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To Ramón, Beatrizd, Leónd, J. Maŕıad, Soledadd, Lourdes, Andrea, Ri-

cardo, Sof́ıa, Bony, Fernando, Mónica, Renata, Alejandro, Marián, Ainara,

ix



x ACKNOWLEDGMENTS

Nico, Paulina, Natalia, Pablo, Susana, Gustavo, Gustavo, Susana, Santiago,

Diego, Ramón, Mónica, Nicolás, Regina, Paola, Rafa. It has been very tough

to be away from you; I love you with all my heart; you are the reason of who

I am.

To Aitorℵ. Thank you for your love, for believing in me, for listening, for

hoping with me and for me, for always wanting to help, for your compan-

ionship, for your support, for helping me move forward, and for wanting to

become better together. You are my engine. I love you.

To my parents. Thank you for believing in me, for always being there for

me, for every sacrifice you have made for me, as well as the ones we have made

together, for always encouraging me and helping me move on. You gave me

life, and you keep on giving me everything you have to give. I hope I am

worthy of it, and that I can make you proud.

To God. Just thank you. There is nothing I can give that did not come to

me from you.



Resumen

Los rendimientos financieros presentan con frecuencia una relación compleja

con observaciones previas, aśı como una ligera asimetŕıa y alta kurtosis. Como

consecuencia, debemos utilizar modelos más flexibles que sean capaces de asir

estos rasgos especiales: un proceso estocástico que sea capaz de manifestar la

relación intertemporal entre las observaciones, aśı como una distribución que

pueda capturar la asimetŕıa y las colas pesadas de manera simultánea.

La distribución Gaussiana ha sido ampliamente utilizada en la literatura

para estudiar diferentes tipos de datos; sin embargo, en algunos casos, como

el estudio de rendimientos financieros, encontramos la necesidad de incorporar

modelos más flexibles, debido a la frecuente presencia de un comportamiento

ligeramente asimétrico y colas pesadas. Para enfrentar este problema, encon-

tramos varias propuestas de familias de distribuciones.

Por ejemplo, Azzalini (1985) presentó la distribución Skew-Normal, que es

capaz de capturar la falta de simetŕıa subyacente en ciertos tipos de datos.

Además, Lange y Sinsheimer (1993), a través de la distribución Slash, nos

enseñan una manera de captar la kurtosis, una habilidad de gran importancia

en este tipo estudios. Para unir estas dos caracteŕısticas, se han presentado

otras opciones, como la distribución Skew-Slash, propuesta por Wang y Genton

(2006), que nos otorga la posibilidad de percibir tanto la asimetŕıa como la

xi



xii RESUMEN

presencia de colas pesadas.

En esta tesis, en primer lugar, se propone utilizar un proceso GARCH

(Generalized Autoregressive Conditional Heteroskedastic), propuesto por Boller-

slev (1986), con innovaciones Skew-Slash para modelar series temporales de

rendimientos de datos financieros en el caso univariante y, en segundo lugar,

un modelo de Correlación Condicional Dinámica, propuesto por Tse y Tsui

(2002), con innovaciones Skew-Slash en el caso multivariante.

En el caso univariante, derivamos expresiones expĺıcitas de los momentos de

órdenes altos para la distribución propuesta, de modo que pueda mostrarse su

capacidad para incorporar al mismo tiempo una ligera falta de simetŕıa y alta

kurtosis. Además, obtendremos los estimadores máximo verośımiles y propon-

dremos un procedimiento de inferencia Bayesiana para el modelo GARCH con

innovaciones Skew-Slash e ilustramos el desempeño de la metodoloǵıa prop-

uesta utilizando tanto simulaciones como un ejemplo de datos reales a través

de los log-rendimientos del ı́ndice de Standard & Poor’s desde el 3 de enero de

2000 hasta el 28 de diciembre de 2013.

Para el caso multivariante, proponemos una extensión adecuada a través

del modelo de Correlacion Condicional Dinámica con innovaciones Skew-Slash

multivariantes para trabajar con rendimientos financieros desde el punto de

vista Bayesiano, el cual se ilustra ejecutando un algoritmo MCMC (Markov

Chain Montecarlo) para datos simulados, aśı como datos reales tomados de

los precios de cierre diarios de los ı́ndices de Dow Jones y NASDAQ desde el

2 de enero de 1996 hasta el 29 de diciembre de 2006 en un primer ejemplo,

además de los log-rendimientos diarios de los ı́ndices DAX, CAC40 y Nikkei

desde el 10 de octubre de 1991 hasta el 30 de diciembre de 1997 en un segundo

ejemplo.



Abstract

Financial returns often present a complex relation with previous observations,

along with a slight skewness and high kurtosis, which can not typically be

captured via Gaussian distributions. As a consequence, we need to develop

flexible models that are able to capture these features. To respond to this

problem, several families of distributions have been proposed.

For example, Azzalini (1985) presented the Skew-Normal distribution, which

is able to capture the underlying skewness. Also, Lange and Sinsheimer (1993)

show us a way to pick up the kurtosis by means of the Slash distribution, a

much needed feature in this type of study. Other distributions such as the

Skew-Slash proposed by Wang and Genton (2006) allow us to capture both

skewness and heavy tails.

In this thesis, we begin by proposing the use of a Generalized Autoregres-

sive Conditional Heteroskedastic (GARCH) process, introduced by Bollerslev

(1986), with Skew-Slash innovations to model univariate financial time series

of returns. In this case, we derive formulae for the higher order moments of this

distribution, which show that this distribution can incorporate both moderate

skewness and high kurtosis. We also obtain the Maximum Likelihood estima-

tions and we propose a Bayesian inference procedure for the GARCH model

with Skew-Slash innovations, and illustrate the performance of our proposed

xiii
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methodology using simulations, as well as a real data example using the log-

returns of the Standard & Poor’s index from January 3rd, 2000 to December

28th, 2013.

Afterwards, for the multivariate case, we propose to use an extension of

the GARCH process, such as the Dynamic Conditional Correlation model,

introduced by Tse and Tsui (2002), with multivariate Skew-Slash innovations

for financial returns in a Bayesian framework, and it is illustrated using a

Markov Chain Montecarlo (MCMC) within Gibbs algorithm performed on

simulated data, as well as real data drawn from the daily closing prices of

the Dow Jones and NASDAQ indices from January 2nd, 1996 until December

29th, 2006 on a first example, and the daily log-returns of the DAX, CAC40,

and Nikkei indices between October 10th, 1991 and December 30th, 1996 in a

second example.



Chapter 1

Introduction

Modeling financial data sets can be a complicated task because working with

financial returns often presents the challenge of having to model data with

a complex relation to previous observations. Besides this, we often find that

the residuals, after fitting a suitable model, usually exhibit a slight lack of

symmetry as well as a high kurtosis.

Financial returns often reflect a structure that may be reasonably explained

with conditional heteroskedastic models, such as the Generalized Autoregres-

sive Conditional Heteroskedastic (GARCH) process, proposed by Bollerslev

(1986), the Exponential Generalized Autoregressive Conditional Heteroskedas-

tic (EGARCH) model of Nelson (1991), the Glosten - Jagannathan - Runkle

GARCH (GJR-GARCH) model by Glosten, Jagannathan, and Runkle (1993),

or the Threshold GARCH (TGARCH) model by Zakoian (1994), in the uni-

variate case.

For the multivariate case, it is important to consider an appropriate gener-

alization, and several proposals can be found in the literature. First, Dynamic

Conditional Correlation Models have been proposed by Tse and Tsui (2002)

1



2 CHAPTER 1. INTRODUCTION

– that will be used later in this thesis –; Bollerslev (1990); Jeantheau (1998);

Engle and Sheppard (2001); Engle (2002); Cappiello, Engle, and Sheppard

(2006); Billio, Caporin, and Gobbo (2006), and Aielli (2013).

Other models for multiple returns have been proposed. Among others,

Bollerslev, Engle, and Woolridge (1988) propose a VEC model based on con-

ditional covariance matrices; Engle, Granger, and Kraft (1984) present a mul-

tivariate ARCH model; Engle, Ng, and Rothschild (1990) present a factor

structure for the conditional covariance matrix; Engle and Kroner (1995)

present a restricted version of the VEC model with their Baba-Engle-Kraft-

Kroner (BEKK) model; Alexander and Chibumba (1997) present the Orthogo-

nal GARCH (O-GARCH) model, later geneneralized by van der Weide (2002)

with the Generalized Orthogonal GARCH (GO-GARCH) model; Vrontos, Del-

laportas, and Politis (2003) present their Full Factor GARCH model, and

Kawakatsu (2006) presents a generalization to the EGARCH model of Nelson

(1991) by means of the Matrix Exponential GARCH model. See Tsay (2010)

for a detailed review on financial return models. See also Silvennoien and

Teräsvirta (2008) for an extended review on multivariate GARCH models.

In most of the previous models, it is assumed that the standardized resid-

uals of the models follow a Gaussian distribution. This is a very appealing

tool in statistical and probabilistic modeling; nevertheless, this type of model

is inevitably binded to symmetry and does not allow for heavy tails, among

other properties. Because of this, in the past few decades, the necessity of

more flexible distributions has become patent.

If we focus particularly on the skewness and kurtosis, that are precisely the

main characteristics that are very often found in financial time series of returns,

we can find some alternative families of distributions proposed in the litera-
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ture. For instance, Azzalini (1985) developed the Skew-Normal distribution,

later generalized to the multivariate case by Azzalini and Dalla Valle (1996)

and by Arellano-Valle, Bolfarine, and Lachos (2005), that allows the presence

of skewness. On the other hand, one way to capture thick tails is presented by

Lange and Sinsheimer (1993) with the family of Normal/independent distri-

butions. Each one of these distributions present certain advantages; however,

they lack the possibility of capturing both skewness and kurtosis at the same

time, and we should notice that these characteristics can certainly present

concurrently in some data sets, just like it happens in the case of interest

displayed in the present thesis.

To solve this problem, we can find several proposals, a number of which

can be included as particular cases of the multivariate family of distribu-

tions presented by Lachos, Labra, and Ghosh (2007): the family of Skew-

Normal/independent distributions. The elements in this family combine the

properties of the Skew-Normal distribution with the idea presented by Lange

and Sinsheimer (1993) with the Normal/independent family of distributions.

As a result, they obtain a new family of distributions that are more flexi-

ble than the Gaussian one and allow us to capture skewness and heavy tails

simultaneously.

As it could be expected, the case where the stochastic component of a con-

ditional heteroskedastic process is assumed to be Gaussian has been widely

explored. However, it does not seem to be able to capture the essence of the

returns in an adequate way because, as we have expressed before, the resid-

uals after fitting conditional heteroskedastic models usually exhibit moderate

skewness and high kurtosis. As a consequence, the normal distribution is not

able to properly perform its modeling task. Instead, we should pursue the
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use of more flexible models that allow us to capture the characteristics of the

studied data in a more appropriate manner.

In the financial literature, a number of alternatives to Gaussian innovations

have been proposed. For the univariate case, Bollerslev (1987) proposed to

capture the high kurtosis in the innovations with a Student’s-t distribution,

and with the same objective, Nelson (1991) considered the Generalized Error

Distribution (GED), and Bai, Russell, and Tiao (2003) assumed a mixture

of two zero mean Gaussian distributions. For the multivariate case, Galeano

and Auśın (2010) present a finite mixture of Normal distributions. Extensions

have also been developed to capture skewness such as the Skew-Normal, the

Skew-t, and the Skew-GED distributions of Fernández and Steel (1998), among

others. We can also find in Fioruci, Ehlers, and Andrade (2014) the study of

multidimensional financial returns with Skew-t innovations.

Nevertheless, it still has not been possible to show the existence of a single

parametric distribution that adequately describes the behavior of financial

returns in all situations.

Some suitable options capable to capture both the skewness and high kur-

tosis could be the Skew-t distribution developed by Jones and Faddy (2003),

as proposed by Fioruci, Ehlers, and Andrade (2014), or the Skew-Slash dis-

tribution by Wang and Genton (2006), among others. Let us mention that

these two distributions can be understood as particular cases of the Skew-

Normal/independent family.

An interesting feature of the Skew-Slash distribution is that it is easy to

simulate observations of this distribution by means of its alternative stochastic

representation because we would only need to generate Gaussian random vari-

ables and a Beta random variable, and there are algorithms widely available to
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undertake this task. This is important to perform Bayesian inference as it is

done in chapters 3 and 4. Also, we may use the analytical expressions for the

mean and variance to ensure a structure that meets the restrictions required

by this kind of process of null mean and unit variance. As well as the men-

tioned perks, we find that the Skew-Slash distribution consists on an infinite

scale-mixture of Skew-Normal distributions, which allows the assumption that

the variance is not fixed for all the members of the population, and we could

not possibly believe that all of the factors that affect a financial asset have the

same variance, or that they always have the same strength to affect the finan-

cial returns. Additionally, the multivariate Skew-Slash distribution presents

with the advantage of being closed under linear transformations. This means

that not only are linear transformations of this variables also distributed ac-

cording to a Skew-Slash, but also the marginal distributions are ensured to

follow this same probability model, as shown in Proposition 3 of Wang and

Genton (2006).

Given these findings, we propose the Skew-Slash distribution, presented

by Wang and Genton (2006), as an alternative model for the innovations in

a GARCH model or a Dynamic Conditional Correlation model, depending on

the framework we are working in (univariate or multivariate). Additionally, let

us notice that the Skew-Slash distribution has also been applied successfully

to describe data with similar characteristics in other settings; see e.g. Lachos,

Garibay, Labra, and Aoki (2009).

For the univariate case, we consider the fact that inference for financial

return models can be carried out using either the maximum likelihood or the

Bayesian approach, and we shall consider both methods. Firstly, maximum

likelihood estimation is carried out using a direct constrained optimization
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algorithm. Second, we introduce an approach to Bayesian inference for the

Skew-Slash distribution which is based on that of Lachos, Dey, and Cancho

(2009) with some modifications that enable us to account for the moment

restrictions inherent to the GARCH framework.

For the multivariate case, we must keep in mind that the Skew-Slash dis-

tribution is an infinite mixture of Skew-Normal distributions and, as a conse-

quence, its probability density function presents a complicated form that would

make it very difficult to perform Maximum Likelihood, via either constrained

optimization or the EM algorithm, appropriately in the financial framework,

while Bayesian inference is more powerful and is able to undertake the problem

we want to present. Additionally, the Bayesian framework naturally provides

the possibility to take into account the intrinsic uncertainty presented by the

correlations and volatilities of the assets under study, as well as the one to

incorporate expert information, when available. Hence, our proposal for the

multivariate case is to perform inference for multidimensional financial returns

by means of a Dynamic Conditional Correlation model with Skew-Slash inno-

vations, from a Bayesian approach.

