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ABSTRACT

This paper presents a novel transversal, agnostic-infrastructure, and generic processing model to build
environmental big data services in the cloud. Transversality is used for building processing struc-
tures (PS) by reusing/coupling multiple existent software for processing environmental monitoring,
climate, and earth observation data, even in execution time, with datasets available in cloud-based
repositories. Infrastructure-agnosticism is used for deploying/executing PSs on/in edge, fog, and/or
cloud. Genericity is used to embed analytic, merging information, machine learning, and statistic
micro-services into PSs for automatically and transparently converting PSs into big data services to
support decision-making procedures. A prototype was developed for conducting case studies based
on the data climate classification, earth observation products, and making predictions of air data pol-
lution by merging different monitoring climate data sources. The experimental evaluation revealed

the efficacy and flexibility of this model to create complex environmental big data services.

1. Introduction

Visualization and analysis services have become key for
processing and managing large volumes of environmental
data, which have been keystone for scientific community to
conduct complex scientific studies such as climate [43], en-
vironment [19] [51] and earth observation [41] [30].

Online repositories following FAIR principles (Findable,
Accessible, Interoperable, and Reusable) [49] [59] have been
created for collecting and making available visualization and
analysis software as well as datasets and information for sci-
entific community to establish collaborative work by sharing
these tools with end-users [48] [60]. These repositories not
only represent a source of solutions for organizations to pro-
duce useful information for decision makers [54], but also an
opportunity area to create environmental big data services
based on software processing structures (PS). These struc-
tures are built by grouping and reusing available software
and datasets, pipelines, patterns, service mesh, and work-
flows are examples of PSs available for organizations to build
big data services. A PS is modelled as the interconnection of
a set of processing stages (a stage executes a given software)
represented by a Directed Acyclic Graph (DAG) where the
nodes represent stages and edges represent the interconnec-
tion of a stage with any of other stage, data source/sink, or
other PSs. These PSs process and/or manage environmen-
tal monitoring data from repositories [27]. For instance, in
a traditional big data scenario, a PS commonly consider the
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following stages: i) acquisition of environmental monitoring
data from a source (e.g., either a dataset published in an on-
line repository [27], data monitoring repositories[45], [46],
or a downloaded/produced dataset); ii) data preparation for
converting extracted data into a given format (e.g., Geol-
SON, JSON or queries for a database); iii) pre-processing
for removing potential erroneous data, and/or enriching the
data by calculating/fulfilling missing data; iv) processing
or analysis to convert data into useful information by us-
ing software for classification, grouping, prediction of val-
ues, merging data/information to name a few; v) visualiza-
tion that prepare information for being consumed by deci-
sion makers.

Today, multiple PSs are already available for scientific
community to process and analyze climate [20], pollution [7]
[31], earth observation data [41] [32], processing contents
[17] [33] or predicting meteorological changes [34] [18].
These PSs produce useful information [10] [60] that results
critical [20] for decision-making procedures (e.g., to prevent
disasters [36]).

Nevertheless, building environmental big data services
based on existent software pieces and/or PSs is not trivial
because of the following restrictions:

1. The programming languages used by the available frame-

works for creating PSs is not necessarily the same,
which is a problem when the environmental process-
ing software has been written by using a different pro-
gramming languages.

2. PSs and big data frameworks could require to be exe-
cuted on a given platform and because of this, IT staff
commonly ends up installing third party software and
performing troubleshooting processes to overcome er-
rors due to installation, configuration, data unavail-
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Transversal processing model

ability, and path mistakes [3]. Moreover, these frame-
works commonly impose the installation of third party

solution for the management of computational resources.

3. Reusing solutions is not an immediate option for end-
users to build a new service. This means, in most
cases, a new solution must be built when creating a
PS and is not feasible for end-users to reuse existent
and already tested PSs.

4. Analytic, statistic, and machine learning are commonly
added to the solutions as a third party software [20],
which could produce issues of programming languages,
portability, and interoperability could arise when con-
sidering these frameworks in a solution.

5. The access to the data at any stage: in traditional big
data solutions, the PSs are created as black boxes, where
a solution retrieves data from a source (e.g., any of
folder, cloud location, or data lake), executes a set
of applications at different stages for converting in-
coming data into useful information that is stored in a
sink (e.g., cloud storage location). The end-user thus
only gets access to the final results placed at the sink,
but not necessarily to the results created/produced by
intermediate stages, which could be useful either as
input data for other solutions or being consumed by
other end-users or applications.

In this context, it makes sense that the scientific com-
munity can reuse, either portions or whole, successfully in-
stalled and configured PSs [35] [53] to create comprehensive
environmental big data services, which will result in sav-
ing time and human/infraestructure resources. It also makes
sense that these PSs can be agnostic from programming lan-
guages, infrastructure, and platforms for enabling end-users
to deploy/execute them on/in different infrastructures such as
edge (e.g., personal computers), fog (e.g., servers of a com-
pany/organization) and/or cloud (e.g., virtual containers and
machines provided by public providers) [40] without need-
ing to download data and software or making installing con-
figurations, which reduces the need for IT staff of organiza-
tions to perform troubleshooting processes.

However, reusing already installed and configured PSs,
coupling it to existent PSs [12], sharing data produced in a
PS with another one [56], publishing and consuming infor-
mation at any stage of an existing PS during the data life-
cycle [55] are challenging tasks, which have been only par-
tially addressed by solutions in the state-of-the-art, such as
pipelines [23], workflows [29] [4] [5] or services [9] [2].
Currently, for our best knowledge, there are no feasible and
immediate options provided by different traditional frame-
works for organizations to create environmental big data in-
cluding the aforementioned features without making hard-
working adaptations.

This paper presents a novel transversal, agnostic-infra-
structure, and generic processing model to build environ-
mental big data services in the cloud.

Transversality property is used for building PS by reusing/-
coupling multiple existent software for processing environ-
mental monitoring, climate, and earth observation data, even

in execution time, with datasets available in cloud-based repos-
itories. The transversal model adds the transversality prop-
erty to PSs by creating and using a set of coupling and ex-
tracting transversal points.

TCP1q
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Figure 1: Transversal property for converting two existent PSs
into a new transversal service.

Figure 1 shows an example of a transversal service built
in the cloud by reusing two existent PSs (one for processing
re-analysis MERRA-2 products and the other for process-
ing monitoring data from ground stations by CONAGUA'
placed at Mexico). As it can be seen, the Transversal Cou-
pling Points (TCPs) interconnect two stages, one from PS;
and the other one from PS, (transversal union between PS;
and PS, in Figure 1 through stages B and G). This virtual
coupling is performed, even in execution time, to create a
new independent Transversal Service (TS). The Transversal
Extraction Points (TEPs) enable end-users or applications to
consume and process data (see TEP, and TEP, in Figure 1).
The extraction services enable either end-users or other ser-
vices to retrieve, deliver, and/or visualize data/results pro-
duced by a given stage of an existing PS (See TEP; between
A and B of PS|, and TEP, between G and H of PS, in Figure
D).

