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Abstract

In this paper we investigate the large-amplitude axisymmetric free vibrations of an incompressible nonlinear

elastic cylindrical structure. The material behavior is described as orthotropic and hyperelastic using the

physically-based invariants proposed by Rubin and Jabareen (J. Elast. 90(1):1-18, 2007; J. Elast. 103(2):289-

294, 2010). The cylinder is modeled using the theory of a generalized Cosserat membrane, which allows

for finite deformations that include displacements along the longitudinal axis of the structure. The bi-

dimensional approach represents a significant contribution with respect to most works published in this field,

which approach the problem at hand assuming plane strain conditions along the axis of the cylinder. We have

carried out a systematic analysis of the parameters that govern the dynamic behavior of the structure, paying

specific attention to those describing the orthotropy of the material and the dimensions of the cylinder. Using

Poincaré maps, we have shown that the motion of the structure can turn from periodic to quasi-periodic and

chaotic as a function of the initial conditions, the elastic and kinetic energy supplied to the specimen, the

dimensions of the cylinder and the degree of mechanical orthotropy of the material.

Keywords: Nonlinear elasticity, Anisotropy, Large-amplitude vibrations, Cosserat membrane, Chaotic

motion

1. Introduction

The analysis of the nonlinear dynamics of hyperelastic shells started with the pioneering works of Knowles

[1, 2], and the subsequent developments of Zhong-Heng and Solecki [3], Wang [4], Balakrishnan and Shahin-

poor [5] and Shahinpoor and Balakrishnan [6]. These authors focused their attention on the large-amplitude

radial vibrations of incompressible, thin-walled and thick-walled, cylindrical and spherical shells. Free and

forced oscillations, the later with a Heaviside radial pressure, were explored. Closed-form analytical solutions

for the phase diagrams and the period of oscillation could be obtained due to the incompressibility condition

imposed on the constitutive model. Moreover, these results revealed the existence of a critical pressure that

leads to the loss of the oscillatory behavior of the structure. More recently, the contributions of Beatty [7, 8],

Verron et al. [9] and Aranda-Iglesias et al. [10, 11] have pointed out the strong dependency of this critical

pressure on the strain-energy function used to model the material behavior. Further information about the
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literature published until 2013 on the oscillatory behavior of incompressible hyperelastic shells can be found

in the review of Alijani and Amabili [12].

In addition, several relevant works have been published on this topic since 2013. For instance, Breslavsky

et al. [13, 14] studied, analytically and numerically, free and forced nonlinear bending vibrations of thin square

plates made of hyperelastic materials. They considered in their analyses Neo-Hookean, Mooney Rivlin and

Ogden strain energy functions. Breslavsky and co-workers [13, 14] concluded that the best approximation

to the real response of the structure was provided by the Ogden model since it correctly reproduces the

behavior of the plate at large strains, including the increase in stiffness of the material after a given strain

threshold is reached. This research was continued, shortly after, by Balasubramanian et al. [15] who revisited

the nonlinear bending vibrations of a thin square silicone rubber plate analytically, numerically and, also,

experimentally. The authors reported that the lack of experimental studies, on square inflated plates in

particular, inspired their experimental work and provided a strong innovative character to their research.

They conducted an experimental modal analysis on a plate that was fixed to a metallic frame and pre-loaded

in its plane. For the analytical model, the equations of motion were obtained by a unified energy approach

in which the material and geometrical nonlinearities were considered using the Mooney-Rivlin model and

the Novozhilov nonlinear shell theory, respectively. On the other hand, the numerical model was developed

using a finite element code. Balasubramanian et al. [15] showed that with a correct parameter identification

their analytical and numerical models accurately predict the experimental response of the plate up to large

deformations. Moreover, Breslavsky et al. [16] studied the dynamic response of a circular cylindrical shell

made of an hyperelastic bio-material described as a combination of Neo-Hookean and Fung models. Free

and forced vibrations around preloaded configurations were analyzed. In both cases, the nonlinearity of the

single-mode (driven mode) response of the preloaded shell was quite weak, but a resonant regime with both

driven and companion modes active was found with more complicated nonlinear dynamics.

The extension of the works of Knowles [1, 2], Zhong-Heng and Solecki [3], Wang [4], Balakrishnan and

Shahinpoor [5] and Shahinpoor and Balakrishnan [6] to compressible hyperelasticity was conducted by Had-

dow and co-workers [17, 18, 19, 20]. The material compressibility precludes obtaining closed-form solutions

of the shell motion so that the problem has to be solved numerically. The authors showed that the response

of compressible and incompressible spherical shells subjected to radially symmetric dynamic inflation is sig-

nificantly different. For incompressible specimens, the effect of the applied pressure is felt instantaneously

throughout the shell. While, for the case of a compressible material, the applied pressure leads to the for-

mation of a shock wave, which propagates back and forth through the thickness of the specimen. Moreover,

the recent paper of Aranda-Iglesias et al. [21], which studied the vibrations of spherical shells subjected to

constant inner pressure, revealed that the material compressibility decreases the critical pressure value that

leads to the loss of the oscillatory behavior of the structure.

On the other hand, the influence of material anisotropy on the large-amplitude vibrations of hyperelastic

shells has received much less attention. The first paper on this topic was published by Huilgol [22], who
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studied the problem of axisymmetric oscillations of an infinitely long cylindrical thick-walled tube, which

was curvilinearly transverse-isotropic, i.e., the anisotropy was assumed to exist in the radial direction. The

author derived the conditions that strain-energy functions must satisfy for the existence of periodic solutions.

A few years later, Shahinpoor [23] approached the problem of large-amplitude oscillations of a longitudinally

anisotropic thin-walled cylindrical structure subjected to radial pressure and plane strain with no axial strain

(plane strain was also considered by Huilgol [22]). Exact expressions for the dynamic deformations were

obtained by explicitly solving the non-autonomous time-dependent differential equation that arises when

the applied pressure was considered to decay exponentially in time. From this point on, most likely due to

the extended use of composite materials such as carbon and glass fiber reinforced polymers in the industry,

the works dealing with large-amplitude vibrations of anisotropic elastic materials have mostly used linear

elasticity. For example, see the recent works of Toorani [24], Jansen [25, 26], Amabili and Reddy [27], and

other references included in the review of Alijani and Amabili [12]. The number of recent contributions to

the field of anisotropic nonlinear elasticity is small. Within this field, we should highlight the work of Mason

and Maluleke [28], who investigated the radial oscillations of transversely isotropic incompressible thin-walled

cylindrical tubes with a generalized Mooney-Rivlin strain-energy function and subjected to a time dependent

applied pressure. Transversely isotropic cylindrical tubes in the radial, tangential and longitudinal directions

were considered. As in the previous works of Huilgol [22] and Shahinpoor [23], the cylinder was subjected to

plane strain conditions. The attention of Mason and Maluleke [28] was focused on calculating the conditions

on the strain-energy function and the applied pressure such that the differential equation of motion has a Lie

point symmetry generator. Under these conditions, the problem can be reduced to an autonomous system

for which analytical solutions exist.

