ZEROS OF JACOBI-SOBOLEV ORTHOGONAL POLYNOMIALS

D. H. KIM, K. H. KWON, F. MARCELLÁN, AND G. J. YOON

Abstract. We investigate zeros of Jacobi-Sobolev orthogonal polynomials with respect to

$$
\phi(f, g)=\int_{-1}^{1} f(x) g(x)(1-x)^{\alpha}(1+x)^{\beta} d x+\gamma \int_{-1}^{1} f^{\prime}(x) g^{\prime}(x)(1-x)^{\alpha+1}(1+x)^{\beta} d x
$$

where $\alpha>-1,-1<\beta \leq 0$ and $\gamma>0$.
2000 AMS Subject Classification : 33C45
Key words : Jacobi-Sobolev Orthogonal Polynomials, Zeros

1. Introduction

Consider a Sobolev inner product on the space \mathbb{P} of real polynomials given by

$$
\begin{equation*}
\phi(p, q):=\langle\sigma, p q\rangle+\gamma\left\langle\tau, p^{\prime} q^{\prime}\right\rangle \tag{1.1}
\end{equation*}
$$

where σ and τ are positive-definite moment functionals and $\gamma>0$. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty},\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, and $\left\{S_{n}^{(\gamma)}(x)\right\}_{n=0}^{\infty}$ be the sequences of monic polynomials orthogonal with respect to σ, τ, and $\phi(\cdot, \cdot)$ respectively. Set

$$
\left\langle\sigma, P_{n}^{2}(x)\right\rangle=u_{n},\left\langle\tau, Q_{n}^{2}(x)\right\rangle=v_{n}, \phi\left(S_{n}^{(\gamma)}, S_{n}^{(\gamma)}\right)=s_{n}(\gamma), n \geq 0
$$

Then it is well known $([5])$ that both $P_{n}(x)$ and $Q_{n}(x)$ have n real simple zeros. There also have been many works on zeros of Sobolev orthogonal polynomials $S_{n}^{(\gamma)}$ for various choices of σ and $\tau([2,3,6,16])$. Recently, Marcellán, Pérez, and Piñar showed that $S_{n}^{(\gamma)}$ has n real simple zeros, which interlace with zeros of $P_{n}(x)$ when $\sigma=\tau$ is the Laguerre moment functional([13]) and the Gegenbauer moment functional([11]). These results not only extend the previous works by Althammer[2] and Cohen[6] but also motivate the works by M. G. de Bruin and H. G. Meijer[4, 15]. In [15], they presented an exhaustive overview about the location of zeros of $S_{n}^{(\gamma)}(x)$ when $\{\sigma, \tau\}$ is a coherent pair.

Here, we are interested in the location of zeros of Jacobi-Sobolev orthogonal polynomials $\left\{S_{n}^{(\gamma)}(x)\right\}_{n=0}^{\infty}$ when

$$
\sigma=(1-x)^{\alpha}(1+x)^{\beta} d x \quad \text { and } \quad \tau=(1-x)^{\alpha+1}(1+x)^{\beta} d x
$$

on $[-1,1]$. In this case, $\{\sigma, \tau\}$ is a coherent pair of type C if $-1<\beta<0$, type B if $\beta=0$, and type A and C if $\beta>0$ according to the classification in [15]. So we can deduce from [15, Theorem 4.2] that for $-1<\beta<0, S_{n}^{(\gamma)}(x)$ has n real simple zeros, all of which lie in $(-1,1)$ except possibly the smallest zero. Furthermore, they showed ([15, Theorem 5.2]) that the smallest zero must be greater than

$$
\frac{\alpha-\beta}{\alpha+\beta+2}-\frac{5}{2}
$$

Note that the above lower bound for zeros of $S_{n}^{(\gamma)}(x)$ is always less than -1 for $\alpha>-1$ and $-1<\beta<0$.

In this work, we give more precise location for the smallest zero with respect to the point -1 .