The rest of the thesis is structured as follows. In chapter 2, we intro-

duce the univariate and multivariate versions of the Skew-Slash distribution

along with some of its properties and moments, as a particular member of

the Skew-Normal/independent family of distributions, and we also show the

way in which this family is constructed, along with some of its properties as

a whole. In chapter 3, the GARCH process with univariate Skew-Slash inno-

vations is detailed together with the methodologies implemented to perform

inference from the Maximum Likelihood and Bayesian points of view; to il-

lustrate the performance of the present models, we present the fitting of the
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parameters in simulation studies, and we also estimate a model to analyze

the Standard & Poor’s index between January 3rd, 2000 and December 28th,

2013. In chapter 4, we outline the Dynamic Conditional Correlation model

with multivariate Skew-Slash innovations and we present the implementation

of a Bayesian methodology to perform the inference; to illustrate the perfor-

mance of the model we propose, as well as its respective methodology, we fit

the parameters of a 2-dimensional and a 3-dimensional simulated data sets,

besides showing the estimation results of the analysis of two real data sets:

firstly, we study the Dow Jones and NASDAQ returns between January 2nd,

1996 and December 29th, 2006; afterwards, we work with the log-returns of

the DAX, CAC40, and Nikkei indices from October 10th, 1991 until Decem-

ber 30th, 1997. Finally, we present our conclusions and some future lines of

research in chapter 5.
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Chapter 2

Some flexible distributions

In the present chapter, we present a review of a number of distributions that

are generalizations or extensions of the Gaussian distribution with the purpose

of allowing for more flexibility in their structure. In particular, we focus on

the possibility of capturing the skewness and kurtosis underlying in certain

types of data sets.

To do this, we will take up a journey that begins in the normal or Gaussian

distribution and leads to a better understanding of the Skew-Slash distribu-

tion, proposed by Wang and Genton (2006), seen as a particular member of the

Skew-Normal/independent family of distributions, defined by Lachos, Labra,

and Ghosh (2007).

In the pursuit of a better comprehension of the Skew-Slash distribution,

we will be interested in its structure, certain moments and an alternative

stochastic representation that allows us to simulate observations from it in

an easy way, as well as playing an important role in the design of a Bayesian

methodology for the inference in models that might incorporate the use of this

distribution.

9
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2.1 Univariate distributions

We have mentioned before that the uses of the Gaussian distribution have

been widely explored in different frameworks. In fact, it is a fundamental

tool in probability and statistics and, even though it is not a very flexible

distribution because of its symmetry and the fact that it does not allow for

very heavy tails, among other properties, it is still a fundamental distribution

in the construction of other distributions that allow for more flexibility. In

the present section, we will review the Gaussian distribution as well as other

more flexible distributions based on it, on our way of defining the Skew-Slash

distribution, that is the center of the present thesis.

2.1.1 Normal distribution

We say that a random variable, X, follows a normal or Gaussian distri-

bution with location parameter η and dispersion parameter σ, denoted by

X ∼ N1 (η, σ), if its probability density function is given by

φ1 (x|η, σ) =
1√
2πσ

exp

{
−1

2

(
x− η
σ

)2
}

;x ∈ R,

where η ∈ R and σ ≥ 0.

Let us notice that, if X ∼ N1 (η, σ), then its mean is given by

E (X) = η,

its variance is given by

V (X) = σ2,

its skewness coefficient is given by

S (X) = 0,
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and kurtosis coefficient given by

K (X) = 3.

As we can see, the Gaussian distribution is symmetric around its mean,

and has a fixed kurtosis, regardless of the value of its parameters.

It is well known that it is not possible to find a closed form for the cumu-

lative distribution function of the normal distribution, but, if X is a standard

normal random variable, i.e., X ∼ N1 (0, 1), then we will denote its cumulative

distribution function as Φ1 (x). In this case, we can also compact the notation

for the standard normal density and just write φ1 (x).

2.1.2 Student’s-t distribution

Another recurred distribution that allows for heavier tails than the Gaussian

one is the Student’s-t distribution.

We say that a random variable, V , follows a Student’s-t distribution with

location parameter η, scale parameter σ, and kurtosis parameter ν (also known

as the degrees of freedom), denoted by V ∼ T1 (η, σ, ν), if its probability

density function is given by

t1 (v|η, σ, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνσ

[
1 + ν−1

(
v − η
σ

)2
]− ν+1

2

;w ∈ R,

where η ∈ R, σ ≥ 0, and ν ∈ R+, and we will denote its cumulative distribution

function as T1 (v|η, σ, ν).

The Student’s-t distribution admits an alternative stochastic representa-

tion, given by

V ≡ η +
√
νU−1/2X,
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where ≡ signifies equivalence in distribution, and U ∼ G
(
ν
2
, 1

2

)
, independent

from X, a normal random variable with zero mean and standard deviation σ.

Analogously, we can write

V ≡ η + U−1/2X,

where U ∼ G
(
ν
2
, ν

2

)
independent from X ∼ N1 (0, σ).

Let us notice that, if V ∼ T1 (η, σ, ν), then its mean is given by

E (V ) = η,

its variance is given by

V (V ) =
ν

ν − 2
σ2 for ν > 2,

its skewness coefficient is given by

S (V ) = 0,

and its kurtosis coefficient is given by

K (V ) = 3
(ν − 1)2

(ν − 2) (ν − 4)
for ν > 4.

As we can see, the Student’s-t distribution is symmetric, but, unlike the

Gaussian distribution, it is able to present different levels of kurtosis, depend-

ing on its parameters. Furthermore, let us notice that the Student’s-t distribu-

tion is a particular member of the Normal/independent family of distributions,

that will be detailed in section 2.1.4.

2.1.3 Slash distribution

According to the definition given by Lange and Sinsheimer (1993), we say that

a random variable, V , follows a Slash distribution with location parameter η,
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scale parameter σ, and kurtosis parameter ν, denoted as V ∼ SL1 (η, σ, ν), if

its probability density function is given by

fV (v) = ν

1∫
0

uν−1φ1

(
v|η, u−1σ

)
du; v ∈ R,

where η ∈ R, σ ≥ 0, and ν > 0.

This distribution admits an alternative stochastic representation given by

V ≡ η + U−1X,

with U ∼ Be (ν, 1) independent from X ∼ N1 (0, σ).

Let us notice that, if V ∼ SL1 (η, σ, ν), then its mean is given by

E (V ) = η,

its variance is given by

V (V ) = σ2 ν

ν − 2
for ν > 2,

its skewness coefficient is given by

S (V ) = 0,

and its kurtosis coefficient is given by

K (V ) = 3
(ν − 2)2

ν (ν − 4)
for ν > 4.

As we can see, the Slash distribution is always symmetrical, and allows

for different kurtosis coefficients, depending on the value of ν. In fact, it

has a similar structure than the Student’s-t distribution because, just like it,

the Slash distribution is also a particular member of the Normal/independent

family of distributions, detailed below.
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2.1.4 Normal/independent family of distributions

We say that a random variable, V , follows a Normal/independent distribution,

as defined by Lange and Sinsheimer (1993), with location parameter η and

scale parameter σ if its probability density function is given by

fV (v) =

∫
R

φ1

(
v|η, u−1σ

)
dH (u) ; v ∈ R,

where η ∈ R, σ ≥ 0, and H (u|ν) is the cumulative distribution function of a

unidimensional positive random variable U , indexed by the parameter ν, and

we denote it as V ∼ NI1 (η, σ;H).

This distribution also offers the possibility of an alternative stochastic rep-

resentation, given by

V ≡ η + U−1X,

where X ∼ N1 (0, σ). Also, U and X are independent.

Let us notice that, if V ∼ NI1 (η, σ;H), then we can find some general

expressions for several central moments. Its mean is given by

E (V ) = η,

its variance is given by

V (V ) = σ2E
(
U−2

)
if E (U−2) <∞, its skewness coefficient is given by

S (V ) = 0,

and its kurtosis coefficient is given by

K (V ) = 3
E (U−4)

E2 (U−2)
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if E (U−4) <∞.

As we can see, this family of distributions always presents a symmetric

behavior, but allows for different structures of the tails, and the kurtosis coef-

ficient is entirely defined by the behavior of the so-called independent variable,

U .

We must acknowledge that the Normal/independent family of distribu-

tions includes the Student’s-t and the Slash, as we mentioned before, besides

the Power Exponential, and the Contaminated Normal distributions, among

others, all of which have heavier tails than the Gaussian distribution.

2.1.5 Skew-Normal distribution

According to Azzalini and Dalla Valle (1996),we say that a random variable, Z,

follows a Skew-Normal distribution with location parameter η, scale parameter

σ, and skewness parameter λ, denoted as Z ∼ SN 1 (η, σ, λ), if its probability

density function is given by

fZ (z) = 2φ1 (z|η, σ) Φ1

(
λ
z − η
σ

)
; z ∈ R,

where η ∈ R, σ ≥ 0, and λ ∈ R. See also O’Hagan and Leonard (1976) and

Azzalini (1985).

Let us notice that, in particular, positive values of λ imply positive skew-

ness, while negative values of λ imply negative skewness, and the distribution

reduces to the normal when λ = 0.

One useful property of the Skew-Normal distribution is that it admits an

alternative stochastic representation, as shown in Henze (1986), given by

Z ≡ η + σ
(
δ |X0|+

√
1− δ2X1

)
, (2.1)
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where δ = λ/
√

1 + λ2, |δ| < 1, and X0 and X1 are independent identically

distributed standard normal random variables.

Let us notice that, if Z ∼ SN 1 (η, σ, λ), then its mean is given by

E (Z) = η +

√
2

π
σδ,

its variance is given by

V (Z) = σ2

(
1− 2

π
δ2

)
,

its skewness coefficient is given by

S (Z) =
√
π

4− π
(π − 2δ2)3/2

δ3,

and its kurtosis coefficient is given by

K (Z) =
3π2 − 12πδ2 + (8π − 12) δ2

(π − 2δ2)2 .

As we can see, this is a more flexible distribution, that allows for both

diverse skewness and kurtosis coefficients, but we must consider that δ alone,

or equivalently λ, determines both coefficients entirely.

2.1.6 Skew-t distribution

We say that a random variable, W , follows a Skew-t distribution, as defined

by Azzalini and Capitanio (2003), with location parameter η, scale parameter

σ, location parameter λ, and kurtosis parameter ν, and denote it as W ∼

ST 1 (η, σ, λ, ν), if its probability density function is of the form

fW (w) = 2t1 (w|η, σ, ν)T1

 √
ν + 1λ (w − η)

σ
√
σ2 (w − η)2 + ν

∣∣∣∣∣∣ 0, 1, ν + 1

 ;w ∈ R,

where η ∈ R, σ ≥ 0, λ ∈ R, and ν ∈ R+.
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The Skew-t distribution also admits an alternative stochastic representa-

tion, given by

W ≡ η + U−1Z,

where Z ∼ SN 1 (0, σ, λ) independent from U with probability density function

given by

fU (u) =
2
(
ν
2

) ν
2

Γ
(
ν
2

) uν−1 exp
{
−ν

2
u2
}

I (u > 0) .

In other words, U2 ∼ G
(
ν
2
, ν

2

)
.

Let us notice that, if W ∼ ST 1 (η, σ, λ, ν), then its mean is given by

E (W ) = η +
√
νπ

Γ
(
ν−1

2

)
Γ
(
ν
2

) σδ,

for ν > 1, its variance is given by

V (W ) = σ2

 ν

ν − 2
− ν

π

(
Γ
(
ν−1

2

)
Γ
(
ν
2

) )2

δ2

,
for ν > 2, its skewness coefficient is given by

S (W ) =

√
ν

π
δ

3Γ2
(
ν
2

)
a11 + δ2 ν

2
a21[

ν
ν−2

Γ2
(
ν
2

)
− ν

π
δ2Γ2

(
ν−1

2

)]3/2 , (2.2)

for ν > 3, where

a11 =
ν

2
Γ

(
ν − 3

2

)
− ν

ν − 2
Γ

(
ν − 1

2

)
and

a21 =
4

π
Γ3

(
ν − 1

2

)
− Γ2

(ν
2

)
Γ

(
ν − 3

2

)
and its kurtosis coefficient is given by

K (W ) =
3 ν2

(ν−2)(ν−4)
Γ4
(
ν
2

)
+ 6 ν

π
δ2a12 + ν2

π
δ4a22

ν2
[

1
(ν−2)2

Γ4
(
ν
2

)
− 2

π(ν−2)
δ2Γ2

(
ν
2

)
Γ2
(
ν−1

2

)
+ 1

π2 δ4Γ4
(
ν−1

2

)] , (2.3)
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for ν > 4, where

a12 = Γ2
(ν

2

)
Γ

(
ν − 1

2

)[
ν

ν − 2
Γ

(
ν − 1

2

)
− νΓ

(
ν − 3

2

)]
,

a22 = Γ

(
ν − 1

2

)[
2Γ2

(ν
2

)
Γ

(
ν − 3

2

)
+

3

π
Γ3

(
ν − 1

2

)]
.

As we can see, the Skew-t distribution allows for a much more flexible

structure than the distributions that we have reviewed up until this moment

because, depending on the values of λ and ν, we can have different values of

the skewness and kurtosis coefficients, just like the Skew-Slash distribution,

that is detailed below.

Furthermore, let us notice that both the Skew-t distribution and the Skew-

Slash distribution are both members of the Skew-Normal/independent distri-

bution, that will be explained in section 2.1.8.

To illustrate the ability of generating asymmetric densities, as well as dis-

tributions with heavy tails, in Figure 2.1 we show the value of the skewness

coefficient of the Skew-t distribution for different values of λ ∈ [−10, 10] and

ν ∈ [3.1, 10], in the same way that Figure 2.2 illustrates the kurtosis coefficient

for values of λ ∈ [−10, 10] and ν ∈ [4.1, 10].

In Figure 2.1, we can see that, except for values of ν lower than 4, the

skewness coefficient is negligible, and it does not change importantly when

the parameters stay away from the asymptotic behavior. On the other hand,

in Figure 2.2 we find that λ does not affect highly the values of the kurtosis

coefficient.

2.1.7 Skew-Slash distribution

According to Wang and Genton (2006) we say that, if Z is a Skew-Normal

random variable and U is an independent, beta distributed random variable,
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Figure 2.1: Skewness coefficient of the Skew-t distribution as a function of λ

and ν

U ∼ Be (ν, 1), where ν > 0, then we will say that W ≡ U−1Z follows a

standard Skew-Slash distribution, denoted as W ∼ SSL1 (λ, ν)1, with λ ∈ R.

We can also extend this notion to a four parameter distribution. We say

that a random variable, W , follows a Skew-Slash distribution with location

parameter η, scale parameter σ, skewness parameter λ, and kurtosis parameter

ν if

W ≡ η + σU−1Z,

where Z ∼ SN 1 (0, 1, λ), independent from U . In this case, we shall write

W ∼ SSL1 (η, σ, λ, ν).

The probability density function of a Skew-Slash random variable is given

1In fact, Wang and Genton (2006) define the Skew-Slash variable using U−1/2, but this

definition is equivalent.
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Figure 2.2: Kurtosis coefficient of the Skew-t distribution as a function of λ

and ν

by

fW (w) =

1∫
0

2νuν−1φ1

(
w|η, u−2σ2

)
Φ1

(
λu (w − η)

σ2

)
du;w ∈ R,

where η ∈ R, σ ≥ 0, λ ∈ R, and ν ∈ R+.