In the present paper we extend the works of Huilgol [22], Shahinpoor [23] and Mason and Maluleke [28]

to a 2D framework. We study the axisymmetric free vibrations of a nonlinear orthotropic hyperelastic thick-

walled cylindrical structure. Unlike in Huilgol [22], Shahinpoor [23] and Mason and Maluleke [28] no plane

strain hypothesis is assumed, i.e., the cylinder deforms homogeneously in the axial direction. The orthotropic

mechanical response of the material is modeled following the constitutive theory developed by Rubin and

Jabareen [29, 30]. Using Poincaré maps and Lyapunov exponents, see for instance [31, 32], we have carried

out a systematic analysis to evaluate, for a wide range of initial conditions, the influence of the following

factors on the oscillatory response of the structure: (1) the initial elastic and kinetic energies supplied to the

specimen, (2) the dimensions of the shell and (3) the anisotropy of the material. Our results reveal that,

depending on the energy of the system, the material constants and the geometrical parameters, the response

of the structure can be periodic, quasi-periodic or chaotic. However, it is not known if the additional surface

vibrations that occur when the surfaces of the cylinder are traction-free pointwise will prevent the large

amplitude oscillations analyzed here from being observable.
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2. Problem formulation

Consider a cylindrical structure with inner radius A, outer radius B and uniform axial height H, in its

stress-free reference configuration. For nonlinear axisymmetric deformations, the cylinder has inner radius

a(t), outer radius b(t) and variable axial height h(t) in its present configuration at time t. The cylinder is

modeled using the theory of a generalized Cosserat membrane, which allows for finite deformations including

displacements along the longitudinal axis of the structure. Further information and details on the use and

application of this theory can be found in Chapter 4 of Rubin’s book [33]. The balance laws of Cosserat

theory can be developed by the writing Bubnov-Galerkin type weak forms of the three-dimensional balance

of linear momentum and a weighted average through the thickness of the balance of linear momentum but

the constitutive equations are always developed by the direct approach to be consistent with hyperelastic

constitutive equations based on a strain energy function. Moreover, the kinematics of the Cosserat theory are

similar to those in the three-dimensional theory so the nonlinear orthotropic constitutive equations developed

in [29] and [30] can easily be proposed with the context of a generalized Cosserat membrane used here.

Within the context of the Cosserat theory, X is the position vector of a material point in the axial middle

surface of the tube and D3 is the director vector of a material line element along the longitudinal axis of the

cylinder in its reference configuration, which are functions of two convected coordinates θα with (α = 1, 2)

X = X(θα). (1)

In the present configuration at time t, the material point X is located by x and the director D3 is deformed

to d3, such that

x = x(θα, t), d3 = d3(θα, t). (2)

Also, the velocity v and director velocities wi are defined by

v = ẋ, wα = v,α, w3 = ḋ3, (3)

where a superposed dot denotes material time differentiation, holding θα fixed, and a comma denotes partial

differentiation with respect to θα.

The reference directors Aα = Dα, the unit normal A3 to the middle surface, the present directors aα = dα

and the unit normal to the middle surface a3 are defined by

Aα = Dα = X,α, A3 = A−1/2(A1 ×A2), A1/2 = ‖A1 ×A2‖ , (4)

aα = dα = x,α, a3 = a−1/2(a1 × a2), a1/2 = ‖a1 × a2‖ , (5)

where the directors {D3,d3} are restricted so that Di and di form linearly independent sets of vectors

D1/2 = D1 ×D2 ·D3 > 0, d1/2 = d1 × d2 · d3 > 0. (6)

Throughout the text, a1/2 is considered to be related to the deformed middle surface area of the tube

and should not be confused with the square root of the inner radius a. In addition, the reciprocal vectors
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{Ai,ai,Di,di} are defined by

A1 = A−1/2(A2 ×A3), A2 = A−1/2(A3 ×A1), A3 = A3, (7)

D1 = D−1/2(D2 ×D3), D2 = D−1/2(D3 ×D1), D3 = D−1/2(D1 ×D2), (8)

with {ai,di} defined by similar equations obtained by replacing {A1/2,Ai} by {a1/2,ai} and {D1/2,Di} by

{d1/2,di}, respectively. Using these expressions, the deformation gradient F, dilatation J, velocity gradient

tensor L and rate of deformation tensor D are defined by

F = di ⊗Di, J = detF =
d1/2

D1/2
, J̇ = JD · I, (9)

L = ḞF−1 = wi ⊗ di, D =
1

2
(L + LT), (10)

where a ⊗ b denotes the tensor product of two vectors {a,b}, A ·B = tr(ABT) denotes the inner product

of two second order tensors {A,B} and I is the unit second order tensor. Note that the usual summation

convention is used for repeated indices, with Greek indices taking the values {α = 1, 2} and Latin indices

taking the values {i = 1, 2, 3}.

The balance of linear momentum and the balance of director momentum are given, respectively, by

mv̇ = mb + tα,α, (11)

my33ẇ3 = mb3 − t3. (12)

In these equations, m is a measure of the mass of the cylinder, y33 is the constant director inertia, which

controls inertia to displacements along the axial direction of the cylinder, the assigned fields {mb,mb3} are

due to body force and tractions on the top and bottom surfaces of the cylinder, and the kinetic quantities ti

are defined in terms of a symmetric tensor T by

ti = a1/2Tdi, TT = T, (13)

which requires a constitutive equation. It can be shown that a1/2T is related to an average of the three-

dimensional Cauchy stress through the height of the tube. Specifically, for a hyperelastic material with

three-dimensional strain energy function Σ∗ per unit mass, the strain energy function Σ of the tube is

specified by

Σ = Σ∗(C), C = FTF, (14)

and T is determined by the derivatives of Σ

a1/2T = a1/2T̂ = 2mF
∂Σ∗

∂C
FT. (15)

In addition, the boundary conditions required for the balance of linear momentum (11) require specification

of the force t per unit arclength ds of the curve ∂P defining the boundary of the tube with (see Eq. (4.4.10)

in [33])

t = Nn, N = a−1/2tα ⊗ dα, (16)
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where n is the unit outward normal vector to the curve ∂P, which is tangent to the middle surface P of the

membrane.

For a cylinder made of an incompressible material, the deformation is constrained to be isochoric

J = 1, D · I = 0, (17)

and T is expressed in the form (see [33, Sec. 4.9]).

a1/2T = a1/2T̂− γI (18)

where T̂ is determined by the constitutive equation (15) and γ is constraint response, which is an arbitrary

function of (θα, t).

The balance of mechanical power can be derived by taking the dot product of the balance of linear

momentum (11) with the velocity v, the dot product of the balance of director momentum (12) with the

director velocity w3 and adding the results of both operations to obtain

mv̇ · v + my33ẇ3 ·w3 = mb · v + mb3 ·w3 + (tα · v),α − ti ·wi, (19)

Then, using equations (9), (10), (13) and (16), and due to the facts that {m, y33} are constants and dα = aα,

this equation can be rewritten in the form

a1/2T ·D +
d

dt

[
1

2
m
(
v · v + y33w3 ·w3

)]
= mb · v + mb3 ·w3 +

(
a1/2v ·Naα

)
,α
. (20)

Also, for a hyperelastic material

a1/2T ·D = 2mF
∂Σ∗

∂C
FT ·D = mΣ̇∗. (21)

Then, using the divergence theorem for a tensor B (see [33, Sec. 4.4])∫
∂P

Bnds =

∫
P

a1/2divnBdθ1dθ2, a1/2divnB =
(

a1/2Baα
)
,α
, (22)

Equation (20) can be multiplied by dθ1dθ2 and integrated over the region P to deduce the global form of the

balance of energy

U̇ + K̇ =W, (23)

where U is the total strain energy, K is the total kinetic energy in the cylinder and W is the rate of work

done by body forces and surface tractions on the cylinder.

