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Abstract

In this work, we propose a new method, termed as R-CORK, for the numerical solu-
tion of large-scale rational eigenvalue problems, which is based on a linearization
and on a compact decomposition of the rational Krylov subspaces correspond-
ing to this linearization. R-CORK is an extension of the compact rational Krylov
method (CORK) introduced very recently in1 to solve a family of non-linear eigen-
value problems that can be expressed and linearized in certain particular ways and
which include arbitrary polynomial eigenvalue problems, but not arbitrary rational
eigenvalue problems. The R-CORK method exploits the structure of the linearized
problem by representing the Krylov vectors in a compact form in order to reduce
the cost of storage, resulting in a method with two levels of orthogonalization. The
first level of orthogonalization works with vectors of the same size as the original
problem, and the second level works with vectors of size much smaller than the
original problem. Since vectors of the size of the linearization are never stored or
orthogonalized, R-CORK is more efficient from the point of views of memory and
orthogonalization than the classical rational Krylov method applied directly to the
linearization. Taking into account that the R-CORK method is based on a classi-
cal rational Krylov method, to implement implicit restarting is also possible and we
show how to do it in a memory efficient way. Finally, some numerical examples
are included in order to show that the R-CORK method performs satisfactorily in
practice.
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1 INTRODUCTION

In this work, we consider the rational eigenvalue problem (REP)

𝑅(𝜆)𝑥 = 0, (1)
where 𝑅(𝜆) ∈ ℂ(𝜆)𝑛×𝑛 is a nonsingular rational matrix, i.e., the entries of 𝑅(𝜆) are scalar rational functions in the variable 𝜆
with complex coefficients and det(𝑅(𝜆)) ≢ 0 is not identically zero, and 𝑥 ∈ ℂ𝑛 is a nonzero vector. More precisely, we consider
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“Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) de Chile" through grant BCH 72160331.
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that 𝑅(𝜆) is given as

𝑅(𝜆) = 𝑃 (𝜆) −
𝑘∑
𝑖=1

𝑓𝑖(𝜆)
𝑔𝑖(𝜆)

𝐸𝑖, (2)

where 𝑃 (𝜆) ∈ ℂ[𝜆]𝑛×𝑛 is a matrix polynomial of degree 𝑑 in the variable 𝜆, 𝑓𝑖(𝜆), 𝑔𝑖(𝜆) are coprime scalar polynomials of
degrees 𝑚𝑖 and 𝑛𝑖, respectively, 𝑚𝑖 < 𝑛𝑖 and 𝐸𝑖 ∈ ℂ𝑛×𝑛 are constant matrices for 𝑖 = 1,… , 𝑘. We emphasize that it is well
known that every rational matrix can be written in the form (2)2, 3 (see also4, Section 2) and that such form appears naturally in
many applications5.
The REP has attracted considerable interest in recent years since it arises in different applications in some fields such as vibra-

tion of fluid-solid structures6, optimization of acoustic emissions of high speed trains7, free vibration of plates with elastically
attached masses8, free vibrations of a structure with a viscoelastic constitutive relation describing the behavior of a material9, 10,
and electronic structure calculations of quantum dots11, 12.
A first idea to solve REPs is a brute-force approach, since one can multiply by

∏𝑘
𝑖=1 𝑔𝑖(𝜆) to turn the rational matrix (2) into

a matrix polynomial of degree 𝑑 + 𝑛1 + ⋯ + 𝑛𝑘. The common approach to solve a polynomial eigenvalue problem (PEP) is
via linearization (see, for instance,9, 13, 14), this is, by transforming the PEP into a generalized eigenvalue problem (GEP) and
then applying a well-established algorithm to this GEP, as for instance the QZ algorithm in the case of dense medium sized
problems15 or some Krylov subspace method for large-scale problems. However, this brute-force approach it is only useful when
𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 is small compared with 𝑑. So, if 𝑘 or some 𝑛𝑖 are big, then the degree of the matrix polynomial associated
to the problem is also big, and this makes the size of the linearization too large, which is impractical for medium to large-scale
problems. This drawback has motivated the idea of linearizing directly the REP5. The linearization for 𝑅(𝜆) in (2) constructed
in5 has a size much smaller than the size of the linearization obtained by the brute-force approach. Nonetheless the increase of the
size of the problem is still considerable, so for large-scale rational eigenvalue problems, a direct application of this approach, i.e.,
without taking into account the structure of the linearization, is also impractical. This idea of taking advantage of the structure
of the linearization for solving large-scale REPs is closely connected to the intense research effort developed in the last years by
different authors for solving large-scale PEPs via linearizations and that is briefly discussed in the next paragraph.
Several methods have been developed to solve large-scale PEPs numerically by applying Krylov methods to the associated

GEPs obtained through linearizations. In this approach, the key issues to be solved for using Krylov methods for large-scale
PEPs are the increase of the memory cost and the increase of the orthogonalization cost at each step, as a consequence of
the increase of the size of the linearization with respect to the size of the original problem. In order to reduce these costs,
different representations of the Krylov vectors of the linearizations have been developed. First, the second order Arnoldi method
(SOAR)16 and the quadratic Arnoldi method (Q-Arnoldi)17 were developed to solve quadratic eigenvalue problems (QEP),
introducing a new representation of the Krylov vectors. However, both methods are potentially unstable as a consequence of
performing implicitly the orthogonalization. To cure this instability, the two-level orthogonal Arnoldi process (TOAR)18, 19 for
QEP proposed a different compact representation for the Krylov vectors of the linearization and, combining this representation
with the linearization and theArnoldi recurrence relation, resulted in amemory saving and numerically stablemethod. Extending
the ideas of a compact representation of the Krylov vectors and of the two levels of orthogonalization from polynomials of
degree 2 (TOAR) to polynomials of any degree, the authors of20 developed a memory-efficient and stable Arnoldi process for
linearizations of matrix polynomials expressed in the Chebyshev basis. In 2015, the compact rational Krylov method (CORK)
for nonlinear eigenvalue problems (NLEP) was introduced in1. CORK considers particular NLEPs that can be expressed and
linearized in certain ways, which are solved by applying a compact rational Krylovmethod to such linearizations. A key feature of
the CORKmethod is that it works for many kinds of linearizations involving a Kronecker structure, as the Frobenius companion
form or linearizations of matrix polynomials in different bases (as Newton or Chebyshev, among others21). CORK reduces both
the costs of memory and orthogonalization by using a generalization of the compact Arnoldi representation of the Krylov vectors
of the linearizations used in TOAR18, 19, and gets stability through two levels of orthogonalization as in TOAR.
In this paper, we develop a rational Krylov method that works on the linearization of REPs introduced in5 to solve large-

scale and sparse 𝑛 × 𝑛 REPs. To this aim, we introduce a compact rational Krylov method for REPs (R-CORK). In the spirit of
TOAR and CORK, we will work with two levels of orthogonalization, and, as in CORK, we adapt the classical rational Krylov
method1, 22, 23 on the linearization to a compact representation of the Krylov vectors and to the two levels of orthogonalization.
We can perform the shift-and-invert step by solving linear systems of size 𝑛. To this purpose, the linearization introduced in5 is
preprocessed in a convenient way and, then, an UL decomposition is used. This decomposition is similar to the one employed
in1 directly on the linearizations of the NLEPs considered there. Once this step is performed, we start with the two levels
of orthogonalization. The first level involves an orthogonalization process with vectors of size 𝑛 and in the second level of
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orthogonalization we work with vectors of size much smaller than 𝑛, so this level is cheap compared with the first level. As a
result, we develop a stable method that allows us to reduce the orthogonalization cost and the memory cost by exploiting the
structure of the matrix pencil that linearizes the REP and by using the rational Krylov recurrence relation.
The rest of the paper is organized as follows. Section 2 introduces some preliminary concepts: a summarized background on

polynomial and rational eigenvalue problems, the classical rational Krylov method for the generalized eigenvalue problem, and
the CORKmethod particularized to polynomial eigenvalue problems. Section 3 proposes the compact rational Krylov decompo-
sition that we use to develop the R-CORK method and presents the detailed algorithm with the two levels of orthogonalization.
Section 4 discusses the implementation of implicit restarting for the R-CORK method. Section 5 presents numerical examples
which show that the R-CORKmethod works satisfactorily in practice and, finally, the main conclusions and some lines of future
research are discussed in Section 6.
Notation. We denote vectors by lowercase characters, 𝑢, and matrices by capital characters, 𝐴. Block vectors and block

matrices are denoted by bold face fonts, 𝐮, and 𝐀, respectively, and the 𝑖-th block of 𝐮 is represented by 𝑢(𝑖). The conjugate
transpose of 𝐴 is denoted as 𝐴∗. The 𝑖× 𝑗 matrix with the main diagonal entries equal to 1 and the rest of entries equal to zero is
represented by 𝐼𝑖×𝑗 . In the particular case of 𝑖 = 𝑗 this matrix is the identity matrix and is denoted by 𝐼𝑖. The vector 𝑒𝑗 represents
the canonical vector associated to the 𝑗-th column of the identity matrix and 0𝑖×𝑗 represents the zero matrix of size 𝑖 × 𝑗, which
in the particular case 𝑖 = 𝑗 is denoted simply by 0𝑗 . The matrix 𝑈𝑗 represents a matrix with 𝑗 columns and 𝑢𝑖 represents the 𝑖-th
column of 𝑈𝑗 . The rational Krylov subspace of order 𝑚 associated with the matrices 𝐴 and 𝐵 ∈ ℂ𝑛×𝑛, the initial vector 𝑢1 ∈ ℂ𝑛

and the shifts 𝜃1, 𝜃2,… , 𝜃𝑚−1 ∈ ℂ is denoted by

𝑚(𝐴,𝐵, 𝑢1, 𝜃1,…,𝑚−1) = span{𝑢1, (𝐴 − 𝜃1𝐵)−1𝐵𝑢1, (𝐴 − 𝜃2𝐵)−1𝐵𝑢2,… , (𝐴 − 𝜃𝑚−1𝐵)−1𝐵𝑢𝑚−1} (3)

where 𝑢𝑖+1 = (𝐴 − 𝜃𝑖𝐵)−1𝐵𝑢𝑖, 𝑖 = 1,… , 𝑚 − 1. We omit subscripts when the dimensions of the matrices are clear from the
context. The norm ‖ ⋅ ‖2 represents the 2-norm and ‖ ⋅ ‖𝐹 the Frobenius norm24, Ch. 5. The Kronecker product of two matrices
is denoted by 𝐴 ⊗ 𝐵. The set of 𝑛 × 𝑛 rational matrices is denoted by ℂ(𝜆)𝑛×𝑛 and the set of 𝑛 × 𝑛 polynomial matrices (or,
equivalently, matrix polynomials) is denoted by ℂ[𝜆]𝑛×𝑛.

2 PRELIMINARIES

2.1 Basics on polynomial eigenvalue problems and linearizations
The classical approach to solve a regular PEP

𝑃 (𝜆)𝑥 = 0, (4)
where 𝑃 (𝜆) =

∑𝑑
𝑖=0 𝜆

𝑖𝑃𝑖 with 𝑃𝑖 ∈ ℂ𝑛×𝑛 and det(𝑃 (𝜆)) ≢ 0 is via linearization. In this process, the matrix polynomials are
mapped into matrix pencils with the same eigenvalues and multiplicities14, 25. More precisely, a pencil 𝐿(𝜆) = 𝐀− 𝜆𝐁 is called
a linearization of 𝑃 (𝜆) if there exist unimodular matrix polynomials1 𝐸1(𝜆), 𝐸2(𝜆) such that[

𝑃 (𝜆) 0
0 𝐼(𝑑−1)𝑛

]
= 𝐸1(𝜆)(𝐀 − 𝜆𝐁)𝐸2(𝜆).

Some linearizations of matrix polynomials of degree 𝑑 and size 𝑛 × 𝑛, very useful in practice, are of the form as the pencils
in Definition 1.
Definition 1. 1, Definition 2.2 Let 𝑃 (𝜆) ∈ ℂ[𝜆]𝑛×𝑛 be a regular matrix polynomial, i.e., det(𝑃 (𝜆)) does not vanish identically, of
degree 𝑑 ≥ 2 and size 𝑛 × 𝑛. A 𝑑𝑛 × 𝑑𝑛 matrix pencil 𝐿(𝜆) of the form

𝐿(𝜆) = 𝐀 − 𝜆𝐁, (5)

where
𝐀 =

[
𝐴0 𝐴1 ⋯ 𝐴𝑑−1

𝑀 ⊗ 𝐼𝑛

]
, 𝐁 =

[
𝐵0 𝐵1 ⋯ 𝐵𝑑−1

𝑁 ⊗ 𝐼𝑛

]
(6)

and 𝐴𝑖, 𝐵𝑖 ∈ ℂ𝑛×𝑛, 𝑖 = 0, 1,… , 𝑑 − 1, and𝑀 ,𝑁 ∈ ℂ(𝑑−1)×𝑑 , is called a structured linearization pencil of 𝑃 (𝜆) if the following
conditions hold

1Unimodular matrix polynomials are matrix polynomials whose determinant is a nonzero constant, i.e., it does not depend of 𝜆. Most of the linearizations considered
in this work are in fact strong linearizations 13, 14, so, they preserve also the eigenvalues at infinity of 𝑃 (𝜆), and their multiplicities, if they are present. Nevertheless in this
work we do not intend to compute infinite eigenvalues since their existence is not generic, and so we do not need to use the concept of strong linearization.



4 Froilán M. Dopico, Javier González-Pizarro

1. 𝐿(𝜆) is a linearization of 𝑃 (𝜆),

2. 𝑀 − 𝜆𝑁 has rank 𝑑 − 1 for all 𝜆 ∈ ℂ, and

3. (𝐀− 𝜆𝐁)(𝑓 (𝜆)⊗𝐼𝑛) = 𝑒1 ⊗𝑃 (𝜆) for some polynomial function 𝑓 ∶ ℂ → ℂ[𝜆]𝑑 , 𝑓 (𝜆) ≠ 0 for all 𝜆 ∈ ℂ, where 𝑒1 ∈ ℂ𝑑

is the first vector of the canonical basis of ℂ𝑑 .