2. Main Results

Assume that $\{\sigma, \tau\}$ is a coherent pair $([4,8,10])$, that is, there are non-zero constants a_{n} such that

$$
P_{n}^{\prime}(x)+a_{n-1} P_{n-1}^{\prime}(x)=n Q_{n-1}(x), \quad n \geq 2
$$

Expanding $P_{n}(x)+a_{n-1} P_{n-1}(x)$ in terms of $\left\{S_{k}^{(\gamma)}(x)\right\}_{k=0}^{n}$, we obtain

$$
\begin{gather*}
P_{n}(x)+a_{n-1} P_{n-1}(x)=S_{n}^{(\gamma)}(x)+d_{n-1}(\gamma) S_{n-1}^{(\gamma)}(x), \quad n \geq 2 \tag{2.1}\\
d_{n-1}(\gamma)=\frac{a_{n-1} u_{n-1}}{s_{n-1}(\gamma)}, \quad n \geq 2
\end{gather*}
$$

Set $\phi_{i j}:=\phi\left(x^{i}, x^{j}\right)$ and $\Delta_{n}(\phi):=\operatorname{det}\left[\phi_{i j}\right]_{i, j=0}^{n}$. Then $s_{n}(\gamma)=\frac{\Delta_{n}(\phi)}{\Delta_{n-1}(\phi)}\left(\Delta_{-1}(\phi)=1\right), n \geq 0$ so that

$$
d_{n}(\gamma)=\frac{a_{n} u_{n} \Delta_{n-1}(\phi)}{\Delta_{n}(\phi)}, n \geq 1
$$

Since $\Delta_{n}(\phi)$ is a polynomial in γ of degree $n, \lim _{\gamma \rightarrow \infty} d_{n}(\gamma)=0$ for $n \geq 1$.
It is easy to see from the orthogonality that $S_{n}^{(\infty)}(x):=\lim _{\gamma \rightarrow \infty} S_{n}^{(\gamma)}(x)$ exists for $n \geq 0$. Since $\lim _{\gamma \rightarrow \infty} d_{n}(\gamma)=0$, by (2.1),

$$
\begin{equation*}
S_{n}^{(\infty)}(x)=P_{n}(x)+a_{n-1} P_{n-1}(x), \quad n \geq 2 . \tag{2.2}
\end{equation*}
$$

Hence, $S_{n}^{(\infty)}(x)$ is quasi-orthogonal of order n with respect to σ so that $S_{n}^{(\infty)}(x)(n \geq 2)$ has n real simple zeros $\left\{y_{n k}(\infty)\right\}_{k=1}^{n}$ satisfying

$$
\begin{equation*}
y_{n 1}(\infty)<x_{n 1}<y_{n 2}(\infty)<x_{n 2}<\cdots<y_{n n}(\infty)<x_{n n} \tag{2.3}
\end{equation*}
$$

If we write $S_{n}^{(\gamma)}(x)=x^{n}+\sum_{k=0}^{n-1} C_{k}^{(n)}(\gamma) x^{k}, n \geq 1$, then we can easily obtain from the orthogonality of $\left\{S_{n}^{(\gamma)}(x)\right\}_{n=0}^{\infty}$

$$
C_{k}^{(n)}(\gamma)=-\Delta_{n-1}^{(k)}(\phi) / \Delta_{n-1}(\phi), \quad 0 \leq k \leq n-1
$$

where $\Delta_{n-1}^{(k)}(\phi)$ is the determinant of $\left[\phi_{i j}\right]_{i, j=0}^{n-1}$ whose k-th column is replaced by $\left[\phi\left(x^{n}, x^{j}\right)\right]_{j=0}^{n-1}$. Note that $\Delta_{n-1}(\phi)$ and $\Delta_{n-1}^{(k)}(\phi)(0 \leq k \leq n-1)$ are polynomials in γ of degree at most $n-1$. Since $\Delta_{n-1}(\phi) \neq 0$, zeros of $S_{n}^{(\gamma)}(x)(n \geq 1)$ are continuous functions in γ for $\gamma \geq 0$.

Consider now the Jacobi differential equation for $\alpha+\beta \neq-1,-2, \cdots$

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}(x)+\{(\beta-\alpha)-(\alpha+\beta+2) x\} y^{\prime}(x)+n(\alpha+\beta+n+1) y(x)=0 \tag{2.4}
\end{equation*}
$$

which is admissible ([9]) so that it has for each $n \geq 0$ a unique monic polynomial solution of degree n, i.e., Jacobi polynomial

$$
P_{n}^{(\alpha, \beta)}(x)=\binom{2 n+\alpha+\beta}{n}^{-1} \sum_{k=0}^{n}\binom{n+\alpha}{k}\binom{n+\beta}{n-k}(x-1)^{n-k}(x+1)^{k}
$$

