executed autonomously. For this purpose a class called TimerThread was created.

TimerThread class holds a thread which handles a timer. This way, timers do not interrupt

themselves. The timer handles the flicker frequency of a particular picture (or group of

pictures).

The number of stimuli is always limited by the refresh rate of the monitor [12], so the 4

frequencies used for the flicker objects were selected taking this into account. As the refresh

rate of the monitor used is 60 Hz, the available frequencies become {60, 30, 20, 15, 10, 8.57,

7.5, 6.66, 6, … , 1 Hz}, which correspond to the refreshRate/frame, being frame = {1, 2,

3,…, 60}. In order to avoid close frequencies, the used set was {6, 10, 15, 20 Hz}.

The connection between the application and BCI2000 is established via the external

application interface included in BCI2000. The AppConnector interface provides a

bidirectional link to exchange information with external processes running on the same

machine, or on a different machine over a local network [24]. As shown in Figure 3, the

designed application uses the AppConnector, which connects with BCI2000 using UDP

protocol. For each block of data processed by the BCI2000 system, two types of information

are sent out and may be received from the external application interface; the BCI2000 internal

state and the BCI2000 control signal. The internal states are variables that represent if the

system is either running or suspended, the time when a block of data was recorded, etc… The

control signal is the output of the signal processing and is presented in the following format:

signal(<channel>,<element>) = float value in decimal ASCII representation, where

<channel> is the channel index and <element> is the sample. <channel> and <element> are

given in zero-based form. In this case, the relevant values of <channel> will be {0, 1, 2, 3},

because of the expected output signal format described in the previous section. AppConnector

messages format mentioned is completely unrelated to the binary message format BCI2000

uses for communication between its modules.

A developed example is included in the BCI2000 source code; it is called

AppConnectorExample and it allows catching UDP messages from BCI2000. This example

has been developed by the BCI2000 team using QT and comes with all the source code, so its

integration with the SSVEP application means just adding those files into the project and then

linking them to feed the data post-processing functionality. For this purpose the new class

AppConnector was added to the project. Figure 5 shows a screenshot of the AppConnector

example integrated into the developed application. Some messages as defined before are

visible.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 9

Figure 5: AppConnector receiving messages

 The created application includes a post-processing feature for the incoming data. The

application allows getting the classification result by averaging all the received channels,

getting the info from one single channel or making a weighted sum of the channels. The

processing is done by the MainWindow class. The process is explained below in pseudocode.

//SignalValues is the array where signal values

//from BCI2000 are stored.

signalValues[numChannels][samples];

//ChannelWeights is where weights for each channel are stored.

channelWeights[channels];

//For singleChannel case, chosenChannel is the selected channel.

chosenChannel;

//Auxiliar variables

aux;

auxArray[samples];

switch(configurationOption)

{

case singleChannel:

for each relevant sample at the chosen channel

{

//Find the high value and keep the iteration index

if(signalValues[chosenChannel][sample]>aux)

{

update aux;

selection = indexIteration;

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 10

}

}

case averageChannels:

for each relevant sample

{

for each channel

{

//Add all the channel values for each sample

auxArray[sample] += signalValues[channel][sample];

}

}

for each sample

{

//Find the high value and keep the iteration index

if(auxArray[sample]>aux)

{

aux = auxArray[sample];

selection = indexIteration;

}

}

case weightedSumChannels:

for each relevant sample

{

for each channel

{

//Add all the channel weighted values for each sample

auxArray[sample] += signalValues[channel][sample]

*channelWeights[channel];

}

}

for each sample

{

//Find the high value and keep the iteration index

if(auxArray[sample]>aux)

{

aux = auxArray[sample];

selection = indexIteration;

}

}

} //End switch

return selection;

Relevant samples mentioned in the code above stand for those samples which are non-

zero. Remember the output signal served by the MATLAB signal processing has been zero

padded, so only the first four samples, (which correspond to the four targets), contain relevant

information.

To choose one of these options, a configuration tool has been created and it is accessible

by clicking in the main windows’ upper menu. The class added for this feature is called

Configuration and it handles the selection of one of the three options mentioned before. This

class modify the variables configurationOption, chosenChannel and channelWeights

presented in the code before. Then, variables are used by the MainWindow class to perform

the post-processing algorithm. A screenshot of the configuration tool graphical interface is

available in Figure 6.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 11

Figure 6: Configuration graphical user interface

After getting the information from the AppConnector and performing the post-

processing operations on the data, the classification result is used to store a picture in the right

margin of the application’s main window. The program will wait a short time -about 5

seconds- to receive the data and then it will process it. A classification result is produced after

the processing and it is used to select a group of pictures or a specific picture if a group is

already expanded. The selected picture will be placed into the reserved spaces in the right

margin. If the waiting time expires and the classification result has not been received, the user

will have to click one of the four buttons placed nearby the Action! button to be able to

perform a selection. This button was added to assure the selection option even though the

BCI2000 and the application were not able to connect with each other. Figure 1 in the

Introduction section shows the mentioned buttons and the selected pictures area.

