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Abstract In this paper we explore the usefulness of induced-order statistics in the
characterization of integrated series and of cointegration relationships. We propose a
non-parametric test statistic for testing the null hypothesis of two independent random
walks against wide cointegrating alternatives including monotonic nonlinearities and
certain types of level shifts in the cointegration relationship. We call our testing device
the induced-order Kolmogorov–Smirnov cointegration test (KS), since it is constructed
from the induced-order statistics of the series, and we derive its limiting distribution.
This non-parametric statistic endows the test with a number of desirable properties:
invariance to monotonic transformations of the series, and robustness for the presence
of important parameter shifts. By Monte Carlo simulations we analyze the small sam-
ple properties of this test. Our simulation results show the robustness of the induced
order cointegration test against departures from linear and constant parameter models.

Keywords Unit root tests · Cointegration tests · Nonlinearity · Robustness · Induced
order statistics · Engle and Granger test

This paper is an extension of the work of Aparicio and Granger (1995) and Aparicio and Escribano (1998).

A. Escribano (B)
Departamento de Economía, Universidad Carlos III de Madrid, C./ Madrid,
126, 28903 Getafe (Madrid), Spain
e-mail: alvaroe@eco.uc3m.es

M. T. Santos
Department of Statistics, Universidad de Salamanca, Salamanca, Spain

A. E. Sipols
Department of Statistics, Universidad Rey Juan Carlos de Madrid, Madrid, Spain

1

Referencia bibliográfica
Published in:
Computational Statistics (2008), 23, p. 131-151, ISSN 1613-9658  



1 Introduction

Stochastic processes exhibiting cointegration will have similar long waves or simi-
lar long run behavior in their sample paths. Granger (1981) introduced the concept
of cointegration, but it was not until Engle and Granger (EG) (1987) and Johansen
(1988, 1991) that this concept gained immense popularity among econometricians and
applied economists. When economic variables are non-stationary, cointegration helps
avoiding the problem of spurious regressions, see Granger and Newbold (1974) and
Phillips (1987). By now it is clear how to deal with integrated and cointegrated data in
a linear context, see for example (Watson 1994; Johansen 1995) and Hendry (1995),
but only a few recent papers have been dedicated to the simultaneous consideration
of nonstationarity and nonlinearity, even though there is considerable consensus that
these are important characteristics of many macroeconomic and financial economic
relationships. Why has so little attention been devoted to this topic? The answer is
clear; it is difficult to work with nonlinear time series models within a stationary
and ergodic framework, and even more difficult within a nonstationary context. An
introduction to the state of the art in econometrics relating nonlinearity and nonsta-
tionarity within a time series context can be found in Granger and Teräsvirta (1993),
Granger (1995), Park and Phillips (2001), Bec and Rahbek (2004), Saikkonen (2005)
and Escanciano and Escribano (2007). Granger (1995) discussed the concepts of long-
range dependence in mean and extended memory that generalize the linear concept
of integration, I(1), to a nonlinear framework. The main disadvantage of such def-
initions is that they have no Laws of Large Numbers (LLN), or Functional Central
Limit Theorems (FCLT) associated with them, and it is therefore difficult to obtain
estimation and inference results. On the other hand, there are interesting empirical
macroeconomic applications in which nonlinearity has been found in a nonstationary
context and, therefore, there is a need for those results to be justified econometrically.

Underlying the idea of cointegration is that of an equilibrium relationship (i.e., one
that on average holds) between two cointegrated variables, xt , yt . A strict equilib-
rium exists when for some α �= 0, one has yt = αxt . This unrealistic situation is
replaced, in practice, by that of (linear) cointegration, in which the equilibrium error
zt = yt −αxt is a stationary time series. The concept of cointegration is linear since it
is based on linear concepts of integration of order d, I (d), see Marmol et al. (2002) for
an alternative definition of cointegration using instrumental variables estimators. The
usual concept of I (d) is based on linear measures of dependence. Nonlinear measures
of dependence, based on near epoch dependence, α − mixing or mutual information
can be used to define a nonlinear concept of I (d) and therefore nonlinear cointegra-
tion, see Aparicio and Escribano (1999), Escribano and Mira (2002) and Escribano et
al. (2006). Nonlinear error correction means that the adjustment process towards the
equilibrium is nonlinear and nonlinear cointegration refers to a nonlinear cointegration
relationship. Furthermore, it should be pointed out explicitly that the same applies to
the terms nonlinear error correction model and nonlinear cointegration model.

The relationship between cointegration and error correction model has been well
characterized in a linear context (Granger’s representation theorem), but its extension
to the nonlinear context remains a challenge. Few extensions of the linear framework
have been performed in the context of nonlinear error correction (NEC), see (Escribano
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1986, 1987b, 2004; Escribano and Mira 2002; Bec and Rahbek 2004) and Saikkonen
(2005). Saikkonen (2005) also presents a Grangers’s representation theorem for gen-
eral nonlinear error correction models. Furthermore, the applied transformation of
nonlinear vector equilibrium correction models into nonlinear vector autorregresive
models may open the way for further theoretical work.

