
 

 

 

This is a postprint version of the following published document: 

 

 
 
Marvi-Mashhadia, M.; Rodríguez-Martínez, J. A. Multiple necking 
patterns in elasto-plastic rings subjected to rapid radial expansion: 
The effect of random distributions of geometric imperfections, In 
International Journal of Impact Engineering, 144, Oct. 2020, 103661, 
17 pp. 

DOI: https://doi.org/10.1016/j.ijimpeng.2020.103661 

 

 
 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. 

https://doi.org/10.1016/j.ijimpeng.2020.103661
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Multiple necking patterns in elasto-plastic rings subjected to rapid radial1

expansion: The effect of random distributions of geometric imperfections2

M. Marvi-Mashhadi, J. A. Rodríguez-Martínez∗
3

Department of Continuum Mechanics and Structural Analysis. University Carlos III of Madrid. Avda. de la Universidad, 30.4

28911 Leganés, Madrid, Spain5

Abstract6

In this paper we have investigated, using finite element calculations performed in ABAQUS/Explicit [1],7

the effect of ab initio geometric imperfections in the development of multiple necking patterns in ductile rings8

subjected to dynamic expansion. Specifically, we have extended the work of Rodríguez-Martínez et al. [33],9

who studied the formation of necks in rings with sinusoidal spatial perturbations of predefined amplitude10

and constant wavelength, by considering specimens with random distributions of perturbations of varying11

amplitude and wavelength. The idea, which is based on the work of El Maï et al. [4], is to provide an idealized12

modeling of the surface defects and initial roughness of the rings and explore their effect on the collective13

behavior and spacing of the necks. The material behavior has been modeled with von Mises plasticity and14

constant yield stress, and the finite element simulations have been performed for expanding velocities ranging15

from 10 m/s to 1000 m/s, as in ref. [33]. For each speed, we have performed calculations varying the number16

of imperfections in the ring from 5 to 150. In order to obtain statistically significant results, for each number17

of imperfections, the computations have been run with five random distributions of imperfection wavelengths.18

For a small number of imperfections, the variability in the wavelengths distribution is large, which makes the19

imperfections play a major role in the necking pattern, largely controlling the spacing and growth rate of the20

necks. As the number of imperfections increases, the variability in the wavelengths distribution decreases,21

giving rise to an array of more regularly spaced necks which grow at more similar speed. A key outcome is22

to show that, for a large number of imperfections, the number of necks formed in the ring comes closer to23

the number of necks obtained in the absence of ab initio geometric imperfections.24
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1. Introduction27

The effect of material and geometric imperfections in the fragmentation of metallic structures subjected28

to dynamic loading has been the subject of recurrent debate within the Solid Mechanics community for more29

that 70 years. In the 40’s of the last century, Mott [26, 24, 22, 23, 25] published what is still considered30

as a reference model to explain the basic physical mechanisms underlying dynamic fragmentation of ductile31

materials. The theory of Mott, that was primarily developed during World War II to describe the process of32

fragmentation resulting from the explosive rupture of cylindrical shell casings, is basically a statistical one-33

dimensional model that considers the onset of fractures as a random process that responds to the inherent34

variability of the fracture strain of metallic materials. The underlying idea is that the fragmentation occurs35

due to the activation of weak points of the material, such as defects or geometric imperfections, which are36

distributed throughout the specimen and lead to the formation of multiple necks (in ductile materials) which37

eventually develop into fractures. The distribution of neck spacings and fragment sizes is determined by38

the propagation of the unloading waves which emanate from each necked and fracture site, and lead to the39

development of obscured (unloaded) zones in which additional necks cannot nucleate and fractures cannot40

occur.41

The original theory of Mott [26, 24, 22, 23, 25] was extended years later by Grady and collaborators42

[10, 17, 8, 11] to account for the dissipation of energy associated with the fracture process. These authors43

derived expressions for the nominal fragment size, fracture time, and dynamic fracture strain that found44

reasonable agreement with experiments and numerical computations, e.g. refs. [17, 18, 11]. Indeed, with45

the development of Computational Mechanics, the finite element method has been extensively used over the46

last 3 decades to simulate multiple necking and dynamic fragmentation problems, e.g. refs. [13, 39, 31, 36,47

12, 40, 34, 33]. The popularity of computer simulations to study fragmentation problems is partly due to48

the elevated cost of fragmentation experiments, and the fact that there are only a few laboratories in the49

world with the equipment and skills required to perform such tests (e.g. high-velocity expansion of ring50

[28, 9, 2, 47, 15, 3], thin-walled cylinders [35, 14, 7, 48, 16] and hemispherical shells [19]). In addition, the51

finite element calculations have the potential to provide information about the mechanisms which control52

multiple necking and fragmentation that is not accessible by experimentation.53

For instance, finite element simulations have been extremely useful to obtain insights into the role of54

geometric imperfections on the dominant and arrested necks, the fragmentation patterns, and the distribution55
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of fragment sizes. Namely, Han and Tvergaard [13] analyzed using 2D numerical simulations the formation56

of multiple necks in plane-strain cylinders expanding dynamically under prescribed body forces. The57

material, considered rate and temperature independent, was described using von Mises plasticity and isotropic58

hardening. The authors included in the specimen an array of sinusoidal geometric imperfections to break the59

symmetry of the problem and trigger necking localization. They showed that, due to inertia effects, multiple60

necks can be formed at locations other than the prescribed initial thickness imperfections. Sørensen and61

Freund [36] studied numerically the formation and growth of necks in thin-walled metal tubes undergoing62

high-rate radial expansion under plane strain conditions. The necking pattern was triggered including in63

the finite element model sinusoidal periodic imperfections of constant wavelength and amplitude. A main64

difference with previous work of Han and Tvergaard [13] is that the plastic behaviour of the material was65

described using Gurson plasticity, taking into account the nucleation and growth of microvoids, and the66

temperature and strain rate sensitivities of the material. These authors showed that, for long wavelength67

imperfections of small amplitude, an array of regularly spaced necks appeared around the circumference of68

the ring. As in the numerical results of Han and Tvergaard [13], the spacing of the necks showed little69

correlation with the initial imperfections distribution. Moreover, Guduru and Freund [12] simulated in70

ABAQUS/Explicit [1] the ring expansion experiments performed by Grady and Benson [9] with 1100 − 071

aluminum and OFHC copper specimens. As in Sørensen and Freund [36], the material was modeled with72

Gurson plasticity, and fracture was considered to occur when a critical value of porosity was reached. The73

finite element model consisted of a long cylindrical bar subjected to dynamic stretching and with initial74

conditions consistent with the expanding ring. The authors performed calculations in which the radius of75

the bar was given a small sinusoidal geometric imperfection and showed, consistently with the results of Han76

and Tvergaard [13] and Sørensen and Freund [36] for long wavelength imperfections, that the amplitude77

of the imperfection had no significant influence on the number of necks and fragments. The authors78

also noted that in ABAQUS/Explicit [1], unlike in the in-house code used by Han and Tvergaard [13],79

no imperfection is needed to trigger the formation of necks, since the numerical perturbations introduced80

by the software are sufficient to cause the instability when the critical conditions are reached. The finite81

element results obtained with and without geometric imperfection found reasonable agreement with the82

experiments of Grady and Benson [9] for the number of necks and the fragmentation statistics. The numerical83

calculations were also compared with a linear stability analysis which provided accurate predictions for the84
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increase in the number of necks with the extension velocity. The linear stability analysis suggested that85

the suppression of both short and long necking wavelengths due to stress multiaxiality (i.e. triaxiality)86

and inertia, respectively, favors the growth of an intermediate necking wavelength which determines the87

average size of the necks at high loading velocities [5, 6, 20, 21]. Moreover, Rodríguez-Martínez et al. [33]88

performed finite element simulations with ABAQUS/Explicit [1] of the dynamic expansion of rings with89

periodic geometric imperfections of constant amplitude and wavelength. The main difference with previous90

works of Han and Tvergaard [13], Sørensen and Freund [36] and Guduru and Freund [12] is that Rodríguez-91