3.4. EEG data acquisition

The EEG recordings were performed using the Deymed TruScan 32 acquisition hardware.

Recordings were made with eight electrodes located on the central, parietal, occipital and

temporal lobes, namely in positions Cz, P3, Pz, P4, O1, O2, T5 and T6 according to the

international 10–20 system. This electrodes position was carefully chosen nearby parietal and

occipital regions because attention increases SSVEP power at electrodes over both occipital

and parietal cortex [25]. The data was sampled with sampling rate of 1024 Hz. Figure 7 shows

the electrodes configuration.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 12

Figure 7: Electrodes configuration

One set of recording was made using frequencies {6, 10, 15, 20 Hz}. The subject was

asked to stare at each one of the pictures for making the double selection. For each picture 20

seconds of data were recorded: 10s for the group selection and 10s for the final picture

selection.

4. Results

There are two main possibilities when testing SSVEP-based BCI systems, offline analysis and

online analysis. The most likely and appropriate choice for the developed application was

online analysis. In an early stage online analysis was attempted to carry out but the system

failed when connecting BCI2000 with the MATLAB engine. After several unsuccessful trials

to fix the connection error and having in mind the time constraint, it was decided to switch to

offline analysis. Offline analysis was performed by simulating in MATLAB the BCI2000

behaviour. To this purpose, a replacement MATLAB script was written. This script generates

dummy signals with some specific strong frequency components. So a dummy signal is

basically constituted by a linear combination of different amplitude sine waves. These

generated signals pass then through the BCI2000-oriented scripts. Replacement script and

MATLAB signal processing scripts are available in Appendix 1 at page 20. As the amplitude

of the mentioned frequency components is freely configurable, it provides an easy way to test

the signal processing scripts. Results when varying the amplitude are shown in Table 3.

Difference of amplitude stated in Table 3 indicates how much higher the tested frequency is,

compared with the other targets frequency. For example, when testing frequency 15 Hz with

difference of amplitude 15 dB, the amplitude for {6, 10, 15 20 Hz} will be {1, 1, 31.6, 1}.

Table 3: Detection of target frequencies

Difference of amplitude (dB)

10 15 20

F
re

q
u

en
cy

(H
z)

6 not detected not detected detected

10 detected detected detected

15 not detected detected detected

20 not detected detected detected

Once the connexion between BCI2000 and MATLAB was set (by taking care about the

BCI2000 path as mentioned in Methods section), online analysis was possible. To carry the

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 13

analysis out, the system was established as follows; First BCI2000 was started using the

BCI2000Launcher tool provided by the platform, then Signal Source, Signal Processing and

Application modules were selected. To run the MATLAB processing,

MatlabSignalProcessing module has to be selected as Signal Processing module. Be aware

that the system expects to find the developed scripts at the MATLAB path. To run the

developed SSVEP application, DummyApplication has to be selected as Application module

because the application has been created as an external component and it is not a BCI2000

integrated module. The dummy module does nothing, so the only application for the

stimulation will be the application started later. As these tests were performed without any

EEG acquisition hardware, the SignalGenerator module has to be selected as a Signal Source

module. After launching the modules as mentioned, MATLAB Command Window will open

and the Operator module will show up and will be waiting for configuration. Figure 7 shows

a screenshot of the expected scheme.

Figure 7: Operator Module waiting for configuration and MATLAB Command Window

Now, once BCI2000 is set up the SSVEP application must be opened. After doing so,

the configuration for the tests needs to be done. In order to achieve this, click the Config

option of the Operator module. In the last tab into the Config option should appear the

customized parameters created in the bci_Construct script. In our case the settable parameters

are the set of frequencies and the time per selection. In the Source tab the developer can

configure the signal generator parameters. To constitute the connexion between BCI2000 and

the application, the parameters in the Connector tab must be stay as follows;

ConnectorInputAddress: localhost:20320, ConnectorOutputAddress: localhost:20321. Also,

the AppConnector configuration has to be compatible by setting its parameters as these; Input

