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a b s t r a c t

The viscous linear stability of parallel gaseous jets with piecewise constant base profiles is considered
in the limit of low Mach numbers. Our results generalise those of Drazin [P.G. Drazin, Discontinuous
velocity profiles for the Orr–Sommerfeld equation J. Fluid Mech. 10 (1961) 571–583], by contemplating
the possibility of arbitrary jumps in density and transport properties between two uniform streams
separated by a vortex sheet. The eigenfunctions, obtained analytically in the regions of uniform flow, are
matched through an appropriate set of jump conditions at the discontinuity of the basic flow, which are
derived by repeated integration of the linearised conservation equations in their primitive variable form.
The development leads to an algebraic dispersion relation of ample validity that explicitly accounts for
the parametric dependence of the stability properties on the jet-to-ambient density ratio, the Reynolds
number, the Prandtl number, and the exponent of the presumed power-law dependence of viscosity
and thermal conductivity on temperature. The dispersion relation is validated through comparisons with
stability calculations performed with continuous profiles and is applied, in particular, to study the effects
of molecular transport on the spatiotemporal stability of parallel non-isothermal gaseous jets with very
thin shear layers. The eigenvalue computations performed by using the vortex-sheet model are shown
to be several orders of magnitude faster than those associated with continuous profiles with thin shear
layers.
1. Introduction

Many of the early efforts to investigate the instability of par-
allel shear flows were based on simple flow configurations with
discontinuous base velocity profiles, with prominent examples be-
ing the inviscid vortex-sheet investigations of Helmholtz [1] and
Kelvin [2], and Rayleigh’s stability analysis of the shear layer with
piecewise linear velocity profile [3]. These inviscid analyses in-
volve integration of Rayleigh’s equation for the perturbations of
the stream function with appropriate matching conditions at the
discontinuities, corresponding to the requirement that the pres-
sure and the normal velocity be continuous across the material
interface. Viscous effects can be taken into account in the pertur-
bations through the use of the Orr–Sommerfeld equation, as done
by Esch [4] for the analysis of Rayleigh’s piecewise linear configu-
ration and by Drazin [5] for base flows with discontinuous veloc-
ity profiles. The latter showed that the correct set of viscous jump
conditions at the discontinuity of the base velocity profile can be
derived by sequentially integrating the Orr–Sommerfeld equation
four times across the discontinuity, and then taking the limit of
vanishing integration intervals in each one of the four expressions
obtained.

∗ Corresponding author. Tel.: +34 916248344.
E-mail address: wcoenen@ing.uc3m.es (W. Coenen).
As discussed by Drazin [5], the use of discontinuous base
profiles as a leading-order representation for the flow field, with
the shear layers being substituted by vortex sheets, is a valid
approach for the analysis of normal modes with wavelength much
larger than the shear-layer thickness. The latter condition also
ensures that there is no contradiction in retaining viscous effects
in the perturbations while neglecting them in the basic flow [5].

The advantage of Drazin’s approach is that it leads to a
closed algebraic expression for the dispersion relation, thereby
facilitating analytical developments and reducing computational
costs. The corresponding dispersion relations for the plane mixing
layer and the symmetric plane jet, obtained by Drazin [5],
were shown to be in agreement with the corresponding low-
wavenumber approximations for continuous base profiles, which
had been previously obtained by Tatsumi [6] and by Tatsumi [7],
respectively, thus demonstrating the validity of the approach. It
is important to emphasise that, as noticed by Drazin [5], in the
limit Re → ∞, the viscous dispersion relation obtained with the
discontinuous approximation does not reduce to the inviscid one,
derived from Rayleigh’s [3] equation. This singular behaviour can
be explained by the fact that the former case corresponds to taking
the low-wavenumber limit k → 0 for fixed Re/k, and subsequently
letting Re → ∞, while the latter case is based on the limit
kRe → ∞.

An important example satisfying the longwavelength condition
mentioned above are the columnar modes of jets, which are
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known to play a relevant role in their stability [8], and dominate
their dynamics when self-excited by becoming locally absolutely
unstable in the near field [9–13]. Previous viscous stability analyses
of these jet flows, including planar [12] and axisymmetric [14]
configurations, have made use of model base profiles with thin
shear layers. Since the relevant wavelengths for the columnar
modes are of the order of the jet radius, the shear-layer
thickness enters in the analysis as a secondary parameter that
takes small non-zero values. The relevant limit of vanishing
shear-layer thickness is difficult to investigate numerically with
continuous base profiles, because the associated integrations
become very costly when the shear-layer thickness takes small
values. Consideration of discontinuous base profiles arises as a
natural alternative in this case and serves as motivation for the
present work.

In a subsequent study, Drazin [15] extended his model to
include the effects of variable density and viscosity, but only for
incompressible flow and excluding heat conduction and species
diffusion. Therefore, the results obtained by Drazin [5,15] exclude
many flows of practical relevance. This fact motivates the present
study, whose main objective is to provide a framework that,
although based on the ideas originally proposed by Drazin [5,15],
extends his results to contemplate axisymmetric non-buoyant
gaseous jet flows with small values of the Mach number. The
required development involves an extension of Drazin’s work
to cylindrical geometries and non-solenoidal disturbances. The
analysis needs to employ the linear stability equations in their
primitive variable form. Repeated integrals of these equations
provide the necessary jump conditions for the perturbations across
the discontinuities of the base profiles.

Specifically, the presentwork provides the following extensions
to Drazin’s approach: first, while only two-dimensional base
flows are treated by Drazin [5,15], the present study considers
axisymmetric base flows, contemplating disturbances of arbitrary
azimuthal wavenumber. In addition, in contrast with the works
of Drazin [5,15], our approach includes heat conduction, as well
as the dependence of viscosity and thermal conductivity on
temperature. Although constant molecular weight is employed
in the development, so that density changes are only associated
with temperature changes, extension of the results to variable
molecular weight can be readily made, as indicated in the text.

The paper is organised as follows. The formulation of the
linear stability problem is presented in Section 2, followed in
Section 3 by the discontinuous formalism developed for the limit
of vanishingly thin shear layers, including the eigenfunctions
and jump conditions that must be used to obtain the algebraic
dispersion relation for the particular case of non-isothermal jets of
ideal gases with a presumed power-law temperature dependence
for the viscosity and thermal conductivity. The validity of the
dispersion relation is assessed in Section 4 by comparisons with
the results obtained by integrating numerically the linearised
stability equations with continuous base profiles in the limit
of very thin shear layers. The dispersion relation is utilised to
study the spatiotemporal stability of axisymmetric jets, obtaining,
in particular, the dependence on molecular transport of the
critical conditions for transition between convective and absolute
instabilities. Finally, Section 5 is devoted to conclusions.

2. Stability equations

We consider the linear stability of a gas jet discharging with
a constant flow rate into an ambient atmosphere of the same
fluid. The characteristic jet velocity, given for instance by its
centreline value U∗

0 , is assumed to be much smaller than the
ambient velocity of sound c∗

∞
, so that the simplifications associated

with the low-Mach-number approximation, commonly used to
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analyse low-speed reactive flows [16,17], apply to the description
of the resulting jet flow. In particular, in low-Mach-number flows,
the spatial pressure variations, of the order of the characteristic
dynamic pressure, are a factor (U∗

0 /c∗
∞

)2 smaller than the ambient
pressure p∗

∞
, and can be therefore neglected when writing the

equation of state for the gas

p∗
∞

ρ∗
=

Ro

W ∗
T ∗, (1)

where Ro is the universal gas constant and W ∗ denotes the mean
molecular weight of the gas mixture, with the asterisk ∗ used in
the formulation to denote dimensional magnitudes. As can be seen
above, although the flow is incompressible, in the sense that the
pressure variations are small, significant density variations may
appear associated with either temperature or molecular-weight
variations.

