
Working Paper 92-17
April 1992

Divisi6n de Economfa
U niversidad Carlos III de Madrid
Calle Madrid, 126
28903 Getafe (Spain)
Fax (341) 624-9875

COMPUTING NONPARAMETRIC FUNCTIONAL ESTIMATES IN
SEMIPARAMETRIC PROBLEMS

Miguel A. Delgado·

Abstract'-_______________________________ _

We offer a set of FORTRAN routines which compute nonparametric estimates of a number of
functionals. The routines are primarily intended to be used in the estimation of semiparametric models.
Therefore, the outputs are vectors containing the estimates evaluated at each data point. The routines
permit the estimation of conditional expectations, robust conditional location functionals, conditional
quantiles and densities. The user may also obtain estimates of other functionals, applied in
semiparametric estimation, by defining the input functions appropriately. We also review a number
of semiparametric models and discuss their estimation using our routines with the help of standard
econometric software.

Key words:
Nonparametric functional estimation, semiparametric models, Fortran routines.

• Departamento de Estadfstica y Econometrfa, Universidad Carlos III de Madrid.

COMPUTING NONPARAMETRIC FUNCTIONAL ESTIMATES IN SEMIPARAMETRIC PROBLEMS

Miguel A. Delgado

Department of Economics, Indiana University, Bloomington IN 47405.

Key Words and Phrases: nonparametric functional estimation; semiparametric
models; Fortran routines.

ABSTRACT

We offer a set of FORTRAN routines which compute nonparametric estimates
of a number of functionals. The routines are primarily intended to be used in
the estimation of semiparametric models. Therefore, the outputs are vectors
containing the estimates evaluated at each data point. The routines permit the
estimation of conditional expectations, robust conditional location
functionals, conditional quantiles and densities. The user may also obtain
estimates of other functionals, applied in semiparametric estimation, by
defining the input functions appropriately. We also review a number of
semiparametric models and discuss their estimation using our routines with the
help of standard econometric softwar.e.

1. INTRODUCTION.

Nonparametric functional estimation has been shown to be useful in
econometric data analysis and model specification (see e.g. Robinson 1986).

Currently, there exist a few packages which perform smooth nonparametric
estimation with good graphical facilities (e.g. XploRe of Broich et. al. 1990
or N-Kernel of McQueen 1990). These packages, however, are mainly intended for
exploratory data analysis.

Many if not most econometrics models are semiparametric. A parametric
structure explaining some basic economic phenomena (e.g. utility or cost
functions) is usually known and one is interested in the estimation of these
parameters and in making inferences on the assumed structure from the data.
However, many features of the data generating process are of unknown form;
i.e. the functional form cannot be justified from economic theory and is not
of specific economic interest. In the recent econometric literature, the
estimation of a number of semiparametric models requires nonparametric
estimation of certain functionals in the first step. In these models, it is

explicitly recognized that certain features of the underlying distribution of
the data are unknown while others follow a known parametric model. The goal is
to obtain estimates for the parametric part that are asymptotically equivalent
to those obtained when the nonparametric part of the model is perfectly known.
A survey of the recent semiparametric econometric literature is in Robinson
(1988b). Therefore, once the nonparametric estimates are computed, standard
econometric software can be used in order to compute the semiparametric
parameter estimates.

Our objective is to provide the user with a battery of routines which
produce nonparametric estimates of different functionals frequently employed
in semiparametric estimation. This is why the output of our routines is always
a vector containing the nonparametric estimates evaluated at each data point.
The output can then be read by the user-favored econometric program, e.g.
TSP, SAS, LIMDEP etc.

The routines are written in standard FORTRAN-77. They were tested on a
VAX/VMS Version VS.3-1. We only report single precision versions. For double
precision versions, the usual changes must be made in the code. The routines

communicate possible errors by means of PAUSE statements instead of the
typical IFAIL parameters.

This document is organized as follows. Section 2 contains a description
of the routines. In particular, section 2.1 discusses the functionals to be
estimated and the general estimation methods. In sections 2.2-2.S we discuss
the specific estimation procedures, i.e. k nearest neighbors, kernels, kernel
nearest neighbors and resampling methods. For each of these methods we explain

2

the particular routine, the algorithm used, its formal structure and its
efficiency. In section 3 we review some semiparametric models and we discuss

their estimation using our routines and some popular packages.

2. NONPARAMETRIC ESTIMATION OF REGRESSION CURVES
2. 1. INTRODUCTION

Suppose we observe a random sample {(Y., X.), 1~i~n} from the ~qx~r
1 1

multivariate random variable (Y, X). We consider the nonparametric regression

model,

E(YIX=a:)= m(a:), (2.1)

where m(.) is an unknown function. The purpose of all routines is to obtain
estimates of {m(X.), i=l, ... n}. It may be estimated by smooth nonparametric

1
regression techniques. For a survey on smooth nonparametric estimation of
regression functionals, the reader may wish to consult Prakasa Rao (1986) or
Hardle (1990). Given a sequence of nonparametric weights {wo (a:), 1~i~n}, m(a:)

1
is estimated by,

m(a:)= [. Y. w.(a:),
J J J

(2.2)

where, henceforth, the summation run from 1 to n. The estimate in (2.2) has an
unbounded influence function. We offer the possibility of estimating r(a:)
defined as the solution to,

r(X» I x=a:] = 0,
by

[. ",(Y.- r(a:» w.(a:)= 0,
J J J

(2.3)

where "'(.) is a function provided by the user, which bounds the influence of
the errors (see e.g. Andrews et al 1972 for examples). The statistical

literature dealing with smooth nonparametric estimation of robust conditional
location functionals is quite extensive; see e.g. Tsybakov (1982), Robinson
(1984), Hardle (1984), Hardle and Tsybakov (1988), Boente and Fraiman (1989

and 1990). Examples of ",-functions are:

Huber: "'(u)= u max{1, c/Iul},

Andrews: ",(u)= sin(u) 1(lul~ c n),

Bisquare: "'(u)= u [u2
_ c2

]2 1(lul~ c).

(2.4)

(2.5)

(2.6)

The constant c is defined inside the functions as a parameter and it can be
changed by the user as desired.

We also offer the option of computing conditional L-estimates. In

particular, the routines offer the possibility of estimating the ~ conditional

3

quantile of Y. The a conditional quantile of Y evaluated at X=~ is defined as:

where,

q~(~)= sup{~ I Pr{Y~ IX=~} ~ a},
q~(~)= inf{~ IPr{Y~ IX=~}~ a}.

Then q (~) is estimated from the estimated conditional distribution of Y a
as suggested by Stone (1977), i.e. by

A I A "L "U q (Y X=~)= q (~)= {q (~)+ q (~)}/2, a a a a (2.7)

where,

qL(~)= max {v. I L.1CV.~ Vi) w.(~)~ a},
a l~i~n 1 J J J

qU(~)= min{v. I L.1CV.~ V.) w.(~)~ a}.
a l~i~n 1 J J 1 J

For instance, q (~) is the estimate of the conditional median. L-estimates
.5

consisting of combinations of conditional quantiles may be obtained by calling
the main routines several times. However, it is possible to just call the
routines once, computing the nonparametric weights once, by modifying the
main routine.

Note that, unlike q (~), the robust estimates defined in (2.3) are not
.5

scale invariant. Robust estimates of the conditional scale can be computed
using the procedure employed for the estimation of conditional quantiles. For

instance, a scale measure is

s(~)= med(IV- q (X) IIX=~).
.5

(2.8)

Then s(X) is estimated by s(~), where the conditional medians in (2.8) are
1

estimated according to (2.7). Then, scale invariant estimates can be computed

as the solution to,

L . .p(Y.- r(~)/s(~)) w.(~)= 0,
J J J

(2.9)

which can be computed using our software by passing the scale estimate to the
robust function using a common statement.

The input in all these routines is the observed sample {(V., X.), l~i~n}.
1 1

In some semiparametric applications, the unknown functionals to be
estimated are the conditional expectations of a known parametric function;

i.e. one is interested in getting estimates of

4

where g(.) is of known form and eO is a px1 vector of unknown parameters.
Given some preliminary root-n-consistent estimate of eO, 9 say, m(~, eO) can n
be estimated by

The input here is {g(9n , y., X.), i=1, ... n}.
J J

In some econometric applications, it is possible to express the
endogenous variable Y in terms of the exogenous X, a vector of parameters and
an unobservable variable V, which is a function of a vector of parameters, Y
and X. That is,

° Y= R(r , V, X).

This expression may be obtained by analytical or numerical methods, where
V= h(oo, Y, X) is of known form and rO and 0° are vectors of parameters. After
a suitable reparameterization we have that,

° gee, Y, X)= t(~ , V, X) a.s.

where ~O= (eO, r O
, 0°). When V is statistically independent of X,

E{g(eo, Y, X)lx=~} = E{t(~o, V, ~)}.

Then, if some estimate of ~O is available, one can estimate m(~) by

- -1 ",..
m(~)= n E. t(~ , V., ~),

J n J

where ~n and Vj are estimates of ~o and Vj respectively. This method has been
used in the estimation of different functionals in econometric nonlinear

models (see e.g. Aguirre-Torres and Gallant 1983, Duan 1983 and Brown and
Mariano 1984). An interesting application of these techniques is to the

estimation of optimal instruments in semiparametric instrumental variable
estimation of nonlinear models. In particular, Robinson (1990) proved that the
optimal instruments can be estimated using a sample (not necessarily random)
without replacement from the empirical distribution of V .. The sample size has

1
to increase with n but at an arbitrary rate. This method is computationally
very competitive compared to analogues which are based on smooth
nonparametric regression, when an explicit formula for t(.) is available.
Furthermore, it avoids the problematic choice of a smoothing parameter.

Alternatively, Kelejian (1974) proposed to estimate the optimal instruments by
bootstrapping (sampling with replacement) from the empirical distribution of

V .. These estimation methods will be discussed in more detail in sections 2.3
1

5

and 3.2.

2.2. NONPARAMETRIC K NEAREST NEIGHBORS REGRESSION

The k nearest neighbors (k-nn) weights presented in this section were
introduced by Stone (1977) and have been used in a number of semiparametric
applications. In k-nn regression. nonparametric weights w.(~)= w. (~. k). are

1 1 n

used. where k < n is a positive integer provided by the user and n

w. (~. k)= c () (k) Hp. (~)~ k).
1 n p~ n 1 n

1
(2.10)

In equation (2.10). 1(.) is the indicator function. c.(.) is a function
1

provided by the user such that ~n c.(k)= 1 and c.(k » 0 for any i~ k • and
1=1 1 n 1 n n

p. (~)= 1+ ~ l{P(X .• ~)~ p(X .• ~)}.
1 J=1 1 J

where p(.•.) is a distance function. The user can choose between the following

c. (.) functions (proposed by Stone 1977):
1

Uniform: c. (k)= k-1 for 1~ i~ n.
1

(2. 11)

Triangular: ci(k)= (k- i+ l)/bk for 1~ i~ n where bk= k(k+ 1)/2. (2.12)

Quadratic: c i (k)= (k- (i-l)2)/bk for 1~ i~ n where bk= k(k+l)(4k-l)/6. (2.13)

The number of nearest neighbors to a given point may be located according to
the following distance functions.

(2.14)

r • • Least absolute: p(X .• X.)=}'· IX.- X .1.
1 J Wm=1 ml mJ (2.15)

• • Maximum: p(X .• X.)= max IX.- X .1.
1 J m ml mJ (2.16)

• 2 n - 2 where X.= (X i •...• X .)' and X i= X ./s where s = {L. (X i- X) I(n-l)} and
1 1 nl m ml m m 1=1 m m

- -1 X = n L. X ., The asymptotic properties of k-nn nonparametric estimates have
m 1 ml

only been studied using the Euclidean distance.
The integer k has to be chosen by the user. A common rule of thumb of n

setting k = [n1
/
2] may give good results. It is also possible to choose k n n

using a least squares cross-validation criterion. as suggested by Li (1984).
However. it is important to note that semiparametric estimation is not
necessarily going to improve by using nonparametric estimates obtained from
cross-validation. In semiparametric estimation a precise cross-validation
function should be constructed for the particular semiparametric model under
consideration. There are few cross-validation results in this case.