IP:Port: localhost:20321, Output IP:Port: localhost:20320. After setting this configuration by

clicking the Set Config option in the Operator module, the tests can be performed. It is

important to start the SSVEP’s AppConnector module by opening it and clicking the Connect

button.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 14

In order to check if the SSVEP application was receiving and classifying the results in

the right way, the signal generator module was configured to produce signals with frequencies

6, 10 15 and 20 Hz. Then, the application was expected to selects targets 1, 2, 3 and 4

respectively. Named targets 1, 2, 3 and 4 stand for pictures or group of pictures at positions up

left, up right, down left and down right. This means that, when the signal generator is

producing i.e. a 5 Hz sine wave, the MATLAB signal processing will expectedly process it

and it will produce an output signal with higher power for this frequency component than for

the others. Then the AppConnector will serve this information to the application which, after

processing it, will detect the up left picture or group of pictures. Table 4 shows the results

obtained.

Table 4: Application classification results

SineFrequency SineAmplitude (White) NoiseAmplitude Target detected

6 100muV 30muV 1 (up left picture)

10 100muV 30muV 2 (up right picture)

15 100muV 30muV 3 (down left picture)

20 100muV 30muV 4 (down left picture)

5. Discussion

5.1. SSVEP paradigm

The SSVEP offers certain advantages over the transient VEP for the study of sensory

and cognitive processes in that its signal is easily recorded and quantified and can be

rapidly extracted from background noise. Because of the high rate of stimulus presentation

(4–20 times faster than for transient VEPs), it is possible to obtain reliable wave forms

more rapidly. Also, SSVEP measurements can reveal how attention is allocated within a

complex, multielement stimulus array, because the visual response to each element can be

measured individually by examining the SSVEP at its specific flicker frequency [6].

However, the SSVEP can be elicited by an irrelevant background flicker, which could

compromise the operation of the application. This possible problem has not been tested in the

presented approach because of the inability to perform EEG online analysis.

SSVEP paradigm was selected as the BCI solution because of its effectiveness. SSVEP-

based BCI designs achieve high signal-to-noise ratios [2] and require short training. The

signal produced by SSVEP is measurable in as large a population as the transient VEP. The

task of feature extraction is reduced to simple frequency component extraction, as there are

only a certain number of separate target frequencies, usually one for each choice offered in

the BCI. On the other hand repetitive visual stimuli modulated at certain frequencies can

provoke epileptic seizures and flashes that are excessively bright may impair the user’s vision.

Furthermore, certain stimulation frequencies can induce fatigue [9].

5.2. Analysis and results

The online analysis was attempted in an early stage, but the connexion between BCI2000 and

MATLAB was unsuccessful despite the efforts carried out by researching widely the possible

solutions to the problem. After performing the tests using the offline analysis, a solution to the

persistent problem was found just by chance and the online analysis was accomplished. This

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 15

solution that has been already mentioned before consists on locate the BCI2000 files into the

C/ directory and open its tools with administrator privileges.

The results from the offline study indicate that the diverse SSVEP responses can be

used to make decisions when difference of amplitude between frequency components is high

enough (i.e. more than 15 dB). For the online case, the signal being receiving and processed is

just a sine wave at an specific frequency, so theoretically there is no others frequency

components except the frequency of the sine wave, which makes easier the classification.

Although it cannot be appreciated in Table 3 or Table 4, higher target frequencies will

produce better and easy classifications. This means that difference between the greatest output

power and the second greatest output power is higher. When testing lower frequencies this

difference become smaller. However, as the presented classification method just looks at the

maximum power output, it does not provide any information about how reliable has been the

classification.

Tests performed for 20 Hz frequency and 15 dB difference of amplitude during offline

analysis shown high power values for 10 Hz frequency. This means that, when detecting a

stimulus flickering at the frequency f1, also the harmonics 2f1, 3f1… can be detected by the

signal processing implemented. Thus, when considering a small recording interval, it is

possible to erroneously detect frequency f1 instead of 2f1 or 3f1 [7].

When executing the online analysis some interesting performances were observed.

Looking at the Timing BCI2000’s visualization tool, it can be observed that when the signal

processing is running, a peak in the roundtrip shows up every TimeSel seconds. This

parameter has been created in the bci_Construct MATLAB script and can be consulted in

Apenndix 1 at page 20. Figure 8 shows the Timing tool when the signal processing module is

operating.