U =

∫
P

mΣ∗ dθ1dθ2, K =

∫
P

1

2
m(v · v + y33w3 ·w3) dθ1dθ2, (24)

W =

∫
P

m(b · v + b3 ·w3) dθ1dθ2 +

∫
P

t · vds. (25)
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2.1. Orthotropic constitutive model

The cylindrical structure is modeled as a nonlinear orthotropic hyperelastic material using the physically-

based invariants developed in [29, 30]. Using the work of Flory [34], the unimodular part C′ of C, which is

a pure measure of distortional deformation, can be defined as

C′ = J-2/3C, det (C′) = 1. (26)

In a three-dimensional context, the Cauchy stress tensor T∗ can be expressed in the form

T∗ = T∗′′ − p∗I, T∗′′ · I = 0, (27)

where p∗ is the pressure and T∗′′ is the deviatoric part of T∗. General hyperelastic materials experience no

distortion when subjected to pure hydrostatic pressure

C′ = I for T∗′′ = 0 and J 6= 1. (28)

It is further assumed that the hyperelastic material is a solid that has non-zero stiffness to all distortional

modes of deformation. In contrast, when an orthotropic hyperelastic material is subjected to hydrostatic

pressure it experiences distortion

C′ 6= I for T∗′′ = 0 and J 6= 1. (29)

The main idea in [29, 30], is to develop invariants of deformation, which are based on the additional distortions

required to cause deviatoric stress in an orthotropic solid. Let pi(i = 1, 2, 3) be an orthonormal triad of vectors

that characterize the principal directions of orthotropy of the material in its reference configuration and let

Ni be the associated structural tensors defined by

Ni = pi ⊗ pi (no sum on i = 1, 2, 3). (30)

Specifically, an orthotropic solid will be in a hydrostatic state of stress if an only if C′ has the form

C′ = η21N1 + η22N2 + η23N3, (31)

where ηi are positive functions of the dilatation J satisfying the restrictions

ηi = ηi(J), η1η2η3 = 1, ηi(1) = 1. (32)

It was shown by [30] that the strain energy Σ∗ per unit mass of a general orthotropic material can be expressed

as a function of seven invariants

Σ∗ = Σ∗(J, βi), (33)

where the invariants βi (i = 1, 2, ..., 6) are defined by

βi =

(
1

η2i
C′ + η2i C

′−1
)
·Ni, βi > 2 (no sum on i = 1, 2, 3), (34)

β4 =
(N1CN2 + N2CN1) ·C

2(C ·N1)(C ·N2)
, β5 =

(N1CN3 + N3CN1) ·C
2(C ·N1)(C ·N3)

, (35)

β6 =
(N2CN3 + N3CN2) ·C

2(C ·N2)(C ·N3)
. (36)
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Moreover, recalling the definition of the auxiliary functions ni(J) it follows that

∂J

∂C
=

1

2
JC−1, ni =

3J

ηi

dηi
dJ

, n1 + n2 + n3 = 0,

∂ηi
∂C

=
1

6
niηi J−2/3C′

−1
(no sum on i = 1, 2, 3).

(37)

Also, the derivatives of βi are given by

∂βi
∂C

= Bi (i = 1, 2, ..., 6), (38)

where

Bi = J−2/3
[(

1

η2i
Ni − η2i C′

−1
NiC

′−1
)
− 1

3
(1 + ni)

(
1

η2i
(C′ ·Ni)− η2i (C′

−1 ·Ni)

)
C′
−1
]
,

(no sum on i = 1, 2, 3).

(39)

B4 =
(N1CN2 + N2CN1)− β4(C ·N2)N1 − β4(C ·N1)N2

(C ·N1)(C ·N2)
, (40)

B5 =
(N1CN3 + N3CN1)− β5(C ·N3)N1 − β5(C ·N1)N3

(C ·N1)(C ·N3)
, (41)

B6 =
(N2CN3 + N3CN2)− β6(C ·N3)N2 − β6(C ·N2)N3

(C ·N2)(C ·N3)
. (42)

Specifically, it is noted that the invariants βi are constants and Bi vanish when C′ takes the form (31)

βi = 2, βi+3 = 0 for i = 1, 2, 3, Bi = 0 for i = 1, 2, ..., 6. (43)

2.2. Specific constitutive equations

As a special case, consider a compressible orthotropic material and take Σ∗ in the form

2ρ∗0Σ∗ =

3∑
i=1

Ki(βi − 2) +

6∑
i=4

Kiβi + K7(J− 1)2, Ki > 0 (i = 1, 2, ..., 7), (44)

where Ki are non-negative material constants and ρ∗0 is the three-dimensional reference mass density. In [33,

Sec. 4.16], it is shown that for a cylinder, the mass quantity m and the director inertia y33 in the balance

laws (11) and (12) are defined by

m = ρ∗0D1/2H, y33 = YH2, Y =
1

12
, (45)

where it is noted that for this case A1/2 = D1/2. It then follows that T in (15) is given by

a1/2T = D1/2H

(
6∑

i=1

KiFBiF
T + JK7(J− 1)I

)
(46)

In addition, consider the special case when ni are constants so that integration of (37) yields

ηi = Jni/3, n1 + n2 + n3 = 0. (47)
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This model has nine material constants

{Ki(i = 1, 2, ..., 7),n1,n2}, (48)

which can be related to the components of the small deformation stiffness

ρ∗0Σ∗ =
1

2
KijklEijEkl, Eij = E · pi ⊗ pj, (49)

where Eij are the components of the strain tensor E relative to pi (see [29, 30]).

2.3. Radially symmetric deformation

For the problem under consideration here, body force is neglected and tractions are applied on the top

and bottom surfaces of the cylinder, which are consistent with axisymmetric vibrations. Specifically, axial

stress σ(R,t)ez is applied to the top of the tube and axial stress −σ(R,t)ez is applied to the bottom of the

tube to maintain a uniform deformed axial height h(t) of the cylinder. In these expressions R is the reference

radius of a material point. This property can be dependent on time, so the assigned fields are given by (see

[33, Sec. 4.3])

mb = 0, mb = H
∂r

∂R
rσez. (50)

Furthermore, for axisymmetric deformations, θα and the vectors {X,D3,x,d3} are expressed in the forms

θ1 = R, θ2 = θ, X = Rer, D3 = ez, (51)

x = r(R,t)er, d3 = λz(t)ez, λz(t) =
h(t)

H
, (52)

v = ṙer, w3 = λ̇zez, (53)

where the base vectors {er, eθ, ez} of a cylindrical polar coordinate system satisfy the equations

er × eθ · ez = 1,
der
dθ

= eθ,
deθ
dθ

= er. (54)

Then, using (4)-(10) it follows that

D1 = er, D2 = Reθ, D1/2 = R, D1 = er, D2 =
1

R
eθ, D3 = ez, (55)

d1 =
∂r

∂R
er, d2 = reθ, d3 = λzez, a1/2 = r

∂r

∂R
, (56)

d1/2 =
∂r

∂R
rλz, d1 =

1

∂r/∂R
er, d2 =

1

r
eθ, d3 =

1

λz
ez, (57)

where r is the current radius of a material point. Therefore, the deformation gradient tensor assumes the

following spectral decomposition

F =
∂r

∂R
er ⊗ er +

r

R
eθ ⊗ eθ + λzez ⊗ ez. (58)

Now, for an incompressible material, the constraint (17) can be integrated to deduce that

J =
∂r

∂R

r

R
λz = 1, r2 = a2(t) +

1

λz(t)
(R2 −A2). (59)
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Therefore, the deformed outer radius b(t) of a cylinder with reference outer radius B is given by

b2(t) = a2(t) +
1

λz(t)
(B2 −A2) (60)