Martínez et al. [33] explored a wider range of imperfection wavelengths such that the number of imperfections92

included in the ring was varied from 5 to 150 (i.e. from short to long wavelength imperfections). The finite93

element calculations of Rodríguez-Martínez et al. [33] confirmed the linear stability analysis predictions94

reported in refs. [5, 6, 12, 20, 21]: while for intermediate wavelength imperfections every imperfection evolved95

into a neck, for short and long wavelength imperfections the necking pattern showed little correlation with the96

imperfections distribution. The suppression of short and long wavelength imperfections led to the emergence97

of a dominant necking pattern with the same average spacing obtained in finite element calculations in98

which no geometric imperfection was included (and the necking pattern was triggered by the numerical99

perturbations introduced by the software).100

In this paper we extend the finite element analyses of Han and Tvergaard [13], Sørensen and Freund [36],101

Guduru and Freund [12] and Rodríguez-Martínez et al. [33] by considering expanding rings with random102

distributions of geometric imperfections of varying amplitude and wavelength. As in ref. [33], the material103

is modeled with von Mises plasticity and constant yield stress. The numerical calculations are performed in104

ABAQUS/Explicit [1] for expanding velocities ranging from 10 m/s to 1000 m/s. For each speed, we have105

performed calculations varying the number of imperfections in the ring from 5 to 150. In order to obtain106

statistically significant results, for each number of imperfections, the computations have been run with five107

random distributions of imperfection wavelengths. The finite element results are compared with: (i) the108

calculations reported by Rodríguez-Martínez et al. [33] for rings with imperfections of constant amplitude109

and wavelength, (ii) the numerical simulations performed by Guduru and Freund [12] with ABAQUS/Explicit110

[1] for stretching bars in which the necking pattern is triggered by the numerical perturbations of the software,111

(iii) the predictions of a one-dimensional linear stability analysis developed by N’souglo et al. [30] (which is112

based on the earlier work of Zhou et al. [50]) and (iv) the experiments of Grady and Benson [9] with 1100−0113
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aluminum and OFHC copper rings. The finite element calculations performed in this paper show that, if the114

variability in the wavelengths of the perturbations is large (small number of imperfections), both number115

and growth rate of the necks are mostly controlled by the imperfections. However, if the variability in the116

wavelengths of the perturbations is small (large number of imperfections), the number of necks obtained in117

the finite element simulations show qualitative and quantitative agreement with the results obtained in refs.118

[33, 12, 30, 9].119

2. Finite element model120

This section describes the 3D finite element model developed in ABAQUS/Explicit [1] to study the effect121

of geometric imperfections on the formation of multiple necks in ductile rings subjected to dynamic radial122

expansion.123

The model, shown in Fig. 1, is based on previous works, see refs. [34, 41, 33]. Material points are referred124

to using a Cartesian coordinate system with positions in the reference configuration denoted as {X, Y, Z}.125

The origin of the coordinate system is located at the center of mass of the specimen. The ring is considered126

to have a constant inner radius and variable radial thickness in the initial configuration, with the outer127

radius being defined by an array of N sinusoidal imperfections with varying amplitude and wavelength (the128

imperfections are also called geometric perturbations everywhere in this paper). Motivated by the recent work129

of El Maï et al. [4], the goal is to provide an idealized modeling of the surface defects and initial roughness130

of the ring and explore their effect on the collective behavior and spacing of the necks. The wavelengths of131

the imperfections are generated using a Gaussian probability density function:132

N∑
n=1

2niπRext =
N∑
n=1

λi (1)

where Rext = 16 mm is the maximum outer radius of the ring (i.e. the radius without imperfection), ni is133

the random number ∈ (0, 1) with ∑N
n=1 ni = 1, and λi is the wavelength of the i-th imperfection. We have134

generated five random distributions of imperfection wavelengths denoted as RDIWi with i = 1, ..., 5. Fig. 2135

shows histograms with the number of imperfections N as a function of the wavelength of the imperfections λ.136

The results corresponding to RDIW2 (black blocks) and RDIW3 (red blocks) are included in each histogram.137

For N = 10, Fig. 2(a), the distribution of wavelengths is very heterogeneous with values of λ ranging between138

1.7 mm and 21.6 mm, being the average wavelength λavg ≈ 10 mm. The variability in the wavelengths139
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distribution is gradually reduced as the number of imperfections increases. For instance, for N = 50 and140

N = 100, Figs. 2(b) and 2(c), the span of wavelengths is 0.004 mm ≤ λ ≤ 4.84 mm and 0.002 mm ≤141

λ ≤ 2.09 mm, respectively. Notice that the average wavelength of the imperfections for N = 50 and 100 is142

λavg ≈ 2 mm and ≈ 1 mm, respectively.143

Figure 1: Finite element model. Mesh, geometry and boundary conditions. Note that, due to the symmetry of the specimen,
only half of the ring is shown. The number of imperfections is N = 40 and the amplitude of the imperfections is δ = 0.01 mm.

Moreover, the inner radius and the axial thickness of the ring are Rint = 15 mm and e0 = 1 mm,144

respectively (see Fig. 1). These dimensions are taken from Rodríguez-Martínez et al. [33], and they are145

similar to those used in the experiments of Grady and Olsen [11] and Zhang and Ravi-Chandar [47]. The X146

and Y coordinates of the outer perimeter of the ring are calculated as:147

X =
{
Rext −

δi
2
[
1− cos

(
2πRextθ

λi

) ]}[
cos (θ)

]
(2a)

Y =
{
Rext −

δi
2
[
1− cos

(
2πRextθ

λi

) ]}[
sin (θ)

]
(2b)

148

where δi is the amplitude of the i-th imperfection and θ is the radial angle, see Fig. 1. Let us denote by149
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Figure 2: Histograms showing the number of imperfections N as a function of the imperfection wavelength λ. Results are
presented for two different random distributions of imperfection wavelengths: RDIW2 (black blocks) and RDIW3 (red blocks).
The height of a colored block within a bar of the histogram marks the number of imperfections within a fixed λ interval for
a given distribution of imperfection wavelengths. Results are shown for different number of imperfections: (a) N = 10, (b)
N = 50 and (c) N = 100. For interpretation of the references to color in the text, the reader is referred to the web version of
this article.



8

θi = λi/Rext the radial angle of the i-th imperfection with wavelength λi. By inserting λi in equations (2a) and150

(2b), while increasing θ from θi to θi+1, we obtain the X and Y coordinates corresponding to the imperfection151

with wavelength λi. Repeating the same process for all the other λi provides the coordinates of the N152

imperfections included in the model. Moreover, the amplitude of the i-th imperfection is a random number153

within the range 0.005 mm ≤ δi ≤ 0.025 mm that has also been generated with a Gaussian probability density154

function. These imperfection amplitudes lie within the typical values for the surface roughness obtained in155

sintered and additively manufactured parts, e.g. see refs. [38, 37]. Note that we have generated 1000 pairs156

of X and Y coordinates to obtain an accurate description of the sinusoidal profile of the outer perimeter of157

the ring.158

The loading condition is a radial velocity, Vr, applied in the inner surface of the ring which remains159

constant throughout the entire analysis [34, 41, 32, 33]. The initial condition is a radial velocity of the same160

value V (t = 0) = Vr applied to all the nodes of the finite element mesh. The application of this initial161

condition is essential to minimize the propagation of waves through the thickness of the ring due to the162

abrupt motion of the inner face at t = 0 while the reminder of the specimen is initially at rest. Otherwise,163

for sufficiently high loading velocities, the waves generated due to the application of the loading condition164

could lead to instantaneous flow localization in the inner surface of the specimen [27, 45]. The initial strain165

rate in the material is ε̇0 = Vr/Rint. As in Rodríguez-Martínez et al. [33], the material behavior is modeled166

using linear isotropic elasticity, with Young modulus E = 200 GPa and Poisson’s ratio ν = 0.3, and von167

Mises plasticity with associated flow rule and constant yield stress σy = 500 MPa (i.e., the material is168

considered elastic, perfectly plastic). The initial material density is ρ = 7800 kg/m3. We are aware that the169

constitutive model considered in this work, that neglects the effects of strain, strain rate and temperature170

in the plastic response of the material, is an idealization of the actual behavior of most metals and alloys.171