Figure 8: Timing visualization tool when signal processing module is operating. Timing is a critical issue in a

system that processes data in real time. In BCI2000, data is acquired and processed in sample blocks and ideally,

these are acquired in regular intervals. To work in real-time, the system needs to finish processing, user display,

and data storage within a block duration. Roundtrip time is the time needed for a sample block to traverse the

core modules. Starting with the acquisition of a sample block, a block's roundtrip includes the time spent on

signal processing and stimulus display. The roundtrip finishes when the block enters the data acquisition module

again. To fulfill the real-time constraint, roundtrip time may not exceed the physical duration of a sample block.

For stable system operation, a weaker condition is sufficient: only the roundtrip's average value needs to stay

below a sample block duration [26].

It has been also observed that when the blockSize is set as 64, the Roundtrip is better

than for smaller blockSize such as 32. Also, when using a higher sampling rate, higher peaks

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 16

show up, making Roundtrip and Block closer which could produce a warning or even stop the

processing. If 1024 Hz sampling rate and 64 blockSize are used, the system shows a warning

because the Roundtrip time exceeds block duration. This entails a problem, because the

software used to obtain the EEG data uses this configuration. At this point three mainly

options seems the solution; Check and improve the MATLAB code in order to make it faster,

switch to a C++ signal processing module or change the EEG acquisition hardware. The most

suitable options are those involving software rather than hardware.

5.3. BCI2000 and MATLAB

BCI2000 was chosen as a basis platform because of its multiple benefits such as its support

for different data acquisition hardware, signal processing routines, and experimental

paradigms. Also, the BCI2000 system does not rely on 3rd-party software components for its

operation. Even for compilation, the system only requires affordable or free C++ compilers.

Thus, both development and deployment of BCI2000 on multiple computers in potentially

multiple sites is very economical. And, as mentioned before, the use of BCI2000 is free for

academic and research institutions. Despites all the benefits and the information available on

the internet, BCI2000 is not very intuitive and its operation is difficult to understand in the

first uses. Extra care and patience must be taken when building its source code.

It was decided to use MATLAB for the signal processing because its multiple

advantages; it is interactive, has a simple syntax and no explicit declaration of variables and

functions is required. It is a standard for neuroscience data analysis and has many toolboxes

available, algorithms implemented and data visualisation tools. However, its big disadvantage

for this purpose is that it is slower than compiled code and is not open source. Given the time

limitations for accomplish this project and the author’s lack of C++ signal processing basis,

the slowness was assumed in order to work with MATLAB syntax rather than C++.

5.4. EEG analysis

Frequency mismatch could happen when using a monitor for SSVEP stimuli presentation, due

to the inherent imprecision of the software and the refresh rate of a monitor. In example, it can

be observed that the expected frequency 6 Hz became 5.313 Hz by simply taking a look at the

power spectrum of the recorded EGG signals. Extra care must be applied when handling this,

in order to avoid the isolation of incorrect frequencies by the band-pass filter. Also it can be

observed the noise produced by the electrical grid, at 50 Hz and its harmonics.

6. Conclusion

6.1. Overall

The application and signal processing developed could be used as a research tool, which

could allow the research to test diverse sets of frequencies and apply different channels

configuration to achieve better performances.

The signal processing used does classify the choices as shown in the results. However,

extra care is needed with the band-pass filter, because it could detach the desired frequencies.

This frequency mismatch appears when using a flicker object in a monitor as SSVEP stimuli.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 17

6.2. Further work

As mentioned in the Discussion section, the classification method used does not provide any

information about the results reliability. This information could be calculated in the signal

processing and later be added to the output signal served to the following module. As the

output signal incoming to the application module has a considerable amount of useless

padding, this filling could be replaced by relevant information about the classification

consistency and it could be used later by the application.

BCI2000 offline analysis tools could be used for processing the recorded EEG data and

replace the EEG online analysis needed to validate the flicker target as an accurate and precise

SSVEP system. This online analysis could also be helpful to discover issues such as the noise

produced by the electrical grid.

6.3. Evaluation of the work against the original goals

The objective previous to the beginning of the project development was to implement a

SSVEP-based BCI, using a device to get the information from the brain and then use that

information to communicate the brain with a software application. In that context it could be

affirmed that the objective has been partially reached. The project was expected to be a good

and fast communication pathway between a subject and a computer. There is still work to do

in the acquisition part of the project and the signal processing has to be improved in order to

achieve the speed expected. The present research and development could however be used as

a basis for some other applications such as video games or computers controlling.

The academic objectives when the development of the project began relied on acquiring

the right knowledge about research that could be useful in finishing the degree. The

realization of this project has been helpful to the author and it surely will be beneficial in her

future career and work related decisions. This research work will provide more perspective in

order to get a proper job or a career in research.

