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Abstract
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Mobility and interaction patterns in social networks

by Alejandro Llorente Pinto

The question of analyzing the predictability of human behavior has been widely studied

in literature, to unveil how individuals move, how they can be mobilized and, more

philosophically, to understand to what extent our decisions are random or whether we

are free to choose. As a consequence of humans relate to each other, we also tend to

live in groups at di↵erent hierarchies in a social way so it is interesting to analyze how

individual features and choices a↵ect the global structure of a society.

In this work, we explore the limits of human predictability in terms of shopping behavior,

observing that, even when we are constrained to a limited set of possible places where we

can make a purchase, predicting where the next purchase will happen is not accurately

possible to do by only observing the past. The next question is to study how individual

decisions a↵ect emergent phenomena such as the economy or information di↵usion across

a country. We analyze the contents, temporal and mobility patterns extracted from

users’ social media publications to build a profile of the geographical regions that allow

to predict the unemployment rate. Finally, we also use a mobile phone call dataset

to test whether the dynamics at the urban level, how people create and destroy links

within a city, a↵ect the inter-urban di↵usion of diseases, virus or rumors. Our results

suggest that inter-regional structure is robust and does not vary significantly on time so

di↵usion processes can be well modeled in terms of static properties of the inter-urban

network.
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menos contacto, el orgullo del que hablaba al principio lo he sentido cada vez que ha

sido posible.

iii



Gracias a mis amigos. Primero el club de los ”Ḿas-De-10-Ãnos-Aguant́andome”: gra-

cias, Dide, por llevar tanto tiempo cerca y tirarte conmigo a la piscinas que se nos ponen
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del club de ”Ḿas-De-10-Ãnos-Aguant́andome”, por tant́ısimos veranos, por tant́ısimos

momentos, por tant́ısimas fiestas (y las que quedan). Que no se mosqueen el resto, pero

gracias especialmente a Pitu, Ṕajaro, Toni, Manu, Pablo y Gãńan. Sois muy grandes.

Y por ́ultimo, gracias a ti, la ́ultima persona en llegar, aunque lo hicieras hace muchos
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Chapter 1

Introduction

1.1 Understanding individuals and group behavior with

data

1.1.1 Anticipating individual patterns

Are we humans predictable? A possible definition of individuals’ predictability is the

capacity of anticipating, by any method, every actions based on the historical observa-

tions of individuals or considering other external factors. For instance, when a customer

always asks for the same dish on the same day of the week in his favorite fast food

restaurant, this person becomes predictable because it is likely to happen the same in

future; when a buyer always acquire trousers in the same color every time he visits a

merchant, this person has a predictable shopping pattern. However, besides our daily

habits, human predictability must be also due to external factors: for instance, if we

take the car to go to work but a non-usual tra� c jam is happening in our path to the

destination, our historical patterns tell nothing about whether we are going to get to

work one hour later but there is an external factor which is previously known makes

again our behavior predictable.

Independently we are more or less predictable, in last years our world have been invaded

by the appearance of many digital sensors in our daily living that make all our activities

be registered: when we use a bus card, the place where we get on the bus, the hour

when we do it and our personal identification are stored in a database [1]; when we cross

through a toll by car, our license number and when we do it are also registered; when we

make an expense by using a credit card, the merchant where we are, when we did it and

how much we spend are warehoused in a huge database [2]. If our individual patterns

1



Chapter 1.Introduction 2

are predictable, we can use all these data sources to anticipate what every one will do

in future and using this information to optimize our decision making.

From the business point of view, anticipating individual behavior has important and

obvious advantages. If I know where my customer will be in an hour, I might send a

personalized email to him o↵ering a discount in the nearest shop of my company (this

is what it is usually called as geo-marketing) [3]; if I am able to discover that an online

user always click a certain kind of content, I will try to adapt my advertising on that

content to attract the attention of the user [4]; if I realize that a client is visiting more

frequently my merchant and he is spending more money on many products, I can infer

that his wages have increased and make an o↵er to sell a more expensive product [5].

Summarizing, predictability on human behavior patterns allow companies to know and

segment better their clients and make this information actionable to produce bigger

profits.

However, are we completely predictable? Is free will an illusion? [6–8] From the most

philosophical point of view, this problem has been discussed for centuries, with many

di↵erent perspectives. Some of them talk about a completely determinist future but

this does not imply the negation of free will since there exists a current of thought,

compatibilism, claiming for the existence of free will in a determinist future. Other

thoughts, like hard indeterminism, state that future is completely random so, in this

context, free will cannot exist neither. Anyway, what it seems clear is that our interests,

our obligations, our social network and our geography constraint the space of possible

choices we can take, despite there are other physical possible solutions (if I must get

to work in an hour and I have to stop by the supermarket, maybe I have to make a

large deviation from my original path to go to the one I like the most, even when it is

physically possible).

The challenge is to be able to analyze, understand and predict individual patterns to

take advantage of them. In particular, on this manuscript, in Chapter 2 we explore

the limits of human predictability in terms of shopping behavior, analyzing the balance

a constrained space of possible merchants where an individual might make his next

purchase but also the di� culty of predicting exactly where it will happen only observing

his historical purchases. Besides, in Chapter 3, we use the digital traces of individuals in

social networks to infer knowledge of the regions where they live such as the technology

penetration rate, mobility between cities or their socio-educational levels.
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1.1.2 The group as a complex and emergent phenomena

The way we, humans, tend to organize is in societies, groups of individuals with a certain

size that agree in stating a set of rules for coexisting, leading to relationships between

the members of the group that finally make them more productive and more e� cient

in terms of consume. [9,10] However, through the evolution, these relationships and

groups have given place to a more complex and stratified social structure, where social

rules are di↵erent depending on the level of the hierarchy and where the motivations

for the di↵erent levels to exist are di↵erent. In particular, the role of the individual

in the di↵erent levels changes dramatically: in a family, every member is important

and recognized by the rest of the group, almost irreplaceable whereas, in a city, where

phenomena like economy emerge, the role every individual plays is not so clear, it is

di� cult to perceive so it is interesting to wonder about the individual importance in

large societies [11].

Even though social relationships happen in pairs fundamentally (a family is a set of

peer-to-peer relationships), when we abstract from the individual level and observe how

societes relate to each others, we acquire a new level of complexity: for instance, when

inter-city communication patterns in a country are analyzed, we are not observing cities

making phone calls one to other but individuals living on them and calling to other

person living in a di↵erent one to propagate some information. So a natural question

arise: what is the impact for communication between cities if these two individuals break

their relationship? Considering mobility between regions, one person traveling from one

point to another might spread an infectious disease, what happens to this spreading if

this person stops traveling? We might think in two possible extreme possibilities: if the

scenario changes absolutely, this inter-regional network depends strongly on arbitrary

individual decisions, exhibiting a weak structure; on the other side, if we find no variation

after the breaking event, we might infer that there is something more than individual

relationships in the inter-society (regional in the example) structure [12,13].

Definitely, since groups at the di↵erent levels are heterogeneous (there exist great vari-

ance in the properties of neighborhoods, cities, states,. . . ), these di↵erent properties

must be due to, at least in some portion, the individual behavior of people belonging

to them. For instance, a city generating a better economy might be explained because

people there have a higher educational level which is, neglecting many other factors, a

free individual decision; if a city is saturated by tra� c every morning at the same hour,

it is the result of many individual decisions of people living there. So the question is, to

what extent can we infer information of societies by just analyzing information at the

individual level? How the microscopic (individual) and the macroscopic (group, society,
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city,. . . ) levels relate each other? Can we predict phenomena at the macroscopic level

by studying individual patterns?

We answer these two last questions from two di↵erent points of view: in chapter 3, the

main goal is building a predictive model of economy, in terms of unemployment rate,

from features of the regions inferred from individual digital traces on social networks. On

the other hand, in chapter 4, we analyze other emerging phenomena, such as di↵usion

processes (disease spreading, rumor di↵usion, etc.) among cities in a country based on

the dynamic characteristics observed within them.

1.1.3 Big Data, Computational Social Science and Social Networks

One of the major disruptions in both the business and the academic worlds is what

every one has accepted to name as Big Data, a term that references the vast amount

of data that is being collected since the appearance of digitalization and the Internet

era, changing dramatically all the companies independently from the field they belong

to. Usually, people uses the Big Data term as a mixture of concepts referring both

technologies allowing to process and store this huge amount of data and the value and

applications that may be extracted from this data so other terms, such as Data Science,

have emerged to make a distinction between technology and knowledge from the data, the

possibility to apply statistical and machine learing techniques to all this data for building

predictive models, automatic segmentations, recommender systems, etc. The availability

of all these data sources is not only an opportunity for companies and researchers related

to technology, engineering or applied sciences but also for other fields such as human and

social sciences. Why is this the case? Because the root of most of these data sources

come from the human behavior, reflecting the individuals’ activity, their economical

capacity or their social relationships so, if researchers are able to use this data properly

then hypothesis that were published many years ago and had not been strongly and

universally proved, can be accepted or rejected at an unprecedented scale.

This combination between engineering, data and social sciences is what is called Com-

putational Social Science [14], the capability of applying statistical techniques on data

to verify social hypothesis at large scale. In this field, social networks play a central

role. We do not mean to online social networks exclusively, like Twitter, Facebook or

Instagram, but other social networks inferred from our communications, presence indi-

cators, visited places, purchases, etc. All this data processed from the point of view

of social networks reflect not only our activity but how we relate to our environment,

to what extent we are constrained because of our social and geographical conditions or

how we create and destroy relationships on time that allow us to find new information
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sources or job opportunities. Answering some of these questions is the main goal of

this manuscript where we have been able to infer emerging phenomena such as economy

or information di↵usion from di↵erent data sources as credit card transactions, social

media data or call detail record from a mobile phone company.

1.1.4 Universal patterns in mobility and social networks

From the scientific point of view, even though when human patterns are not completely

determinist, researchers have found rules that appear recurrently when data is analyzed,

universal patterns that are observed when some phenomena is analyzed. Typically,

this universal rules are modeled by statistical distributions that accurately fit the same

phenomena in di↵erent contexts. Surprisingly, this kind of universal laws have been

observed at the individual level but also at aggregated level such as social networks or

cities.

Analyzing individual patterns, one might think of human activity as an homogeneous

phenomena, that is, there is a constant probability distribution or model fitting ac-

curately some feature of individual behavior. However, circadian rhythms influence

absolutely our lives so we do not find the same probability of observing activity de-

pending on the time of the day. On the other hand, when people prioritize their daily

tasks and activities they are setting implicitly a temporal distribution that is far from

being poissonan and depends on our past activities (it is not a memory-less process).

The resulting activity distribution is bursty, which means that very high intense activity

periods are observed followed by long slow activity periods [15–18]. This behavior is

universal because it has been widely observed in communication patterns, mobility laws

or motifs of individual behaviors [16,19,20].

Not only individual patterns exhibit universal laws but they are also observed in the way

humans connect to each other. For instance, typically in a social network, the degree

distribution is very heterogeneous, that is, we find some few nodes with a high degree

(named as hubs) but most of them hold low levels of connectivity. Many works have

shown that degree distribution can be well fitted by a Power-Law distribution in this case

[21]. This kind of networks have been named as Scale-free networks because of this main

feature. Scale-free networks are ubiquitous and appear in many contexts such as online

social networks [22], communications networks [19], transport and airport networks [23],

biology networks [24] and many other cases. To explain why this is the case, generative

and evolving network models have been purposed, as the Barabasi-Albert model [25]. In

this model, a new node joining the networks connects randomly to the rest of the nodes

but the probability of wiring to a particular nodes is higher for very connected nodes.
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This process leads to a Power-Law degree distribution but it is unable to explain other

network features like clustering. Precisely, clustering (the proportion of closed triplets in

a network) and short paths between nodes (small-world networks) have been also shown

to be ubiquitous in social networks so they can be also considered universal laws in this

sense [26–28].

As we mentioned before, mobility is a mixture of human activity, social relationships,

geographical constraints and dynamics, which attracts interest from many researchers.

Even though it is a very complex phenomena, at both individual and aggregated level,

universal laws are also extensively found. At the individual level, authors have shown

that many features of mobility follow a Power Law distribution such as the distance

individuals travel, the time they stay in a particular place or the elapsed time for getting

from one place to another. [20]. It has been also proved that commuting patterns,

analysis of trips between home and work, reveal universal patterns in terms of visitation

to places and commute time, despite di↵erences in spatial features and infrastructures

at the country and urban levels [29]. Also at the individual level, it has been studied

whether mobility is truly predictable and the information that previous locations has

in the choice of the next place is enough to explain at most the 93% of mobility [6].

But also mobility at the aggregated level is predictable, in the sense that predicting the

number of people going from one place to another can be accurately modeled. In this

sense, many models such as the Gravity or Radiation models have been purposed to

describe universally migration patterns [30,31].

1.1.5 Deepening on mobility and social interaction patterns

As a general purpose, this dissertation deeps on the study of big databases from di↵erent

sources to build mathematical model that help us to understand and predict human

behavior at both individual and group levels. Three non-solved problems have been

addressed in this work:

•Are we predictable in our economic decisions? How does geography constraint our

space of possible economic decisions? Does it determine where our next purchase

will be made?

•Are our behaviors and social features really reflected in social media data? Can we

infer group characteristics, as mobility flows, from social media? Does it contain

enough information to model economy?
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•How does geography a↵ect the spreading of information in dynamic societies?

What is the role of intra-urban networks in inter-urban di↵usion processes? What

is the role of the individual relationships in the spreading of global epidemics?

The first question is answed by analyzing whether shopping patterns are predictable,

that is, to test whether it is possible to predict the next place where a customer will

make his next purchase. Moreover, we explore he link between the shopping constraints

given by mobility and the arbitrary random choices of customers. There exist many

data sources that might be used to face this problem: in electronic commerce platform,

not only purchase data is registered but also visits to products and related contents;

we might have used data from social media geo-tagged in commercial areas to study

whether people returns to the same places; but, in this document, we use two credit

card transaction datasets (one from an European country and one from North America),

where the customer ID, the merchant ID and when it was made are registered. This

data is a reflection of behavioral shopping patterns embedded in a geographical context

where mobility plays an essential role.

To solve the second point, going beyond the predictability analysis at the microscopic

level, we study how we can infer properties of di↵erent social groups from the individual

data to predict emergent phenomena at the macroscopic level. In this case, we use a

dataset composed by geo-tagged tweets (social contents published by users on Twitter)

and we focus our analysis in predicting the unemployment rates of geographical regions.

On Twitter, users publish their opinion, interests, share information and interact to

other users but there is much more information that can be extracted that has not been

explicitly created by the user. For instance, we use the time tweets were created to infer

the activity daily rhythms of the users and, as a consequence, of the city where they live;

to analyze how regions are connected, we infer the individual mobility network which is

aggregated by regions afterward to discover connectivity patterns among them; We also

derive the educational level of Twitter users by examining the misspellings that they

make and computing the proportion of these users over the whole population. All this

information is about individuals but it can be used to profile geographical regions and

eventually predict an emergent phenomena as economy based on them.

Finally, to answer the third case, we analyze the dynamical inter-regional communica-

tion patterns between regions, which is also an emergent phenomena derived from the

complexity of the underlying social network composed by internal (involving nodes in

the same region) and external (involving nodes in di↵erent regions) links. Even though

links happen between individuals, we use them to build the macroscopic network and

analyze its characteristics. Our final goal is studying how the dynamical and statical

structure a↵ect di↵usion processes on this geography. To this end, we use a dataset from



Chapter 1.Introduction 8

a major mobile phone company, containing the CDRs (Call Detail Records) of the calls

in the UK where every record is formed by the IDs of the two mobile phone numbers

involved in the call, when it was made and the duration of the call.

1.1.6 Summary and chapters

This manuscript is divided in the next chapters:

•Chapter 1 - Introduction: a general overview of the mail goal of this work based on

di↵erent data sources as well as the description of the statistical techniques used

through all the rest of chapters.

•Chapter 2 - Predictability of shopping behavior: this chapter analyzes the question

about whether the patterns behind shopping behavior may be accurately predicted

based on the past data of every individual. To this end, we perform an analysis of

a credit card transaction dataset in two major countries. In this chapter, we study

the predictability limits based on entropy measures and build Markov models to

predict where an individual will make his next purchase. We get that, despite the

existing regularity on the shopping patterns at the global level, there exists a huge

randomness inside the space of possible merchants at the individual level.

•Chapter 3 - Geo-tagged digital traces and economical status: in this case, we test

the next hypothesis: if our economical status modify our behavior and social media

has been studied as a reflection of our activity, can we model the economical level

of geographical regions based on social media data? We analyze a huge dataset

composed by geo-tagged tweets in Spain, one of the countries that held large

unemployment rates during the crisis, to unveil variables related to technology

adoption, daily patterns, social connectivity and educational level and to use them

as predictors of the unemployment rate. Our results exhibit that this can be done

satisfactorily allowing to develop new economical indicators in future.

•Chapter 4 - Information di↵usion on dynamic geographical networks: in litera-

ture, it has been widely studied how the structure of geographical networks a↵ect

di↵usion processes and also how the bursy dynamics of human interactions slow

down di↵usion. But, what is the real e↵ect of the bursty, vibrant dynamics of

the intra-urban relationships in the inter-urban di↵usion spreading? Our results

indicate that, despite the network changes strongly in our temporal window (al-

most 20% of the edges are created and destroyed), its e↵ect on the inter-regional

di↵usion is not significative, leading to conclude that individual relationships are

not important at the country level in terms of di↵usion processes.