Simplifications can be introduced also in writing the energy
balance, because the relative enthalpy variations induced by
spatial changes of pressure and also those induced by viscous
dissipation are of order (U∗

0 /c∗
∞

)2, and can be therefore neglected
in the first approximation when describing jet flows with
U∗

0 /c∗
∞

≪ 1, for which changes in enthalpy are only due to heat
conduction.

To formulate the problem, the velocity u∗, density ρ∗,
temperature T ∗, shear viscosity µ∗, and thermal conductivity κ∗

are scaledwith their characteristic centreline valuesU∗

0 ,ρ
∗

0 , T
∗

0 , µ∗

0 ,
and κ∗

0 , while the bulk viscosity µ∗

V is scaled with µ∗

0 . The
pressure variation from the reference value p∗

∞
is scaled with the

characteristic dynamic pressure ρ∗

0U
∗2
0 , as corresponds to the low-

Mach-number approximation considered here. The jet radius a∗

is used to give the dimensionless cylindrical coordinates (x, r, θ),
whereas the time t is scaled with a∗/U∗

0 . The unit vectors of the
coordinate system are represented by (ex, er , eθ).

The stability analysis begins by assuming that the flow can be
decomposed into a steady parallel basic flow in the x direction
and small fluctuating disturbances according to u∗/U∗

0 = U +

u, ρ∗/ρ∗

0 = ρ̄ + ρ, T ∗/T ∗

0 = T̄ + T , µ∗/µ∗

0 = µ̄ + µ, µ∗

V/µ∗

0 =

µ̄V +µV , κ∗/κ∗

0 = κ̄ +κ and p∗/(ρ∗

0U
∗2
0 ) = p, with u = (u, v, w).

The base-flow variables, which, with the exception of the velocity
U = (U, 0, 0), are denoted by a bar, are allowed to vary with
the transverse coordinate r , except for the base pressure variation,
which is identically zero in the parallel flow approximation used
here.

Following the usual methods of hydrodynamic stability, the
continuity, momentum and energy conservation equations are
linearised around the base flow, yielding the following system of
linear equations for the disturbances

∂ρ

∂t
+ U

∂ρ

∂x
+ ρ̄∇ · u + ρ̄ ′v = 0 (2a)

ρ̄


∂u
∂t

+ U
∂u
∂x

+ U ′vex


= −∇p +

1
Re


µ̄∇

2u +


µ̄V +

1
3
µ̄


∇(∇ · u)

+


µ̄′

V −
2
3
µ̄′


(∇ · u)er + µ̄′


∇u + ∇uT

· er

+


U ′µ′ex + U ′

∂µ

∂x
er


+


U ′′

+
U ′

r


µex


, (2b)

ρ̄


∂T
∂t

+ U
∂T
∂x

+ T̄ ′v


=

1
Re Pr


κ̄∇

2T + κ̄ ′T ′
+ T̄ ′κ ′

+


T̄ ′′

+
T̄ ′

r


κ


, (2c)



where the prime ′ denotes differentiation with respect to r and
∇ is the dimensionless nabla operator. In the formulation, Re =

ρ∗

0U
∗

0 a
∗/µ∗

0 and Pr = c∗
pµ

∗

0/κ
∗

0 are the Reynolds and Prandtl num-
bers, with c∗

p representing the specific heat at constant pressure for
the gas mixture, assumed to be constant. The effect of body forces
has been neglected in (2b). Also, both compressibility and viscous
dissipation have been discarded in (2c), an approximation that, as
explained before, involves relative errors of the order of the square
of theMachnumber, negligibly small in the limit of lowMachnum-
bers considered here.

The following analysis focuses on wave-like perturbations of
the form (ρ, T , µ, µV , κ, u, v, w, p) = (ρ̂, T̂ , µ̂, µ̂V , û, iv̂, ŵ, p̂)
exp[i(kx + mθ − ωt)] with k and m denoting the streamwise
and azimuthal wave numbers and ω being the angular frequency.
Substituting these normal modes into (2a)–(2c) then yields the
set of stability equations that will form the starting point for the
discontinuous formalism in the remainder of this work:

(kU − ω)ρ̂ + kρ̄û +
(rρ̄v̂)′

r
+

mρ̄ŵ

r
= 0, (3a)

µ̄∇̂
2
β,mû − iReU ′ρ̄v̂ − iRe kp̂ −


µ̄V +

µ̄

3


k

×


kû +

(r v̂)′

r
+

mŵ

r


+ µ̄′(û′

− kv̂) + U ′µ̂′
+

(rU ′)′µ̂

r
= 0, (3b)

µ̄


∇̂

2
β,mv̂ −

v̂ + 2mŵ

r2


+ iRep̂′

+


µ̄V +

µ̄

3


×


kû′

+


(r v̂)′

r

′

+ m


ŵ

r

′
+


µ̄′

V −
2µ̄′

3


×


kû +

(r v̂)′

r
+

mŵ

r


+ 2µ̄′v̂′

+ kU ′µ̂ = 0, (3c)

µ̄


∇̂

2
β,mŵ −

ŵ + 2mv̂

r2


−

iRemp̂
r

−


µ̄V +

µ̄

3


m
r


kû +

(r v̂)′

r
+

mŵ

r


+ µ̄′


r


ŵ

r

′

−
mv̂

r


= 0, (3d)

κ̄∇̂
2
γ ,mT̂ − iRe Prρ̄T̄ ′v̂ + κ̄ ′T̂ ′

+ T̄ ′κ̂ ′
+

(rT̄ ′)′κ̂

r
= 0, (3e)

where the reduced Laplacian operator

∇̂
2
φ,m =

1
r

d
dr


r
d
dr


−


φ2

+
m2

r2


(4)

has been introduced for convenience. The quantity φ takes the
values φ = β and φ = γ in the momentum and energy equations,
respectively, with

β =

k2 + iRe(kU − ω)ρ̄/µ̄

1/2
, (5)

γ =

k2 + iRe Pr(kU − ω)ρ̄/κ̄

1/2
, (6)

defined with a non-negative real part for definiteness.
The above equations are to be supplemented with the equation

of state (1) written in the low-Mach-number approximation,
and with appropriate constitutive laws for the variation of the
transport properties. In principle,when the flow involves amixture
of different gases, the composition enters in determining themean
molecular weight and the transport coefficients, so that the above
equations should be supplemented with species conservation
equations written for the mass fractions Ȳα + Yα of each different
chemical species α. The resulting equations for the perturbations
Yα would be similar to (3e), with the Schmidt number of each
species replacing the Prandtl number and with the product of
the density times the species diffusivity replacing the thermal
conductivity. For simplicity in the development, variations of
molecular weight will be neglected in the equation of state (1),
which reduces to

ρ̄ = 1/T̄ (7)

for the base flow. Also, presumed power laws

µ̄ = κ̄ = T̄ σ (8)

will be introduced for the temperature variation of transport
properties, so that the descriptions of the composition field and its
disturbanceswill not be necessary. Nevertheless, comments on the
extensions of the analysis to account for changes in composition
are offered below in Section 5.