The matrices 𝐴𝑖 and 𝐵𝑖 that appear in the first block rows in (6) are related to the matrix polynomial 𝑃 (𝜆) and the matrices
𝑀 and 𝑁 correspond to the linear relations between the basis functions 𝑓𝑖(𝜆), where 𝑓 (𝜆) ∶= [𝑓1(𝜆),… , 𝑓𝑑(𝜆)]𝑇 , used in the
representation of the matrix polynomial. The interested reader can find some examples in1. The identity (𝐀−𝜆𝐁)(𝑓 (𝜆)⊗𝐼𝑛) =
𝑒1 ⊗ 𝑃 (𝜆) generalizes the identity used in14 to define certain vector spaces of linearizations of matrix polynomials.
An important property of structured linearization pencils is that their eigenvectors are closely related to the eigenvectors of

the matrix polynomial as we can see in Theorem 1.
Theorem 1. 1, Corollary 2.4 Let 𝐿(𝜆) be a structured linearization pencil of 𝑃 (𝜆) as in Definition 1 and let (𝜆⋆, 𝐱) be an eigenpair
of 𝐿(𝜆). Then, the eigenvector 𝐱 has the following structure

𝐱 = 𝑓 (𝜆⋆)⊗ 𝑥,

where 𝑥 ∈ ℂ𝑛 is an eigenvector of 𝑃 (𝜆) corresponding to 𝜆⋆.

The block ULP decomposition in Theorem 2 for structured linearization pencils of matrix polynomials is important for the
CORK method introduced in1 because it allows to perform the shift-and-invert step in CORK efficiently. We emphasize that
the structure of the linearization presented in Section 2.2 for solving the REP allows us to develop a similar UL decomposition
to perform efficiently the shift-and-invert step in the R-CORK method introduced in Section 3. This UL decomposition will be
presented in Lemma 1 and, in contrast to that in Theorem 2, does not include any permutation and is applied after preprocessing
the linearization.
Theorem 2. 1, Theorem 2.3 Let 𝐀 and 𝐁 be defined by (6). Then, for every 𝜇 ∈ ℂ there exists a permutation matrix  ∈ ℂ𝑑×𝑑 such
that the matrix (𝑀1 − 𝜇𝑁1) ∈ ℂ(𝑑−1)×(𝑑−1) is invertible with

𝑀 =∶ [𝑚0 𝑀1] , 𝑁 =∶ [𝑛0 𝑁1] .

Moreover, the matrix 𝐿(𝜇), i.e., the pencil 𝐿(𝜆) in (5) evaluated in 𝜇, can be factorized as follows

𝐿(𝜇) = 𝐀 − 𝜇𝐁 =  (𝜇)(𝜇)( ⊗ 𝐼𝑛),

where

(𝜇) =
[

𝑃 (𝜇) 0
(𝑚0 − 𝜇𝑛0)⊗ 𝐼𝑛 (𝑀1 − 𝜇𝑁1)⊗ 𝐼𝑛

]
,

 (𝜇) =
[
𝛼−1𝐼𝑛 (�̄�1 − 𝜇�̄�1)((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛)
0 𝐼(𝑑−1)𝑛

]
,

with the scalar 𝛼 = 𝑒𝑇1𝑓 (𝜇) ≠ 0 and

[𝐴0 𝐴1 ⋯ 𝐴𝑑−1] =∶ [�̄�0 �̄�1]( ⊗ 𝐼𝑛),
[𝐵0 𝐵1 ⋯ 𝐵𝑑−1] =∶ [�̄�0 �̄�1]( ⊗ 𝐼𝑛).

2.2 A linearization for rational eigenvalue problems
In this subsection, we present some results and notations related to the REP. Interested readers can find more information in the
summaries presented in26, Sections 1 & 2 and4, Section 2, as well as in the classical references2, 3.
In this work, we assume that the rational matrix 𝑅(𝜆) in (2) is regular, this means, det(𝑅(𝜆)) ≢ 0. With a slight lack of rigor,

we can say that if the matrices 𝐸𝑖 in (2) are linearly independent, then the roots of the denominators 𝑔𝑖(𝜆) are the poles of 𝑅(𝜆)
and that 𝑅(𝜆) is not defined in these poles. A scalar 𝜆 ∈ ℂ which is not a pole is called an eigenvalue of 𝑅(𝜆) if det(𝑅(𝜆)) = 0,
and a nonzero vector 𝑥 ∈ ℂ𝑛 is called an eigenvector of 𝑅(𝜆) associated to the eigenvalue 𝜆 if the condition (1) holds. The pair
(𝜆, 𝑥) constitutes an eigenpair of 𝑅(𝜆) and our goal is to compute a subset of such eigenpairs.
We express the matrix polynomial 𝑃 (𝜆) of degree 𝑑 in (2) as follows

𝑃 (𝜆) = 𝜆𝑑𝑃𝑑 + 𝜆𝑑−1𝑃𝑑−1 +⋯ + 𝜆𝑃1 + 𝑃0, (7)
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where 𝑃𝑖 ∈ ℂ𝑛×𝑛 for 𝑖 = 0,… , 𝑑. From now on, we assume the generic condition that the leading coefficient matrix 𝑃𝑑 is
nonsingular in (7). As explained in the introduction, we assume that 𝑓𝑖(𝜆) and 𝑔𝑖(𝜆) in (2) are coprime, this is, they do not have
common factors, and that the rational functions 𝑓𝑖(𝜆)

𝑔𝑖(𝜆)
are strictly proper, this is, the degree,𝑚𝑖, of 𝑓𝑖(𝜆) is smaller than the degree,

𝑛𝑖, of 𝑔𝑖(𝜆). Under these assumptions, in5, Su and Bai proposed a linearization to solve the rational eigenvalue problem.With this
aim, they first showed that one can findmatrices𝐸, 𝐹 of size 𝑛×𝑠, and matrices𝐶,𝐷 of size 𝑠×𝑠, with 𝑠 = 𝑟1𝑛1+𝑟2𝑛2+⋯+𝑟𝑘𝑛𝑘
with 𝑟𝑖 =rank(𝐸𝑖) in (2), such that

𝑅(𝜆) = 𝑃 (𝜆) − 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 . (8)
In fact, it is a classical result (much older than5) that any rational matrix can be written as in (8) by expressing𝑅(𝜆) as the sum of
its unique polynomial and strictly proper parts, and, then, constructing a state-space realization of the strictly proper part3 (see
also4, Section 2). However, we emphasize that, as far as we know,5 is the first reference available in the literature that uses (8) with
the purpose of computing the eigenvalues of a REP, as well as that5 is the first reference that points out that the representation
(8) is immediately available from the data in many practical REPs without any computational cost.
Once the representation (8) for the REP is available, the REP 𝑅(𝜆)𝑥 = 0 can be linearized according to5 as follows2:

( − 𝜆)𝐳 = 0, (9)

where

 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑃0 𝑃1 ⋯ 𝑃𝑑−1 𝐸
0 −𝐼𝑛

. . . . . .
0 −𝐼𝑛

𝐹 𝑇 𝐶

⎤⎥⎥⎥⎥⎥⎥⎦
,  = −

⎡⎢⎢⎢⎢⎢⎢⎣

𝑃𝑑
𝐼𝑛 0

. . . . . .
𝐼𝑛 0

−𝐷

⎤⎥⎥⎥⎥⎥⎥⎦
(10)

and

𝐳 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑥
𝜆𝑥
...

𝜆𝑑−1𝑥
𝑦

⎤⎥⎥⎥⎥⎥⎥⎦
, with 𝑦 = −(𝐶 − 𝜆𝐷)−1 𝐹 𝑇𝑥. (11)

Denoting by 𝐀 and 𝐁 the upper left 𝑛𝑑 × 𝑛𝑑 submatrices of and , we can write  − 𝜆 as follows

 − 𝜆 =
[
𝐀 − 𝜆𝐁 𝑒1 ⊗𝐸
𝑒𝑇1 ⊗ 𝐹 𝑇 𝐶 − 𝜆𝐷

]
, (12)

where 𝑒1 is the first column of 𝐼𝑑 . Observe that 𝐀 − 𝜆𝐁 is a permutation of the famous first Frobenius companion linearization
of the matrix polynomial 𝑃 (𝜆) in (7)25.
As mentioned above, it is important to remark that in many applications of REPs5, 9, 12, the first step in the process above, i.e.,

to construct the representation (8), does not involve any computational effort, since the matrices 𝑃0, 𝑃1,… , 𝑃𝑑 , 𝐸, 𝐶,𝐷, and 𝐹
can be obtained directly from the data. As a consequence the linearization  − 𝜆 above can be constructed also without any
computational effort and all the computational effort is attached to the solution of the GEP (9). Another important remark that
has a deep computational impact is that in many applications of REPs5, 9, 12 the size 𝑠×𝑠 of the matrices𝐶 and𝐷 is much smaller
than the size 𝑛× 𝑛 of the original REP, i.e., 𝑠 ≪ 𝑛 or, in plain words, the rank of the strictly proper part of 𝑅(𝜆) is much smaller
than the size of 𝑅(𝜆). Therefore, if 𝑠 ≪ 𝑛, then the size (𝑛𝑑 + 𝑠) × (𝑛𝑑 + 𝑠) of the linearization−𝜆 is approximately equal to
the size (𝑛𝑑) × (𝑛𝑑) of the linearization 𝐀 − 𝜆𝐁 of the matrix polynomial 𝑃 (𝜆), and the costs of solving the GEPs − 𝜆 and
𝐀 − 𝜆𝐁 are expected to be similar. Thus, it is not surprising that the R-CORK algorithm developed in Section 3 for large-scale
REPs is particularly efficient in terms of storage and orthogonalization costs when 𝑠 ≪ 𝑛. However, we emphasize in this context
that R-CORK also improves significantly these costs when 𝑠 ≈ 𝑛 (and 𝑑 ≥ 2) with respect to a direct application of large-scale
eigensolvers to  − 𝜆. We will make often comments about the advantages of considering 𝑠 ≪ 𝑛 throughout the paper.
A formal definition of linearization of a rational matrix can be found in26 and another one which includes the concept of

strong linearization in4. In fact, it is proved in4 that  − 𝜆 in (9) is a strong linearization of 𝑅(𝜆) in (8) whenever −𝐸(𝐶 −

2We remark that the authors of 5 consider permutations of the matrices  and  in (10) for the linearized problem (9). More precisely, they order the matrices 𝑃𝑖 in
reverse order and interchange the identity blocks in  and . Since we are following in this paper the spirit of CORK, then  and  are written in (10) in the same way
as in 1, Table 1.
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𝜆𝐷)−1𝐹 𝑇 is a minimal state-space realization3 of the strictly proper part of 𝑅(𝜆)4, Section 8. We emphasize that the requirement
that −𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 is a minimal state-space realization is very mild4, Section 8 and that is fully necessary to guarantee that
for every eigenvalue 𝜆 of 𝑅(𝜆) the matrix 𝐶 − 𝜆𝐷 is nonsingular4, Example 3.2. In the rest of the paper we implicitly assume that
𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 is a minimal realization, although the only result we will use explicitly is Theorem 3, which remains valid
even when 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 is not minimal. The subtle point is that Theorem 3 assumes that 𝜆 is a number such that the matrix
(𝐶 − 𝜆𝐷) is invertible, but if 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 is not minimal then there may be eigenvalues of 𝑅(𝜆) that do not satisfy such
assumption.
Theorem 3. 5, Theorem 3.1 Let 𝜆 ∈ ℂ be such that det(𝐶 − 𝜆𝐷) ≠ 0. Then the following statements hold:

(a) If 𝜆 is an eigenvalue of the REP (8), then it is an eigenvalue of the GEP (9).

(b) Let 𝜆 be an eigenvalue of the GEP (9) and 𝑧 = [𝑧𝑇1 , 𝑧
𝑇
2 ,⋯ , 𝑧𝑇𝑑 , 𝑦

𝑇 ]𝑇 be a corresponding eigenvector, where 𝑧𝑖 are vectors
of length 𝑛 for 𝑖 = 1, 2,… , 𝑑, and 𝑦 is a vector of length 𝑠. Then 𝑧1 ≠ 0 and 𝑅(𝜆)𝑧1 = 0, namely, 𝜆 is an eigenvalue of
the REP (8) and 𝑧1 is a corresponding eigenvector. Moreover, the algebraic and geometric multiplicities of 𝜆 for the REP
(8) and GEP (9) are the same.

Part (b) of Theorem 3 is the key result that allows us to get the eigenvalues and eigenvectors of 𝑅(𝜆) from those of the GEP − 𝜆 in (9). In fact, observe that Theorem 3-(b) can be improved if 𝜆 ≠ 0, since in this case, according to (11), every 𝑧𝑖 is
an eigenvector of 𝑅(𝜆). Therefore, we have 𝑑 degrees of freedom for the recovery of the eigenvector of 𝑅(𝜆). The most sensible
option from the point of view of rounding errors is to choose the 𝑧𝑖 with largest 2-norm, that is, 𝑧𝑑 when |𝜆| > 1 and 𝑧1 when|𝜆| ≤ 1.
The final comment of this section is that in contrast to the CORK method developed in1 for PEPs, which is valid for many

linearizations, the rational CORK method, R-CORK, introduced in this manuscript uses only the linearization  − 𝜆 in (9).
The reason of this restriction is that the theory of linearizations of REPs is far less developed than the theory of linearizations of
PEPs. Thus, although many linearizations of REPs have been introduced very recently in4, 26, their properties are not yet fully
understood.