Chapter 2

Predictability in shopping

behavior

In literature, universal laws have been found in network structure in di↵erent fields [19],

individual activity patterns [16] or mobility [20]. In general, all these works use data

with high granularity since, for instance, we are continously deciding where to move in

our next step (or maybe we decide to stay in the same place) showing a kind of continuity

in patterns. However, is shopping behavior as predictable as the previously mentioned

behaviors? Are we able to predict accurately what our next economical decision will

be? In this Chapter, we use a credit card transaction dataset to analyze to what extent

the shopping behavior is really predictable. Our results indicate that high regularity

is exhibited in our consumer visitation patterns, with recurring visits to our favorites

merchants and small values in the entropy measures as in the examples in literature.

However, despite this regularity, no relevant information about customers’ next decision

is contained in the previous historical visits concluding that consumers vary the order

of the visits to merchants in time breaking the temporal structure observed in other

contexts as usual mobility.

2.1 Human mobility predictability and next-place predic-

tion problem

The capability of analyzing and modelling human mobility is of large interest to un-

derstand how individuals behave and how geography constraints their free will, that

is, since one cannot travel anywhere due to multiple factors (physicial ones like time,

distance or costs to arbitrary ones like job, interests, obligations, or family), the number

9
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of possibilities individuals might go is limited. On the other side, in our daily lives, we

make arbitrary choices about which our next destination will be so we also have freedom

to vary our trips and position within the limited space of possibilities we mentioned

before. These two features of mobility, limited number of places to go and variations

in our patterns, make the study of mobility particularly interesting since it is possible

to find repetitive patterns on it (for instance, most of the people travel from home to

work every day) but we also have to deal with random jumps that might have not been

observed before. As Song et. al studied in [6] using mobile phone users’ trajectories,

a striking homogeneity is observed in human mobility predictability patterns within a

population, independently the number of di↵erent locations visited by the user. The au-

thors showed that by only using historical trajectory data from the mobile phone users,

the predictive power of models (even if we think of the best possible model) is limited

by the Fano’s inequality, giving that, in their dataset, the median of predictability is

approximately 0.93, exhibiting that historical series of trajectories contain much infor-

mation about where the individuals are going to be next. Moreover, what they found

is the visitation order determines the next-place where the user is going to be, that is,

our recent movements contain much information about where we will be soon. In fact,

we only consider the proportion of time in the di↵erent places or only the number of

di↵erent places a user visits but we neglect the order of the visits, the predictability of

mobility decreases dramatically.

However, not everyone has access to data from mobile phone companies and there are

other sources of data containing mobility information: for instance, one might use geo-

tagged social contents to model mobility (as it will be explained in Chapter 3 using

Twitter data) or a financial company might want to know where their clients will make

their next presential purchase, that is, in which merchant a client will make the next

expense. In this last context, the problem changes completely: in this new scenario,

data is not as fine as in the mobile phone context is because when this latter dataset is

considered, we use records extracted every few minutes with the approximate position

of the mobile phone holder (inferred by triangulization using the power of the signal

received by the mobile phone from every antenna around it) whereas when credit card

transaction records are considered, the granularity of the data is much coarser and

cardholders cannot be tracked constantly. This is the main problem we face in the

present chapter: can we predict the next purchase of a cardholder only with its past

transactions? Is the granularity of the data fine enough to build accurate next-place

prediction models?

Forgetting the motivations behind human decisions, mobility might be simply seen as

the combination of two basic quantities: on one side, we can analyze the waiting time

distribution, that is, how long we stay in a particular place and, on the other side, the
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distance we travel to our next destination. We can also think on mobility as a kind of

random walk generated by individuals, where trajectories are samples of an underlying

modified Markov process in continuous time. However, fat-tailed distributions in waiting

time distribution and also in displacement have lead researchers to model trajectories

as Continous Time Randow Walk or Levy Flights [20]. But, as it can be expected,

human mobility is driven by interests and liability and it exhibits properties that are

not present in this kind of models such as i) a tendency to stop visiting new places ii)

a preferential return to the top visited places. These are the facts that make human

mobility predictable. As we said before, if we think of an employee person, it spends the

night at home sleeping, then it wakes up more or less at the same hour every day and

afterwards it goes to it job on the same way as the previous day. Of course, some kind

of variability might turn out but are the daily motivations which constraints the space

of places where we can go to and then mobility becomes predictable. But the question

is how we can infer the motivations behind mobility, how we can combine the temporal

patterns with this information and, finally, whether there are data sources allowing us

to do this kind of models.

Trying to taking advantage of our daily repetitive mobility, several authors have used

non-linear time series analysis to uncover patterns data. In [32] authors use the Delay

Embedding Theorem to reconstruct the phase space based on location variables (longi-

tude, latitude an attitude) and temporal variables, to recover a higher dimensional space

with the same features as the original space and where traditional time series model,

such as AR(p) models, might be used to predict the next values of the series. Despite

the sophistication of these techniques, they only use historical trajectories and, as we

have explained before, depending on data resolution, there exist limits in the accuracy

of the models because of the data nature. So in order to build better models, we need

to use di↵erent sources of data containing information about individuals’ mobility. A

very widely used information applied to this problem to increase the performance of the

models is social information, that is, information about how users are related among

them (friends, family, colleagues,. . . ). If it is reasonable to think that interests and

motivations constrain mobility, so it is to hypothesize that friends’ mobility is somehow

related. For example, using Flicker data, in [33] showed that the probability of two users

being friends dramatically increases when they have been in the same place in di↵erent

places. In [34] authors use non-linear time series techniques but adding variables related

to Mutual Information between trajectories of di↵erent users and they show that the

model is more accurate when this information is considered. Finally, in [35] Noulas et

al. also build new variables considering features such as non-linear individual mobility

variables but also temporal patterns and information from the rest of users who sharing

places with the user we want to predict where he is going to be. As we will see in the
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next section, this idea is also present in the Global Markov Model to predict where a

customer will buy next.

Finally, from a more practical point of view, usefulness of mobility prediction has been

widely explored in di↵erent fields such as epidemic spreading modeling [36–38], to tra� c

analysis in cities [39–41], optimization and resource planning such as public transport

[42,43], or scaling of communication power using mobile phone antennas depending on

how many people there will be in a a place in future [44].

2.2 Using entropy to understand mobility predictability

Since one might think that mobility is predictable, we need to quantify to what extent

this is the case. However, it is di� cult to provide one exact definition of predictability

and di↵erent aspects of mobility are related to it. For instance, an individual staying

always at the same place is predictable but so is an individual visiting 10 di↵erent places

but staying the 90% of the time in its favorite place. To deal with this context, we

proceed as in [6] and define three measures to explain di↵erent aspects of mobility:

•Random entropy: defined as the logarithm of the number of di↵erent places visited

by the userNi

Srandi = log2Ni (2.1)

•Temporal-uncorrelated entropy: defined as the Shannon entropy. Consideringpi↵

the probability of finding useriin place↵(estimated by the frequency), it is

defined as

STUi =�
X

↵

pi↵log2pi↵ (2.2)

•Sequence-dependent entropy: given by the Lempel-Ziv algorithm to estimate the

Kolmogorov Entropy as

SSDi ⇡
logN

hL(w)i
(2.3)

where wherehL(w)iis the average over the lengths of the encoded sub-chains

On the limit, considering infinite sequences, SD entropy converges TU for random for

large enough random sub-chains. As it can be easily checked, when visits are completely

random among the chances of our space, TU equals RA. We also use these three metrics
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in the next section where we analyze human mobility based on credit card transaction

data, both in an European country and in the USA.

As we will see in the next section, when we analyze the mobility patterns using credit

card data, all these metrics are strongly related to the data resolution and the space of

places where an user might be so it is necessary to look for more variables and additional

techniques to retrieve more information where the customer is going to make his or her

next purchase.

2.3 Consumer visitation patterns

2.3.1 The dataset

We sample tens of thousands individual accounts from one North American and one

European financial institution. In the first case we represent purchases made by over 50

million accounts over a 6-month window in 2010-2011; in the second, 4 million accounts

in an 11-month window. Data from transactions included timestamps with down-to-

the-second resolution.

We filter each sample to best capture actual shoppers’ accounts, to have su� cient data

to train the Markov models with time series that span the entire time window, and

to exclude corporate or infrequently used cards. We filter for time series in which the

shopper visits at least 10 but no more than 50 unique stores in every month, and makes

at least 50 but no more than 120 purchases per month. We test the robustness of this

filter by comparing to a set of time series with an average of only one transaction per

day (a much less restrictive filter), and find similar distributions of entropy for both

filters.

The 25th, 50th (median) and 75th percentiles of the number of merchants per customer

in the filtered time series are 46, 64 and 87 in the North American (6 months) and

69, 101, and 131 in the European (11 months) dataset, that is, the median customer

in Europe uses his credit card in almost 11 di↵erent merchants per month whereas,

in the USA, this figure raises up to almost 17. In order to compare with other data

sources and focusing on the North American case, we retrieve the location of a user

every 2500 minutes approximately whereas in [45] authors report to observe the location

of an individual every 260 minutes.
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2.3.2 Detecting heterogeneity in the visitation patterns

In order to understand the underlying nature of the credit card transaction dataset,

we perform a descriptive analysis of the the distribution of the proportion of times the

customers visit a merchant. As in many other cases in literature such asdisplacements in

travels [20], degree distribution in real-world networks [21], time until an user opens an

email [46] or appearence of words in texts [47], a Power-Law distribution fits this metric

accurately. Given a random variable X, the probability density function of a Power-Law

variable is given by

f(x)⇠x↵ (2.4)

The exponent↵varies depending on the application and it is typically estimated from

data by the maximum-likelihood estimator given by

↵̂=
1

N

X
log

xi
xmin

(2.5)

wherexmin is the mininum value that the random variable might reach andN is the

number of points in our data. However, applying this method directly has been shown

to produce inaccurate estimations of the exponent due to large fluctuations happening

on the tail of the distribution so we use the method proposed in [48] to compute the

exponents.

Typically, to check visually and qualitatively whether a variable in a dataset follows a

Power-Law distribution, it is usually plotted in logarithmic scale because if one takes

logarithms in both sides at Eq.2.4, it is obtained

logf(x)⇠↵⇡logx (2.6)

that is, we observe a linear density in this new scale so it is very simple to identify.

At longer time scales, shopping behavior is constrained by some of the same features that

have been seen to govern human mobility patterns. We find that despite varied individual

preferences, shoppers are on the whole very similar in their statistical distribution (with

significant di↵erences in the exponent of the Power-Law), and return to stores with

remarkable regularity: a Zipf’s law (Power-Law distribution)P(r)⇠r� ↵(with exponent

↵equal to 0.80 and 1.13 for the North American and European datasets respectively)

describes the frequency with which a customer visits a store at rankr(wherer=3

is his third most-frequented store, for example), independent of the total number of
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stores visited in a three-month period, see Figure2.1. This holds true despite cultural

di↵erences between the North American and Europe in consumption patterns and the

use of credit cards. While our main focus is not the defense of any particular functional

form or generative model of visitation patterns, our results support those of other studies

showing the (power law) distribution of human and animal visitation to a set of sites [7,

8,49,50]. As a consequence, consumers visit their single top location approximately

13% (North American) and 22% (European) of the times, which indicates a clear trend

to go back to the favorite merchants but to a certain point since this proportion is not

a majority of the visits.

r

P
(r
)

r

P
(r
)

0 0.5 1 1.5 0 0.5 1 1.5

r r

Figure 2.1:Probability of visiting a merchant, as a function of merchant visit rank,
aggregated across all individuals. Dashed line correspond to power law fitsP(r)⇠r� ↵

to the initial part of the probability distribution with↵=1.13 for the European and
↵=0.80 for the North American database.

2.3.3 Predictability of consumer visitation patterns

Although just looking at the main visited merchants could give us some predictability

of the mobility behavior, we now study if there is a specific hidden predictability in the

temporal patterns, that is, is there any information in the sequence of visited merchants?

How much information is in a shopper’s time series of consecutive stores? A universal

measure of individual predictability would be useful in quantifying the relative regularity

of a shopper.

Informational entropy is commonly used to characterize the overall predictability of a

system from which we have a time series of observations. It has also been used to show

similarities and di↵erences across individuals in a population [51].
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Figure 2.2:Normalized entropy distributions for the North American and European
populations. Normalized entropy is computed by dividing the TU and SD entropies by
the logarithm of the number of di↵erent merchants visited by a customer. TU entropy

distributions are slightly higher for both populations

We consider two measures of entropy (see 2.2for further explanation about how infor-

mational entropy is computed in every case in this work):

(i) The temporally-uncorrelated (TU) entropy for any individualiis equal toS↵TU=

�
P
i2M↵

p↵,ilog(p↵,i)wherep↵,iis the probability that user↵visited locationi. Note

this measure is computed using only visitation frequencies, neglecting the specific order-

ing of these visits.

(ii) The sequence-dependent (SD) entropy, which incorporates compressibility of the

sequence of stores visited, is calculated using the Kolmogorov complexity estimate [52,

53].

We find a narrow distribution of TU and SD entropies across each population, Figure

2.2.

Another dataset, using cell phone traces [6], also finds a narrow distribution of entropies.

This is not surprising, given the similarity of the two measures of individual trajectories

across space. Yet we find a striking di↵erence between the credit card and the cell phone

data. In the shopping data, adding the sequence of stores (to obtain the SD entropy) has

only a minor e↵ect of the distribution, suggesting that individual choices are dynamic

at the daily or weekly level. By contrast, cell phone data shows a larger di↵erence.

Why does this discrepancy occur? A possible explanation is that shoppers spread their
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visitation patterns more evenly across multiple locations than do callers. Even though

visitation patterns from callers and from shoppers follow a Zipf’s law (figure 1), callers

are more likely to be found at a few most visited locations than are shoppers. This

is true, but to a point. As we mentioned before, consumers visit their top location

approximately 13% in the North American case while it happens for the 22% in the

European one, di↵erent from mobile phone datasets where callers exhibit more frequent

visitation to top location. Yet shoppers’ patterns follow the same Zipf distribution seen

in the cell phone data, and the narrow distribution of temporally-uncorrelated entropy

indicates that shoppers are relatively homogenous in their behaviors.

An alternative explanation for our observed closeness of temporally-uncorrelated and

sequence-dependent entropy distributions is the presence of small-scale interleaving and

a dependence on temporal measurement. Over the course of a week a shopper might go

first to the supermarket and then the post o� ce, but he could just as well reverse this

order. The ability to compare individuals is thus limited by the choice of an appropriate

level of temporal resolution (not necessarily the same for each dataset) to sample the time

series. With the large-scale mobility patterns inferred from cell phones, an individual is

unable to change many routines: he drives to the o� ce after dropping o↵the kids at

school, while vice versa would not be possible. In the more finite world of merchants

and credit card swipes, there is space for routines to vary slightly over the course of a

day or week.

To test the extent to which the second hypothesis explains the discrepancy between

shoppers and callers, we simulate the e↵ect of novel orderings by randomizing shopping

sequence within a 24-hour period, for every day in our sample, and find little change in

the measure of SD entropy. In other words, the re-ordering of shops on a daily basis does

little to increase the predictability of shoppers, likely because the common instances of

order swapping (e.g. co↵ee before rather than after lunch) are already represented in

the data. We then increase the sorting window from a single day to two days, to three

days, and so forth.

Yet when we sort the order of shops visited over weekly intervals, thus imposing artificial

regularity on shopping sequence, the true entropy is reduced significantly. If we order

over a su� ciently long time period, we approach the values seen in mobile phone data.

Thus entropy is a sampling-dependent measure which changes for an individual across

time, depending on the chosen window. While consumers’ patterns converge to very

regular distributions over the long term, at the small scale shoppers are continually

innovating by creating new paths between stores.
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2.3.4 Markov models

In the next section we use Markov models to predict the next place where a customer

will make her new purchase so let’s define them in a formal way and study how they are

related to the entropy measures used before. Markov chains are used to model temporal

stochastic processes, in which the present state depends only on the previous one(s).

Mathematically, letXtbe a sequence of random variables such that

P(Xt=xt|Xt� 1=xt� 1,Xt� 2=xt� 2,Xt� 3=xt� 3,...)=P(Xt=xt|Xt� 1) (2.7)

then{Xt}is said to be a Markov process of first order.

This process is summarized with transition matrixP =(pij)wherepij= P(Xt=

xj|Xt� 1=Xi), that is, the probability of going from one state to another one in the next

time (we only consider discrete time Markov chains). Markov chains can be understood

an extension of a simple frequentist model in which

P(Xt=xt|Xt� 1=xt� 1,Xt� 2=xt� 2,Xt� 3=xt� 3,...)=P(Xt=xt) (2.8)

applied on every observed state.

If the present transaction location depends in to some extent on the previous one, a first

order Markov model would be able to predict the location with greater accuracy than a

simple frequentist model.

This observation allow us to note two relationships:

•Temporal-uncorrelated entropy and frequentist model:both useP(Xt=xt)with-

out additional information. Temporal-uncorrelated is a good approximation of the

distribution of states, and is thus related to the performance of the frequentist

model.

•Sequence-dependent entropy and Markov model:SD entropy is a single measure of

all sub-chain frequencies, and is thus related to the accuracy of a 1st order Markov

model, which represents the probability of a single set of sub-chains occuring.

Once we have created a Markov model, di↵erent measures related to its accuracy and

performance must be computed to assess its quality, that is, to measure whether real

world data is well represented by the model. However, depending on the predicition

problem and on the type of model, di↵erent performance measures might be computed.

The measure used is in this case is the percantage of hitted purchases,
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acc=
# of hits

# of predicted purchases
(2.9)

Even though this problem might be understood as a recommendation system problem

and therefore we might have selected a softer criteria (for instance, whether the customer

has bought something in the predicted merchant in the next 5 purchases), our main goal

is to show that there is no significant information in the visitation sequence to predict

the next place although our space of places to make a purchase is constrained because

of our daily patterns. Finally, this way of evaluating next-place predictors has been

extensively used in the literature [32,54] but typically in contexts based on finer data

such as mobile phone datasets.