The stability equations must be accompanied with suitable
boundary conditions. In the far field, all perturbationsmust vanish,

(ρ̂, T̂ , µ̂, µ̂V , κ̂, û, v̂, ŵ, p̂) → 0 as r → ∞, (9)

while at the centreline r = 0 we have to impose a vanishing
azimuthal dependence of the perturbations as the axis r =

0 is approached [18], i.e. limr→0 ∂(ρ, T , µ, µV , κ, uex + ver +

weθ, p)/∂θ = 0. This leads to boundary conditions at the axis that
take the form

r = 0 :



v̂ = ŵ = û′
= 0 and (ρ̂, T̂ , µ̂, µ̂V , κ̂, û, p̂) finite

for m = 0,
(ρ̂, T̂ , µ̂, µ̂V , κ̂, û, p̂) = v̂ ± ŵ = v̂′

= 0
for m = ±1,

(ρ̂, T̂ , µ̂, µ̂V , κ̂, û, v̂, ŵ, p̂) = 0
for |m| > 1,

(10)

for different azimuthal modes.
The local stability properties of the parallel jet flow can now

be obtained by solving the generalised eigenvalue problem set
up by the system of ordinary differential equations (3a)–(3e)
with boundary conditions (9)–(10). Hereby, eigenfunctions (ρ̂, T̂ ,
µ̂, µ̂V , κ̂, û, v̂, ŵ, p̂) only exist if k and ω satisfy a dispersion
relation

D(k, ω; R) = 0 (11)

where R indicates the set of control parameters that govern the
flow.

If functional forms are specified for the base velocity and
density profiles U(r) and ρ(r), the stability problem can be solved
numerically. For instance, in the case of jets without ambient
coflow, the hyperbolic tangent base velocity profile

U(r) =
1
2

+
1
2
tanh


1
4θ


1
r

− r


, (12)

is commonly used [19,20,14,21–23], together with Crocco–
Busemann’s relation,

ρ̄(r) = [S + (1 − S)U]−1 . (13)

As can be seen in (12) and (13), the resulting base profiles depend
on two parameters, namely the jet-to-ambient density ratio, S, and
the momentum thickness, θ =


∞

0 U(1 − U)dr .
The numerical computation of the jet stability problem is

typically carried out with a spectral collocation method (for ex-
ample [24,14]). To precisely determine the eigenvalues and eigen-
functions of the stability problem, the spatial distribution of the
collocation points must be adequate to resolve simultaneously
3



scales of the order of the jet radius, as well as small scales of the
order of the shear-layer thickness. This means aminimum number
of collocation points must be placed within the shear layer. For ex-
ample, to obtain the numerical results to be presented in Section 4,
we guaranteed 10 points to lie in the shear layer. Consequently,
as the shear layer becomes thinner, the numerical computation
demands an increasing number of Chebyshev collocation points.
The resulting eigenvalue calculations become very costly, yielding
computational times that are impractically long, even with mod-
ern computer systems. To facilitate the computation, it is there-
fore of interest to consider the limiting solution associated with
shear layers of infinitesimally small thickness, when the base pro-
files become piecewise uniform, and the shear layer is substituted
by a vortex sheet, the case investigated in the following section.

Note that the two parameters S and θ are characteristic
measures of the jump in density between the jet and the
ambient and the thickness δ∗ of the transition layer through
which this jump takes place. Clearly, these two parameters
would also uniquely define the base flow for other choices of
the functional forms U(r), ρ̄(r). Although the hyperbolic tangent
profiles (12)–(13) will be used in validations to illustrate the
virtue of the discontinuous formalism to be introduced in the next
section, the deduction of the formalism itself does not rely on this
particular choice.

3. Solution procedure for infinitesimally thin shear layers

In this section, we consider the limiting solution of the
eigenvalue problem (3a)–(3e), (9)–(10) associated with shear
layers of infinitesimally small thickness, when the base profiles are
piecewise uniform, with U = ρ̄ = µ̄ = κ̄ = 1 and µ̄V = µV−

for 0 ≤ r < 1 and U = 0, ρ̄ = 1/S, µ̄ = M, κ̄ = K and
µ̄V = µV+ for r > 1. It is shown in Appendix A how for 0 ≤ r < 1,
the corresponding form of the stability equations (3a)–(3e) with
boundary conditions (10) at the axis can be solved to give

ρ̂ = AIm(γ−r), (14a)

p̂ = CIm(kr) −
Ai(k − ω)

Re


µV− +

4
3

−
1
Pr


Im(γ−r), (14b)

û = EIm(β−r) −
Ck

k − ω
Im(kr) −

Aik
Re Pr

Im(γ−r), (14c)

v̂ = ŵ + GIm−1(β−r) +
Ck

k − ω
Im−1(kr) +

Aiγ−

Re Pr
Im−1(γ−r), (14d)

ŵ =
1
2


G̃Im+1(β−r) − GIm−1(β−r)


−

Cm
(k − ω)r

Im(kr) −
Aim

Re Prr
Im(γ−r), (14e)

whereas for r > 1 the solution with vanishing perturbations as
r → ∞ reduces to
ρ̂ = BKm(γ+r), (15a)

p̂ = DKm(kr) +
BiSω
Re


µV+ +

4
3
M −

K
Pr


Km(γ+r), (15b)

û = FKm(β+r) +
DSk
ω

Km(kr) −
BiKS2k
Re Pr

Km(γ+r), (15c)

v̂ = ŵ + HKm−1(β+r) +
DSk
ω

Km−1(kr)

−
BiKS2γ+

Re Pr
Km−1(γ+r), (15d)

ŵ =
1
2


H̃Km+1(β+r) − HKm−1(β+r)


+

DSm
ωr

Km(kr) −
BiKS2m
Re Prr

Km(γ+r). (15e)
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In the formulation, Im and Km represent the modified Bessel
functions of orderm and

β− =


k2 + iRe(k − ω), β+ =


k2 − iReω/(SM), (16)

γ− =


k2 + iRe Pr(k − ω), γ+ =


k2 − iRe Prω/(SK), (17)

are the values of β and γ in the regions of uniform base flow,
the minus and plus signs in the subscripts indicating the regions
0 ≤ r < 1 and r > 1, respectively.

The solution depends on the ten integration constants (A, B, C,

D, E, F ,G, G̃,H, H̃). Evaluating the continuity equation (3a) twice,
by using (14a)–(14e) for 0 ≤ r < 1 and (15a)–(15e) for r > 1
provides the pair of equations

kE + β−(G̃ + G)/2 = 0, (18)

kF − β+(H̃ + H)/2 = 0. (19)

Additional relationships, given below in (20a)–(20h), are obtained
bymatching the two sets of solutions at r = 1 through appropriate
jump conditions, to be derived from repeated integrals of the
conservation equations (3a)–(3e) across the discontinuity. The
resulting integrals are evaluated in the range r = 1 ± ε, with
the jump conditions arising as the limiting forms of the resulting
integrals when the limit ε → 0 is taken for the semithickness ϵ of
the integration domain. The methodology follows that employed
by Drazin [5] in deriving jump conditions for the Orr–Sommerfeld
equation, although the necessary analysis is somewhat more
elaborate here because of the presence of a larger number of
equations and variables, which in turn leads to a number of
intricacies in the development.