6

The following weights have been used in a number of semiparametric

estimation problems and should be used when a cross-validation function is
used,

W.(X., k)= lCi~j) c (X)(k), (2.18)
1 J Pl j

and

2.2.1. FORTRAN ROUTINES

2.2.1.1. Nearest Neighbors Estimation.

The routine applies the algorithm of Friedman et. al. (1975) for
searching for the k nearest neighbors to a given observation. The user should

n
provide the data set {(V., X.), 1~ i~ n}, the choice of k , the value of the

1 1 n
three indicator parameters in order to choose the type of estimates desired
and external routines to establish the type of weight function (c i (.)) and the
robust ~-function (when it is required).

When the indicator parameter 101= 0, the own observation is not used;
that is, (2.10) is applied. When 101= 1, the own observation is used; that is,
(2.18) is applied. When the indicator parameter AI02=0, the output is
regression estimates as defined in (2.2). When AI02< 0, robust regression is
performed as in (1.3). In this case the user should provide the robust
~-function by means of an external function. When AI02> 0, the output is the
vector of conditional AI02 quantiles evaluated at each data point. When 103=0,
the Euclidean distance is applied, when 103<0, the least absolute distance is
applied and when 103>0, the maximum distance is applied.

Method: The searching algorithm is based on a data preprocessing and a basic
procedure. Let X. = (X. , ... , X.) and X , X , ... , X the sorted

1 11 lr (om (2lm (n)m
observations with respect to the regressor m. In the preprocessing, the
regressors are sorted with respect to each coordinate and then the dispersion
of the data around the i-th observation, in the original data set is estimated
according to the formula,

s .= IX X I ml (p - tl2lm - (p + tl2lm '
ml ml

where X = X. , P . is the rank of the observation i-th with respect (p lm lm ml
ml

to the regressor m, and t is the estimated maximum number of observations that
the algorithm needs to examine before finding the k-th nearest neighbor of X ..

1

Friedman et. al. (1975) recommended setting t= [t], where t is the maximum
number of observations necessary to examine when X is uniformly distributed
in the r-dimensional unit hypercube. They formally justified that the uniform

case is the "less favorable" because the dispersion of the data is expected to

7

be smaller than when the X density has an infinite support. They found that,

(2.19)

This is why our routine needs a call to a function which computes the log re).
Then the basic procedure for searching the k nearest neighbors of Xi is
implemented on the coordinate m(i), where

s = maxm sml .. mOll

Let ~ (X., X.) denote the distance between X. and
m 1 J 1

X. on the coordinate m
J

and p(X., X.) the distance on the full dimensionality.
1 J

The search on the
coordinate d= m(i) is performed according to the following algorithm:

0.- Find the k+l nearest neighbors to X. according to the coordinate d,
1

. 0) (ll using the sorting performed ln the preprocessing. Let X , ... , X the
d (1) d (k+1)

sorted k+l nearest neighbors according to the coordinate d., i.e.

(X X(l»~ (X X(ll)< < (X X(ll).
~d i' d (1) ~d i' d (2) - ••• - ~d i' d (k+ll

Also let X(i) X(i) be the sorted vector XO) X(il
(ll'···' (k+ll d (l)'···'d (k+ll

according to the full dimensionality, i.e.

p(X., X(il)~ (X X(il)~ ... ~ (X X(il).
1 (1) Pi' (2) Pi' (k+l)

Then if

(X X(1l » (X. X(1l)
~ d i' d (k+l) P l' (k)'

Xli) Xli) are the sorted k nearest neighbors of Xl .. Otherwise, set s= 1 (ll' ..• , (k)

and,

1. - Find the k+s+l nearest neighbor on the coordinate d X(1l If,
d (k+s+l)

(i) (1l
~d (X. , X) > P (X., X) ,

1 d (k+s+l) 1 (k+l)

X(i), ... ,Xli) are the sorted k nearest neighbors of X .. Otherwise, the
(1) (k) 1

distance p(X., Xli)) in the full dimensionality is computed in order to
1 d (k+s+l)

sort X(i) into X(i), ... , XO) by straight insertion, obtaining the
d (k+s+l) (1) (k)

(1) (1) sorted vector X , ... ,X Then set s=s+l and go to 1.
(1) (k+l)

Structure:

SUBROUTINE KNNRE(X, Y, NOBS, NVAR,KNN, I01,AI02, I03,SE,SCL, IW,IRK,WS,NS,
TOL,MAXIT,ROBF,WF)

Formal Parameters:

X

y

Real Array
(NOBS, NVAR)
Real Array

Input: Matrix of regressors.

Input: Dependent variable.
8

(NOBS)
NOBS Integer
NVAR Integer
KNN Integer
IOl Integer

AI02 Real

103 Integer

SE Real Array
(NOBS)

SCL Real Array
(NVAR)

IW Integer Array
(NOBS, NVAR)

Input:
Input:
Input:
Input:

Number of observations.
Number of regressors.
Number of nearest neighbors.
Determines whether (2.10) or (2.18) should be
applied.
101=0: Weights computed according to (2.10)
101=1: Weights computed according to (2.18)

Input: Determines the type of nonparametric
estimation performed.
AI02=0: k-nn regression.
AI02<0: Robust k-nn regression.
AI02>0: k-nn AI02-th conditional quantile

estimate.
Input: Determines the distance function used.

103=0 Euclidean distance.

Output:

Workspace:

Workspace:

103<0 Least absolute distance.
103>0 Maximum distance.
Nonparametric estimates evaluated at
each observation.

IRK Integer Array Workspace:
(NOBS, NVAR)

WS Real Array
(KNN)

NS Integer Array
(KNN)

TOL Real

MAXIT Integer

Workspace:

Workspace:

Input:

Input:

Tolerance for robust estimation. It only needs
to be defined when AI02< O.
Maximum number of iterations when computing the
robust estimates. It only needs be defined when
AI02< O.

ROBF REAL FUNCTION ROBF(A): External function provided by the user only when
AI02<0. Otherwise, it need not be defined. It is
the robust ~-function where the real A is the
argument.

WF REAL FUNCTION WF(I,KNN): External function always provided by the user.
It is the k-nn weight function; i.e. WF(I,KNN)=
Cl (KNN) with Cl (.) defined in (2.10).

Auxiliary Routines: The log of the gamma function is computed using the
routine GAMMLN in Press et. al. (1986). The gamma function is an internal
function found in some FORTRAN compilers. The user can use any function which
computes the gamma function or its logarithm. The subroutines SORTl and SORT2
are based on the Williams (1964) algorithm, Heapsort, as implemented by Press
et. al. (1986). The routine SORT3 perform sorting by straight insertion. Note
that the speed of our routine heavily depends on the sorting routine used.
Heapsort takes on average nlog n comparisons and it is about 10% more

2
inefficient than average in the worst possible case. The fastest algorithm is
Quicksort (Hoare 1962) which takes on average n comparisons but in the worst

2 possible case it takes n. The user may change SORTl and SORT2 by other
sorting routines. A discussion of several competing sorting algorithms is in

9

Knuth (1973). The subroutines MIDD, RIGHT and LEFT perform the basic procedure
and the functions DISTl and DIST2 calculate the distances in one dimension and

in the full dimensionality respectively.

Remark: The user can save the space used in IW and IRK by avoiding the
preprocessing step in the algorithm. In this case, one starts the search at an
arbitrary coordinate; e.g. the first one.

Time: The CPUTlME, reported in seconds, has been computed using the FORTRAN-77
Library Subroutines LIB$INT_TlMER and LIB$STAT_TlMER. The Tables 1-4 refer to
the following data. NOBS data points were generated, the X-data is uniformly
distributed over the interval (0, 3), the V-data with density

.9 .(Y- m(X»+ .1 .«Y- m(X»/9)

where .(.) denotes the standard normal density. These data were also used
by Hardle (1987) in his timing calculations. Table 1 gives timings for
different calling modes setting 101=0, AI02=0., and 103= 0, i.e. applying the
Euclidean distance. For comparison, the time consumption using the "brute
force" method (i.e. for each observation NOBS distances are computed and then
sorted in order to find the k nearest neighbors) are reported. The "brute
force" timings refer only to the calculation of the distances and sorting of
the NOBS vectors (estimates are not computed). The other timings for
different KNN and NVAR refer to callings to KNNRE (i.e. not only the k
nearest neighbors are located but the estimates are computed).

According to Table 1, with NVAR fixed, the CPUTlME increases quite

parsimoniously with KNN; however, with KNN fixed, it increases at a very fast
rate with NVAR. Note that according to Friedman et. al. (1975), the case when
the X's are uniformly distributed is the least cooperative for this algorithm.
We only offer results for uniform weights. Quadratic and Triangular weights
are obviously more expensive.

Table 2 reports timings for different values of AI02 (101=0 and 103=0).
When AI02<0, we have used - here and in other tables- the Huber ~-function. We
have also set AI02= .5, which corresponds to the conditional median estimates

of Y. The cost of the M-estimate is reasonable, but the L-estimate is too
expensive compared with the others.

With respect to 103, obviously 103< 0 is the cheapest mode and 103> 0 the
most expensive.

TABLE 1
Timing comparisons for different KNN, NVAR and NOBS

values (101=0 AI02=0, 103=0)

NOBS= 500 NOBS= 1000

10

BF
KNNRE
KNN= 3
KNN= 6
KNN= 12
KNN= 24

KNN= 48

KNN= 6
KNN= 24

KNN= 6
KNN= 24

Accuracy:

NVAR= 1 NVAR= 3 NVAR= 5 NVAR= 1 NVAR= 3
9.83 10.78 11.86 42.92 46.58

0.12 1. 83 5.04 .21 5.33
0.18 2.49 6.05 .37 8.11
0.33 3.36 7.53 .57 9.84
0.72 4.66 8.33 .94 13.56
1. 49 6.80 10.39 1. 96 19.51

TABLE 2
Timing comparisons for different KNN, NVAR, NOBS and AI02

values (101=0, 103=0)

NOBS= 500 NOBS= 1000

NVAR= 1 NVAR= 1
AI02< 0 AI02= 0 AI02= .5 AI02< 0 AI02= 0

.55 .18 4.98 1. 10 .37
2.27 .72 20.70 4.14 .99

NVAR= 5 NVAR= 5
6.33 6.05 10.93 21.39 20.37
9.82 8.33 27.29 31.69 28.96

NVAR= 5

51. 01

17.14
20.37
26.26
28.96

35.51

AI02= .5
19.40
71. 43

40.00
100.68

In Table 3, we report the average square error (ASE) and maximum
absolute deviation (MAD) through the NOBS data points for different values of
AI02. The M-estimates and the conditional median estimates perform very
similarly. Both robust estimates perform better than the non-robust estimate.

KNN= 6

MAD
ASE

KNN= 24

TABLE 3
MAD and SE for different KNN, NVAR, NOBS and AI02

values (101=0, 103=0)

NVAR= 1
AI02< 0 AI02= 0

4.842 4.730
.366 1.386

NOBS= 500

AI02= .5

4.900
.346

11

AI02< 0

6.888
.566

NVAR= 5
AI02= 0

6.888
1.758

AI02= .5

5.662
.508

MAD

ASE

KNN= 6

MAD

ASE
KNN= 24

MAD
ASE

.608

.050

AI02< 0

1.287
.132

.503

.036

1.426
.220

NVAR= 1
AI02= 0

2.567
.687

1.172
.194

.812

.082

NOBS= 1000

AI02= .5

1. 514
.176

.646

.056

2.3. NONPARAMETRIC KERNEL REGRESSION

.720

.067

AI02< 0

1.404
.134

.503

.036

2.790
.474

NVAR= 5
AI02= 0

4.344
.959

1.172
.194

.887

.087

AI02= .5

1.393
.161

.646

.056

The Kernel regression method was introduced by Nadaraya (1964) and Watson
(1964). Applications of this method in semiparametric estimation are in
abundant supply (see section 3).