Under linear cointegration with nonlinear error correction adjustments the coin-
tegrating errors are nonlinear. Several authors have analyzed those cases: (a) cubic
polynomials, Escribano (1986, 2004), (b) rational polynomials, Escribano (2004),
(c) threshold cointegration, Balke and Fomby (1997) (d) smooth transition regres-
sion models, Granger and Teräsvirta (1993) and general nonlinear autoregressive,
Saikkonen (2005). Several nonlinear cointegration models have been discussed in the
literature: (a) smooth transition cointegration functions, Choi and Saikkonen (2004),
other parametric nonlinear cointegration functions, Aparicio et al. (2006a,b), nonpara-
metric cointegration, Granger and Hallman (1991) and Aparicio and Escribano (1999).
General nonparametric tests have the advantage of being valid under very general
conditions and the disadvantage of not providing guidelines for particular parametric
modeling. In the empirical application of this paper we will consider a simultaneous
case of nonlinear cointegration and nonlinear error correction, see Sect. 4.

Although most cointegration studies rest on the assumption of a linear relationship
between the variables, the possibility that these variables depend on each other through
nonlinear relationships has opened up many questions for research. Since the concept
of cointegration is inherently linear, some attempts have focused on extending stan-
dard definitions and on understanding how standard cointegration tests are affected by
the presence of neglected nonlinearity, see Aparicio et al. (2006a). Hallman (1990a,b)
and Granger and Hallman (1991) proposed the cointegrating nonlinear attractor con-
cept for a pair of univariate integrated time series xt , yt ∼ I (d) by requiring the
existence of nonlinear measurable functions f (·), g(·) such that f (xt ) and g(yt ) are
both I (d), d > 0, and st = f (xt ) − g(yt ) is ∼ I (d ′), with d ′ < d.

Figure 1 illustrates the case of a cointegrating nonlinear attractor obtained by simu-
lating a nonlinearly related pair of random walks with i.i.d. Gaussian errors. Aparicio
and Granger (1995), Aparicio and Escribano (1998), Aparicio et al. (2006a,b), pro-
posed the use of first differences of ranges and induced-order statistics to characterize
cointegrating relationships. In this paper we analyze the properties of a new nonpara-
metric test based on induced order statistics that is robust to monotonic nonlinear
transformations and structural changes. In this paper we derive its asymptotic distri-
bution and show, by Monte Carlo simulations, that the Engle and Granger (1987) test
(EG test) fails dramatically in the presence of nonlinearities and structural breaks.
We show that the well-known lack of robustness that affects most of the available
tests of non-cointegration, (EG test, Johansen 1991) does not affect our IOC test. The
small sample properties of the IOC nonparametric test are analyzed by Monte Carlo
simulations. In particular, we test the null hypothesis of non-cointegration against the
alternative hypothesis of a nonlinear error correction (NEC) and/or nonlinear cointe-
gration. Furthermore, we are able to show that the IOC test for non-cointegration is
robust for nonlinearities and structural breaks. One important advantage of this IOC
approach is that it does not require prior estimation of the unknown (perhaps nonlinear)
cointegrating relationship.
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Fig. 1 A cointegrating nonlinear attractor obtained with a factorial model. The upper series was generated
as xt = wt + εt , while the lower one corresponds to yt = g(wt ) + ξt , where g(·) represents a third-order
polynomial of its argument random walk variable wt , and εt are normally distributed

The structure of the paper is as follows. In Sect. 2 we introduce the IOC test, we
derive its asymptotic distribution and study the consistency of the test. Section 3 anal-
yses its power performances against different alternative hypotheses. In Sect. 4 we
apply our IOC test to a nonlinear cointegration empirical example based on economic
time series and compare the results with those obtained by means of standard non-
cointegration tests. Finally, after the concluding remarks of Sect. 5, the proofs of the
main theoretical results are included in Appendix 1–3.

2 Characterizing cointegration with induced-order statistics

For the time series sample of size n, say x1, . . . , xn , the order statistics of xt are
given by the sequence x1,n ≤ · · · ≤ xn,n obtained after a permutation of the indexes
1, . . . , n such that xi,n ≤ xi+ j,n,∀ j > 0. Related to order statistics are the so-called
induced-order statistics (Bhattacharya 1984). The induced Y-order statistics based
on the ordering of xt are defined as ŷi,n = y j if xi,n = x j ; in general, notice that
ŷi,n �= yi,n . Since for any order-preserving transformation such as monotonic non-
linear functions it follows that the order statistics are invariant, and this property was
used by Hallman (1990a) to increase the robustness of the Dickey Fuller unit root test
(DF) against monotonic nonlinear departures from the linear cointegration assumption.
However, classical unit-root regression theory cannot be applied when the variables
have discrete probability distributions, as in the case of rank variables. In fact, Breitung
and Gouriéroux (1997) showed that the asymptotic null distribution is different in this
case. Rank induced-order statistics should be useful for testing the existence of any
sort of prominent low-frequency comovements, even in the more general cases of
fractionally integrated time series and long-run relationships containing monotonic
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nonlinearities. However, they offer additional advantages, such as the possibility of
constructing test statistics without nuisance parameters in their null distribution.