Consequently, we can see that the Skew-Slash distribution is a scale-mixture

of a variable with a Skew-Normal distribution.

A more elaborate version of an alternative stochastic representation for the

Skew-Slash distribution is given by

W ≡ η + σU−1
(
δ |X0|+

√
1− δ2X1

)
, (2.4)

where δ = λ/
√

1 + λ2, which implies that −1 < δ < 1. As we have mentioned

before, this representation will be very useful in the context of Bayesian infer-

ence.
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Moments of the univariate Skew-Slash distribution

Although expressions for the mean and variance of the Skew-Slash distribution

were given in Wang and Genton (2006), they do not provide explicit expres-

sions for the higher order moments. In order to show that the Skew-Slash

distribution is able to capture both moderate skewness and high kurtosis, we

shall derive the higher order moments below. To do this, the results given in

the following lemma are useful.

Lemma 1 For j ∈ N,

1. If U ∼ Be (ν, 1), then

E
(
U−j

)
=

ν

ν − j
, for ν > j.

2. If Z ∼ SN 1 (λ), then

E
(
Zj
)

= 2(j−2)/2 π−1

(
1

1 + λ2

)j/2 j∑
k=0

akjλ
k,

where

akj =

(
j

k

)(
1 + (−1)j−k

)
Γ

(
k + 1

2

)
Γ

(
j − k + 1

2

)
,

for k = 0, 1, . . . , j. In particular, akj = 0 if j − k is an odd number.

Proof

1. For j < ν, E (U−j) = B (ν, 1) /B (ν − j, 1), where B(·, ·) is the beta

function and the result follows.
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2. See e.g. Henze (1986).

�

These results can be used to derive the expectation and central moments

of the Skew-Slash distribution, as summarized in the following proposition.

The proof for the mean is available in Wang and Genton (2006) and the proof

of the formula for the central moments is given in the Appendix A.

Proposition 2 If W ∼ SSL1 (η, σ, λ, ν), then

1. The expectation of W is given by

E (W ) = η + σ

(
2

π

)1/2

δ
ν

ν − 1
, (2.5)

for ν > 1.

2. For k ∈ N, the central moments of the Skew-Slash distribution are given

by

mj [W ] = E
{

[W − E (W )]j
}

= 2(j−2)/2σj
(

1

1 + λ2

)j/2 j∑
l=0

cljλ
l, (2.6)

for ν > j, where

clj =
l∑

m=0

bm,j−l+m,j,

and

bm,j−l+m,j =

(−1)l−m
[
1 + (−1)j−l

]
π−

l−m+2
2

ν

ν − (k − l +m)

(
ν

ν − 1

)l−m
(
j

l

)(
l

m

)
Γ

(
m+ 1

2

)
Γ

(
j − l + 1

2

)
for fixed j, fixed l ∈ {0, 1, . . . , j}, and m ∈ {0, 1, . . . , l}, respectively. In

particular, note that clj = 0 if j − l is an odd number.
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Given the general expression of the central moments of the Skew-Slash

distribution given in (2.6), it is straightforward to obtain the variance and

the skewness and kurtosis coefficients of W , as summarized in the following

Corollary. Note that the formula for the variance was also derived in Wang

and Genton (2006).

Corollary 3

1. The variance of the Skew-Slash distribution is given by

V (W ) = m2 [W ] = σ2 c02 + c22λ
2

1 + λ2
,

where

c02 =
ν

ν − 2
, (2.7)

c22 =
ν

ν − 2
− 2

π

(
ν

ν − 1

)2

. (2.8)

Thus,

V (W ) = σ2

(
ν

ν − 2
− δ2

(
ν

ν − 1

)2
2

π

)
for ν > 2. (2.9)

2. The skewness coefficient of the Skew-Slash distribution is given by

S (W ) =
m3 [W ]

m2 [W ]3/2
= 21/2 c13λ+ c33λ

3

(c02 + c22λ2)3/2
, (2.10)

for ν > 3, where c02 and c22 are given in (2.8) and

c13 =
3

π1/2

(
ν

ν − 3
− ν

ν − 2

ν

ν − 1

)
,

c33 =
4

π3/2

(
ν

ν − 1

)3

− 3

π1/2

ν

ν − 2

ν

ν − 1
+

2

π

ν

ν − 3
.
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3. The kurtosis coefficient of the Skew-Slash distribution is given by

K (W ) =
m4 [W ]

m2 [W ]2
= 2

c04 + c24λ
2 + c44λ

4

(c02 + c22λ2)2 , (2.11)

for ν > 4, where c02 and c22 are given in (2.8) and

c04 =
3

2

ν

ν − 4
,

c24 =
6

π

ν

ν − 2

(
ν

ν − 1

)2

− 12

π

ν

ν − 3

ν

ν − 1
+ 3

ν

ν − 4
,

c44 = − 6

π2

(
ν

ν − 1

)4

+
12

π

ν

ν − 2

(
ν

ν − 1

)2

− 8

π

ν

ν − 3

ν

ν − 1
+

3

2

ν

ν − 4
,

respectively.

A direct consequence of these results is that the Skew-Slash distribution

is able to generate moderate skewness and high kurtosis. To illustrate this,

Figures 2.3 and 2.4 show some values of the skewness and the kurtosis coef-

ficients for values of λ and ν in a grid of points uniformly distributed in the

set [−10, 10]× [4.1, 10] and where η and σ are chosen to have zero mean and

variance equal to 1.

Let us notice that the skewness and kurtosis coefficients do not depend on

η or σ, but only on λ and ν. Also, observe that, as with the Skew-Normal

distribution, the skewness coefficient is 0 for λ = 0, positive for positive values

of λ, and negative for negative values of λ. Note also that ν has a small

effect on the skewness. Also, the kurtosis coefficient gets larger as ν decreases.

Besides, λ has only a small effect on the kurtosis. Also, it can be observed

that, except for small values of ν between 4 and 5, the skewness changes very

little with ν and, equally, the dependence of the kurtosis on λ is relatively low.

Additionally, Figure 2.5 shows the values of the skewness and kurtosis

obtained for the points in the grid. The image shows that, even for moderate
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Figure 2.3: Skewness coefficient of the Skew-Slash distribution as a function

of λ and ν

skewness, the kurtosis can be very high. Finally, notice that the Skew-Slash

distribution is not able to generate very high skewness. However, this is not a

drawback for the analysis of financial returns, in which the skewness is typically

slight. In fact, this is precisely the kind of characteristic that we are looking

for, as for financial returns the skewness is typically slight.

Let us notice that, as we mentioned before, just like the Skew-t dis-

tribution, the Skew-Slash distribution is a particular member of the Skew-

Normal/independent family of distributions, that is detailed in section 2.1.8.

These two distributions clearly share a common structure, but they also

have differences. As we can see from Figures 2.1 and 2.3, the structure of

the skewness coefficient in both distributions is quite distinct, specially taking

into account the fact that the Skew-t distribution remains almost constant
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Figure 2.4: Kurtosis coefficient of the Skew-Slash distribution as a function of

λ and ν
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Figure 2.5: Values of the skewness and kurtosis for the Skew-Slash distribution
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and very close to 0 when the parameter values are away from the asymptotic

behaviors. On the other hand, Figures 2.2 and 2.4 show us that the structure

of the kurtosis coefficient is quite similar in both cases, with the difference

that the Skew-t distribution appears to allow for heavier tails without the

need of getting too close to the asymptote. Furthermore, we can see that

the structure of the higher order moments shown in (2.2) and (2.10) for the

skewness coefficients, as well as in (2.3) and (2.11) for the kurtosis coefficients,

is a bit more simple for the Skew-Slash distribution.

2.1.8 Skew-Normal/independent family of distributions

A generalization of the sort of distributions that we have studied so far, that

allows for the presence of skewness and kurtosis, can be found in Lachos,

Labra, and Ghosh (2007), and we now take into account a particular case,

where our random variables are unidimensional. They propose a new family

of distributions: the Skew-Normal/independent.

Considering the definition given by Lachos, Labra, and Ghosh (2007), and

setting the univariate case as a particular one from their multivariate proposal,

we say that a random variable, W , follows a Skew-Normal/independent distri-

bution with location parameter η, scale parameter σ, and skewness parameter

λ if its probability density function is of the form

fW (w) = 2

∫
R+

φ1

(
w|η, u−1σ

)
Φ1

(
uλ
w − η
σ

)
dH (u);w ∈ R;

Its alternative stochastic representation is given by

W ≡ η + U−1Z,
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where Z ∼ SN 1 (0, σ, λ), and U and Z are independent2.

An even more detailed stochastic representation that incorporates (2.1)

leads to the following expression.

W ≡ η + σδX + U−1σ
√

1− δ2X1,

where X = U−1 |X0|, and X0 and X1 are independent identically distributed

standard normal random variables, and δ = λ/
√

1 + λ2; defined this way,

δ ∈ (−1, 1).

Proposition 7 in the paper by Lachos, Labra, and Ghosh (2007) gives

explicit expressions for the mean and variance of a Skew-Normal/independent

random variable by explaining us that, if W ∼ SNI1 (η, σ, λ;H), then

� If E (U−1) <∞, then

E (W ) = η +

√
2

π
E
(
U−1

)
σδ;

� If E (U−2) <∞, then

V (W ) = E
(
U−2

)
σ2 − 2

π
E2
(
U−1

)
σ2δ2.

Besides this, if W ∼ SNI1 (η, σ, λ;H), then its skewness coefficient is

given by

S (W ) =

(
2

π

)1/2 3δ [E (U−3)− E (U−1)E (U−2)] + δ3
[

4
π
E3 (U−1)− E (U−3)

][
E (U−2)− 2

π
δ2E2 (U−1)

]3/2
2Lachos, Labra, and Ghosh (2007) define the stochastic representation of the Skew-

Normal/independent random variables or random vectors using U−1/2 instead of U−1, but

this is an equivalent definition, and it is more convenient for the work we will develop with

the Skew-Slash distribution.
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if E (U−3) <∞, and its kurtosis coefficient is given by

K (W ) =
3E (U−4) + 12

π
δ2E (U−1) b1 + 4

π
δ4E (U−1) b2

E2 (U−2)− 4
π
δ2E2 (U−1)E (U−2) + 4

π2 δ4E4 (U−1)

if E (U−4) <∞, where

b1 = E
(
U−1

)
E
(
U−2

)
− 2E

(
U−3

)
,

and b2 = 2E
(
U−3

)
+

3

π
E3
(
U−1

)
.

2.2 Multivariate distributions

Before introducing the multivariate Skew-Slash distribution, we will first re-

view the multivariate normal and the multivariate Student’s-t distributions,

and we will afterwards examine several flexible distributions, according to the

concept presented by Lachos, Labra, and Ghosh (2007), for completeness.

2.2.1 Normal distribution

We say that a random vector, X, follows a d-dimensional normal or Gaussian

distribution with location parameter η and scale matrix Σ, denoted by X ∼

Nd (η,Σ), if its probability density function is given by

φd (x|η,Σ) =
1

(2π)d/2 |Σ|1/2
exp

{
−1

2
(x− η)′Σ−1 (x− η)

}
; x ∈ Rd,

where η ∈ Rd and Σ ∈ Rd×d is a symmetric positive definite matrix.

Let us notice that, if X ∼ Nd (η,Σ), then its mean is given by

E (X) = η,

and its variance-covariance matrix is given by

V (X) = Σ.
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Let us also notice that it is well known that the normal distribution is

always symmetric and does not allow for heavy tails.

2.2.2 Student’s-t distribution

We say that a random vector, V, follows a d-dimensional Student’s-t distri-

bution with location parameter η, scale matrix Σ, and kurtosis parameter ν

(also known as the degrees of freedom), denoted as V ∼ Td (η,Σ, ν), if its

probability density function is given by

td (v|η,Σ, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν)d/2 |Σ|1/2

(
1 +

(v − η)′Σ−1 (v − η)

ν

)− ν+d
2

; v ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and ν > 0.

The Student’s-t distribution admits an alternative stochastic representa-

tion, given by

V ≡ η +
√
νU−1/2Σ1/2X,

where U ∼ G
(
ν
2
, 1

2

)
independent from X ∼ Nd (0, I).

Analogously, we can write

V ≡ η + U−1/2X,

where U ∼ G
(
ν
2
, ν

2

)
independent from X ∼ Nd (0,Σ).

Let us notice that, if V ∼ Td (η,Σ, ν), then its mean is given by

E (V ) = η,

and its variance covariance matrix is given by

V (V ) =
ν

ν − 2
Σ,

for ν > 2.
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Let us also notice that, even though the Student’s-t distribution is sym-

metric like the Gaussian one, unlike the normal distribution, the Student’s-t

distribution allows for heavier tails. Furthermore, let us acknowledge that the

Student’s t distribution is a particular member of the Normal/independent

family of distributions, that will be detailed in section 2.2.4.

2.2.3 Slash distribution

According to Lange and Sinsheimer (1993), we say that a d-dimensional ran-

dom vector, V, follows a Slash distribution with location parameter η, scale

matrix Σ, and kurtosis parameter ν, denoted as V ∼ SLd (η,Σ, ν), if its

probability density function is given by

fV (v) = ν

1∫
0

uν−1φd
(
v|η, u−2Σ

)
du; v ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and ν > 0.

This distribution also admits an alternative stochastic representation, given

by

V ≡ η + U−1X,

where we have that U ∼ Be (ν, 1) is independent from X ∼ Nd (0,Σ).

Let us notice that, if V ∼ SLd (η,Σ, ν), then its mean is given by

E (V) = η,

and its variance covariance matrix is given by

V (V) =
ν

ν − 2
Σ,

for ν > 2.
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This is a distribution that, like the normal one, is symmetric, but it allows

for heavier tails than the Gaussian and is, in fact, together with the Student’s-

t distribution, a member of the Normal/independent family of distributions

that is exposed below.

2.2.4 Normal/independent family of distributions

We say that a d-dimensional random vector, V, follows a Normal/independent

distribution, as defined by Lange and Sinsheimer (1993), with location param-

eter η and scale matrix Σ if its probability density function is given by

fV (v) =

∫
R+

φd
(
v|η, u−2Σ

)
dH(u); v ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and H(u|ν) is

the cumulative distribution function of a unidimensional positive random vari-

able U , indexed by the parameter ν, and we denote it as V ∼ NId (η,Σ;H).

Its alternative stochastic representation is given by

V ≡ η + U−1X,

where X ∼ Nd (0,Σ). Also, U and X are independent.

Let us notice that, if V ∼ NId (η,Σ;H), then we can find general expres-

sions for its mean, given by

E (V) = η,

and for its variance-covariance matrix, given by

V (V) = E
(
U−2

)
Σ,

if E (U−2) <∞.
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The Normal/independent family of distributions is comprehended by sym-

metric distributions that allow for heavier tails than the Gaussian one. It

includes, among others, the Student’s-t, the Slash, the Power Exponential,

and the Contaminated-Normal distributions, all of which have heavier tails

than the Gaussian distribution.