In kernel regression, nonparametric weights w. (oc)= w. (oc, h) are used where,
1 1 n

w. (oc, h)= K. (oc)/f (oc),
1 n 1

(2.19)
and

f (oc)= L. K. (oc),
1 1

(2.20)

f(oc) is the multivariate density estimate of X evaluated at oc while h is a n
smoothing parameter provided by the user. ~ is a nonsingular matrix which may n
be provided by the user. This matrix can be used to scale the X's. In
particular we offer the option of using the sample covariance matrix of X. The
user may decide to used a nondiagonal matrix of bandwidths defining ~ n
appropriately. K(.) is a kernel function which is provided by the user. The
most popular kernel is the gaussian, i.e.

-r/2 K(oc)= (2n) exp{-oc' ocI2}.

A computationally attractive alternative is the Epanechnikov kernel (see

Silverman 1986); i.e.

K(oc)= .5 c (r+ 2) (1- oc'oc) l(oc'oc< I),
r

where c is the volume of the r-dimensional sphere: c = 2, c = n, c = 41[/3
r 123

etc. In some semiparametric applications, kernels have been used of the
form,

12

where ~.= (~, ... ,~)' and k:R ~ R is an even function. In this case one set
J 1 r

L to the unit matrix. Robinson (1988) introduced Barlett's (963) "high n
order" kernels for bias-reduction, to the estimation of semiparametric models.

Robinson (1988) defined a high order kernel of order t as that satisfying

J U
t

R
k(u) du= 0oi' i= 0, ... ,t-l,

k(u)= 0(0 + lul t+1+C») some c> 0,

where o .. is the Kroneker's o.
1J

Note that the estimate of m(~) is,

where,

m(~)= a (~)/f (~)
n n

a (~)= r. K. (~) Y. n 1 1 1

(2.21)

(2.22)

The output of the kernel routine is {(a (X.), f (x. », i= 1, ... ,n}. The user n 1 n 1
may compute m(Xi) easily from (2.21). Both, an(Xi) and fn(X i), have been used
in a number of semiparametric estimation and testing problems (see section 3).

Once L has been set, the choice of h may be done by a process of trial and n n
error. It may be a tedious task. In order to minimize trouble, the user may
follow the recommendations of Silverman (1986) for the estimation of
multivariate densities. Another possibility is to select h automatically by n
optimizing some cross-validation criterion function, as we have discussed for
k-nn (see e.g. Hardle and Marron 1990).

2.3.1. FORTRAN ROUTINES

2.3.1.1. Kernel estimation with symmetric kernels

The output of this routine are kernel estimates of f (X.) and a (X.), n 1 n 1

i=l, ... ,n. The kernel functions satisfy the condition K. (~)= K. (-~). Using
1 1

this condition, the routine evaluates the kernel function n(n-1)/2 times.

Beside the storage space required to keep the output and L, one only needs an
array of dimension NVAR as workspace (this is used in order to evaluate the

kernel function). The indicator parameter 101 establishes when ~ is provided

by the user and 102 when ~ is diagonal or not. When 101=0 and 102=0, ~ is a
diagonal matrix with diagonal components the sample variances of the

regressors. When 101=0 and I02*O, ~ is the sample covariance of the

regressors. When I01*0 and I02=O, ~ is provided by the user as a vector
containing the diagonal components. When 101*0 and 102*0, ~ is a symmetric
matrix provided by the user as a vector containing the lower triangular

13

components of :E.

Method: The algorithm is efficient with respect to storage and requires
n(n-1)/2 calls to the kernel function. Improvements on CPUTlME depend on the
particular kernel function used. For instance, the gaussian kernel function

-1 should be set to zero in single precision when E. ~':E ~ ~ 30 because
1

exp(-15)~ 30E-08 which is negligible in single precision. As Silverman (1986)
noted, some kernels are multiplied by a given constant (e.g. the gaussian
kernel is multiplied by (2n)-r/2). These n(n-1)/2 multiplications should be
saved. If the user just wants conditional expectation estimates, the results
are fine without performing the multiplications. When estimates f (X.) and n 1

cl (X.) are desired, the output can be multiplied by the given constant after
n 1

the call to the routine.
Recently Silverman (1982) and Hardle (1987) have proposed kernel

estimates based on the fast Fourier transform when X. is an scalar. In
1

particular Silverman (1982) noted that the Fourier transform of f (~) is given n
by,

f (w)= K(hw) u(w) n

where K() is the Fourier transform of the Kernel function and

-1 r! u(w)= n . exp{iw X.} J=l J

u(w) is found by constructing a histogram of 2k cells and then the fast
Fourier transform is applied. Next estimates of f(.) are found by inverse
Fourier transform of f (w). In this way one can obtain 2k estimates of f (~.), n n 1
where ~. = X + (i-1I2) (X - X)/2k

, where X and X are,
1 (1) (n) (1) (1) (n)

respectively, the lower and upper limit of the interval on which the estimate
is calculated. It seems difficult to implement this method in order to get
estimates evaluated at precise data points. On the other hand, this method

has only be implemented in one dimension. The implementation in higher
dimensions seems cumbersome.

Structure:

SUBROUTINE KEREGSY(X,Y,NOBS,NVAR,HB,I01,I02,B,SE,FK,W,FKER)

Formal Parameters:

X Real Array
(NOBS,NVAR)

Y Real Array
(NOBS)

NOBS Integer
NVAR Integer
HB: Real
101 Integer

Input: Matrix of regressors.

Input: Dependent variable.

Input: Number of observations.
Input: Number of regressors.
Input: Bandwidth parameter.
Input: Determines whether or not :E is provided by the

user.
101=0: :E is set to the sample covariance

14

matrix.
I01~0: ~ is provided by the user as a lower

triangle stored in B.
I02 Integer Input: Determines when ~ is diagonal or not.

102=0: ~ is diagonal.
I02~0: ~ is not diagonal.

B Real Array
(NVAR) when 102=0
(NVARx(NVAR+l)/2) when I02~0

InputlWorkspace: When I01~0 and 102=0, B should contain the
diagonal elements of ~. When I01~0 and I02~O,

B should contain ~ as lower triangle, e.g.
suppose NVAR=3, ~ is stored into B as IT ,

11

SE Real Array
(NOBS)

FK Real Array

IT , IT , IT , IT , IT • Otherwise, B is
21 22 31 32 33

used as workspace.
Output: Contains a (x.), i= 1, ... ,n. n 1

Output: Contains f (X.), i=l, ... ,n. n 1

(NOBS) when 102=0
max{NOBS, (NVARx(NVAR+l)/2)} when I02~0

W Real Array Workspace:
(NVAR)

FKER REAL FUNCTION FKER(W, NVAR): External function defined by the user. It
is the multivariate kernel function.

Auxiliary routines: The routine uses the RSS algorithms A6 and A7 (Healey 1968
a and b) for Cholensky decomposition and inversion of a symmetric matrix.

Time: Using the same data as in KNNRE and a gaussian kernel, Table 4 gives
CPUTIMEfor different calling modes where diag(~)=(l, 1, ... ,1)' and H8=.5 in all

cases. It is interesting to note that k-nn regression is not necessarily more

expensive than kernel regreSSion.

TABLE 4
Timing for different NVAR and NOBS values. B is the unit matrix and HB= .5

NOBS= 500
NOBS= 1000

NVAR= 1
2.84

12.52

NVAR= 3
3.86

16.07

NVAR= 5
4.80

19.48

2.2.1.2. Kernel estimation with possibly non-symmetric kernels:

The storage requirements for this routine are the same as in KEREGSY but now
n(n+l) calls to the kernel function are needed because symmetry can not be
exploited. Robust conditional expectation estimates and conditional quantile

estimates can be also computed. The output in these routines is the same as in
KNNRE.

Structure:

SUBROUTINE KEREGG(Y, X, NOBS, NVAR,HB, 101,102, AI02,B,SE,FK,W,FKER,

15

ROBF,TOL,MAXIT)

Formal Parameters: All the parameters are the same as in KNNRE and KREGSY.
Note that:
101: The same as in KEREGSY.
102: The same as in KEREGSY.
SE: The same as in KNNRE.
FK: The same as in KEREGSY, but on exit it does not contain relevant
information. It is just workspace.

Time: The routine is twice as expensive as KREGSY.

2.4. NONPARAMETRIC KERNEL NEAREST NEIGHBORS.

This method was introduced by Collomb (1980). It is similar to the kernel
method but now the bandwidth changes at each point where the regression
function is estimated. The weights are the same as in (2.19) except that:

K. (a:)= (n H(k , a:)) K H(k , a:)(a:- X.) , r -1 ()
1 n n 1

where H(k , a:) is the distance between a: and the nearest neighbor of a:. Note
n

that when K(u)= l(lIull ~ 1), the weights in (2.19) are just the uniform k-nn
r

weights.

2.4.1. FORTRAN ROUTINE

The routine is a combination of KNNRE and KEREGG. The distances to the
k-th nearest neighbor are computed using the algorithm in KNNREG and then the
kernel estimates are computed by using the "brute force" method in KEREGG.
Note than even with symmetric kernels wi(Xj) $. wj(Xi) because the "bandwidth"
change from observation to observation. This routine is about as expensive as
KNNRE and KEREGG together.

Structure:

SUBROUTINE KERNN(X,Y,NOBS,NVAR,KNN,AI02,I03,SE,FK,SCL, lW, IRK,WS, NS,W,
FKER,ROBF,MAXIT,TOL)

Formal Parameters: All the parameters obey the definitions in KEREGG and
KNNRE.

2.5. NONPARAMETRIC ESTIMATES BASED ON RESAMPLING.

In this case, one is interested in estimating m(a:)= E{g(ao, Y, X)IX=a:}
where g(.) is a known function and aO is a vector of unknown parameters. It is
known that,

g(9, Y, X)= t ~, h(5 ,Y , X), X a.s., ° (° °)

where t(.) may be obtained by numerical or analytical methods, ~o and 5° are
unknown parameters, h(.) is a known function and V= h(50,Y ,X) is

16

independent of X. Consequently, m(~) is estimated by,

- -1 A

m(~)=M L'H()t.(~), JE ~ J

where H(~) is a sample of size M of the integers {1,2, ... ,n} and

£.(~)= t(~, V., ~),
J n J

where ~n and 5n are estimates of ~o and 0°, respectively, and
V.= h(5 , Y., X.L

J n J J

(2.24)

(2.25)

The estimates defined in (2.24) have been used for optimal instrumental
variables estimation in nonlinear simultaneous equations models. The routine
discussed below permits to choose H(~)= H fixed for all ~ (the same V.'s

J
are used in computing all the m(Xi) for i=l, ... ,n), H(~) being a random sample
without replacement and H(~) being a random sample with replacement. We do not
consider the possibility of using different sample sizes for each
nonparametric estimate. This feature would require an extra array of n
elements. The user can easily add this feature. The input in this routine will
be {(Y., X., V.), i= 1, ... , n}.

1 1 1
Robinson (1990) considered the following linear transformation model:

° . ° ° ° 0' V = h(e , Y, X) = arcslnh(~ Y)/~ - a - ~ X,

where a= C~, a, ~')' and E(V) = ECvIX=~) = O. The optimal instruments in
a nonlinear three stages least squares procedure is the vector:

(2.26)

where,
2

g(eO, Y, X)= a v(eo, Y, x)/aa= tanh[~o(ao+ ~o'x+ V)]/~o - (ao- ~o'X)/~o

Obviously,

° ° 0' ° ° 0' E{tanh[~ (a + ~ X+ V)] IX=~} = E{tanh[~ (a + ~ X+ V)]}.