Genericity, in the context of this paper, refers to the prop-
erty of analyzing and producing information produced by
any environmental software without restrictions of language
programming, infrastructure, platform, and software. This
property is used to embed analytic, merging information,
machine learning, and statistic into generic micro-services
coupled to PSs for automatically and transparently convert-
ing them into big data services to support decision-making
procedures. The embedded micro-services take advantage
of TEPs, providing services such as data fusion to produce
useful information to support decision-making procedures.
Figure 1 shows how two PSs are processing two different cli-

Uhttps://smn.conagua.gob.mx/tools/GUI/EMAS .php
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mate data sources, and how embedded micro-services con-
sume data from TEPs for producing/visualizing information.
The first embedded micro-service, connected to the TEP,
executes a classification tool to merge metrics from two data
sources, and then to group climate metrics by statistic simili-
tude values. The second embedded micro-service, connected
to TEP, executes a visualization tool (a Geoportal in this
case) for extracting results produced by stage G (classifica-
tion of metrics) and to show them in a map by using GIS
embedded service.

Infrastructure-agnosticism is used for deploying/executing
PSs on/in edge, fog, and/or cloud without end-users requir-
ing to perform installation, configuration steps, which re-
duces the need for performing troubleshooting procedures.
This model also adds agnosticism from infrastructure to the
TS (any of PS, systems of PSs or big data services) by encap-
sulating environmental software into virtual containers and
managing them by using micro-service architecture.

The transversal, generic and agnostic properties, added
to existent PSs, enable end-users to create complex big data
services by reusing multiple existing software created with
different frameworks and deployed on different IT infras-
tructures. The building of transversal environmental big data
services thus can be performed in three simple steps: i) Builds
a PS by choosing existing software and datasets[49]. ii) Cre-
ates a new independent service by defining TCPs reusing
already configured and tested PSs (any of online available,
downloaded in a given infrastructure or created by this model).
iii) Creates a big data service by using TEPs and the embed-
ded micro-services that produce useful information.

when performing these three steps, a new transversal ser-
vice is created for end-users and / or decision makers to con-
sume the information produced by this solution through in-
dependent transversal processes service (TPS). Applying the
three steps to the creation of environmental services also en-
able decoupling the environmental software, from the PSs
as well as from the analytic and machine learning tools. In
short, the TPSs converts a traditional set of software pieces
into an environmental big data service.

A prototype was developed and implemented based on
this model to create environmental big data services, which
were created based on existing environmental software for
conducting three case studies: the first one for processing of
satellite imagery to build Earth Observation Products (EOPs)
and yielding environmental indexes. The second one for pro-
cessing monitoring and re-analysis climate data. The resul-
tant data were processed by clustering algorithms to create
groups of ground stations by using statistical similitude val-
ues. The third one is a data fusion service for producing pol-
lution predictions using machine learning tools (included in
embedded micro-services) by using multiple data sources,
such as monitoring and re-analysis climate (MERRA [27]
REDMET [46]), and monitoring air pollution (RAMA [45])
sources. The experimental evaluation, based on the three
case studies, revealed the efficacy and flexibility of this model
to create complex environmental big data services for pro-
cessing heterogeneous data (such as re-analysis and moni-

toring climate and environment data). It also revealed the
feasibility of this model to perform data/information fusion
to produce useful results, which can be consumed by deci-
sion makers through online services (TPS).

The paper is organized as follows: preliminaries and back-
ground information are given in Section 2; Section 3 frames
the state-of-the-art about the topic; the novel transversal com-
puting model is described in Section 4; the experimental
evaluation is explained in Section 5; finally the Section 6
is dedicated to the conclusion remarks and future directions.

2. Preliminaries

2.1. An overview of processing models for Big data

In a traditional big data scenario, the stages are created
as blocks executing a given application or tool by using an
Extract-Transform-Load (ETL) processing model. In this
model, ablock extracts data from a source (e.g., any of folder,
cloud location, or data lake), executes the applications en-
capsulated into the stage for transforming the incoming data
into useful information that is loaded in a sink (e.g., cloud
storage location).

Pipelines and computerized workflows are examples of
PSs that allow end-users to process data through multiple
blocks (stages such as acquisition, pre-processing, process-
ing, and preservation) that are chained by following a given
sequence. The simplest coupling method is a pipeline, where
the stages are interconnected sequentially following an ETL,
the coupling is performed by using the data sources and sinks
of the stages. For instance, in a traditional big data pipeline,
an acquisition block (stage) extracts data from a web page,
creates indexes (transforms), and loads the indexes in a da-
tabase, placed commonly in a cloud location, where a pre-
processing stage extracts the indexes from the database to
locate the extracted data for cleaning them (e.g., removing
outliers and noise data or calculating missing data by using
extrapolation). This pre-processing commonly transforms
raw data into a cleaned data version, which is also loaded
as indexes in the database and stored in a cloud location. A
processing stage (e.g., analytics or machine learning tools)
extracts the indexes to get the cleaned data and to transform
them into reduced information (e.g., any of categories, clas-
sification or ordered groups), which is loaded in a database
as information. At this point, this information can be con-
sumed by end-users in decision-making processes [52].

From the point of view of the users participating in a
decision-making process, all these stages are integrated in
a single service, and they only has access to the raw data
and/or resultant information.

2.2. An overview of stages coupling method and
data management
The ETL model is used for the coupling of stages through
data sources and sinks. It is commonly represented as a
DAG [5] [9], which is used for a wide range of tools [6] and
frameworks [29] [2] [47] to create analytic and processing
services in either an automatic or semi-automatic manner.
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Some frameworks impose to end-users a programming lan-
guage (e.g., Python [29] [9] [4] or Java [47]) for building
PSs. Other frameworks also impose infrastructure, platform
requirements [5] [4], or they only enable the users to use so-
lutions in the cloud [8] [1] [6].

Inreal-world scenarios, this results in a complex PS ecosys-

tem where multiple PSs are built by multiple frameworks,
using different programming languages, and deployed on mul-
tiple platforms over different infrastructures. The following
tasks could be required in such an ecosystem, which are ad-
dressed by the model presented in this paper:

1. Reusing partial or whole PSs (any of applications, stages,

pipelines, or workflows).

2. Building services based on multiple existing PSs by
interconnecting them either in execution or configu-
ration times.

3. Allowing on-the-fly and on-demand changes in exist-
ing PS.

4. Requiring that different stages sharing a data source
(e.g., data warehouse or data lake) or sinks.

5. Consuming data produced by intermediate stages, not
only from the starting data sources and ending sinks.

6. Creating information crossing processes by including

multiple already developed applications processing mul-

tiple data sources or sinks (including the sources and/or
sinks of intermediate stages).

3. Related work

Engines and frameworks have been key for the scientific
community to build big data PSs [58]. Processing workflows
and pipelines are not a new technology, there are multiple
tools available that allow users to design and manage the ex-
ecution of tasks, either locally or in a distributed environ-
ment. Taverna [21], for example, is a framework created for
the execution of bioinformatic workflows, offering a variety
of processes (services) in a catalog used for the construction
of multiple workflows. It also enables designers to invoke
external services to incorporate them into their workflows,
as well as interfaces for the construction and execution of
these processes. In this way, users can build their process-
ing workflows without much experience in computing ar-
eas. These solutions can be shared through myExperiment
[14] (a repository of workflows) which allows using algo-
rithms for detecting useful fragments or workflows to cre-
ate tasks (hierarchy of tasks). Similar to this framework, a
wide catalog of workflow systems (workflow engines) has
been reported in the state-of-the-art including but not re-
duced to popular examples, such as COMPS [5, 50], Make-
flow [2], Pegasus [9], Galaxy [15], and DagOnStar [29]. Al-
though those engines and frameworks have different charac-
teristics, such as the programming model or the tasks’ exe-
cution method, all of them have solutions based on DAGs.
These structures do not consider explicitly the coupling of
multiple workflows by building meta-workflows (workflows
over workflows). For instance, it is not feasible for these

solutions to reuse data already processed by previously exe-
cuted PS (or being executed) without changing codifications
of applications. Moreover, the installation and configuration
of a new PS must be created instead to reuse existing PSs,
which only can be modified at configuration time (not in run-
ning time).