Next, the principal directions of orthotropy are specified by

p1 = er, p2 = eθ, p3 = ez. (61)

Hence, with the help of (18), (46) and (55) the tensor T is given by

a1/2T = RH(Trrer ⊗ er + Tθeθ ⊗ eθ + Tzzez ⊗ ez), (62)

where

Trr = −
γ

R H
− K1

(
n1 − 2

3

)(
1

λ2z

R2

r2
− λ2z

r2

R2

)
− K2

(
1 + n2

3

)(
r2

R2
−

R2

r2

)
− K3

(
1 − n1 − n2

3

)(
λ2z −

1

λ2z

)
, (63)

Tθθ = −
γ

R H
− K1

(
1 + n1

3

)(
1

λ2z

R2

r2
− λ2z

r2

R2

)
− K2

(
n2 − 2

3

)(
r2

R2
−

R2

r2

)
− K3

(
1 − n1 − n2

3

)(
λ2z −

1

λ2z

)
, (64)

Tzz = −
γ

R H
− K1

(
1 + n1

3

)(
1

λ2z

R2

r2
− λ2z

r2

R2

)
− K2

(
1 + n2

3

)(
r2

R2
−

R2

r2

)
+ K3

(
2 + n1 + n2

3

)(
λ2z −

1

λ2z

)
. (65)

Furthermore, using (13), (55), (59) and (62) it can be shown that

d1 = λz
r

R
er, d2 =

1

r
eθ, d3 =

1

λz
ez, (66)

t1 = Hλz r Trrer, t2 = H
R

r
Tθθeθ, t3 = H

R

λz
Tzzez. (67)

Then, with help of (45), (50), (66), (55) and (59), the equations of motion (11) and (12) are reduced to the

following two scalar equations

ρ∗0 r̈ =
∂Trr

∂r
+

Trr − Tθθ
r

, (68)

ρ∗0H2YRλ̈z =
∂r

∂R
rσ − R

λz
Tzz. (69)

Moreover, the equation of director momentum (69), which determines the uniform stretch λz, is solved only

in an integral sense by requiring

ρ∗0H2Yπ
(
B2 −A2

)
λ̈z = F− 2π

λz

∫ B

A

TzzRdR, F = 2π

∫ b

a

σrdr, (70)

where F is the resultant force applied in ez direction on the cylinder’s top surface and in the −ez direction on

the cylinder’s bottom surface. Also, it is noted that the balance of linear momentum (68) is satisfied pointwise

in the radial direction. In contrast, the balance of director momentum (69) is an ordinary differential equation

which assumes that the stretch λz is uniform through the height of the membrane. This eliminates wave

propagation through the height. Furthermore, using the definition (16) for t and the expressions (51), (55)

and (66), the balance of linear momentum (68) is solved subject to the boundary conditions

t = hPa(t)er on r = a with n = er → Trr(a, t) = −Pa(t), (71)

t = hPb(t)er on r = b with n = −er → Trr(b, t) = −Pb(t), (72)
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where {Pa,Pb} are the pressures applied to the cylinder’s inner and outer boundaries, respectively. Subse-

quently, notice from (62) that

Tθθ = Trr −K1

(
1

λ2z

R2

r2
− λ2z

r2

R2

)
+ K2

(
r2

R2 −
R2

r2

)
, (73)

Tzz = Trr −K1

(
1

λ2z

R2

r2
− λ2z

r2

R2

)
+ K3

(
λ2z −

1

λ2z

)
. (74)

It then follows that the solution of (68) and (69) only depend on the three material constants {K1,K2,K3},

which control the orthotropic response of the incompressible material. In particular, the equations (68) and

(69) can be integrated to obtain

Pa − Pb

K1
=

1

8

(
3
λ2a
λ2z
λ̇2z − 2

λ2a
λz
λ̈z

)
Λ2
B − 1

λ2aλz

+
1

2

[
λ−2a λ−2z − λ−1z +

K2

K1

(
λ−2a − λz

)
+ λ̇2a +

λa
λz
λ̇aλ̇z +

1

4

λ2a
λ2z
λ̇2z

](
1− Λ2

B

λ2aλz + Λ2
B − 1

)
+

1

2

[
−λ−1z −

K2

K1
λz + λ̇2a + λaλ̈a +

λa
λz
λ̇aλ̇z −

1

2

λ2a
λ2z
λ̇2z +

1

2

λ2a
λz
λ̈z

]
ln

(
1 +

Λ2
B − 1

λ2aλz

)
+

1

2

(
λz +

K2

K1
λ−1z

)
ln
(
Λ2
B

)
,

(75)

1

24
Λ2
H(Λ2

B − 1)λ̈z =
F

2πK1A2
+

[
1

2

Pa

K1
λ2a +

1

4
λ−2
z −

1

4
λ2aλz +

K2

4K1

[
1 + λ2a

(
λ−1
z − 2λz

)]
−

K3

2K1
λ2a
(
λ2z − λ−2

z

)
+

1

4
λ2a

(
2λ̇2a + λaλ̈a + 2

λa

λz
λ̇aλ̇z +

1

2

λ2a
λ2z
λ̇2z

)]
Λ2
B − 1

λ2aλz
+

1

32
λ4a

(
3
λ̇2z
λ2z

− 2
λ̈z

λz

)1 −
(

1 +
Λ2
B − 1

λ2aλz

)2


+
1

4

[
λ−2
z −

λ2a
λz

−
K2

K1

(
1 − λ2aλz

)
− λ2a

(
λ̇2a +

λa

λz
λ̇aλ̇z +

1

4

λ2a
λ2z
λ̇2z

)]
ln

(
1 +

Λ2
B − 1

λ2aλz

)

+
1

4

[
λ2a
λz

+
K2

K1
λ2aλz − λ2a

(
λ̇2a + λaλ̈a +

λa

λz
λ̇aλ̇z −

1

2

λ2a
λ2z
λ̇2z +

1

2

λ2a
λz
λ̈z

)](
1 +

Λ2
B − 1

λ2aλz

)
ln

(
1 +

Λ2
B − 1

λ2aλz

)

−
[

1

4
λ2a

(
λz +

K2

K1
λ−1
z

)
Λ2
B − 1

λ2aλz
−

1

2

(
1

2
− λ2aλz −

K2

2K1
λ−2
z

)]
ln
(
Λ2
B

)
,

(76)

where λa = a/A stands for the circumferential stretch in the inner face of the cylinder, and the following

non-dimensional parameters have been introduced

ΛB =
B

A
, ΛH =

H

A
, τ = t

√
K1

ρ∗0A2 . (77)

Moreover, the superposed dots in Eqns. (75) and (76) now denote derivation with respect to the non-

dimensional time τ . Hence, the equations of motion (75) and (76) form a system of two second order ordinary

differential equations for the functions λa(τ) and λz(τ), which can be solved by a plethora of well-established

implicit or explicit methods.

The Eqns. (75-76) in the Cosserat theory include limiting cases that have been considered in the literature.

For instance, taking the limits ΛH →∞ and ΛB → 1 in the system (75-76), the formulation for an anisotropic,

thin-walled and infinitely long cylinder presented in [22, 28, 35] is recovered. Moreover, the limit of ΛH →∞

with K1 = K2 = K3 corresponds to the infinitely long, isotropic and thick-walled cylinder first introduced in

11



[1, 2] and used after by many others [36, 7, 10]. Therefore, the formulation presented in this paper includes all

the cases cited above and generalizes them to bi-dimensional vibrations. As will be seen in further sections,

the introduction of the axial degree of freedom completely modifies the nonlinear dynamics of the problem

allowing quasi-periodic and chaotic behaviors.