For $\alpha+\beta \neq-1,-2, \cdots($ see $[1])$

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)+a_{n-1} P_{n-1}^{(\alpha, \beta)}(x)=P_{n}^{(\alpha, \beta-1)}(x), \quad n \geq 1 \tag{2.5}
\end{equation*}
$$

where

$$
a_{n}=\frac{2(n+1)(n+\alpha+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)}, \quad n \geq 0
$$

and

$$
\begin{equation*}
P_{n}^{(\alpha, \beta-1)}(x)^{\prime}=n P_{n-1}^{(\alpha+1, \beta)}(x), \quad n \geq 0 \tag{2.6}
\end{equation*}
$$

For $\alpha, \beta>-1$ and $\gamma>0$, let

$$
\phi(p, q):=\left\langle\sigma_{J}^{(\alpha, \beta)}, p q\right\rangle+\gamma\left\langle\sigma_{J}^{(\alpha+1, \beta)}, p^{\prime} q^{\prime}\right\rangle
$$

and $\left\{S_{n}^{(\gamma)}(x ; \alpha, \beta)\right\}_{n=0}^{\infty}$ the monic Jacobi-Sobolev orthogonal polynomials with respect to $\phi(\cdot, \cdot)$, where $\sigma_{J}^{(\alpha, \beta)}$ is the positive-definite Jacobi moment functional defined by

$$
\left\langle\sigma_{J}^{(\alpha, \beta)}, p(x)\right\rangle:=\int_{-1}^{1} p(x)(1-x)^{\alpha}(1+x)^{\beta} d x, p \in \mathbb{P}
$$

Then by the relations (2.5) and (2.6), $\left\{\sigma_{J}^{(\alpha, \beta)}, \sigma_{J}^{(\alpha+1, \beta)}\right\}$ is a coherent pair so that

$$
\begin{equation*}
S_{n}^{(\gamma)}(x ; \alpha, \beta)+d_{n-1}(\gamma) S_{n-1}^{(\gamma)}(x ; \alpha, \beta)=P_{n}^{(\alpha, \beta)}(x)+a_{n-1} P_{n-1}^{(\alpha, \beta)}(x), n \geq 1 \tag{2.7}
\end{equation*}
$$

for some constants $d_{n-1}(\gamma)$, which are positive since $a_{n}>0$ for $\alpha, \beta>-1$. We also have

$$
S_{n}^{(\infty)}(x ; \alpha, \beta):=\lim _{\gamma \rightarrow \infty} S_{n}^{(\gamma)}(x ; \alpha, \beta)=P_{n}^{(\alpha, \beta-1)}(x), \quad n \geq 0
$$

According to the classification in [15], $\left\{\sigma_{J}^{(\alpha, \beta)}, \sigma_{J}^{(\alpha+1, \beta)}\right\}$ is of type C so that by Theorem 4.1 and Theorem 5.2 in [15], $S_{n}^{(\gamma)}(x ; \alpha, \beta)$ has n real simple zeros $y_{n k}=y_{n k}(\gamma)(1 \leq k \leq n)$ such that

$$
\frac{\alpha-\beta}{\alpha+\beta+2}-\frac{5}{2}<y_{n 1}<y_{n 2}<\cdots<y_{n n}<1 \quad \text { and } \quad y_{n 2}>-1
$$

Moreover, if $\beta>0$, then $\left\{\sigma_{J}^{(\alpha, \beta)}, \sigma_{J}^{(\alpha+1, \beta)}\right\}$ is also of type A. Hence by Theorem 4.2 in [15], $\left\{y_{n k}\right\}_{k=1}^{n}$ interlace with the zeros $\left\{x_{n k}\right\}_{k=1}^{n}$ of $S_{n}^{(\infty)}(x ; \alpha, \beta)=P_{n}^{(\alpha, \beta-1)}(x)$ as

$$
x_{n 1}<y_{n 1}<x_{n 2}<y_{n 2}<\cdots<x_{n n}<y_{n n}
$$

In particular, $y_{n 1}>-1$ if $\beta>0$.
We are now concerned with the location of the smallest zero $y_{n 1}$ of $S_{n}^{(\gamma)}(x ; \alpha, \beta)$ with respect to the point -1 for $\alpha>-1$ and $-1<\beta \leq 0$.