After studying these frameworks, we observed that the
challenge of managing ecosystems of PSs has been focused
mainly on two directions: The first one is focused on the
construction of solutions based on hierarchical levels; the
second one is focused on the composition of new solutions
by reusing PS fragments.

The main usage of the solutions based on a hierarchical
approach [57] is the discovery of PSs and the composition
of different solutions as a single one. It is usually based on
two hierarchy levels. The first one (e.g., Decaf [11]) for the
in situ workflow composition, with tasks that exchange mes-
sages through memory composed of a set of fields that may
or may not be fully utilized by the solutions. The second one
is the development of new solutions by using Meta-DAGs
(e.g., by using PyCOMPS and Decaf [50] [5]) to execute in
situ workflows as tasks in a distributed environment. In this
type of solution, the management of dependencies and the
transport of data between tasks (associated to the edges of
the DAG) is performed by following the Meta-DAG and en-
compassing the task execution, task coordination, task par-
allelization and transport of data.

In turn, the solutions that reuse workflow fragments for
the composition of new solutions are mainly focused on al-
gorithms that search for fragments of tasks within workflow
repositories, that are suitable to be reused when building new
solutions [61] [13]. Some of these works produce the auto-
matic design of solutions by using fragments of workflows,
but there are still limitations and areas of opportunity of this
type of approaches that the model proposed in this paper sup-
ports.

Three are three main differences between the former pro-
posals and the transversal model proposed in this paper. The
first one are the transversal coupling services, that provides
a new scope for the problem of dealing with a PS ecosystem
by managing PSs as services. These services can be coupled
with other PS (mainly external ones) through a new indepen-
dent services (transversal processing service). This can be
done without affecting/modifying the applications of an ex-
isting PS by using some of these stages on different solutions.
The second one is the management and analytical process-
ing of data based on extracting/publishing TSs, which are fo-
cused on transform data into information as well as enabling
crossing information processes. This converts multiple PS
into a configurable big data service instead of a single pur-
pose solution as performed in traditional approaches. The
last one is that this model allows creating external solutions,
which means that this model can be also used by traditional
frameworks to create PSs as services by reusing solutions
and the data produced by their stages, as shown in the exper-
imental evaluation of this paper.
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Figure 2: Usability comparison study.

Usability comparison study

In order to show the aforementioned differences, a com-
parative usability study, from the end-user point of view, was
carried out between some frameworks found in the literature
that address the problem described in this paper, such as Tav-
erna [21], Galaxy [15], cross-workflow fragments [61], and
Pycomps-Decaf [57], and the transversal model proposed in
this paper.

Figure 2 shows the differences considering eight differ-
ent characteristics:

e Bidirectional PS coupling. 1t refers to the situations
where a solution requires coupling two different PSs
bidirectionally.

e PSs reusing data source and/or sink of other PSs. It
refers to situations where PSs to reuse results produced
by other PSs.

e Reusing data produced by intermediate PS’ stages. It
refers to situations where reusing data produced by in-
termediate stages of other PS without modifying the
code of applications.

e Supporting multiple programming and execution mod-
els for each PS belonging to a solution.

e Adding new PSs to a solution.
e Reusing portions of a PS.
e Reusing a complete PS.

e Consolidation of results produced by different PSs. Re-
ferring to the ability to consolidate the results (ana-
lyze, index, publish, visualize, etc.) and to convert
data into information.

Each characteristic was rated on a scale of 1 to 5:

1. Ttis not currently supported by the tool/model/schema
to perform the activity.

2. Itis not currently supported by the tool/model/schema
to perform the activity, but it can be implemented ac-
cording to its design principles.

3. It is currently supported by the tool/model/scheme to
carry out the activity, but external tools are required
to do it.

4. It is currently supported by the tool/model/schema to
perform the activity.

5. Itis currently supported by the tool/model/scheme to
perform the activity, and additionally, it offers non-
functional requirements (scalability, efficiency, secu-
rity, modularity, reliability, etc.).

As it can be seen, Figure 2 describes, from an end-user
point of view, the opportunity areas of more prominent frame-
works and engines, and how its integration with a transversal
model could fulfill these areas for improving the flexibility
and functionality of current frameworks and engines. The
proposed transversal model takes into account these oppor-
tunity areas, allowing a management of solutions composed
by others, using the workflow engines themselves as the task
execution tool, unifying the programming model, and main-
taining the characteristics of each model of execution. Ta-
ble 1 shows a summary of the qualitative differences of the
works considered in this study.

4. A novel transversal processing model for
environmental big data services

In this section, we present a novel transversal processing
model for building big data services in fog-cloud environ-
ments. The model allows the integration of multiple exist-
ing/deployed software and/or applications into new solutions
exposed as a service.

Transversal processing structures
A PS can be represented as a tuple including a set of
stages (V') and their corresponding connections (E):

First Author et al.
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Table 1

Transversal processing model

Usability comparison between related jobs. E represents the action at running time; C represents the action at

configuration time.

Reuse Consolidation of results
Work Processing structures Data . Functions
- — - - - Indexing .
Complete Partial Initials intermediate | Final as a service
Taverna [21, 26] [V v’ [ [ [
Galaxy [15] CcCv’ cCv’ cCv’ CcCv’ CcCv’ EV’ Cv’
Workflow fragments [61] | C v~ cv’
Pycomps-Decaf [57] cv’ cv’ cv’ cv’
Transversal model EvVCVv |EVCV |EVCV |EV CV EvVCVv |EVCV |EvV CV
PS =(V.E) (1) @e—E*— O

where:

e V: Represents a set of stages STAGE; in the form
V ={STAGE,,STAGE,, ..., STAGE,}.

e E: represents a set of ordered pairs including elements
of V, representing the interconnections between the
stages, E = {(x,y) € V X V|x # y}.

Each stage (ST AGE;) performs a transformation task
following the ETL processing model, obtaining data from a
source (ds;) and depositing the transformed data in a sink
(dsy), which can be used by either end-users or other stages
for getting access to the transformed data. Both the source
and the sink belong to a data repository (P.S Data). In this
context, a stage can be represented as follows:

STAGE,; =ds; — Task — ds| 2)
dsj,dsk € PSDataNj#k

where:

e ds;: Represents the input data, which is an input for
the transformation task.

e ds;: Represents the output data deposited in a sink
(e.g., data warehouse).

e Task: Represents a task, an activity, or a data trans-
formation process.

e PSData: Itis a set of all the data sources used by the
stages of a PS.

To represent a structure as a DAG, nodes represent each
stage (STAGE; € V') of a PS, while the edges represent the
corresponding ordered pair (E), which defines the sequence
of execution of each stage. Figure 3 shows an example of a
DAG defined for a P.S' (a processing pipeline in this exam-
ple), where the ordered execution of the tasks (A, B, C, D)
of each stage produces different versions of data (dy, ) from
one stage to another one.

The model mainly considers scenarios where a set of P.S'
is used to build a transversal service (T'S) that is defined by

Figure 3: DAG describing a pipeline.

its DAG representation (DAG7 p), which is created by using
a set of Transversal Processing Points (T P P). Two types of
T P P have been defined in this model (Figure 4):

e Transversal Coupling Points (T C P). These points cre-
ate an abstract intersection between tasks that belong
to different PSs.

e Transversal Extraction Points (T EP). These points
create input/output interfaces for solutions to extract-
/deliver data from/to existing PSs (either at setup or
run times). These points also includes a link to access
data or to be used as input in a TPS (see Section 4.1)
to transform data into information.

iTeEP
TCP
"""""""""" i TCP
v H
VRN ;
" \ E )
1= N N
™\ // \\
\/ D ) . G /"‘
/ N
~ VRN
. F
N
iTEP

Figure 4: Conceptual representation of TPPs: TCP coupling
two PSs, and TEP enabled for data extraction.