Let {P(n)
x , P(n)

y } be sequences of n × n stochastic permutation matrices see Horn
and Johnson (1990), defined as:

P(n)
x X = X(0) (1)

P(n)
y Y = Y(0), (2)

where Z = (z1, . . . , zn)′ and Z(0) = (z1,n, . . . , zn,n)′, Z = X, Y . The vector of
induced Y-order statistics (induced by the ordering of X). Ŷ = (ŷ1,n, . . . , ŷn,n)′ is
obtained as

Ŷ = P(n)
x Y. (3)

Now, since P(n)
y is a permutation matrix, it is invertible and P−1 = P ′, where P ′

denotes the transpose of P . Therefore, we can form the vector:

Ỹ = (P(n)
y )−1 P(n)

x Y. (4)

Notice that for any order-preserving transformations, say g(·), we have

{g(X)}(0) = g(X(0)). (5)

It follows that the order statistics of yt induced by the ordering of st = g(xt ) will not
change. That is, induced-order statistics are robust for monotonic nonlinearities in the
DGPs of the series.

If xt and yt are cointegrated Ỹ should be close to Y , therefore Ŷ and Y(0) should
move together in the long run. However, if xt and yt are not cointegrated the behavior
of Ỹ and Y should be different since X(0) and Y(0) are very different. Therefore if yt

and xt are cointegrated the permutations P(n)
y and P(n)

x should be identical in the long
run. The intuition of this result can be seen in Fig. 2. In particular in Fig. 2a, we plot
two independent random walks of yt and xt , Fig. 2b, plots the corresponding induced
order statistics ̂Y = P(n)

x Y and Y(0) = P(n)
y Y . It is clear that there is no relationship

between the two series of Fig. 2b. On the contrary, when the series are cointegrated,
in Fig. 2c, the crossplot of both induced ordered series is around the 45◦ line (slope
equal to 1) as in Fig. 2d. Cointegrated series preserve the induced order in the long
run.

In what follows we suggest testing the discrepancy between the induced ordered
series based on the empirical distribution. We propose an alternative statistical mea-
sure of cointegration based on induced-order statistics to compare the orderings of
the two time series yt and ŷt . The corresponding testing device will be referred to
as the induced-order cointegration test (IOC). We shall now consider the KS statistic
(Kolmogorov–Smirnov type statistics) defined below for testing the null hypothesis
of two independent random walks

K S = sup
j=1,n

|F̂ (n)
Y (ŷls ( j),n) − F̂ (n)

Y (y j,n)|, (6)
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Fig. 2 a Two independent random walks, b the corresponding induced order statistics ̂Y = P(n)
x Y in the

y-axis and the order statistics Y(0) = P(n)
y Y in the x-axis, c cointegrated series, and d the corresponding

induced order statistics ̂Y = P(n)
x Y in the y axis and Y(0) = P(n)

y Y in the x axis

where F̂ (n)
Y (y) is the empirical distribution function obtained from a sample of length

n of yt , that is, F̂ (n)
Y (y) = n−1 ∑n

t=1 1(yt ≤ y), where 1(·) denotes the indicator func-
tion; s takes the sign of the cointegration parameter (which can be directly obtained
from the scatter plot or simple regression of the two series), and ls( j) is equal to j or
to n − j , depending on whether s = 1 or s = −1, respectively.

Smaller values of KS suggest that two independent random walks should be re-
jected, whereas large values indicate that two independent random walks hold. There-
fore, we can consider the left tail of the distribution of K1 to discriminate between
non-cointegrated and cointegrated series.

It is also easy to show that KS is robust against the order-preserving transformations
of the variables, such as monotonic nonlinearities. If the actual cointegration relation-
ship is nonlinear this test provides no guidelines for selection of particular parametric
forms.
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Fig. 3 Illustration of the proposed nonparametric cointegration measures for pairs of: a independent random
walks, b series related through a quadratic attractor, c cointegrated series, and d linear cointegration with
structural changes generated from Eq. 16

Our statistic is simply a particular distance measure between the sequences of order
statistic ŷls ( j),n and y j,n . Transforming these sequences with the empirical distribu-

tion function of yt , say F̂ (n)
Y , renders the statistic K1 unaffected by the variance of yt ,

although it is still dependent on the signal-to-noise ratio in the relationship between
xt and yt .

In Fig. 3 we plot four different cases: (a) independent random walks, (b) quadratic
polynomial attractor (nonlinear cointegration), (c) lineal cointegrated series and (d)
linear cointegrated with structural breaks. In each case Fig. 3 shows the discrepancy
between the sequences F̂ (n)

Y (y j,n) and F̂ (n)
Y (ŷls ( j),n). K1 is merely a measure of the

variability of the sequence F̂ (n)
Y (ŷls ( j),n) around the diagonal line, represented by the

sequence F̂ (n)
Y (y j,n). In the plots, the straight diagonal line corresponds to the sequence

F̂ (n)
Y (y j,n), while the superimposed series corresponds to F̂ (n)

Y (ŷls ( j),n), where s stands
for the sign of the cointegration parameter.