2.2.5 Skew-Normal distribution

According to the definition given by Azzalini and Dalla Valle (1996), we say

that a d-dimensional random vector, Z, follows a Skew-Normal distribution

with location parameter η, scale matrix Σ, and skewness parameter λ, denoted

as Z ∼ SN d (η,Σ,λ), if its probability density function is given by

fZ (z) = 2φd (z|η,Σ) Φ1

(
λ′Σ−1/2 (z− η)

)
; z ∈ Rd, (2.12)

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, and λ ∈ Rd.

Let us notice that, when λ = 0, the expression in (2.12) reduces to the nor-

mal density. Also, it is useful to take into account the stochastic representation

for Z proposed by Azzalini and Dalla Valle (1996), given by

Z ≡ η + Σ1/2
(
δ |X0|+ (I− δδ′)1/2

X1

)
, (2.13)

where δ = λ/
√

1 + λ′λ, which implies that ‖δ‖2 < 1, and X0 ∼ N1 (0, 1)

independent from X1 ∼ Nd (0, I).

Let us also notice that, if Z ∼ SN d (η,Σ,λ), then its mean is given by

E (Z) = η +

√
2

π
Σ1/2δ,

and its variance-covariance matrix is given by

V (Z) = Σ− 2

π
Σ1/2δδ′Σ1/2.
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We may say that this is a more flexible distribution than the Gaussian one

because it allows for the presence of skewness.

2.2.6 Skew-t distribution

According to the definition given by Azzalini and Capitanio (2003), we say that

a random vector, W, follows a d-dimensional Skew-t distribution with location

parameter η, scale matrix Σ, skewness parameter λ, and kurtosis parameter

ν, denoted as W ∼ ST d (η,Σ,λ, ν), if its probability density function is given

by

fW (w) = 2td (w|η,Σ, ν)T1

( √
ν + d λ′Σ−1/2 (w − η)√

(w − η)′Σ−1 (w − η) + ν

∣∣∣∣∣ 0, 1, ν + d

)
; w ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, λ ∈ Rd, and

ν > 0.

This distribution allows for an alternative stochastic representation of the

form

W ≡ η + U−1Z,

where Z ∼ SN d (0,Σ,λ) is independent from U with probability density

function

fU (u) = 2

(
ν
2

)ν/2
Γ
(
ν
2

) uν−1 exp
{
−ν

2
u2
}

I (u > 0) .

This is, U2 ∼ G
(
ν
2
, ν

2

)
.

Let us notice that, if W ∼ ST d (η,Σ,λ, ν), then its mean vector is given

by

E (W) = η +

√
ν

π

Γ
(
ν−1

2

)
Γ
(
ν
2

) Σ1/2δ,

for ν > 1, its variance-covariance matrix is given by

V (W) = Σ1/2

 ν

ν − 2
I− ν

π

(
Γ
(
ν−1

2

)
Γ
(
ν
2

) )2

δδ′

Σ1/2,
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for ν > 2, and its kurtosis coefficient is given by

γ2 (W) =
ν − 2

ν − 4
a1 −

√
2

ν
(ν − 2)2 Γ

(
ν−3

2

)
Γ
(
ν
2

) a2 + a3 − d (d+ 2) ,

if ν > 4, where

a1 = d (d+ 2) + 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

a2 =

(
d+ 2

√
2

ν

Γ
(
ν
2

)
Γ
(
ν−1

2

))µ′WΣ−1
WµW

+

(
1 + 2

√
2

ν

Γ
(
ν
2

)
Γ
(
ν−1

2

) − π

ν − 2

Γ2
(
ν
2

)
Γ2
(
ν−1

2

)) (µ′WΣ−1
WµW

)2
,

and a3 = 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

with µW = E (W − η) and ΣW = V (W) .

The Skew-t distribution is more flexible than the Gaussian because not

only does it allow for asymmetry, but it is also able to capture heavier tails

than the normal distribution. Also, the Skew-t distribution is a particular

member of the Skew-Normal/independent distribution that will be detailed in

section 2.2.8.

2.2.7 Skew-Slash distribution

According to the definition given by Wang and Genton (2006), we say that,

if Z ∼ SN d (λ) is a standard Skew-Normal random vector, independent from

U ∼ Be (ν, 1), then let us define

W ≡ η + U−1Σ1/2Z. (2.14)

In this case, we say that W follows a d-dimensional Skew-Slash distribution

with location parameter η, scale matrix Σ, skewness parameter λ, and kurtosis

parameter ν, and it will be denoted as W ∼ SSLd (η,Σ,λ, ν).
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The probability density function of a Skew-Slash random vector is given

by

fW (w) =

1∫
0

2νuν−1φd
(
w|η, u−2Σ

)
Φ1

(
uλ′Σ−1/2 (w − η)

)
du; w ∈ Rd,

where η ∈ Rd, Σ ∈ Rd×d is a symmetric positive definite matrix, λ ∈ Rd, and

ν > 0.

From this expression, we can see that the d-dimensional Skew-Slash distri-

bution is a scale-mixture of a Skew-Normal distribution. This means that we

are allowing the possibility of different variances for different members of the

population.

Given the definition of the Skew-Slash random vector in (2.14), and taking

into account the alternative stochastic representation for a random vector that

follows a Skew-Normal distribution given in (2.13), we get a more elaborate

alternative stochastic representation for the Skew-Slash distribution

W ≡ η + Σ1/2δX + U−1
[
Σ1/2 (I− δδ′) Σ1/2

]1/2

X1, (2.15)

where

δ =
1√

1 + λ′λ
λ

X = U−1 |X0| ;X0 ∼ N1 (0, 1)

X1 ∼ Nd (0, I) ; X1 ⊥ X0

U ∼ Be (ν, 1) .

Let us notice that, with this definition, we have that ‖δ‖2 < 1.

This stochastic representation is very useful for Bayesian inference; it is

also useful to acknowledge some of the central moments of the Skew-Slash

distribution, and it makes simulation very easy to execute.
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In this case, we are able to provide closed expressions for the mean vector,

the variance-covariance matrix, and the kurtosis coefficient; nevertheless, the

skewness coefficient is intractable for the Skew-Slash distribution.

If the random vector W ∈ Rd follows a Skew-Slash distribution, as defined

in (2.14), according to Wang and Genton (2006), its expectation is given by

E (W) = η +

√
2

π

ν

ν − 1
Σ1/2δ, for ν > 1, (2.16)

and its variance-covariance matrix is given by

V (W) = Σ1/2

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}
Σ1/2, for ν > 2. (2.17)

Finally, we can give a closed expression for the kurtosis coefficient using

Proposition 7 from Lachos, Labra and Ghosh (2007), given in (2.18), defined

as γ2 (W ) = E
[{

(W − µW )′Σ−1
W (W − µW )

}2
]
, as established by Mardia

(1974), that represents the extension of the kurtosis coefficient proposed by

Azzalini and Capitanio (1999) for the Skew-Normal distribution.

γ2 (W ) =
(ν − 2)2

ν (ν − 4)
a1 − 4

(ν − 2)2

ν (ν − 3)
a2 + a3 − d (d+ 2) , for ν > 4,

where µW = E (W − η) =
√

2
π

ν
ν−1

Σ1/2δ, ΣW = V (W), and

a1 = d (d+ 2) + 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

a2 =

(
d+

2 (ν − 1)

ν

)
µ′WΣ−1

WµW

+

(
1 +

2 (ν − 1)

ν
− π

2

(ν − 1)2

ν (ν − 2)

)(
µ′WΣ−1

WµW

)2
,

a3 = 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
.

To illustrate the ability of the Skew-Slash distribution to generate high

kurtosis, Figure 2.6 shows some values of the kurtosis coefficient for a 2-

dimensional Skew-Slash random vector and, analogously, Figure 2.7 does the
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Figure 2.6: Kurtosis coefficient of the 2-dimensional Skew-Slash distribution

as a function of λi and ν

same for a 3-dimensional Skew-Slash random vector. In both cases, we set η

and Σ to satisfy E (W) = 0 and V (W) = I. In order to be able to plot the

surface, we set λ to be proportional to a vector of ones. That way, we can

plot the size of the elements in λ and ν against the corresponding kurtosis

coefficient. As a consequence, even though we cannot plot the kurtosis coeffi-

cient in all cases, we can at least use this illustration to represent an idea of

its structure.

It can be seen that the general structure presented for the univariate case

is replicated here, and we also are able to notice that, as the dimension gets

higher, the kurtosis allowed for the same values also gets higher.

Let us notice that, just like the Skew-t distribution, the Skew-Slash dis-

tribution is a particular member of the Skew-Normal/independent family of
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Figure 2.7: Kurtosis coefficient of the 3-dimensional Skew-Slash distribution

as a function of λi and ν

distributions, that is exposed below.

2.2.8 Skew-Normal/independent family of distributions

According to the definition given by Lachos, Labra, and Ghosh (2007), we say

that a d-dimensional random vector, W, follows a Skew-Normal/independent

distribution with location parameter η, dispersion matrix Σ, and skewness

parameter λ if its probability density function takes the form

fW (w) = 2

∫
R+

φd
(
w|η, u−2Σ

)
Φ1

(
uλ′Σ−1/2 (w − η)

)
dH (u); w ∈ Rd,

where U is a positive random variable with cumulative distribution function

H (u|ν), and we denote it as W ∼ SNId (η,Σ,λ;H). Also, η ∈ Rd, Σ ∈ Rd×d

is a symmetric positive definite matrix, and λ ∈ Rd.
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Its alternative stochastic representation is given by

W ≡ η + U−1Z,

where Z ∼ SN d (0,Σ,λ), and U and Z are independent.

An even more detailed stochastic representation that incorporates (2.13)

leads to the following expression.

W ≡ η + Σ1/2δX + U−1
[
Σ1/2 (I− δδ′) Σ1/2

]1/2

X1,

where X = U−1 |X0|; X0 ∼ N1 (0, 1), X1 ∼ Nd (0, I); X0 and X1 are indepen-

dent, and δ = λ/
√

1 + λ′λ. In this case, we have that ‖δ‖2 < 1.

Proposition 7 in the paper by Lachos, Labra, and Ghosh (2007) gives

straightforward expressions for the mean vector, variance-covariance matrix,

and the multidimensional kurtosis coefficient, defined by Mardia (1974), that

is an extension of Azzalini and Capitanio’s(1999) kurtosis coefficient for the

Skew-Normal distribution, for a Skew-Normal/independent random vector by

explaining us that, if W ∼ SNId (η,Σ,λ;H), then

� If E (U−1) <∞, then

E (W) = η +

√
2

π
E
(
U−1

)
Σ1/2δ,

� If E (U−2) <∞, then

V (W) = ΣW = E
(
U−2

)
Σ− 2

π
E2
(
U−1

)
Σ1/2δδ′Σ1/2, and

� If E (U−4) <∞, then the multidimensional kurtosis coefficient is

γ2 (W) =
E (U−4)

E2 (U−2)
a1 − 4

E (U−3)

E2 (U−2)
a2 + a3 − d (d+ 2) , (2.18)
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where

a1 = d (d+ 2) + 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

a2 =

(
d+

2

E (U−1)

)
µ′WΣ−1

WµW

+

(
1 +

2

E (U−1)
− π

2

E (U−2)

E2 (U−1)

)(
µ′WΣ−1

WµW

)2
,

and a3 = 2 (d+ 2)µ′WΣ−1
WµW + 3

(
µ′WΣ−1

WµW

)2
,

with µW = E (W − η) =

√
2

π
E
(
U−1

)
Σ1/2δ.

Some of the distributions comprised in the Skew-Normal/independent fam-

ily as special cases are the Skew-t, the multivariate Skew-Slash, and the Con-

taminated Skew-Normal, among others.
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Chapter 3

GARCH process with

Skew-Slash innovations

In this chapter, we present our proposal to model univariate time series of

financial returns.

First of all, we must acknowledge the fact that the use of a conditional het-

eroskedastic process to model financial time series of returns, together with a

flexible model for the innovations, is usually appropriate to capture the struc-

ture of this kind of data. To do so, we propose the use of a Generalized

Autoregressive Conditional Heteroskedastic (GARCH) process, as defined by

Bollerslev (1986), with Skew-Slash innovations, but we could also use the

Skew-Slash distribution to model the innovations in other conditional het-

eroskedastic models, such as the GJR-GARCH by Glosten, Jagannathan, and

Runkle (1993), the EGARCH by Nelson (1991) or the TGARCH by Zakoian

(1994).

We start by explaining the model that we want to work with. Then, we

develop methodologies that allow us to estimate our model, supposing that we

43
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have a data set available, and we do it from a Maximum Likelihood point of

view, as well as a Bayesian point of view.

Once we have defined all the theoretical part, we can move forward to the

implementation of our procedure, and we do it by generating some simulated

data sets, comparing the performances of our two methodologies, and, finally,

we use our method to fit the corresponding models to help us explain the

behavior of a real data set, and we exemplify by using the log-returns of the

Standard & Poor’s index from January 3rd, 2000 to December 28th, 2013.

Although the proposed approach of modeling the innovations using the

Skew-Slash distribution can be adopted in any conditional heteroskedastic

model, for simplicity and because it is the most widely used model by prac-

titioners for estimating the dynamics of financial returns, for illustration pur-

poses, we use the GARCH(1,1), defined as:

yt = µ+
√
htεt; (3.1)

ht = ω + α (yt−1 − µ)2 + βht−1, (3.2)

for t = 1, . . . , T, where ht is the conditional variance of yt given Ft−1 =

{yt−1, yt−2, . . . }, the information set available until time t − 1, and the inno-

vations, εt, are independent and identically distributed random variables such

that E (εt) = 0 and V (εt) = 1, for t = 1, . . . , T . We also assume that ω ≥ 0,

α ≥ 0, and β ≥ 0, to ensure non-negativity of ht and α + β < 1, to ensure

covariance stationarity.

Here, we model the innovations as Skew-Slash distributed; this is,

εt ∼ SSL1 (η, σ, λ, ν) ,

for all t ∈ {1, . . . , T}, and we assume that the innovations are all independent

and identically distributed random variables. Note that it is well known that
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the absolute value of the unconditional skewness of yt is larger than the abso-

lute value of the skewness of the innovations, while the unconditional kurtosis

of yt is larger than the kurtosis of the innovations. Therefore, it is expected

that the GARCH model with Skew-Slash innovations is able to capture the

skewness and kurtosis of financial returns.

Note also that the restrictions on the mean and variance of the innova-

tions imply restrictions on the parameters of the Skew-Slash distribution. In

particular, the zero mean restriction implies, from (2.5), that

η = −σ
√

2

π
δ

ν

ν − 1
, (3.3)

for ν > 1, and the unit variance condition implies, from (2.9), that

σ2 =

{
ν

ν − 2
− 2

π
δ2

(
ν

ν − 1

)2
}−1

, (3.4)

for ν > 2. Therefore, η and σ will be functions of λ (or, equivalently, δ) and

ν.

It is important to note that usual stationarity conditions of the GARCH

process are directly applicable using the results in Carrasco and Chen (2002).

In particular, from their Proposition 12, if ν > 2, then, E (ht) < ∞ and

E (y2
t ) <∞. Moreover, if h0 is a constant, then {(yt, εt)}Tt=1 is strictly station-

ary and β-mixing with exponential decay.