A DAGrp thus can be represented with the following
expression:

DAGyp = (SolT, Links) 3)
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where SolT is the set of P.S included in a transversal
solution, while Links is a set of T PP that represents the
virtual interconnections of the P.S' € SolT. Each T PP, can
beaTCP oraTEP. This is represented as follows:

Links ={TPP,,TPP,,...,TPP,}| )
m>1
SolT = {PS,,PS,,....,PS,}| (®)]

(n=1ATPP,isaTEP)v
(n>22ATPPisa(TCPVTEP))

A T C P represents an interconnection between stages
through a data source belonging to the set P.S Data,, of a
PS) (ds; € PSDatay) and a data source belonging to the
set PSS Data; of a PS; (ds;, € PSData;). In this sense, at
least two PS (n > 2) must exist to define a TCP. On the
other hand, a T EP is connected to a data source ds j in a
PS,, which is in the P.S Data,, set. This is represented as:

TCP = (x,y)|(x,y) € PSData, X PSData;|  (6)

k#1
TEP =ds; € PSDatay @)

4.1. Transversal Processing Services (TPS)

Collaborative work between different PS does not neces-
sarily imply reusing either stages or information generated to
be consumed by other PS, but it can also be used by an ex-
ternal process to provide useful information to the end-user.
We call this type of process a Transversal Processing Ser-
vices (TPS). A TPS takes advantage of data produced by a
PS for performing a transformation process to create useful
information. A TPS performs data collection (d's;) by using
TEPs (TEP, = ds; € PSDatay). Multiple data sources
can be joined together (e.g., to carry out a data fusion) and
published for later use by TPS to produce information. This
is defined by joining structured data as follows:

TEP, =ds; = (REG,, ATT;,KG)) 8)

where:

° REGj is a set of records of data collection: REG j
{reg;,reg,, ..., reg,}.

o AT Tj is a set of attributes of data collection: ATTj

{aj,a,,...,a,} |
ay = (namey, type;,role;).

1. name. Name of the attribute.

2. type. Data type (int, double, char, string, etc.).

3. role: Role of the attribute, which can assume the
values of “value” or “keygroup”.

e KG; represents a set of attributes a; whose role (role)
assumes the value of “keygroup™ KG; = {ala; €
ATT;, role, = keygroup}.

To match data from two sources, a relation between them
must be created. In the case of structured data, the model
considers creating joins among multiple records from one ta-
ble to another based on keys or group attributes (keygroups).
In this sense, two TEPs are consolidated in a single data
source by joining the records from both sources based on
the KG > as defined below:

REGt = REG; U REG| ©)
Va; € KG;3a, € KGN j#k

ATTz = ATT; U ATT,|j # k (10)
KGrt = {ala; € ATTz,role; = keygroup} (11
dst = (REGt,ATTz7, KG7)| (12)
dstisaTEP

As itis arecursive process, multiple extracted data sources
(TEPs) can be joined in pairs at different levels. For exam-
ple, TE P, and T E P, can be joined into a single T'E P3, and
later, join TEP; witha TEP,.

Figure 5: Representation of TPS as a DAG. TPS, and TPS,
consolidate the results produced by two different PS.

A TPS; (see the example in Figure 5) follows an ETL
process with one input (7" E P;), one embedded task
(EmbT ask), and one output (T E P,). In this sense, the in-
put of a TPS can be any of the union of data sources (ds7),
a data source obtained by a TEP, or the output of another
TPS (T EP)). Thus, the data is extracted from a T'E P; and
deposited in T EP,. However, there are no restrictions as
to which T E P to use for the results, so j can be equal to k
(J=korj#k):

TPS;=TEP; > EmbTask - TEP, (13)

In this paper, a service mesh is defined as a pool of transver-
sal coupling and extracting/publish services TC Ps, T E Ps,
as well as PS's and the TS created by the end-user T PS.

First Author et al.
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Thus, a mesh can be represented by the set
mesh = {TPS,TCP,PS,TE P} where each component is
exposed as a service.

Ttransversal service (7'S) components: design
details

The proposed model has been developed by using the
following components for managing, in distributed environ-
ments, the TSs registered in the service mesh:

e Coupler, uses TCP for coupling either tasks that be-
long to different PS or multiple solutions through in-
puts and outputs. This entity creates new solutions as
a service.

e Manager, coordinates the integration of the TCPs into

anew service (in either configuration or execution times).

Supervises the arisen of cycles in the resulting solu-
tion (DAG7p). Publishes the solutions as a service in
a service mesh.

e Extractors, use TEP for data retrieval from any inter-
section of tasks (stages) of a solution, executes embed-
ded services (e.g., analytics, machine learning, statis-
tics, or probabilistic methods), and index these data to
make them available as a service.

The transversal processing model considers the follow-
ing services of transversal processing:

e [ntegrated solutions as a service (TPIS). These ser-
vices represent the union of either tasks that belong to
different PS (TSs included) into a new service. These
services are created by integrating a set of coupling
TCP into a DAG7p.

e Transversal processing services (TPS). This is an ETL-
based service for consuming extracted data from a
DAGyp and transforming them into information. A
TPS thus extracts data from a TEP, transforms data
into useful information by using embedded services
(e.g., any combination of analytics processing, statis-
tics, machine learning), and delivers/load it to other
transversal extracting/publish point.

Figure 6 depicts the interactions of the model compo-
nents, the dataflows and the materialization of the transver-
sal model when creating big data transversal solutions as a
service.

The following methods have been designed to create a
TPIS:

1. Adjacent coupling (AC). This method enables devel-
opers to create new services based on existing TPS
and/or PSs. This method is useful when the data pro-
duced by one solution (DAGT p, ) must be used as in-
put data for another solution (DAGr p,). In this method,
DAGy P, is reused, even in execution time, and no
new installation or configuration is required to create a
new solution; the execution schedule of DAGp, and
DAGrp, is coordinated by the manager.

(oeenennnn...JO@Xtractdatafrom...
----------------------- |
To coupling multiple PS into... '

Composed . :

by Coupling points :
Transversal Two (7ch) :

Processing types !

Points (TPP) Extraction points| ___ !

(TEP) '

Transversal Processing
Services (TPS)

Embedded services

Figure 6: Graphic summary of the components of the model.

Transversal
Sevice

To transform data extracted
into information using...

2. Recursive Coupling (RC). This method allows to cre-
ate a new service by using portions of a PS, allowing
to divide large solutions into small modules with sim-
pler objectives. In this method, a DAGp includes a
set of solution portions connected through TCP (see
the example of solution in Figure 7).

3. Multiple-Sink Consume scheme (MSC). This method
creates TEPs to compare results produced by differ-
ent solutions by using TPSs. MSC is useful when the
data produced by multiple PS (PS € So/T) and/or
TPS can be used together to get information. This of-
fers a way to provide users with crossing information
functions as a service (ClaaS) (see Figure 8).

A prototype based on the transversal processing
model

Figure 9 shows a conceptual representation of the pro-
totype, which depicts all the components of the prototype.
It also considers the services developed to materialize the
transversal model (Pink), the existent software reused by this
model (orange bold lined) and the existent software available
but not used (orange).