2.3.5 Using Markov models to test predictability

In order to measure the predictability of an individual’s sequence of visits, we train

a set of first order Markov chain models. These models are based on the transition

probabilities between di↵erent states, with the order of stores partially summarized in

the first-order transition matrix. It is thus related to the SD entropy measure. We

measure the probability of being at storexat timet+ 1 asPr(Xt+1 =x|Xt=xt)

and compare the prediction values to the observed values for each individual. We build

several models, varying the range of training data from 1 to 6 months of data for each

individual, and compare the model output to test data range of 1 to 4 subsequent

months.

We additionally compare the results of the Markov models to the simplest naive model,

in which the expectation is that an individual will chose his next store based on his

distribution of visitation patterns, e.g. he will always go to one of the top two stores

he visited most frequently in the training window (recall that for most people this

store visitation frequency is on average just 20-35%). Since this is a simply frequentist

approach to the next-place prediction problem, it is strongly related to TU entropy

which is computed using the probability that a consumer visits a set of stores.

Comparing the match between model and observed data, we find that using additional

months of training does not produce significantly better results. Moreover, results show

some seasonal dependency (summertime and December have lower prediction accuracy,

for example). For fewer than three months of training data, the frequentist model does

significantly better than the Markov model. This suggests the existence of a slow rate of

environmental change or exploration that would slowly undermine the model’s accuracy.
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Figure 2.3: Sequence-dependent entropy for a number of ”artificially sorted” se-
quences. For each window size over which the time series is sorted, we measure the
sequence-dependent entropy for the population and estimate the error of the mean.
The horizontal solid line at the top of the figure indicates the average SD entropy for
the original data whereas the dashed lines depict the band for the error of the mean.

For each of the two populations, we next test a global Markov model, in which all

consumers’ transition probabilities are aggregated to train the model. We find that such

a model produces slightly better accuracy that either the naive or the individual-based

models (with accuracy⇡25� 27%). To test the sensitivity of this result we take ten

global Markov models trained with 5% of time series, selected randomly. We find the

standard deviation of the accuracy on these ten models increases to 3.6% (from 0.3%

using all data), with similar mean accuracy. Thus the global Markov model depends

on the sample of individuals chosen (for example, a city of connected individuals versus

individuals chosen from 100 random small towns all over the world), but does in some

cases add predictive power.

As previous work has indicated [55], mobility patterns can be predicted with greater

accuracy if we consider the traces of individuals with related behaviors. In our case,

even though we have no information about the social network of the customers, we can

set a relationship between two people by analyzing the shared merchants they frequent.

The global Markov model adds information about the plausible space of merchants

that an individual can reach, by analyzing the transitions of other customers that have

visited the same places, thus assigning a non-zero probability to places that might next

be visited by a customer.

Yet in almost every case, we find that people are in fact less predictable that a model

based exclusively on their past behavior, or even that of their peers, would predict. In
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Figure 2.4: Markov model results for di↵erent temporal windows in training and
test. The solid red line indicates hit percentage for Markov model, dashed line exhibits
accuracy for the naive model and the pointed line indicates results for the Global

Markov model.

other words, people continue to innovate in the trajectories they elect between stores,

above and beyond what a simple rate of new store exploration would predict.

2.4 Conclusions and further discussion

Colloquially, an unpredictable person can exhibit one of several patterns: he may be

hard to pin down, reliably late, or merely spontaneous. As a more formal measure

for human behavior, however, information-theoretic entropy conflates several of these

notions. A person who discovers new shops and impulsively swipes his card presents

adi↵erent case than the one who routinely distributes his purchases between his five

favorite shops, yet both time series show a high TU entropy. Similarly, an estimate of

the SD entropy can conflate a person who has high regularity at one level of resolution

(for example, on a weekly basis) with one who is predictable at another.

As example, take person A, who has the same schedule every week, going grocery shop-

ping Monday evening and buying gas Friday morning. The only variation in A’s routine
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is that he eats lunch at a di↵erent restaurant every day. On the other hand, person B

sometimes buys groceries on Tuesdays, and sometimes on Sundays, and sometimes goes

two weeks without a trip to the grocer. But every day, he goes to the local deli for lunch,

after which he buys a co↵ee at the cafe next door. These individuals are predictable

at di↵erent time-scales, but a global measure of entropy might confuse them as equally

routine.

Entropy remains a useful metric for comparisons between individuals and datasets (such

as in the present and cited studies), but further work is needed to tease out the correlates

of predictability using measures aligned with observed behavior. Because of its depen-

dence on sampling window and time intervals, we argue for moving beyond entropy as

a measure of universal or even of relative predictability. As our results suggest, models

using entropy to measure predictability are not appropriate for the small scale, that is,

their individual patterns of consumption.

Shopping is the expression of both choice and necessity: we buy for fun and for fuel.

The element of choice reduces an individual’s predictability. In examining the solitary

footprints that together comprise the invisible hand, we find that shopping is a highly

predictable behavior at longer time scales. However, there exists substantial unpre-

dictability in the sequence of shopping events over short and long time scales. We show

that under certain conditions, even perfect observation of an individual’s transition prob-

abilities does no better than the simplistic assumption that he will go where he goes

most often.

2.5 Publications, media coverage and acknowledgment

During the development of this manuscript, the analysis described in this Chapter was

published in a scientific article named as ”The predictability of consumer visitation

patterns” in 2013. [56].

This work also gained a remarkable impact on online blogs [57–59] but also on one of

the most important generalist media company in Spain [60].

The author wants to thank their e↵ort to all the collaborators who made possible this

work.



Chapter 3

Geo-tagged digital traces and

economical status

Economic indicators are useful to monitor how the wealth in di↵erent regions evolve or

to study how public policy making impact the real life of inhabitants. However, many

of these indicators are elaborated by conducting surveys on the population, which is

a costly process and does not allow continous monitoring of economy. Additionally, in

some countries, where public administration and infrastructures are not able to reach all

the population, these methods have been proved to be ine� cient. Today, the appearance

of digital technologies, sensors and social networks allow us to study a huge amount of

information generated by individuals in societies that are publicly available. How can

we take advantage of this information to monitor economy? In this chapter we build a

predictive model of unemployment rate in geographical regions by only using variables

extracted from Twitter, an online social network where users publish their opinions,

interests and location. We show how this information can be used to estimate variables

that are typically related to economy such as the technology penetration rate, the geo-

social connectivity, the temporal patterns or the educational level. Our results indicate

that social networks are a reliable source of information of human activity in such a way

that economy, in terms of unemployment rate, can be accurately modeled.

3.1 Mobility, digital traces and economy

3.1.1 Digital traces and economic indicators

The pervasive usage of technology in our daily life has changed the world we live. Nowa-

days, we can be constantly connected to information sources and we can interact to

23
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our contacts through di↵erent channels instantly at any time. Since indivuals are per-

manently using technology and provided that companies store information about how

users make use of their services, the digital traces generated originally for business and

process monitoring must also serve to analyze how we behave, move or interact every

day. Simply by observing the individuals’ activity, we can analyze heterogeneity in

the circadian rythms of the population and conclude di↵erent aspects such as socio-

demographic di↵erences, bursty behavior of interactions or its impact on information

di↵usion [18,61,62]. Independently this was not the original purpose for storing all

this information, it is clear that digital traces can be used for studying human behav-

ior and, going one step forward, analyzing how human behavioral patterns are related

to economic indicators. In particular, in this Chapter, our main goal is to use a open

available online data source, Twitter, for extracting features of regions from data at the

individual level in di↵erent aspects (technology penetration, educational level, activity

patterns and geo-social connectivity) and test whether all this information is related to

unemployment rate in Spain.

However, this is not a completely new idea: the widely spread use of technology in

developed countries made the researchers and policy makers think that information

contained in digital traces might be used to compute new indicators or to compute

current ones but reducing costs. A variable that has been extensively studied with

similar goals is the penetration rate of di↵erent technologies such as telecommunication

infrastructure [63], computer and Internet penetration [64,65] or online social networks

usage [66]. The hypothesis behind these works is quite reasonable: since population

must have a certain wealth to be able to acquire technology and also the country must

be wealthy enough to build infrastructures capable of supporting the needs of the mobile

phone and Internet users, economical di↵erences between regions might be encoded in

how countries are able to adopt and suppor technology. But technology penetration

rate has not been the only variable extracted from digital traces that has been proved

to hold a strong relationship with economic development.

On other hand, researchers hypothesized how the di↵erent network structure of commu-

nications, inter-regional commercial activity or social interactions are related to economy.

The theoretical idea behind this is that those areas holding a higher degree of connectiv-

ity and diversity exhibit a larger economical activity, resulting in more di↵erent sources

of information for the regions, risk diversification and, eventually, holding a higher num-

ber and more diverse connections allow regions to pay attention to more opportunities

to improve their development [67–71]. However, many of these works lack of empirical

evidence because of the shortage of data available at the time they were published but,

nowadays, many sources of information contain relational information at both individual
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and geographical level. For instance, Call Detail Records (CDR) from telecommunica-

tion companies store information about how people communicate each others but also

geographical information of every individual (the billing address or the antenna the user

was connected to at the beginning of a phone call) [51]. Also social media databases

contain this kind of information since many of the users can be located in a particular

place and they allow di↵erent types of interactions among users (on Twitter we can find

mentions, retweets, replies and favorites; on Facebook, there exist mentions, comments,

shares and likes; ...). In particular, in this chapter we analyze how Twitter data can be

used to set a connection structure between regions and how the functional partition of

a country can be inferred from this information.

A way of studying the complexity of the network between regions is analyzing the un-

derlying structure in mobility data. Many works have used this kind of information to

predict economical levels. In [72], authors use data from London railway to infer move-

ments within the city and to build a model that is able to uncover the areas with low or

high deprivation levels; In [51], they mainly analyze diversity in social connections and

they use istto build a model of the economical regions in the UK: those areas exhibiting

more diverse mobility and connections are wealthier than those with a more predictable

mobility and social connectivity. However, as we will see in the next section, in our

case both social and mobility diversity are not the most important factors to predict

unemployment in Spain based on Twitter data; in [73] they combine information from

Call Detail Records and airtime credit to understand the socio-economic state of regions

in Cote d’Ivoire; from a more Machine Learning point of view, [74]useaextensiveset

of mobility variables to build a non-linear model to predict economic levels.

Regarding borders and geo-economical aspects, many works have focused on how ar-

tificial limits given by administrations made by humans, such as provinces, states or

countries, influence mobility fluxes, making people and capital more di� cult to move

whereas, in other situations, where administrative limits are not very strong (limits

within a country), these borders do not constraint mobility and therefore individuals’

daily mobility result in more dynamical regions where economical activity lies [75–78].

We adopt these these techniques to extract the functional regions of Spain, in order to

overcome the heterogeneity in municipalities and provinces in Spain, playing the role of

new regions emerged from mobility graph community structure.

Finally, other data sources have been used to set relationships between insights extracted

from them and the economy, for both state and financial economy. For instance, using

Google query logs, [79] showed how to build a buying and selling stock strategy based on

changes in the volume of searches in terms related to economy; also using Google Trends

data, [80] analyzed how many searches refer to future past and how many searches refer
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to the future and showed that those countries where more queries were made about future

hold a higher GDP; using Twitter data, as in the next section, [81] made economical

indicators based on usual expressions used when people lose their job or when they get

a new one.

As it can be observed, there exists large variety of data sources we can extract economical

information from. The key aspect is this data might be processed in real time and

therefore to be able to make decisions in smaller time scales than before. Finally, in

developing countries where there are no infrastructures and even census is not completely

accurate, all these methodologies might be used to build indicators they did not have

until now.

3.1.2 Mobility models

As we have mentioned in the previous section, mobility data plays a key role in the

analysis of inter-regional activity because it is a very good way to see how regions

are connected, the intensity of these connections and what the real implications of the

underlying structure are. In particular, in our work we use geo-tagged tweets to infer

when a user has travelled from one city to another in the same day which is the basis

to quantify the intensity of the relationship between two cities. However, a need task

is to check whether this inferred mobility follows the same statistical features of other

mobility data sources (which is done in following sections). In particular, many mobility

models have been shown to predict accurately mobility flows between regions so, if our

data is good enough to study inter-regional flows, it should be well fitted by a mobility

model.

Extensively in the literature, mobility models have attracted great interest in the sci-

entific community. The analysis of fluxes between areas is one of the most prevalent

studied problems, that is, analyzing which the variables are influencing in how many

trips are observed between two given places. Typically, this problem involves, on one

hand, a partition of the geographical space, that is, a setSof disjoint regions of the

space which union returns the whole space of analysis. On the other hand, these regions

of the space are the other elements of interest because inferred variables of them are the

elements composing the basic elements of the these mobility models. Traditionally, the

number of trips between two regionsiandjis denoted byTijand the matrix⇥=(Tij)

is named the Origin-Destination matrix (OD matrix). The analysis of this matrix is

particularly interesting in fields such as transport planning [82], migration prediction

[83–85], tra� c optimization in cities [39], event detection in geographical spaces [86] or

epidemic spreading [36].
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In 196, Zipf presented an idea based on Newton’s Gravity Law to model the OD matrix

[87], where the number of tripsTijis approximated by

Tij⇡T
gra
ij =

P↵iP
�
j

f(dij)
(3.1)

wherePiandPjare the population of placesiandjrespectively anddijis the dis-

tance between both places. Many di↵erent functional forms have been proposed in the

numerator to model the cost of traveling between far places as exponential or stretched

functions but typically in modern works a polynomial formf(dij)=d
�
ijhas been used

(very commonly with� = 2) as in [31,72,78,88]. Despite the simplicity of the model,

which is only based on population of the regions and the distance between them, it has

been shown a good description of human mobility fluxes. However, other authors have

detected anomalies between human migrations and the Gravity Model such as lack of

formal derivation, symmetry of the model or discrepancies with real data and proposed

more advanced models, such as the Radiation Model, in both discrete and continuum

fashions [31,89] using information about opportunities and also population inside the

circles with radius less or equal the distance between the points. Even though Gravity

Model can be outperformed in some cases, we use it in our research to model mobility

fluxes based on geo-tagged social media data and to conclude that this data can be used

as a proxy of human mobility. Other families of models, such as entropy based models,

have been studied since the 1970s and they have also been linked to Gravity Model under

certain constraints. Finally, one of the main factors to consider with Gravity models is

data sources are not generally homogeneous in geographic spaces in terms of penetration

so population and users rate must be corrected to avoid estimation biases.

3.1.3 Social Network Analysis

3.1.3.1 Introduction

In order to understand the underlying structure from Twitter data used to build pre-

dictive models on unemployment rate in Spain, we use a set of mathematical techniques

belonging to Social Network Analysis (SNA), a field of knowledge between mathematics,

statistics and computational science developed to study not only networks involving peo-

ple and social interactions but also networks where the nodes can be molecules, places,

text concepts, etc. In particular, in this Chapter we focus on three kind of applications

of the SNA techniques:
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•Transforming user social network into a geographical network: although Twitter

data is disaggregated at the individual level and we observe interactions between

users, every one can be located at a particular place, what we call its hometown,

and therefore we can build a geographical network by considering relationships

between users in di↵erent cities.

•Metrics on social networks: once we have built a network, metrics related to

activity, conectivity or clustering can be measured on it, allowing us to understand

it quantitatively.

•Community Detection: a structural way of understanding how the network is build

is to study which groups are cohesively connected, that is, detecting the commu-

nities. In particular, we use community detection algorithms to extract the func-

tional regions from mobility patterns, understood as groups of municipalities, in

Spain.

3.1.3.2 Building networks at the microscopic and macroscopic level

A network is a mathematical objectG=G(V, E) composed by two sets: the node set

(or vertices)V={v1,...,vN}and the edge set (or links)E={e1,...,eK}where each

elementeiis a pair of nodes. Depending on the context, this pair of nodes might be

ordered indicating that the relationship between nodes is directed or this order might

not appear leading to a undirected network. Through this manuscript, vertices represent

places where an individual make a purchase (in chapter 2), Twitter users (in chapter

3) or individuals who are mobile phone users (in chapter 4). A common factor in all

these cases is the presence of geographical data since purchases occur in a particular

merchant, tweets are geo-tagged and mobile phone users live in a concrete region. Once

this context is present, it is natural to define the aggregated geographical network: as

every individual is located in a particular region, we build the macroscopic network

where nodes are these regions and two of them are connected if at least there exists a

link involving users from both regions at the microscopic level. We defineE↵,� as the

set of edges of the microscopic level between regions↵and� withw↵,� =|E↵,� |the

number of links between two regions. In the particular case of Chapter 3, every user is

located in a municipality given by the latitude and longitude of geo-tagged tweets and

two cities are connected when at least one users is observed to tweet in both cities on

the same day.



Chapter 3.Geo-tagged digital traces and economical status 29

3.1.3.3 Metrics on social networks

In all the analysis carried out, we focus on three main dimmensions that can be computed

in our networks:

•Activity: in all the networks that are built on a kind of interactions (purchases,

tweets, phone calls) a typical factor to analyze is the level of activity of every

individual on it. This is not completely related to the number of di↵erent con-

nections that an individual holds because we might find nodes with low values of

connectivity but highly intense activity. Activity might be also computed at the

relationship level; for instance, the activity of a phone call relationship is higher

when a large number of calls is observed between two individuals. Hence, for a

given nodei, we can measure the activitywiby

wi=|{El,k:l=iork=i}| (3.2)

If the network is built by only considering structural relationships (for instance,

follower network on Twitter), this measure matches the degree of the nodeki, that

is, the number of total connections in the graph.