3.1 Inference

In this section, we outline schemes for both Maximum Likelihood and Bayesian

inference for the univariate Skew-Slash GARCH model that incorporates the

parameter restrictions in (3.3) and (3.4).
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We assume throughout that a series of returns y = (y1, . . . , yT ) is observed

and that the initial value, y0, of the series is known, which is not a restrictive

assumption from a practical point of view, because financial data sets usually

present elevated sample sizes. Also, from now on we will consider ϑ as the set

of parameters.

3.1.1 Maximum Likelihood inference

In this case, we assume also that the initial volatility, h0, is known. Under

the GARCH model with Skew-Slash innovations, the likelihood function of a

GARCH(1,1) model is given by

f (y|ϑ) = f (yT |FT−1) f (yT−1|FT−2) · · · f (y1|F0)

=
T∏
t=1

h−1/2
t

1∫
0

2ν0u
ν−1φ

(
yt − µ√

ht

∣∣∣∣ η, u−2σ2

)
Φ

(
λu
(
yt − µ− η

√
ht
)

σ2
√
ht

)
du

 ,

where, ϑ = (µ, α, β, λ, ν)′ is a vector that contains the collection of all the pa-

rameters of the model, f (y1, . . . , ym|ϑ) is the joint probability density function

of y1, . . . , ym, and η and σ2 are given in (3.3) and (3.4), respectively.

The Maximum Likelihood (ML) estimator can then be obtained by maxi-

mizing the log-conditional likelihood function

L (ϑ|y1, . . . , yT ) =
T∑
t=1

`t (ϑ)

where

`t (ϑ) = −1

2
ln (ht)

+ ln


1∫

0

2νuν−1φ1

(
yt − µ√

ht

∣∣∣∣ η, u−2σ2

)
Φ1

(
λu
(
yt − µ− η

√
ht
)

σ2
√
ht

)
du
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The maximization of the log-conditional likelihood is a highly nonlinear prob-

lem, but it can be carried out by standard numerical algorithms. In par-

ticular, the implementations that come later in the present thesis are car-

ried out using the constrOptim function in the free software R (http://www.

r-project.org/). Given the stationarity and mixing properties of the pro-

cesses yt and ht previously mentioned, it is reasonable to apply usual large

sample results of Maximum Likelihood estimation. Therefore, in the follow-

ing, it can be assumed that the Maximum Likelihood estimator of ϑ, denoted

by ϑ̂, is asymptotically Gaussian distributed with mean ϑ and covariance

matrix −E (∂2L (ϑ|y1, . . . , yT ) /∂ϑ∂ϑ′)
−1

. Then, approximated standard in-

novations of the parameters can be obtained by taking the square roots of the

diagonal elements of ∂2L
(
ϑ̂|y1, . . . , yT

)
/∂ϑ∂ϑ′.

3.1.2 Bayesian inference

Here, we shall assume that y0 is known as earlier, but let the initial volatility,

h0, be unknown. Then, in order to undertake Bayesian inference, it is first

necessary to define prior distributions for the model parameters, i.e., ϑ and

h0. One of the advantages of the Bayesian approach in this context is that, for

many of these parameters, real prior information in the form of expert knowl-

edge or based on economic theory will be available and this information can be

incorporated into the analysis. Thus, for example, economic theory suggests

that the drift parameter, µ, in the GARCH model should be (very close to)

zero. Therefore a reasonable prior distribution that incorporates this knowl-

edge is a normal distribution with small variance and centered at 0. Secondly,

analysts with experience in GARCH models will often be able to provide good

prior estimates of the volatility parameters ω, α, and β. Thirdly, the param-

http://www.r-project.org/
http://www.r-project.org/
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eter ν determines the number of finite moments of the error distribution and

analysts will often be able to give good estimates of this parameter. We have

also seen in Figure 2.3 that the skewness of the Skew-Slash distribution is

largely determined by λ or, equivalently, δ. As financial returns usually only

exhibit light skewness, this suggests that a distribution for λ (or δ) centered

at 0 with moderate variance could be considered. A relatively disperse prior

distribution for the initial volatility can be assumed. Let us denote the col-

lection of hyperparameters as H. Here we shall assume the following prior

distributions:

1. ln (h0)|H ∼ G (ah, bh), a gamma distribution with mean ah/bh.

2. µ|H ∼ N1

(
0, 1

cm

)
, where cm � 1.

3. ω|H ∼ G (aω, bω), where bω � aω.

4. f (α, β|H) = Γ(c)
Γ(cpa)Γ(cpb)Γ(c(1−pa−pb))

αcpa−1βcpb−1 (1− α− β)c(1−pa−pb) ,

where c, pa, pb > 0 and pa + pb < 1.

5. δ+1
2
|H ∼ Be (e, e), a scaled, shifted beta distribution centered at δ = 0.

6. ν|H ∼ G (an, bn), a gamma distribution with mean an/bn.

Note, in particular, that the prior for (α, β) is a Dirichlet density with

mean E{(α, β)} = (pa, pb). All the prior parameters will be specified later on.

Given this prior structure, exact inference is impossible. However, in a

similar way to Lachos, Dey, and Cancho (2009), we can use the stochastic

representation of the Skew-Slash distribution to allow us to develop a Markov

chain Monte Carlo algorithm. Consider the t-th innovation, εt, that follows a

Skew-Slash distribution as outlined earlier. Then, from (2.4), introducing the
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latent variables ut|ν ∼ Be (ν, 1) and X0t, X1t ∼ N1 (0, 1), we have that

εt ≡ η + σu−1
t

(
δ |X0t|+

√
1− δ2X1t

)
and, defining rt = X0t/ut so that rt|ut ∼ N1

(
0, u−1

t

)
I (R+), we have that

εt ≡ η + σ

(
δ |rt|+

√
1− δ2

X1t

ut

)
.

Therefore, conditional on the parameters, δ and ν, and the latent variables,

ut and rt, we have

εt|δ, ν, ut, rt ∼ N1

(
η + σδ|rt|,

σ2

u2
t

)
,

where we note, to incorporate the restrictions on the innovations, that η =

η(δ, ν) and σ = σ(δ, ν) are specified in (3.3) and (3.4), respectively. Finally,

(3.1) implies that

yt|ϑ, h0, ut, rt ∼ N1

(
µ+

√
ht (η + σδ|rt|) ,

htσ
2

u2
t

)
,

where ϑ = (µ, α, β, δ, ν)′ and ht = ht(µ, ω, α, β, ht−1), are as in (3.2).

It is now straightforward to derive the following conditional posterior densi-

ties for the model parameters and latent variables. Firstly, consider the latent

variables and parameters associated with the innovation distribution. Then:

u2
t |εt, δ, ν, rt ∼ G

(
ν + 2

2
,
(εt − η − σδrt)2 + σ2r2

t (1− δ2)

2σ2 (1− δ2)

)
I (0, 1) . (3.5)

rt|εt, δ, ν, ut ∼ N1

(
δ (εt − η)

σ
,
1− δ2

u2
t

)
I
(
R

+
)

(3.6)

f (δ|ε, ν,u, r,H) ∝ f (δ|H)
1

σn

T∏
t=1

φ1

(
ut (εt − η − σδ|rt|)

σ

)
(3.7)

f (ν|ε, δ,u, r,H) ∝ f (ν|H)
1

σn

T∏
t=1

φ1

(
ut (εt − η − σδ|rt|)

σ

)
, (3.8)
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where, in the distributions for δ and ν, we recall that η and σ are functions of

δ and ν.

Finally, in the case of the GARCH parameters, we have

f (µ|y, δ, ν, h0, ω, α, β,u, r,H) ∝ f (µ|H)∏T
t=1

1√
ht
φ1

(
ut(yt−µ−

√
ht(η+σδ|rt|))
σht

)
,

where we note that ht is here a function of µ. Similar expressions are available

for the remaining GARCH parameters with posterior distributions of the form.

f (h0|y, δ, ν, µ, ω, α, β,u, r,H) ∝ f (h0|H) f (y, r,u|ϑ) ,

f (α, β|y, δ, ν, µ, h0, ω,u, r,H) ∝ f (α, β|H) f (y, r,u|ϑ) ,

f (ω|y, δ, ν, µ, h0, α, β,u, r,H) ∝ f (ω|H) f (y, r,u|ϑ) .

Then, we can set up the following Metropolis within Gibbs sampling algo-

rithm to sample from the posterior parameter distributions:

1. Set initial values δ, ν, h0, ω, α, β, ut for t = 1, . . . , n.

2. Repeat:

(a) For t = 1, . . . , n, calculate ht from (3.2).

(b) For t = 1, . . . , n, calculate εt = yt−µ√
ht

.

(c) Calculate σ = σ (δ, ν) from (3.4).

(d) Calculate η = η (σ, δ, ν) from (3.3).

(e) For t = 1, . . . , n generate rt from f (rt|εt, δ, ν, ut).

(f) For t = 1, . . . , n generate ut from f (ut|εt, δ, ν, rt).

(g) Generate δ from f (δ|ε, ν,u, r).
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(h) Generate ν from f (ν|ε, ν,u, r).

(i) Generate h0 from f (h0|y, µ, ω, α, β, δ, ν,u, r). For t = 1, . . . , n,

calculate ht from (3.2).

(j) Generate µ from f (µ|y, h0, ω, α, β, δ, ν,u, r). For t = 1, . . . , n, cal-

culate ht from (3.2).

(k) Generate ω from f (ω|y, h0, µ, α, β, δ, ν,u, r). For t = 1, . . . , n, cal-

culate ht from (3.2).

(l) Generate α, β from f (α, β|y, h0, µ, ω, δ, ν,u, r).

Steps 2e and 2f can be carried out using Gibbs passes whereas for steps

2g to 2k, random walk algorithms are applied. In particular, in step 2g we

generate candidates δ̃ such that ln
(

1+δ̃
1−δ̃

)
is generated from a normal distri-

bution centered at ln
(

1+δ
1−δ

)
. In step 2h, we generate ln (ν̃ − 2) from a normal

distribution centered at ln (ν − 2). In 2i and 2j candidates are generated from

normal distributions centered at their current values and in 2k, a candidate

is generated from a lognormal distribution with location parameter equal to

ln (ω). Finally, in step 2l, although it might appear natural to generate can-

didates from a Dirichlet distribution centered at the current values, it is well

known that a sampler of this type can have problems in sticking at values very

close to the boundaries. Therefore, we instead use an alternative Metropolis

Hastings proposal. Writing γ = 1 − α − β, we first generate a candidate γ̃

such that logit γ̃ comes from a normal distribution centered at logit γ. Then,

we generate a candidate value β̃ so that ln
(

β̃
1−γ̃

)
comes from a normal distri-

bution centered at ln
(

β
1−γ

)
. Finally we set α̃ = 1− β̃ − γ̃. In steps 2g to 2l,

the generated candidates are accepted according to the appropriate Metropo-

lis Hastings acceptance probability and, if candidates are rejected, the current



52 CHAPTER 3. GARCH WITH SKEW-SLASH INNOVATIONS

values are returned. Note finally that the variances of the candidate genera-

tors can be set to achieve reasonable acceptance rates of around 20% in each

case.

3.2 Examples

In this section, we illustrate our approach with both simulated data and a

real data study. In all cases, when the Bayesian approach is used, the prior

parameters are specified as ah = bh = 0.1, cm = 4, aw = 0.001, bw = 0.1,

c = 1, (pa, pb) = (0.05, 0.9), e = 5, and an = bn = 0.5. Initial values are set

to be equal to the Maximum Likelihood Estimates and the sampler is run for

5000 iterations to burn in and 10000 iterations in equilibrium.

3.2.1 Simulated examples

Here, we consider the univariate GARCH with Skew-Slash innovations model

with (y0 = 0, h0 = 0.2), µ = 0, w = 0.01, α = 0.1 and β = 0.85 with the Skew-

Slash parameters set as λ = −1 and ν = 5, which implies that, to maintain the

mean and variance restrictions of (3.3) and (3.4), η = 0.652 and σ2 = 0.855,

respectively.

Regarding the Maximum Likelihood Estimation approach, we focus here

in parameter estimation of the Skew-Slash GARCH model. In order to assess

the proposed Maximum Likelihood algorithm, we generated three sets of 2500

time series from a Skew-Slash GARCH model with the previous parameters.

Each set corresponds to the sample sizes T = 1000, T = 2000, and T = 3000,

respectively, that are usual sample sizes of time series of returns. The series in

each set is estimated by Maximum Likelihood. Table 3.1 shows the mean and
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standard error of the model parameters over the 2500 time series estimated

through maximum likelihood. Observe that the parameter estimation results

are apparently very good, even for the smallest sample size. Also, as expected,

the larger the sample size, the smaller the standard innovations and the better

the mean estimates. Therefore, we conclude that the Maximum Likelihood

procedure is apparently doing a good job in estimating the Skew-Slash GARCH

model.

Table 3.1: Mean and Standard deviation for the ML estimators, with T sim-

ulated observations.

True parameters T = 1000 T = 2000 T = 3000

µ = 0 −0.00136
(0.01237)

−0.00058
(0.00861)

−0.00085
(0.00699)

ω = 0.01 0.01161
(0.00505)

0.01068
(0.00286)

0.01025
(0.00237)

α = 0.1 0.10115
(0.02610)

0.10114
(0.01906)

0.09981
(0.01542)

β = 0.85 0.84053
(0.04301)

0.84519
(0.02736)

0.84854
(0.02190)

λ = −1 −1.02685
(0.27714)

−1.01937
(0.19226)

−1.02641
(0.15933)

ν = 5 5.43052
(1.72854)

5.22406
(0.93940)

5.16790
(0.56823)

To illustrate the proposed Bayesian inference scheme, we focus on a single

generated series of length T = 2000. We run the MCMC algorithm for 5000

burn-in iterations plus 10000 iterations in equilibrium. All parameters were

well estimated, with the true parameter values always inside the 90% credible

intervals.

As examples, Figure 3.1 shows a kernel density estimate of the posterior

density of h0 and Figure 3.2 shows a kernel density estimate of the posterior

density of ν. Although the density for h0 is quite long tailed, the posterior
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Figure 3.1: Estimated posterior density of h0.

median of 0.27 is close to the true value of 0.2. The posterior density of ν

concentrates on values around the true value of 5.

We also obtained fitted volatilities as the mean value of the fitted volatilities

for the 10000 parameter values of the MCMC sampler. Figure 3.3 shows the

true (solid line) and fitted (dotted line) volatilities that are very close to each

other. Finally, Figure 3.4 shows the true (solid line) and predictive (dotted

line) error density function. Again, both curves are very close indicating that

the Bayesian estimation method does a remarkable job in estimating the Skew-

Slash GARCH model.

3.2.2 Real data example

As an illustration of the usefulness of our approach, here we analyze real

financial time series data from the Standard & Poor’s 500 Index (S&P 500).
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Figure 3.2: Estimated posterior density of ν.

Figure 3.3: True (solid line) and fitted (dotted line) volatilities for the Bayesian

fitting of the series with T = 2000.
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Figure 3.4: True (solid line) and fitted (dotted line) predictive error densities.