Theorem 2.1. If $\alpha>-1$ and $\gamma>0$, then $S_{n}^{(\gamma)}(x ; \alpha, 0)(n \geq 2)$ has n real simple zeros $\left\{y_{n k}\right\}_{k=1}^{n}$ with

$$
\begin{equation*}
-1<y_{n 1}<x_{n 1}<y_{n 2}<x_{n 2}<\cdots<y_{n n}<x_{n n}<1 \tag{2.8}
\end{equation*}
$$

where $\left\{x_{n k}\right\}_{k=1}^{n}$ are zeros of $P_{n}^{(\alpha, 0)}(x)$.
We will prove Theorem 2.1 taking into account ideas used in ([11, 13]). Set

$$
\digamma[\cdot]=\left(1-x^{2}\right) I-\gamma(1-x)\left[(-(\alpha+\beta+1) x-(\alpha-\beta+1)) D+\left(1-x^{2}\right) D^{2}\right]
$$

where $D=\frac{d}{d x}$. Then it is shown in [12] that $\digamma[\cdot]$ is a symmetric operator for $\phi(\cdot, \cdot)$ in the sense that $\phi(\digamma[p], q)=\phi(p, \digamma[q])$ for any $p(x)$ and $q(x)$ in \mathbb{P}.

Lemma 2.2. Let $\beta=0$. Then for any polynomial $p(x)$ of degree $k(\geq 0)$, there exists a unique polynomial $p_{1}(x)$ of degree k such that

$$
\digamma\left[p_{1}(x)\right]=\left(1-x^{2}\right) p(x)
$$

Proof. When $\beta=0, \digamma[\cdot]=\left(1-x^{2}\right)\left[I+\gamma(\alpha+1) D-\gamma(1-x) D^{2}\right]$. Let

$$
p_{1}(x)=\sum_{i=0}^{k} b_{i}(1+x)^{i} \text { and } p(x)=\sum_{i=0}^{k} c_{i}(1+x)^{i}
$$

Then we obtain the following linear system of equations

$$
\left\{\begin{array}{l}
b_{k}=c_{k} \tag{2.9}\\
b_{k-1}+\gamma k(\alpha+k) b_{k}=c_{k-1} \\
b_{i}+\gamma(i+1)(\alpha+i+1) b_{i+1}-2 \gamma(i+1)(i+2) b_{i+2}=c_{i}, \quad 0 \leq i \leq k-2
\end{array}\right.
$$

from which $\left\{b_{i}\right\}_{i=0}^{k}$ can be obtained recursively.

Lemma 2.3. $\operatorname{sgn} S_{n}^{(\gamma)}(-1 ; \alpha, 0)=(-1)^{n}, n \geq 0$.
Proof. From (2.5) and (2.7),

$$
S_{n}^{(\gamma)}(-1 ; \alpha, 0)+d_{n-1}(\gamma) S_{n-1}^{(\gamma)}(-1 ; \alpha, 0)=P_{n}^{(\alpha,-1)}(-1)=0, \quad n \geq 1
$$

Since $d_{n}(\gamma)>0, n \geq 0$ and $S_{0}(x ; \alpha, 0)=1, \operatorname{sgn} S_{n}^{(\gamma)}(-1 ; \alpha, 0)=(-1)^{n}, n \geq 0$.
Proof of Theorem 2.1. Fix any $n \geq 1$ and set

$$
w_{i}(x)=\frac{P_{n}^{(\alpha, 0)}(x)}{x-x_{i}}, 1 \leq i \leq n, \text { where } x_{i}=x_{n i}(1 \leq i \leq n) \text { are zeros of } P_{n}^{(\alpha, 0)}(x)
$$

By Lemma 2.2, there exists a unique polynomial $p_{i}(x)$ of degree $n-1$ such that

$$
\digamma\left[p_{i}(x)\right]=\left(1-x^{2}\right) w_{i}(x), 1 \leq i \leq n
$$