° ° 0' 0
2 ° 0' ° Then, ~o= eO and t(~o, V, X)= tanh[~ (a + ~ X+ V)]/~ - (a - ~ X)/~.

2.5.1 FORTRAN ROUTINE

This routine computes estimates as defined in (2.24). A function which
specifies t(~o, V, X) is required. Y., X., V. or other vectors needed for the

III
computation of t(.) should pass to the function through common statements. An
example is given below.

Method: When 10=0, the conditional expectation estimates are just an
arithmetic mean. When 10< 0, a random sample without replacement is used. The

17

speed of the program will depend on the algorithm used for random sampling.

Efficient algorithms for random sampling are abundant (see Knuth 1969 and
Devroy 1986). As usual. there is a trade off between efficiency and complexity
of the program. between speed and space. In order to perform the random

sampling. we of course require a random generator for uniforms (0. 1). We have
used the Knuth portable generator as implemented by Press et. al. (1986). It
seems preferable to the RAN internal function provided in the FORTRAN
compilers. The user. however. can use any other generator. e.g. the NAG or the
IMSL. The generator is initialized by the number of seconds elapsed from
midnight (SECNDS function). It may alternatively be initialized by the nearest
integer to the first observation of the first regressors or by whatever
procedure the user finds convenient. Among the many algorithms available for

random sampling. we have chosen the sequential sampling using the spacing
method as implemented by Devroy and Yuen's (1981) (see also Devroy 1986

Chapter XII). This algorithm takes expected time proportional to MX. The
method is more complicated than standard sequential sampling (Knuth's 1969

algorithm S) which takes expected time proportional to NOBS. The random

sampling algorithm based on 'suffling' or • swapping' also takes expected time
proportional to MX. However. in this case. it is necessary to swap the
original X matrix or use an extra integer array of dimension NOBS. For an
excellent presentation of random sampling algorithms. the reader may consult
Devroy (1986). For random sampling with replacement (101)0). we have used

the fact that if U is uniformly distributed in the interval (0.1).

2=~ U*NOB~ is a random integer uniformly distributed in the interval
(1 •...• NOBS) (see Knuth 1969). Consequently. we can do the bootstrapping using
the random uniform generator.

Structure:

SUBROUTINE RESA(NOBS. NVAR. MX. THETA. NPAR. SE. IO.TFUN)

Formal Parameters:

NOBS
NVAR
MX
THETA

NPAR
ID

Integer
Integer
Integer
Real Array
(NPAR)
Integer
Integer

Input:
Input:
Input:
Input:

Number of observations.
Number of regressors in the exogenous variable.
Sample size used to compute the estimates.
Preliminary parameter estimates.

Input: Number of parameters.
Input: Determines the type of resampling performed.

10= 0: H(X.)= {1.2 •...• MX} i=l •..• n.
1

10< 0: H(X.) is a sample without replacement
1

of size MX from the integers {1 •...• n}.
10> 0: H(X.) is a sample with replacement of

1
size MX from the integers {1 •...• n}.

SE Real Array Output: Conditional expectation estimates evaluated at
(NOBS) each data point.

TFUN REAL FUNCTION TFUN(NOBS.NVAR.THETA.NPAR.I.J):
18

External function provided by the user which
should compute tJ(X1) as defined in (2.25).

Example: Consider the arcsinh model discussed above. Suppose the preliminary
estimate of AO is stored in theta(l), the estimate of aO is stored in theta(2)
and theta(j),j=3, .. ,npar contains the estimates of ~O. Suppose NOBS=100 and
NVAR=4. Then the TFUN would be:

function tfun(nobs,nvar,theta,npar,i,j)
real theta(*)
common dat/x(100,4),y(100)1
c=O.
do 1,k=3,npar

1 c=c+x(j,k-2)*theta(k)
c=c+theta(2)
y1=y(j)*theta(1)
y2=y1*y1
v=log(y1+sqrt(y2+1»/theta(1)-c
c=O
do 2,k=3,npar

2 c=c+x(i,k-2)*theta(k)
c=theta(2)+c
v=(v+c)*theta(l)
v=tanh(v)/(theta(l)*theta(l»
c=c/theta(l)
tfun=v-c
return
end

The reader has surely realized that it is not an efficient function. The
function is called by the mean routine M*NOBS times. Hence, it is more
efficient to perform some calculations in the main program i.e.

do 1,i=1,nobs
c=O.
do 2,k=3,npar

2 c=c+x(i,k-2)*theta(k)
c=theta(2)+c
x1(i)=c*theta(1)
x2(i)=c/theta(1)
d=y(U*theta(l)
dd=(d*d)+l
d=log(d+sqrt(dd»/theta(l)-c

1 v(i)=d*theta(l)
tt=theta(l)*theta(l)

The arrays xl, x2 and v and tt are passed to TFUN through a common
statement, 1. e.

function tfun(nobs,nvar,theta,npar,i,j)
real theta(*)
common dat/x1(100),x2(100),v(100),ttl
c=v{j)+x1 (i)
c=tanh(c)/tt
tfun=c-x2(i)
return
end

19

3. ESTIMATION OF SEMIPARAMETRIC MODELS

3.1. ASYMPTOTICALLY EFFICIENT ESTIMATION IN THE PRESENCE OF HETEROSKEDASTICITY
OF UNKNOWN FORM

Consider the model,
E[YIX=~]= g(Bo, ~),

Var(YIX=~)= Q(~),

where g(. ,.) is a qx1 vector of functions of known form, BO is px1 vector
of unknown parameters and Q(.) is a qxq matrix of unknown functions.

° -Given a preliminary estimate of B , say Bn , the ~-th unknown component
of Q(Xi), ~~(Xi)' is estimated by

eT",Q(X,)= L. U .(a)UQ.(a) wJ.(Xi),
~ 1 J ~J n ~J n

° where U .(B) is the ~-th component of U.(B)= Y.- g(B , ~). Alternatively,
~J J J

~ Q(X.) may be estimated by,
~~ 1

eT ",Q (X.) = L. Y Y Q' Wj (X.) - L. Y W • (X.) Lj Y Q' W. (X.) .
~ 1 J ~ ~J 1 J ~ J 1 ~J J 1

Some components of Q(X.) may be known or their functional form may be
1

(3.1)

(3.2)

known in which case they can be estimated by parametric methods. So, we can
construct the minimum distance estimate,

It has been proved to be first order efficient, under certain
regularity conditions, by Carroll (1982), Robinson (1987), Newey (1987),
Delgado (1989a and b). That is,

..... -1 0 - -1 0 _ 0

where V = n L. g(B , X.)' Q. g(B, X.) and g(B, X.)= ag(B, X.)/aB. n 1 nIl nIl 1

(3.3)

The estimates defined in (3.3) have an unbounded influence function in
residuals and leverage. Delgado (1990) proposed to use the estimates defined
in (3.1) and (3.2) in order to correct for heteroskedasticity in the linear
regression model using GM-estimates. It is also possible to scale by a robust
estimate of the conditional scale. In particular, eO can be estimated as the
solution to

L. ~((Y.- x~e)/s(X.), X.) Xi/s(Xi)= 0,
1 1 1 nIl

where s(X.) is some robust estimate of the conditional scale.
1

(3.4)

In the single equation case, the estimate defined in (3.3) can be easily
computed by using any standard econometric package. The NAG and IMSL libraries
offer a number of routines for minimization of sum of squares. The

20

Levenberg-Marquardt algorithm is also implemented in Press et. al. (1988).
These FORTRAN routines can be used after computing the conditional variance
estimates and modifying the independent variable and the nonlinear function
appropriately. In TSP, one can use the LSQ command. For instance, suppose our
data set consist of a dependent variable Y and 2 regressors (X), which are
stored in the file , DATA. OAT' . The model to be estimated is E[YIX~J= exp(ao+
{3°X + (3°X). Suppose, further that, we have estimated {Var(YIX=Xi),

1 11 2 21
i=l, ... ,n} according to (3.1) or (3.2) and the estimates are stored in the
file , WEIGHT. DAT' . The following TSP program computes the estimates of (3.3)
and the corresponding standard errors by

read(file='data.dat')y xl x2;
read(file=' weight. dat')w;
w=sqrt (w);
y=y/w;
frml tot y=exp(bO+b1*x1+b2*x2)/w;
param bO-b2;
lsq tot;
stop;

The resulting standard errors and t-ratios should be divided by the 'standard
deviation of the regression'.

In the multivariate case, TSP can still be used but the TSP program will
be more cumbersome. Suppose we have the following equations:

E(Y IX=X.)= exp{ao+ {30 X + {30 X }
1 1 1 11 1 i 12 2i '

The data is stored in the file 'DATA. OAT' and we have estimated
{Var((Y,Y)' IX=X.),i=1, ... ,n} by {t.,i=1, ... ,n} according to (3.1) or (3.2L

1 2 1 1
So, we can compute {t~I/2,i=1, ... ,n} (using e.g. Healey 1968a and b), which is

1

stored in the file 'WEIGHT. OAT' with i-th raw component
(11 A12 A22 A13 A23 A33) h Aaf3. th af3 th t of t~I/2(it
~i '~i '~i '~i '~i '~i , , w ere ~i IS e - componen 1

is the output of CHOL in Healey 1968). Then the following TSP program will
compute the estimates in (3.3)
read(file='data.dat')y1,y2,x1,x2;
read(file='weight.dat')sll,s12,s22;
y11=y1*sll+y2*s12;
y22=y2*s22;
frml tot1 y11=eq1*s11+eq2*s12;
frml tot2 Y22=eq2*s22;
frml eq1 exp(a1+b11*x1+b12*x2);
frml eq2 exp(a2+b21*x1+b22*x2);
param a1,a2,b11,b12,b21,b22;
eqsub tot1 eq1 eq2;
eqsub tot2 eq2;
Isq(maxit=O) tot1 tot2;

When the equations are linear, it may be easier to use any FORTRAN program for

21

solving linear equation systems; e.g. using GAUSSJ routine in Press et. al.
(1986). On the other hand one can also use the trick suggested by Gallant
(1975), transforming the multivariate problem to an univariate one; i.e.

a = argmin
a

rnq (y*- f*(a»2,
n LS:l s s

* Aa. * Aa. where s= q(i-1)+ a., Y = (~.)' Y. and f (a)= (~.)' f(a, X.), s lIS 1 1 Aa. Aa.l Aa.2 Aa.q .
~i= (~i '~i , ... '~i) for 1=1, ... ,n and a.=1, . .. ,q. Then any routine for
univariate nonlinear regression can be used.

The robust semiparametric estimates (3.5) can be computed using the
NAG-13 libraries G02HDF and G02FF. One can also use the ML command in TSP-4.1
or the anologue routine in GAUSS.