As explained in Appendix B, the eight jump conditions to be
satisfied by the disturbances across the discontinuity of the basic
flow can be expressed in the form
û
+

−
= −κ̄ T̂


+

−

U ′µ̄′

µ̄κ̄ T̄ ′
dr, (20a)

ρ̄v̂
+

−
= 0, (20b)

ŵ
+

−
= 0, (20c)

κ̄ T̂
+

−

= 0, (20d)


µ̄û′

+ U ′µ̂ + kµ̄v̂ − iReU ρ̄v̂
+

−
= 2kρ̄v̂


+

−

µ̄′

ρ̄
dr, (20e)

2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3

 
kû +

(r v̂)′

r
+

mŵ

r


+ iRep̂

+

−

=
2ρ̄v̂

r


+

−

µ̄′

ρ̄
dr, (20f)


µ̄


ŵ

r

′

+ mµ̄v̂

+

−

= 2mρ̄v̂


+

−

µ̄′

ρ̄
dr, (20g)

κ̄ T̂ ′
+ T̄ ′κ̂ − iRe PrT̄ ρ̄v̂

+

−

= 0. (20h)

In the notation, []
+

− is used to denote the jump of a given
quantity across the discontinuity, so that for instance


û
+

−
=

û(r = 1+) − û(r = 1−). Correspondingly,


+

−
indicates radial

integration between r = 1 − ε and r = 1 + ε in the limit ε → 0.
The boundary condition (20h) states that the transverse

transport rate of heat must be equal on both sides of the
discontinuity, whereas (20e)–(20g) correspond to the equilibrium
of normal and tangential stresses, and involve both the surface
curvature and the variation of the base viscosity across the



discontinuity. The conservation of mass flow rate across the
discontinuity determines the jump of radial velocity v̂ according
to (20b), while the azimuthal perturbation velocity ŵ does not
change, as implied by (20c), and the streamwise disturbance û
exhibits a jump when variations of base viscosity are considered,
as observed in (20a). It is also of interest that changes in
thermal conductivity lead to changes in temperature across the
discontinuity, as seen in (20d). Clearly, while some of these results
could have been anticipated from the beginning, others are less
intuitive and require the careful derivation given in Appendix B.

As can be seen, the jump conditions involve different integrals
of the base profiles across the discontinuity, which vanish only in
flows with constant viscosity such that µ̄′

= 0. A simple case
arises when the density ρ̄ is given as a function of µ̄ by specifying
Eqs. (7)–(8) so that the integral


+

−
(µ̄′/ρ̄)dr becomes a function

of the boundary values of µ̄ at r = 1 ± ε, but is otherwise
independent of the specific form of the profiles of density and
viscosity across the discontinuity. The integral appearing on the
right-hand side of (20a) is more complex in that it involves the
derivative of the base velocity profile U ′, and therefore depends
in principle on the shape of the base flow profiles across the
discontinuity. Note that this unexpected dependence of the jump
condition was also encountered by Drazin [15] in his stability
analysis of incompressible parallel flow with variable density and
viscosity.

Substituting (14a)–(15e) into the jump conditions (20a)–(20h)
and using (18) and (19) to eliminate E and F provides a system
of eight homogeneous linear equations for (A, B, C,D,G, G̃,H, H̃).
Non-trivial solutions exist if the determinant of the associated
coefficient matrix equals zero, thereby yielding the desired
dispersion relation between ω and k in terms of the parameters
of the problem. The coefficient matrix can be simplified by
eliminating terms through appropriate row and column linear
combinations. The resulting dispersion relation is given in
Appendix C. Note that the integrals in the jump conditions appear
in the determinant under the form of Q1 and Q2, which have been
simplified for the case where (7)–(8) are being used, anticipating
the application of the discontinuous formalism in the next section.

4. Application to the stability of non-isothermal round jets

To illustrate the use of the formalism introduced in Section 3,
let us consider its application to the study of the viscous stability
properties of the unbounded non-isothermal axisymmetric jets
formulated in Section 2, in the limit of vanishingly thin shear
layers. As commented before, the parallel base flow is uniquely
determined by the jet-to-ambient density ratio S and a measure
of the shear-layer thickness δ∗, together with a pair of functions
describing the profiles of base-flow velocity U(r) and density
ρ̄(r). The transverse profiles of the remaining physical properties
are then given by the isobaric equation of state, ρ̄ = 1/T̄ ,
and the constitutive equations µ̄(T̄ ), µ̄V (T̄ ) and κ̄(T̄ ). Notice that
Eqs. (3a)–(3e) introduce (Re, Pr, σ ,m) as additional parameters
besides S and θ .

We also assume that the velocity and temperature profiles
share common transverse length scales a∗ and δ∗. In this case,
it is now well known that both length scales are relevant in
determining the linear spatiotemporal instability properties of
the flow, the normal modes being naturally divided into shear
layer and columnar modes [19,14,25,26]. The shear layer modes
have cut-off wavenumbers k∗

∼ 1/δ∗, characteristic frequencies
ω∗

∼ δ∗/U∗

0 , and dominate the linear impulse response at
group velocities dω∗/dk∗

∼ U∗

0 . In addition, their associated
transverse eigenfunctions peak at the shear layer and decay rapidly
away from it and are, thus, equivalent to the Kelvin–Helmholtz
mode of a single shear layer. This fact was demonstrated by
Abid [27], where the shear layermodes of an inviscid compressible
circular jet were studied by an asymptotic analysis in the limit
δ∗/a∗

→ 0. In contrast with shear layer modes, columnar modes,
of interest here, have characteristic wavenumbers k∗

∼ 1/a∗,
characteristic frequencies ω∗

∼ a∗/U∗

0 , and dominate the linear
impulse response for group velocities dω∗/dk∗

≪ U∗

0 . Moreover,
the amplitude of their associated eigenfunctions is finite at the
centreline and, therefore, they donot have a counterpart in the case
of a single shear layer.

As discussed byDrazin [5], the formalismdeveloped in Section 3
is expected to describe the stability properties of base flows
with continuous profiles only in the case of wavelengths much
larger than the shear-layer thickness, k∗δ∗

→ 0. This means,
in particular, that the use of the discontinuous approximation
is restricted to the study of the low wavenumber region of the
spectrum of shear layer modes, and is then useful to obtain
approximations to the lower neutral curve, as Drazin [5] did for the
particular cases of the two-dimensional mixing layer and jet. Here,
however,we aremainly interested in the study of columnarmodes,
for which the discontinuous approach is particularly useful, since
in this case k = k∗a∗

∼ 1 ⇒ k∗δ∗
∼ δ∗/a∗

= δ. Thus, for finite
values of both k and Re, the columnar eigenvalues obtained with
continuous profiles are expected to converge uniformly to those
associated with discontinuous profiles in the limit δ → 0.

To check the validity of the theory developed in Section 3
for discontinuous base profiles let us compare its predictions
with calculations performed with the widely used parametric
hyperbolic tangent profiles (12)–(13), introduced in Section 2. Note
that, in this case, the use of (13) permits to evaluate the integral Q1
appearing in the dispersion relation of Appendix C to give

Q1 = 1 − S−σ . (21)

To solve the eigenvalue problem for continuous profiles, the
stability equations (3a)–(3e) must be solved with the appropriate
boundary conditions at r = 0 and as r → ∞ discussed in
Section 2. To that end, we use a spectral collocationmethod similar
to that employed by Lesshafft and Huerre [14]. In particular, the
problem is written as Ax = ωBx where x = (ρ̂, û, v̂, ŵ, p̂), and A
and B are two linear operators. The eigenfunctions (ρ̂, û, v̂, ŵ, p̂)
are mapped from the physical domain 0 ≤ r ≤ rmax onto the
Chebyshev interval −1 ≤ ξ ≤ 1 using ξ(r) = rc/(2r) − [1 +

r2c /(4r
2)+2rc/rmax−rc/r]1/2, and then discretised inN collocation

points ξj = cos(jπ/(N − 1)), j = 0 . . .N − 1. By setting rc = 2 in
the transformation, approximately half of the points rj = r(ξj) are
placed in the interval 0 ≤ r ≤ 2, concentrated around r = 1.
The number N of collocation points is adapted so that a minimum
of 10 collocation points are placed within the shear layer. The
value of rmax is increased with N , typical values lying in the range
120 < N < 1000, 200 < rmax < 1000 for the results presented
here. The linear operators A and B of the generalised eigenvalue
problem are 5N × 5N-matrices containing 5(N − 1) lines with the
five stability equations discretised in the N − 1 interior nodes, and
10N lines representing the boundary conditions. The zggev routine
from the lapack library is used to compute ω.

