
GEN4MAST: A Tool for the Evaluation of Real-
Time Techniques Using a Supercomputer

Juan M. Rivas, J. Javier Gutiérrez and Michael González Harbour
Software Engineering and Real-Time Group

University of Cantabria
Santander, Spain

{rivasjm, gutierjj, mgh}@unican.es

Abstract—The constant development of new approaches in
real-time systems makes it necessary to create tools or methods to
perform their evaluations in an efficient way. It is not uncommon
for these evaluations to be constrained by the processing power
of current personal computers. Thus, it is still a challenging issue
to know whether a specific technique could perform better than
another one, or the improvement remains invariable in all
circumstances. In this paper we present the GEN4MAST tool,
which can take advantage of the performance of a
supercomputer to execute longer evaluations that wouldn’t be
possible in a common computer. GEN4MAST is built around the
widely used MAST tool, automating the whole process of
distributed systems generation, execution of the requested
analysis or optimization techniques, and the processing of the
results. GEN4MAST integrates several generation methods to
create realistic workloads. We show that the different methods
can have a great impact on the results of distributed systems.

Keywords—Techniques validation; Real-time systems;
Distributed systems; Supercomputer exploitation.

I. INTRODUCTION
The real-time systems field is an active area of research

where new techniques or approaches are constantly being
proposed. These contributions vary widely in their purpose.
They could be from new scheduling policies that try to
improve new metrics like power consumption, to less
pessimistic schedulability analysis techniques, or more
advanced scheduling parameters optimization techniques that
improve the utilization of the resources.

With any new approach there is the need to make a
performance study where the new technique is compared head-
to-head with previous approaches. These studies are usually
carried out by testing these techniques over a synthetic pool of
examples, which provides a series of advantages over testing in
a real system implementation:

• It can cover a wider spectrum of systems or
circumstances cheaply.

• Sometimes the real implementation is not yet available,
or it is too expensive. Using a synthetic pool of
examples enables a faster development of techniques,

new modifications can be quickly tested, and no waiting
time for real implementations is needed.

• In a real implementation it is not straightforward to
induce the worst-case situation while this might be
easier in a test environment.

Several tools for the creation of synthetic studies of real-
time systems have been proposed. FORTAS [1] can massively
perform the generation and analysis of multiprocessor systems
with independent tasks. It also handles the processing of the
results generating graphics. STORM [2] is a similar tool that
enables the user to define new scheduling policies, but is not
able to generate systems massively. RTMultiSim [3] is a tool
that can generate massively distributed systems, but supports a
reduced number of generation methods. Another tool is
YARTISS [4], which is a simulator with a modular architecture
for the creation of multiprocessors systems.

Supporting some of the best features of the previous tools,
and integrating new ones, in this paper we present
GEN4MAST (GENerator for MAST), an open source tool
built in Python that automates the whole process of synthetic
distributed systems generation, the execution of the selected
techniques, and the processing of the results. It is built around
MAST [5][6], which is an extensive and tested tool that
integrates several techniques to analyze and optimize
distributed systems.

The main feature that sets GEN4MAST apart from the
previous tools is that it can execute the analyses in a
supercomputer. In previous tests it was observed that it could
take up to several hours to analyze certain systems in a normal
PC. Considering that an evaluation of techniques can typically
be composed of several thousands of executions of the analysis
tool, being able to distribute these executions in a
supercomputer opens the door for the execution of extensive
studies in reasonable amounts of time. Although a
supercomputer is a very expensive computing resource, during
the last years its availability has been increased in many
research institutions due to the added value they provide.

Based in MAST, GEN4MAST also inherits all of its
benefits, the most relevant to GEN4MAST being:

This work has been funded in part by the Spanish Government and FEDER
funds under grant number TIN2011-28567-C03-02 (HI-PARTES).

REACTION 2014 41

• MAST provides a rich system model to describe
distributed systems, that is based in the OMG MARTE
[7] standard.

• MAST is open source, and provides a methodology to
integrate new analysis and optimization techniques [8].

The paper is organized as follows. In Section II we provide
an overview of the MAST system model which is used by
GEN4MAST. In Section III a description of the GEN4MAST
architecture is given. Sections IV, V and VI address the three
different phases in which GEN4MAST is divided: the
generation, execution, and results processing phases,
respectively. Section VII presents an evaluation of the
generation methods included in GEN4MAST. And finally, in
Section VIII we present the conclusions and future work.