The S&P 500 index is a free-float capitalization-weighted index of the prices of

500 of the main companies in leading industries of the U.S. economy. Figure

3.5 shows the time plot of the log-returns of the daily closing prices of the index

for the period from January 3rd, 2000 until December 28th, 2013, leading to

3035 index returns. Observe that the returns appear to vary more around mid

2008 till the end of 2009, which corresponds to the start of the financial crisis.

The sample mean, standard deviation, skewness, and kurtosis of the return

series are −1.85 × 10−5, 0.0129, 0.1933, and 10.0481, respectively. Observe

that the return series is slightly skewed and the kurtosis is large, indicating

that the return distribution has higher peaks and heavier tails than a normal

distribution with the same variance. Thus, it seems that the proposed Skew-

Slash specification can be adequate to address these issues.

As with the simulated examples, we first fit the model using Maximum
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Figure 3.5: Standard & Poor’s 500 log-returns between January 3rd, 2000 and

December 28th, 2013.

Likelihood Estimation. Table 3.2 shows the Maximum Likelihood estimates

of the parameters of the GARCH(1,1) model, assuming five different error

distribution formulations, that is: Skew-Slash, Gaussian, Student’s-t, Skew-

Normal, and Skew-t distributions. Also included are the Maximum Likelihood

estimates of the parameters of the Skew-Slash distribution. It can be seen that

all estimates of the common parameters in the GARCH(1,1) model are very

close, independent of the error distribution proposed.

Also, in Table 3.3, we present the information criterion statistics for the

Gaussian, Student’s-t, Skew-Normal, Skew-t, and Skew-Slash distributions,

for two criteria. On one hand, we can find the Akaike Information Criterion

(AIC), defined by Akaike (1976), given by

AIC (M) = 2 ln {L (ϑ∗;M)} − 2 card (M) ,
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where card (M) denotes the number of parameters in the model, M , and

L (ϑ∗;M) is the maximized value of the likelihood function, L, for the model in

question. On the other hand, we can find the Bayesian Information Criterion

(BIC), proposed by Schwarz (1978), given by

BIC (M) = −2 ln {L (ϑ∗;M)}+ card (M) ln (T ),

where T is the number of observations. In this table (3.3), we can find that the

Skew-Slash is the distribution that performs best, among the others, which

means that the performance of our model is quite acceptable. The curious

thing is that our best competitor is the Student’s-t distribution, and not the

Skew-t, but it might obey to the penalization of highly parameterized models,

along with the fact that the skewness is only slight.

Figure 3.6 shows the histograms of the residual series after fitting with

estimated densities for the five previous distributions. Note that the normal

and the Student’s-t distributions provide with symmetric estimated densities

while the Skew-Normal, Skew-t, and Skew-Slash provide with asymmetric fits.

In particular, note that the estimated density of the residuals corresponding

to the Skew-Slash distribution fits the estimated residual histogram very well

as compared to the other models.

Finally, we fitted the model using the Bayesian procedure. Just like we did

with the simulations, we ran the MCMC algorithm for 5000 burn-in iterations

plus 10000 iterations in equilibrium. Again, we focus on the estimated volatil-

ities and the estimated error density. In particular, we obtain fitted volatilities

as the mean value of the fitted volatilities for the 10000 parameter values of

the MCMC sampler. Then, 3.7 shows the estimated volatilities using both the

Maximum Likelihood Estimation (continuous line) and Bayesian (dotted line)

approaches. The volatilities are very similar as expected. Finally, Figure 3.8
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Figure 3.6: Histograms of the residuals after fitting joint with estimated den-

sities for the Standard & Poor’s 500 log-returns.
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Table 3.2: ML estimates with their standard errors of the GARCH(1,1) model

with several distributions.

ϑ µ ω α β λ ν

SSL1 −1.85× 10−4

(1.54×10−4)
1.23× 10−6

(3.24×10−7)
0.0936
(0.0103)

0.8997
(0.0103)

−0.4853
(0.1883)

5.0113
(0.5225)

N1 −1.85× 10−4

(1.53×10−4)
1.53× 10−6

(3.44×10−7)
0.0933
(0.0092)

0.8980
(0.0096)

− −

T1 −1.85× 10−4

(1.48×10−4)
1.30× 10−6

(3.69×10−7)
0.0953
(0.0105)

0.8997
(0.0103)

− −

SN 1 −1.85× 10−4

(1.53×10−4)
1.47× 10−6

(3.41×10−7)
0.0947
(0.0093)

0.8972
(0.0096)

− −

ST 1 −1.85× 10−4

(1.54×10−4)
1.28× 10−6

(3.68×10−7)
0.0959
(0.0106)

0.8993
(0.0103)

− −

Table 3.3: AIC and BIC for the GARCH(1,1) model with several distributions

for the S&P data.

AIC BIC

Normal −6.283566 −6.276222

Student’s-t −6.303842 −6.294662

Skew-Normal −6.284018 −6.274838

Skew-t −6.303420 −6.292404

Skew-Slash −6.305842 −6.294826

shows the estimated error densities under both the Maximum Likelihood Esti-

mation (continuous line) and Bayesian (dotted line) approaches. The densities

are very similar and they both exhibit slight skewness as expected.
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Figure 3.7: MLE (solid line) and Bayesian (dotted line) volatility estimates

for the Standard & Poor’s 500 log-returns.

Figure 3.8: MLE (solid line) and Bayesian (dotted line) estimated error den-

sities for the Standard & Poor’s 500 log-returns.
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Chapter 4

Dynamic Conditional

Correlation model with

Skew-Slash innovations

In this chapter, we present our proposal to model multivariate time series of

financial returns.

First of all, we must acknowledge the fact that the use of a conditional

heteroskedastic process to model the series of returns, together with a flexible

model for the residuals, is usually appropriate to capture the behavior of finan-

cial returns. With this in mind, we propose the use of a Dynamic Conditional

Correlation model with multivariate Skew-Slash innovations.

We begin explaining our model and, afterwards, we get to the development

of a methodology that permits the estimation of our model under the assump-

tion that we have an available data set, and we take a Bayesian approach.

With the theoretical part elaborated, we move forward towards the assess-

ment of our methodology. For the implementation, we start by estimating the

63
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parameters of 2-dimensional and 3-dimensional simulated data sets. After-

wards, we use our method to fit a model that helps us explain the behavior of

the returns of the Dow Jones and NASDAQ data sets from January 2nd, 1996

to December 29th, 2006 on one hand and, on the other hand, we try to explain

the behavior of the log-returns of the DAX, CAC40, and Nikkei stock market

indices between October 10th, 1991 and December 30th, 1997.

As we mentioned before, one of the most well known models used to de-

scribe the behavior of financial returns is the GARCH process. In this case,

we want to develop a model in a multidimensional framework, which makes an

important issue of the use of an appropriate generalization of the univariate

GARCH process proposed by Bollerslev (1986) to the multivariate case that

is able to estimate the correlation between financial actives in an apt manner.

One of the most popular approaches in the class of Dynamic Conditional

Correlation models are the ones proposed by Tse and Tsui (2002) – that will

be used later in this thesis –; Bollerslev (1990); Jeantheau (1998); Engle and

Sheppard (2001); Engle (2002); Cappiello, Engle, and Sheppard (2006); Billio,

Caporin, and Gobbo (2006), and Aielli (2013).

The issue with the construction of a conditional heteroskedastic model in

the multivariate case is that it must be flexible enough to be able to capture

the joint behavior of the assets, but it cannot be too highly parameterized.

To respond to the problem we pose, we decide to consider the Dynamic

Conditional Correlation model presented by Tse and Tsui (2002). In the way

we present this model, we find that its structure is flexible enough to perform

well with the data sets that we are interested in, while having a reasonable

amount of parameters. Also, this model has already been used to work with

financial returns by Galeano and Auśın (2010) using a finite mixture of normal
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distributions for the innovations.

Just like in the univariate case, multivariate innovations usually present

a slight skewness and high kurtosis in this framework, which makes the mul-

tidimensional Skew-Slash distribution very suitable to perform the task of

modeling these innovations because, thanks to its flexibility, it is able to cap-

ture both, skewness and heavy tails, simultaneously. In the present thesis, we

propose the infinite mixture that is the d-dimensional Skew-Slash distribution.

The Skew-Slash distribution has much heavier tails than the Skew-Normal

distribution, as Wang and Genton (2006) explain in their paper. Also, we have

identified the analytical expressions of the mean vector and variance-covariance

matrix for the Skew-Slash distribution, which is crucial in order to be able to

deal properly with the kind of data we want to model because it allows us

to establish the restrictions that the Dynamic Conditional Correlation model

subjects us to.

Taking into account the mentioned features presented by financial data

sets, as well as the power offered by the Skew-Slash distribution, we propose

a Dynamic Conditional Correlation (DCC) model with d-dimensional Skew-

Slash innovations, defined as

yt = µ+ H
1/2
t εt,

where µ is the unconditional mean of the process, Ht ∈ Rd×d is the conditional

covariance matrix of yt, given Ft−1 = {yt−1, yt−2, . . . }, the information set

available until time t− 1, and εt is the innovation at time t.

We specify

Ht = DtRtDt, (4.1)
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where

Dt = diag

({
h

1/2
it

}d
i=1

)
∈ Rd×d (4.2)

is a diagonal matrix that contains the d conditional standard deviations, de-

noted as h
1/2
it for i = 1, . . . , d, and Rt ∈ R

d×d is the matrix of conditional

correlations. Let us notice that Ht is a symmetric positive definite matrix if

and only if Dt has a positive diagonal and Rt is symmetric positive definite

itself. We also define

hit = ωi + αi (yt−1,i − µi)2 + βiht−1,i, (4.3)

Rt = (1− θ1 − θ2) R + θ1Rt−1 + θ2I, (4.4)

where R is a symmetric positive definite correlation matrix with unit diagonal

elements, and off-diagonal elements denoted by ρij. Further, we assume that

y0,h0 ∈ Rd are known constants. We also take αi, βi > 0 and αi + βi < 1,

for all i ∈ {1, . . . , d} to ensure positivity of ht and covariance stationarity;

besides, θ1, θ2 > 0 and θ1+θ2 < 1. Let us remark that, under this structure, Rt

is a symmetric positive definite matrix and Dt has positive diagonal elements;

hence, Ht is indeed a symmetric positive definite matrix.

Finally, we will say that the innovations are independent identically dis-

tributed random vectors, and they follow a d-dimensional Skew-Slash distri-

bution such that

εt ∼ SSLd (η,Σ,λ, ν) ,

with E (εt) = 0 and V (εt) = I for all t ∈ {1, . . . , T}, where T denotes the size

of our time series.
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4.1 Inference

First of all, we must acknowledge the restrictions intrinsic to this model. We

have already stated that the innovations will be modeled through a Skew-Slash

distribution, and we have established that E (εt) = 0 and V (εt) = I. Incorpo-

rating this restriction to (2.16) and (2.17), we have that η = −
√

2
π

ν
ν−1

Σ1/2δ

and Σ−1 = ν
ν−2

I− 2
π

(
ν
ν−1

)2
δδ′. Therefore,

η = −
√

2

π

ν

ν − 1

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}−1/2

δ (4.5)

and

Σ =

{
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′

}−1

. (4.6)

This means that η and Σ will depend of δ and ν.

We define a new matrix Γ that will help us to specify an explicit expression

for Σ and Σ−1, and will allow for a more compact notation later on. Let us

make

Γ = Σ−1 =
ν

ν − 2
I− 2

π

(
ν

ν − 1

)2

δδ′,

and let us notice that we can easily find a closed form for its inverse, given by

Σ = Γ−1 =
ν − 2

ν
I− 2 (ν − 2)2

π (ν − 1)2 − 2ν (ν − 2) δ′δ
δδ′.

In an analogous way, let us denote MD = I − δδ′, with inverse M−1
D = I +

1

1−δ′δ
δδ′, other expressions that will also allow for a more compact notation

in the expressions to come.

Introducing the parameter restrictions found in (4.5) and (4.6) into the

alternative stochastic representation for the Skew-Slash distribution presented

in (2.15), we can express the innovations alternatively as

εt ≡ −
√

2

π

ν

ν − 1
Γ−1/2δ + Γ−1/2δXt + U−1

t

[
Γ−1/2 (I− δδ′) Γ−1/2

]1/2
X1t,



68 CHAPTER 4. DYNAMIC CONDITIONAL CORRELATION - SSL

where

δ =
1√

1 + λ′λ
λ,

Xt = U−1
t |X0t| ;X0t ∼ N1 (0, 1) ,

X1t ∼ Nd (0, I) ; X1t ⊥ X0t,

Ut ∼ Be (ν, 1) ,

Γ = Γ (δ, ν) .

It is useful to take into account the fact that, because Ht = DtRtDt is

a symmetric positive definite matrix, we can define H
1/2
t , such that Ht =

H
1/2
t H

1/2
t . Also, from now on we consider axt = xt −

√
2
π

ν
ν−1

, for compacting

purposes.

Let us assume that we have observed a series of returns {yt}Tt=1, and let us

define the set of parameters as ϑ =
{
δ, ν,µ, {ωi, αi, βi}di=1, θ1, θ2,R

}
. Under

the proposed model, the likelihood function is given by

L
(
ϑ|{yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1

)
= f

(
{yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1|δ, ν,µ, {ωi, αi, βi}

d
i=1, θ1, θ2,R

)
∝ νT

{
ν
ν−2
− 2
π ( ν

ν−1)
2δ′δ

1−δ′δ

}T/2 [ T∏
t=1

uν+dt√
det (Rt)

d∏
i=1

1√
hit

]
e
− 1

2

T∑
t=1

u2t

[
x2t+

(
yt−µ−H

1/2
t axtΓ−1/2δ

)′
H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t

(
yt−µ−H

1/2
t axtΓ−1/2δ

)]
,

for {xt}Tt=1 > 0, 0 < {ut}Tt=1 < 1, ‖δ‖2 < 1, ν > 2, {ωi}di=1 > 0, αi + βi < 1

with αi, βi > 0 for all i ∈ {1, . . . , d}, θ1 + θ2 < 1 for θ1, θ2 > 0, and R

symmetric positive definite.

To perform the Bayesian estimation of the model, we decided to sample

the joint posterior parameter distribution through the individual sampling of

the posterior distributions (exposed further in the present thesis) by designing

a Metropolis Hastings within Gibbs algorithm.
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In order to move forward towards the Bayesian estimation, we need to

establish the prior distributions for all of the model parameters. For simplic-

ity, we consider prior distributions that are non-informative and have simple

known forms that can be easily understood intuitively, besides being able to

incorporate the insight of an expert, when available; also, we assume indepen-

dence between λ, Σ, µ, ω1, . . . , ωd, {αi, βi} for all i ∈ {1, . . . , d}, {θ1, θ2},

and R. We define H as the collection of all the hyperparameters in the model.