•Connection diversity:one might want not only to analyze the intense of the activity

of nodes and relationships but to study whether the activity always happens in the

same place or it is distributed among the relationships. For instance, in Chapter

2 we analyze for every credit card owner if she tends to spend all her money in

some few places or she distributes her expenses equally on her space of visited

merchants; in Chapter 3 we study how a region is connected to the rest of regions,

that is, whether there exists some few pre↵erential connections or the interactions

are spread over more regions. This is what it is measured by diversity: it is a

combination of the number of di↵erent connections per node but also a measure

of the intensity of every relationship. The most widely used diversity measure is

based on Shannon entropy: given a nodei, we compute its connection diversity by

Si=�
X

j2Ni

pijlogpij (3.3)

whereNiis the set of neighbors of nodeiandpijis the fraction of interactions

withjover the number of interactions ofj. We also use its normalized version

S̃i=
Si
logNi

(3.4)

whereNiis the size of the neighborhood of nodei.
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•Clustering: in real-world networks is found that closed triangles are likely to ap-

pear, that is, ifiandjare connected and so arejandktheniandkare likely to

be connected. One can compute the proportion of times this phenomena occurs

in a network which is calledclustering. This definition can be also extended to

weighted networks [90]by

Cwi=
1

2si(ki� 1)

X

j,k2Ni

(wi,j+wi,k)ai,jai,kaj,k (3.5)

wheresiis the sum of the link weights involvingi,ki=|Ni|andai,jis 0 or 1

depending on the existence of one link between nodesiandj.

3.1.3.4 Community detection algorithms

As we will see in the following sections, a problem when studying data at the munic-

ipality level in Spain is the large heterogeneity in terms of population and number of

Twitter users. To solve this circumstance, we extract from the mobility graph which

municipalities are strongly connected among them so that we recover regions composed

by municipalities with a functional relationship, there exists a significant activity among

them. Algorithmically, this is performed by using community detection algorithms.

Even though there is no a global way to define communities, the idea is identifying nodes

of the network that are more connected among them compared to the rest of the graph.

Because of this qualitative definition, many methods to compute these communities

have been purposed depending of several factors. From a machine learning perspective,

hierarchical clustering based on structural similarity between nodes has been used to

identify communities, that is, by setting a measure on how many neighbors share two

nodes [91]. Other algorithms are based on centrality of nodes and edges such as the

Girvan-Newman algorithm [92] that computes the betweeness of edges to carry out a

percolation process and identify the resulting connected components as parts of the

same community. However, these algorithms are computationally expensive because the

measures they are based on are hard to compute. Most of modern algorithms rely on

modularity optimization (a measure of how a partition describes correctly the structure

of links between nodes) such as Multilevel community detection algorithm[93], or on the

information enclosed in random walks on the graph such as Infomap algorithm [94].

Independently from the algorithm, the result is a vector of membership to a community,

that is, a vectorB=(Ci1,...,CiN)whereCkis the identifier of the community the node

kbelongs to. So given two di↵erent partitions of a network, how can they be compared?

This can be done by means of Normalized Mutual Information (NMI) [95]: letB1andB2
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be the membership vectors returned by two di↵erents community detection algorithm

andC1,C2the number of detected communities by each algorithm, NMI is computed

as

NMI(B1,B2)=
� 2
PC1
i=1

PC2
j=1Nijlog(

NijN
NiNj

)
PC1
i=1Nilog(

Ni
N)+

PC2
j=1Njlog(

Nj
N)

(3.6)

whereNijis the number of nodes in communityithat also appears in communityjand

Nis the total number of nodes.

3.2 Social media fingerprints of unemployment

3.2.1 Introduction

In the previous section, we have reviewed many situations in which di↵erent data sources

are used as a reflection of human activity and, if this is the case, we can extract insights

about populations’ and societies’ phenomena such as the economy. Nevertheless, most

of them focus on some few features extracted from the data sources and exhibit the rela-

tionship to economy from a point of view. In our approach, we use one only data source,

Twitter data extracted from the public Streaming API, to build variables of regions in

four di↵erent dimmensions: penetration rate, educational level, temporal patterns and

geo-social diverse connectivity. We select these four families of variables because, pri-

orly, it is reasonable to think there might be a connection to economy: di↵erences in

economical development might be reflected in di↵ferent Twitter penetration rates be-

cause it implies the usage of a relatively costly associated technology; it is known that

educational level and wealthy of regions are correlated (we are not setting or looking for

any kind of causality) so if create a variable being a proxy of this, it might be related

to economy; there might be di↵erences in the temporal patterns of activivy between

cities with di↵erent unemployment rates; and finally, inspired by the scientific literature

[51] , diversity of connections allow individuals and regions to obtain information and

opportunities from many sources which also has an impact on economic develoment. In

our understanding, this is a unique holistic approach with an only data source, trying

to model four di↵erent and complemmentary features of regions to model an economic

indicator.

3.2.2 The dataset

Twitter is a microblogging online application where users can express their opinions,

share content and receive information from other users in text messages of 140 characters
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long, commonly known astweets. Users can interact with other users by mentioning them

or retweeting (share someone’s tweet with your followers) their content. Some of these

tweets contain information about the geographical location where the user was located

when the tweet was published; we refer to them as geo-located tweets.

To perform our analysis, we consider 19.6 million geo-located Twitter messages (tweets),

collected through the public API provided by Twitter from continental Spain, rang-

ing from 29th November 2012 to 30th June 2013. Tweets were posted by (properly

anonymized) 0.57 Million unique users and geo-positioned in 7683 di↵erent municipal-

ities. We observed a large correlation (Pearson’s coe� cient⇢=0.951[0.949,0.953])

between the number of geopositioned tweets per municipality and the municipality’s

population. On average we find around 50 tweets per month and per 1000 persons in

each municipality.

In order to analyze the relationship between social media and the economical level mea-

sured by the unemployment rate, we also consider population and economical informa-

tion about the municipalities from the Spanish Census (2011) [96] and unemployment

figures from the Public Service of Employment (Servicio Ṕublico de Empleo Estatal,

SEPE) [97]. In the former In the latter case, registered unemployment (in number of

persons) is given for each Spanish municipality by gender, age, and month. To get

unemployment rates we divide register unemployment by the total workforce in the

municipality, estimated as the number of people with age between 16 and 65 years.

3.2.3 Twitter as mobility proxy

Considering all of the available transitions in our database, one can compute the distance

between origin and destination, the elapsed time of the transition and the number of

trips per user among many other statistics. All of them seems to show a Power-law

distribution with a cuto↵due to the finite spatial size of Spain and the constraint of

considering only transitions where the origin and destination checkins are done the same

day. Focusing on the log-linear part of the distributions, self-similar behaviors arise when

Twitter based mobility is analyzed (see figure3.1).

Remarkably, the statistical properties of trips coincide with those of other mobility

datasets: for example, trip distancerand elapsed time�tare power-law distributed

with exponentsP(r)⇠r� 1.67andP(�t)⇠�t� 0.67, very similar to those found in the

literature [30,66]. Exponents are computed by the method used in [48].

We say that there is a daily trip between municipality iandjif a user has tweeted in

placeiandjconsecutively within the same day. In our dataset we find 1.9 million trips
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Figure 3.1:Probability distributions for the di↵erent properties of daily trips in the
Twitter dataset. Dashed lines corresponds to a power law fit with exponents� 1.67,

� 2.43 and� 0.62 respectively

by 0.22 million users. With those trips we construct the daily mobility flux networkTij

between municipalities as the number of trips between placeiandj(see Fig.3.2B).

Twitter based inter-city flows can be well modelled by means of the The Gravity Law,

which is one of the most extended methods to represent human mobility (see section

3.1.2 for further reading). The Gravity Model for human mobility assume that the flows

between cities can be explained by the expression

Tgravij =
P↵1i P

↵2
j

d�ij
(3.7)

whereTgravij is the flow, in terms of number of people, between citiesiandj,dijis the

geographical distance andPiandPjthe population of every city respectively.

Given the data we can obtain the parameters of the model by Weighted Least Squares

Minimization,

↵⇤1,↵
⇤
2,�

⇤= argmin
↵1,↵2,�

1

N

X

i,j

wij

⇣
Tij� T

grav
ij

⌘2
(3.8)

whereNis the total number of connections in the mobility graph andwijis a weight

proportional to the number of observed transitions betweeniandj. In particular we

find that takingwij=T
1.3
ij gives the best performance in the model.

In our case, this model fits quite accurately the inter-city mobility based on Twitter GPS

checkins (see Table3.1). Even though we are consideringTijnot necessarily symmetric,

the exponents of the populations are similar indicating that we are observing a similar

flows in both directions betweeniandj. The exponents in (3.7) are very similar to those

reported in other works↵i'↵j=0.48 and� '1.05 [31,66]. These results suggest that

detected mobility from geo-located tweets is a good proxy of human mobility within and

between municipalities [98].
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Figure 3.2:A) Map of the mobility fluxesTijbetween municipalities based on Twitter
inferred trips (white). Infomap communities detected on the networkTijare colored
under the mobility fluxes (blue colors). B) Mobility fluxesTijbetween municipalitiesi
andjare constructed by aggregating the number of trips between them. C) Correspon-
dence between the observed fluxesTijand the fitted gravity model fluxes. Dashed line
is theTij=T

grav
ij while the (blue) solid line is an conditional average ofTgravij for values

ofTij. Maps were created using themaptoolsandsppackages in theRenvironment.
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Gravity Model

Parameter Description Spain

↵1 Origin exponent 0.477⇤⇤⇤(0.002)
↵2 Destination exponent 0.478⇤⇤⇤(0.002)
� Distance exponent 1.05⇤⇤⇤(0.0035)

R2 Goodness of fit 0.797
� Correlation betweenTijandT

gra
ij 0.826

Table 3.1: Description of the parameters for the Gravity Law Model in geo-tagged
social media data for Spain. (⇤⇤⇤) means significancep<0.0001.

3.2.4 Heterogeneity among the municipalities

Despite this high level of social media activity within municipalities, we find their o� -

cial administrative areas not suitable to study socio-economical activity: administrative

boundaries between municipalities reflect political and historical decisions, while eco-

nomical trade and activity often happens across those boundaries. The result is that

municipalities in Spain are artificially diverse, ranging from a municipality with only 7

inhabitants to other with population 3.2 million.

Although there exists natural aggregations of municipalities in provinces (regions) or

statistical/metropolitan areas (for instance, NUTS areas [99]), we have used our own

procedure to detect economical areas. In particular, we have used user daily trips be-

tween pairs of municipalities as a measure of the economic relatedness between said

municipalities.

We use the network of daily fluxes between municipalities Tijto detect the geographical

communities of economical activity. To this end we employ standard partition techniques

of the mobility networkTijusing graph community finding algorithms. This technique

has been applied extensively, specially with mobile phone data, to unveil the e↵ective

maps of countries based on mobility and/or social interactions of people[76,77,100].

Typically, complex networks exhibit community structure, that is, there are subsets of

nodes that are more densely connected among them comparing to the rest of the nodes.

In mobility networks, whose nodes correspond to geographical areas, these communities

are interpreted as zones with high common activity and tend to be constrained by geo-

graphical and political barriers. We check whether this is also observed in our dataset by

performing 6 state-of-art community detection algorithms: FastGreedy [101], Walktrap

[102], Infomap [94], MultiLevel [93], Label Propagation [103] and Leading Eigenvector

[104]. These six di↵erent algorithms exhibit di↵erent community structures in terms of

number of communities, average size of community or modularity (see tables3.2and

3.3).
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Communities Size Stats

Algorithm <|Ni|>i max{|Ni|} |{Ni}|

Fastgreedy 309.696 1385 23
Walktrap 9.262 433 769
Infomap 21.011 143 339
Multilevel 323.772 1132 22

Label Propagation 22.052 750 323
Leading Eigenvector 1017.571 5344 7

Table 3.2:Size statistics of the communities{Ni}returned by the six algorithms.

Communities Performance Stats

Algorithm Modularity NMI P NMI C

Fastgreedy 0.726 0.712 0.590
Walktrap 0.417 0.744 0.757
Infomap 0.758 0.770 0.831
Multilevel 0.800 0.717 0.599

Label Propagation 0.732 0.749 0.761
Leading Eigenvector 0.381 0.264 0.205

Table 3.3: Performance statistics of the communities{Ni}returned by the six algo-
rithms.NMI Prefers to the comparison between communities and provinces whereas

NMI Cconsiders counties instead of provinces.

Members (municipalities) of the resulting communities are spatially connected except

some few cases as figure3.3shows.

We test the statistical robustness of the obtained communities by randomly removing a

proportionpof the original links and performing the algorithms on this new graphGp.

We will consider that communities are robust when the communities given for the original

networkGandGpare highly similar. In order to compare two arbitrary memberships to

communities, we use the Normalized Mutual Information (NMI) method described in [?

] which returns 0 when two memberships are totally di↵erent and 1 when we compare

two equal memberships. We compute the NMI for each chosen algorithm performed on

GandGp, forpbetween 1% and 10%, concluding that obtained community structures

are robust because they are not broken when some randomly chosen links are removed

(see table3.4).

As other works have shown, mobility graph communities are usually interpreted in terms

of geographical and political barriers and a natural question is whether the mobility

based communities are related to any of these barriers. In Spain, there are di↵erent

territorial divisions for administration purposes. In this work, we consider two of them:

provinces, defined in 1978 Constitution, are 48 di↵erent heterogeneous aggregations of

municipalities; and counties (comarcain Spanish terminology) which are traditional ag-

gregations of municipalities mainly based on Spanish holography (rivers, valleys, ridges,
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Figure 3.3: From left to right and from top to bottom: Fastgreedy, Walktrap, In-
fomap, Multilevel, Label Propagation and Leading Eigenvector communities on Twitter

based mobility transitions.

NMI betweenGandGpfor di↵erentp

Algorithm p=0.01 0.05 0.1

FG 0.995 0.981 0.959
WT 0.954 0.945 0.931
IM 0.988 0.978 0.966
ML 0.994 0.948 0.947
LP 0.906 0.895 0.904
LE 0.960 0.910 0.884

Table 3.4:NMI measure comparingGandGp.

etc) and some of them are composed by municipalities of di↵erent provinces. We use

again the NMI method to compare the communities structure given by the algorithms

to the administrative limits. Except Leading Eigenvector algorithm, the rest of meth-

ods return communities that are quite related to provinces (NMI⇡0.7) whereas for

the county administration limits, higher variability is observed. In this last case, the

algorithm providing more relationship with county limits is Infomap,NMI ⇡0.83.

Therefore, Twitter based mobility summarizes the inter-city flows exhibiting that these

flows are influenced by geographical and political barriers.

Because all of these results, we have chosen the Infomap algorithm [94] as the one giving

the best partition for our problem. We have found 340 di↵erent communities within

Spain. The average number of municipalities per community is 21, and the largest

community contains 142 municipalities. Besides all the previously analyzed features,
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resulting communities conserve very interesting properties: (i) they are cohesive geo-

graphically (see Fig.3.2), (ii) they are statistically robust against randomly removal of

trips in our database (iii) modularity of the partition is very high (iv) it shows a large

overlap (83% of NMI) with counties. This result shows that the mobility detected from

geo-located tweets and the communities obtained are a good description of economical

areas. Finally, we also mitigate the e↵ect of analyzing very heterogeneous regions leading

to a wide spectra of values in the penetration rate (see figure3.4).
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Figure 3.4:Penetration rates for both cities and detected communities.

In the rest of the chapter, we restrict our analysis to the geographical areas defined by

the Infomap detected communities (see Fig.3.2). For statistical reasons, we discard

communities which are not formed by at least 5 municipalities. Despite this sampling,

96% of the total country population is considered in our analysis.

3.2.5 Detecting hometown and users’ communities

The metrics we will explain in next sections rely on the detection of users’s hometown

and the community they belong to as a consequence. Instead of using information in the

user profile, we analyze the places where the user has tweeted and we set ashometown

of the user the municipality where he/she has tweeted with the highest frequency, a

method usually employed in mobile phone and social media [66,105]. To this end we

select those users with more than 5 geo-located tweets in our period and which have

tweeted at least 40% of their tweets in a given municipality, which we will consider their

hometown. After this filtering we end up with 0.32 million users and we can then define

the twitter population⇡iin areaias the number of users with their hometown within

areai. We obtain a very high correlation between⇡iand population of the citiesPiin

the national census⇢=0.977[0.976,0.978] which provides an indirect validation of our

approach with the present data.
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3.2.6 Social media behavioral variables

The main purpose of this chapter is to show a methodology to quantify how and what

behavioral features can be extracted from social media and then related back to the to the

economical level of geographical regions. To this end, we define four groups of measures

that have been widely explored in other fields like economy or social sciences. Some of

those metrics are already reported in the literature, but some others are introduced in

this work. Specifically we consider:

•Social media technology adoption: we can use twitter penetration rate⌧i=⇡i/Pi

in each areaias a proxy of technology adoption. Recent works have shown that

indeed there is a correlation between country GDP and twitter penetration: specif-

ically, it was found that a positive correlation between⌧iand GDP at the country

level [66].

•Social media activity: regions with very di↵erent economical situations should ex-

hibit di↵erent patterns of activity during the day. Since working, leisure, family,

shopping, etc. activities happen at di↵erent times of the day, we might observe

di↵erent daily patterns in regions with di↵erent socio-economical status. After

observing the data visually, we hypothesize that communities with low levels of

unemployment will tend to have higher activity levels at the beginning of a typ-

ical weekday. This is indeed what we find: Fig.3.5A shows the hourly fraction

of tweets during workdays of two communities with very di↵erent rate of unem-

ployment. As we can observe, both profiles are quite di↵erent and, in the case of

low unemployment, we find a strong peak of activity between 8 and 11am (morn-

ing), and lower periods of activity during the afternoons and nights. We encode

this finding in⌫mrng,i,⌫aftn,i, and⌫ngt,ithe total fraction of tweets happening in

geographical areaibetween 8am and 10am, 3pm and 5pm, and 12am and 3am

respectively.