Recall that the axial stress distribution ensures that each horizontal plane in the cylinder remains flat.

In the reminder of this work, this total applied force F in (76) is set equal to zero. Furthermore, it can be

deduced from (75) and (76) that the parametric dependence of the problem has been reduced to the following

six non-dimensional parameters: two material constants K2/K1 and K3/K1, two geometrical parameters ΛB

and ΛH, and the normalized pressures Pa/K1 and Pb/K1. In particular notice that even when the stresses

depend on n1, n2 and n3 (see Eqns. (63) – (65)), these parameters do not appear in the equations of motion

due to the symmetry of the problem.

For the development of the results presented in Section 4, it is convenient to introduce expressions for

the energies involved in the deformation process. Therefore, we complete the problem formulation with the

balance of energy (23) that, in dimensionless form, can be written as

W =
d
(
U +K

)
dτ

, (78)

where the work exerted by the external pressures W, the total strain energy U and the kinetic energy K in

dimensionless form are given by

W = πΛHλz

[
Pa

K1

d

dτ

(
λ2a
)
− 2

Pb

K1

d

dτ

(
λ2a +

Λ2
B − 1

λz

)]
, (79)

U =
1

2
πΛHλ

2
aλz

[(
1 +

K2

K1

)(
λz + λ−1z − 2

)
+

K3

K1

(
λ2z + λ−2z − 2

)](Λ2
B − 1

λ2aλz

)
+

1

2
πΛHλz

(
λ−2z +

K2

K1

)(
1− λ2aλz

)
ln

(
1 +

Λ2
B − 1

λ2aλz

)
+

1

2
πΛH

(
λ2z +

K2

K1

)(
λ2a − λ−1z

)
ln
(
Λ2
B

)
,

(80)

K =
1

2
πΛHλ

2
aλz

[
1

24
Λ2
Hλ̇

2
z −

1

2
λaλ

−1
z λ̇aλ̇z −

1

4
λ2aλ

−2
z λ̇2z

](
Λ2
B − 1

λ2aλz

)
+

π

16
ΛHλ

4
aλ
−1
z λ̇2z

[(
1 +

Λ2
B − 1

λ2aλz

)2

− 1

]

+
1

2
πΛHλ

2
aλz

[
λ̇2a + λaλ

−1
z +

1

4
λ2aλ

−2
z λ̇2z

]
ln

(
1 +

Λ2
B − 1

λ2aλz

)
.

(81)

Henceforth, we focus on the case of zero internal and external pressures, Pa = Pb = 0. Under these

conditions, the work of the external forces W vanishes and the total normalized energy remains constant

ET = U +K = constant. (82)
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Note that the parameters associated with the orthotropic constitutive model K3/K1 and K2/K1 only appear

in the total strain energy U .

3. Numerical solution

In the previous section we showed that the motion of the cylindrical structure, which is defined by (75) and

(76), has two degrees of freedom λa(τ) and λz(τ). The corresponding four-dimensional phase space is formed

by the variables {λa, λ̇a, λz, λ̇z}. Since we limit our attention to the case of free vibrations with no external

applied loads on the cylinder, the total energy is constant (82) and one of the variables can be expressed

as a function of the others. For the particular case developed in this article, let us take λ̇z = λ̇z(λa, λz, λ̇a).

Hence, for a given energy level, the phase space can be reduced from four to three dimensions without any

loss of information. In this new three dimensional phase space {λa, λz, λ̇a}, when the motion of the cylinder

is periodic or quasi-periodic, the trajectory of the structure lies on the surface of a torus [37, 38, 39]. As an

example, let us consider ΛH = ΛB = 2, K2/K1 = K3/K1 = 1, ET = 8, λa(0) = 1, λz(0) = 1 and λ̇a(0) = 1.

We substitute these geometrical parameters, material constants, total energy and initial conditions in (82)

to obtain λ̇z(0) = 1.4140. Then, we solve the system (75)-(76) to obtain the solution represented in Fig.

1(a), which shows the torus (depicted in blue) and the trajectory during the first oscillation (represented by

the red curve). To visualize the torus, we have plotted the trajectory that flows on its surface for a time

long enough to cover almost all the surface. This structure of the solution naturally leads to the concept

of Poincaré Surface of Section (SOS). Poincaré SOS correspond to 2D representations of the motion of the

structure that are constructed from the intersection between the trajectory of the cylinder in the 3D phase

space and a given plane. Throughout this document we will choose the λz = 1 plane. In this way, the

Poincaré SOS reduces a 3D trajectory in the phase space {λa, λz, λ̇a} to a discrete 2D mapping in the phase

space {λa, λ̇a} that contains all the dynamical information of the system. As an example, Fig. 1(b) shows

the Poincaré SOS corresponding to the plane λz = 1, for λ̇z > 0 and the initial conditions listed above.

As mentioned, Poincaré SOS shown in this paper correspond to the intersection of the trajectories of

the cylinder with the λz = 1 plane. This ensures that, irrespective of the energy of the system, the phase

space includes all the possible trajectories described by the structure. We have checked that, in most cases,

considering a plane different from λz = 1 does not modify the main results and trends that will be shown

in Section 4. However, it may be the case that, for small values of the energy supplied to the system, some

(or all) trajectories of the cylinder would not intersect the selected plane, which would lead to the partial

(or total) loss of information on the motion of the structure. Similarly, all the Poincaré SOS of this paper

consider that λ̇z > 0, this condition being necessary to avoid overlapping between the Poincaré SOS arising

from trajectories with the same energy level but different initial conditions.

The representation of the Poincaré SOS is the main technique used in the following section of the paper to

analyze the influence of the initial conditions, the total energy supplied to the system, the dimensions of the

cylinder and the degree of mechanical orthotropy of the material on the dynamical response of the structure.
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Figure 1: Geometrical parameters ΛH = ΛB = 2. Material parameters K2
K1

= K3
K1

= 1. Total energy ET = 8. Initial

conditions λa(0) = 1, λz(0) = 1, λ̇a(0) = 1 and λ̇z(0) = 1.4140. (a) Three-dimensional torus in the (λa, λz, λ̇a)

phase space corresponding to a quasi-periodic motion. The trajectory of the first oscillation is indicated in red.

(b) Poincaré SOS corresponding to the plane λz = 1 with the condition λ̇z > 0.

For a better understanding of the Poincaré SOS that will be presented in Section 4, let us introduce the

following concepts:

• A single point in the Poincaré SOS corresponds to a periodic motion of the structure, which is charac-

terized by the period T.

• µ isolated points in the Poincaré SOS correspond to a periodic motion of the structure, which is

characterized by the period µT.

• A closed curve in the Poincaré SOS (as the one presented in Fig. 1(b)) corresponds to a quasi-periodic

motion of the structure.

• Finally, a filled region in the Poincaré SOS corresponds to a chaotic motion of the structure.

To obtain the Poincaré SOS, the system (75)-(76) has been solved with the fourth order Runge-Kutta

method pre-implemented in Wolfram Mathematicar. To guarantee the quality of the numerical integration,

we have checked that all the resultant trajectories remain in their respective energy hypersurfaces up to an

error of 10−6. The computations presented in this paper have been carried out using the system formed by

Eqns. (75-76) directly. Furthermore, the same computations have been conducted using the formulation of
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the R4 state-space (i.e., after decoupling λ̈k, k = a, z). It has been proved that both solutions lead to the

same results preserving the energy up to an error of 10−6.