2.3 The classical rational Krylov method for generalized eigenvalue problems
We revise in this subsection the rational Krylov method for GEPs since the algorithm R-CORK presented in this paper is
based on this method. The rational Krylov method22, 23 is a generalization for computing eigenvalues of matrices and of matrix
pencils of the shift-and-invert Arnoldi method. The main differences between these methods are basically two: in rational Krylov
methods we can change the shift 𝜃𝑗 at each iteration instead of fixing the shift as in the shift-and-invert Arnoldi method. Also,
the information of the approximate eigenvalues is contained in two upper Hessenberg matrices 𝐻 𝑗 and 𝐾𝑗 instead of in only
one matrix. In Algorithm 1 we present a basic pseudocode of the rational Krylov method that summarizes its main steps and
guides the developments in the rest of this subsection, which are a very brief sketch of the rational Krylov method. The reader
can find more details in1, 22, 23.
This method produces an orthonormal basis for the subspace𝑚+1(,,𝐮1, 𝜃1,…,𝑚). By using the equalities for �̂� and �̃� from

steps 2 and 4 in Algorithm 1 we obtain at the 𝑖-th iteration:

( − 𝜃𝑖)−1𝐮𝑖 = 𝐔𝑖+1ℎ𝑖,

with ℎ𝑖 = [ℎ∗
𝑖 ℎ𝑖+1,𝑖]∗. After 𝑗 steps of the rational Krylov method, we obtain the classic rational Krylov recurrence relation23:

𝐔𝑗+1𝐻 𝑗 = 𝐔𝑗+1𝐾𝑗 , (13)

where𝐻 𝑗 , 𝐾𝑗 ∈ ℂ(𝑗+1)×𝑗 are upper Hessenberg matrices and

𝐾𝑗 = 𝐻 𝑗diag(𝜃1, 𝜃2,… , 𝜃𝑗) + 𝐼(𝑗+1)×𝑗 . (14)

For simplicity, we assume that breakdowns do not occur in the rational Krylov method, this is, ℎ𝑖+1,𝑖 ≠ 0 for all 𝑖 = 1,… , 𝑚,
and in this case the upper Hessenberg matrix 𝐻 𝑗 is unreduced. We can approximate in each iteration of Algorithm 1 the
corresponding 𝑗 eigenvalues and eigenvectors of the pencil  − 𝜆 by solving the small generalized eigenvalue problem:

𝐾𝑗𝑡𝑖 = 𝜆𝑖𝐻𝑗𝑡𝑖, 𝑡𝑖 ≠ 0, (15)
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Algorithm 1 Rational Krylov method
Input:  and  square matrices and an initial vector 𝐮1 with ‖𝐮1‖2 = 1.
Output: The matrix 𝐔𝑚+1 whose columns are an orthonormal basis of 𝑚+1(,,𝐮1, 𝜃1,…,𝑚), and the Ritz pairs (𝜆, 𝐱) of − 𝜆, corresponding to the rational Krylov subspace 𝑚(,,𝐮1, 𝜃1,…,𝑚−1).
Initialize 𝐔1 = [𝐮1].
for 𝑗 = 1, 2,… , 𝑚 do

1. Choose the shift 𝜃𝑗 .
2. �̂� = ( − 𝜃𝑗)−1𝐮𝑗 .
3. ℎ𝑗 = 𝐔∗

𝑗 �̂�.
4. �̃� = �̂� − 𝐔𝑗ℎ𝑗 .
5. Compute the new vector 𝐮𝑗+1 = �̃�∕ℎ𝑗+1,𝑗 with ℎ𝑗+1,𝑗 = ‖�̃�‖2.
6. Update 𝐔𝑗+1 = [𝐔𝑗 𝐮𝑗+1].
7. Compute the eigenpairs (𝜆𝑖, 𝑡𝑖) of (15) and test for convergence.

end for
8. Compute the eigenvectors 𝐱𝑖 = 𝐔𝑗+1𝐻 𝑗𝑡𝑖, 𝑖 = 1,… , 𝑗.

where𝐻𝑗 and𝐾𝑗 are the 𝑗 × 𝑗 upper Hessenberg matrices obtained by removing the last rows of𝐻 𝑗 and𝐾𝑗 , respectively. Then,
we call (𝜆𝑖, 𝐱𝑖 = 𝐔𝑗+1𝐻 𝑗𝑡𝑖) a Ritz pair of (,). We emphasize that the approximate eigenvectors 𝐱𝑖 are not computed in each
iteration, since this would be very expensive, and that the test for convergence in step 7 of Algorithm 1 can be performed in an
inexpensive way by using only the small vectors 𝑡𝑖, as it is done in most Krylov methods.

2.4 The CORK method for polynomial eigenvalue problems
Van Beeumen, Meerbergen, and Michiels in1 proposed a method based on a compact rational Krylov decomposition, extending
the two levels of orthogonalization idea of TOAR from the quadratic eigenvalue problem18, 19 to arbitrary degree polynomial
eigenvalue problems and to other NLEPs, including many other linearizations apart from the Frobenius one used in18, 19, and
using the rational Krylov method instead of the Arnoldi method. This method was baptized as CORK in1 and for simplicity we
described it particularized to PEPs of degree 𝑑. The key idea in1 is to apply the rational Krylov method in Algorithm 1 to a
structured linearization pencil of a matrix polynomial 𝑃 (𝜆) of degree 𝑑 (recall Definition 1) taking into account that the special
structure of these pencils imposes a special structure on the bases of the corresponding rational Krylov subspaces. By using this
structure, the authors of1 reduced both the memory cost and the orthogonalization cost of the classical rational Krylov method
applied to an arbitrary pencil of the same size. Considering the matrices 𝐀 and 𝐁 in (6) and the rational Krylov recurrence
relation (13) for 𝐀 and 𝐁, the authors of1 partitioned conformably the matrix 𝐔𝑗+1 as follows

𝐔𝑗+1 = [𝐔𝑗 𝐮𝑗+1] =

⎡⎢⎢⎢⎢⎢⎣

𝑈 (1)
𝑗 𝑢(1)𝑗+1

𝑈 (2)
𝑗 𝑢(2)𝑗+1
...

...
𝑈 (𝑑)

𝑗 𝑢(𝑑)𝑗+1

⎤⎥⎥⎥⎥⎥⎦
,

and then, they constructed a matrix 𝑄𝑗 ∈ ℂ𝑛×𝑟𝑗 with orthonormal columns such that

span{𝑄𝑗} = span{𝑈 (1)
𝑗 , 𝑈 (2)

𝑗 ,… , 𝑈 (𝑑)
𝑗 } (16)

and rank(𝑄𝑗) = 𝑟𝑗 . By using the matrix 𝑄𝑗 , the blocks 𝑈
(𝑖)
𝑗 for 𝑖 = 1, 2,… , 𝑑 can be represented as follows

𝑈 (𝑖)
𝑗 = 𝑄𝑗𝑅

(𝑖)
𝑗 , 𝑖 = 1, 2,… , 𝑑,
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for some matrices 𝑅(𝑖)
𝑗 ∈ ℂ𝑟𝑗×𝑗 . Then,

𝐔𝑗 =

⎡⎢⎢⎢⎢⎢⎣

𝑄𝑗𝑅
(1)
𝑗

𝑄𝑗𝑅
(2)
𝑗

...
𝑄𝑗𝑅

(𝑑)
𝑗

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑄𝑗

𝑄𝑗
. . .

𝑄𝑗

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

𝑅(1)
𝑗

𝑅(2)
𝑗
...

𝑅(𝑑)
𝑗

⎤⎥⎥⎥⎥⎥⎦
= (𝐼𝑑 ⊗𝑄𝑗)𝐑𝑗 , (17)

where

𝐑𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎣

𝑅(1)
𝑗

𝑅(2)
𝑗
...

𝑅(𝑑)
𝑗

⎤⎥⎥⎥⎥⎥⎦
.

By using this representation, the rational Krylov recurrence relation (13) can be written as follows1, eq. (4.3)

𝐀(𝐼𝑑 ⊗𝑄𝑗+1)𝐑𝑗+1𝐻 𝑗 = 𝐁(𝐼𝑑 ⊗𝑄𝑗+1)𝐑𝑗+1𝐾𝑗 .

Observe that 𝐔𝑗 has 𝑛𝑑𝑗 entries while the representation in (17) involves (𝑛 + 𝑗𝑑)𝑟𝑗 parameters. Therefore, taking into account
that in the solution of large-scale PEPs the dimension 𝑗 of the rational Krylov subspaces is much smaller than the dimension 𝑛
of the problem and that the degree 𝑑 of applied PEPs is a low number (for sure smaller than 30, see20, and often much smaller
than 3027), we get that 𝑗𝑑 ≪ 𝑛 and that the representation (17) of𝐔𝑗 stores approximately 𝑛𝑟𝑗 numbers. The fundamental reason
why the representation of 𝐔𝑗 in (17) is of interest and is indeed compact is because 𝑟𝑗 is considerably much smaller than 𝑗𝑑 for
the matrices 𝐀 and 𝐁 in (6). More precisely, the following result is proved in1.
Theorem 4. 1, Theorems 4.4 and 4.5 Let 𝑄𝑗 be defined as in (16). Then

span{𝑄𝑗+1} = span{𝑄𝑗 , 𝑢
(𝑝)
𝑗+1}, (18)

where 𝑢(𝑝)𝑗+1 represents the block of the vector 𝐮𝑗+1 in a certain p-th position determined in1. Also,

𝑟𝑗 < 𝑗 + 𝑑. (19)

Note that Theorem 4 shows that 𝑄𝑗 can be expanded to 𝑄𝑗+1 by orthogonalizing only one vector of size 𝑛 at each iteration.
Also, 𝐑𝑗+1 can be expanded in an easy way, if 𝑢

(𝑝)
𝑗+1 ∉ span{𝑄𝑗} then the blocks 𝑅

(𝑖)
𝑗+1, 𝑖 = 1,… , 𝑑, can be written as

𝑅(𝑖)
𝑗+1 =

[
𝑅(𝑖)

𝑗
01×𝑗

||||| 𝑟(𝑖)𝑗+1
]
, 𝑖 = 1,… , 𝑑,

and, if 𝑢(𝑝)𝑗+1 ∈ span{𝑄𝑗}, then 𝑅(𝑖)
𝑗+1 =

[
𝑅(𝑖)

𝑗 𝑟(𝑖)𝑗+1
]
, 𝑖 = 1,… , 𝑑. Based on these ideas, the authors of1 developed CORK,

splitting the method into two levels of orthogonalization: the first level is to expand 𝑄𝑗 into 𝑄𝑗+1 and the second level is to
expand 𝐑𝑗 into 𝐑𝑗+1. We can see a basic pseudocode for the CORK method in Algorithm 2, whose complete explanation can
be found in1. For simplicity, we assume that breakdown does not occur in Algorithm 2, i.e., ℎ𝑗+1,𝑗 ≠ 0 for all 𝑗.
From the discussion above, it is clear that CORK reduces significantly the storage requirements with respect to a direct

application of the rational Krylovmethod to the (𝑛𝑑)×(𝑛𝑑)GEP𝐀−𝜆𝐁, since essentially CORK represents𝐔𝑗 in terms of 𝑛(𝑗+𝑑)
parameters and, in addition, 𝑛(𝑗 + 𝑑) ≈ 𝑛𝑗 for moderate values of 𝑑. Therefore, the memory cost of CORK is approximately
the cost of any Krylov method applied to an 𝑛 × 𝑛 GEP. Moreover, it can be seen in1, Section 5.4 that the orthogonalization cost of
CORK is essentially independent of 𝑑 for moderate values of 𝑑, and, so, much lower than the orthogonalization cost of a direct
application of rational Krylov to 𝐀 − 𝜆𝐁. With respect to the comparison of the costs of the shift-and-invert steps in CORK
(included in step 2 of Algorithm 2) and in rational Krylov (step 2 in Algorithm 1), we can say that in CORK the particular
structure of the pencil 𝐀 − 𝜆𝐁 together with the fact that only one block of the vector �̂� is needed allow us to perform this step
very efficiently by essentially solving just one “difficult” 𝑛 × 𝑛 linear system (see1, Algorithm 2). In contrast, in rational Krylov the
whole vector �̂�must be computed and there is some extra cost with respect to CORK even in the case the structure of 𝐀− 𝜆𝐁 is
taken into account for solving the linear system (𝐀 − 𝜃𝑗𝐁)�̂� = 𝐁𝐮𝑗 . On the other hand, there is some overhead cost involved in
step 2 of Algorithm 2, since, in CORK, the actual vector 𝐮𝑗 has to be constructed before solving the linear system associated to
the shift-and-invert step. Fortunately, according to (17), this computation can be arranged as the single matrix-matrix product
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Algorithm 2 Compact rational Krylov method (CORK)

Input: 𝑄1 ∈ ℂ𝑛×𝑟1 and 𝐑1 ∈ ℂ𝑑𝑟1×1 with 𝑄∗
1𝑄1 = 𝐼𝑟1 and 𝐑

∗
1𝐑1 = 1, where 𝑟1 ≤ 𝑑.

Output: Approximate eigenpairs (𝜆, 𝐱) associated to 𝐀 − 𝜆𝐁, with 𝐀, 𝐁 as in (6).
for 𝑗 = 1, 2,… do

1. Choose shift 𝜃𝑗 .
First level of orthogonalization:
2. Compute �̂�(𝑝) by using the ULP decomposition in Theorem 2 with 𝜇 = 𝜃𝑗 (see1 for details).
3. Orthogonalize: 𝑞 = �̂�(𝑝) −𝑄𝑗𝑄∗

𝑗 �̂�
(𝑝).

4. If 𝑞 ≠ 0 then compute next vector: 𝑞𝑗+1 = 𝑞∕‖𝑞‖2 and 𝑄𝑗+1 = [𝑄𝑗 𝑞𝑗+1]. Otherwise 𝑄𝑗+1 = 𝑄𝑗 .
Second level of orthogonalization:

5. If 𝑟𝑗+1 > 𝑟𝑗 then update matrices: 𝑅(𝑖)
𝑗 =

[
𝑅(𝑖)

𝑗
01×𝑗

]
for 𝑖 = 1,… , 𝑑.

6. Compute: �̂� by using the ULP decomposition in Theorem 2 (see1 for details).
7. Compute: �̃� = �̂� − 𝐑𝑗ℎ𝑗 , where ℎ𝑗 = 𝐑∗

𝑗 �̂�.
8. Next vector: 𝐫𝑗+1 = �̃�∕ℎ𝑗+1,𝑗 , where ℎ𝑗+1,𝑗 = ‖𝑟‖2 and 𝐑𝑗+1 = [𝐑𝑗 𝐫𝑗+1].
9. Compute eigenpairs: (𝜆𝑖, 𝑡𝑖) of (15) and test for convergence.

end for
10. Compute eigenvectors: 𝐱𝑖 = (𝐼𝑑 ⊗𝑄𝑗+1)𝐑𝑗+1𝐻 𝑗𝑡𝑖.

