Universidad Carlos III de Madrid

HIGH-PERFORMANCE AND FAULT-TOLERANT TECHNIQUES FOR
MASSIVE DATA DISTRIBUTION IN ONLINE COMMUNITIES

DANIEL HIGUERO ALONSO-MARDONES

Supervisors:

JEsUs CARRETERO PEREZ
FLORIN IsAILA

Computer Science Department

Escuela Politécnica Superior

June 2013

HIGH-PERFORMANCE AND FAULT-TOLERANT
TECHNIQUES FOR MASSIVE DATA
DISTRIBUTION IN ONLINE COMMUNITIES

AUTOR: Daniel Higuero Alonso-Mardones
DIRECTORES: Jesus Carretero Pérez

Florin Isaila

Nombre y apellidos Firma

Presidente:

Vocal:

Secretario:

En Leganés, de del 2013

ACKNOWLEDGMENTS

Finalmente, después de bastante més tiempo del que deseaba, me encuentro escribi-
endo estas lineas que finalizan la escritura de la tesis. Ha sido un proceso arduo y
con distintos baches por el camino, pero que por fin tiene una meta a la vista. Me
gustaria usar estas lineas para agradecer el apoyo recibido durante la realizacién de
este doctorado.

Quiero dar las gracias a toda mi familia por el apoyo recibido, en especial de mis
padres Marysol y Fernando y mi hermano Rail, que siempre han estado ahi para
cualquier cosa. Su apoyo ha sido fundamental para conseguir llegar hasta este punto
y es por eso que me gustaria reconocer ese esfuerzo que han puesto durante estos
anos.

Gracias a Ana, cuyo dnimo y apoyo también han sido otro pilar fundamental para
poder llegar hasta aqui. He de reconocer que he tenido suerte en encontrarte y por
eso espero que sigamos juntos mucho tiempo, comenzando con esa aventura que
acabamos de empezar llamada casa.

Muchas personas han tenido una influencia significativa en estos tltimos afios y
me han hecho darme cuenta de muchos aspectos de la vida tanto académica como
préctica. Primero me gustaria agradecer a mis directores su disposicién para lle-
var este trabajo. A Jests, por haberme dado una oportunidad de incorporarme a
este gran grupo de investigaciéon llamado ARCOS y por haberme ensefiado e intro-
ducido en el mundo de la investigaciéon. A Florin, por haberme ensefiado todo lo
que implica realizar una tesis. También quiero agradecer el apoyo recibido de todos
los miembros de ARCOS, con una especial mencién a Alex y Javi (Doc) por esas
conversaciones interminables sobre temas variopintos, a Javi por ser un grandisimo
compafiero. Por supuesto, también quiero dedicar unas lineas a Juanma. Has sido
una persona fundamental durante todo este camino, compafiero de fatigas, absurde-
ces, bugs imposibles y con el que he podido compartir muchas cosas que me han
hecho crecer como persona. Creo que sin tu apoyo esta tesis tampoco existiria y por
eso te agradezco el haber estado ahi.

Finalmente, también quiero agradecer al resto de personas que de alguna forma
u otra me han acompafiado en este camino. A la gente de seguridad, en especial a
Chema, Lorena y el Maestro, con los me une una gran amistad. A Andrea, Teresa
y Mario por haber compartido también este proceso. A los integrantes de KerData,
en especial a Gabriel por haberme dado la oportunidad de hacer la estancia en
Rennes y haberme tratado como un miembro mas del grupo. A Javierito, por ser
un gran amigo y seguir compartiendo vivencias de forma remota. Y por ultimo a
todas las personas que me han ayudado durante este camino. Las enumeraciones
son peligrosas por el temor de olvidar escribir algtin nombre, o crear algin orden
implicito, por lo que gracias a todos los demds no nombrados, pero que han estado
ahi.

A mi familia
A Ana

We're here to make coffee metal.
We will make everything metal!
Blacker than the blackest black, times infinity!

Nathan Explosion

Never build a dungeon you wouldn’t be happy to spend
the night in yourself. The world would be a happier place
if more people remembered that.

Terry Pratchett - Guards! Guards!

ABSTRACT

The amount of digital information produced and consumed is increasing each day.
This rapid growth is motivated by the advances in computing power, hardware tech-
nologies, and the popularization of user generated content networks. New hardware
is able to process larger quantities of data, which permits to obtain finer results, and
as a consequence more data is generated. In this respect, scientific applications have
evolved benefiting from the new hardware capabilities. This type of application is
characterized by requiring large amounts of information as input, generating a sig-
nificant amount of intermediate data resulting in large files. This increase not only
appears in terms of volume, but also in terms of size, we need to provide methods
that permit a efficient and reliable data access mechanism. Producing such a method
is a challenging task due to the amount of aspects involved. However, we can lever-
age the knowledge found in social networks to improve the distribution process. In
this respect, the advent of the Web 2.0 has popularized the concept of social net-
work, which provides valuable knowledge about the relationships among users, and
the users with the data. However, extracting the knowledge and defining ways to
actively use it to increase the performance of a system remains an open research
direction.

Additionally, we must also take into account other existing limitations. In partic-
ular, the interconnection between different elements of the system is one of the key
aspects. The availability of new technologies such as the mass-production of multi-
core chips, large storage media, better sensors, etc. contributed to the increase of
data being produced. However, the underlying interconnection technologies have
not improved with the same speed as the others. This leads to a situation where
vast amounts of data can be produced and need to be consumed by a large number
of geographically distributed users, but the interconnection between both ends does
not match the required needs.

In this thesis, we address the problem of efficient and reliable data distribution in
a geographically distributed systems. In this respect, we focus on providing a solu-
tion that 1) optimizes the use of existing resources, 2) does not requires changes in
the underlying interconnection, and 3) provides fault-tolerant capabilities. In order
to achieve this objectives, we define a generic data distribution architecture com-
posed of three main components: community detection module, transfer scheduling
module, and distribution controller. The community detection module leverages the
information found in the social network formed by the users requesting files and
produces a set of virtual communities grouping entities with similar interests. The
transfer scheduling module permits to produce a plan to efficiently distribute all re-
quested files improving resource utilization. For this purpose, we model the distribu-
tion problem using linear programming and offer a method to permit a distributed
solving of the problem. Finally, the distribution controller manages the distribution
process using the aforementioned schedule, controls the available server infrastruc-
ture, and launches new on-demand resources when necessary.

X

CONTENTS

1 INTRODUCTION

1.1
1.2

1.3

Motivation . . .
Objectives

Structure and contents

2 RELATED WORK
Data distribution systems 0 0L
Publish/subscribe architectures

2.1
2.1.1
2.1.2
2.1.3

2.2
2.2.1
2.2.2
2.2.3

2.3

2.4
2.4.1
2.4.2

2.5

Data Grids . .

Content delivery networks
Modeling data distribution systems.
Approximation algorithms oo o000
Mathematical models
Efficient solving of largemodels
Efficient data transfers0 L.
Social network analysis Lo
Statistical study of social networks
Community detection in social networks

Summary

3 A GENERIC DATA DISTRIBUTION SCENARIO
Decomposition of a data distribution process

3.1
3.2
33

Applicability . .
Summary

4 ANALYSIS OF ONLINE COMMUNITIES
Existing methods to detect user communities
Detecting online communities using item selection
Detecting online communities using community detection algorithms
Iterative weighted community detection algorithm

4.1
4.1.1

4.1.2
4.2
4.3

4.3.1

4.3.2
4-4

4.4.1

4.4.2

4-4-3

4-4-4

4-4-5

4.4.6
4.5

Evaluation setup
Dataset
Metrics

Experimental evaluation
Modularity and clustering coefficient
Number of assigned elements to a partition

Commonality .

Effect of the algorithm selection
Iterative community detection algorithm
Effect of the weighting threshold

Summary

5 DATA TRANSFER SCHEDULING
Transfer scheduling problem

5.1
5.1.1

Baseline model

O o Ul Ul U1 W W N R

W W W NN NDNNMNNRR R AR R R
A N R O W R OO VO U~ W NN

35

Ul Ul U Ul T Ul A AR W
S W A RO WGl Rr R TR

xi

xii

5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.2.4
53
5.3.1
5.3.2
5-4
5.4.1
5.4.2
5-4.3
5-4-4
5-4.5
5.4.6
5-5

CONTENTS

Baseline model discussion
Alternative modeling of the transfer scheduling problem
Reformulation as a feasibility problem
Approximation heuristic
Distributed transfer scheduling
Merging partial schedules
Improvements on the formulation
Multiplexing server bandwidth

68

Adding user-driven fault-tolerance capabilities with parallel downloads 70

Evaluation
Implementation
Computational complexity in practice
Sensitivity analysis of scheduling solutions
Evaluation of distributed transfer scheduling
Energy saving considerations
Performance impact of the underlying hardware

Summary

6 FAST DATA TRANSFERS

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.1.4.1 Security aspects
6.1.4.2 Specifying download sources

6.2
6.2.1
6.2.2

6.3

Download engine
Design objectives
Multiprotocol parallel downloads
Internal Architecture
Download lifecycle

Evaluation
Parallel downloads
Analyzing fault tolerance in the event of mirror failures

Summary

7 FINAL REMARKS AND CONCLUSIONS

7.1

7.2

7.3
7.3.1
7.3.2
733
734

Contributions
Open research directions
Thesis results
Publications
Research internship
Research grants
Related research

BIBLIOGRAPHY

73

100
103
106
107
108
109
111
111
112
112
113

115

LIST OF FIGURES

Figure 1
Figure 2
Figure 3

Figure 4
Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20

Figure 21
Figure 22

Figure 23

Figure 24

Figure 25
Figure 26

Generic publish/subscribe architecture and operations
Generic content delivery network
Blocks downloaded from each mirror depending on the co-
allocation strategy used during the transfer process.
Data distribution graph.
Determining file-server mapping (left) and user redirection
(right) on the server infrastructure.
Number of request received by 10% of Wikipedia servers.
Generic data distribution architecture.
Community detectionmodule
Explicit social network,
Inferred social network oo oL
Detecting communities on declarative social networks using
itemselection. o o oL
Application of intersection and Jaccard metrics to produce a
condensed graph, with uy =y =0.
Iterative community detection algorithm
Correlation between the intersection and Jaccard metrics . . .
Normalized standard deviation of the intersection and Jaccard
metrics
Modularity and clustering coefficient.
Relationship between number of assigned elements and num-
ber of vertices per partition for different graph configurations
and algorithms. o 0 oo L
Influence of the community algorithm in the commonality
metrics.
Study on the commonality metrics for different community
detection algorithms. 0L
Evaluation of the iterative algorithm varying the ratiog/ttities
and the min{/¢ments parameters.
Different measures of the iterative algorithm.
Size of the condensed graph attending to the weight threshold
value.
Number of communities and clustering coefficient attending
to the weight threshold value.
Generation of a transfer schedule in a data distribution sce-
nario using the requests assigned to virtual communities, and
the current file to server allocation on the publisher organiza-
tions.
Elements involved in data distribution scenario.
Baseline model for scheduling transfers.

47

49

49

52
53

54

55

xiii

Xiv

List of Figures

Figure 27
Figure 28

Figure 29
Figure 30
Figure 31
Figure 32
Figure 33

Figure 34
Figure 35
Figure 36

Figure 37

Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48

Figure 49
Figure 50

Figure 51
Figure 52

Expressions used in the feasibility problem formulation. . . . 63
Constraints used in the feasibility formulation of the transfer

scheduling problem. 64
Effect of reducing the « value in the calculation of Tmax. .. 65
Distributed solving of the file transfer scheduling problem.. . 66
Merge of two file schedules to obtain a global schedule.. . . . 69
Different types of parallel downloads 71
Example schedule produced by the model with parallel down-

loads. 73
Impact of varying Tmax on the computational time 76
Impact of varying Tmax on the schedule makespan 76
Effect of changing « in terms of computation time and sched-

ulemakespan. oL oL o 77
Schedule makespan in time units for the different configura-

tions. 78
Aggregate server missrate., 79
Ratio of server utilization. 79
Computational time depending on the underlying hardware. . 81
Distribution controller module. 86
Detailed architecture of the Notification Module. 88
Maximum throughput estimation using parallel downloads . 92
Download engine components 93
Download states diagram 95
Secure notifications PKI 97
Parallel download performance using two servers 100
Download speed depending on the number of parallel connec-

tions and the chunk size for different servers. 102
Theoretical number of connections depending on the chunk

SiZE. . .o 103
Fault tolerance on the event of transient failures 104
Fault tolerance on the event of permanent failures 105

Fault tolerance on the event of permanent failures with a backup
SEIVET .\ v v vttt i e 105

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4
Table 5

Table 6

Number of edges in the evaluation graphs. 42
Median values of each of the studied metrics per algorithm. . 50
Baseline model variables and parameters 59
Feasibility model variables and parameters 63
Example configuration to determine the number of servers

(Nsrc) involved in a transfer using the server availability. 71
Hardware characteristics 81

XV

INTRODUCTION

The amount of digital information produced and consumed is increasing each day.
This rapid growth is motivated by the advances in computing power, hardware tech-
nologies, and the popularization of user generated content networks. New hardware
is able to process larger quantities of data in the same time, which permits to refine
the results, and as a consequence more data is generated. In this respect, scientific
applications have evolved benefiting from the new hardware capabilities. This type
of application is characterized by requiring large amounts of information as input,
generating a significant amount of intermediate data resulting in large files.

As the increase not only appears in terms of volume of data, but also in the size of
data to be accessed, we need to provide methods that permit an efficient and reliable
data access mechanism for the users. Producing such a method is a challenging
task due to the amount of aspects that need to be taken into account. However, we
can leverage the knowledge found in social networks to improve the distribution
process. In this respect, the advent of the Web 2.0 has popularized the concept of
social network. The power of a social network does not rely only on the capacity of
connecting people, but it also provides valuable knowledge about the relationships
between the users, and the users with the data. However, extracting the knowledge
and defining ways to actively use it to increase the performance of a system remains
an open research direction.

While the existence of social networks can provide benefits to the design of a new
architecture, we must also take into account the existing limitations. In particular, the
interconnection between different elements of the system is one of the most impor-
tant aspects to be considered. The availability of new technologies such as the mass-
production of multi-core chips, large storage media, better sensors, etc., contributed
to the increase of data being produced. However, the underlying interconnection
technologies have not improved with the same speed as the others. This leads to a
situation where vast amounts of data can be produced and need to be consumed by
a large number of geographically distributed users, but the interconnection between
both ends does not match the required needs. In particular, we must consider that
some of the user are not only interested in accessing some data, but they also require
a minimum quality of service.

In this thesis, we address the problem of efficient and reliable data distribution in
geographically distributed systems. In this respect, we focus on providing a solution
that 1) optimizes the use of existing resources, 2) does not requires changes in the un-
derlying interconnection, and 3) provides fault-tolerant capabilities. The remainder
of this chapter is organized as follows. First, in Section 1.1 we describe the motiva-
tion behind this work. After that, in Section 1.2 we detail the objectives of this thesis.
Finally, Section 1.3 presents the structure of the document.

INTRODUCTION

1.1 MOTIVATION

In order to illustrate the magnitude of the aforementioned problems, we focus on two
aspects: the amount and size of data being produced, and the networking capabilities
of the users. The data being produced daily in the world infrastructure increases
each day. We notice a turning point when the main challenge is not how to generate
data (computing capacity is easily available for example by using cloud computing
services), but how to provide access and maintain the data.

In this respect, scientific applications represent a suitable candidate for the appli-
cations facing the aforementioned challenges. An example of these applications is
the LHC or the VLT. The LHC (Large Hadron Collider) project which it is expected
to produce ' around 15 petabytes of in- formation per year. The VLT (Very Large
Telescope) survey is expected to produce > around 100 Terabytes of data per year.
Moreover, the requirement of moving large volumes of data is not only limited to
single applications. As an example, Akamai 3 serves 15-30% of the daily Internet
traffic reaching more than 10 Terabits per second and over 2 trillion daily Internet
requests.

With respect to the networking capabilities, a recent report [107] showed that the
global average connection speed increased by 5.0% to 2.9 Mbps, and the global aver-
age peak connection speed grew by 4.6% to 16.6 Mbps when compared with previous
year. As an example, the average time to transfer a 1 GiB file in this scenario is ap-
proximately 47 seconds in the best case. Notice however, that many countries are still
below the 1 Mbps level.

We also must point out that these types of problems have been also identified
and targeted by different agencies. For example, the European Commission [29, 30]
specified in the research lines of the Seventh Framework Program that started after
the definition of this thesis:

“The research is expected to firmly establish digital libraries services as
a key component of digital content infrastructures, allowing content and
knowledge to be produced, stored, managed, personalised, transmitted,
preserved and used reliably, efficiently, at low cost and according to
widely accepted standards.”

“Digital content is today being produced in quantities that are deeply
transforming the enterprise and the creative industries. Conditions for
production and consumption are also rapidly changing as more and
more content is produced by users. Organisations, public and private,
are faced with maintaining, managing and exploiting increasing amounts
of data and knowledge, in environments that are continually chang-
ing.”

In the same period, the World Economic Forum [101] also pointed to the need
of new data access infrastructures as research and development priorities by includ-

1 Large Hadron Collider expected data per year accessed on October, 2012.
http://public.web.cern.ch/public/en/1lhc/Computing-en.html

2 Very Large Telescope expected data per year accessed on October, 2012.
http://www.eso.org/public/teles-instr/surveytelescopes.html

3 Accessed on May 2013. http://www.akamai.com/html/about/facts_figures.html

http://public.web.cern.ch/public/en/lhc/Computing-en.html
http://www.eso.org/public/teles-instr/surveytelescopes.html
http://www.akamai.com/html/about/facts_figures.html

1.2 OBJECTIVES

ing “Content digitization, digital preservation and access” in the “Digital content
technologies” section of the report. Notice that even though the Seventh Framework
Program is in its last years, the main objective remains active as of 2013 [31] (Objective
ICT-2013.1.6 Connected and Social Media):

“This objective focuses on the development of advanced digital me-
dia access and delivery platforms and related technologies supporting
innovation in the digital media sector.”