•Social media content: some works have observed a correlation between the fre-

quency of words related to work conditions [81] or Google searches [80]tounem-

ployment or economical situation of countries. In our case we also find that there

is a moderate positive correlation between the fraction of tweetsµimentioningjob

orunemploymentterms and the observed unemployment, while the correlation is

negative for the number mentions toemploymentor theeconomy. However, we

have tried a di↵erent approach by measuring the relation between the way of writ-

ing and the educational level [106]. To this end, we build a list of 618 misspelled

Spanish expressions and extract the tweets of the dataset containing at least one

of these words. Then, in order to decide whether a tweet has a misspelling or not,
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Figure 3.5:Examples of di↵erent behaviour in the observed variables and the unem-
ployment. In A, we observe that two cities with di↵erent unemployment levels have
di↵erent temporal activity patterns. Panel C show how communities (red) with distinct
entropy levels of social communication with other communities (blue) may hold di↵erent
unemployment intensity: left map shows a highly focused communication pattern (low
entropy) while right map correspond to a community with a diverse communication
pattern (high entropy). Finally, Panel B shows some examples of detected misspellings
in our database using 618 incorrect expressions such as “Con migo”, “Aver” or “llendo”.

we need to establish some patterns to select from our set of tweets. Since we want

to be sure that a detected mistake corresponds to a real misspeller, we will not

consider the following cases:

–Lack of written accents. People tend to avoid writing accents when talking

in a colloquial way.

–Mistakes derived from removingunnecessaryletters. The most common cases

are removing ahat the beginning of a word (in Spanish the letterhis not

pronounced), or replacing the lettersqubyk. We understand that these

mistakes can be motivated for the limitation of length in tweets, and not for

a real misspelling.

–In the same line, we neglect mistakes produced by removing letters in the

middle of a word, whose pronunciation can be deduced without them.
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–We do not consider either mistakes related to features of specific areas in

Spain. For example, in the south the pronunciation ofceandseis the same,

what produces a big amount of mistakes when writing. However, since we

want to extract objective and equitable conclusion over the whole Spanish

geography, we neglect those misspellings that only appear in a specific area.

Likewise, we will consider as real misspellings the following mistakes:

–Adding letters. For example, writing ahat the beginning of a word that

starts with a vowel.

–Changing the special casesmp,mbby the wrong writingsnp,nb.

–Mixing upbwithv,gwithj,llwithy, andexwithes. These are typical mis-

takes in Spanish, because they have the same, or a very close, pronunciation.

–Confusing the verbhaberwith the periphrasisa ver.

–Separating a word into two ones, for instance, writing the wordconmigoas

con migo.

All of these misspellings cannot be attributed to the special features of Twitter

or a specific region of Spain. Finally, since in this country several languages live

at the same time, depending on the part of the country, our Twitter dataset is

reduced to those tweets written in Spanish. This task is carried out using the N-

gram based text categorization R librarytextcat[107]. Thus, one can expect that

this selection provides an accurate and equitable method of detecting misspellers.

Under these conditions, the number of users who wrote at least one misspelled

word is 5.6% over the whole population (more than 27000 users).

We analyze whether misspellers have di↵erent Twitter usage behavior from that

people who do not make serious mistakes when publishing a tweet. Comparing

the average number of tweets, it can be observed that misspellers tend to publish

a larger number of tweets than those who did not made mistakes (144.71 against

23.72). This also emerges when the mean number of misspelling given the total

number of tweets is considered. For users with less than approximately 30 pub-

lished tweets in the observation period, the number of misspellings is almost zero

whereas for users who publish more often, the mean number of misspellings scales

sub-linearly with the number of tweets (exponent⇡0.33). Finally, we denote✏i

as the misspeller rate in populationi.

•Social media interactions and geographical flow diversity: following the ideas in

[51] which correlated the economical development of an area with the diversity of

communications with other areas, we consider all tweets mentioning another user

and take them as a proxy for communication between users. Then we compute the
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number of communicationswijbetween areasiandjas the number of mentions

between users in those areas. To measure the diversity we use the normalized

informational entropy (Entropy 1, social version)

Su,i=�
1

Sr,i

X

j

pijlogpij (3.9)

wherepij=wij/
P
jwijand (Entropy 2, social version)

Sr,i= logki (3.10)

withkithe number of di↵erent areas with which users in areaihave interacted.

Similarly, we also consider the number of people between areas to investigate the

diversity of the geographical flows through the entropy, that is, (Entropy 1, geo

version)

S̃u,i=�
1

S̃r,i

X

j

p̃ijlog ̃pij (3.11)

where ̃pij=Tij/
P
jTijand (Entropy 2, geo version)

S̃r,i= logk̃i (3.12)

withk̃ithe number of di↵erent places visited by people living in areai.

3.2.7 Properties and correlation between Twitter behavioral variables

Heterogeneity between the values of variables constructed from Twitter is large but

moderate, as histograms in figure3.6show. We did not find any geographical area with

anomalous values in any of the variables considered. Variables are normalized in di↵erent

ways: both the penetration⌧iand misspellers rate"iare defined as the number of users

or misspellers per 100.000 persons (population); activity variables⌫iare normalized as

the percentage of tweets per time interval; finally, number of tweets that mention a

specific termµiare also given per 100.000 tweets published in the geographical area.

Variables are constructed to reflect the behavior of areas in the di↵erent dimensions

of Twitter penetration, social or geographical diversity, activity through the day and

content. Correlation between variables does indeed show that variables within each

dimensions hold strong correlations between them. As we can see in figure3.7social

and geographical diversities are highly correlated between them, an expected fact given

thegravity lawaccurate description of flows of people between geographical areas, but

also the amount of communication between them. Same behavior is found for the group

of variables in the activity group, while content variables are less correlated. Finally
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Figure 3.6:Frequency plots for each variable constructed from Twitter.

we find that both the penetration rate⌧iand fraction of misspellers"ihave a strong

correlation with most of the variables.

High correlation between variables might lead to collinearity e↵ects [108] in the regression

models to predict unemployment, that is, some variables with predictive variable might

have non-significant weights because they explain the same part of the variance. To check

this hypothesis, we perform a principal component analysis (PCA) on the independent

set of variables we defined in the previous subsection. Figure3.7exhibits the loadings

of the di↵erent variables for the considered variables. The block structure showed in

3.7results in similar directions of the variables in the first components of the PCA. We

observe some groups of variables: on the one hand, geographical and social diversity

seem to explain large part of the variance; on the other hand, we find a perpendicular
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group of variables formed by temporal activity; finally, penetration rate and misspellers

fraction seem to represent a di↵erent independent direction of data, with high collinearity

between them. The structure of the correlation matrix and the PCA results show that

there is indeed information in all groups of variables and thus we have take a variable

in each of them for our regression models.
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Figure 3.7:Left: Correlation matrix between the variables constructed from Twitter.
Each entry in the matrix is depicted as a circle whose size is proportional to the cor-
relation between variables and the sign is blue/red for positive/negative correlations.
Blank entries correspond to statistically insignificant correlations with %95 confidence.
Right: Variables projection on the first two principal components given by PCA. We

observe di↵erent groups of variables and collinearity between some of them.

Provided these conclusions about the nature of the variables we have built, we restrict

our analysis to the variables within each group with the highest correlation with the

unemployment, namely the penetration rate⌧i, the social and mobility diversity variables

Su,iandS̃u,i, the morning activity⌫mrng,i, the fraction of misspellers"iand fraction of

employment-related tweetsµemp,i.

3.2.8 Correlation between defined variables vs unemployment and ex-

planatory power

After the PCA study, we have selected of subset of variables containing relevant and no

complemmentary information among them. However, until now, we have not dealt with

the main goal of our work which is building a predictive model of unemployment. In

this section, we analyze to what extent the created variables correlate with our target

varaible and, eventually, are useful to predict unemployment.

Recent works have shown that there exists a correlation between country GDP and Twit-

ter penetration rate.: specifically, it was found that a positive correlation between⌧iand

GDP at the country level [66]. However, in our data we find the opposite correlation

(see Fig.3.8), namely, that the larger the penetration rate the bigger the unemployment
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Figure 3.8: A) Correlation coe� cient of all the extracted Twitter metrics grouped
by technology adoption (black) geographical diversity (orange), social diversity (light
blue), temporal activity (green) and content analysis (dark blue). Error bars correspond
to 95% confidence intervals of the correlation coe� cient. Gray area correspond the
statistical significance thresholds. Panels B, C, D and E show the values of 4 selected
variables in each geographical community against its percentage of unemployment. Size
of the points is proportional to the population in each geographical community. Solid

lines correspond to linear fits to the data.

is, which suggest that the impact of technology adoption at country scale is di↵erent

of what happens within an (industrialized) country where technology to access social

media is commoditized. Focusing on temporal patterns in regions, given by the fraction

of tweets at di↵erent hour ranges of the day, Fig.3.8shows a strong negative correlation

between⌫mrng,iand the unemployment for the communities in our database and positive

correlation with⌫aftn,i, and⌫ngt,i, indicating that morning daily patterns are di↵erent

depending on the unemployment level of the regions. Also misspellers rate✏iexhibits a

positive correlation with unemployment suggesting that in those regions with higher un-

employment levels, a larger proportion of people misspelling on Twitter might be found.

Finally, as in [51], we find that areas with large unemployment have less diverse com-

munication patterns than areas with low unemployment. This translates in a moderate

negative correlation betweenSiand the unemployment, see Fig.3.8. Similar ideas are

applied to the flows of people between areas to investigate the diversity of the geograph-

ical flows through the entropyS̃i= �
P
jp̃ijlog ̃pij/̃Sr,i,wherep̃ij=Tij/

P
jTijand

Sr,i= log(̃ki)with̃kithe number of di↵erent areas which has been visited by users that

live in areai. Fig.3.8shows that as in [72], correlation of these geographical entropies

is low with economical development.

The four previous groups of variables are fingerprints of human behavior reflected on

the Twitter usage habits. As we observed in Fig.3.8, all of them exhibit statistically

strong correlations with unemployment. The question we address in this section is

whether those variables su� ce to explain the observed unemployment (their explanatory
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power) and also determine the most important ones among themselves (which give more

explanatory power than others). Note that we are not stating a causality arrow between

the measures built in the previous section and the unemployment rate but only exploring

whether they can be used as alternative indicators with a real translation in the economy.

Through this thesis, we use linear models to predict economic levels by not focusing on

the data complexity but in the explanatory power of the individual variables. In general,

ifYis our target random variable andX1,..,XN a family of random variables to predict

Y, a dataset can be interpreted as realizations of these random variablesy1,...,ykand

xi1,...,xiN,i=1,...,k. A linear model is a specific kind of regression model given by

Y=� +↵1X1+...+↵NXN+✏ (3.13)

Typically the coe� cients are computed by least squares optimization or any other kind

of optimization process. Despite it is a very simple model, we use it because our goal is

not finding the best model to predict the phenomena we are interested in but analyzing

the predictive power of the variables generated in the di↵erent contexts. In fact, linear

models are also very useful to study which variables are the most important ones in the

prediction leading to conclusions about the intrinsic nature of the studied processes. As

result of the optimization process, some weights↵imight be close to zero, indicating

that the variableXiis not important for the prediction; on the contrary, large weights in

absolute value indicate a strong presence in the prediction and the sign might indicate

how the phenomena is influenced by that specific variable.

Since our main goal is to produce methods to model economic levels based on data that

has not been used typically for this purpose, we have to set metrics to assess the quality

of the model. A very widely used one to evaluate this kind of models is the coe� cient of

determination, denoted asR2, which measures how much of the variance in the original

data is explained by the model with the next formula

R2=1�

P
(yi� fi)

2

P
(yi� y)2

(3.14)

whereyiis the value to predict,fiis the prediction provided by the model andyis the

average of the target variable. In some type of predictive models, adding more variables

(degrees of freedom) typically increases the performance but also the complexity and also

it should be considered in our perfomance measure; to this end, we use the AdjustedR2

described in [109].

Fig.3.9shows the result of a simple linear regression model for the observed unemploy-

ment for ages below 25 years as a function of the variables which have more correlation
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Figure 3.9:A) and B) Performance of the model, showing the predicted unemploy-
ment rate for ages below 25 versus the observed one,R2=0.62 and with ages between
25 and 44. Dashed lines correspond to the equality line and±20% error. C) Percentage
of weight for each of the variables in the regression model using the relative weight of the
absolute values of coe� cients in the regression model (see Section J in??). Variables

marked with⇤are not statistical significant in the model.

with the unemployment (see next section to analyze other age segments). The model

has a significantR2=0.62 showing that there is a large explanatory power of the un-

employment encoded in the behavioral variables extracted from Twitter. Since we train

our model with normalized data, the absolute value of the weights in the regression can

be understood as their importance (predictive power) in the model and, in fact, this

method has also been used as a feature selection model in the literature [110]. As one

can expect, not all the variables weight equally in the model: specifically, the penetra-

tion rate, geographical diversity, morning activity and fraction of misspellers account for

up to 92% of the explained variance, while social diversity and number ofemployment

related tweets are not statistically significant. It is interesting to note that while social

diversity obtained by mobile phone communications was a key variable in the explana-

tion of deprivation indexes in [51,72], the communication diversity of twitter users seem

to have a minor role in the explanation of heterogeneity of unemployment in Spain.

3.2.9 Temporal, demographic and geographical variance on Twitter

models

In the definition of the variables we have aggregated the Twitter activity within a 7

months time window (from December 2012 to June 2013). Since unemployment has

a significant variation along time, we investigate here what is the correlation and ex-

planatory power of the Twitter variables for the values of unemployment determined at

di↵erent months through the same time window in which Twitter data was collected.

Or if the variables collected in that time window are more correlated with past or future

values of unemployment. Figure3.10shows the explanatory value of the model when the

linear regression is done for values of unemployment of di↵erent months before, during

and after the Twitter data time window. Although there is a small seasonal e↵ect along
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All ages <24 25� 44 >44

(Intercept) 0.11⇤⇤⇤⇤ 0.10⇤⇤⇤ 0.20⇤⇤⇤ 0.20⇤⇤⇤

(0.02) (0.03) (0.03) (0.035)
Penetration rate 3.23⇤ 8.57⇤⇤⇤ 6.28⇤⇤ 2.40

(1.41) (2.22) (2.17) (2.77)
Geographical diversity 0.03 0.15⇤⇤⇤ 0.08⇤ 0.06

(0.02) (0.04) (0.04) (0.05)
Social diversity � 0.03⇤ � 0.03 � 0.05⇤ � 0.06⇤

(0.01) (0.02) (0.02) (0.03)
Morning activity � 0.69⇤ � 1.30⇤⇤ � 1.53⇤⇤⇤ � 1.19⇤

(0.26) (0.42) (0.41) (0.52)
Misspellers rate 11.56 31.51⇤ 15.46 23.60

(8.13) (12.78) (12.48) (15.94)
Employmentmentions � 1.80 3.17 � 9.94 2.71

(6.27) (9.86) (9.64) (12.3)

R2 0.47 0.64 0.55 0.29
Adj. R2 0.44 0.62 0.52 0.26
⇤⇤⇤p<0.001,⇤⇤p<0.01,⇤p<0.05

Table 3.5: Regression table for the di↵erent models in which unemployment for dif-
ferent age groups is fitted. TheAll agesmodel is the fit to the general rate of un-
employment in each geographical area, while the other models are for the rates of
unemployment in groups of less than 24 years, between 25 and 44 years and above 44

years.

the year, we see that the explanatory power remains aroundR2=0.6, which suggest

that our Twitter linear model retains its explanatory power even though unemployment

changes considerably throughout the year. It is interesting to note thatR2decays a

little bit during the summer which means that our variables are less correlated with

summer unemployment. There are some possible explanations for the little variation of

the performance: firstly, the variation over the whole period of the global unemployment

rate varies only 0.8% which does not imply little variation of the rates of every region

but seems reasonable to think so. Apart from this fact, one does not expect the created

variables changes dramatically in a short period of time (education, technology adop-

tion, geographical mobility,...). Finally, unemployment used in the rest of the chapter is

from June 2013, i.e. the last month in the time window used to collect the data.

On the other hand, not all demographic groups are equally represented in the our

database. Twitter user demographics in Spain obtained from surveys [111] show that

age groups above 44 years old are under-represented. Thus our results would mainly

describe the socio-economical status of people below 44 years old. Employment analysis

is then performed in di↵erent age groups: unemployment for people below 25 years old,

between 25 and 44 years old and older than 44 years old. Indeed, similar but lower

explanatory power is found for other age groups:R2=0.44 for all ages andR2=0.52
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Figure 3.10: Explanatory power of the linear regression model when fitted against
the unemployment data for di↵erent months. Gray (orange) area correspond to the
time window in which Twitter data is collected and variables are constructed.

for ages between 25 and 44 years. Beyond there, the model degrades for ages above 44

years (R2=0.26) proving that our variables mainly described the behavior of the most

represented age groups in Twitter, namely those below 44 years old.
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Figure 3.11: Left: Percentage of population in each age group from the Spanish
Census (dark bars) and surveys about users in Twitter (light bars). Right: performance

of the linear models for each of the age groups.