We observe that when the series are cointegrated (linearly, nonlinearly and
with structural breaks) the crossplot of the empirical distributions are centered
around the 45◦ line. Deviations are only transitory, while when the series are non
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cointegrated the discrepancies are permanent and most of the observations are off the
45◦ line.

The KS statistic has been widely used both to test whether two random samples
come from the same parent distribution and as a measure of distance between two
probability distributions. Here we used it in a different sense, to obtain a discrepancy
measure between the relative orders of xt and yt or, equivalently, of yt and the induced
order series ŷt .

We shall now derive the limit behavior of the null distribution of KS by using
standard asymptotic theory for I (1) processes. We shall first focus on deriving the
asymptotic of the order and induced-order statistics for I (1) time series. We shall
invoke the continuous mapping theorem (CMT) to obtain the asymptotic of our test.

Theorem 2.1 Let ŷi,n be the i th order statistic of yt induced by the ordering of xt ,
where xt ∼ I (1). Then,

ŷi,n

n1/2 ⇒
1

∫

0

Wy(r)1

⎛

⎝

1
∫

0

1 (Wx (s) < Wx (r)) ds = l

⎞

⎠ dr =
1

∫

0

Wy(r)G(l)
x (r)dr,

where G(l)
x (r), represents a random process given by

G(l)
x (r) = 1

⎛

⎝

1
∫

0

1 (Wx (s) < Wx (r)) ds = l

⎞

⎠ , (7)

Wx (·) and Wy(·) are the corresponding Brownian motion process associated to xt and
yt , respectively, and “⇒” denotes convergence in distribution as n → ∞.

Proof See Appendix 1 
�
Corollary 2.2 Under the hypothesis of independent random walks, ŷi,n

n1/2 converges to
zero in probability.

Proof See Appendix 2 
�
Let F (n)

y represent the empirical distribution function of yt , and let us recall that the
rank of xi in the sample {x1, . . . , xn} is defined as Rx (xi ) = ∑n

j=1 1(x j < xi ), such

that xi,n = R−1
x (i) = xπ(i,n), with π (.) denoting a stochastic permutation applied to

the indexes of a sample of size n in order to have the observations ordered. We can
then define the induced-order statistics of yt as ŷi,n = yπ(i,n).

Theorem 2.3 Let xt = ∑n
i=1 εi , and yt = ∑n

i=1 εi , where {εi }i≥1, and {εi }i≥1 are
continuous i.i.d. random variables with bounded and symmetric pdf, zero means, and
finite variances. Then,

(i) K S 
⇒ sup
l∈(0,n)

∣

∣

∣

∣

∣

∣

1
∫

0

1(Wy(s) < Wy(q(l))ds − l

∣

∣

∣

∣

∣

∣

.
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Table 1 Critical values of the
KS test statistics

ν \ n 100 250 500 1,000

0.01 0.3564 0.3665 0.3812 0.3726

0.025 0.4059 0.4382 0.4591 0.4346

0.05 0.4653 0.4980 0.4830 0.4915

0.10 0.5248 0.5697 0.5649 0.5794

0.90 0.9505 0.9681 0.9721 0.9780

0.95 0.9703 0.9801 0.9860 0.9870

(ii) If xt and yt are cointegrated, then we have K S −→
n→∞ 0 and here the IOC test is

consistent against this sort of alternative.

Proof See Appendix 3 
�

3 Small-sample performance of the IOC test: Monte Carlo simulations

In this section we provide simulation evidence in small samples such that the non-
parametric test statistic KS is useful for testing our null hypothesis of two independent
random walks. Let the data generation process (DGP) be the following independent
random walks:

DG P : H0 �yt = w1t (8)

�xt = w2t , (9)

where w1t and w2t are standard normal distributions and mutually independent.
In Table 1 we estimate the quintals of the empirical distribution of the I OC test

statistic, under H0, for different significance values ν and different samples sizes,
n, computed by using 50,000 replications of independent random walks with i.i.d.
Gaussian errors. Figure 4 shows the corresponding empirical density of K1 estimated
by kernel smoothing, using the Epanechnikov kernel for 1,000 replications for differ-
ent sample sizes.