However, using this simple constitutive model has the advantage of reducing the factors that control the172

formation and development of the necking pattern in the simulations presented in Section 3 to only three:173

inertia, stress multiaxiality (i.e. triaxiality) and geometric imperfections. This facilitates the interpretation174

of the results and thus the identification of the role played by the geometric imperfections in the localization175

process. Furthermore, we think that the overall trends and conclusions obtained in this paper are still valid176

for actual materials with flow stress dependent on strain, strain rate and temperature. On other hand,177

previous works reported in the literature suggested that strain hardening delays necking formation [20], the178
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strain rate hardening increases the necking strain and the average spacing between necks [21], and the thermal179

softening promotes early formation of necks and leads to the decrease of the distance between consecutive180

necks [46]. Nevertheless, determining to which amount strain, strain rate and temperature affect the necking181

pattern at high strain rates, when inertia effects are important, still requires further research. Note that182

the calculations reported in refs. [36, 32, 30] showed that at sufficiently high strain rates the number of183

necks, and the average spacing between consecutive necks, is generally not very sensitive to the material184

properties, which may indicate that inertia is a main factor controlling the necking pattern. Nevertheless,185

this conclusion still needs further research.186

The ring has been discretized using ≈ 100000 tri-linear elements with 8-nodes and reduced integration187

(C3D8R in ABAQUS notation [1]). We have used variable size elements to ensure the quality of the mesh for188

the smallest imperfection wavelengths (which in some cases are of the order of few tens of microns) such that189

the specific number of elements slightly varies (±10%) with the number and distribution of imperfections.190

Ten elements are included through the thickness of the ring. A mesh convergence study has been performed,191

in which the time evolution of the strain field in the specimen, and the number of necks incepted, were192

compared for different mesh sizes. There is some mesh sensitivity in the numerical calculations, however193

it does not affect significantly the finite element results presented in this paper, neither quantitatively nor194

qualitatively (see Appendix A). The mesh design of the ring with N = 40 and δ = 0.01 mm is shown in195

Fig. 1.196

3. Results197

Sections 3.1 and 3.2 show finite element results for simulations with imperfections of constant and198

varying amplitude, respectively. The calculations have been performed for expanding velocities ranging199

from 10 m/s to 1000 m/s, as in ref. [33]. Inertia effects can be quantified with the dimensionless number200

Ī =
√

ρ(Rext−Rint)2ε̇2
0

σy
, which is derived from the balance of linear momentum [50]. For the calculations201

performed in this paper, Ī varies from 0.0026 for Vr = 10 m/s to 0.26 for Vr = 1000 m/s. The finite202

element simulations reported in refs. [32, 29, 49] suggested that the role of inertia effects on necks spacing is203

especially relevant for Ī & 0.06−0.1, when the necking strain corresponding to the critical necking wavelength204

(also called critical neck size) becomes significantly smaller than for any other necking wavelength. While205

the largest velocities considered in this paper exceed the regular experimental capabilities (ring expansion206
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tests can rarely be performed for velocities higher than 300 m/s, see Grady and Olsen [11] and Zhang and207

Ravi-Chandar [47]), exploring such a wide range of loading rates helps to enlighten the role of geometric208

imperfections on the formation of multiple necking patterns. For each expansion velocity, we have performed209

calculations varying the number of imperfections in the ring from 5 to 150. Notice that the variability210

in the distribution of imperfection wavelengths decreases as N increases (see Fig. 2). In order to obtain211

statistically significant results, for each number of imperfections, the computations have been run with five212

random distributions of imperfection wavelengths (as mentioned in Section 2). We have also performed213

calculations with N = 0 for which, in absence of geometric defects, the necking pattern is triggered by the214

numerical perturbations introduced by the software [34, 32, 42].215

3.1. Constant amplitude imperfections216

Fig. 3 shows the normalized equivalent plastic strain ˆ̄εp versus the normalized outer perimeter of the ring217

P̂ = θ

2π for calculations with imposed initial strain rate ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s).218

The results correspond to the cases with N = 0, 10, 50 and 100. Recall that for N = 0 no imperfections are219

included in the ring. For N = 10, 50 and 100 the amplitude of the imperfections is ∆ = δ

Rext −Rint

× 100 =220

1% and the random distribution of imperfection wavelengths is RDIW1. The normalized equivalent plastic221

strain is defined as ˆ̄εp = ε̄p

ε̄pb
, where ε̄p is the equivalent plastic strain measured in the outer surface of the222

specimen along the path shown in Fig. 1. Moreover, ε̄pb = ln
(
Rext + Vr t

Rext

)
approximates the background223

equivalent strain in the ring (the background strain corresponds to the fundamental solution of the problem224

in absence of imperfections and before necking localization [42]). Therefore, before the necking pattern is225

formed, the normalized equivalent plastic strain is ≈ 1. The ˆ̄εp−P̂ curves shown in Fig. 3 display a succession226

of peaks and valleys. Similarly to N’souglo et al. [30] and Vaz-Romero et al. [42], we consider that necks are227

all the excursions of strain that fulfill the condition ˆ̄εp = 1.1 when the maximum value of ˆ̄εp reaches ≈ 2.5.228

This criterion has been chosen such that the necking pattern is generally formed, yet the strains are not so229

large that the finite element grid becomes excessively distorted. The results reported in Appendix B show230

that the number of necks is not generally very sensitive to the precise cut-off values chosen, i.e. the trends and231

conclusions presented in this paper remain essentially the same for different necking criteria. Nevertheless,232

this necking criterion has some limitations, as shown below in this paper (see Figs. 9 and 12). Moreover,233

note that Fig. 3 shows results only for values of P̂ ranging from 0 to 0.5, i.e., the results correspond to an234
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angular section of 180◦. Displaying 50% of the perimeter of the ring allows to include enough necks to obtain235

a representative sample of the entire localization pattern, without impairing the clarity of the graph.236

Fig. 3(a) shows the results for N = 0 and three different loading times: t = 5 µs, 55 µs and 69 µs. Note237

that the three ˆ̄εp − P̂ curves intersect with each other several times. If the ˆ̄εp − P̂ curve is shifted upwards238

with increasing time (e.g., the dashed green curve t = 69 µs is above the solid red curve t = 55 µs) is that the239

equivalent plastic strain ε̄p has increased more than the background strain ε̄pb at the corresponding material240

point, which indicates the development of the localization process. Similarly, if increasing the loading time241

shifts the ˆ̄εp − P̂ curve downwards (e.g., the dashed green curve is below the solid red curve) is that the242

material is unloading elastically (see also Vaz-Romero et al. [42]). For t = 5 µs the normalized equivalent243

plastic strain is virtually constant (the fluctuations of the equivalent strain are not noticeable in the graph),244

meaning that the strain field in the specimen is largely homogeneous and localization has not occurred yet.245

For t = 55 µs the maximum normalized equivalent plastic strain reaches ≈ 1.5. There is a series of peaks and246

valleys which illustrate the incipient formation of a localization pattern. For t = 69 µs the maximum value247

of ˆ̄εp is ≈ 2.5. Attending to the necking criterion defined in previous paragraph (necks are the excursions248

of strain that fulfill the condition ˆ̄εp = 1.1 when the maximum value of ˆ̄εp reaches ≈ 2.5), there are 18249

necks in the graph which are indicated with blue numbers. There is also an excursion of strain indicated250

with an orange arrow that has been arrested before reaching the necking criterion. The localization pattern251

is illustrated in the equivalent plastic strain contours of Fig. 4(a) which show multiple necks in which the252

plastic strain reaches values above 0.75. Note that, due to the stabilizing role of inertia [43], the plastic253

strain outside the necks reaches values as high as 0.5 (in absence of inertia, a rate-independent material with254

no strain hardening develops instantaneous necking localization). Moreover, the contours of stress triaxiality255

σh presented in Fig. 5(a) show that hydrostatic stresses develop in the necked zones, leading to values of σh256

greater than 0.5. The increase of triaxiality stabilizes the growth of short necks [5, 20, 32, 44], and regularizes257

the localization process.258

Fig. 3(b) displays the results with 10 imperfections. For t = 5 µs, unlike in the case of N = 0, there are259

strain fluctuations caused by the geometric imperfections. These fluctuations evolve with time, giving rise to260

a number of strain excursions. Note that the maximum normalized equivalent plastic strain reaches 1.5 and261

2.5 at t = 13 µs and 19 µs, respectively, much earlier than in the case of N = 0. Moreover, both the spacing262

and the growth rate of the necking pattern are more irregular than in the case of N = 0. There are 6 necks263
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in the graph, 2 of them growing much faster than the others. These two main necks (3 and 6), which can be264

seen in the equivalent plastic strain contours of Fig. 4(b), create disturbances in the strain field that lead to265

the formation of additional necks (2, 4 and 5). These results show a great resemblance with the finite element266

simulations of Vaz-Romero et al. [43] for nonlinear elastic bars subjected to dynamic stretching and with267

initial conditions consistent with the expanding ring. These authors showed that including a spatial-localized268

defect in the homogeneous strain rate field of the bar leads to the activation of additional instability modes269