𝑄𝑗[𝑟
(1)
𝑗 ⋯ 𝑟(𝑑)𝑗 ], where 𝑟(1)𝑗 ,… , 𝑟(𝑑)𝑗 are the blocks of the last column of 𝐑𝑗 , which allows optimal efficiency and cache usage on

modern computers (see20, p. 577).
Inspired in CORK, wewill develop in Section 3 the new algorithmR-CORK to solve large-scale and sparse rational eigenvalue

problems by using a decomposition similar to (17) for the bases of the rational Krylov subspaces associated to the linearization
(9) of the REP and by working in the spirit of the two levels of orthogonalization originally introduced in TOAR18, 19. We will
see that R-CORK has memory and computational advantages similar to those discussed for CORK in the previous paragraph.

3 A NEWMETHOD FOR SOLVING LARGE-SCALE AND SPARSE RATIONAL
EIGENVALUE PROBLEMS

3.1 A compact decomposition for rational Krylov subspaces of  − 𝜆
Consider the matrices and  in (10) and the rational Krylov recurrence relation (13) which is valid for arbitrary pencils. Our
goal is to particularize such relation to the matrices  and  in (10) in order to save memory and orthogonalization costs. For
this purpose, we will partitionate 𝐔𝑗+1 conformably to and  as follows

𝐔𝑗+1 = [𝐔𝑗 𝐮𝑗+1] =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑈 (1)
𝑗 𝑢(1)𝑗+1

𝑈 (2)
𝑗 𝑢(2)𝑗+1
...

...
𝑈 (𝑑)

𝑗 𝑢(𝑑)𝑗+1
𝑉𝑗 𝑣𝑗+1

⎤⎥⎥⎥⎥⎥⎥⎦
(20)

where 𝑈 (𝑖)
𝑗 ∈ ℂ𝑛×𝑗 , 𝑢(𝑖)𝑗+1 ∈ ℂ𝑛, for 𝑖 = 1,… , 𝑑, 𝑉𝑗 ∈ ℂ𝑠×𝑗 , and 𝑣𝑗+1 ∈ ℂ𝑠. Next, following CORK for the first 𝑑 blocks, we

define the matrix 𝑄𝑗 ∈ ℂ𝑛×𝑟𝑗 such that the columns of 𝑄𝑗 are orthonormal with

span{𝑄𝑗} = span{𝑈 (1)
𝑗 , 𝑈 (2)

𝑗 ,… , 𝑈 (𝑑)
𝑗 } (21)

and rank(𝑄𝑗) = 𝑟𝑗 . Using (21) we can express

𝑈 (𝑖)
𝑗 = 𝑄𝑗𝑅

(𝑖)
𝑗 , 𝑖 = 1, 2,… , 𝑑, (22)
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where 𝑅(𝑖)
𝑗 ∈ ℂ𝑟𝑗×𝑗 for 𝑖 = 1, 2,… , 𝑑. Then, by using (22), we have

𝐔𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑄𝑗𝑅
(1)
𝑗

𝑄𝑗𝑅
(2)
𝑗

...
𝑄𝑗𝑅

(𝑑)
𝑗

𝑉𝑗

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑄𝑗
𝑄𝑗

. . .
𝑄𝑗

𝐼𝑠

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

𝑅(1)
𝑗

𝑅(2)
𝑗
...

𝑅(𝑑)
𝑗
𝑉𝑗

⎤⎥⎥⎥⎥⎥⎥⎦
. (23)

By introducing the notation

𝐐𝑗 ∶=

[
(𝐼𝑑 ⊗𝑄𝑗) 0𝑑𝑛×𝑠
0𝑠×𝑑𝑟𝑗 𝐼𝑠

]
∈ ℂ(𝑑𝑛+𝑠)×(𝑑𝑟𝑗+𝑠) and 𝐑𝑗 ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑅(1)
𝑗

𝑅(2)
𝑗
...

𝑅(𝑑)
𝑗
𝑉𝑗

⎤⎥⎥⎥⎥⎥⎥⎦
∈ ℂ(𝑑𝑟𝑗+𝑠)×𝑗 , (24)

we have 𝐔𝑗 = 𝐐𝑗𝐑𝑗 . Note that the columns of 𝐔𝑗 and𝐐𝑗 are orthonormal, so the matrix 𝐑𝑗 has orthonormal columns too. With
this notation, we can rewrite (13) as the following compact rational Krylov recurrence relation

𝐐𝑗+1𝐑𝑗+1𝐻 𝑗 = 𝐐𝑗+1𝐑𝑗+1𝐾𝑗 . (25)

In order to prove that, as in CORK, we need only one vector to expand 𝑄𝑗 into 𝑄𝑗+1 and that, as a consequence, 𝑟𝑗 is
considerably smaller than 𝑗𝑑, i.e., that𝐐𝑗𝐑𝑗 is indeed a compact representation of𝐔𝑗 , we will prove first the following Lemmas
1 and 2. We emphasize the relationship between Lemma 1 and Theorem 2, but also two differences: the first one is coming
from the presence of the strictly proper part 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 of the rational matrix 𝑅(𝜆), which motivates the definition of the
rational matrix 𝐀(𝜆) in Lemma 1, and the second one which is related with the matrices and  in (10). Since the matrices 𝑃𝑖
are ordered in increasing index order in (10), it occurs that the permutation  in Theorem 2 is not needed in Lemma 1, therefore,
we developed a UL decomposition instead of a ULP decomposition. Apart from these differences, we have stated Lemma 1
in an analogous way to Theorem 2, with the purpose of stressing the relation with CORK, but note that the simple particular
structures of 𝑀 ,𝑁 ∈ ℂ(𝑑−1)×𝑑 , and 𝐁 inherited from (10)-(12) imply that in Lemma 1

𝑀 ∶= [𝑚0 𝑀1 ] =

⎡⎢⎢⎢⎣
0 −1

. . . . . .
0 −1

⎤⎥⎥⎥⎦ , 𝑁 ∶= [ 𝑛0 𝑁1 ] =

⎡⎢⎢⎢⎣
−1 0

. . . . . .
−1 0

⎤⎥⎥⎥⎦ (26)

and that �̄�1 has only one nonzero block. Therefore, the factors (𝜇) and  (𝜇) in Lemma 1 are simpler than the general ones
in Theorem 2. Note also that Lemma 2 is related to1, Lemma 4.3, although again the strictly proper part of the rational matrix
introduces relevant differences.

Lemma 1. Consider a rational matrix

𝑅(𝜆) = 𝑃 (𝜆) − 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 ∈ ℂ(𝜆)𝑛×𝑛,

where 𝑃 (𝜆) =
∑𝑑

𝑖=0 𝜆
𝑖𝑃𝑖, 𝑃𝑖 ∈ ℂ𝑛×𝑛 for 𝑖 = 0,… , 𝑑, 𝐸, 𝐹 ∈ ℂ𝑛×𝑠, 𝐶 , 𝐷 ∈ ℂ𝑠×𝑠, 𝐷 is nonsingular, and 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 is a

minimal realization. Define the rational matrix

𝐀(𝜆) =
[
𝑃0 − 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 𝑃1 ⋯ 𝑃𝑑−2 𝑃𝑑−1

𝑀 ⊗ 𝐼𝑛

]
,

and the constant matrix

𝐁 =
[
0𝑛 0𝑛 ⋯ 0𝑛 − 𝑃𝑑

𝑁 ⊗ 𝐼𝑛

]
,

with 𝑀 and 𝑁 defined as in (26). Then, for every 𝜇 ∈ ℂ which is not a pole of 𝑅(𝜇), i.e., such that (𝐶 − 𝜇𝐷) is nonsingular,
we can factorize 𝐀(𝜇) − 𝜇𝐁 as follows

𝐀(𝜇) − 𝜇𝐁 =  (𝜇)(𝜇), (27)
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where

(𝜇) =
[

𝑅(𝜇) 0
(𝑚0 − 𝜇𝑛0)⊗ 𝐼𝑛 (𝑀1 − 𝜇𝑁1)⊗ 𝐼𝑛

]
,

 (𝜇) =
[
𝐼𝑛 (�̄�1 − 𝜇�̄�1)((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛)
0 𝐼(𝑑−1)𝑛

]
,

and

[𝑃0 − 𝐸(𝐶 − 𝜇𝐷)−1𝐹 𝑇 𝑃1 ⋯ 𝑃𝑑−1] =∶ [𝑃0 − 𝐸(𝐶 − 𝜇𝐷)−1𝐹 𝑇 �̄�1],
[0𝑛 0𝑛 ⋯ − 𝑃𝑑] =∶ [0𝑛 �̄�1].

Proof. Observe first that the definitions of𝑀 and𝑁 imply trivially that𝑀1 − 𝜇𝑁1 is nonsingular for every 𝜇 ∈ ℂ. By a direct
matrix multiplication, we obtain

 (𝜇)(𝜇) =
[
𝑅(𝜇) + (�̄�1 − 𝜇�̄�1)(((𝑀1 − 𝜇𝑁1)−1(𝑚0 − 𝜇𝑛0))⊗ 𝐼𝑛) (�̄�1 − 𝜇�̄�1)

(𝑚0 − 𝜇𝑛0)⊗ 𝐼𝑛 (𝑀1 − 𝜇𝑁1)⊗ 𝐼𝑛

]
=

[
𝑅(𝜇) + (�̄�1 − 𝜇�̄�1)(((𝑀1 − 𝜇𝑁1)−1(𝑚0 − 𝜇𝑛0))⊗ 𝐼𝑛) (�̄�1 − 𝜇�̄�1)

(𝑀 − 𝜇𝑁)⊗ 𝐼𝑛

]
.

Therefore, we only need to prove that

𝑅(𝜇) + (�̄�1 − 𝜇�̄�1)(((𝑀1 − 𝜇𝑁1)−1(𝑚0 − 𝜇𝑛0))⊗ 𝐼𝑛) = 𝑃0 − 𝐸(𝐶 − 𝜇𝐷)−1𝐹 𝑇 ,

which is equivalent to prove that

𝑃 (𝜇) + (�̄�1 − 𝜇�̄�1)(((𝑀1 − 𝜇𝑁1)−1(𝑚0 − 𝜇𝑛0))⊗ 𝐼𝑛) = 𝑃0. (28)

The proof of (28) is a very simple algebraic manipulation as a consequence of the extremely simple structures of 𝑚0 and 𝑛0,
𝑀1 and 𝑁1 in this case. Another proof comes from the observation that (28) holds because it is proved for proving the ULP
decomposition in Theorem 2 (see1, pp. 823-824).

Remark 1. Observe that Theorem 2 involves the constant 𝛼 = 𝑒𝑇1𝑓 (𝜇), which is not present in Lemma 1. The reason is that in
Lemma 1, this constant is equal to 1 as a consequence of the structure of (11) and that  = 𝐼𝑑 .

Lemma 2. Let and  be the matrices defined in (10). Consider the linear system

( − 𝜇)𝐱 = 𝐰, (29)

where 𝐱 = [𝑥(1)𝑇 , 𝑥(2)𝑇 ,⋯ , 𝑥(𝑑)𝑇 , 𝑦𝑇 ]𝑇 and𝐰 = [𝑤(1)𝑇 , 𝑤(2)𝑇 ,⋯ , 𝑤(𝑑)𝑇 , 𝑧𝑇 ]𝑇 , the blocks 𝑥(𝑖), 𝑤(𝑖) ∈ ℂ𝑛, 𝑖 = 1, 2,… , 𝑑, 𝑦, 𝑧 ∈ ℂ𝑠,
and 𝜇 is not a pole of 𝑅(𝜇), i.e., (𝐶 − 𝜇𝐷) is nonsingular. Then, the block 𝑥(1) of 𝐱 can be computed by solving the following
𝑛 × 𝑛 linear system whose coefficient matrix is 𝑅(𝜇) in (8):

𝑅(𝜇)𝑥(1) = −𝑃𝑑𝑤
(𝑑) − 𝐸(𝐶 − 𝜇𝐷)−1𝐷𝑧 + (�̄�1 − 𝜇�̄�1)((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛)𝑤(1,…,𝑑−1),

where the matrices introduced in Lemma 1 are used and 𝑤(1,…,𝑑−11) = [𝑤(1)𝑇 ,⋯ , 𝑤(𝑑−1)𝑇 ]𝑇 . The remaining blocks 𝑥(𝑖) for
𝑖 = 2,⋯ , 𝑑 of 𝐱 can be obtained as linear combinations of 𝑥(1) and 𝑤(𝑖), 𝑖 = 1,… , 𝑑 − 1. Also, 𝑥(2,…,𝑑) = [𝑥(2)𝑇 ,⋯ , 𝑥(𝑑)𝑇 ]𝑇
satisfies the linear system

𝑥(2,…,𝑑) = −((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛) (𝑤(1,…,𝑑−1) + ((𝑚0 − 𝜇𝑛0)⊗ 𝐼𝑛)𝑥(1)) .

In addition, 𝑦 can be computed by solving the 𝑠 × 𝑠 linear system

(𝐶 − 𝜇𝐷)𝑦 = 𝐷𝑧 − 𝐹 𝑇𝑥(1).

Proof. Rewrite the matrix pencil (9) as in (12)

 − 𝜇 =
[
𝐀 − 𝛍𝐁 𝑒1 ⊗𝐸
𝑒𝑇1 ⊗ 𝐹 𝑇 𝐶 − 𝜇𝐷

]
with

𝐀 =
[
𝑃0 ⋯ 𝑃𝑑−2 𝑃𝑑−1

𝑀 ⊗ 𝐼𝑛

]
, 𝐁 =

[
0𝑛 ⋯ 0𝑛 − 𝑃𝑑

𝑁 ⊗ 𝐼𝑛

]
,
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and 𝑀 and𝑁 defined as in (26). Then, we can solve the system (29) by solving

(𝐀 − 𝜇𝐁)𝑥(1,2,…,𝑑) + (𝑒1 ⊗𝐸)𝑦 = 𝐁𝑤(1,2,…,𝑑), (30)
(𝑒𝑇1 ⊗ 𝐹 𝑇 )𝑥(1,2,…,𝑑) + (𝐶 − 𝜇𝐷)𝑦 = 𝐷𝑧, (31)

where 𝑥(1,2,…,𝑑) = [𝑥(1)𝑇 , 𝑥(2)𝑇 ,⋯ , 𝑥(𝑑)𝑇 ]𝑇 and 𝑤(1,2,…,𝑑) = [𝑤(1)𝑇 , 𝑤(2)𝑇 ,⋯ , 𝑤(𝑑)𝑇 ]𝑇 . The second equation is the equation for 𝑦
in the statement. By replacing 𝑦 = (𝐶 − 𝜇𝐷)−1(𝐷𝑧 − 𝐹 𝑇𝑥(1)) from (31) in (30), and using the notation of Lemma 1, we obtain

(𝐀 − 𝜇𝐁)𝑥(1,2,…,𝑑) − (𝑒1 ⊗𝐸)(𝐶 − 𝜇𝐷)−1𝐹 𝑇𝑥(1) = 𝐁𝑤(1,2,…,𝑑) − (𝑒1 ⊗𝐸)(𝐶 − 𝜇𝐷)−1𝐷𝑧,[
𝑃0 − 𝐸(𝐶 − 𝜇𝐷)−1𝐹 𝑇 ⋯ 𝑃𝑑−2 𝑃𝑑−1 + 𝜇𝑃𝑑

(𝑀 − 𝜇𝑁)⊗ 𝐼𝑛

]
𝑥(1,2,…,𝑑) = −

[
𝑃𝑑𝑤(𝑑) + 𝐸(𝐶 − 𝜇𝐷)−1𝐷𝑧

𝑤(1,…,𝑑−1)

]
,

(𝐀(𝜇) − 𝜇𝐁)𝑥(1,2,…,𝑑) = −
[
𝑃𝑑𝑤(𝑑) + 𝐸(𝐶 − 𝜇𝐷)−1𝐷𝑧

𝑤(1,…,𝑑−1)

]
.