The a priori distributions are defined as

f (δ|H) ∝ I (‖δ‖ < 1) , .

f (ν|H) ∝ (ν − 2)aν−1 exp
{
− ν
bν

}
I (ν > 2) ; aν � bν ,

µ|H ∼ Nd (mµ,Sµ) ,

ωi|H ∼ IG (aω, bω) , for i ∈ {1, . . . , d},

f (αi, βi|H)

=
Γ(cαβ)

Γ(cαβpα)Γ(cαβpβ)Γ(cαβ(1−pα−pβ))
α
cαβpα−1
i β

cαβpβ−1
i (1− αi − βi)cαβ(1−pα−pβ)−1 ,

for i ∈ {1, . . . , d},

f (θ1, θ2|H) =

Γ (cθ)

Γ (cθp1) Γ (cθp2) Γ (cθ (1− p1 − p2))
θcθp1−1

1 θcθp2−1
2 (1− θ1 − θ2)cθ(1−p1−p2)−1 ,

R|H ∼ U
(
s.p.d. matrices with unit diagonal ∈ Rd×d

)
.

Note that the prior distributions for all pairs (αi, βi), i = 1, . . . , d, and

(θ1, θ2) are derived assuming a Dirichlet-like prior distribution for (αi, βi) by

means of a Dirichlet distribution for (αi, βi, 1− αi − βi), for i ∈ {1, . . . , d},

and an analogous prior for (θ1, θ2) by means of a Dirichlet distribution for

(θ1, θ2, 1− θ1 − θ2). Also, IG (·, ·) denotes the inverse Gamma distribution.

Under this framework, exact inference is impossible, but we can derive

explicit expressions for all of the posterior distributions:
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f
(
δ|ν, {εt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ I

(
‖δ‖2

2 < 1
) [ ν

ν−2
− 2
π ( ν

ν−1)
2δ′δ

1−δ′δ

]T/2
exp

{
−1

2

T∑
t=1

u2
t

{
ε′tΓ

1/2M−1
D Γ1/2εt − 2axtε

′
tΓ

1/2M−1
D δ + a2

xtδ
′M−1

D δ
}}
(4.7)

f
(
ν|δ, {εt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ (ν − 2)aν−1 exp

{
− ν
bν

}
I (ν > 2) νT

[
ν
ν−2
− 2

π

(
ν
ν−1

)2
δ′δ
]T/2 [ T∏

t=1

uνt

]
exp

−1
2

T∑
t=1

u2
t

 ε′tΓ
1/2M−1

D Γ1/2εt − 2axtε
′
tΓ

1/2M−1
D δ

+2
(

ν
ν−1

) [
1
π

(
ν
ν−1

)
−
√

2
π
xt

]
δ′M−1

D δ



(4.8)

f
(
µ|δ, ν, {ωi, αi, βi}di=1, θ1, θ2,R, {yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ exp

{
−1

2
(µ−mµ)′ Sµ (µ−mµ)

} [ T∏
t=1

d∏
i=1

1√
hit

]

exp


−1

2

∑T
t=1 u

2
t



y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t yt

+µ′H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2axty
′
tH
−1/2
t Γ1/2M−1

D δ

+2axtµ
′H
−1/2
t Γ1/2M−1

D δ





(4.9)
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f
(
{ωi}di=1|δ, ν,µ, {αi, βi}

d
i=1, θ1, θ2,R, {Yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝
{

d∏
i=1

ω1−aω
i

}
exp

{
−

d∑
i=1

bω
ωi

}
I
(
{ωi}di=1 > 0

)[ T∏
t=1

∏d
i=1

1√
hit

]

exp


−1

2

T∑
t=1

u2
t



y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t yt

+µ′H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2axty
′
tH
−1/2
t Γ1/2M−1

D δ

+2axtµ
′H
−1/2
t Γ1/2M−1

D δ




(4.10)

f

(
αi∗ , βi∗ |δ, ν,µ, {ωi}di=1, {αi, βi}

d
i=1
i6=i∗

, θ1, θ2,R, {Yt, Xt, Ut}Tt=1,H
)

∝ α
cαβpα−1
i∗ β

cαβpβ−1
i∗ (1− αi∗ − βi∗)cαβ(1−pα−pβ)−1

I (αi∗ + βi∗ < 1;αi∗ , βi∗ > 0)

[
T∏
t=1

1√
hi∗t

]

exp


−1

2

T∑
t=1

u2
t



y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t yt

+µ′H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2axty
′
tH
−1/2
t Γ1/2M−1

D δ

+2axtµ
′H
−1/2
t Γ1/2M−1

D δ





(4.11)
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f
(
θ1, θ2|δ, ν,µ, {ωi, αi, βi}di=1,R, {Yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ θcθp1−1

1 θcθp2−1
2 (1− θ1 − θ2)cθ(1−p1−p2)−1

I (θ1 + θ2 < 1; θ1, θ2 > 0)

[
T∏
t=1

1√
det (Rt)

]

exp


−1

2

T∑
t=1

u2
t



y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t yt

+µ′H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2axty
′
tH
−1/2
t Γ1/2M−1

D δ

+2axtµ
′H
−1/2
t Γ1/2M−1

D δ





(4.12)

f
(
R|δ, ν,µ, {ωi, αi, βi}di=1, θ1, θ2, {Yt}Tt=1, {Xt}Tt=1, {Ut}

T
t=1,H

)
∝ I (R s.p.d. with unit diagonal)

[
T∏
t=1

1√
det (Rt)

]

exp


−1

2

T∑
t=1

u2
t



y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t yt

+µ′H
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2y′tH
−1/2
t Γ1/2M−1

D Γ1/2H
−1/2
t µ

−2axty
′
tH
−1/2
t Γ1/2M−1

D δ

+2axtµ
′H
−1/2
t Γ1/2M−1

D δ





(4.13)

Xt|δ, ν, {εt}Tt=1, {X1, . . . , Xt−1, Xt+1, . . . , XT}, {Ut}Tt=1,H ∼ N1 (µx, σx) I
(
R

+
)
,

(4.14)

where

µx = ε′tΓ
1/2δ +

√
2

π

ν

ν − 1
δ′δ

and

σx = u−1
t

√
1− δ′δ.
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By writing I (R+), we denote that the marginal posterior distribution for xt is

a normal distribution truncated to xt ∈ (0,∞).

U2
t |δ, ν, {εt}

T
t=1, {Xt}Tt=1, {U1, . . . , Ut−1, Ut+1, . . . , UT},H ∼ G (au, bu) I (0, 1) ,

(4.15)

where

au =
ν + d+ 1

2

and

bu =
1

2

{
x2
t +

[
εt − axtΓ−1/2δ

]′
Γ1/2M−1

D Γ1/2
[
εt − axtΓ−1/2δ

]}
.

By writing I (0, 1), we denote that the marginal posterior distribution for u2
t

is a Gamma distribution truncated to ut ∈ (0, 1).

Let us notice that almost none of the distributions exposed above have

known forms. For this reason, we designed an MCMC within Gibbs algo-

rithm, as we mentioned before. Now we exhibit the pseudocode to explain the

algorithm.

1. Set m = 0 and initial values

λ(0), ν(0), µ(0), ω(0),
{
α(0),β(0)

}d
i=1

,
(
θ

(0)
1 ,θ

(0)
2

)
, R(0).

2. Simulate u
(m)
t ∼ Be

(
ν(m), 1

)
and x

(m)
0 ∼ N1 (0, 1), and compute x

(m)
t =∣∣∣x(m)

0

∣∣∣ /u(m)
t for all t ∈ {1, . . . , T}.

3. Compute δ(m) = 1√
1+λ(m)′λ(m)

λ(m).

4. Compute
{

h
(m)
t

}T
t=1

as in (4.3),
{

D
(m)
t

}T
t=1

as in (4.2),
{

R
(m)
t

}T
t=1

as in

(4.4), and
{

H
(m)
t

}T
t=1

as in (4.1).
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5. Compute η(m) and Σ(m) to satisfy the null mean and unit variance re-

strictions as specified in (4.5) and (4.6), respectively.

6. Compute ε
(m)
t = H

(m)−1/2
t

(
yt − µ(m)

)
for all t ∈ {1, . . . , T}.

7. Obtain a sample δ(m+1) from the distribution in (4.7). Compute λ(m+1) =

1√
1−δ(m+1)′δ(m+1)

δ(m+1).

8. Obtain a sample ν(m+1) from the distribution in (4.8).

9. Obtain a sample µ(m+1) from the distribution in (4.9). Execute step 4

alone.

10. Obtain a sample ω(m+1) from the distribution in (4.10). Execute step 4

alone.

11. Obtain samples α
(m+1)
i∗ , β

(m+1)
i∗ from the distribution in (4.11) for all i∗ ∈

{1, . . . , d}. Execute step 4 alone.

12. Obtain a sample θ
(m+1)
1 , θ

(m+1)
2 from the distribution in (4.12). Execute

step 4 alone.

13. Obtain a sample R(m+1) from the distribution in (4.13). Execute step 4

alone.

14. Obtain a sample x
(m+1)
t from the distribution in (4.14).

15. Obtain a sample u
(m+1)
t from the distribution in (4.15).

16. Set m = m + 1 and repeat steps 4 thru 15 until m = M ′ for a large M ′.

For the parameters of the model, we apply Metropolis Hastings steps be-

cause it is not possible to sample directly from their posterior distributions,



4.2. EXAMPLES 75

but the steps that correspond to the latent variables can be performed using

a Gibbs sampler.

We simulate candidates for δ through a transformation of a normal ran-

dom vector to ensure that the restriction is satisfied. The candidates for ν, ω,

(αi, βi) for i ∈ {1, . . . , d}, and θ are sampled by means of logarithmic trans-

formations based on their current values, also ensuring that their restrictions

are met. The candidate for µ is proposed using a normal distribution centered

on the current value. Finally, the potential new values for R are proposed by

standardizing a covariance matrix that takes into account the current value

for this correlation matrix. In the case of xt and ut, for t ∈ {1, . . . , T}, the

posterior distributions have known forms, so sampling is straightforward.

4.2 Examples

To illustrate our proposal, we present two approaches. First, we estimate the

parameters of simulated data in order to evaluate our procedure. Afterwards,

we model a couple of real data sets. The first one contains information about

the joint behavior of the Dow Jones and the NASDAQ indices; the second one

is formed by the daily log-returns of the DAX, CAC40, and Nikkei indices.

In every case, we specify the Bayesian prior hyperparameters as aν = 100,

bν = 0.01, mµ = 0, Sµ = 0.07I, aω = 0.001, bω = 0.001, cαβ = 10, pα = 0.1,

pβ = 0.85, cθ = 10, p1 = 0.9, p2 = 0.05. The MCMC within Gibbs sampler

that we designed is run for 5000 iterations to burn in and 10000 iterations in

equilibrium for the simulation case, and for 20000 iterations to burn in and

25000 in equilibrium for the real data.
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4.2.1 Simulated examples

With the purpose of testing our work, we started by modeling simulated data

sets.

In every case, we obtained fitted volatilities as the mean value of the fitted

volatilities for the 10000 parameter values of the MCMC sampler.

First, we generated a 2-dimensional time series of returns from a multi-

variate 2-dimensional Skew-Slash DCC model with T = 2000 observations,

Skew-Slash parameters η = (0.0769, 0.0769)′, Σ with both diagonal elements

equal to 0.6036 and off-diagonal element 0.0036, λ = (−0.1,−0.1)′, ν = 5, and

GARCH parameters µ = (0, 0)′, ω = (0.001, 0.001)′, (α1, β1)′ = (α2, β2)′ =

(0.1, 0.85)′, θ = (0.9, 0.05)′, and R with unit diagonal and off-diagonal ele-

ment ρ12 = 0.7. Notice that Σ and R are symmetric matrices; also, keep in

mind that η and Σ are set to verify the null mean and unit variance of the

innovations.

Figure 4.1 shows the real volatilities (blue solid line) and the Bayesian

posterior mean volatility estimates (red dashed line), and we can see that they

are almost indistinguishable. Figure 4.2 illustrates the comparison between

the theoretical marginal densities of the innovations (solid blue line), and the

mean predictive marginal densities (dashed red line), both compared to the

marginal histograms of the real innovations presented by the 2-dimensional

simulated data. Here, we find that not only are both marginal densities very

similar, but the estimation results are apparently very good; actually, it is

hard to see which function seems closer to the observations. Finally, Figure

4.3 shows the joint theoretical density of the innovations in 4.3(a) next to their

joint predictive density in 4.3(b), while 4.4 shows the contour plot of the joint

theoretical density of the innovations in 4.4(a) together with their contour plot
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Figure 4.1: True (solid line) and fitted (dotted line) volatilities for the 2-

dimensional simulated data.

of the joint predictive density in 4.4(b). From both sets of figures, we can see

that, even though we are not able to superimpose them, their similarity is

clear.

Second, we generate a 3-dimensional time series of returns from a multi-

variate Skew-Slash DCC model with T = 2000 observations, Skew-Slash pa-

rameters η = (0.0768, 0.0768, 0.0768)′, Σ with diagonal elements all equal to

0.6035 and off-diagonal elements all with value 0.0035, λ = (−0.1,−0.1,−0.1)′,

ν = 5, and GARCH parameters μ = (0, 0, 0)′, ω = (0.001, 0.001, 0.001)′,

(α1, β1)
′ = (α2, β2)

′ = (α3, β3)
′ = (0.1, 0.85)′, θ = (0.9, 0.05)′, and R with unit

diagonal and off-diagonal elements ρ12 = 0.5, ρ13 = 0.7, and ρ23 = 0.3. Notice

that Σ and R are symmetric matrices, also keep in mind that η and Σ are set

to verify the null mean and unit variance of the innovations.
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Figure 4.2: True (solid line) and fitted (dotted line) predictive innovation

marginal densities compared to their histograms for the 2-dimensional data

set.

(a) (b)

Figure 4.3: True (a) and fitted (b) predictive innovation joint densities for the

2-dimensional simulated data.
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(a) (b)

Figure 4.4: Contour plots of the true (a) and fitted (b) predictive innovation

densities for the 2-dimensional simulated data.

Figure 4.5 shows the real volatilities (blue solid line) and the Bayesian

posterior mean volatility estimates (red dashed line), and we can see that they

are almost indistinguishable. Figure 4.6 illustrates the comparison between the

theoretical marginal densities of the innovations (solid blue line), and the mean

predictive marginal densities (dashed red line), both compared to the marginal

histograms of the real innovations presented by the 3-dimensional simulated

data. Here, we also find that both densities are almost indistinguishable, and

the estimation results appear to be very good as well. Finally, Figure 4.7

shows the 2-variable marginal theoretical densities of the innovations in 4.7(a)

for (ε1, ε2), 4.7(c) for (ε1, ε3), and 4.7(e) for (ε2, ε3) next to their 2-variable

marginal predictive densities in 4.7(b) for (ε1, ε2), 4.7(d) for (ε1, ε3), and 4.7(f)

for (ε2, ε3).
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Figure 4.5: True (solid line) and fitted (dotted line) volatilities for the 3-

dimensional data set.
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Figure 4.6: True (solid line) and fitted (dotted line) predictive innovation

marginal densities compared to their histograms for the 3-dimensional data

set.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: True (left) and fitted (right) predictive innovation 2-variable

marginal densities for the 3-dimensional simulated data.
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(a)

(b)

Figure 4.8: Contour plots of the true (a) and fitted (b) predictive innovation

2-variable marginal densities for the 3-dimensional simulated data.
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Figure 4.8 shows the contour plots of the 2-variable marginal theoretical

densities of the innovations in 4.8(a) together with their contour plots of the

2-variable marginal predictive densities in 4.8(b). From both sets of figures,

we can see that, even though we are not able to superimpose them, their

similarity is clear.