1.2 OBJECTIVES

The main goal of this thesis is to define a new efficient and reliable data distribution
architecture that leverages the knowledge extracted from the user community to
improve the data movement performance. To provide a detailed view, the main goal
of the thesis can be decomposed into the following specific objectives:

oBJ1 To analyze social networks in order to extract knowledge that can be lever-
aged in the data distribution process: Social networks form complex structures
that contain vast amounts of valuable information. In this work, we aim to de-
tect the existing communities in a social network and employ that knowledge
to define proxy server locations in a data distribution infrastructure.

oBJ2 To provide a reliable and fast data transfer mechanism: In a data distribution
environment, one of the key aspects is the selection of the underlying protocols
and management policies used to access data. In particular, we focus on defin-
ing a novel data access mechanism that provides reliable and fast data transfers
leveraging the existing server infrastructure.

oBJ3 To define a novel architecture that exploits social knowledge to improve the
data distribution process: The global objective of providing reliable fast data
access and leveraging the social knowledge requires an underlying architecture
to support it. In this sense, we target to propose a flexible architecture that is
able to capture knowledge from the user communities and use that informa-
tion to efficiently distribute data to the interested users. This thesis focuses on
scientific applications, for which large amounts of data need to be transferred
to known users.

1.3 STRUCTURE AND CONTENTS

This document presents the research work realized as part of the PhD dissertation.
The remainder of this document is organized as follows:

e Chapter 2 overviews the related work relevant for the thesis research topics.
First, we overview the different types of data distribution systems: publish/sub-
scribe architectures, data grids, and content delivery networks. Second, we
present different works related with the modeling aspect of these systems such
as approximation algorithms or mathematical models. We complement this in-
formation with several methods to efficiently solve those models in real life

4

INTRODUCTION

scenarios. Afterwards, we explore different methods to provide efficient data
transfers. Finally, we describe different approaches to obtaining information
from social networks through statistical studies, information propagation anal-
ysis, evolution of social networks, and community detection algorithms.

Chapter 3 presents the generic data distribution architecture proposed in this
thesis and describes the main challenges found in current architectures. First,
we introduce a graph representation to model a data distribution problem. Af-
ter that, we describe the main components of the architecture.

Chapter 4 defines two methods to extract information from social networks,
and defines a technique to condense the information contained in a data distri-
bution graph in order to be able to apply existing community detection algo-
rithms. We continue by describing some of the most representative community
detection algorithms found in the literature and provide an extensive evalua-
tion of the performance. In order to measure the quality of the partitions, we
introduce a set of metrics and compare the suitability of each of them in the
context of data distribution graphs.

Chapter 5 describes our approach to provide efficient data transfer scheduling.
We first present the common mathematical approach for solving this type of
problems and describe its main limitations. Then, we propose a feasibility refor-
mulation of the initial model that speedups the solving process and permits a
distributed solving using the map-reduce paradigm. The distributed model is
then evaluated using a realistic scenario and an extensive study of the quality
of the resulting schedules is provided.

Chapter 6 introduces our reliable fast data transfer mechanism. We describe
the main components involved and focus on the proposed download engine.
Our engine permits the concurrent use of multiple protocols in order to trans-
fer different pieces of data at the same time. The chapter presents different
aspects of the engine concentrating on how it communicates and interacts with
other components, how it manages the download lifecycle, how it manages the
security aspects, and how it provides reliability and fault-tolerance capabili-
ties. Finally, we provide an evaluation of the engine that demonstrates its main
features in terms of performance and fault-tolerant capabilities.

Chapter 7 presents a summary of the contributions of the thesis, the main
conclusions resulting from this work and future research lines opened by this
PhD dissertation.

RELATED WORK

This chapter overviews the state-of-the-art and presents the basic concepts used
throughout the thesis. The contents are organized into four main sections. First, an
overview of different types of data distribution systems is presented. Second, we
explore different approaches that had been proposed in the literature to model this
type of systems. Third, we describe techniques that provide fast data transfers in
a distribution infrastructure. Finally, we overview different aspects and characteris-
tics of online social networks that can provide valuable knowledge in the modeling
process.

2.1 DATA DISTRIBUTION SYSTEMS

With the increase in content in the Web 2.0 era, the need for distributing data to
vast amounts of users is a basic requirement of many applications. Several generic
architectures for this purpose exist in the literature, and it is a fundamental decision
from the content provider point of view to choose the underlying architecture based
on its specific requirements.

We focus on three major types of data distribution systems based on how data is
discovered, stored and accessed. The following subsections describe the inner work-
ings of publish/subscribe architectures, data grids, and content delivery networks.

2.1.1 Publish/subscribe architectures

Publish/subscribe architectures are a common solution for propagating events be-
tween loosely coupled entities on a distributed environment. Particularly, this type
of architecture is especially useful when the content is created by a small fraction
of entities and it needs to be distributed to a large number of users (e.g., producer-
consumer problems).

The generic publish/subscribe [41] architecture is composed of three types of enti-
ties. Users or components interested in a particular type of data receive the name of
consumers. Analogously, users or components that generate data in the system receive
the name of publishers. The information to be distributed is denoted by the term event.
To determine which users must receive a particular type of event, they are required
to establish a subscription prior receiving any notification from the publishers.

New events created by the publishers are sent to the event service, which repre-
sents the mediation point between publishers and subscribers. The event service is
the component of the system in charge of storing subscriptions and performing the
matching against new events in order to determine which consumers will receive the
notification.

6

RELATED WORK

@)

I I subscribe()

“ notify() @
) =8

n event publish() (@)

) service

“ notify() publishers

subscribers

publish()

Figure 1: Generic publish/subscribe architecture and operations

Figure 1 shows a generic architecture for a publish/subscribe system. On the right
side, the publishers generate new events by invoking the publish(event) operation on
the event service. On the left side, a user is interested in a new type of events and
executes the operation subscribe(event). As described before, the publish operation
triggers the matching mechanism in the event service and as a result a callback to
the notify() operation in the interested users is executed. The main characteristics
offered by the publish/subscribe paradigm are:

e Space decoupling: The publish/subscribe architecture introduces an interme-
diate point in the communication paradigm. The event service allows the pub-
lishers to avoid storing information about their subscribers, which also anony-
mizes the subscribers from the publishers.

e Time decoupling: The event service manages a set of event queues that allow
the publishers to asynchronously send notifications to subscribers. This charac-
teristic makes not necessary for both entities to be online at the same time in
order to send and receive notifications. The use of queues allows subscribers to
retrieve pending events when they come online.

e Synchronization decoupling: Related with the time decoupling characteristic,
the asynchronous behavior introduces another desired functionality. As the
events are sent first from the publishers to the intermediate event service and
then transferred to subscribers, publishers are not blocked by the publish oper-
ation as the event is asynchronously notify to the interested users.

Publish/subscribe systems can be categorized [70, 41] attending to two charac-
teristics: how subscriptions are managed, and how the underlying architecture is
deployed. Users of publish/subscribe systems need to subscribe to the type of con-
tent they are interested in. Depending on the level of detail of the subscription, and
subsequently, the internal matching algorithm on the event service, we distinguish
between topic-based, content-based or type-based systems.

e Topic-based: This type of publish/subscribe systems is based on the notion
of subject, category or topic. Each event published in the system is associated
with a topic that represents the nature of the information contained in the

2.1 DATA DISTRIBUTION SYSTEMS

event. As using a flat categorization of events complicates the management of
information, most topic-based systems support topic hierarchies to facilitate
fine grained subscriptions.

e Content-based: As an evolution of topic-based systems, the content-based ar-
chitectures offer users the possibility of subscribing to events with a particular
content. In this type of publish/subscribe systems, the event service matches
users subscriptions against the content of each event permitting a finer capabil-
ity of filtering out undesired messages.

e Type-based: As the complexity of the distributed events grows, new mecha-
nisms are necessary to offer a usable subscription system. Type-based subscrip-
tions appear as an evolution of content-based matching algorithms. Based on
Object Oriented Programming, events in the system are associated with classes
or types, each having its own attributes. From the subscriber point of view, it
is possible to subscribe to particular types of events, with a specific content.

The underlying deployment architecture is another differentiating characteristic
of a publish/subscribe system. In this aspect, we can observe the evolution from
the client-server approach to a distributed deployment of the involved components.
Considering both the type of subscription employed, and the underlying architecture,
we overview the relevant research in this direction.

Topic-based publish/subscribe systems offer a simple, yet powerful approach for
a variety of use cases. Corona [92] proposes to use a topic-based system to address
the problem of unnecessary polling on RSS web subscriptions. Users subscribe to a
particular URL, and the distributed system built on top of the Pastry [98] distributed
hash table computes the optimal way to poll for updates. In this aspect, the system
optimizes the tradeoff between allocated bandwidth to a particular web and the
resulting update latency. Scribe [22] as Corona also uses Pastry as the underlying
peer-to-peer network. It defines a set of groups, each of them containing a subset of
subscribed users. A multicast tree is then built to determine the notification process.
Similar to Scribe, Bayeux [134] is built on top of Tapestry [132] and also defines
a set of groups to manage the subscription process. Both works differ in the way
the multicast tree is built, on Bayeaux all nodes have to maintain a large amount
of information, as membership information is stored along the whole network. On
contrast, Scribe distributes this type of information on the network.

Content-based systems provide additional capabilities to users to determine which
content to subscribe to. While it is possible to introduce some type of hierarchy
in topic-based system, their management becomes too complex and does not of-
fer enough flexibility. Different proposals have been made to offer efficient content-
based systems.

Terpstra et al. [106] propose a content-based publish/subscribe system based on
Rebeca [78] and built on top of the Chord [103] distributed hash table. In this work,
authors argue that using a tree structure for notifying users may introduce single
points of failure, and therefore propose a routing algorithm built on top of a peer-to-
peer graph. Tam et al. [105] propose a distributed content-based system built on top
of Scribe and implemented on Pastry. The system requires an underlying schema to
help during the matching process permitting to automatically identify general topics
from the content of the subscriptions.

RELATED WORK

Triantafillou and Aekaterinidis [113] define a publish/subscribe system that lever-
ages the advantages of the Chord DHT in order to support range predicates in
the subscriptions. This type of content subscription benefits from the DHT overlay
as queries targeting ranges in particular attributes will only involve querying con-
tiguous nodes in the DHT. Sub-2-Sub [120] presents a collaborative self-organizing
publish/subscribe system deployed over an unstructured overlay network. The au-
thor motivates the selection of an unstructured network due to the fact that popular
content may overload some peers in the usual structured network approach. It uses
an epidemic-based algorithm to assure that notifications reach the subscribers, sup-
porting range predicates. Mercury [16] addresses the problem of communication
among the entities involved in an online game. The authors propose a routing algo-
rithm based on the incorporation of attribute hubs. Each hub is composed of several
nodes, each of them being responsible for a range of the attribute assigned to that
hub. Upon receiving a new message, its attributes are analyzed and route through
the affected hubs until the notification reaches the interested subscribers.

The evolution of publish/subscribe systems and the incremental complexity of the
subscriptions lead to the appearance of type-based systems. While they require the
definition of a class or schema prior using the system, several applications already
have this categorizations and can benefit from them. Eugster [40] and Pietzuch [87]
propose slightly different approaches to build these systems. While the work pre-
sented by Eugster is a high-level definition on how to capture the semantics of the
subscriptions, Hermes [87] offers a distributed implementation on top a peer-to-peer
routing overlay.

Additionally, other works related with publish/subscribe systems have explored
other areas of interest. Liu et al. [69] studied the characteristics of 100,000 RSS feeds
over a period of 45 days, providing recommendations on how to improve current
publish/subscribe implementations of this type of applications. Huang and Garcia-
Molina [58] research the problem of implementing publish/subscribe systems in
mobile environments. This type of environments introduce new challenges as events
can be generated by moving sensors or users, and the notifications require extra
fault-tolerance techniques as the subscribers may also appear in different parts of
the network.

2.1.2 Data Grids

The emergence of the grid computing [49, 48] brought new challenges related with
the way we store and access data. Different middlewares were defined and imple-
mented capturing the particularities of the underlying associated projects. In this
aspect, we can name the Globus Toolkit [50] * and gLite * as the most adopted grid
middlewares.

With the appearance of the computing grid, the notion of data grid [26] was born.
The possibility of using a distributed computing platform requires the definition of
basic services that establish how data will be accessed and move on that platform.
The modular design of the grid permits to build the required services [5] leveraging
the existing functionalities provided by the underlying toolkit. In particular, most of

1 www.globus.org/toolkit/
2 glite.cern.ch

www.globus.org/toolkit/
glite.cern.ch

2.1 DATA DISTRIBUTION SYSTEMS

the effort is centered on how replication should be done in order to provide fault-
tolerance and parallelization functionalities.

Several studies [34, 60, 94] explore the benefits and tradeoffs of using different
replication algorithms when presented with different types of workloads. In this re-
spect, the use of static algorithms to define the required replication levels has been
demonstrated to provide inaccurate results due to the dynamicity of the usage pat-
terns over time. As a consequence, a set of dynamic algorithms has been defined in
order to adapt the replication level to the incoming demand. As an extension, Abdul-
lah et al. [1] study how replication can be leveraged to permit the parallel processing
of data set that can be split due to the absent of dependencies in the processing.

Regarding the required functionalities of a data grid infrastructure, other studies
have focused on the consistency and security aspects. Domenici et al. [35] proposed a
replica consistency service to address the challenges of maintain data and metadata
consistency on this type of distributed infrastructure. Tu el al. [114] explore secure
data partitioning and replication on a data grid, presenting two heuristics to solve
the graph representation of the problem.

Even though, Cloud computing has emerged in the recent years, several grid com-
puting infrastructures are still in use. As an example, the Teragrid [68] infrastructure
that appeared in 2001, has evolved into the XSEDE (Extreme Science and Engineer-
ing Discovery Environment) project 3 funded initially for five years ($121 million
budget) by the National Science Foundation.

2.1.3 Content delivery networks

Content Delivery Networks (CDN) [117] are used in the current Web environment
to optimize the distribution of information to final users. These systems can be seen
as an evolution of distributed web server infrastructures [20]. The notion of CDN
is related with the concepts of edge server, caching and replication. An edge server
designates a server that works as a proxy for the original server but which is located
near the final user (consumer of information), rather than near the source of infor-
mation. Content is replicated /distributed among these edge servers and cached for
a period of time to improve the access experience of the final users.

Figure 2 illustrates the generic architecture of a CDN. In the center of the archi-
tecture, the origin servers represent the source of information. Between the users
(consumers) and the origin servers, several edge servers are allocated. When a user
request appears in the system, it will be redirected to an edge server. If that server
does not have a cached copy of the requested data, it will retrieve first a copy from
the original servers, and the forward the information to the final user.

Content delivery networks offer two primary benefits. First, the utilization of a
CDN to distribute content reduces network utilization by means of caching content
retrieved from the original servers. The caching mechanism reduces the latency per-
ceived by the users, as the content will be delivered from the cache in most cases.
Second, the use of a caching mechanism improves system reliability. In the event of
a source server failure, the users may not perceive the error as their content is being
served from the edge servers.

3 https://www.xsede.org/home

9

https://www.xsede.org/home

10

RELATED WORK

?;
P
]

edge origin edge
servers servers servers

Figure 2: Generic content delivery network

However, using a CDN as a part of our architecture imposes a series of chal-
lenges [86] that need to be addressed in order to obtain an optimal performance. In
this respect, a CDN can be considered as an external platform that content owners
may use in order to speedup the distribution of their contents. In order to adequately
leverage of the properties of the CDN several aspects must be considered:

e CDN composition: Analyzing the structural attributes of a CDN reveals the
components involved. This information helps determine how different from
the generic architecture is a particular CDN, and therefore, whether it must be
used in a particular way in order to achieve the best performance. The most im-
portant aspects in the CDN composition are: (1) whether an overlay or network
approach is used as the CDN organization, (2) which are the type of servers in-
volved, (3) what are the relationships between the existing components, and (4)
which type of content can we distribute on that CDN: static, dynamic and/or
streaming content.

e Content distribution and management: The structure of the CDN is also re-
lated with the problem of content distribution and management. In this aspect,
it is necessary to decide how caches and replicas will be managed, and how
this content will be stored in the CDN.

e Request-routing: As a distributed system, selecting the appropriate server is
an important decision as it will affect the latency perceived by the requesting
user. Different policies can be used to determine how user requests will be
redirected on the CDN infrastructure.

e Performance measurement: Due to the complexity of this type of infrastruc-
ture and the fact that their components are usually geographically distributed
all over the world it is necessary to determine how to monitor the CDN perfor-
mance. Monitoring this type of infrastructures provides an updated vision of
the behavior of the system and can be used in different situations: from check-
ing that Service Level Agreements are being fulfilled, to detecting emerging
hot spots around popular content.

2.1 DATA DISTRIBUTION SYSTEMS

The basic architecture of a CDN (Figure 2) introduces additional problems in user
generated content networks such as YouTube or Flickr. These types of networks need
the CDN architecture to distribute content, but also need to provide users with the
ability to upload new content. In these cases, the typical solution considers the users
as both consumers and producers of information. Content is distributed to the com-
munity using the CDN infrastructure, while the users upload new content to the
origin servers. It is important to highlight that users cannot upload content directly
to the CDN, as it is only a cache for the content stored in the origin servers.

The use of CDNs has increased rapidly in the recent years following the increase in
volume and size of multimedia content. Major Web 2.0 sites, are using one or several
CDN s to distribute their content to a variety of geographically distributed users.
Some major sites, such as YouTube [111], opt to develop and maintain their own
CDNs. However, due to the large infrastructure costs, and the knowledge required
to successfully operate this infrastructures, a large amount of sites opt for third-party
owned CDNs such as: Akamai 4, Limelight 5, and Level3 6,

Akamai [83] started as an academic project and evolved into one of the most im-
portant CDN infrastructures. The Akamai infrastructure 7 is composed of more than
105,000 servers deployed on 78 countries. The architecture is based on the idea of
deploying part of the content distribution infrastructure inside ISP POPs (Point of
presence). With this approach the edge servers are moved towards the end user. The
main disadvantages derive from the highly distributed design of the final system. In
particular, maintenance and management of the geographically distributed servers
become very challenging. From the point of view of the user requests, Akamai is
based on DNS redirection. On a user request, the original servers answer the DNS
request with a canonical name for an Akamai server. After solving the Akamai server
in the CDN DNS infrastructure, the user gets several IPs of edge servers where the
content can be retrieved.

Limeligth [57] is another important commercial CDN, based on a different ap-
proach than Akamai. The architecture is not based on moving edge servers to the
user ISPs as Akamai, but on building data centers at different locations and con-
necting these data centers to near ISPs. The main advantage of this design approach
is that the maintenance and management of the edge server infrastructure is easier
as the data centers are less geographically distributed. The possible disadvantage is
an increase in the delay depending on the user ISP connectivity with the Limelight
servers.

Level 3 [123] originally started as a Tier-1 carrier but moved to the CDN business in
2006. It leverages the IP transport network and global peering relationships already
owned. It is characterized by the ability of managing live broadcasting events due to
the large existing infrastructure.