(additional to the mode of the strain rate defect) which trigger the formation of multiple necks (see Fig. 9 in270

ref. [43]). The activation of these additional instability modes is due to inertia effects, which also control (to271

some extent) the number and size of the modes activated. Moreover, notice in Fig. 4(b) that the value of the272

equivalent plastic strain outside the necked zones, which correspond to the valleys in Fig. 3(b), is ≈ 0.13,273

i.e. approximately 3.75 times smaller than in the case of N = 0 (the imperfections favor early necking).274

Moreover, Fig. 5(b) shows that the stress triaxiality near the two main necks is significantly higher that in275

the rest of the specimen, where it is approximately 1/3.276

Fig. 3(c) shows the results for N = 50 and three loading times: t = 5 µs, 17 µs and 21 µs. The excursions277

of strain at t = 5 µs are located at the sites of minimum thickness and they grow at rates comparable to278

the rate of the background strain. As the loading time evolves, some of these excursions further develop279

(growing faster than the background strain), some other merge, and the rest are arrested. The combined280

effects of inertia and stress multiaxiality (see Fig. 5(c)), and the wave disturbances emanating from the281

evolving necks, control the formation and evolution of the localization pattern [43]. At t = 17 µs, for which282

the maximum normalized equivalent strain is ≈ 1.5, there are less peaks than at t = 5 µs. The arrested283

excursions of strain are marked with orange arrows. At t = 21 µs, the number of necks is 14, eight more284

that in the case of N = 10. Note also that the spacing and growth rate of the necks is more regular. Fig.285

4(c) shows the equivalent plastic strain contours with the array of necks located along the perimeter of the286

specimen. The average value of the equivalent plastic strain outside the necks is ≈ 0.12, similar to the case287

of N = 10.288

Fig. 3(d) presents the results for 100 imperfections. The comparison of the ˆ̄εp − P̂ curves for t = 5 µs,289

21 µs and 29 µs illustrates the initiation and development of the necking pattern. The time 5 µs corresponds290

to an early stage of the loading process so that all the strain peaks are located at the sites of minimum291

thickness. At t = 21 µs, the maximum normalized equivalent plastic strain ˆ̄εp reaches 1.5, and the number of292
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strain excursions has been already considerably reduced. At t = 29 µs, for which the maximum normalized293

equivalent plastic strain reaches 2.5, there are 15 excursions of strain indicated with blue numbers that fulfill294

the necking criterion. The locations of these necks only show partial correlation with the imperfections295

distribution. Notice that the number of necks becomes similar to the case for which the localization pattern296

was triggered by the numerical perturbations of the software (N = 0), indicating that as N increases the297

effect of the imperfections in the necking pattern is gradually reduced (as further discussed in Fig. 8). Notice298

also that the loading time required to reach the necking criterion seems to increase with N , and the spacing299

and growth rate of the necks tend to be more uniform. The case N = 10 shows the greater variability in300

the distribution of imperfections wavelength, and thus the most irregular localization pattern. The cases301

N = 0 (no ab initio imperfection), N = 50 and N = 100 show more similar necking pattern (in terms of302

number and growth rate of necks) because for large N , the variability in the distribution of imperfections303

wavelength is small, and thus, the results seem to approach the case for which no imperfections are included.304

The contours of equivalent plastic strain shown in Fig. 4(d) for t = 29 µs illustrate the array of necks formed305

in the ring. The equivalent plastic strain outside the necks is ≈ 0.18, approximately 30% greater than in the306

cases of N = 10 and N = 50. The stress triaxiality contours of Fig. 5(d) show that inside the necked zones307

the stress triaxiality reaches values beyond 0.5, i.e. significantly greater than the triaxiality corresponding308

to uniaxial tension 1/3.309

310

311

Fig. 6 shows a comparison between the ˆ̄εp−P̂ curves obtained for two random distributions of imperfection312

wavelengths: RDIW2 and RDIW3. As in Fig. 3, the results correspond to half of the perimeter of the313

ring, 0 ≤ P̂ ≤ 0.5. The imposed initial strain rate and the amplitude of the geometric imperfections are314

ε̇0 = 16667 s−1 (i.e. Vr = 250 m/s) and ∆ = 1%, respectively. The results correspond to the loading times315

for which the maximum value of ˆ̄εp reaches ≈ 2.5.316

Fig. 6(a) shows the results for N = 10. The loading time for both imperfection distributions is t = 19 µs.317

The necks for RDIW2 and RDIW3 are indicated with blue and orange numbers, respectively. Similarly to318

the results shown for RDW1 in Fig. 3(b), there is an important variability in the growth rate of the necks.319

Notice also that the specific location of the necks depends on the imperfections distribution. The necks 4 and320

2 corresponding to the distributions RDIW2 and RDIW3, respectively, grow faster and create perturbations321
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Figure 3: Normalized equivalent plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . Imposed initial strain rate
of ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s). (a) Number of imperfections N = 0. Three loading times t are
considered: 5 µs, 55 µs and 69 µs. (b) Number of imperfections N = 10. Three loading times t are considered: 5 µs, 13 µs
and 19 µs. (c) Number of imperfections N = 50. Three loading times t are considered: 5 µs, 17 µs and 21 µs. (d) Number of
imperfections N = 100. Three loading times t are considered: 5 µs, 21 µs and 29 µs. For N = 10, 50 and 100 the amplitude of
the imperfections is ∆ = 1% and the random distribution of imperfection wavelengths is RDIW1. The horizontal yellow dashed
lines correspond to the conditions ˆ̄εp = 1.1 and ˆ̄εp = 2.5. For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.
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Figure 4: Contours of equivalent plastic strain ε̄p. Imposed initial strain rate of ε̇0 = 16667 s−1 (which corresponds to
Vr = 250 m/s). (a) Number of imperfections N = 0. Loading time t = 69 µs. (b) Number of imperfections N = 10. Loading
time t = 19 µs. (c) Number of imperfections N = 50. Loading time t = 21 µs. (d) Number of imperfections N = 100.
Loading time t = 29 µs. For N = 10, 50 and 100 the amplitude of the imperfections is ∆ = 1% and the random distribution
of imperfection wavelengths is RDIW1. All the isocontours have the same colour coding such that equivalent plastic strains
ranging from 0 to 0.75 correlate with a colour scale that goes from blue to red. If the value of the equivalent plastic strain is
above 0.75, it remains red.

Figure 5: Contours of stress triaxiality σh. Imposed initial strain rate of ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s).
(a) Number of imperfections N = 0. Loading time t = 69 µs. (b) Number of imperfections N = 10. Loading time t = 19 µs.
(c) Number of imperfections N = 50. Loading time t = 21 µs. (d) Number of imperfections N = 100. Loading time t = 29 µs.
For N = 10, 50 and 100 the amplitude of the imperfections is ∆ = 1% and the random distribution of imperfection wavelengths
is RDIW1. All the isocontours have the same colour coding such that stress triaxialities ranging from 0.25 to 0.5 correlate with
a colour scale that goes from blue to red. If the value of stress triaxiality is below 0.25, it remains blue, and if it is above 0.75,
it remains red.
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in the strain field that lead to the development of additional necks. The equivalent plastic strain contours of322

Fig. 7 illustrate the irregular distribution of the necks in the ring for both imperfection distributions. As in323

the case of RDIW1 shown in Fig. 4(b), the average plastic strain outside the necks is ≈ 0.13 (this number324

can vary ±15% from valley to valley).325

Fig. 6(b) displays the results for 50 geometric imperfections. The loading times for RDIW2 and RDIW3326

are t = 19 µs and t = 21 µs, respectively, i.e. the time for the normalized equivalent plastic strain to reach327

2.5 (slightly) depends on the imperfections distribution. Moreover, while the location of the necks is different328

for both imperfection distributions (as in the case of N = 10), the number of necks is very similar (13 for329