Finally, since our Twitter variables seem to describe better behavior of young people, we

have investigated whether Twitter constructed variables have similar explanatory value

(in terms ofR2) than simple census demographic variables for young people. If we include

the young population rate in our model we get a minor improvementR2=0.65; on the

other hand a model based only on young population rate givesR2=0.24. This semi-

partial analysis shows that Twitter variables do indeed posses a genuine explanatory

power away from their simple demographic representation.

Attending to geographical partitions, while municipalities are very heterogeneous de-

mographically, other administrative areas exist in Spain at large scales that could be

used for our model of unemployment. The smallest administrative division of Spain we

have considered is that of the 8200municipalities. At larger scales we have the 326

counties(comarcasin spanish) which are aggregations of municipalities. Finally, the
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All variables Youth model Twitter model (I) Twitter model (II)

(Intercept) 0.06 � 0.02 0.10⇤⇤⇤ 0.09⇤⇤⇤

(0.03) (0.03) (0.03) (0.027)
Young pop. rate 0.66⇤ 2.20⇤⇤⇤

(0.30) (0.35)
Penetration rate 8.20⇤⇤⇤ 8.57⇤⇤⇤ 8.62⇤⇤⇤

(2.25) (2.22) (2.21)
Geographical diversity 0.14⇤⇤⇤ 0.15⇤⇤⇤ 0.12⇤⇤⇤

(0.04) (0.04) (0.03)
Social diversity � 0.02 � 0.03

(0.02) (0.02)
Morning activity � 1.42⇤⇤⇤ � 1.30⇤⇤ � 1.28⇤⇤

(0.41) (0.42) (0.41)
Misspellers rate 23.95 31.51⇤ 32.28⇤

(13.09) (12.78) (12.71)
Employmentmentions 0.34 3.17

(9.81) (9.86)

R2 0.65 0.24 0.64 0.63
Adj. R2 0.63 0.24 0.62 0.62
⇤⇤⇤p<0.001,⇤⇤p<0.01,⇤p<0.05

Table 3.6: Regression table for the di↵erent statistical models. TheAll variables
model includes both Twitter and rate of young population variables.Twitter model (I)
includes only the variables described in the main article, whileTwitter model (II)only

includes those variables which are significantp<0.05 inTwitter model (I).

largest geographical scale we considered is defined by 50 provinces (provinciasin Span-

ish). In this case, we compare the performance of our Twitter model for unemployment

for the variables defined in those administrative areas and relate it to the geographical

communities detected and used in the main paper (see section??). Not all the areas at

di↵erent administrative divisions are considered in the model. To minimize the e↵ect of

areas in which the number of geo-tagged tweets is very small, we only consider the 1738

municipalities which have a Twitter population⇡>10. Similarly, we only consider the

198 counties with⇡>100. As we can see in Table3.7the model has a large explana-

tory power for areas equal or bigger than counties. As expectedR2increases as the

number of areas in the model is smaller, but the description level of the model is very

low for provinces, for example. The best performance (highR2and high geographical

description level) is attained at the level of the detected communities.

3.3 Conclusions and further discussion

This work serves as a proof of concept for how a wide range of behavioral features

linked to socioeconomic behavior can be inferred from the digital traces that are left
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Communities Municipalities Counties Provinces

(Intercept) 0.10⇤⇤⇤ 0.16⇤⇤⇤ 0.11⇤⇤⇤ 0.11⇤

(0.03) (0.01) (0.03) (0.05)
Penetration rate 8.57⇤⇤⇤ 4.01⇤⇤⇤ 9.12⇤⇤⇤ 10.47⇤⇤⇤

(2.22) (0.59) (1.81) (1.97)
Geographical diversity 0.15⇤⇤⇤ 0.02 0.12⇤⇤⇤ 0.08

(0.04) (0.01) (0.03) (0.07)
Social diversity � 0.03 � 0.01 � 0.01 � 0.03

(0.02) (0.01) (0.02) 0.07
Morning activity � 1.30⇤⇤ � 1.16⇤⇤⇤ � 1.49⇤⇤⇤ � 1.03

(0.42) (0.14) (0.39) (0.88)
Misspellers rate 31.51⇤ 14.40⇤⇤⇤ 14.09

(12.78) (2.51) (10.02)
Employmentmentions 3.17 � 0.71 2.41 � 3.17

(9.86) (0.89) (8.86) (12.29)

Number of points 128 1738 198 50
R2 0.64 0.22 0.55 0.65
Adj. R2 0.62 0.21 0.54 0.61
⇤⇤⇤p<0.001,⇤⇤p<0.01,⇤p<0.05

Table 3.7:Regression table for the unemployment linear regression model in di↵erent
levels of geographical areas. In theProvincesmodel, the misspellers rate has been
removed from the model due to the large collinearity with the penetration rate.

by publicly-available social media. In particular, we demonstrate that behavioral fea-

tures related to unemployment can be recovered from the digital exhaust left by the

microblogging network Twitter. First of all, Twitter geolocalized traces, together with

o↵-the-shelve community detection algorithms, render an optimal partition of a country

for economical activity, showing the remarkable power of social media to understand and

unveil economical behavior at a country-scale. This insight is likely to apply to other

administrative definitions in other countries, specially when considering large cities with

an inherent dynamical nature and evolution of mobility fluxes, and cities composed of

small satellite cities with arbitrary agglomerations or division among them (e.g. Lon-

don, NYC, Singapore). This result is unsurprising: it should be natural to recompute

city clusters/communities of activity based on their real time mobility, which may vary

considerably faster than the update rates of mobility and travel surveys [76,77,100].

Our main result demonstrates that several key indicators, di↵erent penetration rates

among regions, fingerprints of the temporal patterns of activity, content lexical correct-

ness and geo-social connectivities among regions, can be extracted from social media,

and then used to infer unemployment levels. These findings shed light in two directions:

first, on how individuals’ extensive use of their social channels allow us to characterize

cities based on their activity in a meaningful fashion and, secondly, on how this informa-

tion can be used to build economic indicators that are directly related to the economy.
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Regarding the latter, our work is important for understanding how country-scale analy-

sis of Social Media should consider the demographic but also the economical di↵erence

between users. As we have shown, users in areas with large unemployment have di↵er-

ent mobility, di↵erent social interactions, and di↵erent daily activity than those in low

unemployment areas. This intertwined relationship between user behavior and employ-

ment should be considered not only in economical analysis derived from social media,

but also in other applications like marketing, communication, social mobilization, etc.

It is particularly remarkable that Twitter data can provide these accurate results. Twit-

ter is, among the many currently popular social networking platforms, perhaps the

noisiest, sparsest, more ‘sabotaged’ medium: very few users send out messages at a reg-

ular rate, most of the users do not have geolocated information, the social relationships

(followers/followers) contains a lot of unused/unimportant links, it is plagued by spam-

bots, and last but not least, we have no way to identify the motive/goal/functionality of

mobility fluxes we are able to extract. These limitations are not particular to our sam-

ple, but general to the sample Twitter data being employed in the computational social

science community. Despite all these caveats, we are able to show that even some sim-

ple filtering techniques together with basic statistical regressions yields predictive power

about a variable as important as unemployment. Other social media platforms such as

Facebook, Google+, Sina Weibo, Instagram, Orkut, or Flicker with more granular and

consistent individual data are likely to provide similar or better results by themselves, or

in combination. Further improvements can be obtained by the use of more sophisticated

statistical machine learning techniques, some of them even tailored to the peculiarities

of social media data. Our work serves to illustrate the tremendous potential of these

new digital datasets to improve the understanding of society’s functioning at the finer

scales of granularity.

The usefulness of our approach must be considered against the cost and update rate

of performing detailed surveys of mobility, social structure, and economic performance.

Our database is publicly articulated, which means that our analysis could be replicated

easily in other countries, other time periods and with di↵erent scopes. Naturally, survey

results provide more accurate results, but they also consume considerably higher finan-

cial and human resources, employing hundreds of people and taking months, even years

to complete and be released — they are so costly that countries going through economic

recession have considered discontinuing them, or altering their update rate in recent

times. A particularly problematic aspect of these surveys is that they are “out-of-sync”

i.e. census may be up to date, whereas those same individuals’ travel surveys may not

be, and therefore drawing inferences between both may be particularly di� cult. This

is a particularly challenging problem that the immediateness of social media can help

ameliorate.
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A few questions remain open for further investigation. How can traditional surveys

and social media digital traces be best combined to maximize their predictive ability?

Can social media provide a reliable leading indicator to unemployment, and in general,

economic surveys? How much reliable lead is it possible, if at all? As we have found,

Twitter penetration and educational levels are found to be correlated with unemploy-

ment, but this levels are unlikely to change rapidly to describe or anticipate changes

in the economy or unemployment. However, other indicators like daily activity, social

interactions and geographical mobility are more connected with our daily activity and

perhaps they have more predicting power to show and/or anticipate sudden changes in

employment. The relationship between unemployment and individual and group behav-

ior may help contextualize the multiple factors a↵ecting the socioeconomic well-being

of a region: while penetration, content, daily activity and mobility diversity seem to be

highly correlated to unemployment in Spain, di↵erent weights for each group of traces

might be expected in other countries [51]. Finally, digital traces could serve as an al-

ternative (some times the only one available) to the lack of surveys in poor or remote

areas [74,112]. Another interesting avenue of research involves the use of social media

to detect mismatches between the real (hidden, underground) economy and the o� cially

reported [113].

Most importantly, the immediacy of social media may also allow governments to better

measure and understand the e↵ect of policies, social changes, natural or man-made

disasters in the economical status of cities in almost real-time [14,114]. Our results can

also be framed within the emerging phenomenon of the shift of the digital divide [115],

which shows that the current gap in online presence in developed countries is not due to

digital access, but to the socio-economical situation of individuals. These new avenues

for research provide great opportunities at the intersection of the economic, social, and

computational sciences that originate from these new widespread inexpensive datasets.
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forums [124–128].
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Chapter 4

Information di↵usion on dynamic

geographical networks

The study of how the properties of cities scale with population has attracted much

interest in scientific literature. Nowadays, we know that larger cities tend to produce in

a more e� cient ways that smaller and consuming smaller quantities of resources living

in cities provide opportunities for the individual development in terms of economy and

opportunities [10,129,130]. However, this problem has been mainly addressed from

the static point of view, focusing on aggregated networks at the geographical level and

neglecting the e↵ect of dynamical aspects. For instance, are networks in larger cities

more dynamical than in smaller ones? If this is the case, how does this vibrant dynamics

a↵ecet the network at the country level? In this chapter we show that the pace of creation

and destruction of links in cities scales superlinearly with the population, concluding that

larger cities tend to be more dynamical than smaller ones. Moreover, we analyze the

stability of links as a function of the geographical distance between individuals showing

that, the further people are, the more unstable the relationships are so it is reasonable to

think of the global network as a very varying one. Despite this intuition, we show that

intra-urban network is robust on time, exhibiting similar adjacency matrices on time,

community structure or clustering. In this context where many dynamical and varying

networks at the city level are connected by a almost permanent intra-urban structure,

how does it influence information di↵usion? To this end we simulate di↵usion processes

and predict the time to infection in regions. Our results suggest that this process is

not influenced by the fast intra-urban mechanics but only by the inter-urban network,

concluding that the main factor for information expansion is the static structure of the

global network.

55
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4.1 Di↵usion processes on geographic social networks

4.1.1 Linking network dynamics and geographical di↵usion

Many researchers have dealt with the problem of modelling epidemic and rumor di↵usion

through social or mobility networks, but traditionally, they have made it by considering

static networks, that is, every time a relationship is set between two nodes (individuals

in the social network case and locations in the mobility network one), this relationship

does not evolve on time so it cannot be broken and it is considered that information can

be transmitted at any time [131].

However, temporal dynamics within networks is a complex phenomena: interactions

(for instance, calls between two people) happen in bursts and links are continuosly

being created and destroyed on time [16,132–134]whichmusta↵ect dramatically how

information spreads in a network or how long viruses need to take to infect a specific

population. Actually, it has been proved that temporal dynamics slow down the di↵usion

processes on networks and, more specifically, how an individual is able to change its ego-

network also a↵ects the time it is infected [15,62,135,136].

Moreover, most of the analyzed networks happens in a particular geography where nodes

composing the network can be placed: for instance, when we analyze a Call Detail

Record, as in this chapter, we place the individual in its billing address or the antennas

its mobile phone was connected to when it was involved in a call [6,51,69]; in other

cases, such as airline networks, one can locate the user at the origin and the destination

of the flight, depending on the time that is being observed [36,137]. Therefore, it

makes sense to study how di↵usion spreads at the geographical level even when the

underlying network is a social network, when di↵erent aggregation levels can be analyzed

to study intra and inter-regional di↵usion properties [37,138,139]. However, how does

the internal dynamics of urban areas a↵ect the inter-regional spreading of a virus or a

rumor?

This is problem we investigate in this chapter, we study whether the vibrant dynamics

inside urban areas are able to predict the geographic expansion of a di↵usion process. We

observe that populations have heterogeneous patterns, that is, larger populations tend

to create and destroy internal links at a faster pace than smaller areas in a super-scaling

fashion. Since di↵erent dynamics are exhibited in urban areas, one might guess that

these di↵erences are able to predict the infection time of these regions. Surprisingly,

we observe that, despite this varying underlying network (almost 20% of individiual

links change in our dataset on time), the inter-regional structure preserve the same

static properties. As a consequence, di↵usion at the geographical level does not really
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depend on the internal dynamics of cities. To our understanding, this is the first time

when di↵usion at the macroscopic scale has been studied as a function of the internal

dynamics of the urban areas.

4.1.2 Spreadings on real-world networks

Given a social network, a di↵usion (or spreading) process is a temporal process where, at

the beginning, a subset of nodes are initially activated (for instance, infected by a virus,

informed about a rumor or reached by a marketing campaign) and, as time goes by, this

activation is spread through the rest of nodes in the network. Typically, the unactivated

nodes might become activated by external factors o because of viral dissemination, that

is, the probability of becoming activated at timetdepends on the number of activated

contacts at timet� 1. As an example, let’s say an user of an online social network is

reached by a piece of news and he finds it so interesting so he decides to share it to their

followers. In this case, the activation phenomena in the di↵usion process is sharing the

content. Ideally, all his followers will read the shared content and, depending on how

interesting they find it, they might also decide to share it, becoming new infected users.

Since real social networks are clustered, an user might be exposed to the same content

many times, increasing the possibilities to share it. This is an example of information

di↵usion on social networks, which is one of the most studied problems, not only on

online social networks such as Twitter but also on Wikipedia, blogs or post networks

[140–142].

Some di↵usion processes on social networks are not completely naturally driven, that is,

there exist some incentives for the users to spread the information. This is the case of

viral marketing campaigns, where users are told to share a particular content in exchange

of some prize. It has been shown that information on this kind of campaigns travels at a

very slow pace, a↵ected by the bursty behavior of human online patterns [46,143]with

di↵erent rates of spreading when users in sharing cascades appear in deeper generations

[144]. This kind of viral actions has also been used in social mobilization processes such

as in the DARPA challenge, where the purpose was to locate 10 balloons spread over

the United States and the winners built a social strategy to di↵use the objective and

incentivizing social sharing [114,145].

Most of the theory and mathematical models developed to study di↵usion on networks

were originated by the research on the dynamics of spreading of infectious diseases

and its control [146–148]. Recently, these models have been applied to study di↵usion

of diseases such as Ebola in Liberia [149,150], influenza pandemic [151] or analyzing

human mobility and contagious processes to model Malaria di↵usion [152].



Chapter 4.Information di↵usion on dynamic geographical networks 58

In this chapter we analyze the dynamic and static properties of a social network in-

ferred from mobile phone call records and test to what extent the di↵erent behaviors

in geographical regions are related to the information di↵usion and the appearance of

outbreaks in regions. As we will see in the following sections, the resulting di↵usion is a

combination of the inter-regional structure of the network and the vibrant dynamics at

the individual level so it is a complex process involving social networks and the bursty

interaction patterns of the relationships.

4.1.3 Dynamic networks and social strategies

By nature, social networks are dynamic, that is, given a relationship between two nodes,

communications between them are not constant and interactions happen on time at

specific and mostly instantaneous moments. For instance, two mobile phone users who

are friends are not constantly communicating each other but they do it in concrete

moments; if we analyze when two users in a social network are mentioning each other

or talking by chat, it happens the same; when a contact network is analyzed, that is,

a network where every interaction between users is a real meeting, this only happens

spuriously and in a active fashion for a relatively short period, independently from a

long stability of the relationship between the involved actors. In terms of information

di↵usion, viral contagion can only be produced in this specific interactions which means

that interaction dynamics strongly a↵ect dissemination on networks. On this chapter, we

investigate how the dynamism of social relationships among individuals in the population

at the country level a↵ects the outbreak propagation through the di↵erent regions.

These punctual interactions lead to the definition of dynamic concepts such as link

stability or link survival in a very natural way. We consider that a relationship between

two nodesiandjof the network are opened at timetif, at least, there exist one

interaction between them beforetand aftert. Moreover, we can define when a link is

new (just opened for the first time) or when a link is destroyed: given a dataset where

the timestamps of every interaction is stored, we consider that a link is created on time

tif the first interaction between two nodes happens at this time and destroyed if the last

one occurs at timet. However, this naive definition leads to methodological problems

since, under this definition, all the relationships considered in a dataset would be created

and destroyed. To solve these problems of definition at the border, typically we proceed

as in [15], by defining three temporal windows that are equally large (⌦1,⌦and⌦2).

Given this context, we formulate a better definition of new relationship by considering

links that do not occur on⌦1but they do on⌦for the first time; analogously, a link is

destroyed in⌦when the last interaction happens in⌦. Beyond these definitions, we can

naturally talk about link stability: a link is considered stable when interactions appear
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in the three di↵erent periods or we name it instantaneous when both the first and last

interaction happens in⌦. This formulation has been used in di↵erent investigations

related to temporal social network analysis: for instance, this framework leads to the

setting of social strategies: in social networks there exist users creating and destroying

links at a faster pace (social explorers) than others (social keepers). Beyond the degree

of dynamism in the creation and destruction of links, the number of opened connections

on time has been shown to be almost constant.