3.2. OPTIMAL SEMIPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATORS

Suppose it is given that

(3.5)

where U(.) is a qx1 vector of known functions, aO is an unknown px1 vector of
parameters, X is a rx1 random variable and Y is a sx1 random variable. It is
also known that,

Var (u(aO, Y, X) I x=a:) = Q(a:),

where Q(a:) is positive definite for all X where some components are unknown
functions. Let Hi be a matrix of instruments, such that

where,

R(X., aO)= E(aU(ao, Y., x.)laalx.), 1 1 1 1

and some components of R(X., aD) are of unknown functional form. Amemiya
1

(1977) defined the optimal nonlinear least squares (NL3SIS) as

Since some components of Q(X.) and R. (X., aD) are of unknown functional 1 1 1
form, a feasible estimate may be constructed by estimating the unknown
components of Q(X.) and Ri(X., aD) by nonparametric regression. Let n. and R 1 1 1 i
nonparametric estimates of Q(X.) and R.(Xi , aD), respectively. The optimal

1 1 ,.. ,.. -1 0
instruments can be estimated by Hi= RiQi and a would be estimated by,

22

(3.6)

° ° Similarly, when the a~-th component of R(a , Xi)' ra~(a , Xi)' is of
unknown functional form, it is estimated by,

r Q (X.) = L. C ~Q (Y ., X
J
' , 9) w. (X.) ,

a~ 1 J ~ J n J 1

where c~(Yj' Xj ' a) is the ~-th component of the matrix 8U(a, Vi' Xi)/8a.
When r~(a, Xi) is of known functional form, it is estimated by

r~(Xi)= r~(9n' Xi)' Then, Ri is the matrix with components r~(Xi)'
The feasible optimal NL3SLS (3.3) has been proposed by Newey (1987). In

the case when Q(X.) is constant for all i, the optimal instruments are
1

- A --1 estimated by H.= R.Q ; where
1 1

- -1 - -' 0= n L. u.(a)u.(a)
J J n J n

Newey (1990) has proved, under regularity conditions, that the corresponding
NL3SLS is first order efficient. As noted by Newey (1987, 1990), a first order
asymptotically equivalent estimate is the solution to,

L.A. u. (a)= o.
1 1 1 n (3.7)

This estimate may be easier to compute, with standard software, than (3.3).
For certain econometric models, Robinson (1990) has proposed to estimate

R(ao, X.) by estimates as defined in section 2.5 .. In particular, if
1

ca~(Yi' Xi' a)= t~(~(a), h(a, Vi' Xi)' Xi)' where t~(.), and h(.) are

known functions, V.= heaD, Y., X.) is independent of X., and r~Q(a, Xl') is
1 1 1 1 ~

of unknown form, we can estimate r~(aO, Xi) using RESA. Using a
11 super I anguage 11 (e.g. GAUSS or APL), (3.6) can be computed straightforwardly.
Standard packages can also be used. In the one equation case one can use the
TSP command LSQ. For instance, consider the arcsinh tranformation model
discussed in section 2.5 with only one regressor. First preliminary estimates
of aO are needed in order to compute estimates of the optimal instruments. We
can use as preliminary estimates the intrumental variables one with
instruments

W (1 X _X2.),. i= -, - i' 1

and the following TSP program (the data is in 'DATA.DAT')

read data(file='data.dat')y,x;
w1=-1;
w2=-x;
w3=-x*x;
frml tot zero=(log(yl+ya)/lamda)-a-b*x;
frml yl y*lamda;
frml ya sqrt(Cyl*yl)+1);

23

zero=O;
equsub tot yl ya;
param lamda,l,a,l,b,l;
Isq(hiter=d,inst=(wl-w3)) tot;

° - - -Once the estimate of a , an= (An' ~n'

instrument are computed as

,
Q)'
fJn ' has been obtained the optimal

A. ,.. -2 _ _ A

where r(X.)= m(X.)/A - (3 X /A and m(X.) are nonparametric estimates of
1 1, n n n 1

m(Xi)=E{tanh(AO«(30 X+ V)IX}. Note that when an intercept is included, it can
not be used in the nonparametric regression. Alternatively, an estimate of
m(Xi) can be obtained using (2.25). Suppose that m(Xi) was computed using
any routine and was stored in the file 'INSTRU.DAT'. The following TSP code
should be added to the above TSP code in order to get the semiparametric
NL3SLS estimates:

read(file='instru.dat')w3;
Isq(hiter=d,maxit=0,inst=(wl-w3)) tot;

Another example, considered by Newey (1990), is the following linear
regression model,

° ' ° ° u.(a)= Y.- X.(3- oD.,
1 1 1 1

where D. is dummy variable such that E{U.(ao)D. IX.,Zi}~O and Z.and X. are
1 1 1 1 1 1

non-nested. In this case, optimal instrumental variables estimates can be
obtained by using the command INST in TSP. Suppose that X.= (1, X i)' and Z.

1 2 1

is a scalar random variable. The data (Yi , Xli' Di) are in three columns on
the file 'DATA.DAT'. Estimates of E(DiIZi) can be obtained using some of the
routines in Section 2. Suppose that these estimates are kept in the file
INSTRU.DAT. The following TSP program obtains the semiparametric estimates:
read(file='data.dat')y x d;
read(file='instru.dat')w;
inst y c x d invr c x w;

3.3 SEMIPARAMETRIC PARTIALLY LINEAR MODELS

Robinson (1988) considered the following regression model:

l OO E(Y X= a:, Z= 1)= ~ + a:' (3 + 7(1),

where 7(.) is of unknown functional form. Noting that:

° Robinson (1988) proposed to estimate (3 by

~n= {Li X;X;'I i }-l Li X; Y; I i ,

24

(3.8)

• A • A A where Xi= X.- m (Z.) and Y.= Y.- m (Z.), m (Z.) and m (Z.) are higher order
1 x 1 1 1 Y 1 X 1 Y 1

kernel estimates of E(XIZ=Z.) and E(YIZ=2.), respectively, and 1.= 1(f(2.» b)
1 1 1 1

where f(2.) is the corresponding density estimate of Z evaluated at Z., and b
1 1

is a small number. Under regularity conditions,

{ •• '. }-1/2 1/2. 0 E. X.X. 1. n ({3 - (3) ---td N(O, I).
1 1 1 1 n r

The nonparametric estimates of the regression functions and the density
functions can be computed with KEREGSY. Then any package may be used to
compute ~ and its standard errors. For instance, suppose we have only one X n
and we have computed m (2.), m (2.) and f(2.) using KEREGSY, storing the x 1 Y 1 1

estimates in the file 'NONP.DAT'. The data, as usual, is in the file
'DATA.DAT'. Setting b= .0001, the following TSP program computes the
semiparametric estimates,
read(file='data.dat')y,x;
read(file='nonp.dat')mx,my,fz;
select fz> .0001;
y=y-my;
x=x-mx;
olsq y x;

3.4. SEMIPARAMETRIC ESTIMATION AND INFERENCE BASED ON AVERAGED ESTIMATED.

Some semiparametric estimators use nonparametric estimates of the functional,

f(a:)= 8f(a:)18a:,

where f(a:) is the density of X evaluated at a:. It may be consistently
estimated by

(3.9)

f(a:)= 8f(a:)18a:, (3.10)

where f(a:) is the kernel estimate of f(a:) as defined in (2.20); i.e.

f (a:)= E. K~ (a:),
1 1

where K~(a:)= 8K. (a:)18a:. Therefore, we can obtain estimates
1 1

o 0 0'

{(f(X.), d (X.», i=l, ... n}, where d (a:)= E.Y. K.(a:), by using KEREGSY. Note
1 Y 1 Y 111

that setting r to the unit matrix, n

where K' (.) is the derivative of the kernel function. Then, all what we have
to do is to define the function FKER in KEREGSY as K' () and on exit we have to
divide SE and FK by h . n

Powell et. al. (1989) proposed an estimator of

0= E{f(X) 8g(X)18X},

where g(.) is an unknown function. It is interesting in a number of

25

econometric applications to limited dependent variable models where

° E(YIX=a:)= G(a:'{3),

° where G() is a function of unknown form and {3 a rx1 vector of unknown
parameters. In this case 0= c{3° where c is an unknown constant. Powell et. al.
noted that, under mild regularity conditions,

0= -2 E{Y [(X)}.

Then, they estimated 0 by

Here [(X.) does not use the own observation; i.e.
1

(3.11)

This feature can be incorporated in KEREGSY by an slight modification in the
main code. Powell et. al. proved, under regularity conditions, that

where

A -1 0 0 and ri= n(n-1) (d (X.)- Y.f(X.)). Then we can compute everything with
Y 1 1 1

KREGSY. Powell et. al. also considered higher order kernels in order to avoid
the asymptotic bias. They also proposed an instrumental variable estimate

• of 0 = o/E(f(X)). They noted that

• Then 0 is estimated by
D = ~-1 ~

n xn n' (3.12)

,
where ~xn= Li[(Xi)Xi · Under regularity conditions,

where 00= 4 n-1 Li rOir~i and rOi= n(n-1)-1 (d~(Xi)- 0i[(Xi)) where
0.= Y.- x:fi . Then D can be computed using the command INST in TSP, defining

1 1 1 n n
as instruments {[(X.), i=l, .. ,n}.

1

Robinson (1989) considered the following statistic, for testing
conditional moment restrictions in nonparametric and semiparametric models for
economic time series,

26

(3.13)

where

[
DO(X.)]

A -1 \' . C I
T = n L.. ~

n i d (X.) ,
C I

A 0 where D o(X.)= L. G (Y., X.; Y
I
., X.) K.(X.) and G() is a known rx1 function. Cl) J J I JI

We can compute d CX.) directly with KEREGSY. However, the computation of
C I

o o(X.) will require a modification in the dimensions of the input array. We
C I

can of course run KEREGSY n times but it will be computationally expensive. On
the other hand ~ is the estimate of the asymptotic covariance matrix of i . It n
may be computed by bootstrapping or by nonparametric methods. In particular, a
possibility is,

where tC.) is a real 'lag window' function Ce.g. the modified Barlett
tCu)=l- lul) and f

J
.= n-1 L

I
. c. c~ . where c.= L.Cq .. + q ..) and I I+J I J IJ JI

3.5. ASYMPTOTICALLY EFFICIENT ESTIMATION IN THE PRESENCE OF DISTURBANCE
DISTRIBUTION OF UNKNOWN FORM

Bickel (1982) considered the linear regression model E(YIX=~)= ~,~o by
the one step estimate,

(3.15)

where ~n is a preliminary root-n-consistent estimate, 0i are the residuals

computed from this estimate and fCO.) and fCO.) are kernel estimates of
I I

fCU i) and fCU i), the density of U= Y- X'~o and its derivative evaluated at Ui .
Bickel (1982) proved, under regularity conditions, that

This result was proved before by Stone (1975) for the case where X= 1. Manski
(1982) has extended this estimation method to nonlinear and simultaneous
equations models and Lee (1990) to sample selection models.

The estimates {(fCO.) and f(O.», i=l, .. ,n} can be obtained by KEREGSY
I I

and the second term in C3.14) by performing a regression of e=(l, ... ,1)'

27

A

o - ,.., -1 against Xif(Ui)f(Ui) using any econometric package.

3.6. LINEAR REGRESSION PARAMETER ESTIMATION CONSTRUCTED BY NONPARAMETRIC
ESTIMATION

Faraldo Roca and Gonzalez Manteiga (1985), Crist6bal Crist6bal et. al.
(1989) and Stute and Gonzalez Manteiga (1990) considered the estimation of the

o linear regression model Y= X'~ + E where E(E)= 0, by the general class of
estimators

A J A 2 ~ = argminQ (m (It) - It'~) d 0 (It), n ~ y n (3.16)

where 0 (It) is a weighting function and m (It) is a nonparametric estimate of n y
E(YIX= It). They propose to use the weighting function,

It
0n(It)= J f(t) d t,

-to

where f(lt) is the nonparametric estimate of the density of X evaluated at It.
Then,

Faraldo Roca and Gonzalez Manteiga (1985) and Crist6bal Crist6bal et. al.
(1989) proved that ~ is to first order as efficient as ordinary least n
squares. They shown good performance of the biased ~ with respect to n
ordinary least squares when mean squared error (MSE) is used for comparison.
It obviously requires a 'judicious choice' of the smoothing parameter. Faraldo
Roca and Gonzalez Manteiga (1985) calculated the optimal bandwidth using
kernels which minimize the MSE of ~n in the one regressor case. For this
choice of bandwidth the MSE of ~ is smaller than the variance of the ordinary n
least squares.