Hence,

$$
\begin{aligned}
& \phi\left(S_{n}^{(\gamma)}(x ; \alpha, 0), p_{i}(x)\right) \\
&= \int_{-1}^{1} S_{n}^{(\gamma)}(x ; \alpha, 0) p_{i}(x)(1-x)^{\alpha} d x+\gamma \int_{-1}^{1} S_{n}^{(\gamma)}(x ; \alpha, 0)^{\prime} p_{i}^{\prime}(x)(1-x)^{\alpha+1} d x \\
&= \int_{-1}^{1} S_{n}^{(\gamma)}(x ; \alpha, 0)\left[p_{i}(x)+\gamma(\alpha+1) p_{i}^{\prime}(x)-\gamma(1-x) p_{i}^{\prime \prime}(x)\right](1-x)^{\alpha} d x \\
& \quad-2^{\alpha+1} \gamma S_{n}^{(\gamma)}(-1 ; \alpha, 0) p_{i}^{\prime}(-1) \\
&= \int_{-1}^{1} S_{n}^{(\gamma)}(x ; \alpha, 0) w_{i}(x)(1-x)^{\alpha} d x-2^{\alpha+1} \gamma S_{n}^{(\gamma)}(-1 ; \alpha, 0) p_{i}^{\prime}(-1) \\
&= \lambda_{i} S_{n}^{(\gamma)}\left(x_{i} ; \alpha, 0\right) w_{i}\left(x_{i}\right)-2^{\alpha+1} \gamma S_{n}^{(\gamma)}(-1 ; \alpha, 0) p_{i}^{\prime}(-1)
\end{aligned}
$$

where λ_{i} 's are the Christoffel numbers for the Jacobi polynomial $P_{n}^{(\alpha, 0)}(x)$.
Since $\operatorname{sgn} w_{i}\left(x_{i}\right)=\operatorname{sgn} P_{n}^{(\alpha, 0)}\left(x_{i}\right)^{\prime}=(-1)^{n-i}$, then

$$
\operatorname{sgn} S_{n}^{(\gamma)}\left(x_{i} ; \alpha, 0\right)=\operatorname{sgn}\left(w_{i}\left(x_{i}\right) S_{n}^{(\gamma)}(-1 ; \alpha, 0) p_{i}^{\prime}(-1)\right)=(-1)^{i} \operatorname{sgn} p_{i}^{\prime}(-1)
$$

Because $c_{n-1}=1$ and $w_{i}(x)$ has $n-1$ simple zeros in $(-1,1)$, we obtain by the Cardano-Vieta formula $(-1)^{n-i-1} c_{i}>0,0 \leq i \leq n-1$. Then we have from (2.9)

$$
\operatorname{sgn} b_{i}=(-1)^{n-1-i} \quad \text { and } \quad \operatorname{sgn} p_{i}^{\prime}(-1)=\operatorname{sgn} b_{1}=(-1)^{n}, \quad 0 \leq i \leq n-1
$$

Hence, $\operatorname{sgn} S_{n}^{(\gamma)}\left(x_{i} ; \alpha, 0\right)=(-1)^{n-i}, 1 \leq i \leq n$. Since $\operatorname{sgn} S_{n}^{(\gamma)}(-1 ; \alpha, 0)=(-1)^{n}, S_{n}^{(\gamma)}(x ; \alpha, 0)$ has n real simple zeros $\left\{y_{n k}\right\}_{k=1}^{n}$ with

$$
-1<y_{n 1}<x_{1}<y_{n 2}<x_{2}<\cdots<y_{n n}<x_{n}<1
$$

Note that Theorem 2.1 also follows Theorem 4.1 in [15] and the subsequent remark, where different arguments are used.
For $\alpha>-1$ and $-1<\beta<0$, we have the following which is the Jacobi version of Theorem 5.1 in [15].

Theorem 2.4. [cf. Theorem 5.1 in [15]] Let $y_{n 1}(\gamma)$ denote the smallest zero of $S_{n}^{(\gamma)}(x ; \alpha, \beta)$ and $y_{n, 1}(\infty)$ the smallest zero of $S_{n}^{(\infty)}(x ; \alpha, \beta)$. For $\alpha>-1$ and $-1<\beta<0$, we have
(i) $y_{n 1}(\infty)<-1$ if $n \geq 2$;
(ii) $y_{21}(\infty)$ is a lower bound for the zeros of $S_{n}^{(\gamma)}(x ; \alpha, \beta)$ for all $n \geq 1$ and all $\gamma>0$;
(iii) if $n \geq 3$, then for γ large

$$
y_{n-1,1}(\gamma)<y_{n, 1}(\gamma)<y_{n, 1}(\infty)
$$

and for γ small

$$
y_{n, 1}(\infty)<-1<y_{n, 1}(\gamma)<y_{n-1,1}(\gamma)
$$

Proof. From the relation in (2.5)

$$
P_{n}^{(\alpha, \beta-1)}(x)=P_{n}^{(\alpha, \beta)}(x)+\frac{2 n(n+\alpha)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)} P_{n-1}^{(\alpha, \beta)}(x), \quad n \geq 1
$$