Acknowledgements: The author would like to thank the supervisor Dr. S. Nasuto for the

guidance. Special thanks also to Matthew Spencer for his help and support during the project

development and testing.

7. References

[1] J.R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,“Brain-

computer interfaces for communication and control” Clinical Neurophysiology, vol. 113, no.6,

pp. 767–791, 2002.

[2]. E. C. Lalor , S. P. Kelly , C. Finucane , R. Burke , R. Smith , R. B. Reilly , G. McDarby,

“Steady-state VEP-based brain-computer interface control in an immersive 3D gaming

environment”, EURASIP Journal on Applied Signal Processing, v.2005 n.1, pp. 3156-3164, 1

January 2005.

[3] J. Mellinger , G. Schalk , C. Braun , H. Preissl , W. Rosenstiel , N. Birbaumer and A.

Kuebler "An MEG-based brain-computer interface (BCI)", NeuroImage, vol. 36, pp.581 -

593 2007.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 18

[4] S.-S. Yoo, T. Fairneny, N.-K. Chen, et al., "Brain-computer interface using fMRI: spatial

navigation by thoughts," NeuroReport , vol. 15, no. 10, pp. 1591-1595, 2004.

[5] Reza Fazel-Rezai and Waqas Ahmad (2011). P300-based Brain-Computer Interface

Paradigm Design, Recent Advances in Brain-Computer Interface Systems, Prof. Reza Fazel

(Ed.), ISBN: 978-953-307-175-6, InTech, Available from: http://www.intechopen.com/books/

recent-advances-in-brain-computer-interface-systems/p300-based-brain-computer-interface-

paradigm-design

[6] Zani A., Mado Proverbio A. (2003). The Cognitive Electrophysiology of Mind and Brain.

Academic Press.

[7] H. Segers, A. Combaz, N.V. Manyakov, N. Chumerin, K. Vanderperren, S. Van Huffel, and

M.M. Van Hulle, (2011) “Steady State Visual Evoked Potential (SSVEP) -based Brain

Spelling System with Synchronous and Asynchronous Typing Modes”. In IFMBE

Proceedings, vol. 34 15. Nordic-Baltic Conference on Biomedical Engineering and Medical

Physics (NBC15). Aalborg, Denmark, June 14-17, 2011, pp. 164-167.

[8] Jia C, Gao X, Hong B, Gao S (2011) “Frequency and phase mixed coding in SSVEP-

based brain–computer interface”. IEEE Trans Biomed Eng. 58: pp. 200–206.

[9] Zhu D, Bieger J, Molina G G and Aarts R M 2010 “A survey of stimulation methods used

in SSVEP-based BCIs”. Comput. Intell. Neurosci. 1, 2010, p. 702357.

[10] Schalk et al., IEEE Trans Biomed Eng, 2004 Mellinger and Schalk, In: Brain-Computer

Interfaces. MIT Press, 2007 [http://www.bci2000.org]

[11] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand, A.

Lécuyer, “OpenViBE: An Open-Source Software Platform to Design, Test and Use Brain-

Computer Interfaces in Real and Virtual Environments”, Presence : teleoperators and virtual

environments, vol. 19, no 1, 2010.

[12] Wang, Y.; Wang, Y.T.; Jung, T.P. “Visual stimulus design for high-rate SSVEP

BCI”. Electron. Lett. 2010, 46, pp.1057-1058.

[13] S. Parini, L. Maggi, A. C. Turconi, and G. Andreoni, “A robust and self-paced BCI

system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-

rate direct brain communication,” Computational Intelligence and Neuroscience, vol. 2009,

Article ID 864564, 11 pages, 2009.

[14] G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, “An online multi-channel SSVEP-based

brain-computer interface using a canonical correlation analysis method,” Journal of Neural

Engineering, vol. 6, no. 4, Article ID 046002, 6 pages, 2009.

[15] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully Online, Multi-Command Brain

Computer Interface with Visual Neurofeedback Using SSVEP Paradigm,” J. Computational

Intelligence and Neuroscience.

[16] J. J. Vidal, “Real-time detection of brain events in EEG,” Proc. IEEE, vol. 65, no.5, pp.

633-641, 1977.

