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Abstract 
 
 
This paper considers the nonparametric estimation of spectral densities for second order stationary 
random fields on a d-dimensional lattice. I discuss some drawbacks of standard methods, and 
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1. INTRODUCTION

The estimation of the power spectrum for random fields on a d-dimensional lattice is relevant

for many purposes, including specification and testing of parametric models, detecting anisotropies

and hidden periodicities, signal extraction from noisy random fields, interpolation, prediction and

smoothing. It is also useful to obtain a more sparse decomposition of a digital image, requiring less

storage space. Spatial spectral methods have been applied to ecological data (e.g., Reshaw, 1984,

and Reshaw and Ford, 1983), earth sciences (Agterberg, 1967), astronomy (Abramenko et al, 2001),

and meteorology (Barry and Perry, 1973), among others.

This paper is concerned with nonparametric estimation of the spectral density for spatial processes.

I discuss some drawbacks in the current estimation methods. The bias of nonparametric estimators

based on Whittle’s (1954) periodogram achieve low convergence rate due to the “edge effects,”

whilst the smoothed periodogram based on Guyon’s (1982) periodogram can present consistency

problems. I overcome these problems by smoothing a modified periodogram introduced by Robinson

and Vidal-Sanz (2006). I focus on kernel estimators, for which the choice of an optimal smoothing

number is considered. Furthermore, the uniform consistency and uniform asymptotic distribution

are established when the optimal smoothing number is estimated from the data (see Theorem 3).

The uniform asymptotic distribution result has also interest in time series context, complementing

Robinson’s (1991) uniform consistency result for automatic estimation. Finally, I present a consistent

Bootstrap method for the automatic estimation of the smoothing number.

Consider a real second-order stationary stochastic process on a d-dimensional lattice,
©
Xt : t ∈ Zd

ª
,

where Z = {0,±1,±2, ..}, with first moments E [Xt] = µ and γl = Cov [XtXt+l] . I will as-

sume that there exists an integrable spectral density f (λ) ≥ 0 on Πd = [−π, π]d, such that
γl =

R
Πd

eil·λf (λ) dλ, with l · λ = Pd
r=1 λrlr, and f (λ) = (2π)−d

P
l∈Zd γle

−il·λ (this is why f

is also called the power spectrum). The spectral density can be periodically extended to Rd. A

sufficient condition for the existence of f is that
P

l∈Zd |γl| <∞, this also implies that f ∈ C
¡
Πd
¢

and it obeys the Lipschitz condition f ∈ Lip (α) for any α < 1/2, where f ∈ Lip (α) means that

sup0<khk≤δ kf (λ)− f (λ+ h)k∞ = o (δα) when δ ↓ 0 with kfk∞ = supλ∈Πd |f (λ)| . Under the
stronger condition

P
l∈Zd (1 + klkq1) |γl| < ∞ for some integer q ≥ 1, where klk1 =

Pd
r=1 |lr|, we

have that f ∈ Cq
¡
Πd
¢
.

In spatial data, it is customary to take the beginning data situated at the origin (or at one), but

sometimes data are centered elsewhere, and asymptotic could require that the sample increases in
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all directions of space. Therefore, without loss of generality, I consider the estimation of the spectral

density when Xt is observed on a rectangular set

N =
©
t ∈ Zd : −nLr ≤ tr ≤ nUr , r = 1, ....d

ª
,

where nLr , n
U
r ∈ Z and −nLr ≤ nUr for r = 1, ....d. Then, define nr = nLr + nUr + 1 and n =

Qd
r=1 nr

the cardinal of N. Following Robinson and Vidal-Sanz (2006), for the asymptotic regime we regard

nr = nr (n) as a function of the total number of observations n, which is the basic index for

asymptotic results; and we require that nr increases for all r introducing the following assumption,

A.1. For all sufficiently large n, there exist ξ > 0, c > 0 such that

nr (n) > c1n
ξ.

Since
Pd

r=1 nr (n)
−1 ≥ d

³Qd
r=1 n

−1
r

´1/d
= dn−1/d we have that ξ ≤ 1/d where the equality1 is

attained when all nr (n) increase at the same rate n1/d. This specification covers many possibilities.

For example, we could set nLr = −1 for r = 1, .., d and therefore consider the standard unilateral

sample case N = ×d
r=1

©
1, ..., nUr

ª
with n =

Qd
r=1 n

U
r , and n

U
r →∞. The spatial statistics literature

focuses on this case, but spatial samples could generally increase in one or several directions. For

example, we can observe a symmetric sample with nLr = −nUr , nUr ≥ 0 for all coordinates, so that
N = ×d

r=1

©−nUr , ..., nUr ª with n =
Qd

r=1

¡
2nUr + 1

¢
.

For any l ∈ Zd let us define N (l) := {t ∈ N : t+ l ∈ N} with cardinal n (l) := Qd
r=1 (nr − |lr|) ,

the unbiased covariance estimator

c∗n,l =
1

n (l)

X
t∈N(l)

(Xt − bµn) (Xt+l − bµn) ,
with bµn = n−1

P
t∈N Xt, the biased covariance estimator cn,l = w (l) c∗n,l with w (l) = n (l)n−1 =Qd

r=1 (1− |lr| /nr) , and the discrete Fourier transform dn (λ) =
³
n (2π)

d
´−1/2P

t∈N (Xt − bµn) e−it·λ.
Whittle (1954) introduced the spatial periodogram in the context of unilateral samples. The

spatial periodogram,

I (λ) = |dn (λ)|2 = (2π)−d
X
l

0 cn,l e−il·λ = (2π)−d
X
l

0 w (l) c∗n,l e−il·λ,

where
P

l 0 denotes the sum for l ∈ Zd such that |lr| ≤ nr−1, r = 1, ..., d, is asymptotically unbiased
for f (λ) . But the variance of I (λ) does not tend to zero, as it can be anticipated, and some

1Warning: There is a typo in the published version of the paper, where the inequality
Pd

r=1 nr (n)
−1 ≥

d
³Qd

r=1 n
−1
r

´1/d
is written in reverse sense.
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smoothing is required. Henceforth, I will use the discrete frequencies ωj,n = (2πj1/n1, ..., 2πjd/nd) ,

for all j ∈ Jn, where the set Jn = ×d
r=1 {0, ..., nr − 1} has cardinal n. The numerical effort required

to compute I (ωj,n) can be reduced by using the planar Fast Fourier Transform, see Reshaw and

Ford (1983) for a discussion.

Spatial literature has discussed the nonparametric spectral density estimation for random fields

with samples spreading in one direction (nLr ≡ −1, nUr → ∞), see e.g. Priestley (1964), Rozanov
(1967), Brillinger (1970), Rosenblatt (1985), Ivanov and Leonenko (1986), Žurbenko (1986), Heyde

and Gay (1993), and Leonenko (1999), among others. The basic theory is a straightforward gener-

alization from time series. One of the most simple estimators is the class of smoothed periodogram

estimators, bf (λ) = 1

n

X
j∈Jn

KM (ωj,n − λ) I (ωj,n) ,

whereM is a smoothing number. The weight functions {KM} ⊂ L1
¡
Rd
¢
are symmetric, continuous

and periodical with periodicity [0, 2π]d, and, as the smoothing parameter M → ∞ the functions

KM → δ0 (where δ0 is the periodic extension of the Dirac’s delta generalized function at 0). Con-

sistency requires M depending on n, with Mn → ∞ at a rate sufficiently slow to ensure that the

variance of bf tends to zero. Another popular class of spectral density estimators known as lag
windowed estimators, is defined by

ef (λ) = (2π)−dX
l

0 kM (l)w (l) c∗n,le−il·λ, (1)

where kM (l) is the lag window, satisfying kM (l) = kM (−l) ≤ kM (0) = 1 and the parameter M

plays the role of a smoothing number. It is possible to consider different kinds of smoothing numbers.

WhenM ∈ Nd and kM (l) = 0 for |lr| ≥Mr and r = 1, ..., d the parametersM are called lag numbers.

The smoothing numbers could be positive definite matrices M ∈ Rd×d such that kM (l) = k
¡
M−1l

¢
with |k (l)| ≤ k (0) = 1 for all l and k (l) = 0 for |l| ≥ 1. For diagonal matrices the vector diag (M)
can be regarded as lag numbers. Lag windowed and smoothed periodogram estimators can be

related. Introducing KM (u) = (2π)
−dP

l 0 kM (l) e−il·u, we can express lag windowed estimators as

ef (λ) = Z
Πd

Ã
(2π)

−dX
l

0 kM (l) e−il·(λ−u)
!
I (u) du =

Z
Πd

KM (u− λ) I (u) du,

where kM (l) =
R
Πd e

il·λKM (λ) dλ. Thus, bf can be thought of as a numerical integration approxi-
mation to ef.
For any of these estimator classes, the consistency can be established much as in the time series

literature. Unfortunately, the spatial density estimators previously discussed are exposed to a low
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bias convergence rate, inherent in the Whittle spatial periodogram. As E [I (λ)] is the Cesaro sum

of the multiple Fourier series of f , (see e.g., Zygmund, 1959, Vol. II, Chapter XVII),

E [I (λ)] = (2π)−d
X
l

0 w (l) γle−il·λ =
Z
Πd

Fn (u− λ) f (u) du,

where Fn (u) =
Qd

r=1 (2πni)
−1 (sin {nrur/2} / sin {ur/2})2 , is the multivariate Fejer kernel. Let us

consider ω (f, δ) = sup0<khk≤δ kf (λ)− f (λ+ h)k∞ . As a consequence of the Korovkin Theorem

(see, e.g., Korovkin, 1960), we have that, as n→∞,

kE [I (λ)]− fk∞ ≤ 2ω (f, δn) = o
³
δ1/2n

´
for all f ∈ Lip (α) with α > 1/2, where

δn =

Z
Πd

Fn (u− λ) kuk du ≤ K
dY
i=1

Z π

−π

1

2πni

µ
sin {niui/2}
sin {ui/2}

¶2Ã dX
r=1

|ur|
!
du

= K
dX

r=1

Z π

−π

1

2πni

µ
sin {nrur/2}
sin {ur/2}

¶2
|ur| du = O

Ã
dX
i=1

n−1r

!
,

which by Assumption A.1. is of order not less than n−1/d, and the uniform bias rate of I can be lower

than o (1/
√
n) for d > 1. The basic reason for the low convergence rate is the edge effect, noticed by

Guyon (1982). For a fixed l, as all nr → ∞ the bias |E [cn,l]− γl| is of order
Pd

r=1 n
−1
r ≥ dn−1/d.