II. THE MAST SYSTEM MODEL
The MAST system model assumes a real-time distributed

system with multiple processing resources (CPUs) and one or
more communication networks. This system is composed of
distributed end-to-end flows (following the terminology of the
OMG’s MARTE standard) with periodic or sporadic
activations. Sporadic activations are treated as periodic, using a
period equal to the minimum interarrival time.

Each end-to-end flow Γi is released by a periodic sequence
of external events with period Ti, and contains a set of Ni steps.
A step represents the execution of a task in a processor, or a
message transmitted in a network. Each periodic release of an
end-to-end flow causes the execution of one instance of the set
of steps, each step being released when the preceding one in its
end-to-end flow finishes its execution. The MAST analysis
tools consider messages as tasks executing in a normal
processor, adding blocking times due to the non-preemptability
of the transmitted packets. For simplicity, and without losing
generality, the current version of GEN4MAST only considers
processors. The full support for communication networks will
be added in future versions, including networks such as AFDX
[9], which require special purpose analyses.

We assume that all event sequences that arrive at the
system and their worst-case rates are known in advance, and
we also assume that steps are statically assigned to processors
(migration is not allowed). The relative phasing of the
activations of different end-to-end flows is assumed to be
arbitrary.

Fig. 1 shows an example of one end-to-end flow with three
steps, each executing in a different processing resource PRx.
The arrival of the external event that releases the i-th end-to-
end flow is represented by a thick horizontal arrow labeled ei,
and has a period of Ti. The thin horizontal arrows represent the
release of the following steps in the end-to-end flow; a step
cannot be executed before the preceding step has been
completed. We assume that events represented in the figure are
instantaneous and any activity in the system is modeled as a
step. The j-th step of end-to-end flow Γi is identified as τij; it
has a worst-case execution time of Cij, and a best-case
execution time of Cbij. The utilization of the system is defined
as the average of the utilizations of each processing resource in
the system.

The timing requirements that we consider are end-to-end
deadlines, Di, that start at the end-to-end flow instance’s
period, and must be met by the final step in the flow. We allow
deadlines to be larger than the periods. As a result of the
schedulability analysis, each step τij also has a worst-case
response time (or an upper bound of it) called Rij. The worst
case response time estimation of the last step can be compared
with the end-to-end deadline in order to determine the
schedulability of the system.

Two different types of scheduling policies are supported,
FP (Fixed Priorities) and EDF (Earliest Deadline First). Each
step is scheduled by its scheduling parameter, which can be a
priority for FP scheduling, or a scheduling deadline for EDF
scheduling. A scheduling deadline is a value that is used in
EDF to make scheduling decisions. It does not necessarily need
to coincide with the timing requirement.

Depending on the clock synchronization available in the
distributed EDF system, MAST distinguishes two different
types of scheduling deadlines, global of local scheduling
deadlines [10]:

• Global Scheduling Deadline SDij, which is referenced
to the arrival of the event that releases the end-to-end
flow, possibly in a different processing resource. This
requires clock synchronization among all the
processing resources, unless a special protocol such as
the Distributed Deadline Synchronization Protocol
(DDSP) [11] is used. We call this type of scheduling
Global-Clock EDF, or GC-EDF.

• Local Scheduling Deadline Sdij, which is referenced to
the release time of its associated step in its own
processing resource, thus allowing the use of the local
clock with no synchronization required. We call this
kind of scheduling Local-Clock EDF, or LC-EDF.

The current version of GEN4MAST supports the
generation of a subset of what the complete MAST model
supports. This subset is rich enough to obtain valid results. It is
planned that future versions of GEN4MAST will widen this
subset, adding support for the generation of systems with
features such as shared resources, timing requirements in the
intermediate steps of an end-to-end flow, and forking events
inside the end-to-end flows and networks.

Ji3

Di

Ri3

ei

τi1

τi2 τi3

PRa

Sdi1

SDi1

SDi2

PRb

Sdi2

SDi3

PRc

Sdi3

Fig 1. The model of end-to-end flow Γi

REACTION 2014 42

III. GEN4MAST ARCHITECTURE
GEN4MAST is built as a wrapper around the MAST tool.

MAST is designed to work on a “one system at a time” basis: it
accepts an input file that contains a description of a real-time
situation using the MAST system model, then the user selects
which tools to apply over the system and which results should
be calculated, and MAST returns a file with the requested
results. GEN4MAST automates this whole process,
coordinating the execution of many (potentially millions) of
executions of MAST. Its operation is divided into three phases,
which are also seen in Fig. 2:

• Generation phase: In this phase all the files required to
execute MAST are created, including the system
description and execution script files. The
characteristics of these files are specified in the
GEN4MAST configuration file.