4. Sample results

In the examples presented in this section, we take as a reference the geometrical parameters, material

constants and energy level used in Fig. 1, i.e., ΛH = ΛB = 2, K2/K1 = K3/K1 = 1 (isotropic material)

and ET = 8. The influence of these parameters on the response of the structure is explored in the following

examples, where we change one parameter while keeping the other reference parameters fixed.

4.1. Reference case

Figure 2(a) depicts the Poincaré SOS corresponding to the reference geometrical parameters, material

constants and energy level. The active 2D phase space includes all the possible combinations of λ̇a and λa

that fulfill the imposed energy level ET = 8 and the fact that λ̇z must be greater than 0 (as discussed in

the previous section). The blue curve enclosing the active phase space has been obtained from (82) as the

combinations of λa and λ̇a that minimize λ̇z. Following the indications provided in the previous section for the

interpretation of the Poincaré SOS, we observe that the phase space is divided into a chaotic domain (plotted

in red), and several regions corresponding to periodic and quasi-periodic trajectories (plotted in brown, blue,

purple...). It becomes apparent that the nature of the radial motion of the structure depends on the initial

conditions considered. This is clearly illustrated in Fig. 2(b), which shows the time evolution of λa for those

two trajectories whose initial conditions are explicitly labeled in Fig. 2(a). The solid blue curve corresponds

to a periodic solution (single point in the phase space). The oscillatory motion of the structure shows a clear

repetitive pattern in which the amplitude and period of the oscillations do not depend on τ . The dashed

red curve, on the contrary, does not show any clear pattern; the amplitude and period of the oscillations are

strongly dependent on the loading time τ . These qualitative observations can be quantified using the maximal

Lyapunov characteristic exponent (LCE) that provide a measurement of the exponential divergence in time

of two trajectories starting from arbitrary-close initial conditions. While a rigorous derivation of the LCE

can be found elsewhere [38, 39, 37], the basic formulation and the renormalization scheme used to compute

the LCE are presented in Appendix A for completeness. A positive LCE indicates that the response of the

system is chaotic, while a zero LCE implies that the response of the system is periodic or quasi-periodic. This

is exactly what we observe in Fig. 2(c), which shows, for the two trajectories investigated in Fig. 2(b), the

evolution of their corresponding maximal Lyapunov exponents, denoted by λk, where k is a coefficient that

varies linearly with time (see Appendix A). The LCE approaches zero for the periodic orbit as k →∞, and

it tends to 0.033± 0.0001 for the chaotic orbit, where the error has been computed as the typical deviation

of the last 200 values of k considered.

In the next section we investigate the influence of the total energy supplied to the cylinder in the dynamic

response of the system.
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Figure 2: (a) Poincaré SOS corresponding to the reference geometrical parameters, material constants and energy

level: ΛH = ΛB = 2, K2/K1 = K3/K1 = 1 and ET = 8. (b) Time evolution of the stretch in the inner face of the

cylinder λa for the periodic and chaotic trajectories indicated in subfigure (a). (c) Maximal Lyapunov exponent

λk as a function of k for the periodic and chaotic trajectories indicated in subfigure (a). (For interpretation of

the references to color in the text, the reader is referred to the web version of this article).16



4.2. Influence of the energy supplied to the system

Figure 3 presents the Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2,

material constants K2/K1 = K3/K1 = 1, and two different values of the total energy supplied to the system.

ET = 6 (lower than the reference value) is considered in Fig. 3(a), and ET = 10 (greater than the reference

value) is considered in Fig. 3(b). The black dashed line in Figs. 3(a) and 3(b) corresponds to the curve

enclosing the active phase space of the reference configuration presented in Fig. 2(a). Note that, from this

point on, this curve will be plotted in all the Poincaré SOS presented in the paper with the aim to compare

the size of the active phase spaces. A decrease in the energy supplied to the system reduces the active area of

the phase space {λ̇a, λa} and promotes the development of periodic and quasi-periodic motions rather than

chaotic motion. For the case of ET = 6 shown in Fig. 3(a), the cylinder does not exhibit chaotic response for

any set of initial conditions. The whole chaotic region observed in Fig. 2(a) for ET = 8 has been transformed

for the case of ET = 6 to a set of closed curves and single points, which reveal the periodic and quasi-

periodic nature of the radial motion of the structure. Note that the closed curves and single points, which

are generated by the same trajectory, are plotted with the same color. Similarly, an increase in the energy

supplied to the system enlarges the active area of the phase space {λ̇a, λa} and allows for the development

of chaotic trajectories. For the case of ET = 10 shown in Fig. 3(b), the response of the structure is chaotic

for most of the initial conditions and the periodic and quasi-periodic trajectories are confined within a few

(relatively) small islands. We have checked that for values of ET greater than 10 the chaotic region continues

growing until it virtually covers the whole phase space.

The process followed by the system from the structured Poincaré SOS presented in Fig. 3(a) to the

extended chaotic behavior of Fig. 3(b) is a well-known route to chaos usually referred to as break-down of

quasi-periodic tori [38, 39, 37]. For a system with two degrees of freedom, the Kolmogorov-Arnold-Moser

(KAM) theorem [40] states that some phase space tori, those associated with quasi-periodic motion, survive

when a previously integrable system is made slightly nonintegrable. However, as the perturbation increases

(in this case the applied energy), the original KAM-tori decomposes into smaller and smaller tori in a

manner consistent with the Poincare-Birkhoff theorem [41]. Specifically, each KAM-torus is replaced by

an even number of new fixed-points, one half of which are elliptic and the other hyperbolic. Around each

elliptic point will be a series of elliptic orbits, while associated with the hyperbolic points will be a series

of heteroclinic orbits. It is the tangle of the stable and unstable manifolds of the hyperbolic points that is

mainly responsible for the emergence of chaos (see Melnikov Theory for further details [42]). This structure

of the solution has been identified in Fig. 2(a) where the elements of one chain of alternating elliptic and

hyperbolic points have been labeled. It can be seen that, for ET = 8, chaotic behavior has already started in

the small regions close to the labeled hyperbolic points.

In the next section we investigate the influence of the dimensions of the cylinder on the dynamic response

of the system.
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Figure 3: Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2 and material

constants K2/K1 = K3/K1 = 1 , and two different values of the total energy supplied to the system. (a) ET = 6

and (b) ET = 10. (For interpretation of the references to color in the text, the reader is referred to the web

version of this article).

4.3. Influence of the specimen dimensions

Figure 4 depicts the Poincaré SOS corresponding to the reference non-dimensional thickness ΛB = 2,

material constants K2/K1 = K3/K1 = 1, supplied energy ET = 8, and two different values of the non-

dimensional height of the cylinder ΛH. Namely, ΛH = 1.7 (lower than the reference value) is considered

in Fig. 4(a) and ΛH = 15 (greater than the reference value) is considered in Fig. 4(b). A decrease in

the height of the cylinder enlarges the active surface of the phase space since a smaller structure develops

radial oscillations which are faster and have greater amplitude for the same supplied energy than for a larger

structure. Moreover, note that a decrease in ΛH allows for the development of chaotic motions. For the case

of ΛH = 1.7 shown in Fig. 4(a), the response of the structure is chaotic for most of the initial conditions.