Thus, for a continuous integrable kernel K,¯̄̄̄
¯̄ 1n X

j∈Jn
K (ωj,n − λ) (E [I (ωj,n)]− f (ωj,n))

¯̄̄̄
¯̄ = o

³
n−ξ/2

´
,

by Assumption A.1. Therefore, the uniform rate of convergence is o (1/
√
n) only for d = 1 but can

be significantly slower for d > 1.

To avoid the edge effect, Guyon (1982) introduced the modified periodogram with unbiased co-

variances,

I∗ (λ) = (2π)
−dX

l

0 c∗l e−il·λ,

for unilateral samples. Note that I∗ (λ) is not necessarily a nonnegative function, and E [I∗] is the

multiple Fourier series of f . Although, there are infinitely many continuous functions f which Fourier

series diverges to infinite (see e.g., Rudin, 1974, and Vidal-Sanz, 2005), kE [I∗ (λ)]− f (λ)k∞ → 0

if f is a continuous function with bounded variation on Πd. The modified periodogram I∗ can

be smoothed to estimate the spectral density f when it is enough regular. Politis and Romano
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(1996) suggested to use unbiased autocovariances in spectral density estimation. The lag windowed

estimator based on I∗ is

ef∗ (λ) = Z
Πd

KM (u− λ) I∗ (u) du = (2π)
−dX

l

0 kM (l) c∗n,le−il·λ,

similar to (1) with lag window {kM (l) /w (l)}.
The theoretical properties of I∗ have been criticized by Robinson and Vidal-Sanz (2006), in the

context of Whittle estimation, due to the presence of aliasing problems. This problem can also

be found in smoothed periodogram estimators; it suffices to consider the weight function KM (λ) =

(2π)−d
P

l kM (l) e
−il·λ. Applying Hannan´s (1973) argument, we have that

bf∗ (λ) = 1

n

X
j∈Jn

KM (ωj,n − λ) I∗ (ωj,n) =
X
l

0 kM (l)
¡
c∗l + c∗l±n

¢
, (2)

where c∗l±n = 0 for l = 0 and c∗l±n = c∗n−l for l 6= 0. The right-hand side of (2) is equal to

= (2π)−d
Z
Πd

KM (ω − λ) I∗ (ω) dω +
X
l

0 kM (l) c∗l±n,

where c∗l±n is composed of at most n− l terms of the form XtXn−l+t divided by l, which does not

converge to zero (e.g., c∗n−1 = X1Xn). Although kM (l) → 0, if this convergence is not uniform

in l an smoothed periodogram based on I∗ could be inconsistent or, in the best case, the rate of

convergence could be too slow. By contrast, in the Whittle periodogram cl±n = Op

¡
n−1

¢
and the

“aliasing” of lags does not generate the inconsistency, as proved by Hannan (1973).

Dahlhaus and Künsch (1987) proposed to use a periodogram IT the covariances of which use

tapered data, using this periodogram for Whittle estimation of parametric models. They show that,

for d ≤ 3, if the taper uses an appropriate bandwidth the estimated parameters are consistent with
rate

√
n. Robinson (2007) suggested to use tappered periodograms in spectral density estimation.

But for lag windowed spectral estimators based on a such periodogram it would be required to choose

a taper, a bandwidth, and a smoothing number; introducing too much ambiguity in the estimation.

In this paper a modified spectral density estimator is presented which is not affected by the

aliasing, nor the edge effect. In Section 2, the modified estimators are introduced focusing on kernel

estimators. Also, the optimal smoothing number are considered for the integrated mean-square loss

function, which is infeasible and has to be estimated from the sample data. The issue of spatial

sampling interval also is discussed. Section 3 contains the main theoretical results. For a stochastic

smoothing number the uniform consistency and pointwise asymptotic normality of modified kernel

estimators are proved. In Section 4 consistency of plug-in and Bootstrap estimators of the optimal

smoothing number is considered. Proofs are included in the Appendix.
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2. MODIFIED SPECTRAL DENSITY ESTIMATORS

To avoid the aliasing problems in I∗, Robinson and Vidal-Sanz (2006) introduced a truncated

periodogram,

Ig (λ) = (2π)
−d X

l∈Zd:|lr|≤g(nr)
r=1,...d

c∗l e
−il·λ,

where g is a function satisfying:

A.2. g is a positive, integer valued, monotonically increasing function such that g (x) → ∞ as

x→∞, and for for some c2 ∈ (0, 1) g (x) ≤ c2x for all x > 0.

For example we can take g (x) = [αx] with α ∈ (0, 1) and [·] the integer part; which in practice
means that we consider a trimmed summation of elements l with coordinates |lr| ≤ αnr. The

advantage of this approach is that the parameters in function g do not play an asymptotic effect,

by contrast with tapering methods. Some finite sample experiments can be found in Robinson and

Vidal-Sanz (2006).

Robinson and Vidal-Sanz (2006) prove that kE [Ig]− fk = o
¡
n−1/2

¢
under appropriate assump-

tions on the covariance function (A.3. and A.4. in Section 3); and when averaged over discrete

frequencies, the modified periodogram Ig is immune to aliasing problems affecting I∗. Here, it is

proposed the class of modified smoothed periodogram estimators,

bfg (λ) = 1

n

X
j∈Jn

KM (ωj,n − λ) Ig (ωj,n) , (3)

and the class of modified lag windowed estimators

efg (λ) = Z
Πd

KM (u− λ) Ig (u) du = (2π)
−d X

. . .
X

|lr|≤g(nr) r=1,..,d
kM (l) c

∗
l e
−il·λ (4)

with KM (u) = (2π)−d
Pd

r=1

P
|lr|≤g(nr) kM (l) e

−il·u, and kM (l) =
R
Πd e

il·λKM (λ) dλ. Both esti-

mators bfg and efg are similar to the classical ones, but using Ig (instead of I or I∗) it is possible

to establish the uniform consistency and derive the uniform weak distribution under appropriate

conditions. As I∗, also Ig can take negative values for some frequencies, and so do bfg and efg.
Although negative frequency estimations are unlikely for large samples, we can vanish the estimator

for frequencies with negative estimated power spectra by taking bfg+ (λ) = maxn0, bfg (λ)o, i.e., the
L1-projection of bfg onto the positive cone. efg+ is defined analogously.
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A rigorous treatment of the asymptotic theory is given in Section 3, but some heuristic arguments

are presented in this section. Proceeding much as in the time-series literature, under appropriate

conditions the estimator efg roughly satisfies
E
h efg (λ)i =

Z
Πd

KM (u− λ) f (u) du+ o
³
n−1/2

´
,

Cov
h efg (λ) , efg (θ)i ≈ (2π)d

n

Z
Πd

KM (u− λ)KM (u− θ) f (u)
2
du,

and bfg exhibits an analogous behaviour, as the aliasing of lags does not affect the modified smoothed
periodogram.

Applying the Korovkin Theorem, it can be proved that efg is asymptotically unbiased for integrable
and continuous f, and a Lipschitz assumption can be used to obtain a convergence rate. If f ∈
Cr
¡
Πd
¢
, taking the Taylor expansion of f (u+ λ) in λ we obtain that

E
h efg (λ)i− f (λ) =

Z
Πd

KM (u) (f (u+ λ)− f (λ)) du

=
r−1X
j=1

X
kνk1=j

Dνf (λ)

ν!

Z
Πd

KM (u)u
νdu

+r
X

kνk1=r

1

ν!

Z
Πd

Z 1

0

(1− t)r−1Dνf (λ+ tu)KM (u)u
νdtdu.

we say that the family {KM (u)} is of order r if, for all M, we have that
R
Πd KM (u)uνdu = 0 for

1 ≤ kνk1 < r and
R
Πd
kukr |KM (u)|du < ∞; this implies that the bias convergence rate to zero

equals the rate of the remaining term, namely, O
¡R
Πd kukr |KM (u)| du

¢
, uniformly in frequency. In

particular, the symmetry kM (l) = kM (−l) implies that
R
Πd

uKM (u) du = 0, and the bias rate is

O
³R
Πd
kuk2 |KM (u)| du

´
for f ∈ C2

¡
Πd
¢
. In some particular cases (e.g., kernel estimators) it is

easy to obtain orders higher than 2, but it is not for general estimators. Delgado and Vidal-Sanz

(2001) present a general methodology for obtaining families {KM (·)} with higher orders.
Regarding the covariance structure, if KM is supported on a closed neighborhood around the

origin, the covariance tends to zero for λ 6= θ, and the variance satisfies

V ar
h efg (λ)i ≈ (2π)d

n

Z
Πd

KM (u)
2 f (u+ λ)2 du

≈ f (λ)2
(2π)d

n

Z
Πd

KM (u)
2 du.