Note that once the nonparametric estimates have been computed using
KEREGSY, one can use any econometric package in order to compute ~ by using n

t · l' l' t' t i mA (X.)fA (X.)1/2 any rou 1ne so v1ng 1near equa 10n sys ems or regress ng
Y 1 1

A 1/2 against X.f(X.) .
1 1

3.6 ASYMPTOTICALLY EFFICIENT ESTIMATION IN THE PRESENCE OF AUTOCORRELATION OF
UNKNOWN FORM

, 0
Hidalgo (1990) considered the linear regression model Y.= X.~ + U. where 1 1 1

U.= p(U.)+ E., i=l, ... ,n where p(.) is an unknown function and E. are white 1 1-1 1 1
noise. He proposed the estimate

(' ,)2 ~ = argminQ r; Y.- X.~- p(y. - X. ~) n ~ 1=2 1 1 1-1 1-1 L , 1-1 (3.16)

28

where

pCU. «(3))= (2nh)-1 r. U. {K(CU. «(3)- U. «(3))h-1)_ 1-1 j=2 j 1-1 j-l
j~i

-1
K(CU. «(3)+ U. «(3))h-1)} f(U. «(3)) , 1-1 j-l 1-1

and ri _1= 1(r(ui _1«(3))> b), where b is a small number chosen by the user and

f(U. «(3))= (2nh)-1 r. u. {K(CU. «(3)-U. «(3))h-1)+ K(U. «(3)+U. «(3))h-1)} 1-1 j=2 j 1-1 j-1 1-1 j-1
j~i

Hidalgo (1990) proved that, under regularity conditions,

nll2(~n- (30) ~d N(O, Vo)'

where V= Var(c) [plim n-1 r. (X.- X. p'(U.))(X.- X. p'(U.)),]-1 and ° 1=2 1 1-1 1-1 1 1-1 1-1
p' (.) is the derivative of p(.).

The estimator in (3.1.6) seems difficult to compute. However, a
linearized version of this estimate would permit to use our routines. In
particular, Hidalgo (1990) suggested to use a Gauss-Newton one step estimate

from the ordinary least squares, ~ ; i.e. n
(3.18)

~~1}= ~n - {ri =2(Xi - Xi_lP' (Oi_l))(Xi - Xi_lP' (Oi_l))!i_1}-1 x

r. (X. - X. P' <0.))(0. - P<O.)I. 1 1=2 1 1-1 1-1 1 1-1 1-

where 01.= Y1.- ~nX1.' P' <0.)= 8P<O.)18U. and I. = 1 (r<o. » b) where b 1-1 1-1 1-1 1-1 1-1
is a small number.

Then p(O.) and P' (0.) can be computed using KEREGSY and the second 1-1 1-1
term of (3.18) can be easily computed using TSP as indicated in section 3.3.
A full iterated estimated can be obtained using any routine for nonlinear
least squares.

ACKNOWLEDGEMENTS

I thank Peter Robinson for comments on a previous version of this manuscript.
Financial support from the Economic and Social Research Council (ESRC),
reference number: R00023411 is gratefully acknowledged. Soft copies of the
routines are available from the author.

29

REFERENCES

Aguirre-Torres, V. and A.R. Gallant (1983) , "The null and non-null
distribution of the Cox test for multivariate nonlinear regression",
Journal of Econometrics 21, 5-33.

Andrews, A.C., P.J. Bickel. F.R. Hampel. P.J. Huber, W.H. Rogers and W.J.
Tukey (1972): Robust Estimates of Location: Surveys and Advances,
Princeton University Press: Princeton.

Barlet t. M. S. (1963): "Statistical estimation of density functions", Sankhya A
25, 145-154.

Bickel, P. (1982): "On adaptive estimation", Annals of Statistics 447-671.

Boente, G. and R. Fraiman (1989): "Robust nonparametric estimation for
dependent observations". Annals of Statistics 17. 1242-1256.

Boente. G. and R.Fraiman (1990): "Asymptotic distribution of robust estimators
for nonparametric models from mixing processes". Annals of Statistics 18.
891-906.

Broich. T .• W. Hardle and A. Krause (1990): "XploRe- a computing environment
for eXploratory Regression and Analysis". Springer-Verlag (forthcoming).

Brown. B.W. and R. Mariano (1984): "Residual-based procedures for prediction
and estimation in a nonlinear simultaneous equation system". Econometrica
52. 321-343.

Carroll. R.J. (1982): "Adapting for heteroscedasticity in linear models".
Annals of Statistics 10. 1224-1233.

Collomb. G. (1980): "Estimation de la r6gression par la m6tode des k points
les plus proches avec noyau: quelques propi6t6s de convergence
ponctuelle". Lecture Notes in Mathematics 831, 159-175.

Cristobal Cristobal, J.A., P. Faraldo Roca and W. Gonzalez Manteiga (1987):
"A class of linear regression parameter estimators constructed by
nonparametric estimation". Annals of Statistics 15, 603-609.

Delgado. M.A. (1989a): "Asymptotically efficient fully iterative nonlinear
weighted least squares in the presence of heteroskedasticity of unknown
form". manuscript.

Delgado, M.A. (1989b): "Semiparametric generalized least squares estimation in
the nultivariate nonlinear regression model", manuscript.

Delgado. M.A. (1990): "Bounded influence regression in the presence of
heteroskedastici ty of unknown form", manuscript.

Devroye. L. (1986): Non-Uniform Random Variate Generation. Springer-Verlag:
New York.

Devroy, L. and C. Yuen (1981). "Inversion-with-correction for the computer
generation of discrete random variables", manuscript.

Duan, N. (1983): "Smearing estimate: a nonparametric retransformation method",
Journal of the American Statistical Association 78, 605-610.

Faraldo Roca, P. and W. Gonzalez Manteiga (1985): "On efficiency of a new
class of linear regression estimates obtained by preliminary
non-parametric regression" in New Perspectives in Theoretical and

30

Applied Statistics, (M. Puri et. al. editors), Wiley: New York.

Friedman, J.H., F. Baskett and L.J. Shustek (1975), "An algorithm for finding
nearest neighbors", lEE Transactions on Computers C-24, 1149-1158.

Gallant, A.R. (1975), "Seemingly unrelated nonlinear regression", Journal of
Econometrics 3, 35-50.

m:i.rdle, W. (1984): "Robust regression function estimation", Journal of
Multivariate Analysis 14, 169-180.

Hardle, W. (1987): "Resistant smoothing using the fast Fourier transform",
Statistical Algorithm 222, Applied Statistics 36, 104-111.

Hardle, W. (1990): Applied Nonparametric Regression, Cambridge University
Press, Econometric Society Monographs.

Hardle, W. and A.B. Tsybakov (1990): "Robust nonparametric regression with
simultaneous scale curve estimation", Annals of Statistics 16, 120-135.

Hardle, W. and J. S. Marron (1985): "Optimal bandwidth selection in
nonparametric function estimation", Annals of Statistics 13, 1465-1481.

Healy, M.J.R. (1968a): "Triangular decomposition of a symmetric matrix",
Statistical Algorithm 6, Applied Statistics 17, 195-197.

Healy, M. J. R. (1968b): "Inversion of a posi ti ve-semidef ini te symmetric
matrix", Statistical Algorithm 7, Applied Statistics 17, 198-199.

Hidalgo, F.J. (1990): "Adaptive semiparametric estimation in the presence of
autocorrelation of unknown form", Journal of Time Series Analysis
(forthcoming) .

Hoare, C. A. R. (1962): "Quicksort", Computer Journal 5, 10-15.

Keleijan, H. H. (1974): "Instrumental variable estimation of nonlinear
econometric models", manuscript.

Knuth, D.E. (1969): The Art of Computer Programmin2. Vol. 2: Seminumerical
Algorithms. Addison-Wesley, Reading,Mass.

Knuth, D.E. (1973): The Art of Computer Programming. Vol. 3: Sorting and
Searching. Addison-Wesley, Reading,Mass.

Lee L.F. (1990): Efficient semiparametric scoring estimation of sample
selection models", manuscript.

Li, K.C. (1984): "Consistency of nearest neighbor estimates in non-parametric
regression", Annals of Statistics 12, 230-240.

Manski, C.F. (1982), "Adaptive estimation of non-linear regression models",
Econometric Reviews 3, 145-194.

McQueen, J.B. (1990): N-Kernel, Non-standard Statistical Software, Santa
Monica.

Nadaraya, E.A. (1964), "On estimating regression", Theory of Probability and
its Applications 9, 141-142.

Newey, W. (1987): "Efficient estimation of models with conditional moment
restrictions", manuscript.

31

Newey, W. (1990): "Efficient instrumental variable estimation of nonlinear
models", Econometrica 58, 809-837.

Powell J.L., J.H. stock and T.M. Stoker (1989): "Semiparametric estimation of
index coefficients", Econometrica 57, 1403-1430.

Prakasa Rao, B.L.S. (1983): Nonparametric Functional Estimation, Orlando:
Academic Press.

Press, W., B.P. Flannery, S.A. Tenkolsky and W.T. Vetterling (1985): Numerical
Recipes, Cambridge University Press: London.

Robinson, P.M. (1984): "Robust nonparametric autoregression", Lecture Notes in
Statistics 26, 247-255.

Robinson, P.M. (1986): "Nonparametric methods in specification", The Economic
Journal, Supplement 96, 134-141.

Robinson, P.M. (1987): "Asymptotically efficient estimation in the presence of
heteroskedasticity of unknown form", Econometrica 55, 531-548.

Robinson, P. M. (1988a): "Root-n-consistent semiparametric regression",
Econometrica 56, 931-954.

Robinson, P. M. (1988b): "Semiparametric econometrics: a survey", Journal of
Applied Econometrics 3, 35-51.

Robinson, P.M. (1989): "Hypothesis testing in semiparametric and nonparametric
models for econometric time series", Review of Economic Studies 56,

511-534.

Robinson, P.M. (1990): "Best nonlinear three-stage least squares of certain
econometric models", Econometrica (forthcoming).

Si! verman, B. W. (1982): "Kernel density estimation using the fast Fourier
transform", Statistical Algorithm 175, Applied Statistics 31, 93-97.

Silverman, B.W. (1986): Density Estimation for Statistics and Data Analysis.
Chapman and Hall: New York

Stone, C. J. (1975): "Adaptive maximum likelihood estimation of a location
parameter", Annals of Statistics 3, 267-284.

Stone, C. J. (1977): "Consistent nonparametric regression" (wi th discussion),
Annals of Statistics 5, 595-645.

Stute, W. and W. GonzaIez Manteiga (1990) "Nearest neighbor smoothing in
linear regression", Journal of Multivariate Analysis 34, 61-74.

Tsybakov, A.B. (1982): "Robust estimates of a function", Problems, Information
and Transmission 18, 190-201.

Watson, G. s. (1964): "Smooth regression analysis", Sankhya A 26, 359-372.

Williams, J. W. J. (1964): "Heapsort", Algorithm 232, Communications of the ACM
7, 347-348.