The first implementation of the transversal model was
performed over the DagOnStar engine by using the depen-
dency management schema (known as DagOnStar workflow://
schema [42]). This schema manages the data used by tasks
of the stages running in a PS, either locally or on a remote
node. TCPs based on this schema were defined to manage
the dependencies of multiple PSs by using reserved tag <T>:
and then to apply the transversal model to create services.
This label represents the virtual path in which the results
produced by a task can be found by a TPPs. In this way,
a user can establish the data path for processing it using the
following syntax: <T>:<PS>/<task>/. In this notation, <PS> is
an identifier of the PS and <task> is the identifier of the task
which produce the data (e.g., <T>:PS1/TaskA/). This analy-
sis of the dependency management in an engine gave us the
insights to identify the place where the TPCs could be in-
voked by an engine. With this experience, the transversal
model was adjusted not only for the creation of transversal
solutions, TCP, TEP, and embedded services, but also for
the creation of rules that the workflow engines could un-
derstand, in order to create PS by using the programming

First Author et al.
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Figure 9: Conceptual representation of the prototype.

models used by these engines. In this context, these rules
were defined for DagOnStar [29] and Makeflow([2]. These
rules showed that this model is quite extensible to other en-
gines and PS frameworks by creating rules based on the in-
put/output results management of each framework. Figure 9
shows a landscape of the multiple services that can integrate
a transversal service.

Implementation details of transversal processing
prototype components

The TEPs, TPS, the coupler, extractors, and manager
were developed in Python. The TPS APIs included REST
I/O messages exchange and FTP for data exchange®. More-
over, the end-user can consume data from online reposito-
ries: Hydroshare [49], Google Drive, OneDrive, FTP Servers,
and SkyCDS [16]. For this, it is only necessary to provide a
URL that points directly to the data (the filename and catalog
in the case of SkyCDS), in this way, an acquisition service is
in charge of obtaining it and applying the user-defined pro-
cessing (PS or TPS).

The components of the TPSs were encapsulated into vir-
tual containers (Docker® was used for this prototype). The
manager organized the virtual containers in the form of micro-
services including a REST-based I/O management and a re-
quest dispatcher. Virtual an underlying container management
(Docker compose” for this prototype) is used for the deploy-
ment of T'S's.

Table 2 shows the infrastructure used for deploying the
prototype on container-based cloud where the experiments
considered in the case studies were conducted in.

5. Experimental evaluation and results

For testing the functionality of the prototype implement-
ing the transversal processing model, three case studies were
considered: a) processing Landsat8 imagery to produce Earth
Observation Products, b) processing climate data from the
MERRA-2 project for building an online climate map, and
¢) a multiple-sink crossing information service based on ma-
chine learning for the classification of air pollution values.

Case study I: Processing Landsat8 imagery for
producing EOPs by using a recursive coupling of
PSs

The first case study is based on the building and opera-
tion of a solution for processing satellite images captured by

2A content delivery network [16] is currently on development for
data management in the transversal model and a parallelism management
schema [37] as well

3https://docs.docker.com

“https://docs.docker.com/compose
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Machine Sockets | Cores per socket Threads per Memory
socket
Computeb 1 6 2 64GB
Compute8 2 8 1 64GB
Computell 1 12 1 64GB
Table 2

Computing resource table.

Landsat8’ [39] satellite (see Figure 10). This solution con-
siders PSs for image decompression, the correction of bands,
the application of filters to obtain and produce a set of Earth
Observation Products (EOPs), and its publication in a geo-
portal. These PSs consider the following four tasks:

e Uncompress: It decompresses TAR files that contain
all the bands of Landsat8 images and corresponding
metadata.

e Corrections: It performs radiometric and atmospheric
corrections to each image in the Landsat8 imagery and
produces corrected images.

e Indexes and EOPs: It receives corrected images and
creates Surface Reflectance-Derived Spectral Indices
such as: Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), Soil Ad-
justed Vegetation Index (SAVI), Modified Soil Ad-
justed Vegetation Index (MSAVI), Normalized Differ-
ence Moisture Index (NDMI), Normalized Burn Ratio
(NBR), and Normalized Burn Ratio 2 (NBR2).

e Parser: It obtains information from the metadata to
determine spatio-temporal parameters of each EOP cre-
ated by the PS based on geographical location of each
EOP.

e TIFF2JPG: It converts the EOP’s TIFF image format
into a JPG for reducing the resolution and file size for
efficiently visualizing by a geoportal.

For this case study, the PSs were organized in the form
of two PS by using the Recursive Coupling (RC) method

(Method 2) to create a big data transversal service (Big Datar p).

The first PS, called Corrections Landsat8 (CL8), includes
the Uncompress and Corrections tasks to transform the bands
of the images in the Landsat8 repository into new corrected
products (see Figure 11). The second one, called Process-
ing Landsat8 (PL8), includes the Indexes and EOPs, and
TIFF2JPG tasks for producing and indexing new EOPs and
lowering the resolution of these EOPs (see Figure 12).

The BigDatayp service included extractors (TEP) for
indexing each of the products (original images, corrected
products and index derivative EOPs) by using the Multiple-
Sink Consume (MSC) method (Method 3). This means that
the end-users not only can get access to the raw data and
derivative EOPs, but also to the corrected images (radiomet-
ric and atmospheric corrections) and the indexes.

Shttps://glovis.usgs.gov/app.
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Figure 10: Landsat8 images processing workflow (CL8&PLS8).
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The processing and data management of the Big Datar p
service is expensive in terms of time execution and memory
consumption. For example, for each Landsat8 image, with
an average size of 250 MB, are produced a large set of prod-
ucts to be indexed, managed, and preserved when the PS fin-
ishes its executions. In average, 10 GB of data are produced
per processed image.

The execution of experiments was carried out based on
the following characteristics:

e Dataset: it includes 23 satellite images (m) Landsat8

First Author et al.
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of 250 MB of average size, with 16/32 bands (each
band is an image), which were processed one-by-one
by the Big Datar p service.

e Memory and storage: the processing of each image
produced, an average of, 10 GB of data (corrected
original images and indexed images), which required
230 GB of storage for processing the whole dataset. It
is important to note that this is only a fraction of im-
agery to conduct EOP production for spatio-temporal
studies; as a result, it is expected that this capacity
considerably increases in production, resulting in a big
data issue.

e A TEP is created for each index. The TEPs run in
parallel.

e The experiments were performed 31 times and the me-
dian response time metric was evaluated. The response
time metric represents the sum of the times produced
by each stage of each PS considered by the big data
service (Big Datar p) evaluated in this case study.
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Figure 13: Response times of the CL8, PL8, and CL8&PL8
solutions.

A comparison of the response times was performed by
each request attended by BigDatarp service. Figure 13
shows the response times in minutes (vertical axis) for each
component of the BigDatarp. In this case, CL8 produced
significantly longer response time than PL8, meaning this PS
creates a bottleneck, and it would be re-structured to solve
this issue.

Figure 14 also shows a performance comparison between
BigDatarp p service and the traditional pipeline using in both
cases two parallel threads per task. A reduction in response
time of approximately three minutes was obtained in the case
of CL8 and PLS joined by the transversal model in compar-
ison with a solution built traditionally. In terms of perfor-
mance, it was observed that the solutions built by using the
transversal model not only enable the reusing of the parts of
a PS independently and extracting/indexing data from these
parts, but also it is performed without evident overhead. Even
a reduction in time was observed in the experiments by this
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Figure 14: Response time comparison between BigData;, ser-
vice and the traditional pipeline.

model because CL8 and PL8 are executed independently,
and some bottlenecks were reduced. In this context, the us-
age of implicit parallelism management inside a solution could
even be studied to improve the performance of the resulting
services, which is evaluated in case study II.