Understanding how large web 2.0 sites use CDNs successfully is of interest to the
research community. Even though internal details of how they use a CDN infrastruc-
ture remain unknown, several studies reveal interesting aspects. Adhikari et al. [2]
measure how Hulu uses the aforementioned CDNs. The authors find that Hulu fre-

4 www.akamai.com

5 www.limelight.com

6 www.level3.com

7 }\ccessed,0r1/\ugust,2012,www.akamai.com/html/about/facts,figures.html
8 www.hulu.com

www.akamai.com
www.limelight.com
www.level3.com
www.akamai.com/html/about/facts_figures.html
www.hulu.com

RELATED WORK

quently changes the CDN that will serve a particular user, but it maintains the same
CDN once it has been selected during the streaming of a single movie. The study
also shows that the selection of the CDN is based on a predefined ratio, not by dy-
namically selecting the best one. In [3] authors show that Netflix 9 also uses the same
three major CDNs. However, the selection of the CDN is associated with the user ac-
counts. Torres et al. [111] study how YouTube *° uses its own CDN. The authors find
that while requests are typically redirected to the most appropriate edge servers, this
is not the case for 10% of the analyzed requests. The authors identify several reasons
for this type of decisions: load balancing, variations across DNS servers, hot spot
avoidance on popular content, and limited availability of unpopular content.

2.2 MODELING DATA DISTRIBUTION SYSTEMS

The need of modeling data distribution systems has followed their increase in pop-
ularity. Obtaining an accurate model of such a complex distributed system provides
a deeper understanding of its inner workings. The knowledge can be leveraged for
different objectives: data transfer scheduling, bandwidth optimization, etc. In this
thesis, we focus on methods that can be used to produce minimum transfer sched-
ules on distributed systems. Due to the complexity of defining this type of models,
approximation algorithms are often used to obtain approximated solutions.

This section provides an overview of the different methods taken to model a dis-
tribution system, from formal linear programming approaches to greedy algorithms,
considering both formal and approximation approaches. It is important to notice
that the data distribution problem shares some common aspects with other prob-
lems (e.g., the replica placement problem), making this type of research of interest
for the current thesis.

2.2.1 Approximation algorithms

Several works in the literature tackle the problem using approximation algorithms. In
this sense, different works explore the use of heuristics, iterative algorithms, greedy
approximations and many other types of heuristics.

Balman [10] proposes a methodology for provisioning end-to-end transfers. The
work uses a graph representation of the problem and proposes a set of heuristics
allowing the user to specify the resource and time requirements of the transfers.
Carofiglio et al. [21] study the data transfer problem in content-centric networks.
The authors characterize the miss rate and propose an analytical expression for the
estimated throughput when transferring data between different sites.

In [121] the authors explore the problem of optimizing latency and throughput
on workflows executed in cluster environments. A heuristic algorithm is proposed
to minimize the latency maintaining a minimum throughput requirement. Yuan et
al. [128] analyze data placement strategies in the context of cloud workflows. The
authors propose an algorithm to determine how to move large data sets between
different cloud instances.

9 www.netflix.com
10 www.youtube.com

www.netflix.com
www.youtube.com

2.2 MODELING DATA DISTRIBUTION SYSTEMS

Kllapi et al. [63] propose a schedule optimization algorithm for data processing
workflows executed on cloud environments. In this work, the authors focus on two
different objectives: minimizing the schedule makespan under a constrained budget,
and minimize the cost under a given deadline. Henzinger et al. [54] define a declara-
tive language that facilitates the task of expressing the job requirements and propose
a static scheduling algorithm with different user objectives for executing tasks on
cloud environments. Pandey and Buyya [85] study the scheduling of data intensive
workflows on a distributed environment on the presence of multiple data replicas.
The authors propose a heuristic to exploit the available parallelism accessing the
different replicas of the required data.

2.2.2 Mathematical models

The development of mathematical models represents another approach to solving
complex scheduling problems. To facilitate the construction of new models, the usual
approach tries to find a base well know problem [88], on which the future model is
built on top, adding the requirements of the specific scenario. The model specifica-
tion can be represented as different types of mathematical programming depending
on the type of variables involved and the linearity of the problem. In this respect,
we find two main approaches: mixed integer programming [99], and constraint pro-
gramming [96].

Using constraint programming, Zerola et al. [129, 131, 130] research the prob-
lem of moving data between different sites in a grid environment with a minimum
makespan. The authors based their model on a variation of the Job Shop Scheduling
problem with a graph representation. By using constraint programming and differ-
ent heuristic to speed up the solving process, the authors obtain a viable method to
schedule data transfers compared with a peer-to-peer approach.

Bartak [13] propose a model for the path placement problem, where the objective is
to determine how a particular demand on one node of the network will be served by
the available nodes. The authors propose a flexible constraint programming model
that captures the specifics of the problem, and is open for future extensions. Holub
et al. [56] define a constraint programming model for data transfers using a tree
placement representation. The model is complemented with several heuristics, and
results on small test cases are provided showing its feasibility.

Nguyen [82] describes a content distribution network provisioning framework that
takes into account the available resources and specific application requirements. It
permits to define the optimal structure of the CDN to cope with a specific demand.
The author proposes a heuristic based on decomposing the model in two comple-
mentary models to speed-up the process. Using this approach different models are
defined attending to the type of content to be served: static HTML, multimedia con-
tent, live streaming, etc.

Sun et al. [104] describe an optimal replica placement strategy for content distri-
bution networks. In the paper, the authors propose the use of a Multiple Minimum
Cost Flow model with server storage constraints to capture the complexity of the
problem. The model is converted to an equivalent Mixed Integer Programming one,
and the simulations confirm the feasibility of the solution.

13

RELATED WORK

2.2.3 Efficient solving of large models

A formal model requires a solver software in order to produce a solution given a set
of parameters depending on the selected scenario. As models become more complex
in order to capture as much of the reality as possible, the complexity of the model
increases accordingly.

This type of software is usually based on known algorithms (e.g., simplex), but the
quality of the implementation with the added heuristics is the factor that differenti-
ates one solver from the other. This difference is usually reflected in the memory and
CPU consumption, as well as time required to produce a solution. The most widely
used solvers are:

e GLPK"': The GLPK (GNU Linear Programming Kit) supports mixed integer
linear programming models written in MathProg [73]. It uses a revised simplex
algorithm and the primal-dual interior point method for non-integer problems,
and the branch-and-cut for integer problems.

e LP_SOLVE™: This solver provides another open source implementation of the
revised simplex method and the branch-and-bound method for integer prob-
lems.

e IBM ILOG Suite'3: The IBM ILOG Suite provides the commercial solver CPLEX.
The solver supports large optimizations problems and provides a threaded im-
plementation to speedup the process in a large variety of platforms (AIX, HP-
UX, Linux, Solaris, Mac OS, etc.). The last versions of the optimization suite
include CPLEX CP, which can be used to solve constraint programming prob-
lems.

e Gurobi Optimizer'+: The Gurobi Optimizer is a commercial solver that offers
similar features to CPLEX. Its main capability is the use of extensive parallel
solving algorithms in multithreaded environments. Based on this product, the
company offers Gurobi Cloud as a ready-to-run solution for launching multiple
solvers on Amazon ECa2.

Regarding the performance of the different solvers, it is difficult to find a complete
up-to-date study. Meindl and Templ [75] test the performance on a single thread
configuration of GLPK, LP_SOLVE, CPLEX, and GUROBI. In the test they found a
significant difference in terms of execution time and number of completed instances,
with times of 22.11, 19.40, 1.45, and 1; and completion success of 3.45%, 5.75%, 84%,
and 88% respectively. Koch et al. [64] provide an exhaustive study > of the perfor-
mance of different solvers when presented with a variety of problems. The authors
evaluate different solvers using the default configuration varying the number of avail-
able threads and memory. Two main conclusions are drawn from the results. First,
the open source solvers tested (GLPK and LP_SOLVE) were not able to solve more

11 www.gnu.org/software/glpk/

12 lpsolve.sourceforge.net/5.5/

13 www.ibm.com/software/websphere/ilog/

14 www.gurobi.com/products/gurobi-optimizer/

15 Updated and extended versions of the test available at: plato.asu.edu/ftp/milpc.html

www.gnu.org/software/glpk/
lpsolve.sourceforge.net/5.5/
www.ibm.com/software/websphere/ilog/
www.gurobi.com/products/gurobi-optimizer/
plato.asu.edu/ftp/milpc.html

2.3 EFFICIENT DATA TRANSFERS

than 20% of the instances within the time limit and there is no multithreaded version
available. Second, there is no clear winner, as results vary from test to test. Solvers
that are much faster in some particular instances, become the slowest ones in oth-
ers. These results may be explained by the use of the default configurations, as each
solver offers a significant number of parameters that can be tweaked to adapt its
performance.

Apart from the commercial solvers, other works have developed specific parallel
solvers. Eleyat and Natvig [39] propose an optimized parallel solver leveraging the
special capabilities of a Cell processor. Smelyanskiy et al. [100] present an optimiza-
tion of the interior-point methods for large-scale chip multiprocessor systems. Badia
et al. [9] implement a parallel solver specifically designed for large linear systems.
The main disadvantage of these approaches is the lack of generalization in terms of
problems that can be solved and the utilization of specific hardware.

Some of solvers presented in the previous paragraphs offer parallel solving at
thread level. However none of them offers distributed deployments of the solvers.
This is explained due to the inner workings of the solving method. Independently
of the selected algorithm, solving a linear programming problem usually involves
building a centralized structure such a tree, to represent what are the branches (the
paths) that have been explored. By pruning branches the solver marks which paths
do not lead to a feasible solution. As the centralized structure maintains the status
of the solving process, it becomes difficult to efficiently distribute this structure or
manage the concurrent access to it. In this aspect, Budiu et al. [19] propose an alter-
native implementation of a distributed branch-and-bound solver. Even though the
previous works propose parallel distributed solvers, in practice, they are tailored to
specific problems and not general enough for real uses.

2.3 EFFICIENT DATA TRANSFERS

Different solutions have been proposed during recent years to improve the transfer
process of large volumes of data. As data transfers are in many cases executed in a
client-server architecture, one of the first optimizations involves the use of mirrors.
A mirror can be defined as one server where a subset of files stored in the original
server is replicated in order to have an additional site to retrieve these files. The
utilization of mirrored architectures has been explored in different studies, which
proposed various co-allocation strategies and policies to retrieve different chunks of
data from a set of available mirrors.

Figure 3 shows a graphical representation of the main co-allocation strategies that
can be used in mirrored environments. To help demonstrate the differences, the
figure assumes that the available bandwidth of mirror 1 is larger than of mirror 2;
additionally, mirror 2 is supposed to have a significant larger bandwidth than mirror
3. The different policies are:

e Brute-force [118]: This scheme divides the file size by the number of available
mirrors creating a set of chunks. The transfer of each chunk is assigned to one
mirror and only one transfer is done from any mirror.

o History-based [118]: This scheme gathers information from past transfers on
each mirror. Using the predicted available bandwidth, the file is divided into

15

16

Brute-force
History-based
Conservative
Aggressive

DCDA

RELATED WORK

Strategy Mirror 1 Mirror 2 Mirror 3

Figure 3: Blocks downloaded from each mirror depending on the co-allocation strategy used

during the transfer process.

a number of chunks and they are assigned to mirrors proportionally to their
expected bandwidth.

Conservative [118]: With this approach, the amount of chunks transferred from
each mirror is decided dynamically. In order to do that, the file is divided into a
number of chunks larger than the amount of mirrors. The assignation of which
mirror will be used to transfer a chunk is based on mirror availability. In this
scenario, faster and well connected servers will transfer a large portion of the
file.

Aggressive [118]: The aggressive approach uses information gathered during
the download process to assign more chunks to faster mirrors while reducing
the number of assigned chunks to slow mirrors.

DCDA [17]: Similar to the aggressive scheme, the DCDA (Dynamic Co-allocation
with duplicate assignments) uses information gathered during the transfers to
increase the utilization of faster mirrors. The main characteristic of this ap-
proach is the capability of assigning the transfer of the same chunk to different
mirrors. Using this feature, instead of predicting the available bandwidth, the
transfer starts from both mirrors and the block is completed from the faster one.
The main disadvantage of this approach is the over utilization of resources as
some mirrors will be using a fraction of the available bandwidth, without com-
pleting a chunk.

The main challenge of co-allocation strategies is deciding which strategy is the
most suitable for a particular scenario. Using or extending the previous co-allocation
strategies, different studies offer new solutions for the replica management and se-
lection problem. Based on the DCDA strategy, an anticipative recursively adjusting
mechanism for selecting replica servers is defined in [125]. The system stores finish
rates of previous transfers and uses that information along with the expected mirror
load to select the optimal replica server. While the previous approach is centered on
selecting different replicas, other solutions are centered on providing mechanisms
for partial replication. A file can be completely replicated among a set of mirrors or

2.3 EFFICIENT DATA TRANSFERS

it could be split and partially replicated. In this respect, Chang and Chen [25] imple-
ment a block mapping procedure that allows servers to provide partially replicated
content to requesting clients.

Other solutions are oriented to grid environments, such as rFTP or Reptor that
include co-allocation strategies. rFTP [43] is an improvement of GridFIP that uses
multiple sources offering fault tolerance at download level. Reptor [65] on the other
hand is a replica management grid middleware. Both applications coexist with the
Globus Toolkit offering different levels of integration.

Independently of the co-allocation strategy selected for a particular environment,
the selection of the underlying transfer protocol is a key decision as it will affect
the resulting performance. Different transfer protocols can be used to perform a
download. However, depending on the application scenario, some protocols may
outperform others. The most used protocols in practice are:

e FTP, FTPS, SFTP: File Transfer Protocol (FTP) was defined in the RFC 959 [90]
and it is one of the oldest protocols still being used without any type of opti-
mization from the original RFC. The protocol uses two different connections:
control and data. The control connection is the channel used for the exchange
of commands and replies between the client and the server. The data connec-
tion is opened for the transfer of information between both ends. The main
problem found in FTP is the lack of security, with user data being transferred
without any type of protection. To address the security concerns, two proto-
cols were proposed: FTPS [46] and SFTP [51]. FTPS also known as FTP Secure
adds support for the TLS (Transport Layer Security) and SSL (Secure Sockets
Layer) protocols. The protocol adds new commands that allows the client and
the server to negotiate and TLS or SSL channel. SFTP or SSH File Transfer Pro-
cotol is another approach to securing a file transference over FTP. Instead of
negotiating a TLS/SSL session inside an FTP session, the protocol creates an
SSH session and then opens an FTP session inside the current secure session.

e HTTP, HTTPS: In the last years numerous internet sites are using the HTTP
protocol to distribute multimedia content (e.g. YouTube or Flickr). The HTTP
protocol, now in its version 1.1 [44] was originally designed to transfer web
pages from web servers to the user browsers. Nowadays, the HTTP protocol is
often used to transfer also binary information, displacing FTP. As in FIP, HTTP
does not provide any type of security. In order to provide security services, an
extension of the protocol named HTTPS [95] (HTTP Secure) provides mecha-
nisms to encrypt the communication between the user and the servers with
optional authentication services. Regarding the performance of FTP against
HTTP [112], the HTTP protocol presents less communication overhead. It uses
only one connection for both control and data transferences and the interaction
to establish an HTTP session is simpler than in FTP.

o GridFTP: With the development of grid computing, a new protocol was cre-
ated to perform the transfer of information in these distributed environments.
Based on FTP, the GridFTP protocol [5, 6] adds features related with the secu-
rity and performance of the transfers in distributed environments. Regarding
the security, GridFTP authenticates users prior transferring the information us-
ing the Grid Security Infrastructure (GSI) mechanisms (e.g., X.509 certificates).

17

18

RELATED WORK

A new extension (sshftp://) allows the control channel to be secured by cre-
ating a SSH wrapper. In terms of performance, GridFTP offers some impor-
tant features: parallel striped transfers [7], third-party transfers, and partial file
transfers. Parallel striped transfers allow a transfer to create parallel GridFTP
data channels among a set of servers. Third-party transfers allow a user to
transfer data between two other entities. Finally, in case of failures during the
transfer process, the GridFTP protocol permits partial file transfers to complete
the failed transfer. Last versions of the Globus Toolkit introduce a Reliable File
Transfer (RFT) service on top of GridFIP that is able to relaunch a previous
download in case of failure. Compared to other protocols, GridFTP has two
main disadvantages. First, it requires a working grid infrastructure both on the
client and the server, making it difficult to use it in other situations. Second,
even though it offers the possibility of encrypting the payload, it is disabled by
default as it incurs into a noticeable overhead.

e Peer-to-Peer protocols: The growth in the number of Internet users and the
bandwidth capacity have contributed to the popularity of peer-to-peer net-
works. Instead of a client-server approach, peer-to-peer transfers are based on
the idea that each user behaves both as client requesting data and as server of
the data it has already downloaded. Several peer-to-peer applications such as
Napster °, Gnutella 7, eMule 8, etc. contributed to the popularization of peer-
to-peer technologies. In this respect, BitTorrent [28] is one of the most popular
peer-to-peer protocols currently in use. The protocol defines two participating
entities: the tracker and the peers. The BitTorrent tracker is the entity in charge
of managing the availability status. It stores a list with the active peers and
the available parts of the file they have already downloaded. In order to start a
transfer, the peers contact the tracker (contact information is obtained from the
.torrent files) in charge to retrieve the list of seeds. Once the peer knows other
peers involved in the transfer it automatically negotiates which parts of the files
will be downloaded from each client based on the popularity, network status
and other peer statistics. In order to reduce the load on the tracker and improve
the fault tolerance, new extensions of the protocol try to create a peer-to-peer
network of peers. The Distribute Hash Table (DHT) extension [72] allows a
tracker less utilization of BitTorrent.

In practice, the selection of the transfer protocols has a huge impact in the per-
ceived performance. However, it is necessary to assess external factors that can affect
the final performance. While some protocols may be the best candidates for a par-
ticular scenario, how the Internet provider manages them may be critical from the
performance point of view. As an example, both HTTP and BitTorrent typically suffer
from ISP throttling, and therefore their effective performance is reduced compared
with the theoretical one.

16 music.napster.com
17 gtk-gnutella.sourceforge.net
18 www.emule-project.net

music.napster.com
gtk-gnutella.sourceforge.net
www.emule-project.net

19
20
21
22
23
24
25

2.4 SOCIAL NETWORK ANALYSIS

2.4 SOCIAL NETWORK ANALYSIS

The study of social networks is generating a lot of interest in the recent years due to
two emerging factors. First, online social networks are becoming a popular form of
communicating with friends, family, etc. Their increase in popularity makes possible
to have access to large networks that in the past where not practical to obtain. Sec-
ond, the improvement in technology to store, access, and analyze this type of large
data based on new paradigms (e.g., map-reduce, cloud computing, etc.) permits to
obtain the required computing infrastructures at acceptable costs. The information
contained in a social network is highly valuable as it provides insights of the user
behavior and can be used for a variety of purposes: optimization of server infras-
tructures, optimization of storage systems, user-targeted marketing, etc. This section
introduces the concept of static analysis and community detection in online social
networks.