32

SUBROUTINE KNNRE

c
c The function GAMMLN is in Numerical Recipes pp. 157 (Press et. al 1986)
c Any other function computing the log of the gamma function can be used.
c

subroutine knnre(x,y,nobs,nvar,knn,i01,ai02,i03,se,scl,iw, irk,
* ws,ns,tol,maxit,robf,wf)

integer iw(nobs,*),irk(nobs,*),ns(*)
real x(nobs,*),scl(nvar),ws(*),y(*),se(*)
data pi/.56418958350dOI
if(knn.gt.nobs)pause 'knn>nobs'
if(nvar.gt.nobs)pause 'nvar>nobs'
obs=real(nobs)
var=real(nvar)
obs1=obs-1.
do 2,j=1,nvar
q=O.
qq=O.
do 3,i=1,nobs

3 q=x(i,j)+q
q=q/obs
do 4,i=1,nobs
c= (x (i , j) -q)

4 qq=(c*c)+qq
if(qq.eq.O.)pause 'one x is a constant'

2 scl(j)=sqrt(qq/obs1)
ok=float(knn)
var1=var/2.
var2=1./var
var3=(2.*obs)**(1.-var2)
cmax=pi*var3*«ok*var*exp(gammln(var1»)**var2)
icmax=nint(cmax/2.)
if(icmax.ge.nobs/2)icmax=(nobs/2)-2
call sort1(nobs,nvar,x,iw)
do 40,i=1,nobs
do 40,j=1,nvar

40 irk(iw(i,j),j)=i
do 12,i=1,nobs
q=O.
do 20,j=1,nvar
l=irk(i,j)
if(l. le. icmax) then
k=iw(1+icmax, j)
c=abs(x(k,j)-x(iw(l,j),j»
else if(l.ge.nobs-icmax)then
k=iw(1-icmax, j)
c=abs(x(k,j)-x(iw(nobs-icmax,j),j»
else
k=iw(1-icmax, j)
n=iw(l+icmax,j)
c=abs(x(k,j)-x(n,j»
end if
if(c. gt. q)then
q=c
is=j
end if

20 continue
c is=1

l=irk(i,is)
if(l.lt.nobs)then
if (1. gt. 1)then

33

call midd(nobs, nvar, X, iw, l,is,knn,scl,ws,ns, io3)
else
l=iw(2,is)
ik=l
ikO=l
iO=l
zer=O.OdO
call right(nobs,nvar,x,iw,iO,is,knn,scl,ws,ns,ik,ikO,zer,l,io3)
end if
else
k=iw(nobs-1,is)
ik=l
ikO=l
zer=O.
call left (nobs, nvar, x, iW,nobs,is,knn,scl,ws,ns, ik,ikO,zer,k, io3)
end if
cc=O.
do 466,j=1,knn-io1
l=ns U)
k=j+io1

466 cc=cc+y(l)*wf(k,knn)
se (i)=cc
if(aio2.lt.0.)then
cm=se(i)
ii=O

100 cc=O.
bb=O.
do 10,j=1,knn-io1
l=ns U)
k=io1+j
st=y(l)-cm
if(st.eq.O.)st=10e-07
ct=robf(st)/st
cc=cc+ct*wf(k,knn)

10 bb=bb+(y(l)*ct*wf(k,knn»
ss=O.
if(cc.gt.O.)ss=bb/cc
if(abs(ss-cm).gt.tol.and.ii.le.maxit)then
cm=ss
ii=ii+1
goto 100
else
se(1)=ss
end if
else if(aio2.gt.0.)then
dd=-10.0e+13
ee=10.e+13
do 101,m=1,nobs
cc=O.
aa=O.
do 111,j=1,knn-io1
l=nsU)
k=J+io1

111 if(y(l).le.y(m»cc=cc+wf(k,knn)
if(y(m).gt.dd.and.sngl(aio2).ge.sngl(cc»dd=y(m)
if(y(m).lt.ee.and.sngl(cc).ge.sngl(aio2»ee=y(m)

101 continue
se(i)=(dd+ee)/2.
end if

12 continue
return
end

34

c
subroutine midd(nobs, nvar, X, iw,i,is,knn,scl,ws,ns, i03)
integer iw(nobs,nvar),ns(knn)
real scl(nvar),ws(knn),x(nobs,nvar)
ik1=1
ikZ=l
!1=iwCi+l, is)
lZ=iw(i-1,is)
k=iwCi, is)
q=x(k,is)
a=scl(is)
r1=dist1(q,x(ll,is),a,i03)
rZ=dist1(q,x(lZ,is),a,i03)
do 10,ik=1,knn
if(r1.lt.rZ)then
wS(ik)=distZ(x,nobs,nvar,k,ll,scl,i03)
ns (ik)=!1
ik1=ik1+1
if(i+ik1.gt.nobs)then
ikO=ik+1
call left(nobs,nvar,x,iw,i,is,knn,scl,ws,ns,ikO,ikZ,rZ,lZ,i03)
return
else
!1=iwCi+ik1, is)
r1=dist1(q,x(ll,is),a,i03)
endif
else
wS(ik)=distZ(x,nobs,nvar,k,lZ,scl,i03)
ns(ik)=lZ
ikZ=ikZ+1
if(ik2.eq.i)then
ikO=ik+1
call right(nobs,nvar,x,iw,i,is,knn,scl,ws,ns,ikO,ik1,r1,ll,i03)
return
else
l2=iwCi -ik2, is)
rZ=dist1(q,x(lZ,is),a,i03)
end if
endif

10 continue
call sortZ(ws,ns,knn)
do 11,ik=knn+1,nobs
if(r1.lt.r2)then
if(ws(knn).lt.r1)return
qq=distZ(x,nobs,nvar,k,ll,scl,i03)
if(qq.lt.ws(knn»then
ws(knn)=qq
ns (knn)=!1
call sort3(ws,ns,knn)
endif
ik1=ik1+1
if(i+ik1.gt.nobs)goto 400
!1=iw(i+ik1, is)
r1=dist1(q,x(ll,is),a,i03)
goto 11

400 call left(nobs,nvar,x,iw,i,is,knn,scl,ws,ns,ik,ik2,r2,l2,i03)
return
else
if(ws(knn).lt.r2)return
qq=dist2(x,nobs,nvar,k,l2,scl,i03)
if(qq.lt.ws(knn»then
ws(knn)=qq

35

ns(knn)=12
call sort3(ws,ns,knn)
endif
ik2=ik2+1
if(i.eq.ik2)goto 200
12=iw(i-ik2,is)
r2=dist1(q,x(12,is),a,i03)
goto 11

200 call right(nobs,nvar,x,iw,i,is,knn,scl,ws,ns,ik,ik1,r1,ll,io3)
return
end if

11 continue

c

return
end

subroutine left(nobs,nvar,x,iw,i,is,knn,scl,ws,ns,ikO,ik,r1,
* l,i03)

integer iw(nobs,nvar),ik,is,i,knn,ns(knn)
real scl(nvar),ws(knn),x(nobs,nvar)
k=iwCi, is)
a=scl(is)
q=x(k,is)
if(ikO.gt.knn)goto 11
if(ikO.eq.knn)goto 12

10 ws(ikO)=dist2(x,nobs,nvar,k,l,scl,i03)
ns(ikO)=l
ik=ik+1
l=iw(i-ik,is)
ikO=ikO+1
if(ikO.le.knn)goto 10
r1=dist1(q,x(l,is),a,i03)

12 call sort2(ws,ns,knn)
if(i.le.lk)return

11 if(ws(knn).lt.r1)return

c

•

10

qq=dist2(x,nobs,nvar,k,l,scl,l03)
if(qq.lt.ws(knn»then
ws(knn)=qq
ns(knn)=l
call sort3(ws,ns,knn)
end if
ik=ik+1
if(i.le.ik)return
l=iwCi-ik, is)
r1=dist1(q,x(l,is),a,i03)
if(ik.lt.i)goto 11
return
end

subroutine right (nobs, nvar, x, iw, i,is,knn,scl,ws,ns, ikO, ik,r1,
l,i03)
integer iw(nobs,nvar),ns(knn)
real scl(nvar),ws(knn),x(nobs,nvar)
a=sclCis)
k=iw(i,is)
q=x(k,is)
if(ikO.gt.knn)goto 11
if(ikO.eq.knn)goto 12
nsCikO)=l
ws(ikO)=dist2(x,nobs,nvar,k,l,scl,i03)
ik=ik+1
l=iw(ik+i,is)
ikO=ikO+1

36

if(ikO.le.knn)goto 10
r1=dist1(q,x(1,is),a,io3)

12 call sort2(ws,ns,knn)
if(i+ik.gt.nobs)return

11 if(ws(knn).lt.r1)return

c

c

qq=dist2(x,nobs,nvar,k,1,scl,io3)
if(qq.lt.ws(knn»then
ws(knn)=qq
ns(knn)=l
call sort3(ws,ns,knn)
end if
ik=ik+1
if(i+ik.gt.nobs)return
l=iw(i+ik,is)
r1=dist1(q,x(1,is),a,io3)
goto 11
end

subroutine sort1(n,m,arrin,indx)

c sort the columns of arrin and keep the sorting in an index
c

integer n,m,indx(n,m)
real arrin(n,m)
if(n.eq.1)return
do 1,k=1,m
do 1l,j=1,n

11 indx(j,k)=j
1=n/2+1
ir=n

10 continue
if(l. gt.1)then
1=1-1
indxt=indx(l,k)
q=arrin(indxt,k)
else
indxt=indx(ir, k)
q=arrin(indxt,k)
indx(ir,k)=indx(l,k)
ir=ir-1
if (ir. eq. 1) then
indx (1, k) =indxt
go to 1
endif
endif
i=l
j=l+l

20 if(j.le.ir)then
if{j.lt. ir)then
if(arrin(indx(J,k),k).lt.arrin(indx(j+1,k),k»j=j+1
endif
if(q.lt.arrin(indx(j,k),k»then
indx(i,k)=indx(j,k)
i=j
j=j+j
else
j=ir+1
end if
go to 20
endif
indx(i,k)=indxt
go to 10

37

1 continue

c

c

return
end

subroutine sort2(x,m,n)

c sort a vector x and keep the index
c

integer men)
real x(n)
if(n.eq.l)return
1=n/2+1
ir=n

10 continue
if O. gt. 1) then
1=1-1
ra=x(1)
ib=mO)
else
ra=x(ir)
ib=m(ir)
x(ir)=x(1)
m(ir)=m(1}
ir=ir-l
if (ir. eq. 1)then
x(1)=ra
m(1}=ib
return
end if
end if
i=l
j=l+l

20 if(j.le.ir)then

c

c

if (j. It. ir)then
if(x(j).It.xU+l»j=j+l
endif
if(ra.lt.x(j»then
x(i}=x(j)
m(i}=mU)
i=j
j=j+j
else
j=ir+l
end if
goto 20
end if
x(i}=ra
m(i}=ib
goto 10
end

subroutine sort3(x,m,n)

c sort by straight insertion vectors x and m, with respect to x
c where the last n-l numbers are already sorted and the first not.
c

integer men)
real x(n)
if(n.eq.l)return
a=x(n)
j=m(n)
do 1,i=n-l,1,-1

38

if(x(i).le.a)goto 10
m(i+l)=mCi)

1 xCi+1)=xCi)
i=O

10 xCi+U=a

c

c

mCi+l)=j
return
end

function dist1(x,y,a,io3)

c calculate the scaled distance between points x and y with scale a
c

c

c

dist1=Cx-y)/a
if(io3.eq.0)then
dist1=dist1*dist1
else
dist1=absCdist1)
end if
return
end

function dist2(x,nobs,nvar,k,l,scl,io3)

c calculate the full distance between the points k and 1
c

real xCnobs,*),sclC*)
if(io3.eq.0)then
c=O.
do l,i=l,nvar
cc=(x(k,i)-xCl,i»/sclCi)

1 c=(cc*cc)+c
dist2=c
else if(io3.lt.O)then
c=O.
do 2,i=l,nvar
cc=(x(k,i)-x(l,i»/scl(i)

2 c=absCcc)+c
dist2=c
else
c=O.
do 3,i=l,nvar
cc=CxCk,i)-xCl,i»/sclCi)
cc=abs(cc)
if(cc. ge. c)c=cc

3 dist2=c
endif
return
end

SUBROUTINE KREGSY

c
c The subroutines CHOL and SYMINV are the Hoaley C1968a and b) algorithms
c AS6 and AS7 of the Royal Statistical Society.
c Define the dimensions in CHOL and SYMINV as implicit (*).
c

subroutine keregsyCy,x,nobs,nvar,hb,io1,io2,b,se,fk,w,fker)
real xCnobs,*),yC*),seC*),fkC*),b(*),wC*)
r1=floatCnobs)
r2=r1-1.
ifCio1.eq.0)then

39

do 1.j=1.nvar
c=O.
do 2.i=1.nobs

2 c=c+x(i.j)
1 wU)=c/r1

if(io2.eq.0)then
do 3.j=1.nvar
c=O.
do 4. i=1. nobs

4 c=c+x(i.j)*x(i.j)
c=c/r2

3 b(j)=c-(r1*w(j)*w(j)/r2)
else
k=O
do 5.j=1.nvar
do 5.1=1.j
c=O.
k=k+1
do 6.i=1.nobs

6 c=c+x(i.j)*x(i,l)
c=c/r2

5 b(k)=c-(r1*w(j)*w(1)/r2)
endif
end if
if(io2.eq.0)then
do 7.i=1,nvar

7 b(i)=sqrt(b(i))*hb
r2=1.
do 8.i=1.nvar

8 r2=r2*b(i)
r1=r1*r2
else
call syminv(b.nvar.b.w.nul.ifa)
if(ifa.eq.2)pause • singular weighting matrix'
call chol(b.nvar.fk.nul.ifa.det)
r1=r1* (hb**nvar)/sqrt (det)
mm=nvar*(nvar+1)/2
1=0
do 20.i=1,nvar
do 20.j=i-1.nvar-1
1=1+1
k=i + U* (j+1J/2)

20 b (l) =fk (k)
do 9.i=1.mm

9 b(i)=b(i)/hb
endif
do 11. i=1.nobs
se (1)=0.