RDIW2 and 14 for RDIW3).330

Fig. 6(c) shows the results for N = 100. As in the case of N = 50, the time required for RDIW3 to reach331

the condition ˆ̄εp = 2.5 is slightly greater than for RDIW2 (29 µs versus 27 µs). Moreover, the number of332

necks is similar for both imperfection distributions, 16 and 17 for RDIW2 and RDIW3, respectively. Similar333

number of necks was obtained for RDIW1 with 100 imperfections (see Fig. 3(d)).334

These results show that, although the number of necks depends on the number of imperfections, the335

number of necks is very similar for the different random distributions of imperfection wavelengths considered336

in this paper.337

338

Fig. 8 shows the evolution of the number of necks formed in the ring n with the number of imperfections339

N for ∆ = 1% and ε̇0 = 16667 s−1. The results obtained for five random distributions of imperfection340

wavelengths (RDIWi with i = 1, ..., 5) are compared with the finite element calculations performed by341

Rodríguez-Martínez et al. [33] for rings with imperfections of the same amplitude (∆ = 1%) and constant342

wavelength (the N imperfections have the same wavelength).343

The results of Rodríguez-Martínez et al. [33] show that for long and short wavelengths, N . 6 and344

N & 55, inertia and stress multiaxiality, respectively, prevent the growth of the imperfections, giving rise to345

a dominant necking pattern formed by n ≈ 38 necks which is hardly sensitive to the geometric perturbations346

(labeled as regions I and III in Fig. 2(a) of ref. [33]). Note that very similar number of necks is obtained for the347

calculation with N = 0 for which the necking pattern is triggered by the numerical perturbations introduced348

by the software. In contrast, for intermediate wavelengths 14 . N . 50 each geometric perturbation leads349

to the nucleation of a single neck (region II of Fig. 2(a) in ref. [33]). For 14 . N . 50, the wavelength of350
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Figure 6: Normalized equivalent plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . Imposed initial strain rate
of ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s). Results are shown for two random distributions of imperfection
wavelengths: RDIW2 and RDIW3. The amplitude of the imperfections is ∆ = 1%. (a) Number of imperfections N = 10. The
loading time for both RDIW2 and RDIW3 is t = 19 µs. (b) Number of imperfections N = 50. The loading times for RDIW2
and RDIW3 are t = 19 µs and t = 21 µs, respectively. (c) Number of imperfections N = 100. The loading times for RDIW2
and RDIW3 are t = 27 µs and t = 29 µs, respectively. The horizontal yellow dashed lines correspond to the conditions ˆ̄εp = 1.1
and ˆ̄εp = 2.5. For interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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Figure 7: Contours of equivalent plastic strain ε̄p. Imposed initial strain rate of ε̇0 = 16667 s−1 (which corresponds to
Vr = 250 m/s). Number of imperfections N = 10. The amplitude of the imperfections is ∆ = 1%. Loading time t = 19 µs (a)
Random distribution of imperfection wavelengths RDIW2. (b) Random distribution of imperfection wavelengths RDIW3.

the geometric imperfections is close to the critical neck size (i.e. the neck size for which the energy required351

to trigger the neck is minimum [45]), promoting early localization of plastic deformation at the locations of352

minimum thickness. To be noted that the unit-cell finite element calculations reported by Rodríguez-Martínez353

et al. [32] (Fig. 18) showed that the critical neck size for a circular bar with cross-section diameter 1 mm,354

imperfection amplitude 5% (area reduction), subjected to initial strain rate ε̇0 = 15000 s−1 and modeled with355

the same material behavior, is ≈ 2.2 mm. This critical neck size corresponds to the wavelength obtained for356

N = 44, which finds good agreement with the number of necks n ≈ 38 which form the dominant necking357

pattern (i.e. the critical neck size seems to be directly connected to the number of necks in the dominant358

necking pattern).359

The results obtained in this paper for random distributions of geometric perturbations show the effect360

of including imperfections with different wavelengths in the number of necks. In contrast to the results for361

constant wavelength imperfections [33], the number of necks n increases nonlinearly with N , displaying a362

concave-downward shape with decreasing slope as the number of imperfections increases. Note that, while363

the scatter in the results obtained for the 5 random distributions of imperfection wavelengths is generally364

small, it increases with N . The increasing scatter is partially attributed to the necking criterion that, for365

the largest values of N considered, identifies as necks some non-localized excursions of strain caused by the366

imperfections that have not been suppressed at the time the necking condition is met (see Fig. 12, Appendix367

B and ref. [33]). The problem is to determine a necking criterion that works well for small and large numbers368
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of imperfections (and different loading rates and imperfection amplitudes, as will be shown in Figs. 9 and369

12) since both the background strain when the necks are formed and the rate of growth of the necks depend370

on the number of imperfections (see Fig. 4). Nevertheless, as mentioned before, the trends and conclusions371

obtained in this paper do not seem to depend on the specific necking criterion considered. For a small372

number of imperfections there is a large variability in the distribution of the wavelengths of the geometric373

perturbations, see Fig. 2. For N . 20, the number of necks is similar to the number of imperfections374

(only for the distributions RDIW1 and RDIW4, and N = 5, the number of necks, n = 16, is significantly375

greater than the number of imperfections). The number of necks is controlled by the imperfections whose376

wavelength is closer to the critical neck size (which, as mentioned before, is ≈ 2.2 mm based on the results377

in ref. [32] for similar strain rate). These geometric perturbations grow faster and lead to disturbances in378

the strain field that, due to inertia effects, activate additional necking modes, see Figs. 3(b) and 6(a). Both379

the spacing and the growth rate of the necks are irregular, see also Figs. 3(b) and 6(a). As the number of380

imperfections increases, the variability in the distribution of the wavelengths of the geometric perturbations381

decreases, see Fig. 2. For N > 20, the number of necks is smaller than the number of imperfections.382

The geometric perturbations with shorter and longer wavelengths are suppressed by stress multiaxiality and383

inertia, respectively [33, 29, 49]. The resulting localization pattern is formed by an array of more regularly384

spaced necks with more similar growth rate, see Figs. 4(c)-(d) and 6(b)-(c). The locations of the necks only385

show partial correlation with the initial distribution of imperfections, and the correlation decreases as N386

increases, see also Figs. 4(c)-(d) and 6(b)-(c). Notice that for large N , the number of necks obtained in the387

calculations with imperfections of varying wavelength approaches the dominant necking pattern.388

These results suggest that, if the variability in the distribution of the wavelengths of the geometric389

perturbations is large, the necking pattern is mostly controlled by the geometric perturbations. In contrast, as390

the variability decreases, the stabilizing effects of inertia and stress multiaxiality seem to become increasingly391

important. This is a main outcome of this paper that, to the authors’ knowledge, has not been reported392

before.393

394

Fig. 9 shows the evolution of the number of necks formed in the ring n as a function of the number of395

imperfections N for greater strain rates and the same imperfection amplitude ∆ = 1%. Namely, calculations396

for ε̇0 = 33333 s−1 and 66667 s−1, are shown in Figs. 9(a) and 9(b), respectively. As in Fig. 8, the results397
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Figure 8: Number of necks n as a function of the number of imperfections N for an imposed initial strain rate of ε̇0 = 16667 s−1

(which corresponds to Vr = 250 m/s). The results obtained for five random distributions of imperfection wavelengths (RDIWi

with i = 1, ..., 5) are compared with the finite element calculations performed by Rodríguez-Martínez et al. [33] for rings with
constant wavelength imperfections. The amplitude of the imperfections is ∆ = 1%.

obtained for five different distributions of imperfection wavelengths are compared with the calculations carried398

out by Rodríguez-Martínez et al. [33] for rings with constant wavelength imperfections. While the results399

display the same overall trends as for ε̇0 = 16667 s−1, there are quantitative differences.400

For instance, the calculations performed by Rodríguez-Martínez et al. [33] show that the number of necks401

corresponding to the dominant necking pattern increases from ≈ 38 for ε̇0 = 16667 s−1, to ≈ 45 and ≈ 65402

for ε̇0 = 33333 s−1 and 66667 s−1, respectively. The increase in the number of necks is caused by inertia403

effects, which tend to decrease the critical neck size [32, 29]. Based on the finite element simulations shown404

in Fig. 18 of ref. [32], the critical neck sizes for imposed strain rates of 33333 s−1 and 66667 s−1 are ≈ 2405

and ≈ 1.7, respectively. These critical neck sizes correspond to 49 and 57 imperfections, respectively, values406

which are close to the number of necks in the corresponding dominant necking patterns. In addition, the407

range of imperfections for which each geometric perturbation leads to the nucleation of a single neck enlarges408

with the strain rate, and extends from N = 18 to N = 80 for 33333 s−1, and from N = 25 to N = 120409

for 66667 s−1, so that both lower and upper bound are shifted to larger values of N with the increase of410