and the three-term recurrence relation ([5, (2.29), page 153]) for monic Jacobi polynomials

$$
\begin{aligned}
P_{n}^{(\alpha, \beta)}(x)= & \left(x-\frac{\beta^{2}-\alpha^{2}}{(2 n+\alpha+\beta-2)(2 n+\alpha+\beta)}\right) P_{n-1}^{(\alpha, \beta)}(x) \\
& -\frac{4(n-1)(n+\alpha-1)(n+\beta-1)(n+\alpha+\beta-1)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta-2)^{2}(2 n+\alpha+\beta-3)} P_{n-2}^{(\alpha, \beta)}(x), \quad n \geq 1
\end{aligned}
$$

we get the relations

$$
\frac{(\alpha+\beta+2)(\alpha+\beta+3)}{(\alpha+1)(\alpha+2)} S_{2}^{(\infty)}(x ; \alpha, \beta)(x)=(x+1)^{2}+2\left(\frac{\beta+1}{\alpha+1}\right)\left(x^{2}-1\right)+\frac{\beta(\beta+1)}{(\alpha+2)(\alpha+1)}(x-1)^{2}
$$

and for $n \geq 3$

$$
\begin{equation*}
S_{n}^{(\infty)}(x ; \alpha, \beta)=(x+1) P_{n-1}^{(\alpha, \beta)}(x)-\frac{2(n+\beta-1)(n+\alpha+\beta-1))}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta-2)} S_{n-1}^{(\infty)}(x ; \alpha, \beta) \tag{2.10}
\end{equation*}
$$

Then by the same arguments used to prove Theorem 5.1 in [15], we have the theorem.
We see from Theorem 2.4 that if $\alpha>-1$ and $-1<\beta<0$, then for $n \geq 2$, the smallest zero $y_{n 1}(\gamma)$ of $S_{n}^{(\gamma)}(x ; \alpha, \beta)$ can be less than or equal to or greater than -1 depending on γ.

Theorem 2.5. Let $n \geq 2$. Then for the zeros $\left\{y_{n k}(\gamma)\right\}_{k=1}^{n}$ of $S_{n}^{(\gamma)}(x ; \alpha, \beta)(\gamma>0)$, we have
(i) $y_{n-1,1}(\gamma)<y_{n, 1}(\gamma)<y_{n 1}(\infty)$ or $y_{n-1,1}(\gamma)>y_{n, 1}(\gamma)>y_{n 1}(\infty)$ or $y_{n-1,1}(\gamma)=$ $y_{n, 1}(\gamma)=y_{n 1}(\infty)$;
(ii) $\left\{y_{n, 1}(\infty)\right\}_{n=2}^{\infty}$ is strictly increasing with an upper bound -1 ;
(iii) if there is an $n \geq 3$ such that $y_{n-1,1}(\gamma) \leq y_{n, 1}(\gamma)$ then $y_{m-1,1}(\gamma)<y_{m, 1}(\gamma)$, $m>n$, so that $\left\{y_{n, 1}(\gamma)\right\}_{n=2}^{\infty}$ is strictly decreasing or $\left\{y_{n, 1}(\gamma)\right\}_{n=m}^{\infty}$ is strictly increasing for some $m \geq 2$;
(iv) for $0 \leq \gamma \leq \infty, \lim _{n \rightarrow \infty} y_{n, 1}(\gamma)=-1$.

Proof. (i) From (i) of Theorem 2.4 and (ii) of Theorem 4.1 in [15], we have

$$
\begin{equation*}
y_{n 1}(\infty)<-1<y_{n 2}(\gamma) \quad \text { and } \quad y_{n 1}(\gamma)<x_{n 1}<y_{n 2}(\gamma), \quad n \geq 3 \tag{2.11}
\end{equation*}
$$

where $x_{n 1}$ is the smallest zero of $P_{n}^{(\alpha, \beta)}(x)$. We deduce from (2.2) that if $y_{n 1}(\gamma)=y_{n-1,1}(\gamma)$, then $y_{n 1}(\gamma)=y_{n-1,1}(\gamma)=y_{n 1}(\infty)$. If $y_{n 1}(\gamma)<y_{n-1,1}(\gamma)$, then $y_{n 1}(\infty)<y_{n 1}(\gamma)<y_{n-1,1}(\gamma)$ since

$$
\operatorname{sgn} S_{n}^{(\infty)}\left(y_{n 1}(\gamma)\right)=\operatorname{sgn} S_{n-1}^{(\gamma)}\left(y_{n 1}(\gamma)\right)=(-1)^{n-1}
$$