11 fk(1)=0.
if(io2.eq.0)then
do 12.i=1.nobs-1
do 12.j=i+1,nobs
do 13.k=1.nvar

13 w(k)=(x(i.k)-x(j.k))/b(k)
r2=fker(w,nvar)
d1=r2*y(j)
d2=r2*y(i)
fk(i)=fk(i)+r2
se(i)=se(i)+d1
fk U)=fkU) +r2
se(j)=se(j)+d2

12 continue
40

else
do 14,i=l,nobs-1
do 14,j=i,nobs
m=O
do 15,l=l,nvar
rZ=O.
do 16,k=l,nvar
m=m+1

16 rZ=rZ+(x(i,k)-x(j,k))*b(m)
15 w(U=rZ

rZ=fker(w,nvar)
d1=rZ*yU)
dZ=rZ*y(i)
fk(i)=fk(i)+rZ
se(i)=se(i)+d1
fkU)=fkU)+rZ

14 se(j)=se(j)+dZ
endif
do 17,i=l,nvar

17 w(i)=0.
rk=fker(w,nvar)

c
c if the own observation is not considered set rk=O.
c

do 18,i=l,nobs
se(i)=se(i)+y(i)*rk
fk (i)=fk (i) +rk
se (i)=se (i)/r1

18 fk(i)=fk(i)/r1
return
end

SUBROUTINE KEREGG

subroutine keregg(y,x,nobs,nvar,hb,io1,ioZ,aioZ,b,se,fk,w,
fker,robf,tol,maxit)
real x(nobs,*),y(*),se(*),fk(nobs),b(*),w(*)
r1=float(nobs)
rZ=r1-1.
if(io1.eq.0)then
do l,j=l,nvar
c=O.
do Z,i=l,nobs

Z c=c+x(i,j)
1 w(j)=c/r1

if(ioZ.eq.O)then
do 3,j=l,nvar
c=O.
do 4, i=l, nobs

4 c=c+x(i,j)*x(i,j)
c=c/rZ

3 b(j)=c-(r1*w(j)*w(j)/rZ)
else
k=O
do 5,j=l,nvar
do5,l=l,j
c=O.
k=k+1
do 6,i=l,nobs

6 c=c+x(i,j)*x(i,l)
c=c/rZ

5 b(k)=c-(r1*w(j)*w(l)/rZ)

41

endif
end if
if(io2.eq.0)then
do 7,i=1,nvar

7 b(i)=sqrt(b(i»*hb
r2=1.
do 8,i=1,nvar

8 r2=r2*b(i)
r1=r1*r2
else
call syminv(b,nvar,b,w,nul,ifa)
if(ifa.eq.2)pause 'singular weighting matrix'
call chol(b,nvar,se,nul,lfa,det)
r1=r1*(hb**nvar)/sqrt(det)
mm=nvar*(nvar+1)/2
1=0
do 20,i=1,nvar
do 20,j=i-1,nvar-1
1=1+1
k=i+(j*(j+1)/2)

20 b(l)=se(k)
do 9,i=1,mm

9 b(i)=b(i)/hb
endif
do 17, i=l, nobs
if(lo2.eq.0)then
do 12,j=1,nobs
do 13,k=1,nvar

13 w(k)=(x(i,k)-x(j,k»/b(k)
12 fk(j)=fker(w,nvar)

else
do 14,j=1,nobs
m=O
do 15,1=1,nvar
r2=0.
do 16,k=1,nvar
m=m+1

16 r2=r2+(x(i,k)-x(j,k»*b(m)
15 w(U=r2
14 fk(j)=fker(w,nvar)

endif
cc=O.
do 11, j=l, nobs

11 cc=cc+fk(j)
do 21,j=1,nobs

21 fk(j)=fk(j)/cc
cc=O.
do 22,j=1,nobs

22 cc=cc+fk(j)*y(j)
se(i)=cc
if(aio2.1t.0.) then
cm=se(i)
ii=O

100 cc=O.
bb=O.
do 10,j=1,nobs
st=yU)-cm
if(st.eq.O.)st=10e-07
ct=robf(st)/st
cc=cc+ct*fk(j)

10 bb=bb+(y(j)*ct*fk(j»
ss=O.

42

if(cc.gt.O.)ss=bb/cc
if(abs(ss-cm).gt.tol.and.ii.le.maxit)then
cm=ss
ii=ii+1
goto 100
else
se (i)=ss
end if
else if(aio2.gt.0.) then
dd=-10.0e+13
ee=10.e+13
do 101,m=1,nobs
cc=O.
do 111,j=1,nobs

111 if(y(j).le.y(m»cc=cc+fk(j)
if(y(m).gt.dd.and.sngl(aio2).ge.sngl(cc»dd=y(m)
if(y(m).lt.ee.and.sngl(cc).ge.sngl(aio2»ee=y(m)

101 continue
se(i)=(dd+ee)/2.
end if

17 continue

c

return
end

SUBROUTINE KERNN

c This subroutine calls the same subroutines and functions as KNNRE
c

3

4
2

*
subroutine kernn(x,y,nobs,nvar,knn,aio2,io3,se,fk,scl,
iW,irk,ws,ns,w,fker,robf,maxit,tol)
integer iw(nobs,*),irk(nobs,*),ns(*)
real x(nobs,*),scl(*),ws(*),y(*),se(*),fk(*),w(*)
data pi/.56418958351
obs=real(nobs)
var=real(nvar)
obs1=obs-1.
do 2,j=1,nvar
q=O.
qq=O.
do 3, i=l, nobs
q=x(i, j)+q
q=q/obs
do 4,i=1,nobs
c=(x(i,j)-q)
qq=(c*c)+qq
scl(j)=sqrt(qq/obs1)
ok=fl oa t (knn)
var1=var/2.
var2=1./var
var3=(2.*obs)**(1.-var2)
cmax=pi*var3*((ok*var*exp(gammln(var1»)**var2)
icmax=nint(cmax/2.)
if(icmax.ge.nobs/2)icmax=(nobs/2)-2
call sort1(nobs,nvar,x,iw)
do 40,i=1,nobs
do 40,j=1,nvar

40 irk(iw(i,j),j)=i
do 12,i=1,nobs
q=O.
do 20,j=1,nvar
l=irk(i,j)
if(l.le.icmax)then

43

k=iw(l+icmax, j)
c=abs(x(k,j)-x(iw(l,j),j»
else if(l.ge.nobs-icmax)then
k=iw(l-icmax, j)
c=abs(x(k,j)-x(iw(nobs-icmax,j),j»
else
k=iw(l-icmax, j)
n=iw(l+icmax, j)
c=abs(x(k,j)-x(n,j»
end if
if(c. gt. q)then
q=c
is=j
endif

20 continue
c is=l

l=irkCi, is)
if(l.lt.nobs)then
if(1. gt. 1)then
call midd(nobs,nvar,x,iw,l,is,knn,scl,ws,ns,io3)
else
l=iw(2,is)
ik=l
ikO=l
iO=l
zer=O.OdO
call right(nobs,nvar,x,iw, iO, is,knn,scl,ws,ns, ik,ikO,zer, l, io3)
end if
else
k=iw(nobs-1,is)
ik=l
ikO=l
zer=O.OdO
call left(nobs,nvar,x,iw,nobs,is,knn,scl,ws,ns,ik,ikO,zer,k,io3)
end if
do 17,j=1,nobs
do 13,k=1,nvar

13 w(k)=(x(i,k)-x(j,k»/ws(knn)
17 fk(j)=fker(w,nvar)

cc=O.
do 11, j=l, nobs

11 cc=cc+fk(j)
do 21, j=l, nobs

21 fk(j)=fk(j)/cc
cc=O.
do 22,j=1,nobs

22 cc=cc+fk(j)*y(j)
se(i)=cc
if(aio2.lt.0.) then
cm=se(i)
ii=O

100 cc=O.
bb=O.
do 101,j=1,nobs
st=y(j)-cm
if(st.eq.O.)st=10e-07
ct=robf(st)/st
cc=cc+ct*fk(j)

101 bb=bb+(y(j)*ct*fk(j»
ss=O.
if(cc.gt.O.)ss=bb/cc
if(abs(ss-cm).gt.tol.and. ii. le. maxit) then

44

cm=ss
ii=ii+1
goto 100
else
se(i)=ss
end if
else if(ai02.gt.0.) then
dd=-10.0e+13
ee=10.e+13
do 102,m=l,nobs
cc=O.
do 111, j=l, nobs

111 if(y(j).le.y(m»cc=cc+fk(j)
if(y(m).gt.dd.and.sngl(ai02).ge.sngl(cc»dd=y(m)

102 if(y(m).lt.ee.and.sngl(cc).ge.sngl(ai02»ee=y(m)
se(i)=(dd+ee)/2.
endif

12 continue

c

return
end

SUBROUTINE RESA

c The funcion RAN3 is the portable random generator in Numerical Recipes
c pp. 199. Any other generator for Uniforms (0,1) can be used.
c The function GAMMLN is in Numerical Recipes pp. 156. Any other function
c computing the log of the gamma function can be used.
c

subroutine resa(nobs,nvar,mx,theta,npar,se,io,tfun)
real theta(*),se(*)
ii=-int(secnds(O. »-1
i[(io. It. O)then
do 20,i=l,nobs
n=nobs
k=mx
it=ii+i
iy=O
ix=O
c=O.

200 if(k.lt.n)then
u=ran3(it)
a=float (k)
x=-log(1. -u)
x=tanh(x/(2.*a»
x=x/(1. +x)
b=float (n+1)
a=b-a
x=x*a
ix=int(x)+l
t=-gammln(b)
x=float (ix)
b=b-x
t=t+gammln(b)
t=t+gammln(a)
x=a-x
t=exp(t-gammln(x»
goto 25

100 t=t*float(n-k-ix)/float(n-ix)
ix=ix+1

25 if(l-u.lt.t)goto 100
else

45

ix=1
endif
k=k-1
n=n-ix
iy=ix+iy
c=c+tfun(nobs,nvar,theta,npar,i,iy)
if(k.gt.O)goto 200

20 se(i)=c/float(mx)
else if(io.gt.O)then
ii=int(secnds(O.))+1
on=float(nobs)
do 21,i=1,nobs
it=ii+i
c=O.
do 500,1=1,mx
u=ran3(it)
iy=int(on*u)+1

500 c=c+tfun(nobs,nvar,theta,npar,i,iy)
21 se(i)=c/float(mx)

else
do 22,i=1,nobs
c=O.
do 23,iy=1,mx

23 c=c+tfun(nobs,nvar,theta,npar,i,iy)
22 se(i)=c/float(mx)

endif
return
end

46