ε̇0. These results indicate that increasing the strain rate enables the growth of smaller imperfections, which411

is consistent with the calculations of Rodríguez-Martínez et al. [32], who showed that increasing the strain412

rate leads to the increase of the strain for which the necks are formed (see also Fig. 11), which in turn leads413

to the reduction of the range of wavelengths suppressed by stress multiaxiality (see Fig. 12 in ref. [32]).414
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Accordingly, the results obtained in the present paper with random distributions of wavelengths show that,415

by increasing the strain rate, it is necessary to increase the number of imperfections so that the number of416

necks approaches the dominant necking pattern. Actually, for ε̇0 = 66667 s−1 the number of necks for the417

largest values of N considered is (generally) slightly below the dominant necking pattern. Note also that the418

scatter in the results obtained for large values of N increases with ε̇0, illustrating the difficulties to define419

a necking criterion that only captures actual necks (i.e. localized excursions of strain) for a wide range of420

loading rates and imperfection amplitudes.421
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Figure 9: Number of necks n as a function of the number of imperfectionsN . The results obtained for five random distributions of
imperfection wavelengths (RDIWi with i = 1, ..., 5) are compared with the finite element calculations performed by Rodríguez-
Martínez et al. [33] for rings with constant wavelength imperfections. The amplitude of the imperfections is ∆ = 1%. (a)
Imposed initial strain rate of ε̇0 = 33333 s−1 (which corresponds to Vr = 500 m/s) and (b) imposed initial strain rate of
ε̇0 = 66667 s−1 (which corresponds to Vr = 1000 m/s).

422

The effect of the strain rate in the multiple necking pattern is further investigated in Fig. 10 which423

shows the normalized equivalent plastic strain ˆ̄εp versus the normalized outer perimeter of the ring P̂ for424

two imposed initial strain rates, ε̇0 = 16667 s−1 and ε̇0 = 66667 s−1. The amplitude of the imperfections425

is ∆ = 1% and the random distribution of imperfection wavelengths is RDIW1. The results correspond to426

the cases with N = 10, 50, 100 and 150. For these four cases, the increase of ε̇0 leads to an increase in the427

number of necks. It is clear from the results of Figs. 10(a)-(b) that the strain rate (due to inertia effects)428

activates necking modes of smaller size [32, 30]. The orange arrows included in these two graphs indicate the429

additional necks that are developed in the calculations corresponding to ε̇0 = 66667 s−1. In Figs. 10(c)-(d),430

due to the large number of strain excursions, is more complicated to identify which additional necks are431

formed with the increase of the strain rate, and which ones are suppressed. On the other hand, the results432



22

in these two graphs show that, for large values of N , there are non-localized excursions of strain that meet433

the necking criterion (although they are not necks since the deformation is not localized), and contribute to434

the scatter in the results presented in Figs. 8 and 9. Some of these non-localized excursions of strain are435

indicated with green arrows.436

437

Fig. 11 depicts contours of equivalent plastic strain for the calculations corresponding to ε̇0 = 66667 s−1
438

included in Fig. 10 and the same loading times. The comparison with the contours of Fig. 4 shows that the439

average equivalent plastic strain outside the necks increases with the strain rate (due to inertia effects which440

delay localization, e.g. see ref. [43]). For instance, for N = 100 and 16667 s−1 the average strain outside441

the necks is ≈ 0.18 (see discussion of Fig. 3(d)), and for the same number of imperfections and 66667 s−1 is442

approximately 0.53. As mentioned before, these differences in the average strain at which necks nucleate for443

different strain rates make more complicated to define a necking criterion that only captures actual necks for444

a wide range of loading rates. Moreover, the comparison of Figs. 11 and 4 also illustrates that the number445

of necks increases with the strain rate, especially when the number of imperfections is small.446

447

The comparison between calculations with different imperfection amplitudes is performed in Fig. 12,448

which shows the normalized equivalent plastic strain ˆ̄εp versus the normalized outer perimeter of the ring449

P̂ for ∆ = 1% and 2.5%, and an imposed initial strain rate of 16667 s−1. The random distribution of450

imperfection wavelengths is RDIW1. Results are shown for calculations with N = 10, 50 and 100. The451

loading time for which the necking condition is met is smaller as the imperfection amplitude increases, i.e.452

the increase of the imperfection amplitude favors early necking formation. Moreover, the number of necks453

increases as the imperfections amplitude increases, notably for large number of imperfections. This is most454

likely because the increase of ∆ decreases the stabilizing effect of stress multiaxiality on short wavelengths455

and enables the growth of additional smaller necks (see also Fig. 15 in ref. [32]). Some of these additional456

necks are indicated with orange arrows in Figs. 12(b) and 12(c). On the other hand, note that the increase457

of ∆ also favors that the necking criterion is met by additional non-localized excursions of strain. Some of458

these non-localized strain peaks are indicated in Figs. 12(b) and 12(c) with green arrows. This shows that459

it is difficult to define a necking criterion which captures only actual necks for a wide range of imperfection460

amplitudes.461
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Figure 10: Normalized equivalent plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . The amplitude of the
imperfections is ∆ = 1% and the random distribution of imperfection wavelengths is RDIW1. Comparison between results
obtained for two imposed initial strain rates, ε̇0 = 16667 s−1 and ε̇0 = 66667 s−1, which correspond to Vr = 250 m/s and
Vr = 1000 m/s, respectively. (a) Number of imperfections N = 10. The loading times for 16667 s−1 and 66667 s−1 are t = 19 µs
and t = 31 µs, respectively. (b) Number of imperfections N = 50. The loading times for 16667 s−1 and 66667 s−1 are t = 21 µs
and t = 31 µs, respectively. (c) Number of imperfections N = 100. The loading times for 16667 s−1 and 66667 s−1 are t = 29 µs
and t = 25 µs, respectively. (d) Number of imperfections N = 150. The loading time for both 16667 s−1 and 66667 s−1 is
t = 25 µs. The horizontal yellow dashed lines correspond to the conditions ˆ̄εp = 1.1 and ˆ̄εp = 2.5. For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.
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Figure 11: Contours of equivalent plastic strain ε̄p. Imposed initial strain rate of ε̇0 = 66667 s−1 (which corresponds to
Vr = 1000 m/s). (a) Number of imperfections N = 10. Loading time t = 31 µs. (b) Number of imperfections N = 50. Loading
time t = 31 µs. (c) Number of imperfections N = 100. Loading time t = 25 µs. (d) Number of imperfections N = 150. Loading
time t = 25 µs. The amplitude of the imperfections is ∆ = 1% and the random distribution of imperfection wavelengths is
RDIW1.

3.2. Varying amplitude imperfections462

Fig. 13 shows the evolution of the number of necks formed in the ring n with the number of imperfections463

N for ε̇0 = 33333 s−1. The results obtained for five random distributions of wavelengths (RDIWi with464

i = 1, ..., 5) with imperfections of constant and varying amplitude are compared with the finite element465

calculations performed by Rodríguez-Martínez et al. [33] for rings with imperfections of constant wavelength466

and amplitude (i.e. the black and red markers correspond to results already shown in Fig. 9(a)). For the467

constant amplitude imperfections ∆ = 1%. For the varying amplitude imperfections, the random distribution468

of imperfection amplitudes is bounded between 0.5% and 1.5%, with the mean of the distribution being469