Figure 14 shows that with the traditional method, it is not
feasible to identify the stages that represents bottlenecks in
of PSs (where one stage begins and the other ends). More-
over, it is important to note that the solutions created with the
transversal processing model are reusable and can be cou-
pled with other existing solutions.

In addition, when using the transversal processing model,
it is possible not only to modularize the PSs to identify per-
formance differences, but also to create clones of the slow
stages to improve response times. Although this could be
implemented in a simple manner according to the solution
design principles, this is not the main scope of the model
presented in this paper.

Case study II: a big data service for processing
climate data extracted from the MERRA-2 project

To conduct this case study, a solution was created to ac-
quire, interpolate, and index climate data produced by the
NASA project called MERRA-2 [27] (see Figure 15) by us-
ing the following processing applications:

1. Acquisition (M — Acq). The climate data and products
that the MERRA-2 project makes available through
various URLs, were acquired by a crawler by using
spatio-temporal parameters. The pattern in the web
page is defined for the crawler to download data, which
is available in the NC binary file format.

2. Interpolation (M — Int). In this stage were carried
out the extraction and interpolation of data contained
in sets of NC files. This stage receives two elements
as input: the path of the folder containing the down-
loaded NC files, and the path of a file that contains the
geographical points (latitude, longitude) that will be
used to find values in MERRA products. These points
are used in the interpolation process.

First Author et al.
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3. Formatting and indexing (M-F&I): In this stage, the
metrics of temperature recovered by M — Int form
MERRA products are standardized from Fahrenheit
scale to Celsius scale. The indexing process stores the
all the metrics from both sources in a database service.

MERRA-2 Database

Stations list
V o=
't g &
g N 4
A i N Format &

e indexing

Figure 15: MERRA pipeline.

The above applications were connected as a processing
pipeline, then were coupled to the following embedded ser-
vices (TPS):

1. Clustering embedded service: This service executes
a clustering algorithm (k-means) for grouping the re-
sults obtained by the PS for temperature parameters.
The number of groups (value of k) in k-means is de-
fined in the TPS by either the end-user or automati-
cally calculated by a quality clustering validation in-
dex (silhouette index [38]).

2. Visualization: This service receives the temperature
groups produced by the clustering service and creates
a temperature map by grouping geographical points
with similar values, which are placed in a map, cal-
culated on-the-fly and on demand, depending on the
spatio-temporal parameters delivered to the Big Datar p
service by the end-user.

3. Acquisition and control of data: This service super-
vises the continuous data delivery for each component
in the solution. Moreover, this service controls the
data distribution in scenarios where the cloning of a
PS be required to solve bottleneck issues as those pre-
sented in previous case study.

The solution performs the following sequence of pro-
cesses: 1) retrieves data from MERRA-2 project by using
M — Adgq task; ii) executes M — Int for the interpolation
process of a list of coordinates (latitude, longitude), which
are obtained from either a geoportal (in production) or from
a configuration file (for laboratory experiments); iii) indexes
the results by using M — F&I tasks, and produces data
in JSON format; iv) executes the clustering of each geo-
graphical point included in the spatio-temporal parameters
received in the Big Datarp service by using the values ob-
tained from MERRA-2, and uses these metrics for creating
groups (e.g., maximum, medium temperatures or water pre-
cipitation, etc.) with statistical similarity; and v) creates the
climate map for visualizing the results in a web geoportal.

In this case study, the Big Datay p service was used on-
the-fly to retrieve climate data from the MERRA-2 project

corresponding to a series of geographical points of a shape
that cover the entire Mexican territory, and to create a map
of climate groups depending on the metric chosen as input
parameter in the Big Datarp service.

This service deployed 32 PSs clones, this is because Mex-
ican territory has 32 administrative regions (states, one PS
per each state); as a result, the dataset was processed in par-
allel by the 32 PSs (see this Big Datary p service depicted in
Figure 16).

The case study considered the acquisition of meteoro-
logical data corresponding to seven days, subsequently, the
interpolation process (M — Int) was run by the 32 TPSs to
process a total of 302,099 geographical points, correspond-
ing to all the locations of Mexico. The list of geographical
points for the Mexican territory was generated by an addi-
tional task called M-Split, which takes as input statistical
data from INEGI® (National Institute of Statistics and Ge-
ography) for each location in Mexico, an identifier and ge-
ographic coordinates were extracted, generating the list of
locations. This task, additionally, creates sub-lists of the
geographical points per each state, which are delivered to
the corresponding PS clone for processing the data found in
MERRA-2 products per each geographical point.

The programming model was used to create scripts for
DagOnStar and Makeflow engines, which created the origi-
nal PS (a single PS) and deployed it on a containerized cloud
infrastructure. The PSs created by each engine were used
in the transversal prototype to create the above described
BigDatar p service (see Figure 16).

geographical
points

----» TPP

M-Split

Figure 16: MERRA PSs for processing climate data from the
32 states of Mexico.

Figure 17 shows the results of the execution times pro-
duced by Big Datar p service as a single PS created by using
DagOnStar and Makeflow. As it can be seen, there is a dif-
ference in the response times (vertical axis) between DagOn-

Shttps://www.inegi.org.mx/app/ageeml/
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Star and Makeflow (horizontal axis), which is caused by the
different processing schemes used by each engine to create a
PS. The experiments were executed on the same infrastruc-
ture and running the same tasks.

The times shown in Figures 18 and 19 correspond to the
response times for each PS (vertical axis) obtained by Make-
flow and DagOnStar respectively by following the transver-
sal processing model when processing the data from each of
32 states of Mexico (horizontal axis). There are subtle differ-
ences in the processing times, but the performance behavior
is similar for both engines, which is proportional to the num-
ber of locations that each state has and must be processed.

3900 1

3800

3700

3600

3500 4

T T
dagon makeflow

Workflow engine running an EP
processing data from all states of the republic

Execution time (seconds)

Figure 17: Master instance processing 302,099 geographic
points.

When comparing the results obtained by the traditional
PS with the BigDatayp service, a significant reduction in
the execution times was observed for each engine. The PS
created by Makeflow, processed all the geographical points
in 3930 seconds (65.5 minutes), whereas the PS created by
Makeflow with Big Datar p service processed the dataset in
888 seconds (14.8 minutes), which gives us a 76% improve-
ment difference in execution times in comparison with using
the original PS.

In the case of the PSs created by DagOnStar, similar re-
sults were observed. The execution time produced by a sin-
gle PS was 3588 seconds (59.8 minutes), while the PSs pro-
duced by this engine deployed by using Big Datay p service
was 828 seconds (13.8 minutes), which also produced an im-
provement difference in execution times of up to 76%.