By combining the factorization (27) in Lemma 1 and the equation above, it is immediate to see that the blocks 𝑥(𝑖) for 𝑖 = 2,… , 𝑑
of 𝐱 are linear combinations of 𝑥(1) and the blocks 𝑤(𝑖), 𝑖 = 1,… , 𝑑 − 1. In addition, some elementary matrix manipulations
with the matrices (𝜇) and (𝜇) in (27) lead to the equations for 𝑥(2,…,𝑑) and 𝑥(1) in the statement. This finishes the proof.

As announced before, Lemma 2 is the key result that allows us to prove through Theorems 5 and 6 that only one vector is
needed to expand 𝑄𝑗 into 𝑄𝑗+1 and, so, that the representation (23) for 𝐔𝑗 is indeed compact. Moreover, the equations for 𝑥(1),
𝑥(2,…,𝑑), and 𝑦 deduced in Lemma 2 lead to the efficient Algorithm 3 for solving the linear system (29), which is fundamental
for performing efficiently the shift-and-invert step in the R-CORK method developed in Section 3.2. Observe that in Algorithm
3 a notation similar to that in Lemma 2 is used.

Algorithm 3 Solver for the linear system ( − 𝜇)𝐱 = 𝐰, with  and  as in (10)

Input: ,  ∈ ℂ(𝑛𝑑+𝑠)×(𝑛𝑑+𝑠) as in (10), 𝜇 ∈ ℂ such that (𝐶 − 𝜇𝐷)−1 exists and 𝐰 ∈ ℂ𝑛𝑑+𝑠.
Output: The solution 𝐱 of the linear system.
1. Compute 𝑥 = 𝐁𝑤(1,2,…,𝑑) − (𝑒1 ⊗𝐸)(𝐶 − 𝜇𝐷)−1𝐷𝑧 as 𝑥 = −

[
𝑃𝑑𝑤(𝑑)+𝐸(𝐶−𝜇𝐷)−1𝐷𝑧

𝑤(1,…,𝑑−1)

]
.

Solve the block upper triangular system associated to  (𝜇) in (27):
2. 𝑥(1) = 𝑥(1) − (�̄�1 − 𝜇�̄�1)((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛)𝑥(2,…,𝑑).
Solve the block lower triangular system associated to (𝜇) in (27):
3. 𝑥(1) = (𝑅(𝜇))−1𝑥(1).
4. 𝑥(2,…,𝑑) = ((𝑀1 − 𝜇𝑁1)−1 ⊗ 𝐼𝑛)(𝑥(2,…,𝑑) − ((𝑚0 − 𝜇𝑛0)⊗ 𝐼𝑛)𝑥(1)).
Compute the block 𝑦 of 𝐱
5. 𝑦 = (𝐶 − 𝜇𝐷)−1(𝐷𝑧 − 𝐹 𝑇𝑥(1)).

Remark 2. The multiplications by inverses in Algorithm 3 have to be understood, in principle, as solutions of linear systems and
the key observation on Algorithm 3 is that all the involved linear systems have sizes smaller than the size (𝑛𝑑 + 𝑠) × (𝑛𝑑 + 𝑠)
of ( − 𝜇) as we discuss in this remark. The only linear system which is always large is the one in line 3 involving 𝑅(𝜇)
which has the size 𝑛 × 𝑛 of the original REP. Solving the system in line 3 may require just the ability of multiplying by 𝑅(𝜇),
if an iterative Krylov method is used, which might be done through the coefficients of 𝑃 (𝜆) and the matrices 𝐸,𝐶,𝐷, 𝐹 in
(8) without computing 𝑅(𝜇), or may require to compute 𝑅(𝜇), if a direct method is used. In the case (𝐶 − 𝜇𝐷) is large and
complicated the computation of 𝑅(𝜇)might be performed more efficiently through (2) than through (8), though this depends on
each particular problem. However, we emphasize once again that the matrix (𝐶 − 𝜇𝐷) ∈ ℂ𝑠×𝑠 is in many applications5, 9 very
small, since 𝑠 ≪ 𝑛, and has in addition a very simple structure, which imply that it is often possible just to compute (𝐶 −𝜇𝐷)−1
and to perform the corresponding matrix multiplications to construct 𝑅(𝜇) through (8). These comments on the size 𝑠 ≪ 𝑛 also
apply to the linear systems involving (𝐶 − 𝜇𝐷) ∈ ℂ𝑠×𝑠 in lines 1 and 5 which are very often in practice very small. Finally, the
linear systems involving (𝑀1 − 𝜇𝑁1)⊗ 𝐼𝑛 have size (𝑑 − 1)𝑛 × (𝑑 − 1)𝑛 and look very large, but they are block linear systems
very easy to solve with cost 2𝑛(𝑑 − 2) flops by using a simple two term recurrence relation. More precisely, the solution of
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((𝑀1 − 𝜇𝑁1)⊗ 𝐼𝑛)𝐱 = 𝐛, taking into account that

𝑀1 − 𝜇𝑁1 =

⎡⎢⎢⎢⎢⎣
−1
𝜇 −1

. . . . . .
𝜇 −1

⎤⎥⎥⎥⎥⎦
∈ ℂ(𝑑−1)×(𝑑−1),

and partitioning the vectors in (𝑑 − 1) blocks of size 𝑛 × 1, can be obtained as 𝑥(1) = −𝑏(1) and 𝑥(𝑖) = 𝜇 𝑥(𝑖−1) − 𝑏(𝑖) for
𝑖 = 2, 3,… , 𝑑 − 1.

The following theorems are similar to results obtained in1, Theorems 4.4 and 4.5.

Theorem 5. Let 𝑄𝑗 be defined as in (21). Then,

span{𝑄𝑗+1} = span{𝑄𝑗 , 𝑢
(1)
𝑗+1}. (32)

Proof. The proof is immediate from definition (21) and Lemma 2 with 𝜇 = 𝜃𝑗 and 𝐰 = 𝐮𝑗 (see proof of1, Theorem 4.4).

Theorem 6. Let 𝑄𝑗 be defined as in (21). Then
𝑟𝑗 < 𝑑 + 𝑗. (33)

Proof. We will prove this theorem by induction. From the definition of 𝑄𝑗 in (21), we have that

span{𝑄1} = span{𝑢(1)1 , 𝑢(2)1 ,… , 𝑢(𝑑)1 },

so 𝑟1 ≤ 𝑑. Assuming that the inequality (33) is satisfied until 𝑗 − 1, then we have by Theorem 5 that 𝑟𝑗 ≤ 𝑟𝑗−1 + 1 < 𝑑 + 𝑗.

By considering the inequality (33) and the fact that 𝑟𝑗 increases at most by 1 in each iteration, we will show the possible
structures of the expansion of the first 𝑑 blocks of the matrix 𝐑𝑗 defined in (24).

Lemma 3. Let 𝐑𝑗 ∈ ℂ(𝑑𝑟𝑗+𝑠)×𝑗 be defined as in (24). Then, the first 𝑑 blocks of the matrix 𝐑𝑗+1 ∈ ℂ(𝑑𝑟𝑗+1+𝑠)×(𝑗+1) can take the
following forms:

• if 𝑟𝑗+1 > 𝑟𝑗

𝑅(𝑖)
𝑗+1 =

[
𝑅(𝑖)

𝑗
01×𝑗

𝑟(𝑖)𝑗+1

]
, 𝑖 = 1, 2,… , 𝑑,

where 𝑟(𝑖)𝑗+1 ∈ ℂ𝑟𝑗+1 , or

• if 𝑟𝑗+1 = 𝑟𝑗
𝑅(𝑖)

𝑗+1 =
[
𝑅(𝑖)

𝑗 𝑟(𝑖)𝑗+1
]
, 𝑖 = 1, 2,… , 𝑑,

with 𝑟(𝑖)𝑗+1 ∈ ℂ𝑟𝑗+1 .

3.2 The R-CORK method
In this section, we will introduce the method to solve large-scale and sparse rational eigenvalue problems based on the compact
representation presented in Section 3.1 of the orthonormal bases of the rational Krylov subspaces of the linearization  − 𝜆
in (9). First, we consider an initial vector 𝐮1 ∈ ℂ𝑛𝑑+𝑠 with ‖𝐮1‖2 = 1 partitioned as in (20) and then, we express that vector in a
compact form:

𝐮1 =

⎡⎢⎢⎢⎢⎣
𝑢(1)1
...

𝑢(𝑑)1
𝑣1

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑄1𝑅

(1)
1

...
𝑄1𝑅

(𝑑)
1

𝑣1

⎤⎥⎥⎥⎥⎦
where 𝑄1 ∈ ℂ𝑛×𝑟1 has orthonormal columns such that

span{𝑄1} = span
{
𝑢(1)1 ,⋯ , 𝑢(𝑑)1

}
, 𝑟1 = rank([𝑢(1)1 ⋯ 𝑢(𝑑)1 ]).
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Observe that 𝑟1 = 1 if and only if 𝐮1 is chosen to have collinear nonzero blocks 𝑢(1)1 ,… , 𝑢(𝑑)1 . Now, taking into account the
definition of 𝐑𝑗 in (24), after 𝑗 steps we want to expand𝑄𝑗 into𝑄𝑗+1 and 𝐑𝑗 into 𝐑𝑗+1, which results in the so-called two levels
of orthogonalization.
First level of orthogonalization. In Theorem 5 we have proved that we need to orthogonalize 𝑢(1)𝑗+1 with respect to 𝑄𝑗 to

obtain the last orthonormal column of 𝑄𝑗+1. In addition, it can be easily seen that

span{𝑄𝑗+1} = span{𝑄𝑗 , 𝑢
(1)
𝑗+1} = span{𝑄𝑗 , �̂�

(1)}, (34)

where �̂�(1) is the first block of size 𝑛 of the vector �̂� obtained by applying the shift-and-invert step to 𝐮𝑗 (step 2 in Algorithm
1) when �̂� is partitioned as in (20). Therefore, we only need to compute the block �̂�(1) of �̂� to compute 𝑄𝑗+1. Thus, we can run
Algorithm 3 with 𝐰 = 𝐮𝑗 and 𝜇 = 𝜃𝑗 until step 3, saving the resulting vector 𝑥(1) = �̂�(1). It is important to observe that the first
𝑑 blocks of 𝐮𝑗 have to be constructed, since the variables in R-CORK are 𝑄𝑗 and 𝐑𝑗 , and 𝐮𝑗 is not stored. As in CORK, they
are computed as the single matrix-matrix product 𝑄𝑗 [𝑟

(1)
𝑗 ⋯ 𝑟(𝑑)𝑗 ], where 𝑟(1)𝑗 ,… , 𝑟(𝑑)𝑗 are the first 𝑑 blocks of the last column 𝐫𝑗

of 𝐑𝑗 , which is a very efficient computation in terms of cache utilisation on modern computers. Once �̂�(1) is available, by (34)
we can decompose

�̂�(1) = 𝑄𝑗𝑥𝑗 + 𝛼𝑗𝑞𝑗+1, (35)
where 𝑞𝑗+1 is a unit vector orthogonal to 𝑄𝑗 and 𝑥𝑗 = 𝑄∗

𝑗 �̂�
(1). Observe also that since �̂�(1) has been already computed, we can

compute the last 𝑠 entries of �̂�, denoted by �̂�, from step 5 in Algorithm 3 without the need of performing step 4. The vector �̂�
will be used in the second level of orthogonalization. Now, if �̂�(1) does not lie in the subspace spanned by the columns of 𝑄𝑗 ,
i.e., if �̂�(1) −𝑄𝑗𝑥𝑗 ≠ 0, we can expand 𝑄𝑗 into 𝑄𝑗+1 as follows:

𝑄𝑗+1 = [𝑄𝑗 𝑞𝑗+1], 𝑟𝑗+1 = 𝑟𝑗 + 1.

On the other hand, if �̂�(1) lies in the subspace spanned by the columns of 𝑄𝑗 , we have 𝑄𝑗+1 = 𝑄𝑗 and 𝑟𝑗+1 = 𝑟𝑗 . We summarize
the first level of orthogonalization in Algorithm 4. In step 2, if it is necessary, we can reorthogonalize 𝑞 to ensure orthogonality.
In fact, in our MATLAB code, we perform the classical Gram-Schmidt method twice.

Algorithm 4 First level of orthogonalization in R-CORK

Input: The matrix 𝑄𝑗 ∈ ℂ𝑛×𝑟𝑗 and the vector �̂�(1) ∈ ℂ𝑛 (the first block of �̂� = ( − 𝜃𝑗)−1𝐮𝑗).
Output: The matrix 𝑄𝑗+1 ∈ ℂ𝑛×𝑟𝑗+1 , the vector 𝑥𝑗 , and the scalar 𝛼𝑗 .
Expanding 𝑄𝑗 into 𝑄𝑗+1.
1. 𝑥𝑗 = 𝑄∗

𝑗 �̂�
(1).