[17] BCI2000 Wiki: Programming Reference: Build System. Available at:

http://www.bci2000.org/wiki/index.php/Programming_Howto:Building_BCI2000

[18] Schalk G., Mellinger J. (2010). Writing a Custom Matlab Filter. In: A Practical Guide to

Brain–Computer Interfacing with BCI2000, pp. 114-119 Springer.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 19

[19] BCI2000 Wiki: Programming Reference: MatlabFilter. Available at:

http://www.bci2000.org/wiki/index.php/Programming_Reference:MatlabFilter

[20] BCI2000 Wiki: Programming Tutorial: Implementing a Matlab-based Filter. Available at:

http://www.bci2000.org/wiki/index.php/Programming_Tutorial:Implementing_a_Matlab-

based_Filter

[21] Schalk G., Mellinger J. (2010). MatlabFilter. In: A Practical Guide to Brain–Computer

Interfacing with BCI2000, pp. 179-180 Springer.

[22] BCI2000 Wiki: Troubleshooting at Programming Reference: MatlabFilter. Available at:

http://www.bci2000.org/wiki/index.php/Programming_Reference:MatlabFilter#Troubleshooti

ng

[23] QT Creator IDE and tools. Available at: http://qt.nokia.com/products/developer-tools/

[24] Schalk G., Mellinger J. (2010). AppConnector. In: A Practical Guide to Brain–Computer

Interfacing with BCI2000, pp. 92-96 Springer.

[25] Ding J, Sperling G, Srinivasan R (2006) “Attentional modulation of SSVEP power

depends on the network tagged by the flicker frequency”. Cereb Cortex 16: pp. 1016–1029.

[26] BCI2000 Wiki: User Reference: Timing. Available at:

http://www.bci2000.org/wiki/index.php/User_Reference:Timing

All web addresses referred to in this report were verified on 22 April 2012.

http://www.bci2000.org/wiki/index.php/Programming_Tutorial:Implementing_a_Matlab-based_Filter
http://www.bci2000.org/wiki/index.php/Programming_Tutorial:Implementing_a_Matlab-based_Filter
http://qt.nokia.com/products/developer-tools/

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 20

APPENDIX 1: Code and extra information about

the MATLAB scripts.

The list of the scripts being implemented is the following: bci_Construct, bci_Preflight,

bci_Initialize and bci_Process. The execution order takes place as mentioned. It can be

observed that besides the mandatory scripts presented in Methods: Signal processing module

section, the bci_Construct script has also been implemented.

1. bci_Construct

The MATLAB filter does not have a set of default parameters that it uses. Instead, the user-

supplied MATLAB functions that are executed by the MATLAB filter specify the parameters.

After initialization, these parameters are displayed in the Operator module and can be

modified there [21]. States information needs no extra care by the developer.

function [parameters, states] = bci_Construct

% bci_Construct Perform any initialization;

% request BCI2000 parameters and states

% by returning parameter and state definition lines as demonstrated

% below.

%

% María Madrid - March 2012

global targets

global blocksIn

parameters = {

 %Freqs and TimeSel parameters are set to be a user configurable param

 %See format in Parameter Format at BCI2000's Project Outline pp. 5-8

 'MatlabTry intlist Freqs= 4 5 12 17 23 0 0 0 // Bandpass frequencies',

 'MatlabTry int TimeSel= 1 1 0 5// Time per selection (seconds)'

};

states = { ...

 %No need to set any state

};

%Set initial values for targets and blocksIn

targets = 4; %Fixed value, the application works with 4 targets

blocksIn = 0;

2. bci_Preflight

This script was supposed to check whether parameters and states are accessible, and whether

parameters have values that allow for safe processing by the bci_Process function. In order to

avoid over complexity and improve the execution time, it was decided to use this mandatory

script just to report the output signal dimension.

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 21

function [out_signal_dim] = bci_Preflight(in_signal_dim)

% bci_Preflight Report output signal dimensions

% in the 'out_signal_dim' argument.

% No verifications are performed.

%

% María Madrid - March 2012

out_signal_dim = in_signal_dim;

3. bci_Initialize

function bci_Initialize(in_signal_dims, out_signal_dims)

% bci_Initialize Perform configuration for the bci_Process script.

% Get the appropriate variables from BCI2000 and calculate some others

% needed in the bci_Process script.