The solution of the dispersion relation of Appendix C, being
an algebraic relation between ω and k, is carried out with a
Newton–Raphson algorithm and is very time-efficient. Compared
to the computation of an eigenvalue for the continuous stability
problem for a small value of the momentum thickness, the
computational time associated with the discontinuous formalism
can be several orders of magnitude smaller.

4.1. Temporal stability analysis

To show how the limit of discontinuous base profiles is
achieved as the shear-layer thickness decreases, let us begin
5



a b

Fig. 1. Real (a) and imaginary (b) parts of the curves of temporal stability ω(k) calculated for the profiles (12)–(13) and the axisymmetric instability mode m = 0, for
two values of the thickness θ (dashed and dash-dotted lines), together with their equivalents for discontinuous base profiles (dotted lines). In all the calculations values
Re = 100, S = 0.5, Pr = 1 and σ = 0were used. Insets: evolution of the single eigenvalueω(k = 1) as themomentum thickness θ is decreased (solid lines), and comparison
with its limiting value calculated with discontinuous base profiles (dotted line). The dots indicate corresponding points between the main plots and the insets.
by considering the unstable temporal stability branch of the
axisymmetric instability modem = 0 for round jets with a density
ratio S = 0.5, in the case of constant viscosity and thermal
conductivity, σ = 0, as well as zero bulk viscosity µ̄V = 0. Fig. 1(a)
and (b) display, respectively, the frequency, ωr , and growth rate,
ωi, as functions of the real wavenumber, kr , for values of 1/θ =

(100, 200) (dashed and dash-dotted lines as indicated in the
legend). Also shown as dotted curves are the corresponding results
obtained by using the algebraic dispersion relation defined in
Appendix C, obtainedwith themethodology described in Section 3
for discontinuous profiles. Notice that the instabilitymodes shown
in Fig. 1 are of the shear layer family, having group velocities of the
order of the jet velocity, ∂ωr/∂kr ∼ O(1).

The results shown in Fig. 1 are consistent with the behaviour
expected from the discontinuous approximation. In particular,
the low wavenumber end of the temporal spectrum obtained
with continuous profiles, ω(k → 0), is seen to converge to
the discontinuous approximation, regardless of the value of θ .
Moreover, it is also observed that the upper limit of the range
of wavenumbers which can be approximated with small relative
errors by means of discontinuous profiles, increases as the shear-
layer thickness decreases. For instance, notice in Fig. 1(b) that the
value of ωi obtained for the jet with 1/θ = 100 is approximated
by the corresponding piecewise-constant base flow, with small
relative errors that are less than 8% for values of the wavenumber
up to k ≃ 0.5. This upper limit increases to k ≃ 1 in the
case of a thinner profile with 1/θ = 200. To illustrate the
convergence process more clearly, the insets displayed in Fig. 1
show the dependence on the shear-layer thickness of the single
eigenvalue ω(k = 1), together with its limiting value obtained
by using discontinuous base profiles (dotted line), the solid circles
indicating corresponding points in each subfigure. It is noteworthy
that the temporal growth rates in Fig. 1(b) decrease as the shear
layer becomes thinner. This behaviour can be explained by the
fact that, although the Reynolds number Re is kept constant,
the Reynolds number based on the shear-layer thickness, Reθ ,
decreases with θ .

Finally, to illustrate the computational advantage of using the
discontinuous formalism presented in this work, let us mention
that the computation of a single eigenvalue for the jet with
hyperbolic tangent base profiles and θ = 1/200 takes about 3 min
on a 2.26 GHz Intel Xeon processor, while it takes a few seconds
using the dispersion relation corresponding to the discontinuous
6

limit. For decreasing values of θ this difference becomes even
more pronounced. In the next section, iterative procedures will
be employed to study the transition from convective instability
to absolute instability. Keeping in mind that to obtain a single
point along the transition curve requires about 50–100 eigenvalue
computations, the gain in computational time becomes evident.

4.2. Spatiotemporal stability analysis and A/C transition

A phenomenon of special interest in the study of parallel
variable density jets is the transition from convective (C) instability
to absolute (A) instability. It is now well established that the
global dynamics observed in these flows is closely related with the
absolute or convective character of the instability associated with
their underlying base profiles; see for instance Refs. [28,29] and
references therein. In the particular case of jets without coflow,
there exists a critical value of the density ratio Sc belowwhich this
transition takes place andwhich, in the case of the parametric base
profiles given by Eqs. (12)–(13) is a function of the momentum
thickness θ .

In the limit of vanishingly thin shear layers, the use of the theory
of discontinuous base profiles developed above allows the com-
putation of the critical density ratio Sc at which the A/C transi-
tion occurs. To show how the limit of discontinuous profiles is
achieved, we calculated transition diagrams for the base profiles
given by Eqs. (12)–(13), different instability modes, and Re =

{100, 200, 2000}, decreasing the value of θ while carefully ad-
justing the number of collocation points to ensure a numerically
converged solution. The A/C transition curves were obtained by
following the most unstable normal mode (k(0), ω(0)) having zero
group velocity, dω/dk = 0, and accomplishing the Briggs–Bers
pinching criterion; see for instance [30] for details. Negative val-
ues of the absolute growth rate, ω(0)

i < 0, are associated with a
convective instability, while positive ones, ω(0)

i > 0, indicate an
absolute instability. The transition curve Sc(θ) is then defined by
the condition ω

(0)
i (Sc, θ) = 0, and is tracked with a continuation

method. At every step in θ , the critical density ratio Sc is found
with a Newton–Raphson method, whereby the initial guess for Sc
and (k(0), ω(0)) is obtained by extrapolating the last two obtained
values.

The numerical method used to obtain the saddle point
(k(0), ω(0)) is that proposed by Deissler [31]. In the surroundings



Fig. 2. Transition curves between convective and absolute instabilities in the
(S, 1/θ) plane for a hot round jet with base profiles (12)–(13), for the axisymmetric
instability mode m = 0 (solid lines) and the first helical mode m = 1 (dashed
line), with Pr = 1, σ = 0, and different values of the Reynolds number Re =

(100, 200, 2000). The solid squares indicate the values calculated by Lesshafft and
Huerre [14]. The corresponding values of the critical density ratio obtained with
the dispersion relation of Appendix C for discontinuous base profiles are indicated
by the straight lines in the upper part of the diagram. The triangles at θ = 1/300
correspond to those of Fig. 3.

of the saddle point (k(0), ω(0)), the frequency ω(k) as a function of
the wavenumber k admits a quadratic Taylor expansion ω(k) =

ω(0)
+ l(k − k(0))2 around k(0). This can be exploited in an itera-

tive procedure to find the location of (k(0), ω(0)) as follows. Three
wavenumbers k1, k2, k3 are chosen around an initial guess k(0)

∗ with
kn = k(0)

∗ (1 + ε ei2π(n−1)/3), (n = 1, 2, 3), where ε is a distance
small enough for kn to fall in the region where the quadratic ap-
proximation ofω(k) is valid. Then the eigenvalue problem is solved
for each of the kn using the spectral collocation method described
before, yielding three frequencies ω1, ω2 and ω3. Now the three
pairs (kn, ωn) can be used in a Newton–Raphson method to find
(k(0), ω(0)) and l that accomplishωn−ω(0)

− l(kn−k(0))2 = 0, (n =

1, 2, 3). With the newly obtained value of k(0), three new values of
k1, k2 and k3 are calculated, and the procedure is repeated until rel-
ative differences in (k(0), ω(0)) between subsequent iteration steps
fall below 10−5. At each step ε is slightly decreased to enhance the
accuracy of the procedure.