• Execution phase: During this phase all the MAST
executions are performed, either in a local PC, or in a
distributed supercomputing cluster.

• Results processing phase. This phase collects all the
results obtained, and stores them in an indexed database
of easy access.

The three phases are described in more detail in the next
sections.

IV. THE GENERATION PHASE
During the generation phase all the files necessary to

perform the evaluation are created, that is, the system
description files, and the MAST execution scripts. The
generator module of GEN4MAST performs this process. The
parameters that define the characteristics of the evaluation are
provided to GEN4MAST via an external configuration file.
These parameters set the characteristics of the pool of
examples to be generated, and the techniques to apply over

them. A configuration language has been defined naming the
parameters with capital letters. If several values are given to
each parameter, GEN4MAST will generate systems and
execution scripts with every combination of the given values.

A. System Generation
The pool of systems is generated by following a set of

generation parameters established in the input configuration
file. These parameters set the basic characteristics that define a
system:

• Basic architecture: number of end-to-end flows, number
of steps in each flow (length), and step localization.

• Timing characteristics: periods, end-to-end deadlines
and system workload.

1) Basic architecture

The number of flows is set with a positive number
(N_FLOWS). There are three different parameters that define
their lengths. N_STEPS is a positive number that sets the
maximum number of steps any flow can have.
FIXED_LENGTH is a boolean that, if True, establishes that
every task has N_STEPS steps. If False, the lengths are
selected randomly in the range [2,N_STEPS] for every flow.
MONO_FLOWS establishes the percentage of flows that have
one step only, modelling independent tasks.

The localization of the steps is the process that statically
assigns a step to a processing resource. In GEN4MAST this
process is controlled with two parameters. The first is
N_PROCESSORS, which is a positive number that defines the
number of processing resources that are available for assigning
steps to. The second parameter is REPETITION. If it is set to
“YES”, the steps are located in a random processor. If set to
“NO”, the processing resource cannot be repeated for the steps
of an end-to-end flow. This latter behavior can only be
achieved if the length of the flow is not larger than the number
of processing resources available in the system. If this

Configuration
File

MAST Analysis and Optimization Tool
Results Processor Generator

Results
Database

Execution
Scripts

System
Models

Results
Files

Task Dispatcher

Local PC

Supercomputer

1- Generation Phase

2- Execution Phase

3- Results Processing Phase

Fig. 2 GEN4MAST phases diagram

REACTION 2014 43

requirement is not met, GEN4MAST reverts to a random
allocation of steps to processors.

Finally, GEN4MAST supports two different types of
schedulers, FP and EDF, set with parameter
SCHEDULING_POLICY. Currently only homogeneous
systems (in which every processing resource uses the same
scheduling policy) are supported. Support for heterogeneous
systems [8] where different policies could coexist will be
added in the future.

2) Timing characteristics

The end-to-end flows generated with GEN4MAST are
periodic, with periods for each flow randomly selected within a
specified range. The range is set as [PERIOD_BASE,
PERIOD_BASE*PERIOD_RATIO]. The probability
distribution used to select the period within the range is set
with the PERIOD_DISTRIBUTION parameter. The
distribution can be uniform (“UNIFORM”), or logarithmic-
uniform (“LOG-UNIFORM”) [12]. A logarithmic-uniform
represents more closely the behavior of real systems.

The end-to-end deadline of each flow is always calculated
relative to its period. Two methods are provided to specify
these deadlines, set with parameter DEADLINES. The first
method establishes a segment of values between T and N*T,
where T is the period of the flow, and N its number of steps.
Several points are defined in this segment, whose names are:
“T” and “NT” (first and last point of the segment); “T1” and
“T2” (first and second third of the segment); “Q1”, “Q2” and
“Q3” (first, second and third quarter of the segment); and
“RANDOM” (random value in the segment). The second
method sets a constant positive number “K”. The end-to-end
deadlines are calculated as K*T.