2.4.1 Statistical study of social networks

The evolution of social networks has created new challenges regarding their study
and analysis. Large social networks can easily overpass 100 million users and bil-
lions of links, making them one of the most complex structures to be analyzed. In
this context, statistical studies provide a general view of the inner workings and
structure of the network. For example, understanding which is the diameter of a
network (i.e., longest shortest path) provides information about how many flooding
steps may be necessary to cover the network (e.g., for improving search or discov-
ery processes). Similarly, the clustering coefficient provides information about how
connected are the users among themselves (e.g., to determine the propagation speed
of a message broadcasted by a user). In this section, we overview several works that
analyze different characteristics of a social network.

Cha et al. [24, 23] study the popularity of video in YouTube * and Daum Videos *°
analyzing the dynamics of the popularity distribution and evolution and the level of
content duplication. Mislove et al. [76] analyze the structure of four popular social
networks: Flickr ', YouTube, LiveJournal ??, and Orkut 3. The authors obtain a data
set with 11.3 million users and 328 million links by crawling the public user web
pages. The results confirm that these type of networks show power-law, small-world
and scale-free properties.

Ding et al. [33] center their study on the behavior of YouTube users that upload
content. The authors discover that the number of uploaded videos per user follows a
Zipf distribution and that only a minority of users uploads content frequently. Addi-
tionally, the authors discover that a large fraction of the uploaded videos correspond
with multimedia material not generated by the users themselves (e.g., fragment of a
movie, video-clip, etc.). Ahn et al. [4] center their study on Cyworld 24, MySpace >

www . youtube.com

tvpot.daum.net

www . flickr.com

livejournal.com

www.orkut.com

Popular online social network in South Korea cyworld.com
www . myspace.com

19

www.youtube.com
tvpot.daum.net
www.flickr.com
livejournal.com
www.orkut.com
cyworld.com
www.myspace.com

20

RELATED WORK

and Orkut. The authors are able to obtain access to the complete Cyworld data set,
and evaluate whether the sampling method is effective when compared with other
social networks. The paper also compares how the scale of the networks evolves over
time showing significant differences between sites.

2.4.2 Community detection in social networks

The use of static analysis of social networks provides a general overview of the inner
workings of the whole network. However, the knowledge extracted from this analysis
is based in the assumption that all the nodes in the network share the same charac-
teristics. To overcome this limitation a significant research effort has been dedicated
to detect communities in social networks. In this way, a network is partitioned into
a set of communities, each of them containing nodes that share common characteris-
tics. This finer definition of the network as a composition of communities permits to
increase the level of detail in future static analysis refining the knowledge that can
be extracted from them. As an example, the social network formed by the users of
YouTube could be divided into communities based on the type of videos they usually
consume (music, games, entertainment, etc.).

Community detection algorithms share common characteristics with clustering
algorithms. In general terms, a community detection algorithm can be seen as the
application of a clustering algorithm using a similarity metric related with the social
characteristics of the network. In this respect, community detection algorithms can
be also classified [15, 124] using the existing categories for clustering algorithms: how
the partitioning is performed and what type of supervision has the algorithm.

Regarding the method used to define the partitions, we find hierarchical and par-
titioning methods. Hierarchical methods employ a dendrogram structure to build a
hierarchy of clusters either using an agglomerative or a divisive approach. The ag-
glomerative approach considers an initial state where each node corresponds with
one cluster and builds the upper clusters using a bottom-up approach. In the divi-
sive approach, the network is initially composed of one cluster and it is successively
split. Partitioning methods on the other hand target to determine which is the opti-
mal composition of the clusters usually by iteratively deciding which community a
node should belong to. Clustering algorithms are also characterized by the level of
supervision involved. From the practical point of view it affects what are the input
parameters of the algorithm. For example, whether the number of clusters in the
networks is an input parameter or is a result of applying a clustering algorithm.

From the point of view of the algorithms, many community detection methods [47]
have been proposed. However, the computational complexity involved in the process
usually leads to modified algorithms or heuristics that can provide similar results in
a fraction of time. Duch and Arenas [37] propose a community detection method
based on the upper bound value of the modularity. This metric [81] measures the
quality of partitions of a network. By measuring the fraction of edges in the social
network that are interconnected within the same community, it is possible to evaluate
the quality of the partitioning.

In [36] the authors propose an algorithm based on measuring the form of the over-
lapping cliques after generating a set of communities. Contrary to other supervised
approaches, the algorithm does not require to introduce the number of expected com-

2.5 SUMMARY

munities. Similarly, Zhao and Zhang. [133] propose a clustering method that consid-
ers overlapping communities with the addition of a hierarchical tree representation
to speedup the detection process. Liu et al. [71] define a method to transform the
community detection problem into a clustering problem by introducing an affinity
propagation metric. As before, the algorithm does not require previous knowledge of
the number of communities. In [126] the authors propose an algorithm that combines
link and content information in the community detection process. Authors take into
account the popularity of nodes, and introduce a discriminative selection of content
attributes.

The applicability of the existing community detection algorithms to large social
network traces poses new challenges due to their size and complexity. In [52] the
authors propose a multi-stage scalable community detection algorithm applied to
YouTube traces with the objective of improving content recommendation and dis-
covery. In [66] the authors describe how community detection can be speedup for
large networks. In the same research direction, Mislove et al. [77] study the feasibil-
ity of discovering missing user attributes by inference from the users in the same
community.

2.5 SUMMARY

This chapter presented an overview of different topics related with data distribution
systems. First, we provide a classification of data distribution systems according to
how data is discovered, stored and accessed by overviewing publish/subscribe archi-
tectures, data grids and content delivery networks. Publish/subscribe architectures
create an intermediate point in a message distribution architecture. Publishers cre-
ate events with new content and the infrastructure delivers the events to interested
users. While this infrastructure permits a highly decoupled deployment and does
not require the entities to be online when new events are notified, they require a sig-
nificant knowledge to determine which users must receive each message. Data grids
represent a more structured architecture for transferring data. As this type of net-
works require an underlying grid infrastructure (users must obtain a grid certificate
for accessing data) it is convenient for existing grids, but are difficult to introduce in
other more open deployments.

Content delivery networks represent one of the most employed technologies nowa-
days to facilitate the distribution of content. They simplify the infrastructure required
to distribute data, as the data owner only leases the necessary infrastructure. Con-
tent delivery networks are geographically distributed and mirror the required con-
tent near the user location to improve access latency. However, managing this type of
infrastructure is challenging, as it is necessary for the data owner to determine how
data will be distributed in the network and how many edge servers are required for
a particular case. This is a challenging problem that appears in many situations, and
solving it is an ongoing research topic.

Second, we explore different methods to model data distribution systems. The
modelization of these types of systems permits to define optimal policies for data
management and movement. Approximation algorithms represent a common ap-
proach for this type of problems. This type of algorithms is characterized by provid-
ing solutions in a reasonable time but usually do not guarantee what is the quality

21

22

RELATED WORK

of the solution provided compared with the optimum value. On contrast, mathemat-
ical models provide optimum solutions but they require the construction of complex
models, and this complexity usually results in significant computing times. While
some approaches propose the use of distributed solvers, they lack generalization,
and therefore are tailored to specific problems.

Third, we overview different methods to provide efficient data transfers. This prob-
lem is fundamental, as it does not matter the quality of a schedule produced by the
most reliable model, if it is not possible to deploy it in a real system. In this respect,
different policies can be used to parallelize data transfers, and different protocols of-
fer a variety of functionalities such as secure or reliable transfers. While there is a rich
set of protocols and policies, it remains unclear how to combine different protocols
to access the same data in parallel.

Finally, we describe how social networks can be analyzed to obtain information
regarding the user behavior. In this respect we overview statistical studies and com-
munity detection methods. By applying a statistical study it is possible to obtain a
general view of the structure of the networks. In this sense, metrics such as clus-
tering coefficient or network diameter can be used to determine how connected are
the users of a network, what is the friendship distribution, or the theoretical speed
in message propagation. Then, we overview different studies centered on finding
communities in a social network. By applying community detection methods it is
possible to split the network into a set of partitions. Each partition corresponds to a
set of users sharing common characteristics such as their preferred music or movie
genre. By combining community detection methods and statistical analysis of each
partition it is possible to obtain a more detailed view of the inner workings of a so-
cial network. This knowledge can be used in different aspects such as optimization
of server infrastructures or optimization of storage systems. However, the studies
show that analyzing large online social networks imposes different challenges de-
rived from their size and the complexity of the available algorithms.

The analysis of the existing related work shows the different existing techniques to
distribute data, model data distribution systems, and analyze social networks. How-
ever, the challenge still remains to define a single architecture capable of combining
the different techniques. In this thesis, we combine the aforementioned techniques
to define a publish-subscribe architecture that: employs a mathematical model to
schedule data transfers, uses community detection algorithms to reduce the number
of transfers from the server infrastructure, and provides reliable fast data transfer
mechanisms.

A GENERIC DATA
DISTRIBUTION SCENARIO

The main objective of the presented work is to define a new efficient and reliable
data distribution architecture that leverages the knowledge extracted from the user
community to improve the data transfer performance. Before presenting in detail the
different components of the architecture, this chapter presents a high level view of
the proposed architecture and its main objectives and functionalities. This chapter
overviews the different challenges found in current data distribution systems and
describes how our architecture addresses each of them.

Designing an efficient data distribution architecture is a challenging problem, ma-
inly because it involves many components at different abstraction layers. In order to
abstract the data transfer problem, we opt for a graph representation. Therefore, the
different actors involved become the nodes of a graph G. A set of server nodes S
stores files from a global set F. The set of users U requests a subset of files from the
server infrastructure. Considering these sets as possible nodes of a graph, we define
E as the set of edges connecting different elements.

The resulting graph G = (SUFU U, E) represents a data distribution scenario in
which subsets of files are stored in different servers, and the users request files from
servers. Figure 4 depicts the graphical representation of a example graph. In this
figure, we observe two important characteristics. First, the graph may be composed
of several disconnected components. In this case, each component of the graph rep-
resents a set of users, servers, and files that are not linked with any other node in the
graph. Second, a file may be stored in more than one server in the infrastructure (mir-
roring and/or proxying), which requires the introduction of a mechanism to manage
the lifecycle of the file in the system and how the users access it. It should be noticed
that even though we have considered files as the data entities to be transferred, our
approach can be easily extended to support other data sources.

@ User

I Server

Figure 4: Data distribution graph

23

24

A GENERIC DATA DISTRIBUTION SCENARIO

(a) File mapping on the server infrastructure (b) User redirection on the server infrastructure

Figure 5: Determining file-server mapping (left) and user redirection (right) on the server
infrastructure.

The graph representation has been employed in previous studies such as [59].
However, our graph is not limited to the user interests, including the relationships of
the content with the underlying server infrastructure. This additional knowledge ex-
poses two main problems. First, we need to determine how files should be mapped
onto the set of available servers (Figure 5a). A file may be replicated across the in-
frastructure, thus requiring to determine the number of replicas and their placement.
Second, as files may be replicated, it is necessary to decide how users requesting a
particular file will be redirected to a server storing that file (Figure 5b). An efficient
user request distribution reduces the hot spots and permits to achieve a better load
balancing among servers.

The main objective of this thesis is to propose an optimized data distribution infras-
tructure. As this type of infrastructures are composed by different types of elements
that need to work cohesively, it is important to determine what would be the effect of
modifying existing elements or introducing new ones. Designing such a system can
take two completely different paths. A first option would be to completely redesign
the system in order to improve the performance. However, significant changes in the
involved entities or in the underlying protocols can be more disruptive than func-
tional. As an example, consider the impact and effort required to modify all servers
in a large server infrastructure to install a new protocol, or modify their current
configuration. In this work, we approach the design phase as a problem of how to
efficiently use the existing elements to improve the overall performance.

In this sense, we provide a general overview of the main challenges faced by this
kind of distributed systems and the limitations imposed. In particular, we consider
three main challenges: system sizing, system availability, and compatibility with ex-
isting infrastructures, which we explore in detail:

e System sizing: Different type of applications such as web pages serving user
generated content (e.g., Youtube, LastFM or Facebook), scientific applications
running in cloud environments or dedicated clusters, etc., have been shown
to present highly variable workload patterns [116, 53, 127]. As an example,
Figure 6 shows the average number of requests per minute received by of 10%
of the Wikipedia [110] servers between September 19'" and October 2™4, 2007.

A GENERIC DATA DISTRIBUTION SCENARIO

Avg. Requests per Minute
4000 6000 8000 10000

Day

Figure 6: Number of requests received by 10% of Wikipedia servers between September 19t
and October 2™4, 2007.

This variability makes necessary to dynamically adapt the system size to the
current demand in order to optimize the infrastructure cost.

e System availability: Considering an application with a variable workload, as-
suring quality of service becomes a challenge. Changes in the system size have
a direct impact on the availability of the infrastructure. Adding new servers re-
duces the problem, as the requests are distributed among a bigger set of servers.
In this situation, the likelihood of redirecting a request to an overloaded server
decreases. By contrast, in the event of decreasing the system size to reduce the
infrastructure cost, maintaining the previous quality of service level becomes a
problem.

e Compatibility with existing infrastructures: Different proposals [102, 7, 14] to
optimize the behavior of data distribution infrastructures require changes in
low level components of the system. In this sense, the approach of this thesis
differs from other works in that our proposal maintains the de facto infrastruc-
ture standards. Changing the underlying protocols may increase the through-
put of a system, but it has a major drawback: it requires updating or modifying
the software stacks of all components involved (users, servers, and intermediate
appliances such as routers). While users of the system may be more inclined
to update their systems, this type of update is a challenge in itself when ap-
plied to servers or intermediate appliances as backward compatibility must be
assured in most cases and it requires of a significant investment. In this work,
we focus on optimizing the system behavior using the existing protocols and
server infrastructure practices.

Taking into account the presented challenges, this thesis introduces a set of com-
ponents that optimize specific problems in the data distribution process, without
requiring any low-level change in the underlying infrastructure.

26 A GENERIC DATA DISTRIBUTION SCENARIO

Virtual Communities Publisher Organizations

.| Community
Detection

Transfer

Scheduling

!

Distribution
controller

Figure 7: Generic data distribution architecture.

3.1 DECOMPOSITION OF A DATA DISTRIBUTION PROCESS

The complexity of the data distribution process makes necessary to divide the prob-
lem into smaller parts, such that each proposed technique produces a clear improve-
ment on specific parts of the process. Going back to the data distribution graph pre-
sented before (Figure 4), a data distribution process involves a set of users requesting
subsets of files from a server infrastructure.

In this thesis, we introduce a set of modules, each of them addressing a particular
problem: analyzing the user community requesting the files, monitoring the status
of the system, scheduling the file transfers, and notifying and transferring data from
servers to users. Figure 7 provides a high level overview of the resulting architecture
showing the main components involved:

1. Virtual communities: The users requesting files from the servers are grouped
into virtual communities based on a similarity measure. Each virtual commu-
nity will contain a local proxy permitting to reduce the number of transfers
from the servers to the users. A file accessed by all users in a virtual commu-
nity will be transferred from the servers to the local proxy, and then locally
distributed to the users. In this way, we reduce the workload on the server
infrastructure.

2. Publisher organizations: The infrastructure serving content to users is divided
into publisher organizations depending on the data owner. The data owner
is the entity responsible for creating and maintaining the data, and granting
access to the users. In this respect, our architecture considers the possibility
that in order to access some files the users must present the necessary creden-
tials. This characteristic therefore limits the movement of data between different
components of the infrastructure and requires the definition of the appropriate
mechanisms to enforce it.

3.2 APPLICABILITY

3. On-demand resources: The publisher organizations control a series of dedi-
cated resources to serve content to users. However, the distribution infrastruc-
ture must be able to cope with unexpected workload spikes. In order to achieve
this objective a pool of on-demand resources is available to activate new servers
when necessary. Notice that in practice, these resources are typically expected
to be implemented as cloud computing instances, but any other solution can
be also considered for our purposes.

4. Community detection: The community detection module analyzes the relation-
ships between the users of the system and proposes different aggregations in
the form of virtual communities (VC). By grouping together users with the
same interest (e.g., requesting the same file or being in the same location), the
size of the data distribution graph is significantly reduced. Additionally, the
information obtained from the formation of virtual communities can be used
to determine request patterns and to identify possible proxy locations.

5. Transfer scheduling: Using the information from the community detection
module and the current state of the system, this module schedules the re-
quired transfers. The scheduling module uses an optimization process to ob-
tain a schedule with a reduced makespan, avoiding hot spots in the server
infrastructures, and reducing the flash crowd effects. As a result of this process,
the distribution controller infrastructure manager may need to trigger a system
resizing action in order to satisfy the existing demand.

6. Distribution controller: The distribution controller has two main responsibili-
ties. First, it checks the status of the system in order to determine the number
of available servers, their characteristics, and their cache contents. Seconds, it
monitors the arrival of new data from any publisher organization and com-
mands the remainder of components to perform the distribution to interested
users. In order to do that, the controller evaluates the current state of the dis-
tribution infrastructure and schedules the transfers. Once a schedule has been
determined, this module notifies the interested users in the order determined
by the schedule. This module is connected with a proxy location inside the
virtual organizations that will download the data from the specified sources.

The modularity of the architecture permits to introduce new modules or modify
the existing ones to adapt the behavior of the system to the specific requirements
of the application scenario. As an example, we could replace the community detec-
tion module with a user-defined list of communities; we could add data availability
prediction module, etc.

3.2 APPLICABILITY

Presenting a generic data distribution process at a high level of abstraction introduces
the risk of missing details that may not make possible to use the proposed modules
in a real scenario. This section overviews several real application scenarios that could
benefit from this work. The following paragraphs describe their characteristics and
the possible benefits of adopting the proposed architecture.