As it can be seen, it was possible to process the same
number of geographic points in a shorter time when using
the BigDatayp service, in comparison with the times ob-
tained with a single original PS. Although the purpose of the
transversal model is not to improve the PS performance, it is
possible for engines to generate solutions that take advantage
of previously processed data in order to improve the perfor-
mance of a solution by cloning PSs and execute them in over-
lapped manner, which also can be combined with the paral-
lelism model of each engine to improve the performance of
big data services. These experiments basically showed that
the model can be used by available engines to couple mul-
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Figure 18: Thirty-two MERRA pipeline instances processing
locations of each state, using Makeflow.
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Figure 19: Thirty-two MERRA pipeline instances processing
locations of each state, using DagOnStar.

tiple PSs and to extract information from different points in
the final service.
At this point, we recall that the final stage of the

Big Datar p service applies a clustering algorithm to the ME-
RRA temperature values processed by the 32 PSs and pro-
duces, on demand and on-the-fly, climate maps depending
on spatio-temporal parameters. Figure 20 shows the results
of a distribution of geographical points throughout the en-
tire Mexican territory that were grouped by the clustering
embedded service by using a k = 12 parameter. This num-
ber of groups (k) was chosen according to the number of
topoforms’ defined by INEGI for Mexico. This study en-
abled us to compare results produced by the BigDatarp
service with topoforms identified for Mexico. Differences
were observed when making this comparison for multiples
geographical points, which however depend on the temporal
patterns. As a result, it is required to carry out an in-depth
study on the contrast between the MERRA-2 data and data
obtained by ground stations, as well as a possible relation-

7A set of landforms associated according to some structural and/or
degradative pattern or patterns into which the country has been divided,
according to its geology and topography.

First Author et al.

Page 13 of 20



Transversal processing model

ship with the topoforms defined for Mexico with extensive
temporal parameters, as well as reduced spatial parameters
to quantify and explain these differences. This is quite fea-
sible for end-users to perform by invoking the above evalu-
ated BigDatarp service as many times as spatio-temporal
parameters used in each execution.

°

Figure 20: Grouping of locations in Mexico (12 groups) by
maximum, minimum, and average temperature provided by
MERRA.

Case study III: a multiple-sink crossing
information service based on machine learning for
the classification of air pollution values

Three datasets were processed in this case study:

e RAMA [45] (Spanish acronym for Automatic Atmo-
spheric Monitoring Network): It contains annual da-
tabases with information about the concentrations of
pollutants, recorded every hour since 1986.

e REDMET [46] (Spanish acronym for Meteorological
Network and Solar Radiation): It contains information
on meteorological parameters, recorded every hour since
1986.

e MERRA [27] (Modern-Era Retrospective analysis for
Research and Applications): It contains databases with

meteorological data generated from reanalysis processes.

Three PSs were created to process the datasets for Mex-
ico City. These PSs were assembled recursively to create
a BigDatarp service for crossing information by using the
MSC method (Method 3).

This service consolidates the above described data sources
into a single data source by using a TEP. This consolidation
of the data sources is feasible since the sources have com-
mon fields (spatial and temporal parameters). In this way, it
is possible to unify the results using the latitude and longi-
tude data as key groups (see Figure 21).

In this case study, a list with geographic coordinates be-
longing to spatial records in the RAMA and REDMET sta-
tions ®
service.

8http://www.aire.cdmx.gob.mx/default.php?opc=%27ZaBhnmI=%27&dc=ZA

were used as input of the crossing information Big Datar p

MERRA-2 REDMET stations list

N 4
Format &
indexing

Figure 21: MERRA PS. Data interpolation using the RED-
MET stations.

The PSs designed for processing and monitoring data
repositories (RAMA and REDMET) consider the acquisi-
tion of data from the primary source (see Figure 22). These
PSs also consider a set of pre-processing services embed-
ded in TPS, which were used for preparing, in automatic
and transparent manners, the data in RAMA and REDMET
monitoring datasets to adapt these data to data analysis tech-
niques used in processing stage. These embedded services,
depicted in Figure 23, include the following data cleaning
and preparation services:

POLLUTANTS

PMCO

RAMA

METEOROLOGICAL
DATA

- - m Relative Humidity
@ Temperature
Wind Direction
REDMET ACQUISITION ORGANIZER
:: Wind Speed

Figure 22: PS processing RAMA to obtain pollution data, and
REDMET to collect meteorological data.

TPS

C Cleandata
T Transform

-
| |
|

G Group

J Join data
Number of
variables

l
l

!
ik

Figure 23: Post-Processing TPSs for RAMA and REDMET.

e Cleaning data (C in Figure 23): This service elimi-
nates missing or atypical data. All non-numerical data
are discretized; missing values are normalized by the
mode/median of the census station according to the
datatype.

o Transforming data into records (T in Figure 23): All
data in files (each variable of data) are tables where
columns represent the ground stations (RAMA and
REDMET stations) deployed on Mexico City, while
rows are the measurements made every hour by the
stations. This task restructures this table to one with
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Figure 24: BigDatayp service combining the three PS built for the case study.

the columns of data, ground station, and value of the
variable.

e Grouping records (G in Figure 23): This service groups

ground stations by calculating descriptive statistics (such

as average, median, mode, standard deviation, etc.).
For this case, the records associated to spatial param-
eters (i.e., describing the location of ground stations)
and temporal (the same day but different sensing time)
were described by using a descriptive statistic (median
used in the experiments). Nevertheless, the statistic
metrics (mode, mean, etc.) can also be selected as in-
put parameter, and the service will use this parameter
to perform this clustering process.

The PS processing the MERRA-2 repository was des-
cribed in study case II, and it was reused in this Big Datar p
service. This pre-processing procedure was applied to each
of the variables produced by both REDMET and RAMA,
to finally unify and index them into a single table (see pol-
lutants for of RAMA and temperatures for REDMET and
MERRA-2 in Figure 23).

The results produced by the solution for processing RAMA
and REDMET were used as input parameters by TPSs (see
data analysis in Figure 24) such as clustering, descriptive
statistics and visualization/gratification, which were reused
from the BigDatarp service previously described in case
study II. The overall structure of the solution is shown in
Figure 24.

In terms of performance, the execution time produced by
processing MERRA data is three times in comparison with
RAMA and REDMET, including its corresponding post and
pre-processing embedded services (Figure 25). To solve this
bottleneck, the BigDatayp service executes the embedded
services in the TPSs for RAMA and REDMET in the
BigDatay p service, which executes all these tasks in paral-
lel.

The next step for the manager is to use TPS to conduct

1 workflow
| =mm TPS postprocessing workflow

Median response time (minutes)

SN\

| !
0 T

T
RAMA REDMET

T
MERRA

Figure 25: Execution time of the studied services.

the crossing information task, which includes embedded ser-
vices for analysis and machine learning. An exploratory anal-
ysis of all the variables was performed in the data analysis,
considering a date range of 2016-2020. In this analysis, the
temperatures obtained by the REDMET sensors were com-
pared with those obtained by the MERRA reanalysis, for
each station and each day of sensing in the date range. An
embedded service calculated a new variable called DIFF that
reflects the MERRA (T2ZMMEAN) and REDMET (TMP)
temperature difference for each day and each station. Fig-
ure 26 shows a comparative histogram between the temper-
atures of the REDMET and MERRA sources (DIFF is not
represented in this graph).

The BigDatay p service allowed us to consume the data
produced from any PS. This means the data representing
the MERRA-REDMET temperature difference is used by an
embedded service that executes two clustering algorithms
(k-means and the hierarchical clustering algorithm), which
were validated by using other embedded service executing
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Figure 26: Histogram of T2MMEAN and TMP variables from
MERRA and REDMET respectively. The values that do not
fit between the histograms do not represent the real value of
DIFF, but provide an overview of the different behavior be-
tween both variables.

the silhouette clustering index [38]. This validation was per-
formed to observe how the different data sensing stations are
grouped based on the value of variable in each record in-
dexed by the TEPs (e.g., max tempereature). This clustering
service was used in two scenarios:

e Determining groups based on MERRA temperature,
REDMET temperature, and DIFF (MERRA tempera-
ture — REDMET temperature).

e Determining groups based on all pollutants and air
particles, associated to spatio-temporal parameters.