With all the previous parameters already set in a given
system, only the execution times of the steps are needed to
complete the description of a system. These execution times of
the steps represent the workload of the system. In
GEN4MAST, a system utilization is configured, and from this
utilization and the periods, the worst case execution times of
the steps are calculated. Two methods are provided to generate
the workload, set with the parameter WORKLOAD. The first
one is SCALE-WCET, which generates the worst-case
execution times so that every step in each processing resource
contributes with the same step utilization (Cij/Ti). The second
method is UUNIFAST [13], which distributes the step
utilization uniformly, generating unbiased workloads.
Although it was designed for use in single processors, since we
apply UUnifast individually in each of the processors of our
generated systems, it is compatible with our distributed system
model.

Additionally, the best-case execution time of the steps can
be set as a percentage of the worst-case values, using the
BEST_CASE parameter.

In real-time systems it is typical to study the behavior of a
technique over a range of utilizations, observing for example
the maximum utilization for which the system meets all of its
deadlines. This maximum utilization is usually called the
breakdown utilization [14], or just the maximum schedulable
utilization. For this reason, in GEN4MAST a series of

utilizations is generated for each system configuration. Each
series is defined by its initial utilization, the last utilization, and
the step, so that the series is composed of utilizations in the
range [initial, initial+step,…,last]. The parameters that set these
characteristics are UTILIZATION_START for the initial
utilization, UTILIZATION_STEP for the step, and
UTILIZATION_STOP for the last utilization.

The system utilization is the average utilization among the
processors in the system. If the parameter
UNIFORM_UTILIZATION is set to True, every processor has
the same utilization in every step of the range. If set to False,
the processors can have different utilizations, averaging the
same system utilization.

The previous parameters set the rules with which the actual
systems characteristics are calculated. Additionally,
GEN4MAST supports the direct specification of some of these
system characteristics, such as the actual values of the flow
lengths, period and deadlines, and the exact localization of
every step.

Many of the attributes of the systems generated with
GEN4MAST are calculated using a probability distribution. To
be able to obtain a statistically relevant pool of examples, the
POPULATION parameter sets the number of series that are
going to be generated with the same set of characteristics.

B. Execution scripts generation
Once the pool of description files has been generated, the

next step is to create the MAST execution scripts. Each of
these scripts defines one execution of the MAST Analysis tool,
that is, the application of some schedulability technique over a
system and, optionally, the calculation of scheduling
parameters or slacks [6]. The scope of the execution scripts is
also configured in the GEN4MAST input configuration file
with a series of parameters:

• MAST_PATH: Sets the MAST analysis executable
path. Several paths can be given to compare the results
of different versions of MAST, for example to test a
custom version of MAST.

• ANALYSIS_TOOL: Sets the schedulability analysis
techniques to perform over the pool of examples. The
accepted values for this parameter are HOLISTIC,
OFFSET, SLANTED, OFFSET_OPT and
BRUTE_FORCE. This values are mapped into the
techniques available in MAST [6], which are,
respectively: holistic analysis, offset based, offset based
slanted, offset based with precedence optimizations, and
offset based exact. If a system uses a scheduling policy
not supported by the analysis technique, GEN4MAST
reverts to holistic, which is available for FP, GC-EDF
and LC-EDF

• STOP_FACTOR: Positive number that sets the
schedulability analysis stop factor. The analysis stops if
any response time is larger than STOP_FACTOR*D,
where D is the deadline of the end-to-end flow. This
factor is used to avoid large executions or convergence
problems of the analysis tool in non-schedulable
systems.

REACTION 2014 44

• DEADLINES_TYPE: For distributed EDF systems
only. It specifies whether the scheduling deadlines
apply to GC-EDF or to LC-EDF. The valid values for
this parameter are “GLOBAL” and “LOCAL”
respectively.

• ASSIGNMENT_TOOL: Specifies the scheduling
parameter assignment techniques to apply over the pool
of generated examples. The accepted values are PD,
NPD and HOSPA. These values are mapped into the
assignment techniques with the same names available in
MAST [6].

• SLACK: Boolean. If set to “True”, the overall system
slack if calculated.

• NO_JITTER: Boolean. If set to “True”, the analysis
tool will emulate the usage of a jitter avoidance
technique, such as sporadic servers, or constant offsets.