27

28

A GENERIC DATA DISTRIBUTION SCENARIO

e Massive data distribution processes: To improve the user experience, a large
number of applications and systems implement automatic updates. These types
of updates usually involve the client checking for updates and transferring the
new data when necessary. While this scenario reduces the user intervention to
download new versions of software, it introduces the major problem of flash
crowds. Large systems with this type of updates such as Apple, Ubuntu, etc.,
suffer from massive number of accesses on update days. When a large num-
ber of users discover the update at the same time, the servers containing the
update are likely to be overloaded by the demand. One possible solution is to
enlarge the infrastructure, but it incurs in a higher cost. By adopting our pro-
posed architecture it is possible to reduce the overload in the servers, by means
of grouping user requests into clusters and planning the transfer processes.

e Pre-caching on dynamic infrastructures: A large number of user generated
content networks such as Wikipedia, Youtube, LastFM, etc., employ the benefits
of cloud infrastructures to scale the number of servers according to the demand.
New machines added to the infrastructure start from a fresh state, resulting in
empty caches. Depending on the content, pre-caching at least the most popular
contents will improve the machine responsiveness when it starts to process
user requests. In this case, the new machines added to the system behave like
user destinations, and the existing server infrastructure is used to provide the
copies of data avoiding backend accesses. In this scenario we can optimize
its performance by introducing scheduling in the transfer process in order to
reduce the makespan of booting and preparing new instances to serve content
to users.

e Scientific applications in cloud computing environments: Running scientific
applications in cloud computing environments is a growing practice. The cloud
computing permits to reserve computing clusters on demand with similar char-
acteristics to the owned computing clusters. This type of application is charac-
terized by being mostly computing intensive. In this sense, the usual workflow
is to read the input data, perform the required computation and generate the
results. In this scenario, if we consider cloud computing instances as user re-
questing data and the server infrastructure as the servers storing the input data,
we obtain a version of our base data distribution problem. This scenario also
presents other interesting characteristic: once the computation has finished, the
roles are interchanged, as the cloud instances are the one sending data to the
server infrastructure.

The mentioned scenarios constitute a basic sample of the target applications where
our proposal can optimize the system performance. In this respect, many other sce-
narios such as big data analysis on cloud infrastructures, optimization of communi-
cation in parallel applications could also benefit from parts of our proposal.

3.3 SUMMARY

In this chapter, we have presented the data distribution problem addressed by this
thesis. The objective of this work is to define a new efficient and reliable data distri-

3.3 SUMMARY

bution architecture that leverages the knowledge extracted from the user community
to improve the data transfer performance.

In order to fulfill this objective, we define a modular architecture and provide a
high level view of the different components involved. Our architecture considers the
existence of a set of users that request files from a set of servers. The servers may be
grouped in different publisher organizations, and the files may be replicated across
the server infrastructure. The architecture is composed of four main modules. The
system controller is responsible of monitoring the status of the servers and triggers
the distribution operation whenever new files are requested or become available. In
this respect, we support a publish/subscribe scenario where the users have previ-
ously subscribed to different types of contents.

A community detection module analyzes the relationships between the users and
the requested files and provides a set of virtual communities. This approach simpli-
fies the representation of the problem by grouping the users into virtual communities
attending to their common interest. In this way, we are also able to introduce local
proxies in each community in order to reduce the server infrastructure workload. The
information generated by this module is used by the transfer scheduling module in
order to decide which is the best strategy to distribute the requested files avoiding
hot spots and flash crowd effects. Once a schedule with a reduced makespan has
been produced, the notification module triggers the download operation in the user
locations. Using this approach it is possible to efficiently distribute large set of files
to a large set of users in the minimum time.

To conclude this chapter, we discuss the applicability of our proposal and describe
how it can be applied to different scenarios such as: massive data distribution pro-
cesses, pre-caching on dynamic infrastructures or the execution of scientific applica-
tions in cloud environments.

29

ANALYSIS OF ONLINE
COMMUNITIES

The advent of the Web 2.0 has popularized the concept of social network up to the
point where using some type of social network is now part of the everyday life of
a significant part of the world population. Social networks allow users to declare
their interests, their friendships and to share content among friends. As an example
of the magnitude of this type of applications, Facebook [42] reported 955 million
monthly active users at the end of June 2012, storing more than 100 petabytes of pho-
tos and videos. Understanding the information contained in a social network permits
to obtain a deeper knowledge of the user behavior and optimize different processes
accordingly. In a previous work [108], we studied how a peer-to-peer network could
benefit from the existence of small-world communities. In that work, we proposed
Affinity P2P (AP2P), a self-organizing peer-to-peer network where each node joins
a set of clusters of interest according to its content affinity. Our evaluation demon-
strated that grouping users into communities improves the search recall and reduces
search latency. However, our experiments were carried out using a YouTube dataset
in which the existing categories where known a priori. This restriction imposes a
significant limitation in order to exploit the existence of user communities in other
scenarios. As a result, we started exploring different methods to automatically dis-
cover user communities in social networks, allowing us to employ social knowledge
in other application scenarios.

In this thesis, we focus on the identification of the virtual communities found
in a data distribution graph. Detecting the existing virtual communities brings two
significant benefits. First, the existence of virtual communities permits to reduce
the graph representation of a data distribution problem as the user nodes may be
substituted by a significant smaller set of virtual communities. Second, each virtual

Community |- -
| Detection

Input graph Vir"chal Commu—l;i’ties

Figure 8: Definition of the virtual communities using the community detection module. The
input data distribution graph (left) is processed by the module to produce a set of
virtual communities over the input graph.

31

ANALYSIS OF ONLINE COMMUNITIES

community can be seen as a candidate for proxy locations as each community will
group users with similar preferences.

Based on the data distribution architecture defined in Chapter 3, this chapter fo-
cuses on the Community Detection (Figure 8) module of the architecture. This mod-
ule analyzes the relationships between the users of the system and the files they
access, and defines a set of virtual communities. The extracted virtual communities
will then be used as the input for the transfer scheduling module of the architec-
ture. The existence of virtual communities in the system permits to employ compact
representations of the data distribution graph, thus simplifying its future processing.

In this work, we propose a method to apply community detection algorithms to
data distribution networks. We study the performance of the existing algorithms and
propose a new iterative community detection algorithm to overcome the existing
limitations.

4.1 EXISTING METHODS TO DETECT USER COMMUNITIES

The concept of social network refers to a set of entities connected by different types
of links between them. We can categorize the social networks into two main types
depending on whether the links are explicitly declared by the entities, or they are
inferred through a data mining process. Using this characteristic, we distinguish
between two types of networks: explicit and inferred social networks.

"o

mowes games

music

Figure 9: Example of an explicit social network. A virtual community is formed around each
of the declared characteristics. Notice that a user may belong to several communi-
ties at the same time.

o Explicit social networks: This type of network is the most common form asso-
ciated with the broader term social network. A declarative social network re-
quires the entities to actively declare the existing links with other entities. Typi-
cal examples of this type of networks are sites such as Facebook * or Google+ .
Nonetheless, social networks are not limited to friendship relationships. Other
networks focus on other aspects. For example, Youtube 3 forms a social net-
work based on the different types of relationships (share, comment, like, etc.)

1 facebook.com
2 plus.google.com
3 youtube.com

facebook.com
plus.google.com
youtube.com

4.1 EXISTING METHODS TO DETECT USER COMMUNITIES

of people with videos; Last.FM 4 analogously focuses on music content. As an
example, Figure 9 shows an explicit social network with the entertainment pref-
erences of users. Each entity of the system declares its specific interests for a
particular item. As a consequence, a virtual community is formed surrounding
each preference or taste (e.g., movies, games, music, etc.). This results in the
existence of one virtual community per item in the system, where a user may
be present in different communities at the same time.

o Inferred social networks: When the relationship is not actively defined in the net-
work, it is also possible to define virtual communities that aggregate users
based on the results of a data mining process. The information contained in
the system is analyzed to reveal the hidden characteristics or facts that are not
known a priori. The typical approach to obtain this information is to apply a
community detection algorithm grouping users that have similar characteris-
tics. As an example, Figure 10 shows an inferred social network considering
the files accessed by users in the last 24 hours. The access information is used
to partition the network into a set of virtual communities. While this approach
is usually employed in this type of networks, it is also possible to apply these
procedures to explicit social networks in order to reduce the number of virtual

communities.
User | Accesses 24h R
u, fo,f . f2 3 VC
u, f2 Inference | =/
u, f] f 2 :>
u, 1:o
u, f0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

Figure 10: Example of an inferred social network based on the file accesses of a set of users
during the last 24 hours. Notice that each user only belongs to a single virtual
community and there is no overlapping.

In this work, we consider the possibility of using both types of networks as input
for the community detection module. The objective of the module is to define a set
of virtual communities (VC) using the available information, either the explicit social
network, or the information needed to infer it. This permits to determine points in
the network that can behave as proxies in such a way that when the same file is
requested by a group of users, it is possible to reduce the number of transfers from
the origin servers to the proxies to one, and make all the users access the same proxy
copy of the file. The addition of proxies to a data distribution infrastructure permits
to control the tradeoff between the backend cost for the infrastructure owner, and
the quality of service perceived by the user.

Given a data distribution graph, our objective is to find a method that provides
partitions that satisfy three characteristics: 1) contain a minimum number of users,
2) have a maximum number of files assigned to the partition, and 3) the set of files

4 last.fm

33

last.fm

34

ANALYSIS OF ONLINE COMMUNITIES

—

Figure 11: Detecting communities on declarative social networks using item selection.

shared on all partitions should be minimal. These characteristics are desired in a data
distribution system in order to avoid communities with a large number of users and
communities with a large, and possibly the same, set of assigned files. The following
sections describe two techniques to partition a social network into a see of virtual
communities.

4.1.1 Detecting online communities using item selection

A common approach to detect online communities in explicit social networks is to
identify which subset of users are interested in the same items. Notice that the def-
inition of item is generic and may vary from network to network. For example, an
item may be a category of files, a music genre, a preference, a set of files, etc. Con-
sidering the data distribution graph G(FU U, E) as input, we can define the set of
virtual communities VC as:

uj
VCy = U uj: (3 ejr:fr € Fj e € E) (1)
j=0

where VCy is the resulting virtual community, ejy is the edge connecting user u;
with item fy, and F;j is the set of items the user w; is linked with. In the case of a
data distribution scenario, the items correspond to the files. As an example, Figure 11
shows the result of applying the aforementioned method to a graph composed of 5
users and 3 files. The partitioning method defines a set of virtual communities (VCp
for fo, VCy for f1, and VC; for f,.) in such a way that a community is defined around
a related file.

This type of approach presents several problems that discourage its use in real
applications. First, it produces a set of overlapping communities, which in our case
translates in a user belonging to a set of different virtual communities. From the
point of view of a data distribution infrastructure, it is preferred to assign each
user a single entry point to the infrastructure. This is the usual practice in many
content delivery networks. Second, the partitioning method requires the global data
distribution graph to define the communities (i.e., a graph with users and files).

4.1 EXISTING METHODS TO DETECT USER COMMUNITIES

In practice, this graph may be significantly large, and therefore the computational
complexity of the method may make it unfeasible for medium to large networks.

4.1.2 Detecting online communities using community detection algorithms

The detection of virtual communities using the aforementioned approach produces a
virtual community per item. As this number can grow rapidly and it can produce low
populated virtual communities, we propose a method to apply existing community
detection algorithms to data distribution networks. This type of procedure can be
applied to both explicit and inferred social networks and produces a number of
virtual communities independent of the number of items in the system.

Existing community detection algorithms require an input graph with only one
type of vertex (either user or file). Therefore it is necessary to define a mechanism
to adapt a data distribution graph in such a way that can be used with existing
algorithms. Our approach consists of two phases: first, we abstract the information
contained in the initial graph and define a new condensed weighted graph; second,
we analyze the resulting graph using a community detection algorithms to obtain
the existing partitions. The following paragraphs provide a detailed description of
both processes.

1. Condensing the graph representation

The first step in the process is to transform the initial graph in such a way that it
only contains one type of vertex. The original graph G = (SUFUU, E) contains
three types of vertices: servers, files, and users. The exiting algorithms are not
able to detect communities in this type of graph, and therefore it is necessary
to condense the representation limiting the type of vertex to a single one. For
the purpose of detecting online communities, the set of servers that store the
files are not relevant and therefore can be directly removed. In contrast, the
relationship between users and files needs to be maintained.

In order to maintain this information, it is necessary to produce a condensed
graph that maintains only one type of vertex: users or files. To establish the re-
lationship between the selected type of vertex, we link together two vertices if
they share at least one common item of the other type. The links are weighted
according to the number of common items shared. In practice, we could obtain
two possible graphs. Either a graph of users, where two users are linked to-
gether depending on the common files accessed by them; or a file graph, were
two files are linked when they have a common user accessing both files.

The existing challenge in this aspect is to define the metric used to establish
the weight of the relationship between two entities. In this thesis, we focus on
two metrics that weight the commonality between two entities: intersection and
Jaccard. However, the method described for condensing a graph, can be applied
using any other similarity metric. For brevity purposes, the remaining of this
section considers the creation of a user graph. The file graph can be created
analogously using the same metrics.

The intersection metric (Equation 2) corresponds to the number of files that are
accessed by user i and j. It is an absolute measure that captures the number of

35

36

ANALYSIS OF ONLINE COMMUNITIES

intersection

CRLES

Jaccard 1/3

1/2

Figure 12: Application of intersection and Jaccard metrics to produce a condensed graph,

with puy = py =0.

common items associated to both entities. lamnitchi et al. [59] propose this met-
ric to determine the weights in an interest-sharing graph. The authors introduce
a threshold u; that determines the minimum intersection value to consider a
relationship meaningful.

. . F. F; if |F; F: 2
W}',‘rjttersectlon — | 1 ﬂ)| | i ﬂ)| H1 (2)
0 otherwise

In addition, we also consider the Jaccard metric (Equation 3), which is a rela-
tive measure of the common interest. It is defined as the number of common
files requested by two users i and j divided by the total number of distinct
files requested by both users. As before, we also introduce a threshold py that
establishes when a weight is considered meaningful and must be defined.

FOFL e IFNF
jaccard __ \FiUF;\ f \FiUF;\ > H (
I — 3)
1] otherwise

To illustrate both metrics, Figure 12 depicts a graph of users and files taken
as input (left), and the resulting user graphs using the intersection metric (top
right) and the Jaccard metric (bottom right). As shown in the figure, the shape
of both resulting graphs is equivalent, and the differences are found in the
weights. The selection of which measure will produce the best condensed graph
depends on the application scenario, and the impact of using relative or abso-
lute measures in the edge weight distributions.

4.1 EXISTING METHODS TO DETECT USER COMMUNITIES

2. Applying a community detection algorithm

After the condensed graph has been produced, the next step is to analyze the
graph and proceed to the partitioning into a set of virtual communities. It
is important to notice that we analyze the graphs without any prior knowl-
edge of the number of existing communities (unsupervised learning). There-
fore, it is the responsibility of the algorithms to determine this number and the
membership of each community. In this work, we focus on several well-known
unsupervised algorithms for automatic community detection: Fast greedy [27],
Walktrap [89], Label propagation [91], Leading eigenvector [80], Multilevel [18],
and Infomap [97].

The selection of the algorithms has been made according to their popularity
and the computational complexity when presented with large graphs. Thus,
some well studied algorithms have been discarded due to their excessive com-
putational complexity. The next paragraphs provide a general description of
each algorithm showing their main characteristics.

o Fast greedy: The method proposed by Clauset et al. [27] is an improved
greedy approximation to the algorithm developed by Neuman [79]. The
algorithm is based on optimizing the modularity of the different commu-
nities found in a network. The metric weights the relationships between
the nodes of a community and the links of those nodes with other com-
munities, and compares them with the results of an equivalent random
graph. The algorithm assigns entities to a community in such a way that
the modularity score of the graph is maximized. The algorithm offers a
O(V|-log?|V]) complexity for sparse networks with V vertex, compared
with the original complexity of o(|V]3).

o Walktrap: It is a method proposed by Pons and Latapy [89] based on the
idea that short random walks tend to visit nodes belonging to the same
community. The authors use the information gathered by the random
walks to determine the hierarchical structure of the network, and then se-
lect the appropriate partitions to obtain the communities. The algorithm
runs in a O(|V|? - log|V/|) time in the average case.

o Label Propagation: Raghavan et al. [91] propose an iterative algorithm based
on labeling vertices of the social network graph. The algorithm starts with
an initial random labeling of the nodes, and in each step, each node adopts
the most common label among its neighbors. In this way, after the iterative
process ends, nodes in a community are likely to be using the same label.
The algorithm has a complexity of O(|E|) for each iteration, being E the
set of edges. However, due to the random selection of labels in the first
iteration, it may be necessary to execute the algorithm several times to
consolidate the solutions.

o Leading eigenvector: In [80] the author propose an algorithm to detect com-
munities based on information contained in the modularity matrix of a
network. This iterative algorithm follows a top-down approach. At each
step based on the information contained in the matrix, it is decided whe-
ther to create two communities or not. This decision is taken based on

37

38

ANALYSIS OF ONLINE COMMUNITIES

whether the modularity will be maximized by the split. The algorithm has
a complexity of O(|V|?) for sparse networks.

o Multilevel: Blondel et al. [18] propose an iterative algorithm based on the
modularity gain of assigning a node to a community. Initially, the algo-
rithm assigns a community per node. On each iteration, the community
formed by the neighbors of each node is evaluated to determine the gain
of removing that node from the community. If the gain is positive, the
node is placed in the community with the highest gain.

o Infomap: Rosvall et al. [97] propose an algorithm based on information the-
ory principles and not around the concept of modularity. In particular, the
algorithm centers on a map equation that measures the accuracy of the tra-
jectory of a random walk inside a network. The trajectories are described
by labeling each node with a unique identifier. The main idea behind the
algorithm is to find an optimal code that describes the trajectories. This
optimization leads to iterative refinements of the node labels, where the
nodes belonging to the same communities share the same prefix.

Notice that even though we have concentrated on this selection of algorithms
to evaluate our method, any other type of algorithm can be applied whether
unsupervised or not.

In this work, we employ the two-step method described in this section to deter-
mine the existing virtual communities in a data distribution scenario with the objec-
tive of assigning one proxy per community. However, the method can be adapted to
other scenarios such as content delivery networks. In that scenario, requests would
be transformed into probabilities of accessing a particular content and the detected
communities would indicate points in the CDN where it is optimal to situate a proxy.

4.2 ITERATIVE WEIGHTED COMMUNITY DETECTION ALGO-
RITHM

The community detection algorithms presented in the previous section produce a set
of partitions based on the utilization of unsupervised methods. As a consequence,
it is not possible to tune the algorithms to produce communities under certain con-
straints. While some supervised algorithms [61, 11] permit to specify the maximum
and minimum size of a partition, it is not possible to incorporate into the algorithm
other metrics related with the quality of the partition from the point of view of a
data distribution problem.