This approximation is accurate forM, n be large, or f flat around λ. When
R
Πd KMn (u)

2
du = o (n)

the estimator will be mean-square consistent.
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Several functional norms k·k can be used to study the global convergence
°°° bfg − f

°°°→ 0 in proba-

bility, i.e. different function spaces can be considered. Perhaps the most popular choices are C
¡
Πd
¢

endowed with the supremum norm kfk∞ = supλ∈Πd |f (λ)|, and the space L2 (µ) for some Borel
measure µ on Πd, endowed with the mean square norm kfkL2(µ) =

³R
Πd |f (λ)|2 µ (dλ)

´1/2
, where

the Lebesgue measure is frequently taken. Both are complete and separable Banach spaces, and

C
¡
Πd
¢
is dense in L2 (µ) . The uniform consistency is stronger than the L2 consistency on Πd and

it will be considered in Section 3.

2.1. Kernel estimators

Perhaps the most relevant methods are (modified) kernel estimators, and the rest of the paper

is focused on them. There are two alternative approaches to introduce kernel estimators. In the

first one, kernel estimators are a class of smoothed periodograms (3), whilst in the second one, they

are lag windowed methods (4). The distinctive aspect of kernel methods is that the kernel KM is

defined by

KM (u) = det (M)
X
l∈Zd

K (M (u+ 2πl)) , u ∈ Πd,

for a kernel functionK ∈ L1
¡
Rd
¢
with

R
Rd K (u) du = 1. The kernel K can be defined as the product

of univariate kernels, K (u) =
Qd

r=1Kr (ur) , with {Kr} ⊂ L1 (R). The smoothing number Mn is a

sequence of symmetric positive definite matrices, with Mn → ∞ and det (Mn) /n → 0. The kernel

lag window kM (l) verifies,

kM (l) =

Z
Πd

eil·uKM (u) du = det (M)
X
l∈Zd

Z
Πd

eil·uK (M (u+ 2πl)) du

= det (M)

Z
Rd

eil·uK (Mu) du =

Z
Rd

eil·M
−1uK (u) du = k

¡
M−1l

¢
,

with k (x) =
R
Rd e

ix·uK (u) du. Therefore, if k ∈ L2
¡
Rd
¢
, applying Parseval’s equality, we haveZ

Πd
KM (u)

2 du =
det (M)

(2π)
d

Z
Rd

k (u)2 du,

and
R
Πd

KMn (u)
2 du = o (n) as det (Mn) /n→ 0.

Let us consider the matrix norm kMk = (megv (ḾM))1/2 , where megv means the maximum

eigenvalue. We say that K is a kernel of order q if
R
Πd K (u)u

νdu = 0 for 1 ≤ kνk1 < q andR
Πd
|K (u)| kukq du < ∞. The q-order property ensures that for f ∈ Cq

¡
Πd
¢
the spectral density

bias is O
³
kMnk−q

´
uniformly in frequency. This high order rate is a relevant property in order
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to ensure that the bias tends to zero at rate o
¡
n−1/2

¢
. Note that K is of order q = 2 whenever

it is even and
R
Πd |K (u)| kuk2 du < ∞. For K to be of order q > 2, it is necessary that K takes

negative values. The q-order kernel property can be stated by the requirement that: k (x) is q-times

continuously differentiable at zero with Dνk (x)|x=0 = 0 for all integer vectors 0 < kνk1 < q. Since

k (x) ≤ k (0) = 1, taking into account the Taylor expansion definition the last condition can be

equivalently expressed by the following condition:

lim
x→0

1− k (x)

kxkq = kq,

for some finite constant kq. The extreme case q =∞, is often identified with the “flat-top” kernels

considered by Politis and Romano (1996).

The variance of kernel estimators is O (det (Mn) /n) and the square bias is at best O
³
kMnk−2q

´
,

both rates are satisfied uniformly in frequency. IfMn =mnS withmn scalar and S a symmetric pos-

itive definite matrix, then the mean-square error of kernel estimation is O
¡
m−2qn +md

n/n
¢
uniformly

in frequency, and the rate of convergence is made as fast as possible by taking mn = O
¡
n1/(2q+d)

¢
,

with associated mean-square error O
³
n
−2q
2q+d

´
. In particular, when q = d = 2, the optimal rate is

mn = O
¡
n1/6

¢
, which suggests that we could take Mn = Sn1/6 for a matrix S, and the associated

mean square error is O
¡
n−4/6

¢
. The curse of dimensionality can be observed, as the mean square

error rate n2q/(2q+d) decreases exponentially when the dimension d increases, implying that for high

dimensions the sample size n required for accurate estimations should be increasingly large. In

space-temporal context we rarely find dimensions d > 4, and actual sample sets are usually large

enough to avoid concerns about this issue.

2.2. Kernel Optimal Smoothing numbers

The choice of the parameter S is crucial to deal with the trade-off effects between the bias and

variance in finite samples, and it should be based on some objective loss function. Different loss

functions lead to different optimal parameters S∗, that usually depend on the unknown f, but there

is not a universally optimal parameter for all loss criteria. A relevant and manageable loss function

is the integrated mean-square error with respect to the weight measure µ,

IMSE (M,n, µ) = E

∙°°° efg − f
°°°2
L2(µ)

¸
=

Z
Πd

E

∙¯̄̄ efg (λ)− f (λ)
¯̄̄2¸

µ (dλ)

=

Z
Πd

E

∙¯̄̄ efg (λ)−E
h efg (λ)i¯̄̄2¸µ (dλ) + Z

Πd

¯̄̄
E
h efg (λ)i− f (λ)

¯̄̄2
µ (dλ) ,

9



by Fubini´s theorem. If f ∈ C2
¡
Πd
¢
and K is of order 2, the bias is

Bi
h efg (λ)i = Z

Πd
K (u) (f (λ+Mnu)− f (λ))

=

Z
Πd

K (u)

µ
u0Mn∇f (λ) du+ 1

2
u0M−10n

∂2

∂λ∂λ0
f (λ)M−1n u

¶
du+ o

³
kMnk−2

´
=

1

2
Tr

½Z
Πd

u u0K (u) du ·M−10n

∂2

∂λ∂λ0
f (λ)M−1n

¾2
µ (dλ) + o

³
kMnk−2

´
,

where the o
³
kMnk−2

´
term is uniform in λ, and Tr denotes the trace of a square matrix.

Proceeding heuristically (a precise treatment is presented in Section 3), we have that

V ar
h efg (λ)i ≈ det (Mn)

n
κ2f (λ)

2
,

with κ2 =
R
Rd k (u)

2
du, and the o (·) term is uniform in λ, and taking Mn = mnS,

IMSE (mnS, n, µ) ≈ md
n det (S)

n
κ2z2 + C2K

4m4
n

Z
Πd

¯̄̄̄
Tr

½
(SS0)−1

∂2

∂λ∂λ0
f (λ)

¾¯̄̄̄2
µ (dλ)

where CK =
R
Πd

u u0K (u) du, and z2 =
R
Πd

f (λ)2 µ (dλ) . If we use the optimal rate for q = 2, i.e.

mn = n1/(4+d), then for n large

n4/(4+d)IMSE
³
Sn1/(4+d), n, µ

´
≈ det (S)κ2z2 + C2K

4

Z
Πd

¯̄̄̄
Tr

½
(SS0)−1

∂2

∂λ∂λ0
f (λ)

¾¯̄̄̄2
µ (dλ) .

The right hand side can be minimized in S, taking

S∗0 =

Ã
4C2K
κ2z2

Z
Πd

µ
∂2

∂λ∂λ0
f (λ)

¶2
µ (dλ)

!1/4+d
.

Therefore, we do not use the same bandwidth in each dimension of the frequency space, but rather a

general elliptically shaped kernel at a particular rotation controlled by (S∗0S∗00 ). Analogous arguments

can be applied for E
∙°°° bfg − f

°°°2
L2(µ)

¸
. Higher order kernels can be considered, but f should satisfy

higher differentiability requirements. In all the cases, the optimal value is a function, S∗0 = S∗ (f) ,

of the unknown f.

Though S∗0 = S∗ (f) is infeasible, usually it can be estimated from the data by a plug-in proce-

dure, some cross-validation method, or Bootstrap. The plug-in procedure takes a consistent pilot

estimation efgM0
, and estimates bS∗ = S∗

³ efgM0

´
. For example, when f ∈ C3

¡
Πd
¢
and some regularity

conditions are satisfied we can use a kernel pilot, as ∂2 efg/∂λ∂λ0 is consistent respect to ∂2f/∂λ∂λ0.
The plug-in procedure can be iterated. Cross validation methods are popular in time series analysis,

see Beltrao and Bloomfield (1987) and Robinson (1991, Sec. 5), and they can be extended to deal

10



with spatial data. However, in this paper I will focus on Bootstrap methods. Our approach is differ-

ent from the Frank and Härdle (1992) time series bootstrap method for kernel spectral estimators,

based on a Studentized periodogram. See Section 4 for details.

Summarizing, nonparametric estimation of power spectrum requires the choice of an appropriate

smoothing number Mn. The choice of an optimal smoothing number entails the choice of a loss

function leading to some optimal smoothing number, usually infeasible though it can be estimated

from the sampled data. As a consequence, the smoothing numberMn should be allowed to depend on

the data, provided that det (Mn) /n→p 0 and Mn →p ∞, as required for mean-square consistency.