3.1 Size and power of the IOC test: Monte Carlo simulation

We shall analyze the power of the IOC test using the 5% left tail critical value, based
on 10,000 replications of the Monte Carlo experiment. The DGP under the alternative
hypothesis of cointegration is generated by a bivariate vector error correction model
with weakly exogenous variables for the cointegrating parameter vector. Consider the
following restricted VAR model for the (yt , xt ) vector, which is generated by

[

�yt

�xt

]

=
[

c
0

]

+
[

b
0

]

(1,−α)

[

yt−1
xt−1

]

+
[

w1t

w2t

]

, (10)

where wt is standard Normal.
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Fig. 4 Plot of the empirical density of KS under the null hypothesis for different sample sizes n = 100,
1,000 and 15,000

Table 2 Empirical Size and
Power of the KS and EG test
based on H1a at 5% significance
level for different values of
b = 0 (no cointegration), b =
−0.05, −0.5, −0.75
(cointegration) and different
sample sizes n = 100, 250, 500

b\n 100 250 500

KS EG KS EG KS EG

0 0.05 0.051 0.051 0.052 0.05 0.05

−0.05 0.43 0.1450 0.51 0.59 0.6 0.98

−0.5 0.65 1 0.85 1 0.9 1

−0.75 0.7 1 0.9 1 0.91 1

3.1.1 Linear cointegration

The alternative hypothesis is a standard linear error correction model (ECM):

DG P : H1a �yt = c + b(yt−1 − αxt−1) + w1t (11)

�xt = w2t , (12)

where α = 1 and c = 0. We shall study the power of different cointegration tests:
IOC and EG test for different parameter values of the parameter b. We set b = 0
(no cointegration), b = −0.05, −0.5, −0.75 (cointegration). This DGP follows the
parameterization used by Kremers et al. (1992), and Arranz and Escribano (2001).
The results are in Table 2.

Since the EG test is based on estimating the true error correction model (DGP),
the EG test for non-cointegration is more powerful than IOC. However, IOC is more
powerful for small values of b; see, for example, b = −0.05 in Table 2.
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3.1.2 Nonlinear cointegration

Escribano (1986, 2004) analyzed error correction models in nonlinear contexts where
the cointegration relationship is linear or nonlinear and the equilibrium correction
term could also be linear or nonlinear. Alternative representation theorems for non-
linear error correction (NEC) models based on general concepts of I(1) and I(0) were
introduced by (Escribano 1986, 1987b; Escribano and Mira 2002; Bec and Rahbek
2004) and Saikkonen (2005). The main advantage of those definitions is that they have
associated Laws of Large Numbers and Central Limit Theorems to derive the asymp-
totic properties of the estimators of the error correction models parameters. Escribano
(1986, 2004) proposed a methodology for implementing parametric and nonparamet-
ric error correction models. Using the data bases of Friedman and Schwartz (1982) and
Ericsson et al. (1997), extended until the year 2000, he implemented this methodology
to estimate a nonlinear money demand in the UK from 1878 to 2000. In Sect. 4 we
will apply our non-cointegration IOC test to this data set. Within the class of paramet-
ric models he discusses cubic polynomial (and rational polynomial) error correction
models, see also Hendry and Ericsson (1991). Nonlinearities can eliminate most of
the power of the usual non-cointegration test (EG test), as will be seen in the following
Monte Carlo simulations.

3.1.3 Power of IOC against a Nonlinear cointegrating relationship

Let us now consider that the DGP under the alternative hypothesis is given by the
following linear error correction model (ECM), with a nonlinear cointegration rela-
tionship.

H1b: The alternative hypothesis is a linear ECM, but with nonlinear cointegration,

DG P : H1b �yt = c + b(yt−1 − g(xt−1, α)) + w1t (13)

�xt = w2t , (14)

where w1t and w2t are standard normal distributions and mutually independent errors,
with α = 1. Let the nonlinear cointegration relationship be given by the polynomial
cointegration term g(zt−1, α) = z j

t−1. Based on 10,000 replications of the Monte
Carlo experiment, we now analyze the power of the I OC test at 5% significance level
for different values of b, and we compare the results with those of the EG test, whose
results are shown in Table 3.

As can be seen from Table 3, when the ECM is linear but with a polynomial cointe-
gration function, the IOC test is much more powerful than EG in all cases. In particular,
we observe that the highest power is obtained for j = 3, followed by j = 4 and j = 2,
respectively. The intuitive explanation given by Escribano (2004) is as follows: cubic
polynomials are very flexible and can approximate different level shifts. Furthermore,
the error correction term in this case can be equilibrium-correcting (stable nonlinear
adjustment) and hence not a deviating error adjustment term, as may happen with the
quadratic polynomial. We shall now consider other functional forms. Let the nonlinear
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Table 3 Empirical power of KS
and EG based on H1b with

g = z j
t−1 at 5% significance

level for different values of b
and different sample sizes n

j\n 100 250 500

KS EG KS EG KS EG

b = −0.05

2 0.83 0.08 0.94 0.02 0.98 0.01

3 0.94 0.1 1 0.03 1 0.008

4 0.92 0.08 1 0.01 1 0.006

b = −0.5

2 0.88 0.09 0.96 0.04 1 0.01

3 0.9 0.1 1 0.06 1 0.05

4 0.88 0.069 1 0.027 1 0.019

b = −0.75

2 0.9 0.1 0.95 0.07 0.98 0.07

3 0.9 0.17 1 0.14 1 0.16

4 1 0.23 1 0.234 1 0.275

Table 4 Empirical power of KS
and EG based on H1b with
g = exp(zt−1/100) at 5%
significance level for different
values of b and different sample
sizes n

b\n 100 250 500

KS EG KS EG KS EG

−0.05 0.43 0.05 0.52 0.05 0.57 0.05

−0.5 0.65 0.07 0.85 0.09 0.9 0.1

−0.75 0.7 0.1 0.9 0.11 1 0.15

cointegrating function be g(zt−1, α) = exp(zt−1/100). The empirical powers of the
IOC test and EG test for different values of b are given in Table 4.