Furthermore, we have checked that, for values of ΛH smaller than 1.7, the chaotic region extends virtually

to the entire phase space. Similarly, an increase in the height of the cylinder reduces the active surface of

the phase space since, as expected, a bigger structure develops radial oscillations which are slower and have

smaller amplitude. An increase in ΛH promotes the development of periodic and quasi-periodic trajectories

rather than chaotic. In fact, for the case of ΛH = 15 shown in Fig. 4(b), the response of the system is

never chaotic. In addition, we have checked that for a value of ΛH equal to or greater than 15 (the tube

becomes very long) the three dimensional tori, which describes the motion of the structure in the phase space

{λa, λz, λ̇a}, collapse to different curves contained in the plane λz = 1. In other words, the response of the
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cylinder approaches plane strain conditions, i.e., λz ∼ 1 and λa >> λz. Therefore, the curves depicted in

Fig. 4(b) are no longer Poincaré SOS but complete phase portraits in the {λ̇a, λa} phase space. Each closed

curve in Fig. 4(b) corresponds to a periodic solution, i.e., we recover the 1D solution developed by Knowles

[1]. It is only in the vicinity of the central point (1, 0) where the plane strain conditions are not satisfied

since both stretches are again of the same order of magnitude O(λa) ∼ O(λz) ∼ 1.
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Figure 4: Poincaré SOS corresponding to the reference non-dimensional thickness ΛB = 2, material constants

K2/K1 = K3/K1 = 1 and supplied energy ET = 8, and two different values of the non-dimensional height of the

cylinder. (a) ΛH = 1.7 and (b) ΛH = 15. Note: figure (b) is not really a Poincaré SOS but a complete phase

portrait in the {λ̇a, λa} space.

In Fig. 5 we show the Poincaré SOS corresponding to the reference non-dimensional height ΛH = 2,

material constants K2/K1 = K3/K1 = 1, supplied energy ET = 8, and two different values of the non-

dimensional thickness of the cylinder ΛB. Specifically, Fig. 5(a) depicts the solutions for the case of ΛB = 1.7

(lower than the reference value), while Fig. 5(b) depicts ΛB = 15 (greater than the reference value). As

expected, a decrease in the thickness of the hollow cylinder increases the active surface of the phase space

and promotes chaotic response of the structure. For the case of ΛB = 1.7, shown in Fig. 5(a), the response

of the structure is chaotic for most of the initial conditions. On the other hand, an increase of ΛB reduces

the surface of the active phase space and promotes the development of quasi-periodic and periodic responses.

In fact, for the case of ΛB = 15, depicted in Fig. 5(b), the structure does not present chaotic motion for

any initial conditions. Furthermore, we have checked that for a value of ΛB equal to or greater than 15 (the

tube becomes very short; like a large plate) the three dimensional tori, which describe the motion of the
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structure in the phase space {λa, λz, λ̇a}, collapse to different curves contained in the plane λz = 1 (as for

the case of ΛH = 15 discussed in previous paragraph). The curves depicted in Fig. 5(b) are complete phase

portraits in the {λ̇a, λa} space and define periodic solutions. In other words, the problem becomes 1D. As

in the previous case, in the vicinity of the central point (1, 0) both stretches are again of the same order of

magnitude O(λa) ∼ O(λz) ∼ 1.

It is apparent from this analysis that when the volume of the structure is large enough, either because

the tube is infinitely long in the axial direction or infinitely thick in the radial one, the system tends to show

periodic behaviors.

ET=8,     K2/K1=1, K3/K1=1,     ΛB=1.7, ΛH=2.
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Figure 5: Poincaré SOS corresponding to the reference non-dimensional height ΛH = 2, material constants

K2/K1 = K3/K1 = 1 and supplied energy ET = 8, and two different values of the non-dimensional thickness of

the cylinder. (a) ΛB = 1.7 and (b) ΛB = 15. Note: figure (b) is not really a Poincaré SOS but a complete phase

portrait in the {λ̇a, λa} space.

In the next section we investigate the influence of the mechanical anisotropy of the material on the

dynamic response of the system.

4.4. Influence of the material anisotropy

Figure 6 presents the Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2,

circumferential stiffness K2/K1 = 1, supplied energy ET = 8, and two different values of the axial stiffness

K3/K1. Fig. 6(a) depicts K3/K1 = 0.5 (smaller than the reference value) and Fig. 6(b) depicts K3/K1 = 100

(greater than the reference value). Notice that the area of the active phase space in the {λ̇a, λa} plane remains
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unchanged under variations in the axial stiffness. This area may be understood as combined measure of the

kinetic and strain energies associated with the radial motion, which is revealed to be independent of the

axial stiffness. A decrease in the axial stiffness allows for the development of chaotic motion. In fact, for

the case of K3/K1 = 0.5 illustrated in Fig. 6(a), the structure presents chaotic response for most of the

initial conditions. On the other hand, an increase in the axial stiffness promotes periodic and quasi-periodic

trajectories. In particular, for the case of K3/K1 = 100 illustrated in Fig. 6(b), the tori describing the 3D

motion of the structure collapse to several curves contained in the plane λz = 1 (as for the cases of ΛH = 15

and ΛB = 15 presented in Section 4.3) and the motion of the cylinder is periodic. The curves depicted in

Fig. 6(b) are complete phase portraits in the {λ̇a, λa} space and define periodic solutions. In the limit of

K3/K1 >> K2/K1 the problem becomes 1D as the vibration in the axial direction is negligible compared

with the radial one. Note that due to the mechanical anisotropy of the material, the central point of the

orbits is (1, 0.85) instead of (1, 0) in the examples presented in Section 4.3, where the material behavior was

considered isotropic.

ET=8,     K2/K1=1, K3/K1=0.5,     ΛB=2, ΛH=2.
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Figure 6: Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2, circumferential

stiffness K2/K1 = 1 and supplied energy ET = 8, and two different values of the axial stiffness. (a) K3/K1 = 0.5

and (b) K3/K1 = 100. Note: figure (b) is not really a Poincaré SOS but a complete phase portrait in the {λ̇a, λa}

space.

Finally, in Fig. 7 we present the Poincaré SOS corresponding to the reference geometrical parameters ΛH =

ΛB = 2, axial stiffness K3/K1 = 1, supplied energy ET = 8, and two different values of the circumferential

stiffness. Namely, Fig. 7(a) depicts K2/K1 = 0.4 (smaller than the reference value), while Fig. 7(b) presents
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the solutions for K2/K1 = 100 (greater than the reference value). A decrease in the circumferential stiffness

increases the active surface of the phase space due to the increase of the amplitude of the radial oscillations,

i.e., the phase space enlarges along the λa axis. A decrease in K2/K1 also promotes the development of

chaotic motions. In particular, for the case of K2/K1 = 0.4, depicted in Fig. 7(a), the chaotic region extends

practically to the entire phase space. On the other hand, an increase in the circumferential stiffness reduces

the amplitude of the radial oscillations and, therefore, the active area of the phase space. An increase of

K2/K1 also promotes periodic and quasi-periodic motions. Specifically, for the case of K2/K1 = 100 depicted

in Fig. 7(b), the structure does not show chaotic motion for any initial conditions. We have checked that for

values of K2/K1 equal to or greater than 100 the tori, which describe the 3D motion of the structure, collapse

to different curves contained in the plane λz = 1 (as for the cases of ΛH = 15, ΛB = 15 and K3/K1 = 100

discussed in previous paragraphs) and the motion of the cylinder becomes periodic. The curves depicted in