2.3. Sampling effects

Earth sciences often collect data from a continuous phenomena at regular intervals, using fixed

monitoring points. Consider a real second-order stationary stochastic process
©
Xt : t ∈ Rd

ª
, with

continuous spatial index, with spectral density f ∈ C
¡
Rd
¢
, and covariances γl =

R
Rd f (λ) e

il·λdλ.

Assume that the sampling interval for each coordinate is ∆ = (∆1, ...,∆d)
T . For any t ∈ Zd

define t ⊗ ∆ = (t1∆1, ..., td∆d)
T and Πd∆ =

Qd
r=1 [−π/∆r, π/∆r] . The upper limit of the inter-

val,
¡
π∆−11 , ..., π∆−1d

¢
, is known as the Nyqvist or folding frequency. Then, the sampled process,©

Xt⊗∆ : t ∈ Zd
ª
, has a spectral density f∆ given by the folding formula,

f∆ (λ) =
X
j∈Zd

f (λ+ ωj,∆) ,

where ωj,∆ = (2πj1/∆1, ..., 2πjd/∆d) are called alias and λ ∈ Πd∆. A peak on the spectrum f∆

observed at frequency λ can be caused by an aliased frequency ωj,∆, unless f possesses no components

with frequency greater than the Nyqvist frequency, i.e. f∆ (λ) = f (λ) for λ ∈ Πd∆. Note that
γl⊗∆ =

R
Πd∆

f∆ (λ) e
i(l⊗∆)·λdλ for all l ∈ Zd and f∆ (λ) =

Qd
r=1 (∆r/2π)

P
l∈Zd γl⊗∆e

−i(l⊗∆)·λ.

Using the observed data {Xt⊗∆ : t ∈ N}, a modified nonparametric estimator of f∆ can be defined
similarly to the case of unit sampling distance, i.e., smoothing the modified periodogram

I∆g (λ) =
dY

r=1

(∆r/2π)
X

l∈Zd:|lr|≤g(nr)
r=1,...d

c∗l⊗∆e
−i(l⊗∆)·λ.

The presented approach is valid to study the statistical behavior of the process on the regular

sampling net, but something can be inferred about the continuous process when data are densely

collected. Since f (λ) → 0 as kλk → ∞ for an integrable f , for a sufficiently small ∆ there are no

appreciable components in f with frequencies higher than the Nyqvist frequency and the estimator

11



bf∆ can be used to infer approximately the behavior of f . The error decreases slowly only when f

has heavy tails, i.e., when γl presents nonsmooth features.

3. MAIN RESULTS

This section is devoted to the uniform consistency and uniform asymptotic distribution of modified

kernel spectral density estimators with multilateral samples. To derive the asymptotic theory I will

assume a linear representation, introducing the following assumption,

A.3. The spatial process {Xt}t∈Zd follows a second order stationary random field with linear repre-

sentation

Xt = µ+
X
j∈Zd

βj εt−j ,

where
P

j∈Zd
¯̄
βj
¯̄
< ∞, and {εj} are identically and independently distributed random vari-

ables with zero mean, σ2ε variance and forth order cumulant κε <∞.

Other approaches have been pursued in the literature. For example, we can assume conditions

on the existence stationarity and summability of higher-order cumulants of {Xt} , using arguments
related to Brillinger (1981). But for the estimation of second order spectra it is not really necessary

to involve conditions on higher moments. Markovian assumptions or m-dependence conditions can

be also considered to derive asymptotic results, but spatial correlations often decay slowly (see e.g.

Ripley, 1988, p. 3). Mixing conditions are often used, see Doukhan (1994) for a review. Perhaps,

Bolthausen’s (1982) central limit theorem for α-mixing random fields is the most popular method.

Linear processes as described in A.3. are often used to justify the α-mixing assumption for Xt, under

the requirement that the probability density function of εt satisfies a Lipschitz condition. I avoid

this requirement, by following a martingale difference approach based on A.3. I also assume that:

A.4. The spatial process {Xt}t∈Zd follows a second order stationary random field, which autoco-

variance function γl = Cov [X0,Xl] satisfies

X
l∈Zd

Ã
dX

r=1

g−1 (|lr|)1/2ξ
!
|γl| <∞.

for ξ as in A.1., and g−1 is the inverse function of g given in A.2.

A.5. K, k are continuous, real, even, integrable functions, and
R
K (u) du = 1.

12



A.6. The lag window satisfies
R Yd

r=1
|ur| |k (u)| du <∞.

A.7. The lag window satisfies k (u) = 0 when some |ur| > 1, r = 1, .., d.

A.8. For some q > 1,

lim
x→0

1− k (x)

kxkq = kq,

for some finite constant kq.

Recall that if Mn

¡
S0
¢
= mnS

0, with mn scalar and S0 a symmetric positive definite matrix,

then the mean-square error of kernel estimation is O
¡
m−2q +md/n

¢
uniformly in frequency, and

the optimal rate of convergence is achieved by mn = n1/(2q+d). Usually an optimal S is specified by

some loss function, and consistently estimated. For a stochastic matrix cMn = Mn

³bSn´ = mn
bSn,

where bSn →p S0 and mn is deterministic, I prove the uniform consistency of kernel estimators bfg
and efg based on cMn.

Theorem 1 Assume A.1. to A.5. and that
R |K (u)| kukdu <∞. Consider cMn = mn

bSn where mn

is a deterministic sequence and bSn →p S
0, S0 symmetric positive definite. If m−1n +md

n n
−1/2 → 0,

then °°° efg − f
°°°
∞
→p 0.

If A.6. also holds, then °°° bfg − efg°°°
∞
= Op

¡
md
n n
−1¢ . (5)

Next, I consider the asymptotic distribution of the process
³ efg − f

´
at arbitrary finite sets

λ1, .., λQ ∈ Πd. Consider Mn (S) = mnS where mn is a deterministic sequence, and define

eνn (λ, S) = ¡nm−dn ¢1/2 ³ efgMn(S)
(λ)−E

h efgMn(S)
(λ)
i´

,

where efgMn(S)
(λ) is the modified kernel estimator based onMn (S) . I define bνn (λ, S) similarly (usingbfgMn(S)

instead of efgMn(S)
). Let N be a compact set of symmetric positive definite matrices.

Theorem 2 Assume A.1. to A.5. and
R
Πd |K (u)|2 du < ∞, and Mn (S) = mnS with mn a de-

terministic sequence satisfying m−1n + md
n n
−1/2 → 0. Then, for any Q ∈ N and all finite sets

(λ1, S1) , ..., (λQ, SQ) in Πd ×N

(eνn (λ1, S1) , ..,eνn (λQ, SQ))0 →d (G (λ1, S1) , , .., G (λQ, SQ))
0 ,
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where (G (λ1, S1) , , .., G (λQ, SQ)) has a Q-dimensional Gaussian with zero mean and covariance

function

Cov [G (λa, Sa) , G (λb, Sb)] = (2π)
d
(1 + δ (λ)) f (λ)

2
Z
Rd

k
¡
S−1a u

¢
k
¡
S−1b u

¢
du× I (λa = λb = λ) ,

where δ (λ) = 1 when the coordinates λ1, .., λd ∈ {2πk : k ∈ Z} and δ (λ) = 0 otherwise. If A.7.

holds, the same result is satisfied by bνn (λ, S) .
Instead of A.7., in the last statement of Theorem 2, we can use the condition A.6. The asymptotic

distribution of bνn (λ, S) follows from (5) and the first part of Theorem 2.

Next I ensure that the estimation of S0 does not have an asymptotic effect on the limit distribution.

Uniform weak convergence is proved applying some results from Bickel and Wichura (1971).

Theorem 3 Under the conditions of Theorem 2, including A.7, assume that E
h
|εt|8

i
<∞, and k

is a Lipschitz function. Then

1. for any Q ∈ N and all λ1, , ..., λQ, in Πd there exists a Gaussian process GQ (S) on C (N )Q

such that,

(eνn (λ1, S) , ..,eνn (λQ, S))→d GQ (S) ,

uniformly on C (N )Q , where GQ (S) has zero mean and covariance function as in Theorem 2.

If the conditions of Theorem 1 hold, then also

(bνn (λ1, S) , ..,bνn (λQ, S))→d GQ (S) ,

uniformly on C (N )Q .

2. If in addition
R |k (u)| kuk1 du <∞ and n−1/2md+1

n = O (1), then for any consistent estimatorbSn →p S
0 the process eνn (λ) = eνn ³λ, bSn´→d G

0 (λ) ,

uniformly on C
¡
Πd
¢
, where G0 is Gaussian process with zero mean and covariances,

Cov
£
G0 (λa) , G

0
Q (λb)

¤
= (2π)d (1 + δ (λ)) f (λ)2 k2 det

¡
S0
¢× I (λa = λb = λ) ,

with k2 =
R
Rd k (u)

2 du, and under the conditions of Theorem 1,

bνn (λ) = bνn ³λ, bSn´→d G
0 (λ) ,

uniformly on C
¡
Πd
¢
.
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Let us consider

An (λ) =

¡
nm−dn

¢1/2³
(2π)d (1 + δ (λ)) k2 det (S0)

´1/2 µeνn (λ, S)f (λ)

¶
.

By Theorem 3 and the continuous mapping theorem, for all φ ∈ C
¡
Πd
¢
,Z

Πd
φ (λ)An (λ) du→d

Z
Πd

φ (λ) dW (λ) ,

i.e., the asymptotic distribution of
R
Πd φ (λ)An (λ) du is N

³
0, kφk2L2(Πd)

´
. An interpretation for

this behavior is that the asymptotic distribution of An (λ) is that of
·
W , the Gaussian white-noise

generalized process on C
¡
Πd
¢
.