∆avg = 1%. The results obtained with random distributions of wavelengths of constant and varying amplitude470

are generally similar. The variation in the imperfections amplitude considered does not have a great impact471

in the number of necks, e.g. notice that the number of necks for large values of N is also close to the dominant472

pattern. However, for some of the calculations with smaller number of imperfections, the simulations with473

imperfections of varying amplitude predict greater number of necks (indicated with orange arrows). These474

are generally calculations for which small amplitude imperfections (smaller than the average) lead to the475

development of additional necks.476

477

A comparison between the necking patterns obtained with imperfections of constant and varying amplitude478

is performed below. Fig. 14 shows the normalized equivalent plastic strain ˆ̄εp versus the normalized outer479
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Figure 12: Normalized equivalent plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . The imposed initial strain
rate is ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s). Comparison between results obtained for two imperfection
amplitudes: ∆ = 1% and ∆ = 2.5%. The random distribution of imperfection wavelengths is RDIW1. (a) Number of
imperfections N = 10. The loading times for ∆ = 1% and ∆ = 2.5% are t = 21 µs and t = 15 µs, respectively. (b) Number of
imperfections N = 50. The loading times for ∆ = 1% and ∆ = 2.5% are t = 21 µs and t = 15 µs, respectively. (c) Number of
imperfections N = 10. The loading times for ∆ = 1% and ∆ = 2.5% are t = 27 µs and t = 19 µs, respectively. The horizontal
yellow dashed lines correspond to the conditions ˆ̄εp = 1.1 and ˆ̄εp = 2.5. For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.
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Figure 13: Number of necks n as a function of the number of imperfections N for an imposed initial strain rate of ε̇0 = 33333 s−1

(which corresponds to Vr = 500 m/s). The results obtained for five random distributions of wavelengths (RDIWi with i = 1, ..., 5)
with imperfections of constant and varying amplitude are compared with the finite element calculations performed by Rodríguez-
Martínez et al. [33] for rings with imperfections of constant wavelength and amplitude (i.e. the black and red markers correspond
to results already shown in Fig. 9(a)). For the constant amplitude imperfections ∆ = 1%. For the varying amplitude
imperfections, the random distribution of imperfection amplitudes is bounded between 0.5% and 1.5%, with the mean of the
distribution being ∆avg = 1%. For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.

perimeter of the ring P̂ for an imposed initial strain rate of ε̇0 = 33333 s−1. The random distribution of480

imperfection wavelengths is RDIW2. For the constant amplitude imperfections ∆ = 1%. For the varying481

amplitude imperfections, the bounds and the mean of the amplitudes distribution are the same as in Fig.482

13. Results are shown for N = 10, 50 and 100. Notice that the necking criterion is met (generally) earlier483

for the calculations with imperfections of varying ∆, most likely due to the faster growth of some of the484

geometric perturbations of greater amplitude. Moreover, the variation in the amplitudes distribution changes485

the location and growth rate of the necks with respect to the simulations with constant ∆, notably for the486

calculations with small number of imperfections, see the results in Fig. 14(a) for N = 10. If N is small, the487

necking pattern is controlled, to a large extent, by the imperfections with closer wavelengths to the critical488

neck size (see discussion of Fig. 8) and greater amplitude. As N increases, the influence of the distribution489

of amplitudes in the location and growth rate of the necks seems to be reduced, see the results in Figs. 14(b)490

and 14(c) for N = 50 and N = 100, respectively.491

492

Fig. 15 shows the evolution of the average neck spacing L with the imposed initial strain rate ε̇0, where L493

has been calculated as the ratio between the initial outer perimeter of the ring and the number of necks. We494
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Figure 14: Normalized equivalent plastic strain ˆ̄εp versus normalized outer perimeter of the ring P̂ . The imposed initial strain
rate is ε̇0 = 33333 s−1 (which corresponds to Vr = 500 m/s). The random distribution of imperfection wavelengths is RDIW2.
Comparison between the results obtained with imperfections of constant and varying amplitude. For the constant amplitude
imperfections ∆ = 1%. For the varying amplitude imperfections, the random distribution of imperfection amplitudes is bounded
between 0.5% and 1.5%, with the mean of the distribution being ∆avg = 1%. (a) Number of imperfections N = 10. The loading
time for the calculations with imperfections of constant and varying amplitude is t = 23 µs. (b) Number of imperfections
N = 50. The loading times for the calculations with imperfections of constant and varying amplitude are t = 21 µs and
t = 19 µs, respectively. (c) Number of imperfections N = 100. The loading times for the calculations with imperfections of
constant and varying amplitude are t = 27 µs and t = 23 µs, respectively. The horizontal yellow dashed lines correspond to the
conditions ˆ̄εp = 1.1 and ˆ̄εp = 2.5. For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.
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show finite element results corresponding to imperfections of varying wavelength and amplitude for N = 10,495

50 and 100 (black markers in Figs. 15(a)-(b)-(c)). Recall from Section 2 that the average imperfection496

wavelengths corresponding to N = 10, 50 and 100 are λavg ≈ 10 mm, 2 mm and 1 mm, respectively. The497

distribution of imperfection wavelengths is RDIW1, and the imperfection amplitudes range between 0.5% and498

1.5%, with the mean of the distribution being ∆avg = 1%, as in Figs. 13 and 14. For N = 10, the evolution499

of L with the strain rate is irregular and does not display any specific trend. The values of the average500

neck spacing are relatively close to the average imperfection wavelength λavg ≈ 10 (indicated with a yellow501

dashed line). As in the case of the distributions of imperfections with constant amplitude (Section 3.1), if the502

variability in the wavelength of the imperfections is large (i.e. if N is small), the necking pattern is generally503

controlled by the geometric perturbations. In contrast, for N = 50 the value of L displays a monotonic504

decrease with the strain rate, with a rate of decrease which is smaller as ε̇0 increases. As mentioned in505

Section 3, the decrease in L is caused by inertia, which activates smaller neck sizes with the increase of the506

strain rate [32]. Moreover, the average neck spacing is greater than the corresponding average imperfection507

wavelength, which reveals than the number of necks is smaller than the number of imperfections for the508

whole range of strain rates investigated. As mentioned in Section 3.1, for large N , the smaller imperfection509

wavelengths are suppressed by the stress multiaxiality effects [33]. For N = 100, the evolution of L with510

the strain rate is qualitatively the same as in the case of N = 50. The difference is that the values of L are511

smaller for N = 100 for all the strain rates considered. Nevertheless, notice that the increasing role played512

by inertia in the necking pattern as the strain rates increases [32] tends to reduce the gap in the values of L513

obtained for N = 50 and 100.514

Fig. 15(a) shows a comparison of the finite element results corresponding to imperfections of varying515

wavelength and amplitude (black markers) with the finite element calculations without imperfections (N = 0)516

performed by Rodríguez-Martínez et al. [33] (green markers) and the linear stability analysis predictions517

reported by N’souglo et al. [30] (red line). The results of Rodríguez-Martínez et al. [33] for N = 0, which518

are obtained with the same material modeling used in this paper (as mentioned before), show a decrease of519

L with the strain rate, in qualitative agreement with the calculations for N = 50 and N = 100. On the520

other hand, note that, while at low strain rates the calculations of Rodríguez-Martínez et al. [33] find closer521

quantitative agreement with the average neck spacing obtained for N = 50, at high strain rates the results522

of Rodríguez-Martínez et al. [33] lay in between the calculations performed for N = 50 and 100. As inertia523
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becomes more important, the geometric imperfections seem to play a smaller role in the average neck spacing524

such that if the variability in the distribution of imperfections wavelengths is not large (i.e. if N is large),525

the results are similar to the calculations without imperfections. On the other hand, the linear stability526

analysis predictions of N’souglo et al. [30], that were obtained for bars with circular cross section, subjected527

to dynamic stretching, and modeled with Gurson plasticity, show a gradual decrease of L with the strain528

rate. Despite the different material behaviors considered in the finite element calculations and the stability529

analysis, the analytical and numerical results show good qualitative and quantitative agreement, especially530

at high strain rates, for which the average neck spacing obtained with the analytical model lays between531

the simulations corresponding to N = 50 and 100, and virtually overlaps with the calculations performed by532

Rodríguez-Martínez et al. [33]. In other words, provided that inertia effects are important, the linear stability533

analysis yields good predictions for the average neck spacing for specimens with and without distributions534

of geometric imperfections (even if the material behavior is different [32, 30]).535

Figs. 15(b)-(c) present a comparison of the finite element results corresponding to imperfections of536

varying wavelength and amplitude (black markers) with the experiments performed by Grady and Benson537

[9] with Aluminium 1100-O and OFHC copper rings (green markers), and with the simulations conducted by538

Guduru and Freund [12] with circular cross-section bars modeled with Gurson plasticity, without geometric539

imperfections, and subjected to dynamic stretching (red markers). Despite the differences in the constitutive540

framework used to describe the material behavior, the calculations of Guduru and Freund [12] find good541

qualitative agreement with the simulations performed for N = 50 and 100 (material properties values in542

this paper and in the simulations of Guduru and Freund [12] are different, check Section 5 in Guduru and543