%

% María Madrid - March 2012

%global variables

global bci_Parameters bci_States;

global Fs bp numBlocks freqs numChannels blockSize buffer;

%Gets the values of the global variables from bci_Parameters

%Vector containing the target frequencies

freqs = str2num(char(bci_Parameters.Freqs));

%Sampling Frequency

Fs = str2num(strrep(lower(char(bci_Parameters.SamplingRate)),'hz',''));

%Time per selection

timeSel = str2num(char(bci_Parameters.TimeSel));

%Size of each input block

blockSize = str2num(char(bci_Parameters.SampleBlockSize));

%Number of used channels. Selected by the user in the config options.

numChannels = length(bci_Parameters.TransmitChList);

%Filter parameters

Att = 80; %Attenuation

vpass = 1; %half width of the pass band

vstp = 2; %width between the pass band and the stop band

Apass = 1; % Pass band Ripple (dB)

match = 'passband'; % Band to match exactly

%Number of blocks in the buffer

numBlocks = timeSel*Fs/blockSize;

%casting to freqs

freqs = double(freqs);

%Work out the filters for each frequency

h1 = fdesign.bandpass(freqs(1)-vstp, freqs(1)-vpass, freqs(1)+vpass,

freqs(1)+vstp, ...

 Att, Apass, Att, Fs);

bp1 = design(h1, 'butter', 'MatchExactly', match);

h2 = fdesign.bandpass(freqs(2)-vstp, freqs(2)-vpass, freqs(2)+vpass,

freqs(2)+vstp, ...

 Att, Apass, Att, Fs);

bp2 = design(h2, 'butter', 'MatchExactly', match);

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 22

h3 = fdesign.bandpass(freqs(3)-vstp, freqs(3)-vpass, freqs(3)+vpass,

freqs(3)+vstp, ...

 Att, Apass, Att, Fs);

bp3 = design(h3, 'butter', 'MatchExactly', match);

h4 = fdesign.bandpass(freqs(4)-vstp, freqs(4)-vpass, freqs(4)+vpass,

freqs(4)+vstp, ...

 Att, Apass, Att, Fs);

bp4 = design(h4, 'butter', 'MatchExactly', match);

%Put the filters together

bp = dfilt.parallel(bp1, bp2, bp3, bp4);

%Allocate buffer for bci_Process script

buffer = zeros(numChannels,numBlocks*blockSize);

4. bci_Process

As mentioned in ‘Methods: Signal processing module’ section, the use of a buffer became an

obligation because of the effort required to transform an offline signal processing algorithm

into a functional online implementation.

function out_signal = bci_Process(in_signal)

% bci_Process Apply a filter to in_signal, and return the result in

% out_signal. Signal dimensions are (channels x samples).

%

% Filter is applied to a buffered signal

% When the buffer is first filled, signal processing is applied,

% Once is filled, the oldest block is replaced with a new one,

% the signal processing is applied again to the buffer and so on.

%

% MarMadrid - March 2012

out_signal = zeros(size(in_signal));

%global variables

global bci_Parameters bci_States;

global Fs bp targets buffer blocksIn numBlocks freqs blockSize numChannels;

% j;

global out_signal;

%addHead

start = blocksIn*blockSize + 1;

stop = start+blockSize-1;

buffer(:,start:stop) = in_signal;

blocksIn = blocksIn + 1;

if (blocksIn==numBlocks)

 samples = size(buffer, 2); %samples = blockSize*numBlocks

 str = zeros(numChannels, targets); %signal strengths for each target

frequency

 %Frequency axis

 axis = double(Fs*linspace(0, 1, samples));

 %Find the frequency indexes

 freqIndex = [find((axis-freqs(1))==min(abs(axis-freqs(1)))) ...

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 23

 find((axis-freqs(2))==min(abs(axis-freqs(2)))) ...

 find((axis-freqs(3))==min(abs(axis-freqs(3)))) ...

 find((axis-freqs(4))==min(abs(axis-freqs(4))))]';

 %Loop for channels

 for i=1:numChannels

 x = buffer(i, :);

 %Apply the filter

 y = filter(bp, x);

 %Calculate powerspectrum

 p = powerspectrum(y, Fs);

 pw = p(2,:); %power, (see powerspectrum.m)

 %Find the power for each freq

 str(i,:) = pw(freqIndex);

 %Fill the output signal

 out_signal(i, 1:targets) = str(i,:);

 end

 blocksIn = 0;

end

5. powerspectrum

The powerspectrum function used in the bci_Process is attached below.

function p=powerspectrum(signal, Fs)

% POWERSPECTRUM Calculate the power spectrum of a signal.

% p = powerspectrum(signal, Fs) takes the FFT of the data series and

% returns meaningful power spectrum formated data. SIGNAL is a 1-by-N

% vector representing the signal samples and Fs is a scalar that holds

% the sampling frequency. Returns the 2-by-N matrix p that contains the

% frequency values of the spectrum in the first row of p and the power

% values at each of these frequencies in the second row of p.