2. 𝑞 = �̂�(1) −𝑄𝑗𝑥𝑗 .
3. 𝛼𝑗 = ‖𝑞‖2.
if 𝛼𝑗 ≠ 0 then

4a. 𝑄𝑗+1 = [𝑄𝑗 𝑞∕𝛼𝑗].
5a. 𝑟𝑗+1 = 𝑟𝑗 + 1.

else
4b. 𝑄𝑗+1 = 𝑄𝑗 .
5b. 𝑟𝑗+1 = 𝑟𝑗 .

end if

Second level of orthogonalization. In Algorithm 1, after choosing the shift and performing the shift-and-invert step, we need
to compute the entries of the 𝑗-th column of𝐻 𝑗 in step 3. Let us see how to do it efficiently in R-CORK. By using the compact
representation of 𝐔𝑗 in (23) - (24), we have

ℎ𝑗 = 𝐔∗
𝑗 �̂�,

= (𝑅(1)
𝑗 )∗𝑄∗

𝑗 �̂�
(1) +⋯ + (𝑅(𝑑)

𝑗 )∗𝑄∗
𝑗 �̂�

(𝑑) + 𝑉 ∗
𝑗 �̂�, (36)

where �̂� has been partitioned in an analogous way to (20). Since ( − 𝜃𝑗)�̂� = 𝐮𝑗 , and  and  have the structures in (10),
we obtain the following relation between the blocks of size 𝑛 of �̂� and the blocks of size 𝑛 of 𝐮𝑗

�̂�(𝑖) = 𝜃𝑗 �̂�
(𝑖−1) + 𝑢(𝑖−1)𝑗 , for 𝑖 = 2,… , 𝑑. (37)
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Motivated by (37), we consider the vectors 𝑥𝑗 ∈ ℂ𝑟𝑗 obtained in step 1 in Algorithm 4 and �̂� ∈ ℂ𝑠 obtained in step 5 in Algorithm
3 with 𝑥(1) = �̂�(1) and 𝜇 = 𝜃𝑗 , and a vector �̂� ∈ ℂ𝑑𝑟𝑗+𝑠 partitioned as follows

�̂� =

⎡⎢⎢⎢⎢⎣
�̂�(1)
...

�̂�(𝑑)

�̂�

⎤⎥⎥⎥⎥⎦
, �̂�(𝑖) ∈ ℂ𝑟𝑗 , 𝑖 = 1,… , 𝑑, (38)

with the blocks defined by the recurrence relation

�̂�(1) = 𝑥𝑗 ,

�̂�(𝑖) = 𝜃𝑗 �̂�
(𝑖−1) + 𝑟(𝑖−1)𝑗 , 𝑖 = 2,… , 𝑑, (39)

where 𝑟(𝑖)𝑗 represents the 𝑗-th column of the block 𝑅(𝑖)
𝑗 in (23). If 𝛼𝑗 ≠ 0 in step 3 in Algorithm 4, by using �̂�, the decomposition

(35) and the recurrence relation (37), the vectors �̂�(𝑖), 𝑖 = 1,… , 𝑑, corresponding to the partition of �̂� as in (20) can be represented
as follows

�̂�(𝑖) = 𝑄𝑗+1

[
�̂�(𝑖)

𝜃𝑖−1𝑗 𝛼𝑗

]
, 𝑖 = 1,… , 𝑑, (40)

whereas that if 𝛼𝑗 = 0, we can represent the blocks �̂�(𝑖), 𝑖 = 1,… , 𝑑, as follows

�̂�(𝑖) = 𝑄𝑗 �̂�
(𝑖). (41)

Then, by using either (40) or (41) (depending on the value of 𝛼𝑗) in (36) and recalling that the columns of𝑄𝑗+1 are orthonormal,
we have

ℎ𝑗 =

⎡⎢⎢⎢⎢⎢⎣

𝑅(1)
𝑗
...

𝑅(𝑑)
𝑗
𝑉𝑗

⎤⎥⎥⎥⎥⎥⎦

∗ ⎡⎢⎢⎢⎢⎣
�̂�(1)
...

�̂�(𝑑)

�̂�

⎤⎥⎥⎥⎥⎦
= 𝐑∗

𝑗 �̂�. (42)

Thus, after computing �̂� with the recurrence relation (39), we can compute ℎ𝑗 by performing a matrix-vector multiplication of
size 𝑑𝑟𝑗 + 𝑠, which, according to (33), is much smaller than 𝑑𝑛 + 𝑠 in large-scale problems and, even more, much smaller than
𝑛 whenever 𝑠 ≪ 𝑛 as often happens in applications5, 9.
Next, in step 4 of Algorithm 1, we need to compute the vector �̃�, which means that in R-CORK we need its compact

representation. By using the compact representation of 𝐔𝑗 and (40), we have, if 𝛼𝑗 ≠ 0,

�̃� = �̂� − 𝐔𝑗ℎ𝑗 ,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑄𝑗+1

[
�̂�(1)

𝛼𝑗

]
...

𝑄𝑗+1

[
�̂�(𝑑)

𝜃𝑑−1𝑗 𝛼𝑗

]
�̂�

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎣

𝑄𝑗𝑅
(1)
𝑗

...
𝑄𝑗𝑅

(𝑑)
𝑗

𝑉𝑗

⎤⎥⎥⎥⎥⎥⎦
ℎ𝑗 ,

=

⎡⎢⎢⎢⎢⎣
𝑄𝑗+1

. . .
𝑄𝑗+1

𝐼𝑠

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
�̂�(1) − 𝑅(1)

𝑗 ℎ𝑗
𝛼𝑗

]
...[

�̂�(𝑑) − 𝑅(𝑑)
𝑗 ℎ𝑗

𝜃𝑑−1𝑗 𝛼𝑗

]
�̂� − 𝑉𝑗ℎ𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and, in a similar way, if 𝛼𝑗 = 0 we obtain

�̃� =

⎡⎢⎢⎢⎢⎣
𝑄𝑗

. . .
𝑄𝑗

𝐼𝑠

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

�̂�(1) − 𝑅(1)
𝑗 ℎ𝑗

...
�̂�(𝑑) − 𝑅(𝑑)

𝑗 ℎ𝑗
�̂� − 𝑉𝑗ℎ𝑗

⎤⎥⎥⎥⎥⎥⎦
.

Defining

�̃� ∶=

⎡⎢⎢⎢⎢⎣
�̃�(1)
...

�̃�(𝑑)

�̃�

⎤⎥⎥⎥⎥⎦
, �̃�(𝑖) ∶= �̂�(𝑖) − 𝑅(𝑖)

𝑗 ℎ𝑗 ∈ ℂ𝑟𝑗 , 𝑖 = 1,… , 𝑑, �̃� ∶= �̂� − 𝑉𝑗ℎ𝑗 ∈ ℂ𝑠, (43)

and taking into account that the columns of 𝑄𝑗+1 and 𝑄𝑗 are orthonormal, we can express the step 5 in Algorithm 1 as follows:
if 𝛼𝑗 ≠ 0, then

ℎ𝑗+1,𝑗 = ‖�̃�‖2 =
‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃�(1)

𝛼𝑗
...

�̃�(𝑑)

𝜃𝑑−1𝑗 𝛼𝑗
�̃�

⎤⎥⎥⎥⎥⎥⎥⎥⎦

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖2
and 𝐮𝑗+1 = 𝐐𝑗+1 ⋅

1
ℎ𝑗+1,𝑗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃�(1)

𝛼𝑗
...

�̃�(𝑑)

𝜃𝑑−1𝑗 𝛼𝑗
�̃�

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (44)

where the notation in (24) is used, while if 𝛼𝑗 = 0 we proceed as in (44) by removing all the entries involving 𝛼𝑗 and with
𝐐𝑗+1 = 𝐐𝑗 . From the previous equations, we can conclude that the first 𝑑 blocks of size 𝑟𝑗+1 of the last column of 𝐑𝑗+1 in (24)
are given if 𝛼𝑗 ≠ 0 by

𝑟(𝑖)𝑗+1 =
1

ℎ𝑗+1,𝑗

[
�̃�(𝑖)

𝜃𝑖−1𝑗 𝛼𝑗

]
, 𝑖 = 1,… , 𝑑, (45)

and if 𝛼𝑗 = 0 by

𝑟(𝑖)𝑗+1 =
1

ℎ𝑗+1,𝑗
�̃�(𝑖), 𝑖 = 1,… , 𝑑. (46)

In addition, the last block of size 𝑠 of the last column of 𝐑𝑗+1 is

𝑣𝑗+1 =
1

ℎ𝑗+1,𝑗
�̃�. (47)

Since 𝐑𝑗 has orthonormal columns, from (42) and the definitions in (38)-(39) and (43), we have that ℎ𝑗 and �̃� satisfy

�̃� = �̂� − 𝐑𝑗ℎ𝑗 , (48)

where �̃� is orthogonal to 𝐑𝑗 . This process is the Gram-Schmidt process without the normalization step, and it is summarized in
Algorithm 5.

Algorithm 5 Second level of orthogonalization in R-CORK

Input: The matrix 𝐑𝑗 ∈ ℂ(𝑑𝑟𝑗+𝑠)×𝑗 and the vector �̂� ∈ ℂ𝑑𝑟𝑗+𝑠 from (38)-(39).
Output: Vectors ℎ𝑗 ∈ ℂ𝑗 and �̃� ∈ ℂ𝑑𝑟𝑗+𝑠.

1. ℎ𝑗 = 𝐑∗
𝑗 �̂�.

2. �̃� = �̂� − 𝐑𝑗ℎ𝑗 .

Remark 3. In order to improve orthogonality, a reorthogonalization method can be included in Algorithm 5. In our MATLAB
code, we use the classical Gram-Schmidt process twice.

The whole procedure of this new method to solve large-scale and sparse rational eigenvalue problems requires the use of the
two levels of orthogonalization described in this section, the first level to expand 𝑄𝑗 into 𝑄𝑗+1 and the second level to expand
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𝐑𝑗 into 𝐑𝑗+1. The complete R-CORK method is summarized in Algorithm 6. Note that R-CORK has as inputs the matrix 𝑄1
and the vector 𝐑1, which have to be computed. As in CORK1, p. 830, there are two possible ways of computing these inputs:
either starting with a random vector 𝐮1 ∈ ℂ𝑛𝑑+𝑠 and using an economy-size QR factorization, or emulating the structure of the
eigenvectors (11) of the linearization in (9). The details are very similar to the ones in1, p. 830 and are omitted. Recall in Algorithm
6 that 𝐫𝑗 denotes the last column of the matrix 𝐑𝑗 in (24).

Algorithm 6 Compact rational Krylov method for REP (R-CORK)

Input: 𝑄1 ∈ ℂ𝑛×𝑟1 , 𝐑1 ∈ ℂ(𝑑𝑟1+𝑠)×1 with 𝑄∗
1𝑄1 = 𝐼𝑟1 and 𝐑

∗
1𝐑1 = 1.

Output: Approximate eigenpairs (𝜆, 𝐱) of − 𝜆 with  and  as in (10).
for 𝑗 = 1, 2,… do

1. Choose shift 𝜃𝑗 .
2. Compute 𝐮𝑗 = 𝐐𝑗𝐫𝑗 , obtaining the first 𝑑 blocks as matrix-matrix product 𝑄𝑗 [𝑟

(1)
𝑗 ⋯ 𝑟(𝑑)𝑗 ].

3. Compute �̂�(1) by using Algorithm 3 until step 3 applied to 𝐰 = 𝐮𝑗 and 𝜇 = 𝜃𝑗 .
4. Compute �̂� from step 5 in Algorithm 3.
First level of orthogonalization
5. Run Algorithm 4 obtaining 𝑄𝑗+1, the scalar 𝛼𝑗 and the vector 𝑥𝑗 .
Second level of orthogonalization:
6. Compute �̂� in (38) via the recurrence relation in (39).
7. Run Algorithm 5 obtaining �̃� and ℎ𝑗 .
8. Compute ℎ𝑗+1,𝑗 and 𝐫𝑗+1 using (44)-(45)-(46)-(47) and get 𝐑𝑗+1 with Lemma 3.
9. Compute eigenpairs: (𝜆𝑖, 𝑡𝑖) of (15) and test for convergence.

end for
10. Compute eigenvectors: 𝐱𝑖 = 𝐐𝑗+1𝐑𝑗+1𝐻 𝑗𝑡𝑖.

3.3 Memory and computational costs
In this section, we discuss the memory and the computational costs of R-CORK and compare these costs with those of the
classical rational Krylov (RK)method, i.e., Algorithm 1, applied directly to the linearization−𝜆 of the REP in (9). In order to
simplify the results we will take 𝑟𝑗 = 𝑗+𝑑 in R-CORK, which is the upper bound in Theorem 6 and that essentially corresponds
to start the R-CORK iteration with 𝑄1 ∈ ℂ𝑛×𝑑 (𝑟1 = 𝑑) or, equivalently, with a random initial vector 𝐮1 whose first 𝑑 blocks in
the partition (20) are linearly independent. If the first 𝑑 blocks of 𝐮1 are taken to be collinear, then one can take 𝑟𝑗 = 𝑗 and to
improve even more the costs of R-CORK. In addition, note that we estimate the costs for any value of 𝑠, where 𝑠 × 𝑠 is the size
of the lower-right block 𝐶 − 𝜆𝐷 of − 𝜆 appearing in the strictly proper part of the REP (8). In this way, it will be seen that
even if 𝑠 ≈ 𝑛, R-CORK has considerable advantages with respect to RK in terms of memory and computational costs. However,
we emphasize that such advantages are still much more relevant when 𝑠 ≪ 𝑛, as happens very often in applications5, 9.
For thememory costs, after 𝑗 iterations R-CORK stores𝑄𝑗 ∈ ℂ𝑛×𝑟𝑗 and𝐑𝑗 ∈ ℂ(𝑑𝑟𝑗+𝑠)×𝑗 , which amounts to (𝑛+𝑑𝑗)(𝑗+𝑑)+𝑠𝑗 ≈