The power of the EG test is very low since this linear procedure misspecifies the
estimation of the cointegrating vector by assuming that it is linear. In contrast, the
power of the IOC test is very high. Similar results are obtained when the nonlinear
cointegrating function is g(zt−1, α) = log(zt−1 + 100).

3.1.4 Linear cointegration with structural changes in the cointegrating vector

There is a large body of literature concerning the effects of cointegration testing in
the presence of structural changes, see Escribano (1987a). In what follows we wish
to simulate a case based on the DGP of Arranz and Escribano (2001) to evaluate the
power of IOC in this context when the break point is in the middle of the sample.

The alternative hypothesis is a linear error correction and cointegration model in
the presence of a structural change in the cointegrating vector

DG P : H1c �xt = w1t (15)

�yt = c + b[yt−1 − (c1 D1t−1xt−1 + αxt−1)] + w2t , (16)
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Table 5 Empirical power of KS
and EG based on H1c with
α = 1, c1 = 2 at 5%
significance level for different
values of b and different sample
sizes n

b\n 100 250 500

KS EG KS EG KS EG

−0.05 0.7 0.15 0.8 0.16 0.95 0.17

−0.5 0.81 0.23 1 0.25 1 0.25

−0.75 0.8 0.25 1 0.26 1 0.29

where w1t , w2t are standard, and mutually independent normal errors, where c1 mea-
sures the change in the cointegrating vector. We shall consider the values, α = 1,
c1 = 2 and, we shall understand that the structural break is created by the artificial
dummy variable D1t , defined by:

D1t =
{

1, t ≥ n
2

0, otherwise.
(17)

Based on 10,000 replications of the Monte Carlo simulations, we obtain the empirical
power of the IOC and EG tests, see Table 5.

Table 5 shows that the IOC is more powerful than the EG test in rejecting the
null hypothesis of noncointegration in the presence of a structural break in the co-
integrating vector. The power of IOC is really good when the parameter of the error
correction adjustment, b = −0.5 or higher. For very low adjustment parameter values,
b = −0.05, the empirical power of IOC is over 70% and much higher than EG-test,
which is lower than 20%.

4 Empirical application

4.1 Analysis of the UK money demand (1878–2000)

Escribano (1986, 2004) found a cointegration relationship between the logarithmic
(logs) transformation of velocity of the circulation of money (V) and short run inter-
est rates in nominal terms (RNA) from annual observations taken from 1878 to 2000
based on nonlinear error correction adjustments. Those error correction models con-
sider several nonlinear parametric and nonparametric (smoothing splines) alternatives.
Among the parametric nonlinear adjustments considered are cubic polynomials and
rational polynomials of the cointegrating errors obtained from the nonlinear cointe-
gration relationship between velocity of circulation of money and short run interest
rates. Therefore, standard unit root test will not work well since they are not robust to
these types of nonlinearities. This cointegration relationship is nonlinear (exponential)
since the interest rate (RNA) is without logs while velocity of circulation of money is
in logs (V), see Fig. 5.

When we test the null hypothesis of non-cointegration between V and RNA based
on the residuals of the EG test statistic we obtain a value of −1.7, and therefore we
cannot reject the null hypothesis of non-cointegration at the 5% significance level. This

13
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Fig. 5 Log of the velocity of the circulation of money (V) and short run interest rates in nominal terms
(RNA)

result contradicts the ECM test carried out in the nonlinear error correction model, see
Escribano (2004).

However, applying our IOC test statistic, we obtain K S = 0.2, which is smaller
than the 5% critical value, for n = 130 (0.47). Therefore, using our induced order
cointegration test IOC, we are able to reject the null hypothesis of non-cointegration.

5 Conclusions

Cointegration is an important property of many economic variables but in order to
find convincing empirical evidence we usually need to extend the linear framework
by allowing some time-varying parameter models or by considering nonlinear rela-
tionships. Standard cointegration tests, such as the EG test, are not robust for nonlin-
earities or for certain time-varying parameter models (level shifts, structural breaks,
etc). In this paper, we have presented a model-free methodology that allows testing
for the presence of cointegration in time series, and that is robust for the presence of
monotonic nonlinearities and structural changes. These properties are very important
because, on the one hand, standard cointegration tests are tailor-made to a specific
parametric linear models for the individual series under the null hypothesis and, on

14



the other, because in many applications one does not really know the transformation
of the series that can linearize their relationship. For this, we propose an alternative
testing device based on our induced-order test statistic (KS) from the series which has
the advantage of not requiring prior estimation of the cointegration parameter, thereby
leading to null distributions that are free of nuisance parameters. On the other hand it
provides no clear guidelines for particular parametric modelling.