Independently from the dynamic structure of the links, individual interactions and their

temporal distribution strongly a↵ect the di↵usion of information. It has been widely

proved that inter-event time patterns are very heterogeneous, that is, most of the events

happens in a very short time period consecutively but, many other times, a long time

happens between two events [16,17,132,135,153]. Typically, this phenomena is modeled

by means of a Power-Law or Log-Normal distribution. This bursty dynamics make that

defining the properties of the network from the temporal point of view make sense:

the intensity of the relationship between two nodes is dynamic because the number of

interactions varies on time [62]; in the same way, features like shortest paths between

two nodes, the diameter of the network, node and edge centrality or spanning trees

are translated into a dynamic version since only opened links are considered in the

computation [154].

As we will see in the next sections, this bursty behavior is also observed in our dataset

and our final goal is to understand whether the dynamics at the microscopic level of the

links a↵ect the inter-regional di↵usion.

4.1.4 Modelling di↵usion processes

As we mentioned in the previous sections, we simulate di↵usion processes to test whether

dynamic or static properties of geographical networks predict the time to infection of

regions. To this end we use the so called SI model on the social network inferred from

mobile phone calls, which is a version of one of the most widely used models, the SIR

model.

In the SIR model [146,147], the population is divided in three di↵erent segments (we

explain it in terms of a disease di↵usion): susceptible individuals, people who are not

infected but might become infected in future; infected individuals, people who are able

to transmit the disease; and recovered individuals, people who were infected in past but

they cannot propate the virus any more. One can analyze the temporal evolution of this
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model by simulation numerically the next system of di↵erential equationss

dS

dt
=�
� IS

N
dI

dt
=
� IS

N
� � I

dR

dt
=� I

whereS(t),I(t) andR(t) represent the number of susceptible, infected and recovered

individuals respectively,� represents the transmision rate of the disease and� the re-

covery rate. However, in this version the transmision and the recovery rate are constant,

neglecting the underlying social structure or the seasonality of diseases.

It is also interesting to study the geographical di↵usion of diseases, virus, rumors or

information. Focusing on the structure of a country, we observe that relationships in

di↵erent social networks are overlapped and interacting with each other: a country is

composed by provinces which are also composed by municipalities and, at the finer level,

formed by neighborhoods. Since social relationships have strong geographical contraints,

people tend to hold friendships with people nearby them [155–158], one can find di↵erent

dynamics happening at the same time at the di↵erent macroscopic levels aggregating ge-

ographically. In particular, contact-based models integrated in heterogeneous networks

have been widely explored in the literature [37,138,159,160] giving mathematically

analytical and simluation approaches. This models on heterogeneous networks, that is,

networks with similar features to geographical ones, mixing subsets of nodes with their

own topology embedded in a larger network (as cities within a country), has been used

to model propagation in intra-urban and inter-urban contexts.

A way to study di↵usion on social networks is simulating stochastic processes based

on data (data-driven simulations) which allows to study spreading processes not only

as a function the connectivity structure of the network but also, at the same time, as

a function of other features such as the temporal dynamics. This approach has been

used in literature to analyze how the di↵erent features of the network a↵ect the velocity

of di↵usion which is done by comparing the spread on the original to null models (for

instance, if we want to test how the temporal dynamics a↵ect the di↵usion, we compare it

in the original data and shu✏ing the timestamps of the interactions) [62,135,137,161].

Moreover, it is found that the for the inter-event time distribution is heavy-tailed and

the creation/destruction of ties slows down information di↵usion when simulations on

real data are compared with those done on shu✏ed data. Moreover, also individuals

with a more persistent network (keepers) are infected earlier than those with a more

volatile neighborhood (explorers) [15].
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In our case, we consider the CDR from a mobile phone company, that is, for each call

we use the origin and destination of the call and when it was made, the set of all the

interactions for every link between two mobile phone users. In our framework, informa-

tion can only be transmitted between two users when an interaction is observed so we

are considering at the same time both the social network structure and the temporal

dynamics of the interactions.

4.1.5 Network scaling on cities

For the first time in history, the majority of people around the world are living in cities.

Although a deep analysis of migrations (between di↵erent countries, from rural areas

to cities, due to wars, etc.) is complex and many factors play a role, living in cities

provide opportunities for the individual development in terms of economy and oppor-

tunities [129,130]. Using the biological methaphore that represent cities as consumers

of resources and producers artifacts and information, it has been shown that living in

cities optimize the production exhibiting super-scaling functional relationships in terms

of innovation, patterns, research and development investment or total bank deposits

[133,162,163]. Moreover, cities are not only able to produce better but optimizing

the costs of infrastructures such as gasoline stations, length of electrical cables or road

surface [10].

More surprisingly, it has been also proved that size of the cities is also related to the

underlying social network involving the individuals inhabiting there. In particular, the

number of interactions among the individuals and the number of connections grow su-

perlinearly with the population size [164] which might be the reason behind the increase

of the economic development with the city size.

Since our goal is to understand spreading processes at the geographic scale, we need to

characterize the network connectivity and activity at the urban level not only in terms

of the static structure of the network but also the dynamical features. In our work we

replicate the results in the literature about the superlinear growth of interactions and

connections between people living in larger cities and extend this result analyzing the

pace of creation and destruction of relationships as a function of the population.

4.1.6 Comparing evolving adjacency matrices

As we will see in next sections, we need to analyze whether, despite intra-urban networks

are changing at a very fast pace, this fact has an impact at the macroscopic (geographic)
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level. We use two di↵erent methods to prove the stability of the underlying structure in

our network.

•Correlation of adjacency matrices: given two timest1andt2, we consider the two

sets of open linksEt1andEt2and the corresponding adjacency matricesAtkwith

entriesAtk,↵,� , that is, the number of open links between two regions at timetk.

Interpreting all the entries of the matrices as vectors, we compute the correlation

between these two matrices,

⇢ti,tj=cor(Ati,Atj) (4.1)

which can be interpreted as a measure of the stability of the network.

•Community stability: other approach is using community detection to infer the

underlying structure of the network. Our hypothesis is that network stability

must be also reflected on the communities structure so that we use the Normalized

Mutual Information method (NMI) [95] to compare membership vectors on time:

the higher the value of NMI is between two partitions of the network, the more

similar they are.

4.2 Pace of change in urban social networks

4.2.1 The dataset

To study the static and dynamical properties of the social network, we have considered

the CDRs from a single mobile phone operator over a period of 19 months from February

2009 to August 2010. The data consists of the anonymized voice call records of about 20

million users that form 700 million communication ties in the United Kingdom. After

filtering out all the incoming or outgoing calls that involve other operators, we only

consider users that are active across the whole time period and keep only reciprocal ties.

As in [15] we consider an observation window⌦=[0,T] of 7 months in the middle of

the 19 months, where the 6-month time windows before and after⌦are used to asses

whether a tie has been created/destroyed in⌦. Out of the 20 million users, we have

considered only a group of 3.2 million users for which we know their billing address

which is considered as their location up to the postcode area level in England, Scotland

and Wales. We only consider calls between users in those postcode areas, which leave

us with 10.5 million communication ties.
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4.2.2 General and geographical properties of the microscopic network

At each time steptin⌦we consider the set of communication ties that are opened at that

instant, that is, the set of ties which have communication events before and aftert. Those

ties constitute our social microscopic network at that given instant. However, since ties

are continuously created and destroyed, that social microscopic network changes very

fast. In fact we found that the microscopic network has 7.7 million links att=0but

more than 2.8 (2.9) million links are created (destroyed) in the observation period⌦.

Since humans tend to balance the number of created and destroyed links [15], we find

that the number of open ties at any given instanttfluctuates almost constantly around

7.7 million links. However, only 81% of the links present att= 0 remain att=T,

showing the high pace at which the microscopic network evolves.

The geographical properties of these microscopic links are very similar to those found in

previous works [100,165,166]. For example, ifdis the distance between two individuals

in a tie, we find that the probability to find a tie with distancedisP(d)⇠1/d↵with

↵=1.52±0.02, see figure4.1. We also find that the number of calls per link decreases

with distance and reaches a minimum around 50km. This result is similar to the one

found in other countries in mobile phone communications or online social networks

and seems to indicate the di↵erent role of communication at short and large distances

[35,161]. Interestingly, this distance is comparable with the average distance of ties

between di↵erent postcodes (62km), which suggests that these geographical units enclose

short distance communication behavior. Finally, in figure4.1we see that the persistence

of ties only depends slightly on the distance in the tie, showing also a minimum around

50km. It is interesting to see, that short-ranged and long-ranged ties are almost equally

persistent, that is, distance does not penalize the stability of ties.

4.2.3 General and geographical properties of the urban network

From that microscopic network we construct the time-dependent weighted urban (post-

code) network as follows: at each timetwe consider all postcodes↵and we quantify

their social connections by measuringwt,↵,� , the number of open social ties between

postcodes↵and� (see Panel A) in4.2).

Since microscopic links are constantly created and destroyed, at any given instant the

set of ties between↵and� are di↵erent. In fact, we measure the persistence of the

internal postcode linksPt,int, which measures the fraction of microscopic links present

att= 0 which are still present at time timetand both nodes belong to the same
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Figure 4.1: Geographical properties of the microscopic network. Panel A)
shows the probability to find a tie with distanced(black line) with a non-linear fit to
P(r)a/(b+r↵)with↵=1.77±0.05. Dashed vertical lines indicate distances from
London (LDN) to main cities in the UK: Leeds, Birmingham (BHM) and Glasgow. B)
Average of the number of calls per ties with a given distanced. Dashed vertical line
shows the average distance of ties between di↵erent postcodes (62km). C) Persistence

of ties at distanced.

postcode. Formally, letEt,intbe the set of internal links opened at time t,

Pt,int=
|E0,int\Et,int|

|E0,int|
(4.2)

We can analogously define the persistence for the external links, Pt,ext. We find that,

in both cases, the persistence steadily decreases throughout⌦and reaches values of

Pt,ext=0.78 for external links andPt,int=0.89 for internal ones.

Given this amount of turnover, we investigate how the urban network changes in time.

To quantify the network dynamics we measure the evolution of the urban network char-

acteristics at di↵erent time instants. Firstly, we measure the time evolution of the

average number of links in the network

wt=
X

↵,�

wt,↵,� (4.3)

In correspondence with [51] we have also measured the average connection diversity for

a postcodedt,↵,

dt,↵=<�
1

log|N↵|

X

j2N↵

pijlogpij>i2↵ (4.4)

wherepijis the fraction of all the interactions involvingiwhich also involvesj.

Finally, we also compute the weighted clustering coe� cientCwt,↵introduced in [90](fur-

ther information in section3.5).
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As we can see in panel C) of figure4.2these measures averaged over the network prac-

tically do not change over the 212 days of our observation window, indicating that the

urban network does not change significantly over that time. This result is in agreement

with other results [100] and show that, despite the constant evolution of the network,

its main global characteristics remain almost stable.

Figure 4.2:The dynamics of urban social networks. Panel A) depicts the graph
of ties between di↵erent postcodes in England, Wales and Scotland. The color of each
postcode is proportional to its IMD value, while the color of the links between postcodes
is proportional to their persistence level. Only links between postcodes with more than
100 social ties are considered. Panel B) shows the persistence density for all the links in
our postcode graph, while the inset shows the persistence of links from and to a given
postcode. Panel C) shows the values of di↵erent measures over the postcode graph
at di↵erent days of our observation time. Although degree, diversity and clustering
almost stay constant, the persistence of links decays dramatically, showing that the
apparent steady nature of the postcode graph at the macroscopic level is accompanied

by a vibrant microscopic change at the user level.

However, we also found that the stability of the network goes beyond averaged quan-

tities. In particular, if we concentrate in a single link between postcode↵and� in

the urban network we can see thatwt,↵,� almost remains constant along⌦. That is,

although the actual communication ties between those postcodes might be constantly

changing, the number of communication between postcodes remains constant. These re-

sults is the spatial generalization of the findings in [15] where it was shown that despite
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many links are opened and destroyed by individuals, the number of opened social ties

remains constant. Our results here demonstrate that this result also holds at the rela-

tionships between urban areas: links between two given areas are created and destroyed

at the same rate so that the amount of communication ties between those areas remain

constant. This probably signals that the communication between the areas reflects a

functional, social or economical relationship between areas which does not depend on

the actual actors behind that relationships. Or that the geographical component in link

creation or destruction conditions strongly were those events might happen.

This dynamical equilibrium in the communication between areas implies that the net-

work almost remains constant in⌦. In fact, if we consider the Pearson correlation⇢

between the adjacency matrixwt,↵,� at di↵erent times, we see that it slightly fluctuates

at⇢=0.999 (see section4.1.6for further details).

Finally, we also carry out a community analysis on the network at three di↵erent mo-

ments: at the beginning, at the middle and at the end of⌦. Weproceedbyexecuting

one of the most used community detection algorithms, Infomap [94], at these three mo-

ments and comparing the postcode membership structure to communities. Visually, we

can observe in figure4.3that not big di↵erences are appreciated, that is, postcodes

belonging to a certain community tend to belong to the same community on time. In

fact, the Normalized Mutual Information (NMI) [95] of the community structures of the

postcode network found at timet= 0 andTfluctuates around 0.972, exhibiting a high

robustness of the inter-urban connectivity structure.

t=0 t=T/2 t=T

Figure 4.3:Comparison of the communities found in the urban social network by the
Infomap algorithm at di↵erent times in the observation period⌦.
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Since the urban network does not change considerably we can investigate its geographical

properties at any given instant. Firstly we investigate how the number of links in a urban

area and its persistence changes with the population living in that area. Recent work

has found that there is a super-linear e↵ect of the population of an area in the number of

links present within the area [10,167]. In our case we also found this super-linear e↵ect,

where the normalized number of links inside a postcode scales as ̃w↵,↵⇠P
1.12±0.01
↵ with

the population in the postcodeP↵,where ̃w↵,↵=w↵,↵/⌫↵and⌫↵is the penetration rate

in postcode↵, i.e. the ratio of the number of users to the population in that postcode.

The same holds for the number of created links inside a postcode ̃w+↵,↵⇠P
1.24±0.02
↵ .

This means that more populated areas have proportionally more links and create more

links than small populated areas. On the contrary, when we proceed in the same way

and consider the dependence of the number of external links with population (links

connecting postcodes↵and� with↵6=� ), we observe a linear behavior. That means

that the super-linear behavior of density of links only happens for links at small distances,

in this case, for those within postcodes.
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Figure 4.4: Super-linear and linear number of internal and external links.
Normalized number internal ties within a given postcode (Panel A) or external with
the rest of postcodes (Panel C). Solid (dashed) line is the non-linear (linear) fit to the
data. Panels B) and D) show the corresponding analysis for the internal and external

number of created links in a postcode.
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4.2.4 Gravity Law for link creation patterns

Finally, the geographical distribution of links present at any given timetcan be described

by means of the gravity law (see figure4.5), i.e. the number of links between postcodes

↵and� tends to satisfy the expression given by

wt,↵,� =
P⌫↵P

⌫
�

d�↵,�
(4.5)

with⌫=0.43 and� =1.37. Note that we have chosen to fit the same exponent for both

postcodes because of the bidirectionality of communications. Moreover, the number of

created links between postcodes↵and� is also well described by a gravity law like

previous equation with⌫=0.46 and� =1.125. This leads to two main conclusions: i)

not only existing ties attcan be explained by the gravity law, but also future ties between

postcodes happen proportionally to the populations and inversely proportional to the

distance between postcodes and ii) no large di↵erences are observed in the population

exponents (0.43 vs 0.46) whereas, the distance is a more important factor when the total

number of links is considered, that is, the total number of links decays faster than the

number of created links with the distance. To our understanding, this is the first time

that a phenomenological law for the geographical nature of link creation/destruction is

given.

wij⇠
(PiPj)

0.4556

d1.125ij

wij⇠
(PiPj)

0.4293

d1.3678ij

wt,↵,�

w
⇤ t,
↵
,�

n↵,�

n
⇤ ↵
,�

A) B)

Figure 4.5: The gravity law of existing and created ties. Panel A) depicts
the number of ties between di↵erent postcodes (wt,↵,� ) against the prediction given by
equation (4.5). Dashed line is they=xline, while the solid blue line is a running
average. B) shows the same analysis for the number of created ties during⌦between

di↵erent postcodes.
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4.2.5 Information di↵usion

Finally, we test the e↵ect of the urban network dynamics on the di↵usion of informa-

tion. To do that, we simulate an SI (Susceptible-Infected) process on the actual calls.

Specifically, starting from a seed randomly chosen from the list of users, we consider

that, in each call between two users, information is transmitted with probability one

from the infected to the susceptible user. For statistical robustness reasons, we run 200

realizations of the SI process on our data . For each realization of the SI model and

after a given time (typically, seven months in our data), the whole population becomes

infected (see figure4.6) which is perfectly reasonable regarding the network connectivity

and the features of this specific spreading process. In order to compare the e↵ect of

the temporal dynamics of the urban network, we have also simulated the SI model on

time-shu✏ed data in which the timestamp in which calls are made is shu✏ed across

the database [15,135]. Note that static properties of the links like number of calls or

the geographical situation are conserved, but the temporal properties of the links are

completely destroyed.