One of the scheduling parameters assignment techniques
available in MAST is HOSPA [8], which is a heuristic
algorithm that assigns and optimizes fixed priorities and
scheduling deadlines in distributed heterogeneous systems. Its
behavior can be modified with a set of user configurable
parameters. GEN4MAST can configure HOSPA with these
parameters:

• K: Establishes the pairs of the k parameters to use with
HOSPA.

• ITERATIONS_PER_PAIR: Sets the number of
iterations that HOSPA will perform for each pair of k
values.

• OPTIMIZATION_ITERATIONS: Sets the number of
iterations over an already schedulable assignment that
HOSPA will perform, to further optimize the solution.

• INITIALIZATION_TYPE: Sets the technique used for
the first assignment in HOSPA.

V. THE EXECUTION PHASE
The generation phase creates both the pool of examples

under analysis, and the MAST execution scripts that define
which techniques to apply over them. During the execution
phase, the GEN4MAST Task Dispatcher module is responsible
for the execution of these scripts, so the relevant results can be
obtained. The GEN4MAST Task Dispatcher supports two
different methods of execution: local, and distributed
execution.

Local execution is a straightforward execution mode in
GEN4MAST, in which the scripts are executed sequentially in
the host PC. This mode is only viable for small studies with
short total execution times.

With the distributed method of execution, GEN4MAST can
take advantage of a cluster of supercomputing to minimize the
total execution times of the study, and thus gaining the ability
to perform larger studies in reasonable amounts of time. In a
distributed environment, the Task Dispatcher module submits
jobs (MAST executions scripts) to the cluster job manager,
which are then executed in parallel in the available computing

nodes. Every MAST execution is completely independent from
the others, so no communication between the jobs is needed,
simplifying the implementation and execution of GEN4MAST.

The GEN4MAST supercomputer support is built using the
TORQUE [15] resource manager, which is a widely used job
management system. With this system, new jobs are sent to a
ready job queue. The resource manager then picks which jobs
in the queue are executed taking into consideration factors such
as processor availability, job and user priority, or system
congestion.

A supercomputing system is typically used by several users
at the same time. The Task Dispatcher module has to take
measures to avoid overloading the cluster job queue, and thus
degrading the performance of the system for the rest of the
users. These measures are:

• The jobs that are submitted to the cluster execution
queue are formed by one or more of the MAST
execution scripts. In this way the total number of jobs
submitted is reduced. The job size can be modified with
the PACK_SIZE parameter, which sets the number of
scripts packed in a cluster job.

• A maximum number of jobs executing or waiting at any
time in the cluster can be set. If this limit is reached, a
pre-established amount of time is awaited before trying
to send a new job, so previous jobs can finish. The total
number of jobs, and the waiting time, can be configured
with parameters BATCH_SIZE and BATCH_SLEEP,
respectively.

• A timeout value can be set with parameter TIMEOUT
to stop the execution of jobs with convergence
problems, thus freeing a computing node in that case.

• GEN4MAST cluster jobs are assigned by default the
minimum priority. A different priority can be set with
parameter GROUP. The accepted values of this
parameter are cluster dependent.

VI. THE RESULTS PROCESSING PHASE
Independently of the method used (Local or Distributed),

the result of executing every script of the study is a set of files
with the results, one file for every MAST execution. The
results stored are the worst-case response times of every end-
to-end flow, the end-to-end deadlines used to check the
schedulability, the execution times, and if calculated, the
system slack. These results are written in plain text, and can be
easily read with a text editor.

To facilitate the batch processing and access to the results,
especially in large evaluations, GEN4MAST provides a
module that compiles all the results into an easily accessible
database. This database is in PyTables format [16], which is a
Python package for managing large datasets efficiently.
PyTables is well documented, and its API can be used to
access the results stored in the database. GEN4MAST provides
a Python library with functions to easily filter the information
contained in the database, and present the results with tables
and charts.

REACTION 2014 45

REACTION 2014 46

methods. We showed that the different generation methods
have a decisive influence in the results of distributed systems.
The generation method must be chosen to mimic the
characteristics of the actual systems being modeled.

GEN4MAST is still under development, and it is planned
that it will be evolved alongside MAST. The source code and
manual of GEN4MAST will be added to the MAST home page
[6]. GEN4MAST has already been successfully used in several
research works including a comparison among scheduling
algorithms [17], a test of new deadline assignment algorithms
for EDF [10], or a test of a new scheduling analysis technique
for LC-EDF [18].