To address this problem, we propose a new algorithm that permits to guide the
partitioning process. From the point of view of a data distribution infrastructure, we
would like to control two parameters: the number of users in a community and the
number of files assigned to a community. These parameters impact the requirements
of the proxy locations in terms of how many connections they will receive (number
of users), and how much storage is required (number of assigned files).

Our iterative community detection algorithm (Algorithm 1) takes as input five pa-
rameters: 1) the condensed graph, 2) the entity set used in the condensation phase,

4.2 ITERATIVE WEIGHTED COMMUNITY DETECTION ALGORITHM

3) the minimum number of elements in a community, 4) the maximum ratio of enti-
ties assigned to the community, and 5) an auxiliary community detection algorithm
selected from the ones presented in the previous section. The algorithm uses that
information to generate a set of partitions given an initial graph.

The algorithm defines a list of communities to be processed, and finishes when
the list becomes empty. Initially, the algorithm is executed over the condensed graph,
and the resulting communities are added to the list for further processing. On each
iteration, we extract a single community from the list and evaluate whether it is
necessary to generate new sub-partitions.

Algorithm 1 Iterative community detection algorithm.
Input: G, entities /* Entities used during the condensation phase */
Input: communityDetectionMethod()
Input: ratioifities minglegments
solution = ()
/* Determine the number of entities per community */
max\e/nctities — |V| X Tatio%%tities
toProcess = communityDetectionMethod(G)
5: /* Start the iterative processing */
while toProcess # () do
¢ = toProcess.pop()
entititesyc =0
for vindex € c.vertexList() do
10: entitiesyc = entitiesyc |Jentities[vindex]
end for
if [entitiesyc| > max{Eities A cnumberVertex() > ming!gments then
aux = communityDetectionMethod(c)
if laux| > 1 then
15: toProcess.push(aux) /* Several partitions detected */
else
solution.push(c) /* Only one partition produced. */
end if
else
20: solution.push(c) /* Stop iterative partitioning */
end if
end while
return solution

In this respect, the algorithm evaluates whether the virtual community meets two
requirements: 1) the partition contains more entities than expected; or 2) the num-
ber of elements assigned to the virtual community is larger than expected. These
requirements are evaluated in order, and if not satisfied, the algorithm decides that
the virtual community must not be further split. Otherwise, the algorithm tries to
generate a new set of sub-partitions. These sub-partitions are added to the list of
communities to be evaluated unless only one partition is generated. In this respect,
we have observed that some of the algorithms are not able to split some input graphs.
By iteratively taking one community from the processing list and moving the results

39

40

ANALYSIS OF ONLINE COMMUNITIES

VC, {400, 1600}

v v v
VC, {23,500} VC, {300, 1200} VC, {77, 300}

. elements entities

Stop, min . Stop,max .

' ’ ’

VC, {150,300} VC_ {50, 800} VC, {100, 700}

entities

Stop,max .
VC_ {50, 800} VC, {30, 700}
Stop, cannot split, use VC, Stop,minel,lé'”e”“

VC, {70, 200}

entities

Stop,max .

Figure 13: Iterative community detection algorithm applied to a sample graph with 400 users
and 1,600 files using min{/¢ments = 30 and max§/ities = 400. The values of
each virtual community represent the number of elements and the number of
assigned entities respectively.

to the solution list, the algorithm may be able to produce a larger number of com-
munities when compared with previous approaches.

As an example, Figure 13 describes the different branches of an execution of the
proposed iterative algorithm. Initially a graph with 400 users and 1,600 files is taken
as input with the algorithm configured with ming'gments = 30 and max{tities =
400. In the first iteration, the initial community VCy is partitioned into three: VCy,
VC;,, and VC3. The virtual community VC; is moved to the solution list as it does not
meet the requirement of minimum number of elements in the community (23 > 30 is
not satisfied). In the next iteration, VC; is split into three new virtual communities:
VCy4, VCs, and VCg. Next, VC3 is evaluated and considered part of the solution as
the number of assigned elements is within the desired range. The same situation
is found in the next iteration for VCy4. The evaluation of VCs tries to partition the
community but fails to produce more than one partition. This may happen due to
the internal structure of the subgraph or due to the inability of the selected algorithm
to produce new partitions. Finally, VCg is evaluated and partitioned into VCg and
VCoy, which both fail one of the requirements. As a result of the algorithm, a graph
that otherwise will generate 3 partitions (VCy, VC;, and VC3), produces 6 refined
partitions: VCy, VC3, VCy4, VCs, VCg, and VCo.

As shown in the previous example, the algorithm iteratively uses an underlying
community detection algorithm to split a community and based on the results of

4.3 EVALUATION SETUP

that partitioning it decides whether additional partitions should be created or not.
The complexity of using our iterative solution is therefore the number of iterations
of the algorithm multiply by the complexity of the underlying community detection
algorithm. To provide an average complexity, we assume a general case where the
underlying algorithm at least creates two partitions each time is executed. In this
situation the complexity of the algorithm is:

. . B lentitites| lelements]|
iterativegepth = max(max%“cﬁﬁes , minf}ceme“ts) (4)
O(iterative) = iterativeqeptn - Oalgorithm (5)

where iterativegeptn corresponds to the number of expected iterations of the algo-
rithm and Oq1gorithm corresponds to the complexity of the underlying community
detection algorithm.

4.3 EVALUATION SETUP

In this section, we describe the experimental setup used in the evaluation. First,
we present the input data set and summarize its main characteristics. Second, we
describe the selected metrics to evaluate the quality of the produced partitions.

4.3.1 Data set

In other to evaluate the applicability of community detection algorithms to data
distribution scenarios, we create a set of synthetic data distribution networks. We
define various graphs, with a fixed number of users and files. In order to build a
realistic network, we select a popularity distribution for the files, and connect each
file to a selected number of users based on that information. Several studies [24,
108, 109] have investigated the popularity distribution found in many data-sharing
systems. The results show that popularity distributions usually follow a combination
of statistical distributions depending on the range of the ranking. That is, the top 10
elements may adjust to an exponential distribution, the next 100,000 elements to a
power-law, and the next 10,000 to other type of power-law. For our study, we select
the zipf distribution, as it has been found to be the most common, and it is able to
represent the popularity ranking for the larger number of elements in the system.

In this study, we generate two types of initial networks, one with a fixed number
of files and varying number of users, and other with a fixed number of users and a
varying number of files. The motivation behind this decision is to understand how
community results vary when presented with different proportions of users and files.
Table 1 details the characteristics of the different graphs generated based on a zipf
distribution with an o« value of 1. From the generated graphs, we can observe two
main characteristics that may play a fundamental role when different community
detection algorithms are applied.

First, we see that the number of edges quadruples when varying the number of
users for a fixed number of files. As expected, this is reflected in the number of
edges contained in G,. However, in both tables, we observe that the amount of

41

42 ANALYSIS OF ONLINE COMMUNITIES

USERS FILES EDGES IN G, EDGES IN Gy
100 1,600 4,950 615,887
200 1,600 19,900 614,375
400 1,600 79,800 613,720
8oo 1,600 319,600 614,207

1,600 1,600 1,279,200 614,917
3,200 1,600 5,118,400 615,108
6,400 1,600 20,476,800 614,715

12,800 1,600 81,913,600 614,563

1,600 100 1,264,393 2,311
1,600 200 1,278,938 8,954
1,600 400 1,279,200 38,250
1,600 8oo 1,279,200 154,852
1,600 3,200 1,279,200 2,500,696
1,600 6,400 1,279,200 10,014,989
1,600 12,800 1,279,200 40,080,631

Table 1: Number of edges found in the file and user graphs varying the number of users with
a fixed number of files and vice versa.

edges is particularly large. As an example, for 6,400 users and 1,600 files, we obtain
a Gy, graph with 20,476,800 edges. As a comparison a complete graph with the same
number of vertices would have [U] - (JU] —1) = 40,953,600 edges. While our graph
has half of edges of the complete graph, it presents a high connectivity degree that
may difficult the partitioning process.

Another important aspect is to evaluate how the different weighting metrics, inter-
section and Jaccard, perform on this type of graphs. Figure 14 plots the correlation
between the similarity metrics for a user and a file graph. The results correspond to
a configuration of 1,600 files and a varying number of users (100, 200, 400, 800, 1,600,
3,200, 6,400 and 12,800). Notice that in both the user (Figure 14a) and file (Figure 14b)
results, the observations obtained for a particular number of users are significantly
clustered.

In the case of the user graph, we observe that the values of the intersection metric
are reduced as the number of users increases, and the values of the Jaccard metric
are marginally increased. However, in the case of the file graph, we observe that the
values of the intersection increase with the number of users, and the Jaccard values
have a marginal decrease. These results are explained by the fact that on a user graph,
as the number of users increases, the probability of finding two users accessing the
same content decreases. On the file graph, this situation is reversed as the number
of vertices in the graph is fixed for all configurations.

To put into perspective the differences between both metrics, we measure the
spread of the produced values. To obtain this measure, we use the normalized stan-
dard deviation (i.e., the standard deviation of the values divided by the mean value).

4.3 EVALUATION SETUP 43

(a) User graph. (b) File graph.

Figure 14: Correlation between the intersection and Jaccard metrics using a configuration of
1,600 files and a varying number of users.

2.0+ 2.0
B Intersection B Intersection
O Jaccard O Jaccard

=

o
I

=

(&3]
I

o
(63}
I

Normalized standard deviation
=
o
Il

Normalized standard deviation
=} P
[62] o
Il Il

0.0 -

O_O,I]l]l]l]nn
o o o o o o

o [=} o o o o

— N < © © N

— o™

100
200
400
800
1600
3200
6400

oo,
12800 :

12800

Number of users Number of users

(a) User graph. (b) File graph.

Figure 15: Normalized standard deviation of the intersection and Jaccard metrics using a
configuration of 1,600 files and a varying number of users.

44

ANALYSIS OF ONLINE COMMUNITIES

Figures 15a and 15b show the values of this metric for the user and file graphs re-
spectively. In the case of the user graph, the normalized standard deviation is slightly
higher when using the intersection metric. In the case of the file graph, this differ-
ence becomes noticeable, with values up to 40% higher when using the intersection
metric.

As a conclusion, we focus our study on condensed graphs generated with the
Jaccard metric. This metric has demonstrated to produce weights with a limited
spread, and a similar behavior in terms of clustering than the intersection metric.

4.3.2 Metrics

This section presents the metrics used in our evaluation. In this thesis, we explore dif-
ferent metrics and try to understand which metric or combination of metrics reflects
better the quality of a certain partitioning.

To measure the quality of a partition, we employ a combination of metrics that
come from different fields: number of communities and modularity from the commu-
nity detection field; clustering coefficient from social network analysis; and number of
vertices per community, number of assigned resources per community, and commonality
level that are relevant for data distribution infrastructures. A detailed description of
each metric is described in the following paragraphs.

o Number of communities (|VC|): One important aspect of a community detection
algorithm is the number of partitions of the network. This number is deter-
mined by each of the algorithms based on the partitions they are able to dis-
cover. Therefore, the implementation of the algorithms and in particular the
stopping conditions employed play a fundamental role. The number of pos-
sible partitions in a graph is bounded in the range from 1 to the number of
entities in the graph. In our case, we target to find a number of communities
in the first quartile of this range, as there is a tradeoff between the number of
proxies in the system, and the system efficiency.

e Modularity (modyc): The modularity metric is commonly used for evaluating
community detection algorithms. It is defined as the number of edges inside
each community minus the expected number of edges found in an equivalent
random network. The utilization of this metric is subject to controversy due
to the underlying comparison with a random graph. The main issue is that is
it not clear what is the modularity value of a good partitioning. While some
authors [79] conclude that significant communities are detected with modular-
ity values larger than o.3; other authors [8] also notice the existence of anti-
modularity networks (modularity < o), that also provide a good partitioning. In
this aspect, we want to investigate the significance of the metric when applied
to a data distribution scenario.

o Clustering coefficient (clusteringyc): The clustering coefficient [122] measures
how well the neighbors of a node are connected among themselves when that
node is removed from the graph. In this work, we employ the clustering coeffi-
cient to understand the shape and connectivity inside each partition.

4.4 EXPERIMENTAL EVALUATION

o Number of vertices per community (verticesyc): Depending on the number of
communities detected in a particular network, this metric provides a measure
of the number of entities associated per community. It is an indicator of how
different in size are the partitions produced by the community detection algo-
rithms.

o Number of assigned items (assignedyc): Similar to the number of vertices per
community, we are interested in measuring which is the number of items as-
signed to a partition. In the case of analyzing a user graph, this metric deter-
mines how many files are associated with each community.

e Commonality (comyc): As introducing proxies in a network requires replicat-
ing common content over different servers, this metric measures the number of
items that are present in all communities. Considering a user graph, the met-
ric will provide the number of files that are present in all communities. This
metric also reflects how many popular items exist in the network, and whether
the partitioning process replicates them in all communities, or isolates them.
Additionally, to provide a finer grain measure of the common files in different
communities, we also measure the pair-wise commonality (com]\g/vé). Using this
measure, we obtain the average number of files that are shared between pairs
of communities.

The use of different metrics is motivated by the fact that it is not clear a priori
how to measure the quality of a partition when the algorithms are applied to data
distribution scenarios. In this aspect, we want to determine which is the metric or
combination of metrics that are able to capture the relevant characteristics and offers
the best results.

4.4 EXPERIMENTAL EVALUATION

This section presents the evaluation of the different community detection algorithms
when applied to the dataset defined in Section 4.3.1. The experimental results are
obtained using the IGraph > library that provides state-of-the-art implementations of
the selected community detection algorithms. To simplify the notation, we abbreviate
Fast Greedy by FG, Walktrap by WT, Label Propagation by LPG, Leading Eigenvector
by LE, Multilevel by ML, Infomap by IM, and Iterative Communities by IC.

The section is organized as follows. First, we evaluate the clustering coefficient
and the modularity of the detected communities. Second, we analyze the quality of
the partitions by evaluating the number of assigned vertices and items. After that,
we evaluate the commonality of the partitions. Then, we evaluate the advantages of
using the proposed iterative community detection algorithm. Finally, we explore the
effect of varying the threshold values during the definition of the condensed graphs.

4.4.1 Modularity and clustering coefficient

In this section, we analyze the results obtained using the clustering coefficient
(clusteringyc) and modularity (mody c) metrics. Both metrics provide information

5 Python IGraph library 0.6 igraph.sourceforge.net/

45

igraph.sourceforge.net/

46

ANALYSIS OF ONLINE COMMUNITIES

25 25
B FG E LPG O ML E FG
o0 B IM B LE O WT 201 m M
= LPG
O LE
4:5; 154 § 154 O ML
3 3 O wr
© 10] © 10]
51 54
o) hdhln e mims o o s
- N [32] < [Te) © ~ [ee] [<2) - n o wn - n N
S 6 6 6 6 © &8 o o = = = — <
OI o o
clusteringyc modyc
(a) Clustering coefficient (b) Modularity

Figure 16: Modularity (mody c) and clustering coefficient (clusteringy c) for different input
graphs and community detection algorithms.

regarding the internal structure of a community. The clustering coefficient measures
how well connected are the neighbors of a node, when that node is removed from
the subgraph. Figure 16a shows the histogram with the average clustering coefficient
values.

The results show that the distribution is highly skewed to high clustering coeffi-
cient values. The clustering coefficient values are concentrated on the interval [0.9, 1]
for FG, IM, LPG and LE with median values between 0.93 and 0.99, which translates
in the existence of highly connected communities. These results are related with the
shape of the input graphs, and the ratio of edges per vertex observed when analyzing
the characteristics of the dataset.

The modularity metric provides another point of view to analyze the shape of the
detected communities. Figure 16b shows the histogram with the modularity values.
In this case, the distribution tends to the values near zero with a median modular-
ity of 0.00145. These results indicate that after partitioning the graph into a set of
communities, each community shares the same characteristics of a random graph
independently of the underlying community detection algorithm.

Taking into account the values of clusteringyc and modyc we conclude that
these types of graphs exhibit a high degree of connectivity and that the connections
are established using a random distribution. These observations have a significant
impact on the performance of the community detection algorithms. The high values
of clustering coefficient imply that, when building a partition, there will be a large
number of edges to be analyzed. Moreover, the algorithms based on modularity-like
metrics may require more steps to determine which partitions must be defined at
each step as the gain from adding a vertex is marginal. In this sense, algorithms such
as Infomap that use other type of metric may benefit and require less computational
effort to produce the partitions.

4.4.2 Number of assigned elements to a partition

In this section, we analyze the results in terms of the number of items and users
found in each partition. Figure 17 shows the relationship between the number of

4.4 EXPERIMENTAL EVALUATION 47

jaccard jaccard
o Gjusers o GJfiles
8 - * S | x
S * = x
* X
* % * % x Kk X X X X % +
§ e % % o & F § | s o
“ o o * = ¢, Zo
v * X
9 o 9 o €
- § ove * g olo VY <><>44>+<>$+
% S o VX A % S g Ox +
8 8
v v
FG v FG
o o v
S - M 3 v M
+ LPG + LPG
X LE X LE
<& ML & ML
o v WT o v WT
T T T T T T T T T T
1 10 100 1000 10000 1 10 100 1000 10000
vertexyc vertexyc

(a) User graph condensed with the Jaccard mea- (b) File graph condensed with the Jaccard mea-
sure. sure.

Figure 17: Relationship between number of assigned elements and number of vertices per
partition for different graph configurations and algorithms.

vertices (verticesyc) contained in a partition and the number of elements assigned
(assignedyc) to that partition for all the input graphs of the dataset (Section 4.3.1).
From the point of view of a data distribution infrastructure, we are interested in
finding algorithms that produce a small to medium number of users with a small
to medium number of elements assigned to a partition. If the partitions contain
a large number of users, we face the risk of overloading the server. Similarly, if the
partitions contain a large number of assigned elements, we face the risk of replicating
a significant number of files in the system and impacting the required storage space.

Figure 17a shows the results of a user graph condensed using the Jaccard metric.
We can distinguish two clusters of points in the figure: 1) medium to large number
of assigned elements with only one vertex, and 2) a medium-to-large number of
vertices and assigned elements.

The first cluster corresponds to degenerated cases produced by ML and WT. The-
ses cases illustrate one significant limitation of some clustering algorithms. Given
an input graph with [U| vertices, the algorithms try to find the partition that max-
imizes the value of the resulting modularity. If the graphs are highly connected, it
may occur that the decision taken by the algorithm to improve the modularity is to
define two partitions: one with a single entity, and other with [U| — 1 entities. As it
is not possible to tune this behavior, the only practical solution is to employ other
community detection algorithms in these situations.