The results of these calculations are shown in Fig. 2, where the
critical density ratio Sc is given as a function of the inverse thick-
ness parameter 1/θ , for the axisymmetric base profiles specified by
(12)–(13). Both the axisymmetricmodem = 0 (solid lines) and the
first helicalmodem = 1 (dashed line) are considered. The values of
the critical density ratio obtained by using discontinuous base pro-
files are represented by the straight lines in the upper part of the
diagram. All calculationswere performed using Pr = 1, σ = 0, and
various values of the Reynolds number, Re = {100, 200, 2000}, the
latter selected to enable comparisons with the results obtained by
Lesshafft and Huerre [14], indicated by the squares in Fig. 2. The
perfect agreement provides further confidence on the accuracy of
the numerical code used in the present work for continuous pro-
files.

Note that the transition curve shown in Fig. 2 for the axisym-
metric mode and Re = 2000 (solid line) indicates, in particular,
that the minimum value of θ = 1/50 employed by Lesshafft and
Huerre [14] is not small enough to reproduce the limit of a vanish-
ingly thin shear layer (straight line). Thus, in order to study how
this limit is approached, in the present work we have extended the
computations with continuous base profiles to values of the mo-
mentum thickness as small as θ ≃ 10−3. The results reveal that for
decreasing values of θ , the convergence of the function Sc(Re) to-
wards its vortex-sheet limit, i.e. the straight lines in the upper part
Fig. 3. The function Sc(Re) given by the discontinuous approximation for m = 0
(solid line) and m = 1 (dashed line), and by computations for the continuous jet
profiles (12)–(13) with θ = 1/300 for m = 0 (dashed–dotted line). The crosses
correspond to the limits indicated with straight lines in Fig. 2, while the locations
of the triangles in the (S, θ)-plane of Fig. 2 are indicated with the same symbols.
The straight dotted lines on the right hand side of the diagram indicate the values
Sc ≃ 0.66 and Sc ≃ 0.35 for m = 0 and m = 1, respectively, that correspond to an
axisymmetric inviscid vortex sheet [11].

of the figure, is faster for smaller values of Re. This finding seems
to be in agreement with the approximations made in deriving the
jump conditions (20a)–(20h), which neglect the contributions of
various integrals across the shear layer that are proportional to Re,
appearing on the right-hand sides of (B.1a)–(B.3c). Consequently,
for a given shear-layer thickness, the errors involved in the vortex-
sheet approximation increase with the Reynolds number and lead
to the slower convergence shown in Fig. 2. It is also worth remark-
ing the non-monotonic behaviour of the transition curves as the
shear-layer thickness decreases to values of θ < 1/50, a range un-
explored in the literature,which includes a pronounceddecrease in
Sc , followed by aminimum and an inflection point, before reaching
the corresponding vortex-sheet limit, θ → 0. This finite Reynolds
number behaviour is in marked contrast with its inviscid coun-
terpart, whose corresponding curve Sc(θ) decreasesmonotonically
towards the vortex-sheet limiting value Sc(0) as θ decreases, giv-
ing negligible departures Sc(θ)−Sc(0) for values of the shear-layer
thickness θ . 10−2 (see for instance [19,14,32]).

The virtue of the thin-shear layer approximation becomes clear
when studying parametric variations of the stability properties of
the jet flow. As an example, in Fig. 3 we show the critical density
ratio Sc as a function of the Reynolds number Re, in the limit of
vanishingly thin shear layers. Both the axisymmetric mode m = 0
(solid line) and the first helical mode m = 1 (dashed line) were
obtainedwith the dispersion relation of Appendix C, in a very time-
efficient way. The crosses along these lines correspond to the lim-
its indicated with straight lines in Fig. 2. For m = 0, the curve
Sc(Re) is compared to its counterpart from a stability calculation
using the continuous hyperbolic profiles (12)–(13) with momen-
tum thickness θ = 1/300 (dashed–dotted line). The triangles along
this curve correspond to the triangles in the (S, θ)-plane of Fig. 2.
Moving vertically in Fig. 3 from a triangle to a cross thus corre-
sponds to moving upwards along the respective transition curve
in Fig. 2 from the triangle to the limit θ → 0. The distance in Fig. 3
between triangles and crosses increases for increasing Reynolds
numbers. This is in agreement with the fact that in Fig. 2 the limit
of infinitesimally thin shear layers is achieved at a slower rate for
higher Reynolds numbers.

When the Reynolds number is further increased, the
dashed–dotted curve Sc(Re) for m = 0 and θ = 1/300 is seen to
converge to its inviscid limit, which is expected to lie in the range
7



0.66 . Sc . 0.70 (see Fig. 6 of Ref. [14] and Fig. 4 of Ref. [32]). Note
that the lower limit of this range, Sc ≃ 0.66, is the critical density
ratio for an axisymmetric inviscid vortex sheet, and is indicated,
together with its counterpart for m = 1, Sc ≃ 0.35, by a straight
dotted line on the right hand side of Fig. 3. It is also interesting to
note the non-monotonic convergence of the dashed–dotted line to
its inviscid limit when Re → ∞, showing a rather complicated be-
haviour featuring a pair of inflection points at Re ≃ 1000 and at
Re ≃ 2 × 104.

Finally, let us point out that the results shown in Fig. 3 are
in agreement with Drazin [5] who pointed out that the viscous
dispersion relation obtained for vanishingly thin shear layers
should not be expected to reproduce, in the limit Re → ∞, the
results given by the inviscid vortex sheet. Indeed, the solid curve
Sc(Re) shown in Fig. 3 does not converge to the inviscid critical
density ratio Sc ≃ 0.66 for m = 0, as neither does the dashed
curve for m = 1. To explain this apparent contradiction, we
emphasise that in the derivation of the jump conditions, presented
in Appendix B, the value of k/Re is kept finite. This yields jump
conditions that guarantee, inter alia, equilibrium of tangential
stresses at the discontinuity. However, if in our derivation we
let Re → ∞ from the start, we would obtain instead the
jump conditions corresponding to an inviscid vortex sheet, which
express, besides continuity of pressure, that the boundary is a
material surface. The different physical nature of the viscous and
inviscid jump conditions gives an indication of why the inviscid
vortex sheet is a singular limit that cannot be recovered, within
the present formulation, by letting Re → ∞ a posteriori.

5. Conclusions

We have presented a simple methodology appropriate to study
the viscous linear stability properties of variable-density parallel
jet flowswith very thin shear layers, including the effect of variable
transport properties, thereby providing a natural generalisation of
the formalism originally developed by Drazin [5,15] to the case of
low-Mach-number gaseous jets. This discontinuous representation
of the base flow, as discussed by Drazin [5], is useful to
study modal solutions with wavelengths much larger than the
characteristic shear-layer thickness. Themethodology includes the
use of successive integrations of the stability equations across
the vortex sheet to derive the jump conditions that serve to
match the solutions of the stability problem on both sides of
the discontinuity. In particular, we have applied the formalism to
axisymmetric jets that, in the limit of very thin shear layers, can be
represented by piecewise constant base profiles. Analytic solutions
are found for the flow perturbations in the regions of constant
velocity and density. Imposing the jump conditions across the
discontinuity leads to a dispersion relation in the form of a closed
algebraic expression that involves all the relevant parameters of
the problem, which can easily be solved with a numerical root-
finding method to study the linear stability properties of the flow.