Finally, one of the early observations when applying
GEN4MAST to large experiments requiring for example more
than one year of CPU usage (a little bit more than one day of
execution time in the supercomputer), is that a large amount of
data is generated (tens of Gigabytes in the situation described
above). Currently, plain results are processed and represented,
but the application of Big Data techniques will be explored for
a more sophisticated processing.

REFERENCES
[1] P. Courbin, and L. George, “FORTAS: Framework for real-time

analysis and simulation,” Proceedings of the 2nd International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), Porto (Portugal), pp. 21-26, 2011.

[2] R. Urunuela, A. Déplanche, and Y. Trinquet, “STORM: a simulation
tool for real-time multiprocessor scheduling evaluation,” Proc. of the
15th IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), Bilbao (Spain), 2010.

[3] A. Hangan, and G. Sebestyen, “RTMultiSim: A Versatile Simulator for
Multiprocessor Real-Time Systems,” Proceedings of the 3rd
International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), Pisa (Italy), 2012.

[4] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
“YARTISS: A tool to visualize, test, compare and evaluate real-time
scheduling algorithms,” Proceedings of the 3rd International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), Pisa (Italy), 2012.

[5] M. González Harbour, J.J. Gutiérrez, J.C. Palencia, and J.M. Drake,
“MAST: Modeling and Analysis Suite for Real Time Applications,”

Proc. of the 13th Euromicro Conference on Real-Time Systems
(ECRTS), Delft (The Netherlands), pp. 125-134, 2001.

[6] MAST home page, http://mast.unican.es/
[7] Object Management Group, “UML Profile for MARTE: Modeling  and

Analysis of Real-Time Embedded systems,” 2009 OMG  Document,
v1.0 formal/2009-11-02.

[8] J.M. Rivas, J.J. Gutiérrez, J.C. Palencia, and M. González Harbour,
“Schedulability Analysis and Optimization of Heterogeneous EDF and
FP Distributed Real-Time Systems,” Proc. of the 23rd Euromicro
Conference on Real-Time Systems (ECRTS), Porto (Portugal), pp. 195-
204, 2011.

[9] Airlines Electronic Engineering Committee, Aeronautical Radio INC.,
“ARINC Specification 664P7: Aircraft Data Network, Part 7 - Avionics
Full Duplex Switched Ethernet (AFDX) Network,” June 27, 2005.

[10] J.M. Rivas, J.J. Gutiérrez, J.C. Palencia, and M. González Harbour,
“Deadline Assignment in EDF Schedulers for Real-Time Distributed
Systems," In press, IEEE Transactions on Parallel and Distributed
Systems, DOI: 10.1109/TPDS.2014.2359449.

[11] N. Serreli, G. Lipari, and E. Bini, “The Distributed Deadline
synchronization Protocol for Real-Time Systems Scheduled by EDF,”
Proc. of the 15th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), Bilbao (Spain), 2010.

[12] P. Emberson, R. Stafford, and R.I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” Proceedings of the 1st International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), pp. 6-11, 2010.

[13] E. Bini, and G.C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems 30.1-2, pp. 129-154, 2005.

[14] J.P. Lehoczky, L. Sha, and Y. Ding, “The rate-monotonic scheduling
algorithm: Exact characterization and average case behavior,”
Proceedings of the 10th IEEE Real-Time Systems Symposium (RTSS),
Santa Monica (CA, USA), pp. 166-171, 1989.

[15] Torque Resource Manager home page:
http://www.adaptivecomputing.com/products/open-source/torque/

[16] PyTables home page: http://www.pytables.org
[17] J.M. Rivas, J.J. Gutiérrez, and M. González Harbour, “Fixed Priorities

or EDF for Distributed Real-Time Systems?,” Proc. of the WiP Session
of the 33rd IEEE Real-Time Systems Symposium, San Juan (Puerto
Rico), 2012.

[18] U. Diaz De Cerio, M. González Harbour, J. C. Palencia, and J.P. Uribe,
“Adding Precedence Relations to the Response-Time Analysis of EDF
Distributed Real-Time Systems,” Proc. of the 22nd International
Conference on Real-Time Networks and Systems (RTNS), Versailles
(France), pp. 129-138, 2014.

REACTION 2014 47

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.pytables.org/