If $y_{n 1}(\gamma)>y_{n-1,1}(\gamma)$, then $y_{n 1}(\infty)>y_{n 1}(\gamma)>y_{n-1,1}(\gamma)$ since

$$
\operatorname{sgn} S_{n}^{(\infty)}\left(y_{n 1}(\gamma)\right)=\operatorname{sgn} S_{n-1}^{(\gamma)}\left(y_{n 1}(\gamma)\right)=(-1)^{n}
$$

(ii) From (2.10), we obtain

$$
\operatorname{sgn}\left(S_{n}^{(\infty)}\left(y_{n-1,1}(\infty)\right)=\operatorname{sgn}\left(y_{n-1,1}(\infty)+1\right) \operatorname{sgn} P_{n-1}^{(\alpha, \beta)}\left(y_{n-1,1}(\infty)\right)=(-1)^{n}\right.
$$

Hence for $n \geq 2, y_{n, 1}(\infty)<y_{n+1,1}(\infty)<-1$. Thus $\left\{y_{n, 1}(\infty)\right\}_{n=2}^{\infty}$ is a strictly increasing sequence with an upper bound -1 .
(iii) Assume that there exists an $n \geq 3$ such that $y_{n-1,1}(\gamma) \leq y_{n 1}(\gamma)$ but $y_{n 1}(\gamma) \geq y_{n+1,1}(\gamma)$. Then from (i), we have

$$
y_{n-1,1}(\gamma) \leq y_{n 1}(\gamma) \leq y_{n 1}(\infty) \quad \text { and } \quad y_{n+1,1}(\infty) \leq y_{n+1,1}(\gamma) \leq y_{n, 1}(\gamma)
$$

It implies that $y_{n+1,1}(\infty) \leq y_{n 1}(\infty)$, which is a contradiction to (ii). Thus $\left\{y_{n, 1}(\gamma)\right\}_{n=2}^{\infty}$ is a strictly decreasing sequence or $\left\{y_{n, 1}(\gamma)\right\}_{n=m}^{\infty}$ is a strictly increasing sequence for some $m \geq 2$. (iv) For $\gamma=0, y_{n 1}(0)=x_{n 1}$. Thus $\left\{y_{n 1}(0)\right\}_{n=2}^{\infty}$ is a decreasing sequence and $\lim _{n \rightarrow \infty} y_{n, 1}(0)=$ -1 . Let $\gamma \in(0, \infty)$. Then (iii) shows that $\left\{y_{n, 1}(\gamma)\right\}_{n=2}^{\infty}$ converges :

$$
\lim _{n \rightarrow \infty} y_{n, 1}(\gamma):=y(\gamma)
$$

On the other hand, from Theorem 2 and Corollary 1 in [7], we have that the limit $y(\gamma)$ lies in $[-1,1]$, which shows that $y(\gamma)=-1$. For $\gamma=\infty$, (ii) implies that

$$
\lim _{n \rightarrow \infty} y_{n, 1}(\infty):=y(\infty) \leq-1
$$

Finally, by Theorem 2.4 (iii), there is a γ with $0<\gamma<\infty$ and

$$
y_{2,1}(\gamma)<y_{3,1}(\gamma)<y_{3,1}(\infty)
$$

so that we have from (i) and (iii) that

$$
y_{n-1,1}(\gamma)<y_{n, 1}(\gamma)<y_{n, 1}(\infty), \quad n \geq 3
$$

which shows that $y(\infty)=-1$.
Since $S_{n}^{(\infty)}(x ; \alpha, \beta)=P_{n}^{(\alpha, \beta-1)}(x), n \geq 0$, we have the following.
Corollary 2.6. For $\alpha>-1$ and $-2<\beta<-1$, the smallest zeros of $\left\{P_{n}^{(\alpha, \beta)}(x)\right\}_{n=0}^{\infty}$ converge to -1 .

The following table gives numerical computations of the smallest zeros of $S_{n}^{(\gamma)}\left(x ;-\frac{1}{2},-\frac{1}{2}\right)$.