Notice that Theorem 1 establishes uniform consistency for kernel estimators when the smoothing

number has been consistently estimated from the data. Theorem 3 establishes weak convergence

uniformly in C
¡
Πd
¢
when the smoothing number has been consistently estimated. Next I consider

the choice of the parameter S0, which is crucial to deal with the trade-off effects between bias and

variance. Let us define the stochastic process,

eαn (λ, S) = ¡nm−dn ¢1/2 ³ efgmnS
(λ)− f (λ)

´
,

on Cq
¡
Πd ×N¢ . Under A.1. to A.5., and A.8., and Mn = mnS, applying an argument similar to

that of Hannan (1970, Th. 10, pp. 283), if f ∈ Cq
¡
Πd
¢

mq
n

³
E
h efgmnS

(λ)
i
− f (λ)

´
→ kq

(2π)d
S−q

X
l

klkq γle−il·λ (6)

uniformly in λ ∈ Πd and S ∈ N , and therefore°°°E h efgmnS

i
− f

°°°2
L2

=

Z
Πd

Ã
kq

mq
n (2π)

d
S−q

X
l

klkq γle−il·λ
!2

dλ+ o (1)

=
k2q

m2q
n

S−2q
X
l

klk2q |γl|2 + o (1) .

Under the conditions of Theorem 3, A.8. and f ∈ Cq
¡
Πd
¢
, the continuous mapping theorem implies

that

d

ÃZ
Πd
|eαn (λ, S)|2 dλ,ÃZ

Πd
G (λ, S)2 dλ+ nm−(2q+d)n k2qS

−2qX
l

klk2q |γl|2
!!
→ 0,

for any distance d that generates the weak-* topology on C (N ), where E
hR
Πd
|G (λ, S)|2 dλ

i
=

det (S)κ2 kfk2L2 . As a consequence, if we take mn = n1/(2q+d), thenZ
Πd
|eαn (λ, S)|2 dλ→d

Z
Πd

G (λ,S)2 dλ+ k2qS
−2qX

l

klk2q |γl|2 ,
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uniformly in C (N ) . Therefore, I define the loss function,

Q (S) = det (S)κ2 kfk2L2 + k2qS
−2qX

l

klk2q |γl|2

and define the optimal matrix S∗0 as a locally unique minimum for Q (S). Similar arguments can be

considered for bfgmnS
. The next section considers consistent plug-in and Bootstrap estimators of the

optimal smoothing number S∗0 .

Finally note that under the assumptions of Theorem 3 and A.8., if mn satisfies the condition

nm
−(2q+d)
n → 0, then the asymptotic bias has lrate ower than

¡
nm−dn

¢1/2
, since

¡
nm−dn

¢1/2
m−qn =

³
nm−(2q+d)n

´1/2
→ 0,

and therefore eαn (λ)→d G
0 (λ, ), i.e., the asymptotic distribution of efg after normalization concen-

trates around f without any asymptotic bias (see Hannan, 1970, pp. 288). Since the bias term tends

to zero faster than the deviation term we might consider the loss function given by the integrated

variance det (S)κ2 kfk2L2 , and S∗0 the matrix with smallest determinant in the border of N . Albeit
for small samples, it is worthwhile to balance the bias and variance, e.g. by minimizing Q (S) .

4. BOOTSTRAP AND PLUG-IN ESTIMATORS

In this section I consider the Bootstrap and plug-in estimations of S∗0 for the spectral estimatorefgmnS
, but similar arguments can be considered for bfgmnS

. The simplest approach is the plug-in

estimation. Given a pilot estimator efg
mn

bSa (λ) , the plug-in loss function is defined by
Qpi
n (S) = det (S)κ

2
°°° efg

mn
bSa
°°°2
L2
+ k2qS

−2qX
l

00 klk2q ¯̄c∗n,l¯̄2
where

P
l 00 =

P
i=1,..,d

P
|li|≤g(ni) . The plug-in estimator of S

∗
0 is given by the argument minimizing

Qpi
n (S) on N ; i.e. bSpin = argmin

S∈N
Qpi
n (S) .

Next I define a bootstrap estimator of S∗0 . I consider a Wiener random fieldW ∗u on C
¡
Πd
¢
, which

is a multiparameter analogue of a Brownian motion with covariance function Cov (W ∗u ,W ∗v ) =Yd

r=1
min {ur, vr} , and define

eα∗n (λ, S) = ¡nm−dn ¢1/2s(2π)d
n

Z
Πd

KmnS (u− λ) Ig (u) dW
∗
u .
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The conditional distribution of α∗n (λ,S) respect to the original sample is normal, with mean

E∗ [eα∗n (λ, S)] = 0 and variance is
V ar∗ [eα∗n (λ, S)] = m−dn (2π)d

Z
Πd

KmnS (u− λ)2 Ig (u)
2 du.

The stochastic integral eα∗n (λ, S) is determinant in the Bootstrap method.
The evaluation of eα∗n (λ, S) requires the simulation of a continuous Wiener random field and

the computation of a multiparameter Itô integral, which is not feasible in practice and discrete

approximations are required. Thus, a discrete version can be considered, i.e.

eα∗∗n (λ, S) = ¡nm−dn ¢1/2s(2π)d
n

X
j∈Jn

KM (ωj,n − λ) Ig (ωj,n)W
∗
j,n,

where W∗j,n =
Yd

r=1
(W ∗ (ωj,n)−W ∗ (ωj−er,n)) , and I = (e1, .., ed) is the identity matrix. Note

that W ∗j,n =
Yd

r=1
εnr,jr with εnr,jr independently distributed N (0, 2πjr/nr) , for all j ∈ Jn. The

expectation of α∗∗n (λ, S) conditional to the sample is zero and the variance,

V ar∗ [eα∗∗n (λ,S)] =m−dn (2π)d

⎛⎝n−1
X
j∈Jn

KM (ωj,n − λ)2 Ig (ωj,n)
2

⎞⎠ .

The analogy with the multiparameter Itô integral is clear.

Next the Bootstrap loss function is defined, either in terms of the multiparameter Itô integral or

using the discrete version, respectively given by

Qb∗
n (S) = E∗

∙Z
Πd
|eα∗n (λ,S)|2 dλ¸+ k2qS

−2qX
l

00 klk2q ¯̄c∗n,l ¯̄2 ,
Qb∗∗
n (S) = E∗

∙Z
Πd
|eα∗∗n (λ, S)|2 dλ¸+ k2qS

−2qX
l

00 klk2q ¯̄c∗n,l¯̄2 ,
where E∗ [·] denotes the conditional expectation with respect to the data. In practice, the conditional
expectation E∗

h
|eα∗n (λ, S)|2i can be computed by Monte Carlo methods, e.g. using the average of

B realizations of eα∗n (λ, S), B−1PB
b=1

¯̄̄eα∗bn (λ, S)¯̄̄2. Each of the values eα∗bn (λ, S) is computed using
an independent realization of the Brownian motion W ∗u . The discrete version E∗

h
|eα∗∗n (λ, S)|2i can

be similarly computed.

The Bootstrap estimator bSb∗n of S∗0 , is defined by the minimizer of Qb∗
n (S), i.e.

bSb∗n = argmin
S∈N

Qb∗
n (S) .
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The Bootstrap estimator bSb∗∗n can be defined alike, as the minimizer of Qb∗∗
n (S) on N .

The following result proves the consistency of the plug-in and the Bootstrap estimators with

respect to S∗0 .

Theorem 4 Under conditions of Theorem 3, if A.8. is satisfied, f ∈ Cq
¡
Πd
¢
and mn = n1/(2q+d),

then bSpin →p S
∗
0 , bSb∗n →p S

∗
0 , and bSb∗∗n →p S

∗
0 .

Under the conditions of Theorem 3, if bSn is any consistent estimator for S∗0 , then, both eα∗n ³λ, bSn´
and eα∗∗n ³λ, bSn´ have the same asymptotic distribution as ¡nm−dn ¢1/2 ³ efgmnS∗0

(λ)−E
h efgmnS∗0

(λ)
i´

.

Under the conditions of Theorem 3, A.8. and f ∈ Cq
¡
Πd
¢
, we can obtain a bootstrap approxima-

tion to the distribution of
¡
nm−dn

¢1/2 ³ efgmnS∗0
(λ)− f (λ)

´
, adding to eα∗n ³λ, bSn´ a plug-in estimation

of the asymptotic bias (6) scaled by
¡
nm−dn

¢1/2
; i.e. by considering

eα∗n ³λ, bSn´+ ¡nm−dn ¢1/2( kq

mq
n (2π)

d
bS−qn

X
l

00 klkq c∗n,l e
−il·λ

)
.

A similar procedure can be used with eα∗∗n ³λ, bSn´ .
APPENDIX

Part 1. Lemmas

Lemma 1 Assume A.1. to A.5. and
R
Πd |K (u)|2 du <∞. Then, there exists some C > 0, such that

for all λ, θ ∈ Πd, the kernel estimator bfg satisfies
cov

h bfg (λ) , bfg (θ)i ≤ Cn−2
X
j∈Jn

|KM (ωj − λ)KM (ωj − θ)|+

+Cn−2
X
j∈Jn

|KM (ωj − λ)|2 +Cn−2
X
k∈Jn

|KM (ωk − θ)|2 .

Therefore,

var
h bfg (λ)i ≤ 3Cn−2 X

j∈Jn
|KM (ωj − λ)|2 = O

¡
n−1 det (M)

¢
,

and the variance tends to zero for n−1 det (Mn)→ 0.