Fig. 7(b) are again complete phase portraits in the {λ̇a, λa} space, i.e., the problem becomes 1D. Note that,

due to the mechanical anisotropy of the material, the central point of the orbits is (1, 0.35) instead of (1, 0)

in the examples presented in Section 4.3.
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ET=8,     K2/K1=100, K3/K1=1,     ΛB=2, ΛH=2.
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Figure 7: Poincaré SOS corresponding to the reference geometrical parameters ΛH = ΛB = 2, axial stiffness

K3/K1 = 1 and supplied energy ET = 8, and two different values of the circumferential stiffness. (a) K2/K1 = 0.4

and (b) K2/K1 = 100. Note: figure (b) is not really a Poincaré SOS but a complete phase portrait in the {λ̇a, λa}

space.
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5. Summary and conclusions

In this paper we have investigated the large-amplitude axisymmetric free vibrations of an incompressible

nonlinear elastic cylindrical structure. The material has been described as orthotropic and hyperelastic using

the constitutive model developed by Rubin and Jabareen [29, 30]. The cylinder has been modeled using

the theory of a generalized Cosserat membrane which allows for finite deformations that include uniform

stretching along the longitudinal axis of the structure. We have conducted a parametric analysis to identify

the influence that the initial conditions, the energy supplied to the system, the dimensions of the specimen

and the material anisotropy have on the dynamic response of the structure. We have used Poincaré maps

and Lyapunov exponents to assess the nature of the motion of the cylinder and the following conclusions

have been obtained:

• Initial conditions: the dynamic response of the system has been proved to be very sensitive to the initial

conditions. For a given set of energy supplied to the system, geometrical parameters and material

constants, the response of the cylinder may turn from periodic to quasi-periodic and chaotic with slight

variations in the stretch and stretch rate initially imposed to the structure.

• Energy supplied to the system: as the energy supplied to the system increases, the motion of the

system turns from periodic and quasi-periodic to chaotic. The tori which contain the periodic and

quasi-periodic trajectories of the structure are gradually destroyed with the increase of the supplied

energy, which gives rise to stochastic behavior in the dynamic response of the system. We have shown

that for sufficiently small energies the response of the structure is always periodic or quasi-periodic,

while for sufficiently large energies it is always chaotic.

• Specimen dimensions: as the volume of the cylinder decreases, the system is more prone to develop

chaotic motion. The smaller the size of the cylinder, the smaller the amount of energy required to

destroy the tori which contain the periodic and quasi-periodic trajectories of the structure. It is noted

that the general 2D formulation developed in this paper includes the specific cases of an infinitely long

cylinder and an infinitely large plate for which the problem can be modeled within a 1D framework

and the response of the structure becomes periodic.

• Material anisotropy: the structure is more prone to develop chaotic motion as the stiffness along the

axial and circumferential direction decreases with respect to the stiffness along the radial direction. On

the other hand, if the axial stiffness or the circumferential stiffness of the material are sufficiently high,

the response of the cylinder becomes periodic. This is a key result of this research that demonstrates

the influence of anisotropic material properties on the nature of the dynamic response of the system.

This research has generalized the 1D approaches developed by Huilgol [22], Shahinpoor [23] and Mason

and Maluleke [28] –who studied infinitely long samples assuming plane strain conditions along their axial

direction– to a 2D framework which considers structures of finite axial height. Inclusion of uniform stretch in
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the axial direction of the structure enables the system to show quasi-periodic and chaotic responses, which do

not appear in the 1D approximation. The extension of the present analysis to include external forcing through

the applied pressures and material dissipation would be interesting to consider in future work. However, it is

not known if the additional surface vibrations that occur when the surfaces of the cylinder are traction-free

pointwise will limit the utilization of our results in practical applications.

Appendix A. Lyapunov exponents

Consider a fiducial trajectory xf and a test trajectory xt that start very close to each other. Both

trajectories are solutions of the equations of motion (75)-(76)

dxf

dτ
= G(xf),

dxt

dτ
= G(xt), (A.1)

For the problem addressed in this paper we have that x(τ) = (λa(τ), λz(τ), λ̇a(τ), λ̇z(τ)). The distance

between these two trajectories at any time τ is d(τ) = xf(τ)− xt(τ), which evolves in time according to

ḋ(τ) = ẋf(τ)− ẋt(τ) = G(xf)−G(xt). (A.2)

Considering that both trajectories remain close enough to each other, we can use the following linear approx-

imation

G(xt) ≈ G(xf) +
∂G

∂x

∣∣∣∣
xf

d(τ). (A.3)

After substituting Eq. (A.3) in Eq. (A.2), we obtain the following relation

ḋ(τ) =
∂G

∂x

∣∣∣∣
xf

d(τ). (A.4)

The previous ordinary differential equation admits the following solution

d(τ) = d0eλτ , (A.5)

where d0 = ‖d(0)‖ is the initial distance between the trajectories and λ = ∂G
∂x

∣∣
xf

is the so-called locally

exponential divergence rate, which can also be written as

λ =
1

τ
ln

(
d(τ)

d0

)
. (A.6)

Note that periodic and quasi-periodic trajectories may present a transient behavior for short loading

times that looks like chaotic, but it is not. Furthermore, the initial distance between the fiducial and the

test trajectory must be infinitesimal to ensure the validity, at any time, of the linear approximation (A.3).

In order to take into account these two specific issues in the definition of the Lyapunov exponents λL, we

take the following limits

λL = lim
d0→0
τ→∞

[
1

τ
ln

(
d(τ)

d0

)]
. (A.7)
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In a n-dimensional phase space there is a spectrum of n Lyapunov exponents –one per dimension– which

indicate whether or not there is an exponential separation in each dimension between trajectories upon

time. The maximum of this set is the so-called maximal Lyapunov exponent or the Lyapunov characteristic

exponent (LCE). When one of the Lyapunov exponents tends to a positive value, the system is referred to

as chaotic. On the other hand, when one of the Lyapunov exponents tends to zero, the others do also (see

Liouville theorem at, e.g., [38, 39, 37]), and the system is referred to as periodic or quasi-periodic.

In order to compute numerically the Lyapunov exponents, we have followed the renormalization scheme

introduced by Benettin and collaborators [43, 44, 45, 46]. While this method can be used to obtain the

whole set of Lyapunov exponents, in this work we have implemented a simplified version to compute only the

Lyapunov characteristic exponent. The main steps to obtain the LCE for an n-dimensional phase space are

described below, while in Fig. A.8 we present a scheme of these steps for the case of a simplified bi-dimensional

phase space {λ̇a, λa}:

• We define the initial conditions of the fiducial and test trajectories as xf0 = (λa(0), λ̇a(0), λz(0), λ̇z(0))

and xt0 = xf0 + d0.

• At time τr the positions of both trajectories are given by xf1 = (λa(τr), λ̇a(τr), λz(τr), λ̇z(τr)) and

xt1 = xf1 + d1, where d1 = d(τr) is the distance vector at time τr. Then, the position of the test

trajectory is renormalized along the vector d1 until the distance between both trajectories becomes d0

again (see Fig. A.8 ).

• The process is systematically repeated at integer multiples of τr. For each time τ = kτr with k = 1, 2, 3...

the normalized position vector of the test trajectory is computed as

x′tk = xfk +
d0

dk
dk, (A.8)

where dk = ‖dk‖.

• Then, the local exponential divergence rate at each time τ = kτr is given by

λk =
1

kτr

k∑
j=1

ln

(
dj

d0

)
. (A.9)

• Finally, the Lyapunov characteristic exponent (λLCE) is computed as the limit of λk when k→∞.
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Figure A.8: Schematic representation of the renormalization scheme developed by Benettin and co-workers [43,

44, 45, 46].
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