The second cluster corresponds to the majority of the cases. A set of communi-
ties with 40 to 12,800 vertices and 8o to 12,800 assigned elements is produced. From
this set of observations, we observe that the best tradeoff between verticesy ¢ and
assignedy c is produced by WT and ML. While these results may be considered con-
tradictory with the previous observations, they indicate another important aspect
when selecting a community detection algorithm. From our results, we can conclude

48

ANALYSIS OF ONLINE COMMUNITIES

that the quality of the partitions in terms of verticesyc and assignedyc produced
by some algorithms is highly influenced by the input graph. This suggests that some
parts of the graph may show a structure that is difficult to process by the algorithm,
and subsequently the partitioning process is decided by a marginal gain on modu-
larity.

By contrast, Figure 17b shows the results for a file graph condensed with the Jac-
card metric. In this case, we observe two significant differences. First, the number of
degenerated cases has been reduced. Only two partitions produced by ML are ob-
served, and WT no longer generates any single-entity community. Second, the shape
of the main cluster has significantly changed. On the small to medium range, WT
produces communities between 3 and 30 vertices with 10 to 190 assigned elements.
The other algorithms produce communities starting with 30 vertices and 25 assigned
elements to 12,800 vertices and elements. Based on this observations, the best per-
forming algorithm is WT followed by IM and ML.

Considering the results of both types of graph, we conclude that even though
some algorithms perform better than others, their results vary based on the under-
lying structure of the input graph (connectivity degree). Additionally, all studied
algorithms lack an important characteristic: how to tune the algorithms to produce
communities under certain constraints in terms of number of elements and entities.

4.4.3 Commonality

In this section, we explore the similarity between the items assigned to different vir-
tual communities. To study this characteristic, we employ the commonality (comyc)
and pair-wise commonality (com{,?) of the resulting communities.

Measuring these characteristics provides an important insight regarding how the
items on the network should be distributed among the detected virtual communities.
Large values of comy ¢ imply that all communities behave like mirrors and therefore
a large number of items must be replicated in all the system. Similarly, large values
of com{'¢ imply that part of the content must be replicated in at least some part of
the existing communities. With this metric we are able to detect situations when a
portion of the items must be replicated in a subset of communities. Small values of
comyc or com{¢ translate in the existence of content that is only consumed by a
fraction of the entities.

Figure 18 shows the relationship between comyc and com{¥ for the different
community detection algorithms. Two conclusions can be drawn from this figure.
First, we observe that zero or close-to-zero values of comy ¢ may produce values of
com{’¥ up to 0.4. This behavior matches the expectations and it is more likely to
find two communities that share at least a common file, than requiring that file to
be present in all communities. Second, we observe a high correlation between both
metrics for values larger than o.5. In particular, ML, WT, and FG produce the set of
communities with larger values of commonality. This translates in the existence of
communities that mirror each other in terms of the content server to their users.

To understand the commonality value distribution, Figures 19a and 19b show the
histogram for comyc and com{,¢ respectively. We observe that the value distribu-
tion of both metrics concentrates on the minimum (o) and maximum (1) possible
values independently of the selected algorithm. In this respect, the only significant

4.4 EXPERIMENTAL EVALUATION 49

S o FG ;a*
A IM
+ LPG

@ | x LE ,@@
< ML :
v WT

%g%

< | \Y4
o

~ | 8

°lo
o

ol |
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

comyc

Figure 18: Influence of the community algorithm in the commonality metrics.

35 35
B FG ©E LPG O ML _ B FG @ LPG O ML _
301m M @ LE O wr 01m M = LE Owr
25 25
EZO’ ‘Ezo,
= 3
o o
O 151 O 15
10 10
. [N !
DN | P [|] B | o MU De we o o flrml. M
- N ™ < [Te) © N~ [ee] [e2] — - N ™ < [fe) © ~ [eo] (=] —
© o © ©o ©o o o o o S ©o ©o o o © o o o
comyc comfie
(a) Commonality histogram. (b) Pair-wise commonality histogram.

Figure 19: Study on the commonality metrics for different community detection algorithms.

50

ANALYSIS OF ONLINE COMMUNITIES

v
. §§ Q?AQ Q?AQ) N
&
& ,\f \.5; g P § 0§
ALG. X < A o < <
FG 2 0.06 0.98 400 1026.88 0.73 0.73
M 1 —10~7 0.99 352.38 401.5 1 1
LPG 1 —10-¢ 0.97 1333.33 1512.39 1 1
LE 2 0.02 0.93 800 1600 1 1
ML 145 0.01 0.21 110.48 226.44 o 0.040
WT 199.5 0.03 0.10 6.52 129.81 0 0.020

Table 2: Median values of each of the studied metrics per algorithm.

difference is the fact that there are more communities with zero comvy ¢, and more
communities with a com{;¥ of one. This matches the expected behavior observed in
the previous figures.

In summary, we find that the resulting communities are a mix between a set of
communities that have the same items assigned (mirrors), and a set of communities
that are the only ones serving a particular content (proxies). Regarding the commu-
nity detection algorithms, ML and FG obtain the larger commonality values. In this
respect, it should be notice that the ideal value of the commonality depends on the
application scenario. Some applications may prefer generating several exact mirrors
while other may prefer proxies without any type of overlapping in terms of the
stored files.

4.4.4 Effect of the algorithm selection

In the previous sections we have studied the results obtained by different community
detection algorithms on several aspects such as the relationship between the number
of vertices in a community (verticesyc) compared with the number of assigned
items (assignedyc). In this section, we concentrate on the results obtained by each
algorithm on each of the metrics used in the evaluation and try to define which
algorithms provide the best overall performance across all metrics.

To illustrate the discussion in a manageable way Table 2 shows the median value
of each metric from the results obtained when applying each algorithm to our evalu-
ation dataset. Due to the significant variability across different scenarios, we use the
median value instead of the mean value as a measure the expected value. The values
of the best performing algorithms on each metric have been highlighted.

In the ideal case considering a data distribution scenario, a suitable algorithm
should produce a set of virtual communities that have: 1) a well-balanced number of
vertices and assigned items per community, 2) a high clustering coefficient.

To study these characteristics, we first address the number of virtual communi-
ties (|VCJ), the number of vertices per community (verticesyc), and the number of
assigned items (assignedyc). All of these metrics are related as the number of de-

4.4 EXPERIMENTAL EVALUATION

tected virtual communities will affect the number of vertices, and depending on the
algorithm we expect the number of assigned items to vary. This is due to the fact that
different algorithms choose differently which nodes are assigned to the same virtual
community. The results of [VC| illustrate one of the main problems experienced by
some algorithms: the inability to produce partitions on some of the input networks.
As shown in the table, FG, IM, LPG, and LE are only able to produce at most 2 par-
titions of the network. Considering the values of [VC| and verticesy ¢, ML produce
the best results. In the case of assignedy ¢ both ML and WT produce the best results.

Regarding the clustering coefficient (clusteringyc), FG, IM, LPG and LE produce
the best results maintaining a high clustering coefficient on the resulting partitions.
Notice that in our case, we do not take into account the value of the modularity
(modyc) for the selection of the best algorithm. Our results indicate that all algo-
rithms produce communities that show random-graph characteristics, and therefore
this metric is not relevant for our purpose.

Finally, we study the values of the commonality (comy ¢ and com}{’¥) and found
that FG, ML and WT produce the best values for scenarios that aim to avoid mir-
rored servers. On the other hand IM, LPG, and LE produce mirrored communities
independently of the number of assigned items.

To summarize our analysis, ML (Multilevel [18]) produce the best overall results
with a small number of communities, a balanced number of assigned items, produc-
ing non-mirrored partitions.

4.4.5 Iterative community detection algorithm

The results obtained in the previous analyses demonstrate the influence of the un-
derlying community detection algorithm. In this section we explore the results ob-
tained using the iterative community detection algorithm proposed in this thesis.
This algorithm allows the user to specify two parameters that permit to control the
characteristics of the resulting communities.

In the evaluation, we focus our study on graphs with 1,600 users and 3,200, 6,400
and 12,800 files. Using this configuration we evaluate the impact of varying the num-
ber of minimum elements per community (min/¢mem"ts) and the ratio of entities
per community (ratiogt't€¢). We employ FG as the underlying community de-
tection algorithm as previous tests demonstrate that is one of the best performing
algorithms overall.

Figure 20a shows the results of varying ratiof]&“ﬁes to 0.2, 0.3, 0.4, 0.5, and 0.6.
As expected, the number of assigned elements per community decreases as the ratio
of entities per community decreases. However, as the ratio is used to decide whe-
ther a community should be split, the number of entities remaining in the resulting
communities is less or equal than the established ratio.

From this figure, several conclusions can be drawn. First, we notice the existence of
different bands especially for ratio/t't'¢s values of 0.2 and 0.3. This is explained by
the fact that the figure contains information from different sized graphs and therefore
the minimum number of entities changes accordingly.

Second, we observe that in some cases, different ratios produce the same results.
If we focus on the results setting the ratio of entities to 0.5 and 0.6, we observe that
both produce the same results. In detail, both produce 11, 5 and 3 communities with

51

52

ANALYSIS OF ONLINE COMMUNITIES

o o
I 8 0
— 0.2 —
1203 * |2 100 ®
+ 0.4 + 150
g | *x 05 g | * 200 A
© | 0.6 ﬁ% © | & 250 .
2 . v 300 R Ji%
+ &
, 81 3 L 8= 3% 1
g A Q * 400 ®
® ® L
g 2 g &
o s [N
s 8 & 84 S+
< <
& &®
o o
o - o -
N T T T T T T T T N T T T T T T T T
1 5 10 50 500 5000 1 5 10 50 500 5000
vertexyc vertexyc
(a) Influence of the ratio%,“cﬁﬁes parameter. (b) Influence of the minf}gme“ts parameter.

Figure 20: Evaluation of the iterative algorithm varying the ratio{/&'*'¢s and the
min{lgments parameters.

and vertexyc values of 290, 1280 and 1267; and assignedyc values of 291, 640 and
1067 depending on the size of input graph (3200, 6400 or 12800). This is explained by
the fact that the number of iterations of the algorithm is influenced by this parameter,
and both algorithms stopped at the same time as the number of assigned elements
matched the expected limits.

Figure 20b shows the results of varying minﬁ}gme“ts to 50, 100, 150, 200, 250, 300,
350, and 400. The results show that the number of elements increases as expected
with the number of minf}gme“ts. As shown before, some values of the parameter
may produce the same results due to the fact that they share the same branch struc-
ture when the iterative algorithm is executed.

Additionally, there are other metrics that provide a detailed view of the impact
of using the proposed algorithm. First, in Figure 21a we analyze the relationship
between clustering coefficient and the number of communities. The results show
that as the clustering coefficient increases with number of communities. This result
translates into the fact that as the communities decrease in size, they become more
connected.

In Figure 21b we analyze the relationship between the number of communities
and the modularity. As expected, the modularity decreases with the number of com-
munities as it becomes more difficult to find a single file assigned to all communities.
In Figure 21c we study the relationship between the clustering coefficient and the
modularity. As shown before with the number of virtual communities, the modular-
ity decreases with the clustering coefficient. Finally, Figure 21d shows the relation-
ship between the number of assigned elements and the pair-wise commonality. The
results show that the pair-wise commonality increases with the number of assigned
elements per community. This behavior is expected, as when the number of assigned
items decreases, it becomes more difficult to find other communities with the same
assigned items.

clusteringyc

=

(a

modyc

(©

4.4 EXPERIMENTAL EVALUATION

§ @0
@ |
o o O
@« | O(§3®OO g -
© °© o o e
o & ’ °
N~ e®]
S (§§9 C& e
O &0 ¢ 8
& 5 S
g i Oé}§ g o
5 ©
10 o
<} § s | %
< | ° S
(=]
®@ 0
S A %mom
° o 8 | B8 @ wo o
T T T T T O T T T T T
0 50 100 150 200 0 50 100 150 200
e \%¢]

Relationship between the number of communi- (b) Relationship between the number of communi-

ties and the clustering coefficient. ties and the modularity.
°
]
° oo @A é
[Te] O
© N 4 o
S 4 =] o
o
o
N
¢ © f
8 : ¢
S | ° = &
oS ©
(o]
. ° = &
o o S T &0 [+
o
® 8 f
© Rt gt d
g_ %@mm@@ o
o T T T T T T T T T T T
03 04 05 06 07 08 09 400 600 800 1000

clusteringyc assignedyc

Relationship between the clustering coefficient (d) Relationship between the number of assigned
and the modularity. elements and the pair-wise commonality.

Figure 21: Different measures of the iterative algorithm.

53

54

ANALYSIS OF ONLINE COMMUNITIES

o
o
o
O —_
o
[Te]
N
n 9
e 3
o 8 b
s
"‘5 —
5
Q0
2
=}
=z
o
o
o |
o
o
) I
o . B ==
0.00 0.05 0.10 0.15 0.20
My

Figure 22: Size of the condensed graph attending to the weight threshold value.

In summary, the results demonstrate that our proposed iterative community detec-
tion algorithm is able to shape the resulting virtual communities to the user specifi-
cations.

4.4.6 Effect of the weighting threshold

In this section we study the effect of changing the weighting threshold (u;) on the
resulting graphs. The threshold permits to determine the minimum value of the Jac-
card measure to consider an edge to be meaningful. In this way, all edges whose
weights are smaller than p; are not added to the condensed graph. In practice, this
reduces the number of edges in the graph and facilitates the execution of the commu-
nity detection algorithms in terms of computational complexity. For clarity purposes,
our study focuses on a file graph with 1,600 users and 3,200 files. However, the re-
sults can be extended to other input graphs of the data set. To show the impact in
the size of the graph, Figure 22 shows the number of edges in the condensed graphs
for values of uy = 0.00,0.05,0.10,0.15,0.20.

The results show a significant decrease in the number of edges compared with
the initial condensed graph. The use of p; = 0.05 results in a reduction of 75% in
the number of edges, reaching up to 95% for u; = 0.20. This decrease results in a
reduction in the time required by the algorithms to produce the partitions as the
number of edges to be explored is reduced.

However, it is important to understand what factors may be affected by this situa-
tion. In particular, we analyze the number of communities (Figure 23a) and the clus-
tering coefficient (Figure 23b) using the different community detection algorithms
for various values of p;j.

4.5 SUMMARY

3 o _
—
Y| ®m FG M B FG
=V B m M
o | @ LPG i © @ LPG
S o LE S O LE
O ML O ML
O WT M O WT
° a
o | o 9 |
4 g °
=3 . g i
[%2]
8 | 5 2 < |
=] o
o N
B S
o 4 _-_j J:I_= L[] L1 L1 g i _4] _I:I_D N N
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Ha Ha
(a) Number of communities. (b) Clustering coefficient.

Figure 23: Number of communities and clustering coefficient attending to the weight thresh-
old value.

Regarding the number of virtual communities, the results show a significant in-
crease in the number of resulting communities. This effect is not desired as it also
implies that the number of entities per community is drastically reduced. For exam-
ple, with uj = 0.10, the number of communities is multiplied a factor between 23 to
427 depending on the algorithm. Additionally, we notice that the WL algorithm was
not able to produce any partition for non-zero values of u;. To explain this outcome,
we must consider other effects of increasing the threshold value. In particular, as
the value is increased, the likelihood of finding non-connected components in the
graph is increased. This situation leads to two problems. First, it demonstrates that
non-zero values of the weighting threshold may result in a loss of information in the
resulting graph. As a consequence, some entities may be reassigned to non-optimal
communities. Second, it limits the use of algorithms that require a connected graph
such as WL.

To support our observations, we analyze the clustering coefficient of the resulting
communities in the refined condensed graphs. The results of the figure are in con-
cordance with the previous observations as the clustering coefficient is dramatically
reduced as the values of pj increase. Taking into account the effects of increasing
the value of pj, we conclude that non-zero values reduce the amount of useful in-
formation in the conduced graph and increase the risk of obtaining non-connected
components. Therefore, its use should be limited to situations where the removed
information is not relevant.

4.5 SUMMARY

In this chapter, we have presented the community detection module of the architec-
ture. The module analyzes the relationships between the users of the system and the

55

56

ANALYSIS OF ONLINE COMMUNITIES

files they access, and generates a set of virtual communities. The main objective of
this module is to find a method that provides partitions that satisfy three character-
istics: 1) contain a minimum number of users, 2) have a maximum number of files
assigned to the partition, and 3) the set of files shared on all partitions should be
minimal.

In order to obtain the virtual communities we use a set of well-known community
detection algorithms. As the existing algorithms only support input graphs with a
single type of entity, in this thesis we propose a technique to condense the input
data distribution graph to contain a single type of entity (e.g., files or users). In
this respect, we experiment with two similarity metrics to establish the weights on
the condensed graph, namely intersection and Jaccard, and we have found that the
Jaccard measure produces the best results.

The existing community detection algorithms automatically define the partitions
based on the resulting structure of the graph. However, they do not allow any type of
user input to guide the partitioning process. To address this limitation, we propose a
new iterative community detection algorithm. Our algorithm uses any of the existing
community detection algorithms, and guides the partitioning process based on the
number of entities and assigned items in the resulting communities.

Afterwards, we concentrate in the evaluation of the performance of the selected
algorithms. In this respect, we use a set of metrics related with community detection
methods and data distribution systems: number of communities, modularity, clus-
tering coefficient, number of vertices, number of assigned items, and commonality.
Several conclusions can be drawn from our evaluation. First, we show that the ex-
isting algorithms perform poorly when partitioning highly connected graphs. Our
results suggest that this difficulty is influenced by the underlying modularity metric
used to guide the partition process. Second, the analysis of the partitions produced
by the different algorithms show that the results are influenced by the number of
edges and vertices of the underlying graph, and the quality ranking is not main-
tained for different configurations. Third, we study the common items found in the
partitions produced by different algorithms and the results suggest that the virtual
communities obtained can be categorized into two groups: a set of communities that
are mirrors of other in terms of assigned items, and a set of communities that par-
tially share some content with a small number of communities. Fourth, we show how
our proposed iterative community detection algorithm allows the user to guide the
partitioning process according to the desired configuration of the resulting commu-
nities.

Finally, we study the effect of filtering the edges of the condensed graph according
to a minimum weight threshold. In this respect we find that the weighting thresh-
old has a significant impact on the resulting communities, and the loss of useful
information can lead to the appearance of non-connected components in the data
distribution graph.

DATA TRANSFER
SCHEDULING

The last years have shown a continuous increase in the volumes of data to be stored
and retrieved on-line. As this evolution is predicted to continue, large-scale data dis-
tribution systems face considerable challenges in assuring quality of service, while
keeping the infrastructure costs at profitable levels. Consequently, achieving a high
resource utilization has become of utmost importance for every large scale data
provider. In this respect, data transfer scheduling appears as a promising solution
to control the traffic found distribution scenarios. The scheduling of transfers brings
two main benefits: it permits to optimize the required number of servers at any mo-
ment, and it permits to adapt the quality of service perceived by the users of the
system.