Proof.

I follow an argument based on the proof of Theorem 1 in Robinson and Vidal-Sanz (2006). Con-

sider the modified kernel smoothed periodogram estimator,

bfg (λ) = 1

n

X
j∈Jn

KM (ωj,n − λ) Ig (ωj,n) .

18



By simplicity we will assume that µ = 0, and replace Xt by Xt−X, as X is n1/2 consistent for µ

under A.3. Clearly,

cov
h bfg (λ) , bfg (θ)i = n−2

X
j∈Jn

X
k∈Jn

KM (ωj − λ)KM (ωk − θ) cov [Ig (ωj) , Ig (ωk)]

=
n
n (2π)

d
o−2 X

j∈Jn

X
k∈Jn

KM (ωj − λ)KM (ωk − θ)

×
(X

u

00
X
v

00cov [c∗u, c∗v] ei(v·ωj−u·ωk)
)

(7)

where
P

u 00 =
P

i=1,..,d

P
|ui|≤g(ni). The term in brackets isX

u

00
X
v

00 1

w (u)w (v)

X
s∈N(u)

X
t∈N(v)

©
γt−s−uγt−s+v + γt−sγt−s+v−u

+ cum (Xs,Xs+u,Xt,Xt+v)} ei(v·ωj−u·ωk)

=
X
u

00
X
v

00 1

w (u)w (v)

X
s∈N(u)

X
t∈N(v)

∙Z
Πd

Z
Πd

f (η) f (φ)

×
³
ei(t−s−u)·η−i(t−s+v)·φ + ei(t−s−u)·η−i(t−s+v−u)·φ

´
dηdφ

+ kε
X
l∈Zd

βs−lβs+u−lβt−lβt+v−l

⎤⎦ ei(v·ωk−u·ωj) (8)

The contribution to (7) from the first term in (8) isn
n (2π)d

o−2X
u

00
X
v

00 1

w (u)w (v)

Z
Πd

Z
Πd

X
j∈Jn

X
k∈Jn

KM (ωj − λ)KM (ωk − θ)

×e−iu·(η+ωj)−iv·(φ−ωk)
⎛⎝ X
s∈N(u)

X
t∈N(v)

ei(t−s)(η−φ)

⎞⎠ f (η) f (φ) dηdφ

which is bounded by a constant times

¯̄̄̄
¯̄n−2X

u

00 1

w (u)

X
j∈Jn

KM (ωj − λ)KM (ωj − θ) e−iu·ωj

¯̄̄̄
¯̄ (9)

using that
P

u 001 = w (u) . As w (u)−1 ≤ Kn−1 under Assumption A.1., (9) is bounded by a constant

times

n−3
X
u

000
¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ)KM (ωj − θ) e−iu·ωj

¯̄̄̄
¯̄ (10)
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where
P

u 000 is the sum
P
1−ni≤ui≤ni,i=1,..,d, and by the triangular inequality (10) is bounded by

n−2
X
j∈Jn

|KM (ωj − λ)KM (ωj − θ)|

The contribution to (7) from the second term in (8) can be analogously considered, with the same

order. The contribution to (7) from the third term in (8) isn
n (2π)d

o−2X
u

00
X
v

00 1

w (u)w (v)

X
k∈Jn

KM (ωk − θ) e−iu·ωk
X
j∈Jn

KM (ωj − λ) eiv·ωj

×kε
X

s∈N(u)

X
t∈N(v)

X
l∈Zd

βs−lβs+u−lβt−lβt+v−l

which is bounded by (2π)−2d times

n−2
X
u

00
X
v

00 1

w (u)w (v)

¯̄̄̄
¯X
k∈Jn

KM (ωk − θ) e−iu·ωk
¯̄̄̄
¯
¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ) eiv·ωj

¯̄̄̄
¯̄

×kε
X

s∈N(u)

X
t∈N(v)

X
l∈Zd

¯̄
βs−lβs+u−lβt−lβt+v−l

¯̄

≤ n−4
X
v

00
X
u

00

⎧⎪⎨⎪⎩
¯̄̄̄
¯X
k∈Jn

KM (ωk − θ) eiu·ωk
¯̄̄̄
¯
2

+

¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ) eiv·ωj

¯̄̄̄
¯̄
2
⎫⎪⎬⎪⎭

×kε
X

s∈N(u)

X
t∈N(v)

X
l∈Zd

¯̄
βs−lβs+u−lβt−lβt+v−l

¯̄
that is bounded by kε times

n−4
X
v

00
¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ) eiv·ωj

¯̄̄̄
¯̄
2

×
X

t∈N(v)

X
l

¯̄
βt−l

¯̄X
s

¯̄
βs−l

¯̄X
u

¯̄
βt+u−l

¯̄

+n−4
X
u

00
¯̄̄̄
¯X
k∈Jn

KM (ωk − λ) eiu·ωk
¯̄̄̄
¯
2

×
X

s∈N(u)

X
l

¯̄
βs−l

¯̄X
t

¯̄
βt−l

¯̄X
v

¯̄
βt+v−l

¯̄
and, for some constant c > 0, it is therefore

≤ cn−3

⎧⎨⎩X
u

00
¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ) e−iu·ωj

¯̄̄̄
¯̄+X

v

00
¯̄̄̄
¯X
k∈Jn

KM (ωk − θ) eiv·ωk
¯̄̄̄
¯
⎫⎬⎭
2

≤ cn−2

¯̄̄̄
¯̄X
j∈Jn

KM (ωj − λ) e−iu·ωj

¯̄̄̄
¯̄
2

+Kn−2
¯̄̄̄
¯X
k∈Jn

KM (ωk − θ) eiv·ωk
¯̄̄̄
¯
2

(11)
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using that
0X

ul=1−nl
e2πi(kl−jl)/nl =

nlX
ul=1

e2πi(kl−jl)nl = nl × 1 (jl = kl) , (12)

for 1 ≤ jl, kl ≤ nl, the bound (11) can be expressed as

= 2dcn−2
X
j∈Jn

|KM (ωj − λ)|2 + 2dcn−2
X
k∈Jn

|KM (ωk − θ)|2 .

So we conclude that for some C > 0,

cov
h bfg (λ) , bfg (θ)i ≤ Cn−2

X
j∈Jn

|KM (ωj − λ)KM (ωj − θ)|+

+Cn−2
X
j∈Jn

|KM (ωj − λ)|2 +Cn−2
X
k∈Jn

|KM (ωk − θ)|2 ,

and therefore,

var
h bfg (λ)i ≤ 3Cn−2

X
j∈Jn

|KM (ωj − λ)|2 = O

µ
n−1

Z
KM (u− λ)2 du

¶
= O

µ
n−1

Z
KM (u)

2 du

¶
= O

µ
n−1 det (M)

Z
K (u)2 du

¶
,

where C does not depend on λ, n or M.

Part 2. Main Proofs

Proof of Theorem 1

The argument is related to that of Robinson (1991). From Assumption A.5., there exists a

continuous spectral density f ∈ C
¡
Πd
¢
, and it obeys the Lipschitz condition f ∈ Lip (α) for any

α > 1/2. Let N be the closure of a neighborhood of matrix S0. Then,

Pr
n°°° efg − f

°°°
∞

> η
o
≤ Pr

½
max
S∈N

max
λ∈Πd

¯̄̄ bfgMn(S)
(λ)− f (λ)

¯̄̄
> η

¾
+Pr

³bSn /∈ N
´
,

where the last term in the right hand side tends to zero.

We can express efg (λ)− f (λ) =
P2

j=1
ebjM (λ) where

eb1M (λ) = E
h efgM (λ)i− f (λ) =

Z
Πd

KM (u− λ) (E [Ig (u)]− f (λ)) du,

eb2M (λ) = efgM (λ)−E
h efgM (λ)i = Z

Πd
KM (u− λ) (Ig (u)−E [Ig (u)]) du

= (2π)−d
X
u

00 k ¡M−1u¢ (c∗u − γu) e
−iu·λ.
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For the bias term, I use that

max
M,λ

¯̄̄eb1M (λ)¯̄̄ ≤ max
M,λ

¯̄̄̄Z
Πd

KM (u− λ) (E [Ig (u)]− f (λ)) du

¯̄̄̄
+max

M,λ

¯̄̄̄Z
Πd

KM (u− λ) (f (u)− f (λ)) du

¯̄̄̄

≤ max
M,λ

¯̄̄̄Z
Πd

KM (u− λ) (f (u)− f (λ)) du

¯̄̄̄
+ kE [Ig]− fk∞maxM,λ

Z
Πd
|KM (u− λ)|du. (13)

Since f is periodic, using an argument similar to the Korovkin Theorem, the first term in (13) is

max
M

°°°°Z KM (u− λ) (f (u)− f (λ)) du

°°°°
∞
= O

µ
max
S∈N

ω (f, δM)

¶
= O

µ
max
S∈N

δ
−1/2
M

¶
,

where δM =
R kuk |KM (u)| du = O

³
kMk−1

´
= O

³
m−1n kSk−1

´
→p 0 if mn →p ∞. Higher

convergence rates can be established using higher order kernels as previously explained.

The second term in (13) is

O

µ
kE [Ig]− fk∞

Z
Πd
|K (u)| du

¶
= o

³
n−1/2

´
,

under A.4., since

kE [Ig]− fk∞ ≤ (2π)d
X

l∈Z:∃r∈{1,...,d}
with |lr|>g(nr)

|γl| = o
³
n−1/2

´
,

see the proof of Theorem 1 of Robinson and Vidal-Sanz (2006).