Freund [12] for the specific parameters values they used). As the calculations of Rodríguez-Martínez et al.544

[33] for N = 0 (see Fig. 15(a)), with the increase of the strain rate, the simulations of Guduru and Freund545

[12] for both Aluminium 1100-O and OFHC copper specimens deviate from the data obtained for N = 50546

and approach the results for N = 100. Moreover, despite the limited range of strain rates explored in the547

tests of Grady and Benson [9], the experimental data display a decrease in the average neck spacing that548

shows qualitative agreement with the finite element calculations performed with imperfections of varying549

wavelength and amplitude, and also with the calculations of Guduru and Freund [12]. Notice that the550

decrease of the average necks spacing with the strain rate, displaying a concave-upwards shape, has been551

observed in computations performed with several ductile materials, with very different mechanical behaviors552
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[12, 32, 43, 30, 29] (i.e. the qualitative agreement between experiments and simulations is obtained for almost553

any metallic material provided that it is ductile and inertia effects are important). Moreover, the quantitative554

differences between the experiments and the simulations are likely due to the fact the constitutive models555

used in the simulations were not calibrated to describe the mechanical response of the materials used in the556

tests. Nevertheless, this conclusion needs further research.557

4. Concluding remarks558

This paper provides a comprehensive finite element investigation on the effect of geometric imperfections559

in the formation of multiple necks in ductile rings subjected to rapid radial expansion. We have extended560

previous works of Han and Tvergaard [13], Sørensen and Freund [36], Guduru and Freund [12] and Rodríguez-561

Martínez et al. [33] by considering rings with random distributions of geometric imperfections of varying562

amplitude and wavelength. The calculations show that the effect of geometric perturbations on the number563

and grow rate of the necks depends on the variability in the wavelength and amplitude of the imperfections.564

Namely, if the variability is large, the effect of geometric imperfections in the necking pattern is large. In565

contrast, if the variability in wavelengths and amplitudes distribution is small, the stabilizing effects of566

inertia and stress multiaxiality become more important, and the number of necks approaches the dominant567

necking pattern obtained in finite element simulations with no ab initio geometric imperfections. Moreover,568

the variation in the imperfections amplitude considered in this paper does not have a great impact in the569

number of necks. This investigation should be continued further by using constitutive models representative570

of actual materials (e.g. accounting for strain hardening, strain rate sensitivity and thermal softening),571

and performing experiments with specimens with controlled surface roughness and geometric imperfections,572

in order to validate the main outcomes presented in this paper. Moreover, the effect of the geometric573

imperfections in the distribution of fragments sizes is a key issue that still needs further research efforts.574
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Figure 15: Average neck spacing L versus imposed initial strain rate ε̇0. Finite element results corresponding to imperfections
of varying wavelength and amplitude for N = 10, 50 and 100. The random distribution of imperfection wavelengths is RDIW1.
The random distribution of imperfection amplitudes is bounded between 0.5% and 1.5%, with the mean of the distribution
being ∆avg = 1%. (a) Comparison with the finite element results for N = 0 reported by Rodríguez-Martínez et al. [33] and
the linear stability analysis predictions reported by N’souglo et al. [30]. (b) Comparison with the experiments performed by
Grady and Benson [9] and the finite element results reported by Guduru and Freund [12] for Aluminium 1100-O specimens. (c)
Comparison with the experiments performed by Grady and Benson [9] and the finite element results reported by Guduru and
Freund [12] for OFHC copper specimens. The horizontal yellow dashed lines correspond to the average imperfection wavelengths
for N = 10, 50 and 100. For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.
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Appendix A. Mesh sensitivity analysis582

Fig. A.16 shows the number of necks n as a function of the number of imperfections N for an imposed583

initial strain rate of ε̇0 = 16667 s−1 (which corresponds to Vr = 250 m/s). The results are obtained for three584

different meshes: Mesh 1 with ≈ 100000 elements (the mesh used in the calculations presented in Section 3),585

Mesh 2 with ≈ 150000 elements and Mesh 3 with ≈ 200000 elements (i.e. the number of elements through586

the thickness of the ring is increased from 10, to 15 and 20). Recall from Section 2 that we have used587

variable element size, with the smaller elements being of the order of microns, in order to include several588

of them in the shorter imperfections wavelengths considered (e.g. for Mesh 3 the minimum element size is589

approximately 10 µm×10 µm×10 µm). The results for Mesh 1 are obtained for five random distributions of590

imperfection wavelengths (RDIWi with i = 1, ..., 5), and the results for Mesh 2 and Mesh 3 are obtained with591

an additional random distribution of imperfection wavelengths RDIW6. A comparison is performed with the592

finite element calculations carried out by Rodríguez-Martínez et al. [33] for rings with constant wavelength593

imperfections. The amplitude of the imperfections is ∆ = 1%. The three different meshes yield the same594

qualitative results, with slight quantitative differences when the number of initial geometric imperfections is595

large. These differences are most likely due to the necking criterion and the identification as necks of some596

non-localized excursions of strain, see Section 3 and Appendix B. Nevertheless, these results show that the597

finite element mesh does not affect the general trends and conclusions obtained in this paper.598

Appendix B. The influence of necking criterion599

Fig. B.17 shows the number of necks n as a function of the number of imperfections N for an imposed600

initial strain rate of ε̇0 = 16667 s−1. The results obtained for five random distributions of imperfection601

wavelengths (RDIWi with i = 1, ..., 5) are compared with the finite element calculations performed by602

Rodríguez-Martínez et al. [33] for rings with constant wavelength imperfections. The amplitude of the603

imperfections is ∆ = 1%.604

In Fig. B.17(a), the results corresponding to the random distributions of imperfection wavelengths are605

obtained using three different criteria. Criterion 1 (red markers) is the one that has been used in Section606
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Figure A.16: Number of necks n as a function of the number of imperfections N for an imposed initial strain rate of ε̇0 =
16667 s−1 (which corresponds to Vr = 250 m/s). The results are obtained for three different meshes: Mesh 1 with ≈ 100000
elements, Mesh 2 with ≈ 150000 elements and Mesh 3 with ≈ 200000 elements. The results for Mesh 1 are obtained for five
random distributions of imperfection wavelengths (RDIWi with i = 1, ..., 5), and the results for Mesh 2 and Mesh 3 are obtained
with an additional random distribution of imperfection wavelengths RDIW6. A comparison is performed with the finite element
calculations performed by Rodríguez-Martínez et al. [33] for rings with constant wavelength imperfections. The amplitude of
the imperfections is ∆ = 1%.

3 (these results were shown in Fig. 8), i.e. the necks are considered the excursions of strain that fulfill607

the condition ˆ̄εp = 1.1 when the maximum value of ˆ̄εp reaches ≈ 2.5. For criteria 2 (green markers) and 3608

(blue markers), the necking conditions are that the excursions of strain must reach ˆ̄εp = 1.2 and ˆ̄εp = 1.3,609

respectively, at the time that the maximum value of ˆ̄εp is ≈ 2.5. Notice that the results obtained with the610

three criteria are very similar. The differences are only noticeable when the number of imperfections is small,611

such that the number of necks obtained with criterion 3 is slightly smaller than with criteria 1 and 2.612

In Fig. B.17(b), the results corresponding to the random distributions of imperfection wavelengths are613

obtained with criteria 1 and 4. For the latter criterion, the necks are considered the excursions of strain that614

fulfill the condition ˆ̄εp = 1.1 at the time that the maximum value of ˆ̄εp reaches ≈ 3. There are no significant615

differences between results obtained with criteria 1 and 4. As mentioned in Section 3, the scatter in the616

results for large values of N is related to the difficulty of defining criteria that only capture actual necks for617

a wide span of ab initio imperfections.618
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Figure B.17: Number of necks n as a function of the number of imperfections N for an imposed initial strain rate of ε̇0 =
16667 s−1 (which corresponds to Vr = 250 m/s). The results obtained for five random distributions of imperfection wavelengths
(RDIWi with i = 1, ..., 5) are compared with the finite element calculations performed by Rodríguez-Martínez et al. [33] for
rings with constant wavelength imperfections. The amplitude of the imperfections is ∆ = 1%. The results corresponding to
the random distributions of imperfection wavelengths are obtained using: (a) criteria 1, 2 and 3, (b) criteria 1 and 4. For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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