Extensions of our nonparametric approach to more than one cointegration vector,
to larger multivariate systems or to linear trends are out of the scope of this paper and
are left for future research.
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Appendix 1

Definition 6.1 A time series xt is said to be I (0) if the process Xn defined in the unit
interval by

Xn(ξ) =
[nξ ]
∑

t=1

(

xt − E[xt ]
σx,n

)

, 0 < ξ ≤ 1,

where σ 2
x,n = V ar

[∑n
t=1 xt

]

, denotes the long-run variance of Xn , converges weakly
to a standard Brownian motion, Wx , as n → ∞.

Let xi,n denote the i th order statistic of an I (1); that is, one that after the first
differences becomes I (0) following the definition by Davidson (1994) given before.
We can write:

xi,n =
n

∑

k=1

xk1

(

n
∑

i=1

1(x j < xk) = i

)

.

We can easily obtain

xi,n

n1/2 ⇒
1

∫

0

Wx (r)1

⎛

⎝

1
∫

0

1 (Wx (s) < Wx (r)) ds = l

⎞

⎠ dr

=
1

∫

0

Wx (r)G(l)
x (r)dr.

where “⇒” denotes convergence in distribution as n → ∞. Following Breitung and
Gouriéroux (1997), G(l)

x (r) represents a random process given by
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G(l)
x (r) = 1

⎛

⎝

1
∫

0

1 (Wx (s) < Wx (r)) ds = l

⎞

⎠

= 1

⎛

⎝

1
∫

0

1 (Wx (r − s) > 0) ds +
1

∫

r

1 (Wx (s − r) > 0) ds = l

⎞

⎠

= 1 (r A1 + (1 − r)A2 = l),

with A1, A2 denoting two independent random variables with an arcsin distribu-
tion. Note that

∫ 1
0 1 (Wx (s) < Wx (r)) ds represents the occupation time of the set

(−∞, Wx (r)) by the Brownian motion, Wx , and G(l)
x (r) takes the value 1 whenever

this occupation time equals l ∈ (0, 1) and 0 otherwise. Therefore, when xt ∼ I (1) then
xi,n

n1/2 converges weakly to a stochastic process indexed by l. In contrast, if xt ∼ I (0)

then it will converge to zero in probability.
Similarly, by allowing ŷi,n to represent the i th order statistic of yt induced by the

ordering of xt , we can write:

ŷi,n =
n

∑

k=1

yk1

(

n
∑

i=1

1(x j < xk) = i

)

,

and we obtain:

ŷi,n

n1/2 ⇒
1

∫

0

Wy(r)1

⎛

⎝

1
∫

0

1 (Wx (s) < Wx (r)) ds = l

⎞

⎠ dr

=
1

∫

0

Wy(r)G(l)
x (r)dr,

with l and G(l)
x (r) given as before. Note that if xt and yt are independent then the limit-

ing process in the previous equation vanishes to zero in probability. We can even work
out the nature of these limiting processes a little more. Let us focus on the behavior
of

∫ 1
0 Wy(r)G(l)

x (r)dr under cointegration, and let S(l)
x be the stochastic set given by

S(l)
x = {r ∈ (0, 1) : r A1 + (1 − r)A2 = l} ,

which for each possible value of the pair of random variables (A1, A2), say (a1, a2),
will be formed by the single point:

rl = l − a2

a1 − a2
.
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In fact, S(l)
x is a random variable, and we may write:

1
∫

0

Wy(r)G(l)
x (r)dr =

∫

S(l)
x

Wy(r)dr,

which gives
∫

S(l)
x

Wy(r)dr = Wy(
l−A1

A1−A2
) if l−A1

A1−A2
belongs to the interval (0, 1) and 0

otherwise. Thus, we obtain a limiting non-Gaussian doubly stochastic process with
positive probability mass at zero. Indeed, the Brownian motion process, Wy , is indexed
by the process on the unit interval qx (l) = l−A1

A1−A2
indexed by l.

Appendix 2

Let us compute the mean and the variance of
∫

S(l)
x

Wy(r)dr . First, for the mean, let us
notice that

E

⎡

⎣

1
∫

0

Wy(r)G(l)
x (r)dr

⎤

⎦ = EM

[

E

(

Wy

(

l − A1

A1 − A2

)

\A1 = a1, A2 = a2

)]

=
∫ ∫

M

Vl(a1, a2) f A1(a1) f A2(a2)da1da2,

where M represents the set given by those pairs of values (a1, a2) such that either
a1 < l and a2 < 2a1 − l, or a1 > l and a2 > 2 a1 − l, and f A(.) stands for the
probability density of the random variable A, and

Vl(a1, a2) = E

[

Wy

(

l − A1

A1 − A2

)

\A1 = a1, A2 = a2

]

.