	$\gamma=0$	$\gamma=1$	$\gamma=100$	$\gamma=100000$	$\gamma=\infty$
$n=2$	-0.7071067	-1.1150692	-1.3621040	-1.3660250	-1.3660254
$n=3$	-0.8660254	-1.1202612	-1.1209032	-1.1206532	-1.1206532
$n=4$	-0.9238795	-1.0627289	-1.0601785	-1.0601489	-1.0601489
$n=5$	-0.9510565	-1.0367560	-1.0360529	-1.0360461	-1.0360461
$n=6$	-0.9659258	-1.0242415	-1.0240185	-1.0240162	-1.0240162
$n=7$	-0.9749279	-1.0172377	-1.0171494	-1.0171485	-1.0171485
$n=8$	-0.9807852	-1.0128997	-1.0128590	-1.0128586	-1.0128586
$n=9$	-0.9848077	-1.0100208	-1.0099999	-1.0099997	-1.0099997
$n=10$	-0.987688363	-1.008010659	-1.007999075	-1.007998969	-1.007998963

Table of the smallest zeros of $S_{n}^{(\gamma)}\left(x ;-\frac{1}{2},-\frac{1}{2}\right)$
Acknowledgements. KHK and GJY were partially supported by KOSEF (98-0701-03-015) and Hwarangdae Research Institute. FM was partially supported by Dirección General de Investigación (MCYT) of Spain under grant BFM2000-0206-C04-01 and INTAS00-272.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, Dover Pub., New York, 1965.
[2] P. Althammer, Eine Erweiterung des Orthogonalitäsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation, J. Reine Angew. Math. 211(1962), 192-204.
[3] J. Brenner, Über eine Erweiterung des Orthogonalitäsbegriffes bei Polynomen, in Constructive Theory of Functions, G. Alexits and S. B. Stechkin Editors, Akadémia Kiado, Budapest, 1972, 77-83.
[4] M. G. de Bruin and H. G. Meijer, Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. Numer. Math. 2 (1995), 233-246.
[5] T. S. Chihara, An introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1977.
[6] E. A. Cohen, Zero distribution and behavior of orthogonal polynomials in the Sobolev space $W^{1,2}[-1,1]$, SIAM J. Math. Anal. 6(1975), 105-116.
[7] A. Martrínez Finkelshtein and H. Pijeira Cabrera, Strong asymptotics for Sobolev orthogonal polynomials, Journal d' Analyse Mathématique 78 (1999), 143-156.
[8] K. H. Kwon, J. H. Lee, and F. Marcellán, Generalized coherent pairs, J. Math. Anal. Appl., 253 (2001), 482-514.
[9] K. H. Kwon and L. L. Littlejohn, Classification of classical orthogonal polynomials, J. Korean Math. Soc. 34 (1997), 973-1008.
[10] A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Th. 65 (1991), 151-175.
[11] F. Marcellán, T. E. Pérez, and M. A. Piñar, Gegenbauer-Sobolev orthogonal polynomials, Nonlinear Numer. Methods and Rational Approx. II, A. Cuyt Editor, Kluwer Acad. Publ., Dordrecht, Math. Appl. 296, 1994, 71-82
[12] F. Marcellán, T. E. Pérez, and M. A. Piñar, Orthogonal polynomials on weighted Sobolev spaces : The semiclassical case, Ann. Numer. Math. 2 (1995), 93-122.
[13] F. Marcellán, T. E. Pérez, and M. A. Piñar, Laguerre-Sobolev orthogonal polynomials, J. Comp. Appl. Math. 71 (1996), 245-265.
[14] H. G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, Indag. Math. N. S. 4(2) (1993), 163-176.
[15] H. G. Meijer and M. G. de Bruin, Zeros of Sobolev orthogonal polynomials following coherent pairs, J. Comp. Appl. Math. 139(2002), 253-274.
[16] F. W. Schäfke and G. Wolf, Einfache verallgemeinerte klassische Orthogonalpolynome, J. Reine Angew. Math. 262/263(1973), 339-355.
D. H. Kim

Samsung Electronics Co., LTD
Suwon, Gyeonggi-Do, Korea
e-mail: deokho.kim@partner.samsung.com
K. H. Kwon, and G. J. Yoon

Division of Applied Mathematics, KAIST
Taejon 305-701, Korea
e-mail: khkwon@jacobi.kaist.ac.kr
F. Marcellán

Departamento de Matemáticas, Universidad Carlos III de Madrid
Avda. Universidad 30, 28911 Leganés-Madrid, Spain
e-mail: pacomarc@ing.uc3m.es