Recall that n (l)
³
c∗n,l − γl

´
is a sum of n (l) terms (XtXn−l+t −E [XtXn−l+t]) , and consider also

the classical result that for all l1,l2

lim
n→∞n (l)E

£¡
c∗n,l1 − γl1

¢ ¡
c∗n,l2 − γl2

¢¤
= 2 (2π)d

Z
Πd

eil1·λeil2·λf (λ)2 dλ

+ κε (2π)
2d
Z
Πd

eil1·λf (λ) dλ
Z
Πd

eil2·λf (λ) dλ

uniformly in l. Since supl
¯̄
eil·λ

¯̄ ≤ 1 for all λ ∈ Πd, then n (l)1/2
³
c∗n,l − γl

´
= Op (1) uniformly in l

when f (λ)2 is integrable. Next, under A.2.,

sup
{l:|lr|≤g(nr),r=1,..,d}

1Qd
r=1 (nr − |lr|)

≤ 1Qd
r=1 (nr − g (nr))

≤ 1

(1− c2)

1Qd
r=1 nr

=
1

(1− c2)

1

n
,

as (nr − g (nr)) ≥ (1− c2)nr, with c2 ∈ (0, 1) . Then

sup
{l:|lr|≤g(nr),r=1,..,d}

¯̄
c∗n,l − γl

¯̄
= Op

³
n−1/2

´
.
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Furthermore, by dominated convergence arguments

E

"
n1/2 sup

{l:|lr|≤g(nr),r=1,..,d}

¯̄
c∗n,l − γl

¯̄#
= O (1) ,

as
¯̄̄
c∗n,l − γl

¯̄̄
≤ ¯̄c∗n,0¯̄+ |γ0| with E

£¯̄
c∗n,0

¯̄¤
<∞.

Regarding the variance term,

max
S∈N

max
λ∈Πd

¯̄̄eb2M (λ)¯̄̄ ≤ (2π)−dmax
S∈N

X
u

00 ¯̄k ¡M−1u¢¯̄ |c∗u − γu|

= Op

Ã
n−1/2max

S∈N

X
u

00
¯̄̄̄
k

µ
S−1u
mn

¶¯̄̄̄!

= Op

µ
n−1/2md

nmax
S∈N

Z
Rd

¯̄
k
¡
S−1z

¢¯̄
dz

¶
= Op

µ
n−1/2md

n

Z
Rd
|k (z)| dzmax

S∈N
det (S)

¶
using that m−1n → 0. The last expression is negligible using that det (S) < � on N for some � > 0,

as N is a compact set of positive definite matrices, and using the condition md
nn
−1/2 → 0. I have

used that k is continuous and integrable under A.5.

Next, I consider
¯̄̄ bfgM − efgM ¯̄̄ , defining on = (n1, ..., nr) and applying an argument analogous to

that of Hannan (1973),

bfgM (λ) =
1

n

X
j∈Jn

KM (ωj,n − λ) Ig∗ (ωj,n)

= efgM (λ) + (2π)−dX
l

00k
µ
S−1

l

mn

¶
c∗l±on

where c∗l±on = 0 for l = 0 and c∗l±on = c∗on−l for l 6= 0. Then, under A.6.,

max
S∈N

max
λ∈Πd

¯̄̄ bfgM (λ)− efgM (λ)¯̄̄ ≤ (2π)−dmaxS∈N

X
l

00
¯̄̄̄
k

µ
S−1

l

mn

¶¯̄̄̄ ¯̄
c∗l±on

¯̄
,

using that for |lr| ≤ g (nr) , r = 1, .., d the covariance c∗(on−l) is a sum of
Yd

r=1
|lr| terms of the form

XtXt+on−l, all with with finitely bounded mean, divided by n (on − l) =
Qd

r=1 |lr| . Under A.2., for
|lr| ≤ g (nr) , r = 1, .., d

n (on − l) ≤
dY

r=1

g (nr) ≤ c2

dY
r=1

nr = c2n,
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so that the aliasing effect is avoided. Therefore,

max
S∈N

°°° bfgM (λ)− efgM (λ)°°°∞ = Op

Ã
n−1max

S∈N

X
l

00
dY

r=1

|lr|
¯̄̄̄
k

µ
S−1

l

mn

¶¯̄̄̄!

= Op

Ã
n−1md

nmax
S∈N

Z
Rd

dY
r=1

|ur|
¯̄
k
¡
S−1u

¢¯̄
du

!
,

that tends to zero if n−1/2md
n → 0.

Proof of Theorem 2

First, I prove the result for efg. Define AS,m =
©
u :
¯̄¡
S−1u

¢
r

¯̄
< m, r = 1, ..., d

ª
. Under A.7. we

can express

efgMn(S)
(λ)−E

h efgMn(S)
(λ)
i
= (2π)

−d X
l∈AS,mn

k

µ
S−1l
mn

¶
(c∗l − γl) e

−il·λ.

For any Q ∈ N and any (λ1, S1) , ..., (λQ, SQ) in Πd×N , I apply the Cramer-Wold device, consider
(δ1, ..., δQ)

0 ∈ Rd/ {0} ,

Vn (mn) = m−d/2n

QX
q=1

δq
³ efgMn(Sq)

(λq)−E
h efgMn(Sq)

(λq)
i´

= (2π)−d
QX
q=1

δqm
−d/2
n

X
l∈ASq,mn

k

µ
S−1q

l

mn

¶
e−il·λq (c∗l − γl) .

Next I use the Bernstein Lemma. For each fixed m, applying a Central Limit Theorem argument in

Theorem 1 of Robinson and Vidal-Sanz (2006), and the delta method, we have

n1/2Vn (m)→d N (0,Ωm) ,

where

Ωm = (2π)
−d

QX
q=1

QX
q0=1

δqδq0
X

l∈ASq,m

X
l0∈ASq0 ,m

µ
m−dk

µ
S−1q

l

m

¶
k

µ
S−1q0

l0

m

¶
e−i(l−l

0)·λq
¶

× (2π)2d (1 + δ (λq)) f (λq)
2 × I

³
λq = λq

0´
.

The key argument in Robinson and Vidal-Sanz (2006) is that

c∗l − γl =
1Qd

r=1 (nr − |lr|)
X
j

X
k

βjβk

⎧⎨⎩ X
t∈N(l)

εt−jεt+l−k − σ2I (j = k − l)

⎫⎬⎭ , (14)
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and then, after reordering the expression as a triangular array, a martingale differences central limit

theorem is applied.

Since

Ωm → Ω =

QX
q=1

QX
q0=1

δqδq0

Z
Rd

k
¡
S−1q u

¢
k
³
S−1q0 u

´
du

× (2π)d (1 + δ (λq)) f (λq)
2 × I

³
λq = λq

0´
as m→∞, the result follows by Bernstein’s Lemma, after proving that for all ε > 0,

lim
n→∞E

h
|Vn (m)− Vn (mn)|2

i
= O (ε) ,

for any large enough fixed m. This is immediate, since Vn (m)−Vn (mn) has zero mean and variance

given by,

(2π)−2d
QX
q=1

QX
q0=1

δqδq0

⎛⎝m−d
X

l∈ASq,m
k

µ
S−1q

l

m

¶
−m−dn

X
l∈ASq,mn

k

µ
S−1q

l

mn

¶⎞⎠
×

⎛⎜⎝m−d X
l0∈ASq0 ,m

k

µ
S−1q0

l0

m

¶
−m−dn

X
l0∈ASq0 ,mn

k

µ
S−1q0

l0

mn

¶⎞⎟⎠
×e−i(l·λq−l0·λq0)Cov [c∗l , c∗l0 ] .

Using an argument analogous to Lemma 1, the variance V ar [|Vn (m)− Vn (mn)|] is bounded by a
finite sum of terms

O

⎛⎜⎝n−1
¯̄̄̄
¯̄m−d X

l∈AS,m
k

µ
S−1

l

m

¶
−m−dn

X
l0∈AS,m

k

µ
S−1

l0

mn

¶¯̄̄̄¯̄
2
⎞⎟⎠

= O

⎛⎝n−1 ¯̄̄̄¯m−dX
l

k

µ
S−1

l

m

¶
−
Z

k
¡
S−1u

¢
du

¯̄̄̄
¯
2
⎞⎠

+O

⎛⎝n−1
¯̄̄̄
¯
Z

k
¡
S−1u

¢
du−m−dn

X
l0

k

µ
S−1

l0

mn

¶¯̄̄̄
¯
2
⎞⎠

= O
¡
n−1ε2

¢
+O

¡
n−1m−2dn

¢→ 0,

where ε is arbitrarily small whenm is large, and I have used that if k (u) has an integrable derivative

then
¯̄R

k (u) du−m−dn
P

l k (l/mn)
¯̄
= O

¡
m−dn

¢
.

Next I consider the smoothed periodogram. I start considering a fixed M = mS, and obtaining

the limit distribution of n1/2
³ bfgM −E

h bfgMi´ . Let KML (u) be the the L-order Fejer approximation
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to KM (u), i.e.