However, it is clear that Vl(a1, a2) = 0, such that E
[

∫ 1
0 Wy(r)G(l)

x (r)dr
]

= 0.

Regarding the variance of
∫

S(l)
x

Wy(r)dr , from the previous result we have:

V ar

⎡

⎢

⎢

⎣

∫

S(l)
x

Wy(r)dr

⎤

⎥

⎥

⎦

= E

⎡

⎣

1
∫

0

(

Wy(r)G(l)
x (r)dr

)2

⎤

⎦

= EM

[

E

[

W 2
y

(

l − A1

A1 − A2

)

\A1 = a1, A2 = a2

]]

=
∫ ∫

M

l − a1

a1 − a2
f A1(a1) f A2(a2)da1da2
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= 4

π2

l
∫

0

2a1−l
∫

0

l − a1

a1 − a2

(

1 − a2
1

)−1/2 (

1 − a2
2

)−1/2

+ 4

π2

1
∫

l

1
∫

2a1−l

l − a1

a1 − a2

(

1 − a2
1

)−1/2 (

1 − a2
2

)−1/2
.

Here, we have used the fact that V ar
[

Wy(r)
] = r . Note that if xt and yt were inde-

pendent we would obtain

V ar

⎡

⎢

⎢

⎣

∫

S(l)
x

Wy(r)dr

⎤

⎥

⎥

⎦

= E

⎡

⎣

⎛

⎝

1
∫

0

Wy(r)G(l)
x (r)dr

⎞

⎠

⎛

⎝

1
∫

0

Wy(r
′)G(l)

x (r ′)dr ′
⎞

⎠

⎤

⎦

=
1

∫

0

1
∫

0

E
[

Wy(r)Wy(r
′)
]

E
[

G(l)
x (r)G(l)

x (r ′)
]

drdr ′

=
1

∫

0

1
∫

0

min(r, r ′)E
[

G(l)
x (r)G(l)

x (r ′)
]

drdr ′.

However,

E
[

G(l)
x (r)G(l)

x (r ′)
]

= E
[

1 (r A1 + (1 − r)A2 = l) 1
(

r ′ A1 + (1 − r ′)A2 = l
)]

,

which is equal to zero unless r = r ′, and hence:

V ar

⎡

⎢

⎢

⎣

∫

S(l)
x

Wy(r)dr

⎤

⎥

⎥

⎦

=
1

∫

0

r E
[

G(l)
x (r)

]2
dr.

Finally, we remark that

E
[

G(l)
x (r)

]2 = P
(

G(l)
x (r) = 1

)

= P (1 (r A1 + (1 − r)A2 = l) = 1)

= P (r A1 + (1 − r)A2 = l)

= 0,
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since r A1 + (1 − r)A2 is a continuous random variable for each r . Thus,

V ar

⎡

⎢

⎢

⎣

∫

S(l)
x

Wy(r)dr

⎤

⎥

⎥

⎦

= 0.

This result entails that under the hypothesis of independent random walks ŷi,n

n1/2 must
converge to zero in the quadratic mean, and therefore also in probability. However,

when the series are cointegrated ŷi,n

n1/2 will converge weakly to a double stochastic
process obtained from a Brownian motion process.

Appendix 3

We have

F (n)
y (ŷi,n) = n−1 Ry(ŷi,n)

= n−1π∗(i, n),

where π∗(·) denotes a different stochastic permutation of the indexes. Therefore:

K 1 = sup
i=1,n

∣

∣

∣F (n)
y (ŷi,n) − F (n)

y (yi,n)

∣

∣

∣

= n−1 max
1≤i≤n

∣

∣π∗(i, n) − i
∣

∣ .

Now, if the series xt and yt are cointegrated (either linearly or monotonically nonlin-
early) we would expect π∗(i, n)− i to remain close to zero, ∀i , in the range 1 ≤ i ≤ n.
Following Breitung and Gouriéroux (1997), we have:

n−1 Ry(ŷi,n) = n−1
n

∑

t=1

1(yt < yπ(i,n))

= n−1
n

∑

t=1

1(n−1/2 yt < n−1/2 yπ(i,n))

=
n

∑

t=1

1

(

n−1/2 y[ t
n n

] < n−1/2 y[

π(i,n)
n n

]

) [

t

n
− t − 1

n

]


⇒
1

∫

0

1(Wy(s) < Wy(q(l))ds,

where q(l) = π(i,n)
n = n−1π(nl, n) and l = i

n . Under cointegration ŷi,n = yi,n + ζi ,

where ζi is I (0). It follows that n−1 Ry(ŷi,n)
p−→ l, such that K S

p−→ 0. In contrast,
for non-cointegrated series, by the CMT
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K S 
⇒ sup
l∈(0,n)

∣

∣

∣

∣

∣

∣

1
∫

0

1(Wy(s) < Wy(q(l))ds − l

∣

∣

∣

∣

∣

∣

,

which represents a random variable taking strictly positive values with probability
one.
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