The question we address here is to understand whether the di↵erent pace of social

networks in urban areas do confer those areas a relative advantage with respect to

information di↵usion in terms of being informed soon in the propagation. To do that we

investigate the time to infection of the di↵erent postcodes in our database; obviously, the

more populated the postcode is, the earlier information will get to it, so we concentrate

on the relative time to infection⌧↵in which 10% of the population in postcode↵gets

infected in the SI process to remove this bias. Figure4.6shows the average cumulative

infection curves for individuals and postcodes. In every case we recover the results

in [62], in which speed of information di↵usion in real data is always smaller than in

the time-shu✏ed data (informartion spreading is slower), in the case of postcodes the

average time to reach 10% infection ish⌧↵i'80 days (when all postcodes are considered

together), whileh⌧↵i'44 days in the time-shu✏ed case.

More interestingly, the spreading is not homogeneous since time to infection is very

di↵erent for each postcode. For example,h⌧↵i= 56 days for the BB1 Blackburn postcode

in England, while it can be as large ash⌧↵i= 160 days for the CF82 Hengoed postcode

in Wales (see figure4.8). In principle, the time to infection for a given postcode might

depend on the global/local static and dynamical properties of the network.
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Figure 4.6:Cummulative infection curves. Panel A) shows the average cumula-
tive infection curves for individuals in our database for the SI run on the real (black) and
time-shu✏ed (red). Panel B) shows the average cumulative 10% population infection

curves for postcodes. Colors are the same as in panel A).

4.2.6 Measuring importance of static and dynamic variables on infec-

tion times

To unveil which are the most important properties of the network in that process,

we consider several static and dynamical variables for each postcode. Specifically, we

consider the number of ties within and outside each postcode,!in↵ =w↵,↵/n↵and!
out
↵ =

(
P
� 6=↵w↵,� )/n↵respectively. We also consider the diversity of communication for each

postcode by computing the normalized Shannon entropyd↵, ranging between 1 (if↵has

equal number of ties with each� ) and 0 (if↵concentrates most of the communications

with a particular postcode among thek↵postcodes). Finally we also consider dynamical

variables like the normalized number of calls made by users in postcode↵,c↵and the

persistence of the ties in which users of postcode↵are involved,P↵.Itisinteresting

to see that due to the geographical properties of the urban network, these variables

are not independent. Specifically, we find that the fraction of internal links are highly

anticorrelated with external links⇢=� 0.48 [� 0.51,� 0.44] showing that having more

external links means less internal communication. This can be interpreted as a limitation

of the connection capacity of postcodes as well as it has been observed in humans since

individuals cannot pay attention to all their connections equally because of finite time.

On the other hand, more external links per user implies higher number of calls (obviously,

⇢=0.59 [0.56,0.62]) and lower persistence⇢=� 0.53 [� 0.55,� 0.50]. This last result

can be partially explained by the fact that persistence of long-ranged ties is smaller (see

figure4.1) and thus, the more ties outside of the postcode, the less persistence.

Regarding the time to infection we find that, as expected, the fraction of links within

the postcode, outside the postcode and the average number of calls per user are nega-

tively correlated with⌧↵(⇢1=� 0.27,⇢2=� 0.57 and⇢3=� 0.62 respecively). Thus,
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higher number of calls and larger number of social ties decrease the time to infection,

a result which has also been observed at the individual level in many other networks

and information di↵usion processes [137,139]. On the other hand, since persistence and

number of links are inversely correlated, we find that the larger the persistence of ties in

a postcode is, the smaller the number of links is and thus the larger the time to infection.

It is interesting to see that this result is contrary to what is found at the individual level:

in [15] it was found that keepers (those with higher persistence of links) have lower time

to infection than explorers (those with more volatile neighborhoods). In our simulations

we found the opposite, that urban areas with more persistent networks have larger time

to infection because more persistent networks means less external links.
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Figure 4.7:Time to infection model. Panel A) shows the goodness of the fit to the
10% infection rate in each postcode by comparing the real and the predicted time. Fit
has an explanatory power ofR2=0.84. Panel B) shows the density plots for the time to
infection values in each country, showing that in general WAL gets much larger values
than the other countries SCO and ENG. Panel C) shows the relative importance of the
variables in the fit. The number of links amounts to 99% of the relative importance in

the fit.

The large correlation between time to infection and network variables anticipates that

most of the heterogeneity in the latter can be explained by the variables. To show that,

we have built a very simple non-linear model between the⌧↵and the network static and

dynamical variables

log⌧↵⇠log!↵+ logd↵+ logc↵+ logP↵ (4.6)

were we have put together the total number of ties of a postcode!↵=!
in
↵+!

out
↵ . As it

is shown in figure4.7the explanatory power of this model is largeR2=0.84. This is an
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interesting result, since it shows that properties of a spreading process that happen on

the full network depend only on local properties for each postcode. But note that the

number of links only account for 99% of the variance explained by the model, i.e.!↵is

the only relevant variable in the model. In particular we found that

⌧↵⇠
1

!0.64↵
(4.7)

This is reminiscent of a well known property of random networks in which time to

infection goes like 1/kiwherekiis the connectivity of nodei(cita).

Figure 4.8:Time to infection in the urban network. Panel A) and B) depicts
the time to 10% infection on the real and shu✏ed data. Time to infection is only
calculated for postcodes with more than 200 users. Light gray areas show postcodes
with less than 200 users. Panel C) shows the high correlation between the time to

infection in real and shu✏ed data for each postcode.

Despite the dynamical properties of the network around a postcode seems to have no

direct impact in the time to infection of that postcode, it could explain the di↵erent

behavior between the spreading process on real and shu✏ed data. It is well known that

tie dynamics slows down information propagation when it is compared with shu✏ed data

and thus we could expect that postcodes with higher persistence of their ties could have

an advantage (in time-to-infection) with respect to what happens when data is shu✏ed.

However, as we can see in figure4.8time to infection in real and shu✏ed data are highly

correlated (⇢=0.99) at postcode level. That means that

⌧real↵ ⇠⌧shu✏ed↵ + 36 days (4.8)

Thus, also models (4.6) and (4.7) are good models for the shu✏ed data process. In

summary, our results indicate that urban network dynamics does not play any role to
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explain the heterogeneity in the time to infection and it only induces a global slowing-

down time factor of 36 days in information spreading.

4.3 Conclusions and further work

In this work we have analyzed to what extent the dynamics of creation and destruction of

relationships among the individuals in an industrialized country a↵ect the inter-regional

structure of the network at the macroscopic scale and, going one step forward, we have

answered the question about which family of features about the social connectivity of

the regions, static or dynamic ones, influence the most information spreading. The main

conclusion in this work is the velocity of the infection in a particular region is strongly

related to how it is connected to the rest of the country, in terms of number of ties,

and this feature is, precisely, a very stable one on time, despite approximately 20% of

the social relationships are created and destroyed in the temporal period of our study.

This fact has important implications about the role of individuals and their particular

relationships in contagion and geographical di↵usion processes : the key insight in our

analysis is it does not matter whether a particular connection is open or not at a given

time but only the number of connections between regions, which is a surprisingly con-

stant quantity on time. This might be interpreted as a emergent phenomena given by

the complex relationships in a country, where the individual does not play a key role in

the information di↵usion and, actually, it is the structure of the inter-regional network

what makes information spread faster or not leading to the conclusion that those re-

gions with a high number of connections are more likely to become infected soon in the

spreading.

4.4 Publications

At the time of the deposit of this thesis, the paper has been submitted for publication

[168].



Chapter 5

Conclusions and future work

5.1 Conclusions

On this dissertation, we have discussed three problems in which the main goal is to

anticipate and model mathematically di↵erent aspects and phenomena related to both

individual and groups. As a general conclusion, all the available data originated by the

digital traces registered in our daily lives are a reflection of our activity as individuals

but also it is also encoded a huge amount of information about our behavior as societies.

In particular, our results lead to conclusions about the nature of economic decisions

in terms of shopping behavior, exhibiting that humans are predictable but to a point;

regions can be analyzed by using information from social media in such a manner that

allow us to build predictive models of emergent phenomena as economy; and, finally, in

a country, many geographical networks are overlapped and active at the same time (one

per neighborhood, postcode, city,...) with di↵erent properties and we have studied how

the internal dynamics a↵ect the information di↵usion on the global network.

5.1.1 Consumers are predictable but not deterministic

We began this dissertation wondering whether our individual behavior are completely

determined by internal and external constraints such as the geography or our social

network. The answer to this question is not simple: as a first big conclusion, yes, we,

consumers, are predictable, we show recurrent visitation patterns to our favorite mer-

chants and our possible space of them where we will make our next purchase is relatively

limited. Typically in scientific literature the problem of studying human predictability

has been addressed by means of computing entropy measures, which is also our approach,

but we have detected problems due to the data resolution. Since the temporal scale in

74
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credit card transaction data is much coarser than in other data sources like CDRs, we

have observed that this might lead to methodological problems since true entropy es-

timation methods are strongly dependent on the temporal window. Finally, we show

that, despite the predictability of consumer visitation patterns, the ordered sequence of

purchases does not contain enough information to predict next one with more than 30%

of accuracy.

5.1.2 Using Twitter to model unemployment

The problem of creating economic indicators from non traditional data sources has pow-

erful potential uses for anticipating economy evolution, detecting crisis before observing

their worst e↵ects or monitoring economy at new smaller scales. This is only possible

if all this data is a true reflection of our activity, interests, work patterns and daily

activity. In our work, we have shown this is the case using Twitter data. In particular,

we create a functional partition of an European country by considering the mobility

inferred from Twitter to eliminate municipality heterogeneity and then infer potentially

predictive variables to model economy. These regional variables are created as geograph-

ical characteristics, as Twitter penetration rate, but other are aggregations of individual

features, such as the proportion of misspellers or the geo-social connectivity. Combining

all these variables we show that unemployment rate can be well fitted by a simple linear

model, concluding that the activity reflected on social networks is really a real mirror of

society we can use to nowcast economy.

5.1.3 Information di↵usion is tolerant to intra-urban changes

How the properties of cities scale with population has attracted much interest in scientific

literature but, as far as we know, how network dynamics varies among geographical

regions had not been deeply studied until now. In this dissertation we show that not only

network density or economy scale superlinearly with the population when geographical

regions are observed but also the number of new created internal relationships (with both

individuals in the relationship belonging to the same geographical region) in time, that

is, the network is more dynamical in larger cities. In general, we see that almost 20% of

links are created and destroyed in our temporal window so it is reasonable to question

whether this fast pace of change in urban networks a↵ect the information di↵usion at the

country level. Our results indicate that, despite this varying network, the inter-urban

network remains stable with the same features in terms of connectivity and community

structure which is also reflected in being able to predict the time to infection of regions
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when di↵usion processes are simluated by only using static properties of the global

network.

5.2 Open problems

5.2.1 Improving next purchase prediction models by using geographi-

cal constraints

Through Chapter 2 we have analyzed the balance between the high predictability of

economic decisions, because we only can reach a constrained space of merchants where

making our next purchase, and the seemly random choices within this space of possi-

bilities. Obviously, a major problem in the analyzed context, where we use credit card

transaction data, is the granularity of data compared to other location sources such as

mobile phone data. But, in fact, we do not even use the geographic position of mer-

chants to predict the next place. If we used it, how much would the model accuracy be

imporved? Since time between consecutive transactions is large, compared to inter-event

times in other data sources, one might think that geography would not help too much to

get better perfomance rates but there is also information about periodic behaviors [32]

that might lead to predictive information depending on the position of the merchant: if

a model detects an user is always near a concrete place with periodic patterns, maybe it

is more likely to observe a transaction close to there. Other variables such as day of the

week, hour, etc. might also be used to improve the model so it could be fully understood

how much the impact of every family of variable is in the next-place prediction problem.

5.2.2 Using Twitter data to analyze economy in countries

In Chapter 3, we have analyzed how data can be used not only as a reflection of individu-

als but also as a way of studying intrinsic features of societies (in this case, municipalities

and regions induced by activity). In particular, we observe that Twitter penetration rate

is highly positively correlated to the unemployment rate, that is, in regions with worse

economy, people tend to use Twitter more. However, this is completely contrary to

results in literature where it is shown that countries with wealthier status exhibit higher

technology penetration rates, even measured by the proportion of Twitter users [66].

This result show a strong di↵erence that might depend on the geographical scale or the

country that it is being observed. Can we extend our analysis to di↵erent geographical

aggregations? Would we obtain analogous results in other countries? At the present

time, we are developing a similar study in Indonesia. Being able to explain economy

from non-traditional data sources like Twitter would have a strong impact because the
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administrative and public structures are not able to reach all the regions and creating

economic indicators in traditional ways is costly and, in some occasions, it is not even

possible.

5.2.3 Using behavioral models to anticipate economic indicators

Even though in Chapter 3, we analyze how the model get worse on time and explain

the particular evolution of the error, an interesting question is whether we might really

anticipate economy indicators using non-traditional data sources like Twitter or other

online social networks, search query logs, navigation patterns, etc. Since some of these

indicators are based on surveys that are carried out periodically, for instance, the most

liable unemployment indicator in Spain, building this kind of models might be used as

real-time monitoring tools of the economy. Moreover, we might analyze whether this

kind of methodologies are able to predict future values of indicators what would lead

to create mehtods to prevent crisis (unemployment incresings, stock markets shocks,

unstabilities in the import-export balance, ...) and therefore acting consequently before

all the e↵ects of a financial shock emerged.

5.2.4 Might Twitter data help to predict black economy?

After building the predictive variables related to Twitter penetration rate, educational

level, geo-social connectivity and temporal activity of regions, we build a predictive

model of the unemployment that exhibits a good performance (R2=0.64). But, obvi-

ously, it is not a perfect model and there is a high percentage of the variance that is not

explained by our methodology. There are some few possible explanations for this fact: i)

our variables are not good enough to predict better the economy ii) a linear model might

be outperformed by some other non-linear model iii) there exist some deviation from the

reality underying in the data because of some methodological mistake iv) public data

does not reflect reality because not all the economy is registered in the o� cial numbers.

Focusing on the fourth reason, might the error in our model explain black economy?

Since Twitter is a reflection of our activity and it has been shown to predict accurately

unemployment in many regions, why does the model fail in other places? We might

analyze where our model predicts lower unemployment rates than what it is o� cially

registerd and study why this is the case and whether it is related to black economy.



Chapter 5.Conclusions and future work 78

5.2.5 Analyzing economy and information di↵usion at lower scales

We have studied how to build economic indicators at the inter-regional level and, in

Chapter 4, we have discussed the relationship between the intra-urban dynamics and

the information spreading at the country level. However, in general, it is di� cult to find

statistics, economic indicators, socio-demographic data at lower scales such as neighbor-

hoods. Since we have built a model for predicting unemployment at the inter-regional

level, might we downscale this model to small areas of a city? This would lead to a com-

pletely new way of studying societies where we can disaggregate and monitor reduced

groups of people (from cities to neighborhoods, from neighborhoods to streets,...) and

analyze the reasons behind the evolution of its interests, habits and eventually economy.
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[137] Auŕelien Gautreau, Alain Barrat, and Marc Barthelemy. Global disease spread:

statistics and estimation of arrival times.Journal of theoretical biology, 251(3):

509–522, 2008.

[138] Vittoria Colizza and Alessandro Vespignani. Invasion threshold in heterogeneous

metapopulation networks.Physical Review Letters, 99(14):148701, 2007.

[139] Marc Barth́elemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro

Vespignani. Dynamical patterns of epidemic outbreaks in complex heterogeneous

networks.Journal of theoretical biology, 235(2):275–288, 2005.

[140] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie S Glance, and

Matthew Hurst. Patterns of cascading behavior in large blog graphs. In SDM,

volume 7, pages 551–556. SIAM, 2007.

[141] Stefan Stieglitz and Linh Dang-Xuan. Emotions and information di↵usion in social

media—sentiment of microblogs and sharing behavior. Journal of Management

Information Systems, 29(4):217–248, 2013.

[142] Seth A Myers, Chenguang Zhu, and Jure Leskovec. Information di↵usion and

external influence in networks. InProceedings of the 18th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 33–41. ACM,

2012.
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[153] Albert-Ĺaszĺo Barab́asi.Bursts: the hidden patterns behind everything we do, from

your e-mail to bloody crusades. Penguin, 2010.

[154] Petter Holme and Jari Saram̈aki. Temporal networks.Physics reports, 519(3):

97–125, 2012.

[155] George A Akerlof. Social distance and social decisions.Econometrica: Journal of

the Econometric Society, pages 1005–1027, 1997.

[156] Mark S Granovetter. The strength of weak ties.American journal of sociology,

pages 1360–1380, 1973.



Bibliography 92

[157] Gautier Krings, Francesco Calabrese, Carlo Ratti, and Vincent D Blondel. Urban

gravity: a model for inter-city telecommunication flows. Journal of Statistical

Mechanics: Theory and Experiment, 2009(07):L07003, 2009.

[158] John R Hipp and Andrew J Perrin. The simultaneous e↵ect of social distance and

physical distance on the formation of neighborhood ties.City & Community,8

(1):5–25, 2009.

[159] A Arenas, J Borge-Holthoefer, S Meloni, Y Moreno, et al. Discrete-time markov

chain approach to contact-based disease spreading in complex networks. EPL

(Europhysics Letters), 89(3):38009, 2010.

[160] Yamir Moreno and Alexei Vazquez. Disease spreading in structured scale-free net-

works.The European Physical Journal B-Condensed Matter and Complex Systems,

31(2):265–271, 2003.

[161] Renaud Lambiotte, Vincent D Blondel, Cristobald De Kerchove, Etienne Huens,

Christophe Prieur, Zbigniew Smoreda, and Paul Van Dooren. Geographical dis-

persal of mobile communication networks.Physica A: Statistical Mechanics and

its Applications, 387(21):5317–5325, 2008.
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