4.2.2 Real data examples

To illustrate the usefulness of the approach for the multivariate modeling of

financial returns proposed in the present thesis, in this section we analyze two

real data sets.

First of all, we analyze the daily closing prices of the Dow Jones and

NASDAQ New Yorker stock market indices. Second of all, we analyze the

daily log-returns of the German DAX, the French CAC40, and the Japanese

Nikkei stock market indices.

In each case, we obtained fitted volatilities as the mean value of the fitted

volatilities of the 25000 parameter values of the MCMC sampler.

Dow Jones - NASDAQ

We begin by analyzing the daily closing prices of the Dow Jones and NAS-

DAQ stock market indices, from January 2nd, 1996 to December 29th, 2006,

which leads to 2769 observations. Figure 4.9 shows the plot of the time series

generated by the simple returns of both indices, where we rename the Dow

Jones index as the first component of our variable, Y1, and, analogously, we

rename the NASDAQ index as Y2. We can see that this data clearly needs to

be modeled in a manner that is able to capture heavy tails.

The univariate sample means, standard deviations, skewness coefficients,
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Figure 4.9: Dow Jones and NASDAQ returns between January 2nd, 1996 and

December 29th, 2006.

and kurtosis coefficients of the return series are (0.0317, 0.0298)′, (1.088, 1.7614)′,

(−0.2961, 0.1559)′, and (10.0587, 69.0901)′, respectively, from which we may

believe that, even though the skewness is very slight, the kurtosis are clearly

very large, especially the one presented by the NASDAQ index. This indicates

that the normal distribution could not suffice in the task of modeling this data;

hence, the proposal of modeling the data by means of a 2-dimensional Skew-

Slash DCC process seems appropriate.

Figure 4.10 shows the fitted volatilities, while Figure 4.11 shows the esti-

mated innovation marginal densities. On the other hand, in Figure 4.12 we

can see the joint predictive density of the innovations, and Figure 4.13 shows

its corresponding contour plot.

We wanted to go further and be able to compare our model with another
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Figure 4.10: Volatility estimates for the Dow Jones and NASDAQ returns.

Figure 4.11: Estimated innovation marginal densities for the Dow Jones and

NASDAQ returns.
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Figure 4.12: Estimated innovation joint density for the Dow Jones and NAS-

DAQ returns.

one and, that way, prove the effectiveness of our methodology. To do this,

we decided to take into account the data set presented by Fioruci, Ehlers,

and Andrade (2014), and evaluate the performance of our model fitting this

information.

DAX - CAC40 - Nikkei

The original information consists on the daily closing prices of the stock market

indices in Frankfurt (DAX), Paris (CAC40), and Tokyo (Nikkei) from October

10th, 1991 through December 30th, 1997, which leads to 1624 observations1.

To obtain the daily log-returns, we make a transformation such that the daily

log-return at time t, for a certain stock market index, is given by 100 times

1The data is freely available in http://www.robjhyndman.com/TSDL/data/FVD1.dat

http://www.robjhyndman.com/TSDL/data/FVD1.dat
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Figure 4.13: Contour plot of the estimated joint density for the innovations of

the Dow Jones and NASDAQ returns.

the logarithm of the increase rate of the closing price of the day t, respect to

the closing price of the day t− 1. This way, we lose the first observation and

end up with a total of T = 1623 log-returns.

Figure 4.14 shows the plot of the time series generated by the log-returns

of our three stock market indices, and we will associate the DAX index to

the first innovation component, ε1, the CAC40 index to the second innova-

tion component, ε2, and the Nikkei index to the third (and last) innovation

component, ε3. We can see that the data is clearly heteroskedastic, and it

also presents a perturbation in the end that calls for a model that can capture

heavy tails in the innovations, as we propose with our 3-dimensional Skew-

Slash DCC model. Also, we can already see that the data is mostly symmetric

in all three cases.
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Figure 4.14: DAX, CAC40, and Nikkei log-returns between October 10th, 1991

and December 30th, 1997.

In fact, the univariate sample means are (0.0614, 0.0295, 0.0601)′, the stan-

dard deviations of the separate series are (0.9988, 1.0893, 1.6101)′, the individ-

ual skewness coefficients are (−0.5799,−0.0434,−0.2078)′, and the univari-

ate kurtosis coefficients of the three considered log-return series are given by

(8.5006, 4.4835, 18.5369)′.

Clearly, the normal distribution could not possibly be able to reflect the

behavior exhibited by this data set. This leads us to believe that it makes

sense to use the proposed Dynamic Conditional Correlation model with Skew-

Slash innovations for this data because all of the indices considered have a

slight skewness and a high kurtosis, especially the Nikkei stock market index.

Figure 4.15 shows the fitted volatilities, while Figure 4.16 shows the esti-

mated innovation marginal densities. On the other hand, in Figure 4.17 we
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Figure 4.15: Volatility estimates for the DAX, CAC40, and Nikkei log-returns.

Figure 4.16: Estimated innovation marginal densities for the DAX, CAC40,

and Nikkei log-returns.
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(a)

DAX-CAC40

(b)

DAX-Nikkei

(c)

CAC40-Nikkei

Figure 4.17: Estimated innovation 2-variable marginal densities for the DAX,

CAC40, and Nikkei log-returns.
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Figure 4.18: Contour plots of the estimated innovation 2-variable marginal

densities for the innovations of the DAX, CAC40, and Nikkei log-returns.



4.2. EXAMPLES 93

can see the 2-variable marginal predictive densities of the innovations, and

Figure 4.18 shows their corresponding contour plots.

Now, we proceed to compare the performance of our model in front of the

one proposed by Fioruci, Ehlers, and Andrade (2014). We used the same data

set that they used, and we transformed it in the way they explained their

transformation. They perform their main estimation using another member

of the Skew-Normal/independent family: the Skew-T (and they compare it

to the performance of other reference distributions). A difference between

our approaches is that they establish a null drift parameter, µ, and do not

estimate the correlation matrix, while we allow both sets of parameters to

define themselves. To compare both models, we decided to set µ = 0 as

well, and set the value of R as the correlation matrix of the data, and leave

them fixed during the estimation in order to be able to recreate an analogous

scenario.

After we obtained our own estimations, we used the Deviance Information

Criterion (DIC), a measurement already provided in their paper, for compar-

ison.

The Deviance Information Criterion, as defined by Spiegelhalter, Best,

Carlin, and van der Linde (2002), is given by

DIC (M) = 2E{D (ϑ;M)} −D (E{ϑ};M) ,

where ϑ;M denote, in this case, the set of parameters, ϑ, for the model in

question, M , and D (·; ·) denotes the deviance function, defined as

D (ϑ;M) = −2 ln {L (ϑ;M)}.

Let us remember that L denotes the likelihood function.
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In table 4.1 we can find the Deviance Information Criterion (DIC) values

for the Dynamic Conditional Correlation model with different innovation dis-

tributions: Gaussian, Skew-Normal, Generalized Error Distribution (GED),

Skew-GED, Student’s-t, Skew-t, and Skew-Slash. In this table, we are able to

show the model comparison performed by Fioruci, Ehlers, and Andrade (2014),

in which they choose the Skew-t distribution to model the innovations, and

also incorporate the comparison with our model.

Table 4.1: DIC for the Dynamic Conditional Correlation model with several

innovation distributions for the DAX, CAC40, and Nikkei data.

DIC

Normal 13957.53

Skew-Normal 13947.62

GED 13828.97

Skew-GED 13823.48

Student’s-t 13810.36

Skew-t 13803.32

Skew-Slash 13801.71

As they explain, for the DAX, CAC40, and Nikkei data, the distributions

with heavier tails exhibit a better behavior than the normal distribution. In

fact, the best performance they select is the one exhibited by the mentioned

Skew-t distribution, obtaining a DICSkT = 13803.32. We obtained a smaller,

but similar value DICSSL = 13801.7153. Therefore, the better performance

is attained by the Dynamic Conditional Correlation model with Skew-Slash

innovations, although the difference with the Skew-t distribution is small.



Chapter 5

Conclusions and future lines of

research

5.1 Conclusions

In this thesis, we have studied several probability distributions that generalize

in one way or another the normal distribution to incorporate skewness or

kurtosis, which are typical features of financial data.

For the univariate case, we proposed to model the returns of a single di-

mensional financial asset by means of a Generalized Autoregressive Condi-

tional Heteroskedastic process with Skew-Slash innovations. Developing our

proposal, we showed a Maximum Likelihood approach as well as a Bayesian

method for the estimation of our model.

To illustrate the power of the proposed models and methodologies, we

recurred to several data sets. Firstly, we worked with several simulated data

sets of different sizes to illustrate the capability of the Maximum Likelihood

approach and then we picked one of the simulated data sets to assess the

95
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Bayesian methodology and to compare both proposals. Second, we studied a

series of log-returns drawn from the Standard & Poor’s index between January

3rd, 2000 and December 28th, 2013 using both methods, and compared them.

For the multivariate case, our proposal was to model the structure of a

multidimensional time series of financial returns by means of the Dynamic

Conditional Correlation model with Skew-Slash innovations. While we ex-

plained our proposal, we constructed a methodology for the model fitting

from a Bayesian point of view.

To illustrate the abilities of our proposed model and methodology, we ap-

plied our ideas to a number of data sets. We started by fitting a 2-dimensional

simulated series of returns, as well as an analogous 3-dimensional data set and

compared true features such as the marginal densities, volatilities, and even

the joint density in the two-dimensional case, to their estimated pairs, and we

found very good results. Later on, we estimated two real data sets.

Fist of all, we fitted a 2-dimensional financial time series that contains the

returns of the Dow Jones and NASDAQ stock market indices between January

2nd, 1996 and December 29th, 2006; nevertheless, we realized that, with the

information available, we could not find a way to evaluate the performance of

our methodology. To respond to this issue, we decided to fit a second data set

consistent on a 3-dimensional time series that contains the log-returns of the

DAX, CAC40, and Nikkei stock market indices between October 10th, 1991

and December 30th, 1997.

This data has already been studied by Fioruci, Ehlers, and Andrade (2014),

except they use other members of the Skew-Normal/independent family of dis-

tributions, as well as some Normal/independent distributions, and the Gaus-

sian one, and provide the values of the Deviance Information Criterion (DIC)
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that they obtained with their estimations; therefore, we decided to compute

the DIC inherent to our model estimation, so we could compare the models.

In this case, the model selection criterion manifested a better performance

of our model capturing the essence of the data set that we were dealing with,

but not with a very big difference, which lead us to believe that, for this

kind of data sets, different members of the Skew-Normal/independent family

of distributions might have similar performances fitting their features, but

maybe each data set has its own better partner, to call it some way.

5.2 Future lines of research

There are a number of subjects that are in some way related to the work

presented in this thesis, and that we find interesting, but have not been able

to explore yet.

First of all, we realize that it is not always realistic to assume that the

autocorrelations will only be significant for one lag; thus, we believe that it

would be very interesting to drop this restriction, present all along our work. In

the univariate case, the idea would be to go from the GARCH(1, 1) process to

the more general GARCH(p, q), while maintaining the Skew-Slash innovations.

For the multivariate case, we would have to remain open to the possibility of

a Dynamic Conditional Correlation model with Skew-Slash innovations, but,

in this case, basing the structure in a model of the form GARCH({pi, qi}di=1),

that would allow for a much more flexible structure not only in terms of lags,

but in terms of the different individual behaviors.

Second, we think that one of the reasons that give relevance to finding a

way to model financial data sets that allows us to capture the essence of the
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behavior of the data in the best way possible is the necessity of the investors

for a good assessment of the risk they would be incurring in if they decided

to include certain assets in their portfolio. One possible way of answering this

inquietude could be to implement our model to the characterization of certain

risk measures, such as the Value at Risk or the Conditional Value at Risk.

Third, we have already manifested our belief that, because all members

of the Skew-Normal/independent family of distributions share some of their

features, it is very likely that, in certain frameworks, they might behave in

similar ways, but we think that it is possible that, for every data set, we might

be able to find one distribution that suits the information better than the

others in the family.

Specifically speaking, we know that the Skew-Normal/independent family

is built to be able to capture skewness and kurtosis in some environments,

such as financial data sets. In this case, the idea would be to estimate sev-

eral comparable conditional heteroskedastic models (like the GARCH or the

Dynamic Conditional Correlation model) using different elements of the Skew-

Normal/independent family of distributions to model the innovations, and use

a model selection criterion to decide, in every case, what distribution consti-

tutes a better match for the data under study.

On the other hand, we know that skewness and kurtosis do not only present

themselves simultaneously in financial returns, and we believe it could be

interesting to apply the distributions we have studied to model them. For

example, it might be possible to classify galaxies by studying the structure

and distribution of the stars that compose them without having to directly

look at them, or maybe even to use this features in some medical field.

Finally, it would be interesting to address the possibility of working with
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a distribution that can not only capture the lack of symmetry or the presence

of heavy tails, but allows for more flexibility in the structure of the kurtosis

parameter; for instance, we could try to study the possibility of a kurtosis

parameter with more than one component.
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Appendix A

Proof of the second part of Proposition 2 First, W−E (W ) can be writ-

ten as

W − E (W ) = σ
[
U−1Z − E

(
U−1

)
E (Z)

]
,

leading to

[W − E (W )]k = σk [U−1Z − E (U−1)E (Z)]
k

= σk
k∑
j=0

(−1)k−j
(
k
j

)
U−jZjE (U−1)

k−j
E (Z)k−j

Now, taking expectations in the previous equation,

mk (W ) = σkE

[
k∑
j=0

(−1)k−j
(
k
j

)
U−jZjE (U−1)

k−j
E (Z)k−j

]
= σk

k∑
j=0

(−1)k−j
(
k
j

)
E (U−j)E (Zj)E (U−1)

k−j
E (Z)k−j

= 2(k−2)/2σk
(

1
1+λ2

)k/2 k∑
j=0

j∑
i=0

bijkλ
k−j+i,

for ν > k
2
, where

bijk = (−1)k−j
(
k

j

)
ν

ν − j

(
ν

ν − 1

)k−j
π−(k−j+2)/2aij,

with k fixed, j ∈ {0, 1, . . . , k}, and i ∈ {0, 1, . . . , j}, respectively.

Finally, the two sums can be reduced as follows.

mk (W ) = 2(k−2)/2σk
(

1

1 + λ2

)k/2 k∑
l=0

clkλ
l,
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where

clk =
l∑

m=0

bm,k−l+m,k,

and

bm,k−l+m,k =

(−1)l−m
[
1 + (−1)k−l

]
π−(l−m+2)/2 ν

ν − (k − l +m)

(
ν

ν − 1

)l−m
(
k

l

)(
l

m

)
Γ

(
m+ 1

2

)
Γ

(
k − l + 1

2

)
,

for fixed k, fixed l ∈ {0, 1, . . . , k}, and m ∈ {0, 1, . . . , l}, respectively. �
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