𝑛(𝑗 + 𝑑) + 𝑠𝑗 numbers. Note that the approximation 𝑛+ 𝑑𝑗 ≈ 𝑛 holds in any reasonable large-scale REP. In contrast, RK stores
𝐔𝑗 , which amounts to (𝑛𝑑 + 𝑠)𝑗 = 𝑛𝑑𝑗 + 𝑠𝑗 numbers. Since, (𝑗 + 𝑑) < 𝑑𝑗 for most reasonable choices of 𝑗 and degrees 𝑑
appearing in practice, we see that R-CORK is much more memory-efficient than RK. These memory costs are shown in Table 1.
With respect to the computational costs, observe that for both R-CORK and RK the cost is the sum of (i) the shift-and-invert

step and (ii) the orthogonalization steps. Let us analyze first the shift-and-invert steps. If the shift-and-invert step in RK, i.e., step
2 in Algorithm 1, is performed by applying an unstructured solver to the (𝑛𝑑 + 𝑠) × (𝑛𝑑 + 𝑠) linear system ( − 𝜃𝑗)�̂� = 𝐮𝑗 ,
then the cost of RK is much larger than the cost of R-CORK, since R-CORK solves this system with Algorithm 3 (removing step
4) which is much more efficient because it requires the solution of smaller linear systems (essentially, see Remark 2, one of size
𝑛 × 𝑛 and two of size 𝑠 × 𝑠, which are very often extremely small). However, one can consider to perform the shift-and-invert
step in RK with Algorithm 3, but this is still somewhat more expensive than R-CORK, because for RK it is needed to perform
step 4 of Algorithm 3, with an additional cost of 2𝑛(𝑑 − 2) flops in each iteration (see Remark 2). A final important remark on
the shift-and-invert step is that R-CORK involves the overhead cost of constructing 𝐮𝑗 in step 2 of Algorithm 6, which in RK is
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not needed. However, note that, as explained in previous sections, this construction can be performed as in CORK via a single
matrix-matrix product, which allows for optimal efficiency and cache utilisation on modern computers20, p. 577. Moreover, we
emphasize that a traditional construction of 𝐮𝑗 in R-CORK costs (𝑑𝑛𝑟𝑗) = (𝑑𝑛(𝑗 + 𝑑)) ≈ (𝑑𝑛𝑗) flops at iteration 𝑗, which
added to the orthogonalization cost of R-CORK discussed below would give a cost of the same order of the orthogonalization
cost of RK.
Finally, we discuss the orthogonalization costs of RK and R-CORK. In RK, the orthogonalization is performed in steps 3-4-5

of Algorithm 1 and its cost is well-known to be(𝑗(𝑛𝑑+ 𝑠)) = (𝑗𝑛𝑑+ 𝑗𝑠) flops at iteration 𝑗, which amounts to(𝑗2𝑛𝑑+ 𝑗2𝑠)
flops in the first 𝑗 iterations (see Table 1). In R-CORK, the orthogonalization is performed in steps 5-6-7-8 of Algorithm 6.
At iteration 𝑗, the cost of step 5 is (𝑟𝑗𝑛) = ((𝑗 + 𝑑)𝑛) flops, the cost of step 6 is (𝑟𝑗𝑑) = ((𝑗 + 𝑑)𝑑) flops, which is
negligible with respect to the cost of step 5, the cost of step 7 is (𝑗(𝑑𝑟𝑗 + 𝑠)) = (𝑗𝑑(𝑗 + 𝑑) + 𝑗𝑠) flops, and the cost of
step 8 is (𝑑𝑟𝑗 + 𝑠) = (𝑑(𝑗 + 𝑑) + 𝑠) flops. Therefore, the total cost at iteration 𝑗 of the orthogonalization in R-CORK is((𝑛+𝑗𝑑)(𝑗+𝑑)+𝑗𝑠) ≈ (𝑛(𝑗+𝑑)+𝑗𝑠), where we have used again the approximation 𝑛+𝑗𝑑 ≈ 𝑛, which gives(𝑗2𝑛+𝑗𝑑𝑛+𝑗2𝑠)
flops in the first 𝑗 iterations (see Table 1). Observe that the orthogonalization cost of RK includes the large term 𝑗2𝑛𝑑 which is
not present in the cost of R-CORK. Therefore, the orthogonalization cost of R-CORK is considerably smaller than the one of RK.
In Table 1, we summarize the comparison of the costs between R-CORK and RK.

TABLE 1 Orthogonalization and memory costs for classical rational Krylov method and R-CORK method after 𝑗 iterations.

Classical rational Krylov method R-CORK method
Orthogonalization cost (𝑗2𝑛𝑑 + 𝑗2𝑠) (𝑗2𝑛 + 𝑗𝑑𝑛 + 𝑗2𝑠)

Memory cost 𝑛𝑑𝑗 + 𝑠𝑗 𝑛(𝑗 + 𝑑) + 𝑠𝑗

4 IMPLICIT RESTARTING IN R-CORK

Practical implementations of any Krylov-type method for computing eigenvalues of large-scale problems require effective
restarting strategies. The goal of this section is to develop an implicit restarting strategy for R-CORK that restarts both 𝑄𝑗 and
𝐑𝑗 in the compact representation of 𝐔𝑗 in (23)-(24). Since R-CORK shares many of the properties of CORK, the results of this
section are similar to those in1, Section 6, which in turn are based on implicit restarting procedures for classical rational Krylov
methods28 and on the Krylov-Schur restart developed for TOAR in20, Section 4.2.
Following the Krylov-Schur spirit29 (see also30, Section 5.2), the restarting technique we propose transforms first the matrices

𝐻 𝑗 and 𝐾𝑗 in (25) to (quasi)triangular form, in order to reorder the Ritz values and to preserve the desired ones with a rational
Krylov subspace of smaller dimension. Second, by representing the new smaller Krylov subspace in its compact form in an
efficient way, the implicit restart of R-CORK is completed. The main difference of the process described below with respect to
the implicit restarting in1, Section 6 is that here we need to add a new block of size 𝑠× 𝑠 corresponding to the rational part of 𝑅(𝜆)
in (8).
Suppose that after 𝑗 iterations, we have the rational Krylov recurrence relation in its compact form as in (25)

𝐐𝑗+1𝐑𝑗+1𝐻 𝑗 = 𝐐𝑗+1𝐑𝑗+1𝐾𝑗 , (49)

and we want to reduce this representation to a smaller compact rational decomposition of size 𝑝, 𝑝 < 𝑗, this is

𝐐+
𝑝+1𝐑

+
𝑝+1𝐻

+
𝑝 = 𝐐+

𝑝+1𝐑
+
𝑝+1𝐾

+
𝑝 , 𝑝 < 𝑗.

For this purpose, we consider the generalized Schur decomposition:

𝐻𝑗 =
[
𝑌𝑝 𝑌𝑗−𝑝

] [ 𝑇 (𝐻)
𝑝×𝑝 ∗
0 𝑇 (𝐻)

(𝑗−𝑝)×(𝑗−𝑝)

][
𝑍∗

𝑝
𝑍∗

𝑗−𝑝

]
, (50)

𝐾𝑗 =
[
𝑌𝑝 𝑌𝑗−𝑝

] [ 𝑇 (𝐾)
𝑝×𝑝 ∗
0 𝑇 (𝐾)

(𝑗−𝑝)×(𝑗−𝑝)

][
𝑍∗

𝑝
𝑍∗

𝑗−𝑝

]
, (51)
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where 𝐻𝑗 and 𝐾𝑗 are the 𝑗 × 𝑗 upper Hessenberg matrices obtained by removing the last row of 𝐻 𝑗 and 𝐾𝑗 respectively,
𝑌 ∶=

[
𝑌𝑝 𝑌𝑗−𝑝

]
, 𝑍 ∶=

[
𝑍𝑝 𝑍𝑗−𝑝

]
∈ ℂ𝑗×𝑗 are unitary matrices with 𝑌𝑝, 𝑍𝑝 ∈ ℂ𝑗×𝑝, 𝑌𝑗−𝑝, 𝑍𝑗−𝑝 ∈ ℂ𝑗×(𝑗−𝑝) and 𝑇 (𝐻) ∶=[

𝑇 (𝐻)
𝑝×𝑝 ∗
0 𝑇 (𝐻)

(𝑗−𝑝)×(𝑗−𝑝)

]
, 𝑇 (𝐾) ∶=

[
𝑇 (𝐾)
𝑝×𝑝 ∗
0 𝑇 (𝐾)

(𝑗−𝑝)×(𝑗−𝑝)

]
∈ ℂ𝑗×𝑗 are upper (quasi)triangular matrices with 𝑇 (𝐻)

𝑝×𝑝 , 𝑇
(𝐾)
𝑝×𝑝 ∈ ℂ𝑝×𝑝 and

𝑇 (𝐻)
(𝑗−𝑝)×(𝑗−𝑝), 𝑇

(𝐾)
(𝑗−𝑝)×(𝑗−𝑝) ∈ ℂ(𝑗−𝑝)×(𝑗−𝑝). The 𝑝 < 𝑗 Ritz values of interest are the eigenvalues of the pencil 𝑇 (𝐾)

𝑝×𝑝 − 𝜆𝑇 (𝐻)
𝑝×𝑝 . By

multiplying by𝑍 on the right the recurrence relation (49) and using (50) and (51), and considering the first 𝑝 columns, we obtain:

𝐐𝑗+1𝐑𝑗+1

[
𝑌𝑝 0
0 1

] [
𝑇 (𝐻)
𝑝×𝑝

ℎ𝑗+1,𝑗 �̃�∗

]
= 𝐐𝑗+1𝐑𝑗+1

[
𝑌𝑝 0
0 1

] [
𝑇 (𝐾)
𝑝×𝑝

𝑘𝑗+1,𝑗 �̃�∗

]
, (52)

where �̃�∗ represents the first 𝑝 entries of the last row of 𝑍. By introducing the notation:

𝑌1 ∶=
[
𝑌𝑝 0
0 1

]
∈ ℂ(𝑗+1)×(𝑝+1), 𝐻+

𝑝 ∶=
[

𝑇 (𝐻)
𝑝×𝑝

ℎ𝑗+1,𝑗 �̃�∗

]
, 𝐾+

𝑝 =
[

𝑇 (𝐾)
𝑝×𝑝

𝑘𝑗+1,𝑗 �̃�∗

]
∈ ℂ(𝑝+1)×𝑝, (53)

and defining 𝐖𝑝+1 = 𝐑𝑗+1𝑌1, we obtain

𝐐𝑗+1𝐖𝑝+1𝐻
+
𝑝 = 𝐐𝑗+1𝐖𝑝+1𝐾

+
𝑝 . (54)

Note that with this transformation, we reduce the size of the matrices 𝐻+
𝑝 , 𝐾

+
𝑝 , and 𝐖𝑝+1 with respect to 𝐻 𝑗 , 𝐾𝑗 , and 𝐑𝑗+1,

and remove the Ritz values that are not of interest. However, observe that the large factor 𝐐𝑗+1 remains unchanged. In order to
reduce the size of 𝐐𝑗+1, consider

𝐖𝑝+1 =

⎡⎢⎢⎢⎢⎢⎣

𝑊 (1)
𝑝+1
...

𝑊 (𝑑)
𝑝+1

𝑉𝑗+1𝑌1

⎤⎥⎥⎥⎥⎥⎦
, 𝑊 (𝑖)

𝑝+1 ∈ ℂ𝑟𝑗+1×(𝑝+1), 𝑖 = 1,… , 𝑑,

and let 𝜔 be the rank of [𝑊 (1)
𝑝+1 ⋯ 𝑊 (𝑑)

𝑝+1]. The key observation is that although the matrices 𝐻+
𝑝 , 𝐾

+
𝑝 are no longer in

Hessenberg form, the subspace spanned by the columns of (𝐐𝑗+1𝐖𝑝+1) is still a rational Krylov subspace corresponding to
− 𝜆28. Therefore, we can apply Theorem 6 to span

{
𝑄𝑗+1𝑊

(1)
𝑝+1,… , 𝑄𝑗+1𝑊

(𝑑)
𝑝+1

}
= 𝑄𝑗+1 span

{
𝑊 (1)

𝑝+1,… ,𝑊 (𝑑)
𝑝+1

}
to obtain

that 𝜔 ≤ 𝑑 + 𝑝 < 𝑑 + 𝑗. Then, we compute the economy singular value decomposition of:

[𝑊 (1)
𝑝+1 ⋯ 𝑊 (𝑑)

𝑝+1] = [ (1) ⋯  (𝑑)],

where  ∈ ℂ𝑟𝑗+1×𝜔,  ∈ ℂ𝜔×𝜔 and  (𝑖) ∈ ℂ𝜔×(𝑝+1) for 𝑖 = 1,… , 𝑑. Thus, by defining

𝑄+
𝑝+1 = 𝑄𝑗+1 , 𝐑+

𝑝+1 =

⎡⎢⎢⎢⎢⎣
 (1)

... (𝑑)

𝑉𝑗+1𝑌1

⎤⎥⎥⎥⎥⎦
, 𝐐+

𝑝+1 =

⎡⎢⎢⎢⎢⎢⎣

𝑄+
𝑝+1

. . .
𝑄+

𝑝+1
𝐼𝑠

⎤⎥⎥⎥⎥⎥⎦
,

we get from (54) the compact rational Krylov recurrence relation

𝐐+
𝑝+1𝐑

+
𝑝+1𝐻

+
𝑝 = 𝐐+

𝑝+1𝐑
+
𝑝+1𝐾

+
𝑝 , (55)

with 𝑝 < 𝑗. It is important to emphasize again that the matrices𝐻+
𝑝 and 𝐾+

𝑝 are no longer upper Hessenberg matrices, however,
they contain the required Ritz values and the columns of𝐐+

𝑝+1𝐑
+
𝑝+1 span a corresponding rational Krylov subspace. We continue

the process by expanding (55) with Algorithm 6 until we get a rational Krylov subspace of dimension 𝑗. The matrices 𝐻+
𝑗 and

𝐾+
𝑗 obtained in this expansion are not in Hessenberg form, although their columns 𝑝 + 1,… , 𝑗 have a Hessenberg structure

(see30, p. 329). Then, the restarting process described in this section is applied again to get a new compact relation (55) of “size 𝑝”.
This expansion-restarting procedure is cyclicly repeated until the prescribed stopping criterion is satisfied for a certain desired
number, less than or equal to 𝑝, of Ritz pairs.
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5 NUMERICAL EXPERIMENTS