To validate the dispersion relation, we have compared its
solutions with stability calculations performed for continuous
thin-shear-layer base profiles. In particular, we have used in
the comparisons the parametric hyperbolic tangent base profiles,
commonly used in the literature to model axisymmetric jets.
Our results reveal that the limit of discontinuous base profiles
is successfully recovered as the thickness of the continuous
base profiles decreases, both for temporal and spatiotemporal
stability analyses. In addition, the discontinuous formalism is
shown to be particularly useful when performing parametric
studies for jets with very thin shear layers, in that the required
computational times are several orders of magnitude smaller than
those associated with continuous profiles.

The formalism was used to analyse gaseous jets with constant
molecular weight, for which the density and transport properties
8

are functions of the temperature. However, the formulation could
be readily extended to account for molecular-weight variations by
describing also the composition field, as discussed in the text above
Eq. (9). In the case of an isothermal binary mixture of fluids, a situ-
ation frequently encountered in experiments and applications, the
formulation is very simple, in that with uniform temperature the
density variations can be computed in terms of themass fraction of
one of the two species, yielding for instance ρ̄ = 1/[Ȳ + S(1− Ȳ )],
with Ȳ denoting the base-flow mass fraction of the gas located
near the axis and S = ρ∗

0/ρ
∗
∞

being the molecular-weight ratio
for the binary mixture. The analysis necessitates the introduction
of minor modifications to the coefficient matrix displayed in Ap-
pendix C, as required to accommodate changes in the jump condi-

tions (20d) and (20h), which should be replaced with

ρ̄Ŷ

+

−

= 0

and

ρ̄Ŷ ′

+ Ȳ ′ρ̂ − iReSc Ȳ ρ̄v̂
+

−

= 0, respectively, and also from

changes in the eigenfunctions defined in Eqs. (15b)–(15e) and (17),
where the thermal conductivity ratio K should be replaced with
S−1. The resultingmodified dispersion relation could be employed,
for instance, to study the viscous stability characteristics of helium
jets discharging into air, a configuration often used in experiments
as a prototypical model for light jets.

The development indicates that for gaseous jets with variable
viscosity the vortex-sheet limit exhibits a non-negligible depen-
dence on the specific shape of the shear-layer profiles of velocity
and density through the integrals appearing on the right-hand-
sides of (20a) and (20e)–(20g), giving a result similar to that found
by Drazin [15]. This finding suggests that, even in configurations
with thin shear layers, care should be exerted when using model
base profiles – as those given above in (12) and (13) – for the quan-
titative assessment of the viscous instability of gaseous jets and
wakes. For instance, if accurate results are desired in the stability
analysis of hot gas jets emerging from short injectors, investigated
previously in the inviscid limit [32], then the computation should
account for the Blasius velocity profile found near the injectorwall,
which would enter in the vortex-sheet limit through the integral
contribution in (20a).
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Appendix A. Stability eigenproblem with piecewise-constant
base profiles

In the regions of constant base profiles, the linearised stability
equations (2a)–(2c) can be simplified to

∂ρ

∂t
+ U

∂ρ

∂x
= −ρ̄∇ · u, (A.1a)

ρ̄


∂u
∂t

+ U
∂u
∂x


= −∇p +

1
Re


µ̄∇

2u +


µ̄V +

µ̄

3


∇(∇ · u)


, (A.1b)

ρ̄


∂ρ

∂t
+ U

∂ρ

∂x


=

1
Re Pr

κ̄∇
2ρ. (A.1c)

The energy equation (A.1c), which has beenwritten for the density
by using a generic equation of state T (ρ), becomes, in normal
modes,

∇̂
2
γ ,mρ̂ = 0, (A.2)



in terms of the Laplacian operator defined in (4), with γ given in
(6). An equation for p̂ can be obtained by taking the divergence of
the momentum equation (A.1b) and using the continuity equation
(A.1a) together with (A.2) to give

∇̂
2
k,mp̂ = (kU − ω)2


κ̄−1(µ̄V + 4µ̄/3)Pr − 1


ρ̂. (A.3)

On the other hand, substituting ∇ · u from the continuity equation
(A.1a) in the momentum equation (A.1b) yields

∇̂
2
β,mû =

iRe k
µ̄

p̂ −
k(kU − ω)

ρ̄


1
3

+
µ̄V

µ̄


ρ̂, (A.4a)

∇̂
2
β,mv̂ −

1
r2

(v̂ + 2mŵ)

= −
iRe
µ̄

p̂′
+

kU − ω

ρ̄


1
3

+
µ̄V

µ̄


ρ̂ ′, (A.4b)

∇̂
2
β,mŵ −

1
r2

(ŵ + 2mv̂)

=
iRem
rµ̄

p̂ −
m(kU − ω)

rρ̄


1
3

+
µ̄V

µ̄


ρ̂ (A.4c)

where β is defined in (5). It is useful to add and subtract the latter
two Eqs. (A.4b) and (A.4c), yielding

∇̂
2
β,m+1(v̂ + ŵ)

= −
iRe
µ̄


p̂′

−
m
r
p̂


+
kU − ω

ρ̄


1
3

+
µ̄V

µ̄

 
ρ̂ ′

−
m
r

ρ̂


, (A.5a)

∇̂
2
β,m−1(v̂ − ŵ)

= −
iRe
µ̄


p̂′

+
m
r
p̂


+
kU − ω

ρ̄


1
3

+
µ̄V

µ̄

 
ρ̂ ′

+
m
r

ρ̂


. (A.5b)

Eqs. (A.2)–(A.4a) and (A.5a), (A.5b), together with appropriate
boundary conditions enable the eigenfunctions of the disturbances
to be determined sequentially. In particular, Eq. (A.2) can be solved
for ρ̂ to give the profiles shown in (14a) and (15a). The result can
be substituted into (A.3), thereby enabling the pressure profiles
(14b) and (15b) to be computed. Finally, substitution of ρ̂ and
p̂ into (A.4a), (A.5a) and (A.5b) provides the profiles defined in
(14c)–(14e) and (15c)–(15e) upon integration.

Appendix B. Boundary conditions for the disturbances at a
discontinuity of the base flow