%

% Ian Daly - Pre-June 2011

% Matthew Spencer - June 2011

 % Transpose inputs if the data is horizontal instead of vertical

 [m,n] = size(signal);

 if m<n

 signal=signal';

 end

 T = 1/Fs;

 L = size(signal , 1);

 t = (0:L-1)*T;

 NFFT = 2^nextpow2(L);

 Y = fft(signal,NFFT)/L;

 f = Fs/2*linspace(0,1,NFFT/2);

 power = 2*abs(Y(1:NFFT/2));

 p(1,:) = f;

 p(2,:) = power;

end

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 24

6. bci2000harness

The script was developed by Mathew Spencer.

% Simulate a BCI2000 Matlab module

clearvars

sig_dim = [22 64];

Fs = 1024;

%% Construct

[params, states] = bci_Construct;

nparams = length(params);

nstates = length(states);

global bci_Parameters

global bci_States

% Loop through all parameters and parse them

for p=1:nparams

 % Parse [string] [string] [string without =] [string without\n]

 tokens = textscan(params{p},'%s %s %[^=]%[^\n]');

 % Second token is the type

 ptype = lower(tokens{2}{1});

 % Third token is the name

 pname = tokens{3}{1};

 % Fourth token contains the value and the comment

 valstr = tokens{4}{1};

 switch ptype

 case 'int'

 disp('Parsing Int32...')

 % Parse [string with =][int][int][int][int][string]

 vals = textscan(valstr,'%[=]%d%d%d%d%s');

 % The first token is '=', the second is the value

 pval = vals{2};

 case 'matrix'

 disp('Parsing Matrix...')

 % Parse [string with =][string without /][string]

 matvals = textscan(valstr,'%[=]%[^/]%s');

 % The first is '=', the second is a string of numbers

 % Parse the second into a vector of numbers

 vals = textscan(matvals{2}{1},'%d');

 pval = vals{1};

 otherwise

 disp('Unknown variable type.')

 pval = nan;

 end

 % Store the name and value into the bci_Parameters struct

 bci_Parameters.(pname) = pval;

end

% Parse all states

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 25

for s=1:nstates

 tokens = textscan(states{s},'%[^] %d%d%d%d');

 sname = tokens{1}{1};

 bci_States.(sname) = tokens{2};

end

%% Preflight

out_sig_dim = bci_Preflight(sig_dim);

%% Initialize

bci_Initialize(sig_dim, out_sig_dim);

%% Startrun

% TODO later when we actually want to test a startrun method

%% Process

% Initialize parameters for generating a dummy signal with some specific

% strong frequency components

% Frequency components (in Hz)

f = 0:0.2:Fs/2;

% Phase offsets for each frequency component (in radians)

p = normrnd(0,1,1,length(f)).*pi;

P = repmat(p,sig_dim(2),1);

% Sample times (in seconds)

t=0:1/Fs:(sig_dim(2)-1)/Fs;

% Frequency and time grids for faster calculation

[F,T]=meshgrid(f,t);

% Amplitudes for each frequency component

% All are random and positive (with more power around 0)

a = 40*exp(-f/0.3) + abs(normrnd(0.5,0.1,1,length(f)));

% Some are explicitly set, YOU CAN SET WHATEVER YOU LIKE HERE

a(f==6)=20; % ie. Set an amplitude of 20 for frequency component 10

a(f==10)=20;

a(f==15)=20;

a(f==20)=30;

% Amplitude grid for faster calculation with frequency and time

A = repmat(a,sig_dim(2),1);

% Number of cycles to run for

ncycles = 50;

% Initialise an example buffer

exbuffer = zeros(1,sig_dim(2)*ncycles);

% Run the process loop

for i=0:ncycles-1

 % Generate Signal Block

 S = A.*cos(F.*(T+(i*sig_dim(2)/Fs)).*2*pi + P);

 signal = sum(S,2);

Brain Computer Interface María Madrid Sobrino

Tech. Report No. Y20 CYB/2012/UG/MSM/v1 Page 26

% Store the current signal block into the buffer

exbuffer(sig_dim(2)*i+1:sig_dim(2)*(i+1)) = signal;

% Pass the signal block into the process method

%out_signal = bci_Process(repmat(signal,1,sig_dim(1))');

end

%% Plot buffer

figure

subplot(3,1,1)

plot(f,a)

title('Synthetic Frequency Components')

subplot(3,1,2)

plot((0:length(exbuffer)-1)./Fs,exbuffer)

title('Synthetic Signal')

subplot(3,1,3)

p=powerspectrum(exbuffer,Fs);

plot(p(1,:),p(2,:))

title('Recovered Frequency Components')