In this section, we present two large-scale and sparse numerical examples to illustrate the efficiency of the R-CORK method.
All reported experiments were performed using Matlab R2013a on a PC with a 2,2 GHz Intel (R) Core (TM) i7 processor, with
16 GB of RAM and DDR3 memory type, and with operating system macOS Sierra, version 10.12.1.
By following1, Section 8, in the numerical experiments we plot the residuals at each iteration, with and without restarts, obtained

by using the R-CORKmethod, the dimension of the subspace at each iteration for R-CORK, and the comparison of the memory
storages of R-CORK and of the classical rational Krylov method applied directly to the linearization (9). We also report on the
number of iterations until convergence.
Inspired by the applications in5, Section 4, we construct numerical experiments with prescribed eigenvalues and poles of a

rational matrix 𝑅(𝜆) represented as in (8). In order to measure the convergence of an approximate eigenpair (𝜆, 𝑥) of 𝑅(𝜆), we
consider the relative norm residual:

𝐸(𝜆, 𝑥) =
‖𝑅(𝜆)𝑥‖2

(
∑𝑑

𝑖=0 |𝜆|𝑖‖𝑃𝑖‖𝐹 + ‖𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 ‖𝐹 )‖𝑥‖2 . (56)

Observe that the computation of 𝐸(𝜆, 𝑥) involves matrices and vectors of size 𝑛 and, so, is expensive. Therefore, in actual
practice, we recommend to test first the convergence through a cheap estimation of the residual of the linearized problem, i.e.,‖( − 𝜆)𝐳‖2, involving only the small projected problem (15), and once such residual is sufficiently small to compute the
residual (56) every 𝑞 > 1 iterations instead of at each iteration. However, in our examples, we performed the computation of
𝐸(𝜆, 𝑥) at each iteration for the purpose of illustration.
The computation of (56) deserves some comments. Note first that it requires to recover the approximated eigenvector 𝑥 of

𝑅(𝜆) from the approximated eigenvector 𝐳 of the linearization−𝜆 in (9) computed in step 10 of Algorithm 6. This recovery,
according to the first equation in (11), can be done by taking any of the first 𝑑 blocks of 𝐳 if 𝜆 ≠ 0. Since in our numerical examples
the moduli of the approximate eigenvalues are larger than 1, we have chosen the 𝑑-th block of 𝐳 as approximate 𝑥. However,
we recommend to choose the first block if the moduli of the approximate eigenvalues are smaller than 1. The calculation of the
quantities ‖𝑃𝑖‖𝐹 , 𝑖 = 0,… , 𝑑 needs to be performed only once and it is inexpensive since the matrices 𝑃𝑖 are sparse in practice.
Finally, to compute the expression ‖𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 ‖𝐹 on the denominator in (56), we use

‖𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 ‖2𝐹 = trace((𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 )∗𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 ),
= trace((𝐸∗𝐸)(𝐶 − 𝜆𝐷)−1(𝐹 𝑇𝐹 )(𝐶 − 𝜆𝐷)−∗),

which only involves the matrices 𝐸∗𝐸, 𝐹 𝑇𝐹 , (𝐶 − 𝜆𝐷)−1 and (𝐶 − 𝜆𝐷)−∗ of size 𝑠 × 𝑠. Since in many application 𝑠 ≪ 𝑛, this
computation is usually inexpensive.

Numerical experiment 1. We construct a REP of the type arising from the free vibrations of a structure if one uses a viscoelastic
constitutive relation to describe the behavior of a material5, 9. The REPs of this type have the following structure:

𝑅(𝜆)𝑥 =

(
𝜆2𝑀 +𝐾 −

𝑘∑
𝑖=1

1
1 + 𝑏𝑖𝜆

Δ𝐺𝑖

)
𝑥 = 0, (57)

where the mass and stiffness matrices 𝑀 and 𝐾 are real symmetric and positive definite, 𝑏𝑗 are relaxation parameters over 𝑘
regions, and Δ𝐺𝑗 is an assemblage of element stiffness matrices over the region with the distinct relaxation parameters. As in5,
we consider the case where Δ𝐺𝑖 = 𝐸𝑖𝐸𝑇

𝑖 and 𝐸𝑖 ∈ ℝ𝑛×𝑠𝑖 . By defining

𝐸 = [𝐸1, 𝐸2,… , 𝐸𝑘], 𝐷 = diag(𝑏1𝐼𝑠1 , 𝑏2𝐼𝑠2 ,… , 𝑏𝑘𝐼𝑠𝑘),

the REP (57) can be written in the form (8):

(𝜆2𝑀 +𝐾 − 𝐸(𝐼 + 𝜆𝐷)−1𝐸𝑇 )𝑥 = 0.

In our particular example, we consider the case with one region and one relaxation parameter 𝑏1 = −1. The construction of
the matrices 𝑀 and 𝐾 in our example proceeds as follows: construct first 𝑅1(𝜆) = 𝜆2𝐴2 + 𝐴0 − 𝑒10000(1 − 𝜆)−1(𝑒10000)𝑇 ,
with 𝐴2, 𝐴0 ∈ ℝ10000×10000 diagonal and positive definite matrices and 𝑒10000 the last column of 𝐼10000. This structure allows to
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prescribe easily the eigenvalues for 𝑅1(𝜆). Then, we consider the following invertible tridiagonal matrix 𝑃

𝑃 =

⎡⎢⎢⎢⎢⎢⎣

1 1
2

1
3

1
. . .

. . . . . . 1
2

1
3

1

⎤⎥⎥⎥⎥⎥⎦
,

and finally construct 𝑅(𝜆) = 𝑃𝑅1(𝜆)𝑃 𝑇 . Since 𝑃 is invertible, the eigenvalues of 𝑅(𝜆) and 𝑅1(𝜆) are the same. By using this
procedure, we have constructed the REP

𝑅(𝜆) 𝑥 =
(
𝜆2𝑀 +𝐾 − 𝑝10000(1 − 𝜆)−1(𝑝10000)𝑇

)
𝑥 = 0, (58)

where𝑀 ∶= 𝑃𝐴2𝑃 𝑇 , 𝐾 ∶= 𝑃𝐴0𝑃 𝑇 ∈ ℝ10000×10000 are symmetric, positive definite, and pentadiagonal matrices, and 𝑝10000 ∈
ℝ10000 represents the last column of the matrix 𝑃 .
In this example we are interested in computing the 20 eigenvalues of (58) with negative imaginary part and with largest

absolute value of the negative imaginary part. To aim our goal, we use 3 cyclically repeated shifts in the rational Krylov steps
and a random unit real vector as an initial vector. The reader can see the approximate eigenvalues computed by R-CORK and the
chosen shifts in Figure 1(a). We first solve the REP (58) by using Algorithm 6 without restart, and after 85 iterations, we find
the required eigenvalues with a tolerance (56) of 10−10. The convergence history is shown in Figure 1(b). In Figure 1(d), we plot
𝑟𝑗 , the rank of 𝑄𝑗 at the iteration 𝑗, and 𝑗, the dimension of the Krylov subspace. Since we did not perform restart, we can see
that both, 𝑟𝑗 and 𝑗 increases with the iteration count 𝑗 and that 𝑟𝑗 = 𝑗 +1, as expected since the degree of the polynomial part of
(58) is 𝑑 = 2. Figure 1(f) displays the comparison between the cost of memory storage of both the R-CORK method, by using
Algorithm 6, and the classical rational Krylov method, by using Algorithm 1. From this figure, we can see that the R-CORK
method requires approximately half of the memory storage that the classical rational Krylov method, which is consistent with
the degree 2 of the polynomial part of (58).
Next, we apply Algorithm 6 to the REP (58) combined with the implicit restarting introduced in Section 4. We choose the

maximum dimension of the subspace 𝑚 = 45, which is reduced after each restart to dimension 𝑝 = 30 to compute the 20
required eigenvalues. The convergence history of the eigenpairs (𝜆, 𝑥) computed by this restarted R-CORK method is shown in
Figure 1(c). After 3 restarts and 81 iterations, the 20 required eigenvalues have been found with a tolerance (56) of 10−10. In
Figure 1(e) the reader can see the rank of 𝑄𝑗 at the 𝑗-th iteration and it can be seen that with restart, the relation between 𝑗 and
𝑟𝑗 continues the same. Finally, in Figure 1(g) we plot the memory storage for R-CORK and classical rational Krylov, and it can
be observed that the memory cost for the R-CORK method is a factor close to 2 smaller than the memory cost obtained by the
classical rational Krylov method.

Numerical experiment 2. For this numerical example, we consider an academic REP of size 5000 × 5000 and with the degree
of its polynomial part equal to 3, i.e., a REP of the form

𝑅(𝜆) = 𝜆3𝐴3 + 𝜆2𝐴2 + 𝜆𝐴1 + 𝐴0 − 𝐸(𝐶 − 𝜆𝐷)−1𝐹 𝑇 . (59)

The coefficient matrices of 𝑅(𝜆) in (59) were constructed in a similar way as in the numerical experiment 1: first, we consider
a rational matrix 𝑅2(𝜆) = 𝜆3𝑃3 + 𝜆2𝑃2 + 𝜆𝑃1 + 𝑃0 −𝐸0(𝐶 − 𝜆𝐷)−1𝐹 𝑇

0 with prescribed eigenvalues, where 𝑃𝑖 ∈ ℝ5000×5000 are
diagonal matrices, 𝐸0 = [𝑒1 + 𝑒2, 𝑒5 + 𝑒6], 𝐹0 = [𝑒4997 + 𝑒4998, 𝑒4999 + 𝑒5000] ∈ ℝ5000×2, with 𝑒𝑖 the 𝑖th canonical vector
of size 5000, and

𝐶 =
[
105 0
0 −105

]
, 𝐷 = 𝐼2,

and then we define 𝑅(𝜆) = 𝑃𝑅2(𝜆)𝑄, where

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

1
3

− 1
4

. . . . . . . . .

− 1
5

. . . . . . . . . 1
3

. . . . . . . . . 1
2

− 1
5
− 1

4
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑄 =

⎡⎢⎢⎢⎢⎢⎣

−1 − 1
3

1
2

. . . . . .

. . . . . . − 1
3

1
2

−1

⎤⎥⎥⎥⎥⎥⎦
∈ ℝ5000×5000.
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FIGURE 1 Numerical experiment 5.1.
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The goal of this example is to compute the 30 eigenvalues closest to zero. In this situation, it is natural to choose the origin as
a fixed shift. In Figure 2(a), the approximate eigenvalues computed by R-CORK are displayed. By starting with a random unit
complex vector, first we apply R-CORK without restarting, and after 83 iterations, the desired eigenvalues are obtained with a
tolerance (56) of 10−12. The convergence history can be seen in Figure 2(b). In Figure 2(d), we see that the relation 𝑟𝑗 < 𝑗+𝑑 with
𝑗 the number of iterations also holds in this example, though in this case with 𝑑 = 3 since this is the degree of the polynomial
part in (59). Figure 2(f) shows the memory costs of R-CORK and classical rational Krylov. It is observed that the reduction in
cost of R-CORK is approximately a factor of 3, i.e., the degree of the polynomial part of (59).
As a final example, we solve (59) by using R-CORK combined with restarting and taking a maximum subspace dimension

𝑚 = 60 which is reduced to 𝑝 = 40 after every restart. The convergence history is shown in Figure 2(c), where it is observed
that after 91 iterations and 2 restarts, the 30 eigenvalues closest to the origin have been found with a tolerance (56) of 10−12.
Despite the fact that a few more iterations are needed with restart than without restart, we see in Figure 2(e) that we are using
a subspace of much smaller dimension to compute the eigenpairs, and, particularly for this example, 𝑟𝑗 < 𝑗 after the restart.
Finally, the comparison of the memory costs for the R-CORK and for the classical rational Krylov methods is plotted in Figure
2(g), where we see again that the cost of R-CORK is a factor 𝑑 = 3 smaller.

6 CONCLUSIONS AND LINES OF FUTURE RESEARCH

In this paper, we have introduced the R-CORK method for solving large-scale rational eigenvalue problems that are represented
as the sum of their polynomial and strictly proper parts as in (8). The first key idea is that R-CORK solves the generalized
eigenvalue problem associated to the Frobenius companion-like linearization (9) previously introduced in5. The second key idea
is that R-CORK is a structured version of the classical rational Krylov method for solving generalized eigenvalue problems that
takes advantage of the particular structure of (9). This structure allows us to represent the orthonormal bases of the rational
Krylov subspaces of (9) in a compact form involving less parameters than the bases of rational Krylov subspaces of the same
dimension corresponding to unstructured generalized eigenvalue problems of the same size as the considered linearization. In
addition, this compact form can be efficiently and stably updated in each rational Krylov iteration by the use of two levels of
orthogonalization in the spirit of the TOAR18, 20 and the CORK1 methods for large-scale polynomial eigenvalue problems.
The combined use of the compact representation of rational Krylov subspaces and the two levels of orthogonalization in R-

CORK reduces significantly the orthogonalization and the memory costs with respect to a direct application of the classical
rational Krylovmethod to the linearization (9). If 𝑛×𝑛 is the size of the rational eigenvalue problem, 𝑗 is the maximum dimension
of the considered Krylov subspaces of the linearization, 𝑑 is the degree of the matrix polynomial 𝑃 (𝜆) in (8), and 𝑠×𝑠 is the size
of the pencil (𝐶 − 𝜆𝐷) appearing in (8) (note that if 𝑠 ≤ 𝑛, then 𝑠 is essentially the rank of the strictly proper part of the rational
matrix𝑅(𝜆)), then the reduction in costs of R-CORK is appreciable whenever 𝑗𝑑 ≪ 𝑛 and very considerable if, moreover, 𝑠 ≪ 𝑛
and 𝑑 < 𝑗. In this situation, after 𝑗 iterations, the orthogonalization cost of R-CORK is(𝑗2𝑛), while the one of classical rational
Krylov is (𝑗2𝑛𝑑), and the memory cost of R-CORK is approximately 𝑛𝑗 numbers, while the one of classical rational Krylov is
𝑛𝑑𝑗. These reductions can be combined with an structured implementation of a Krylov-Schur implicit restarting adapted to the
compact representation used by R-CORK, which allows us to keep the dimension of the Krylov subspaces moderate without
essentially increasing the number of iterations until convergence. The performed numerical experiments confirm all these good
properties of R-CORK.
Since many linearizations of rational matrices different from (9) have been developed very recently4, 26 and some of them

include the option of considering that the matrix polynomial 𝑃 (𝜆) in (8) is expressed in non-monomial bases, an interesting
line of future research on the numerical solution of rational eigenvalue problems is to investigate the potential extension of the
R-CORK strategy to other linearizations.
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FIGURE 2 Numerical experiment 5.2
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