KML (u) =
X
c∈AL

µ
1− |c|

L

¶
kM,ce

−ic·u,

where kMc =
R
Πd

KM (u) e
ic·udu = k

¡
M−1c

¢
. For a large enough L,we can ensure that kKM −KML (u)k∞ <

ε. If we define

rM (λ) = n−1
X
j∈Jn

KM (ωj,n − λ) (Ig (ωj,n)−E [Ig (ωj,n)])

rML (λ) = n−1
X
j∈Jn

KML (λ) (Ig (ωj,n)−E [Ig (ωj,n)])

then r (λ)− rML (λ) has zero mean and variance

n−1
X
j∈Jn

X
l∈Jn

KL (ωj,n − λ)KL (ωl,n − λ)

(X
u

00
X
v

00cov [c∗c , c∗c ] e−i(u−v)·ωj,n
)

where KML (λ) = KM (λ)−KLM (λ) . This variance is arbitrarily small by an argument analogous

to that of Lemma 1. By the Bernstein Lemma it suffices to obtain the asymptotic distribution of

n1/2rML (λ) in the sense of finite dimensional projections. Using (12),

rML (λ) = n−1
X
j∈Jn

KML (ωj,n − λ) (Ig (ωj,n)−E [Ig (ωj,n)])

= n−1
X
j∈Jn

ÃX
c∈AL

µ
1− |c|

L

¶
k
¡
M−1c

¢
e−ic·(ωj,n−λ)

!

×
(
(2π)

−dX
u

00 (c∗u − γu) e
−iu·ωj,n

)

= (2π)−d
X
c∈AL

µ
1− |c|

L

¶
k
¡
M−1c

¢
(c∗c − γc) e

−ic·(ωj,n−λ)

for n large enough, because then L + g (nr) < nr for all r = 1, ..., d, and aliased terms do not

contribute.

Expressing M = mS, then for any Q ∈ N and any (λ1, S1) , ..., (λQ, SQ) in Πd ×N , I apply the
Cramer-Wold device, consider (δ1, ..., δQ)

0 ∈ Rd/ {0} ,

n1/2VL (m) = n1/2m−d/2
QX
q=1

δq × r(mMq)L (λq)

= m−d/2 (2π)−d
QX
q=1

δq
X
c∈AL

µ
1− |c|

L

¶
k
³
(mSq)

−1
c
´
e−ic·(ωj,n−λ)n1/2 (c∗c − γc) .

Since n1/2VL (m) converges weakly to a normal N (0,ΩLm) , where ΩLm → Ω when L,m→∞, the

result follows by an analogous argument to the previous case.
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Proof of Theorem 3

Theorem 2 has established the weak convergence of finite-dimensional projections. Therefore, we

only need to prove the Tightness in C (N ), and the theorem will follows from Prohorov´s Theorem.

To show tightness, applying a Bickel and Wichura (1971) criterion and Cauchy-Schwartz inequality,

we require bounds on fourth moments of differences,

E
h
|eνn (λ, S)− eνn (λ, S0)|4i ≤ c kS2 − S1k4α ,

for some constant c, and α > 0, where kSk = kvec (S)k∞ , with vec (S) = (S01, ..., S0d)
0 for all square

matrix S = (S1, .., Sd) . Therefore kS2 − S1k is bounded by the Lebesgue measure of the interval
defined by {vec (S1) , vec (S2)} .
Since n−1/2 supl:|lr|≤g(nr)

¯̄̄
c∗n,l − γl

¯̄̄
= Op (1) and

¯̄̄
c∗n,l − γl

¯̄̄
≤ ¯̄c∗n,0 ¯̄+ |γ0| with E

h¯̄
c∗n,0

¯̄4i
<∞,

by dominated convergence arguments it is satisfied that n−2E
∙
supl:|lr|≤g(nr)

¯̄̄
c∗n,l − γl

¯̄̄4¸
= O (1) .

Therefore,

E
h
|eνn (λ, S2)− eνn (λ, S1)|4i ≤ cE

⎡⎢⎣
⎧⎨⎩

dX
r=1

X
|lr|≤g(nr)

¯̄̄̄
k

µ
S−12 l

mn

¶
− k

µ
S−11 l

mn

¶¯̄̄̄ ¯̄
c∗n,l − γl

¯̄⎫⎬⎭
4
⎤⎥⎦

= O

⎛⎜⎝n−2

⎧⎨⎩
dX

r=1

X
|lr|≤g(nr)

¯̄̄̄
k

µ
S−12 l

mn

¶
− k

µ
S−11 l

mn

¶¯̄̄̄⎫⎬⎭
4
⎞⎟⎠ ,

= O

Ã½
n−1/2md

n

Z ¯̄
k
¡
S−12 u

¢− k
¡
S−11 u

¢¯̄
du

¾4!
and since k is Lipschitz with compact support A,Z ¯̄

k
¡
S−12 u

¢− k
¡
S−11 u

¢¯̄
du ≤ c0

Z
A

¯̄¡
S−12 − S−11

¢
u
¯̄α
du

≤ c0 kS1 − S2kα
Z
A

¯̄̄
(S1S2)

−1
u
¯̄̄α
du

≤ c00 kS1 − S2kα ,

using that
¡
S−12 − S−11

¢
= (S1 − S2) (S1S2)

−1 for S2, S1 symmetric, and det (S1S2) ≥ � on N , for
some � > 0. The result follows using that n−(1+ε)/2md

n → 0. The uniform weak convergence forbνn (λ, S) follows from the uniform weak convergence of eνn (λ, S), and (5).
Finally, for eνn (λ1) = eνn ³λ, bSn´ I consider the uniform weak convergence in Πd. To establish

tightness, it suffices that

E
h
|eνn (λ1)− eνn (λ2)|4i ≤ c kλ1 − λ2k4 ,
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Since

E
h
|eνn (λ1)− eνn (λ2)|4i ≤ cE

⎡⎢⎣
⎧⎨⎩

dX
r=1

X
|lr|≤g(nr)

¯̄̄̄
¯k
Ã bS−1n l

mn

!¯̄̄̄
¯ ¯̄c∗n,l − γl

¯̄ |cos (λ1 · l)− cos (λ2 · l)|
⎫⎬⎭
4
⎤⎥⎦ ,

= O

⎛⎜⎝n−2

¯̄̄̄
¯̄ dX
r=1

X
|lr|≤g(nr)

¯̄̄̄
¯k
Ã bS−1n l

mn

!¯̄̄̄
¯ |cos (λ1 · l)− cos (λ2 · l)|

¯̄̄̄
¯̄
4
⎞⎟⎠

= O

⎛⎜⎝
¯̄̄̄
¯̄n−1/2 dX

r=1

X
|lr|≤g(nr)

¯̄̄̄
¯k
Ã bS−1n l

mn

!¯̄̄̄
¯ |(λ1 − λ2) · l|

¯̄̄̄
¯̄
4
⎞⎟⎠

= O

⎛⎜⎝
¯̄̄̄
¯̄n−1/2mn

dX
r=1

X
|lr|≤g(nr)

¯̄̄̄
¯k
Ã bS−1n l

mn

!¯̄̄̄
¯
°°°° l

mn

°°°°
1

kλ1 − λ2k∞

¯̄̄̄
¯̄
4
⎞⎟⎠ ,

where I have used that cos is Lipschitz (as its derivative is bounded). Using the fact if g has integrable

first order derivatives then (using the multivariate Euler-Maclaurin formulae)

sup
S∈N

¯̄̄̄
¯m−dn X

l

g
¡
S−1l/mn

¢− Z g
¡
S−1u

¢
du

¯̄̄̄
¯ = O

µ
m−dn sup

S∈N

½
max
j=1,,.d

Z ¯̄̄̄
∂

∂uj
g
¡
S−1u

¢¯̄̄̄
du

¾¶
,

and bSn →p S
0, then

E
h
|eνn (λ1)− eνn (λ2)|4i = O

Ã½
n−1/2md+1

n

Z ¯̄
k
¡
S−10 u

¢¯̄ kuk1 du¾4 kλ1 − λ2k4∞
!

= O

µn
n−1/2md+1

n

o4
kλ1 − λ2k4∞

¶
= O

³
kλ1 − λ2k4∞

´
,

as supS∈N
R ¯̄

k
¡
S−1u

¢¯̄ kuk1 du <∞, and n−1/2md+1
n = O (1).

Proof of Theorem 4

Let N be the closure of a neighborhood of S∗0 . It is straightforward that

sup
S∈N

¯̄
Qpi
n (S)−Q (S)

¯̄→p 0

and the consistency of the plug-in estimator follows by an standard application of consistency the-

orem for extremum estimators. Regarding the Bootstrap estimator,

V ar∗ [eα∗n (λ, S)] = m−dn (2π)d
Z
Πd

KmnS (u− λ)2 Ig (u)
2 du
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Applying Fubini’s Theorem,Z
Πd

E
h
|eα∗n (λ, S)|2i dλ = m−dn (2π)d

Z
Πd

Z
Πd

KmnS (u− λ)2 dλ

×
(X

l

00
X
k

00c∗l c∗kei(l−k)·u
)
du

= (2π)
d
m−dn

Z
Πd

KmnS (λ)
2
dλ

Z
Πd

ÃX
l

00
X
k

00c∗l c∗kei(l−k)·u
!
du

= m−dn

Z
Πd

KmnS (λ)
2 dλ

X
l

00 |c∗l |2 = det (S)κ2
X
l

00 |c∗l |2

→ p det (S)κ
2

ÃX
l

|γl|2
!
= det (S)κ2

Z
Πd

f (u)2 du,

uniformly in S ∈ N . The convergence in probability can be proved analogously to the proof of second

part of Theorem 1. Since the only stochastic term
P

l 00 |c∗l |2 is independent of S, this convergence
is uniform on in S ∈ N . Therefore

sup
S∈N

¯̄
Qb∗
n (S)−Q (S)

¯̄→p 0

and the consistency bSb∗n →p S∗0 follows. The consistency of bSb∗∗n can be analogously established.
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