In the first scenario, k = 2 for both clustering algorithms
yielded the highest score in the silhouette index, which means
that the best number for grouping records of the studied da-
tasets, according to the temperature, is 2. As can be seen
in Figure 27, the performance of the two algorithms is mea-
sured through different k values, and the k-means algorithm
yielded the best performance for k = 2, The resulting groups
are showed in Figure 28, where a clear difference between
both groups is evident. Cluster 0 is the group where the value
of the difference between temperatures (DIFF) is less than
or equal to zero, whereas in Cluster 1 only the INN and AJU
stations produced positive DIFF values. As it can be seen,
a comparative study could be performed in this Big Datayp
service by using services embedded in its TPSs.

For the second scenario, the same clustering algorithms
were applied to the pollution data. In order to obtain a result
that can be understood graphically and without altering the
data to a great extent, the selection of variables was chosen
through Principal Component Analysis (PCA) [44]. PCA is
also provided as an embedded service connected to the clus-
tering embedded service, so it is only necessary to specify
the parameters to the service to carry out this task, either
by selecting a variance range (that is, selecting a number of
components that maintain a specified variance) or by select-
ing the specified number of components. For this case, three

WINNER: K-MEANS - 2 GROUPS
0.8

BN K-means
0.7 1 Hieararchical

0.6 4
0.5 1
0.4 4
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03 \/\4
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2 3 4 5 6 7 8 9 0 11 12 13 14
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Figure 27: Silhouette scores on temperature data. Blue line
corresponds to k-means, orange line corresponds to hierarchical
clustering algorithm.

Cluster 0
Cluster 1

Figure 28: Temperature data clustering results.

main components were chosen among the total of pollution
variables, thus maintaining a variance in the data greater
than 90%.

Instead of the first scenario, the clustering algorithm with
the highest performance in the silhouette index was the hi-
erarchical clustering algorithm with a total of two clusters
(Figure 29). Another notable difference is that the stations
obtained in the first scenario do not appear in the same group,
obtained in the second scenario (Figure 30).

At this point, the data has been grouped in automatic

manner executed by the crossing information of the Big Datar p

service by using spatio-temporal parameters. The next step
for this service was to execute another embedded service to
perform a predictive analysis. This service extracts the me-
teorological data obtained by the stations RAMA and RED-
MET as well as the verification by the MERRA data and
process them by using a machine learning technique to pre-
dict pollution values.

For this study, an embedded service based on multi-layer-
perceptron neural network (MLP-NN) was executed in the
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Figure 29: Silhouette scores on pollution data. Blue line cor-
responds to k-means, orange line corresponds to hierarchical
clustering algorithm.
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Figure 30: Pollution data clustering results.

BigDatarp service for the prediction of pollutants by re-
gression. The service extracts, from the complete datasets,
a third part for training the network, taking REDMET and
MERRA temperatures, differential, humidity, wind speed
and direction, and airborne particles (PM10 and PM25) as
input parameters. When the MLP-NN was tested, it was ex-
ecuted by using the remaining dataset, and measuring the
quality of the results with the metric R2 (R-squared) [24], a
statistical measure to know how close (near to 1.0) the data
is to the regression line.

Figure 31 shows the results obtained by predicting CO
particles, having an acceptable variance with respect to the
real data, represented with an R2 score of 0.92. On the other
hand, that performance was not obtained when predicting
particles such as NO (Figure 32) and NO2 (Figure 33), ob-
taining R2 scores in a range of 0.6 and 0.7. Nevertheless,
it is possible to improve the performance of the network by
configuring the parameters, the number of neurons, increas-
ing the amount of training data or the selection of another

type of neural network in the embedded service of the TPS.
These parameters can be passed through the transversal ex-
tracting/publish services. In this model, to do this type of
prediction, end-users are only required for selecting param-
eters for the corresponding TPS, which will use it to exe-
cute the corresponding algorithm in automatic and transpar-
ent manners.

Pollutant: CO
SCORE R2: 0.9350251368811143

Real values

o 0 m

Regression results

Figure 31: Regression results for CO applying a MLP-NN.

Pollutant: NO
SCORE R2: 0.5994881877211523

Real values

Regression results

Figure 32: Regression results for NO applying a MLP-NN.

6. Conclusions

This paper presented a novel transversal processing model
to build environmental big data services in fog-cloud envi-
ronments. This model enables the scientific community to
reuse applications and to create BigDatarp services. The
transversality property of BigDatayp services is achieved
by creating Transversal Coupling Points and Transversal Ex-
traction Points through multiple existing solutions. The cou-
pling of transversal services create virtual connections be-
tween multiple solutions, even in execution time, to create
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Pollutant: NO2
SCORE R2: 0.660918199918919
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Regression results

Figure 33: Regression results for NO2 applying a MLP-NN.

a new big data services. The extraction/publish transversal
services create pipes for end-users/services to consume data
from different points of a solution and processing the ex-
tracted data to produce information in crossing information
by using analytics and machine learning services embedded
in TPS of big data transversal services. In this way, appli-
cations for processing environmental products (e.g., correc-
tions, transformations, manufacturing, coding, etc.) and/or
for creating useful information by using analytics (e.g., clus-
tering, data cleaning, ANOVA, graphing, etc.) and machine
learning (neuronal networks, random forests, etc.), can be
encapsulated into TPS as embedded services. The results of
these services can be consumed by other applications (web
pages, robots, or other services). These services also can be
coupled to other PS to create BigDatarp services by fol-
lowing the transversal model and by using traditional frame-
works and engines (rules were created for programming mod-
els of DagOnStar and Makeflow engines) for end-users to
add transversality property to these engines. The Big Datar p
services also enables end-users to consume both raw, cleaned,
and processed data by using extracting/publish services. In
this paper was showed that Big Datay p service can be built
for the management of the scientific data life-cycle: from
the acquisition of raw data to the preparation to the process-
ing (by using analytics and machine learning tools) to the
retrieval/searching of data (raw and prepared data as well as
information) until to the crossing information and decision-
making process. This processing is performed by reusing ex-
isting available applications/services/systems/tools without
altering the code of these solutions. The coupling of multi-
ple existing transversal services recursively is also feasible
in this model.

A prototype was implemented based on this transversal
model to create big data processing services, which were im-
plemented for conducting three case studies based on pro-
cessing environment, climate, and pollution data as well as
the building of earth observation products. Crossing infor-

mation big data services were also developed by using this
prototype. The experimental evaluation revealed the efficacy
and flexibility of this model to create complex big data pro-
cessing services by reusing multiple existing applications
created with different frameworks and deployed on differ-
ent IT infrastructures. It also revealed the efficacy of apply-
ing extracting/publishing transversal points to create cross-
ing information services and information/content extraction
services from different data sources.

The development of a comprehensive workflow technol-
ogy aware ecosystem, enabling creatives and final users to
implement widely interconnected computational pipelines
and DAGs devoted to solving ever before handled computa-
tional science problems, is our vision. The short term future
evolution will be the implementation of continuously run-
ning workflow tasks to enable IoT data fed workflows [22]
performing on-line data processing in a routinely production-
oriented fashion. Peculiar, but strategically relevant real-
world applications as crowdsourced bathymetry data pro-
cessing [25], can leverage on the proposed transversal model
producing open data distributed on cloud infrastructures as
the instrument as a service (IaaS) model [28].
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