The derivation of the jump conditions at r = 1 begins by inte-
grating once the stability equations (3a)–(3e) after multiplication
by r to yield

rρ̄v̂ = −


r(kU − ω)ρ̂dr − k


rρ̄ûdr − m


ρ̄ŵdr, (B.1a)

r


µ̄û′
+ U ′µ̂ + kµ̄v̂ − iReU ρ̄v̂ − 2kρ̄v̂


µ̄′

ρ̄
dr


=


r


β2
+

m2

r2


µ̄ûdr

+ k


r

2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3


(r v̂)′

r
+ iRep̂


dr

−iRe


U(rρ̄v̂)′dr + k
 

µ̄V +
µ̄

3

 
rkû + mŵ


dr

− 2k


(rρ̄v̂)′


µ̄′

ρ̄
drdr, (B.1b)

r

2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3

 
kû +

(r v̂)′

r
+

mŵ

r


+ iRep̂



−2ρ̄v̂


µ̄′

ρ̄
dr

=


r


β2
+

m2

r2


µ̄v̂dr −


rk(µ̄û′

+ U ′µ̂)dr

+

 
2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3

 
kû +

(r v̂)′

r
+

mŵ

r



+ iRep̂


dr + 3m


µ̄ŵ

r
dr − m


µ̄ŵ′dr

− 2


(ρ̄v̂)′


µ̄′

ρ̄
drdr, (B.1c)

r2µ̄


ŵ

r

′

+ mµ̄v̂ − 2mρ̄v̂


µ̄′

ρ̄
dr

=


r


β2
+

m2

r2


µ̄ŵdr +


1
r


mµ̄v̂ − r2µ̄


ŵ

r

′
dr

+m
 

µ̄V +
µ̄

3

 
kû +

mŵ

r


dr

+m
 

2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3


(r v̂)′

r
+ iRep̂


dr

− 2m


(ρ̄v̂)′


µ̄′

ρ̄
drdr, (B.1d)

r

κ̄ T̂ ′

+ T̄ ′κ̂ − iRe PrT̄ ρ̄v̂


=


r


γ 2
+

m2

r2


κ̄ T̂dr − iRe Pr


T̄ (rρ̄v̂)′dr. (B.1e)

Integration by parts has been used to arrange the equations
so that all of the integrands appearing in the right-hand-side
integrals remain finite within the discontinuity, and therefore give
a vanishing contribution when the integrals are evaluated in the
range r = 1 ± ε and the limit ε → 0 is considered. As a
consequence, the resulting jump conditions emerging from these
first quadratures involve only the terms on the left-hand side. This
can be clearly seen, for instance, in the first quadrature of the
continuity equation, given in (B.1a), where the base flow profiles
and the disturbances ρ̂, û and ŵ appearing in the right-hand-side
integrals can be anticipated to be finite, thereby resulting in a
vanishing contribution in the limit ε → 0. The continuity balance
(B.1a) therefore requires that the transverse mass flux ρ̄v̂ takes
equal values on both sides of the discontinuity, a condition that
will be indicated by


ρ̄v̂

+

−
= 0.

This condition of continuity of ρ̄v̂ can be used to prove that the
last integral in (B.1e) also gives a vanishing contribution in the limit

ε → 0, so that the jump condition

κ̄ T̂ ′

+ T̄ ′κ̂ − iRePrT̄ ρ̄v̂
+

−

=

0 follows, because the second last integral also vanishes in the
limit ε → 0 provided T̂ remains finite. Since in the present
approximation the thermal conductivity is only a function of the
temperature, its disturbances and those of the temperature are
related by the equation κ̂/κ̄ ′

= T̂/T̄ ′, which can be used in a second
quadrature of (B.1e) to give

κ̄ T̂ = iRe Pr


T̄ ρ̄v̂dr +


1
r


r


γ 2
+

m2

r2


κ̄ T̂dr

− iRe Pr


1
r


T̄ (rρ̄v̂)′drdr, (B.2)

thereby leading naturally to the additional jump condition
κ̄ T̂

+

−

= 0 when the limit ε → 0 is taken.
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(C.1)

(C.2)

(C.3)


Kγ−
Iγ+

0 0 0 0 0 0
Sγ−

S − 1
γ+

S − 1
k 0 β− 0 m2Kβ−

0

−iRe PrkKγ−
0 k2Kk k2Ik β2

−
Kβ−

β2
+
Iβ+

0 0
(2Q2k − iRe)kγ−

S − 1
(2Q2k − iRe)kγ+

S − 1
0 0 (β2

−
− k2)β− M(β2

+
− k2)β+ −m2k2Kβ−

−Mm2k2Iβ+

Sγ−

1 − S
γ+

1 − S
0 k 0 β+ 0 m2Iβ+

(β2
−

+ k2)Kγ−
− M(β2

+
+ k2)Iγ+

− (β2
−

+ k2)Kk M(β2
+

+ k2)Ik 2β2
−
Kβ−

2Mβ2
+
Iβ+

m2β2
−
Kβ−

Mm2β2
+
Iβ+

2(1 − m2)Q2γ−

S − 1
2(1 − m2)Q2γ+

S − 1
0 0 Kk Ik Kβ−

Iβ+
β− β+

Kγ−
−

Q2γ−

S − 1
MIγ+

−
Q2γ+

S − 1
Kk MIk Kβ−

MIβ+
β− −

β2
−
Kβ−

2
M


β+ −

β2
+
Iβ+

2





= 0

Kφ = Km(φ)


d
dφ

Km(φ)

−1

Iφ = Im(φ)


d
dφ

Im(φ)

−1

Q1 = −σ


+

−

ρ̄1+σU ′dr Q2 =
σ(S1+σ

− 1)
1 + σ

Box I.
For those terms on the right-hand sides of (B.1b)–(B.1d) that
involve functions that might be expected to be singular, such
as v̂′, or derivatives of discontinuous functions, such as U ′,
proving the vanishing of the associated integrals necessitates
additional information arising from second quadratures. Dividing
(B.1b)–(B.1d) by rµ̄, r and r2µ̄, respectively, and integrating yields

û +


U ′µ̂

µ̄
dr

= −k


v̂dr + iRe


U ρ̄v̂

µ̄
dr + 2k


ρ̄v̂

µ̄


µ̄′

ρ̄
drdr

+


1
rµ̄

[terms on r.h.s. of equation (B.1b)] dr, (B.3a) 
2µ̄(r v̂)′

r
+


µ̄V −

2µ̄
3

 
kû +

(r v̂)′

r
+

mŵ

r


+ iRep̂


dr

=


2jρ̄v̂

r


µ̄′

ρ̄
drdr

+


1
r
[terms on r.h.s. of equation (B.1c)] dr, (B.3b)

ŵ = −mr


v̂

r2
dr + 2mr


ρ̄v̂

r2µ̄


µ̄′

ρ̄
drdr

+ r


1
r2µ̄

[terms on r.h.s. of equation (B.1d)] dr. (B.3c)

Again, it can be seen that all of the single integrals that appear on
the right-hand side vanish in the limiting procedure used here,
as their integrands at most experience finite jumps across the
discontinuity layer. Furthermore, all of the terms that involve
double integrals of the form


f (r)


g(r)drdr can also be shown

to vanish since both f (r) and

g(r)dr at most experience finite

jumps at r = 1. Consequently, in the limit ε → 0, (B.3a) and
(B.3c) provide the jump conditions


û
+

−
= −

 1+ε

1−ε
(U ′µ̂/µ̄)dr and

ŵ
+

−
= 0, respectively, while (B.3b) indicates that the integral

on its left-hand side vanishes when evaluated between 1 − ε and
1 + ε. Bearing this new information in mind it is straightforward
to prove now that all of the integrals appearing on the right-hand
side of (B.1b)–(B.1d) indeed vanish in the limit ε → 0, so that
their associated jump conditions involve only the terms on the left-
hand side, as previously anticipated. This therefore completes the
derivation of the set of eight jump conditions to be satisfied by the
10
disturbances across the discontinuity of the basic flow, which are
given in the main text in (20a)–(20h).

Note that integration by parts is employed in writing the
integral −

 1+ε

1−ε
(U ′µ̂/µ̄)dr appearing on the right-hand side of

(20a). For the jet of constant molecular weight, the equation
µ̂ = µ̄′T̂/T̄ ′, corresponding to the viscosity being expressible as
a function of the temperature, must be used for the integration,
alongwith the condition that the heat flux derivative (κ̄ T̂ )′ be finite
across the discontinuity, as implied by the first equation in (20d),
which is also used in evaluating the resulting integral.

Appendix C. Determinant

See Box I.
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