[PO
PO,

——»{ Transfer Scheduling }

Publisher Organizations

[Distribution Controller }

Vir@al Commu-ﬁities

Figure 24: Generation of a transfer schedule in a data distribution scenario using the requests
assigned to virtual communities, and the current file to server allocation on the
publisher organizations.

In this chapter we address the problem of finding an efficient data transfer sched-
ule for multi-server and multi-user scenario. In particular, we address the problem
of transferring a set of files to a set of users, given a certain number of servers,
under several constraints such as maximum available bandwidth. We propose a so-
lution that produces a schedule that delivers all files to all users, while reducing the

57

58

DATA TRANSFER SCHEDULING

schedule length and maximizing the server utilization. The component responsible
of providing this functionality is the Transfer Scheduling module (Figure 24) of the
architecture presented in Chapter 3.

There are three main objectives that we target: a) to minimize the schedule length,
b) to maximize the file server utilization, and c) to find the schedule in a compu-
tationally tractable way. Fulfilling all these objectives is a challenging task, as only
calculating the optimal schedule in a multi-server multi-user environment can be
shown to be NP-complete. In order to address this issue, we seek to find a practical
balance among these objectives.

Our solution is based on the relaxation of an objective-based time-indexed formu-
lation of a linear programming problem. In order to speedup the solving process,
we propose a method to distribute the computation process using the map-reduce
paradigm. Additionally, we allow the architecture administrator to control the trade-
off between the quality of the produced solution and the time required to produce
the solution.

5.1 TRANSFER SCHEDULING PROBLEM

The transfer scheduling problem can be stated as an optimization problem as follows.
Given a set of servers S, a set of files F distributed over S, and a set of requests R (as
a union of tuples < dst, f > representing requests from user dst to file f), what is a
schedule of optimal makespan? Figure 25 shows an overview of the transfer schedul-
ing setup. In a generic scenario we distinguish two sides of the data distribution
problem. On the left-hand side, the user destinations request a subset of files. These
destinations correspond to the virtual communities produced by the Community De-
tection module. However, if required, the user destinations may correspond to single
users requesting particular files. On the right-hand side, the files are stored across
the servers of the different publisher organizations. In this context, the problem con-
sists of determining which transfers should be made between the servers and the
user destinations considering the time required to transfer a file between different
entities and the existing requests. Taking this scenario as the basic problem, several
improvements can be added by reformulating the model to support additional con-
straints such as the server available bandwidth, number of requests served at a time,
etc.

Different base problems can be used to model the file transfer scheduling prob-
lem: graph-coloring, job shop problem, maximum flow network, etc. In this thesis
we choose to formulate our base model as an extension of the open job shop prob-
lem [82]. This problem consists of n independent jobs to be processed by m parallel
machines. Each job i is composed of a set of operations. The operation Oj; over job
i is processed by machine j for pi; time units. All operations of a job have to be
processed on all machines. Only one operation can be executed per machine per unit
of time and the operations do not have any order constraint.

The remainder of this section describes the formulation of our baseline model
based on the open job shop scheduling problem and discusses the complexity of this
approach. Table 3 summarizes the variables and parameters used in the formulation
of the baseline model.

User

5.1 TRANSFER SCHEDULING PROBLEM

Destinations: D Servers: S

Reduested
Files: R

ttime

src,dst,f

transfer

src,dst,f,t

Figure 25: Elements involved in data distribution scenario.

NAME DESCRIPTION
S Set of servers
D Set of requesting destinations
F Set of files
R Set of request tuples < dst, f >
M Set of all machines M =SUD
T Time slots from t = 0...Tmax
maxtt Maximum transfer time for a single file.
Tmax Maximum time to perform all transfers.
ttimegrc,dst,f Transfer time of file f from src to dst.

storedsrc,f

transfers,c,dast, £t

ﬁnishdst,f

Boolean representing if file f is

stored in server src.

Boolean representing if a transfer of file f is
in progress at time t from src to dst.

Time when file f is available at dst.

Table 3: Baseline model variables and parameters

59

60

DATA TRANSFER SCHEDULING

5.1.1 Baseline model

For our baseline model we adapt the open job shop scheduling problem by consid-
ering an operation as a file transfer < dst,f >, and a job as the total set of transfers
for a given file (i.e.,, < dsty,f >, < dstp, f >, ..,< dsty, f >). Our approach departs
from the original open job problem definition in three respects. First, a job does not
have to be processed by all the machines, i.e., a file is not to be transferred by all
servers. Second, we add a constraint on the transfer time of each file based on the
available bandwidth of each machine. Third, our formulation allows for scheduling
a user request to an idle server that is not storing a file. In this case, the server incurs
a miss and a request is scheduled for fetching the file from a server storing it.

To simplify the model representation, we define M = SUD as the set of all ma-
chines in the system. The parameter ttimes,c,qst,¢ represents the time required to
transfer a file f from the machine src to dst, when taking into account the available
bandwidth of each machine. The binary parameter storeds,c is 1 if and only if
the file f is stored in server src. Time constraints are introduced with the parameter
maxtt, which is the maximum value of ttime. Tmax represents the maximum time
allowed to perform all transfers.

Finally, we introduce the set of variables that represent the solution to the schedul-
ing problem. The transfer progress is modeled as a time-indexed formulation, a
very popular representation for scheduling problems [62, 12]. The binary variable
transferg,c ast ¢ takes the value 1, when a transfer of file f from src to dst is active
at time t. The integer variable finishqs s represents the time when file f is available
at machine dst.

Equations (6) to (16) show the formalization of the baseline model. The objective of
this optimization problem (6) is to minimize the schedule length (makespan), i.e., the
total time required to perform all transfers. Equation (7) ensures that all requested
files eventually become available to the requesting machines at time finishg¢ ¢. Files
requested to a server that stores them are available locally according to Equation (8).
Equation (10) prevents transfers among users. These transfers would result in permit-
ing peer-to-peer functionality, but would also further increase the solver complexity.
In (11) we assure that destination machines receive the requested files. Equation (12)
expresses the fact that for any destination there is only one active transfer at a given
time. Equation (13) assures the download process to take into account transfer times
and file availability at the source. Equation (14) enforces that a file is transferred only
when it is available at the source server. Equations (15) and (16) limit the number of
transfers a machine is involved at a given time.

5.1.2 Baseline model discussion

The utilization of the aforementioned model provides optimal solutions for the file
transfer scheduling problem. However, the model is difficult to use in practice in
its original form. In particular, the open job shop problem is a known NP-complete
problem [67]. If we assume a scenario, in which transfers among servers are not
allowed, each server only provides one file and all users request all files, we can
rewrite the transfer file scheduling problem like an open job shop problem. Therefore,
we can claim that our baseline model is NP-complete. Additionally, the presented

5.1 TRANSFER SCHEDULING PROBLEM

Minimize:) finishy, ¢
meM,feF
Subject to:
finishgst s = Z transfergrc,ast £t - t
0<t<Tmax,srceM
src#£dst
VfeF,dste M

storedsrc s =1 = finishgrc s =0 VseS,feF

Z transfery mft =0 Yme M, feF

teT

Z transfergycast,ft =0 VfeF,srceD
dsteM,teT

Z transfergrc rdstrft = 1 Vfr € R
srceS,teT

Ztrcmsfersrc,dst,f,t =1 Vdst € M,f€F
srceM,teT

(transfersrc,ast,f,t = 1) = (t = (finishgyc ¢ + ttimes src,ast + 1))
Vsrc,dst € M, src # dst,feF,teT
(transfersyc,ast,f,t = 1) = storedsrc s + finishgre s > 1
Vsrc,dst € M, src # dst,f e F,teT

(transfergsycast,rt = 1) = Ztransferm,dst,p,t,j <1

meM,peF
0gj <ttimessre,ast

Vsrc,dst € M, stc # dst, f € F, maxtt <t < Tmax

(transfergyc,ast,ft = 1) = E transfersre,m,p,t—j < 1

-meM,peF
0<) gttlmef,src,dst

Vsrc,dst € M, src # dst, f € F, maxtt <t < Tmax

Figure 26: Baseline model for scheduling transfers.

(6)

(13)

(14)

(15)

(16)

61

62

DATA TRANSFER SCHEDULING

formulation requires O(IMJ?|F||T|) constraints and variables. Although M appears
squared, the value of T is likely to be orders of magnitude larger. In practice, this
means that the complexity of the scheduling model is more sensitive to the value of T.
This huge space complexity adds an additional challenge to any linear programming
solver, which is supposed to load the problem into main memory for the solving
process.

Based on these observations, we define an alternative model, which addresses
these issues in order to reduce the complexity and allow for solving the problem in
a computationally tractable way.

5.2 ALTERNATIVE MODELING OF THE TRANSFER SCHEDUL-
ING PROBLEM

As presented in the previous section, using the baseline model to solve the transfer
scheduling problem is computationally intractable. In this section we address this
issue by transforming the baseline model in four main steps. First, we reformulate
the baseline model as a relaxed feasibility problem in Subsection 5.2.1. Second, in
Subsection 5.2.2 we propose a heuristic that acts as an approximation algorithm,
which allows to relax the optimization problem based on a customizable factor. Third,
we discuss how the solving process can be distributed in Subsection 5.2.3. Finally, we
discuss the merging of the final solution in Subsection 5.2.4. Table 4 presents the new
set of parameters and variables for the alternative model.

5.2.1 Reformulation as a feasibility problem

The complexity of the baseline model makes it non-suitable for real applications. To
address this problem, we opt for reformulating the model as a feasibility problem.
A feasibility problem consists of finding any feasible solution for a given problem,
without regard to the objective function. Using a feasibility problem instead of an
optimization problem reduces the total computation time as the solver only needs to
return the first solution that satisfies the set of constraints.

The reformulation consists in three main parts. First, we remove the objective func-
tion (Equation 6). Second, we remove the time dimension from the model variables.
Third, we generate one model per file instead of generating one global model for all
files. This approach has the advantage that it allows to distribute the solving process,
and, subsequently, merge the partial solutions into the final global schedule.

Table 4 summarizes the variables used to represent the feasibility model. In the
feasibility model, the output for a single file schedule is represented by the variables
transfersyc,ast, Startsrc,ast and finishgyc qst. All integer variables can take values
from 0 to Tmax. Expressions (17), (18), (19) are intermediate representations used for
simplification. They represent the start and the finish of a transfer, and the availability
of a file in a server, respectively.

Equations (20) to (28) describe the formulation of the feasibility problem. The con-
straint (20) enforces that all destinations receive the file they have requested. Con-
straint (21) sets the finish variable to 1 in servers that have already stored the file.
Constraint (22) introduces precedence in the transfer order, i.e., no transfer can start

5.2 ALTERNATIVE MODELING OF THE TRANSFER SCHEDULING PROBLEM

NAME

DESCRIPTION

S¢

D¢

Mg
Startsrc,dst
finishgrc,dst

transfers,c,dast

tstartgst
availablegst
cachedgst
storeds ¢

ordergry

Set of servers involved in the distribution of f

Set of destinations requesting f

Set of all machines M = S; U U¢

Start time of transfer between src and dst

Finish time of a transfer between src and dst.
Boolean representing if a file has been transferred
from src to dst.

Start time of a transfer to dst.

Finish time of a transfer to dst.

Boolean representing if the file is cached at dst.
Boolean representing if file is initially stored in server src.

Preferred transfer order.

Table 4: Feasibility model variables and parameters

tstartgse = Z startsre,dast

Vdst € M¢ (17)

sTcEMy,src#dst

availablegst =) finishgre ast Vdst e My (18)
sTcEMy,sTc£dst
cachedgst = Z transfersrc,ast Vdst € M¢ (19)

sTcES¢,sTc#£dst

Figure 27: Expressions used in the feasibility problem formulation.

63

64

DATA TRANSFER SCHEDULING

Z transfergyc,ast = 1 Vdst € Dy
srceSt
storedsry = 1 = finishgry gry =1 Vsrv € S¢

(transfersrc,ast = 1) = (startsrc,ast = availableg,¢)

Vsrc € S¢, dst € My, src # dst
tstarty,, > tstarty, Vmy, my2 € My, order,,, > order,
tstarty,, < tstarty, Vmy, my € My, ordery,, < orderm,
(transfergrc,ast = 1) =

= (startsrc,ast = finishgre,ast — ttimesrc,ast)

Vsrc € S¢, dst € My, src # dst
(transfergyc,ast = 1) = (storedsrc + cachedgye > 1)

Vsrc € S¢, dst € My, src # dst
(transfergyc,ast = 0) = (startgrc,ast + finishgre ast < 0)

Vs € S¢, dst € My, src # dst

(transfergrc,ast; = 1 /A transfersrc dest, = 1) =
= ((orderdst] < ordergst,) = (tstartgse, > availablegsy,))

Vsrc € S¢, dsty,dsty € My, src # dsty # dst;

(28)

Figure 28: Constraints used in the feasibility formulation of the transfer scheduling problem.

A single file initially stored in a set of servers is requested by destinations Dy.

5.2 ALTERNATIVE MODELING OF THE TRANSFER SCHEDULING PROBLEM 65

Tmax Tmax Tmax
s 3 s s
1 o e = Up| | Y5
S S S :
0 uwow \ \U1\ \U3\ U\Z! t 0 S\1 u‘o \U1\ u\2 Tt 0 3‘1 u‘o \U1\ Pt
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Figure 29: Effect of reducing the « value in the calculation of Tmax.

before the file is available in the source server. The constraints (23) and (24) enforce
that two transfers for the same file are ordered. Constraint (25) ensures that transfer
times between machines are taken into account. Constraint (26) enforces that files are
transferred only when they are available at the source. Constraint (27) ensures that
the start and finish variables are consistent with the transfer variable. Constraint (28)
ensures that whenever two transfers share a common source, the order is maintained.

Using this formulation, the number of variables and constraints for each file is
reduced to O(|S||M|?). This is a significant improvement over the baseline model,
as time T is no longer a factor of the complexity. This permits to have a transfer
scheduling complexity, which is independent of the schedule length.

5.2.2 Approximation heuristic

The quality of the solution produced by the feasibility model affects the fragmenta-
tion of the schedule. Optimum schedules have the advantage of reducing server idle
times to the minimum, but they require a significantly higher solving time. In order
to help finding a trade-off between solutions provided by feasibility model and op-
timal solutions, we propose an heuristic that permits to regulate how much margin
the intermediate schedules may show.

Our approach is based on relaxing the admissible value for Tmax, representing the
maximum makespan available for finishing all transfers (see Table 4). Determining
the Tmax value for each task depends on the number of servers and destinations,
and their interconnection characteristics. In the worst case scenario, if we assume
that all the interconnections have the same bandwidth, and all servers have the file
in their caches, a lower bound for this parameter is [|D|/[S|] - maxtt. In our case, we
define our heuristic to compute the Tmax value for each task as:

Tmax = « - Pfq -maxtt (29)

where « is a weighting factor, [D¢| is the cardinality of the set of destination ma-
chines, and [S¢| is the cardinality of the set of servers. This model represents an
x-approximation of the scheduling problem.

To graphically illustrate the effect of reducing the « value, Figure 29 shows a
example scenario with two servers and four users interested in the file. Users up and
u; require two time units to retrieve the file while users u; and uz require three
time units. Initially the file is only cached in server sy and transferring the file to s;
will require two time units. For the purpose of discussion consider an initial value of
Tmax = 6. In this configuration, the feasibility model could be solved involving only

66

DATA TRANSFER SCHEDULING

» Schedule file 0 »
User
requests » c » Schedule file 1 » ;g.:
5 £
2 o
£ 3 Final
3 2 schedule
[0} [&}
© (7]
3 T
Infrastructure 2 ‘ Schedule file n-2 ‘ 9
information ‘ O
» Schedule file n-1 »

Figure 30: Distributed solving of the file transfer scheduling problem.

so in the transfer. As Tmax is reduced to 9, s is no longer able to transfer the file
to all users in the maximum time and therefore s; must participate in the transfer
process. After solving the model, we observe that the first operation is to transfer
the file from sy to s7. After that, the distribution of the file to user uz can overlap
in time with the transfers to users u; and u, as two different servers are used. If
we continue reducing the value of Tmax to 8, the schedule makespan is tightened.
Eventually, the smallest value of Tmax that will produce a schedule (i.e., the problem
has at least one feasible solution) will match the optimal schedule produced by the
classical minimization approach.

5.2.3 Distributed transfer scheduling

This section describes the different components of the architecture that permits to dis-
tribute the solving process. Next section shows how partial schedules can be merged
into the final schedule. Figure 30 presents a general overview of the involved compo-
nents. The user requests and the current infrastructure information are the inputs for
the task decomposition module. The user requests simply represent a list of which
files are requested by which users. The infrastructure information contains the cur-
rent status of the system: a list of active servers, the distribution of files over the
servers, and the interconnection bandwidths. Using this information, the task decom-
position module divides the problem into a set of subtasks. Each subtask receives as
input the information required to solve a single file transfer problem:

<S¢, Uy, stored [J, ttime] [, Tmax >

where Sy and U¢ are the subset of servers and users involved in the transfer,
stored [] is the distribution of the file over the servers (i.e. an array of booleans of size
S¢ indicating which server is storing the file initially) , ttime [] [| represents the time
required to transfer the file between src and dst. These input parameters are fed to a
linear programming solver, which generates and solves the model associated with f.

5.2 ALTERNATIVE MODELING OF THE TRANSFER SCHEDULING PROBLEM

To reduce the complexity of the problem and speed up the solving process, the task
decomposition module can limit the number of users per problem, such that large
problems are also split into smaller subsets (e.g. a problem with 100 users, can be
split into two subproblems of 50 users each).

The generated subtasks are independent among themselves, making it possible to
solve several subtasks in parallel. Task assignment can be done based on different
policies such as round-robin, dynamic assignment, etc. The result produced by each
task is a partial schedule of transferring the file f to destinations D¢. A single file
transfer is represented by the tuple < src, dst, f, start, finish, dependency >, where
the dependency value indicates that src does not store any copy of f, and this has
to be retrieved prior transferring the file to dst. To obtain the final schedule, the
global schedule merge module combines all partial solutions, as discussed in the
next subsection.

5.2.4 Merging partial schedules

The problem of merging the partial schedules is similar to a constrained bin packing
problem [119]. The bin packing problem consists of optimally assigning a number of
items with given costs or weights into a set of bins with a maximum capacity. In our
case, we have a set of server timelines with idle periods, where we try to assign the
scheduled transfers. We model this problem by defining bins as time intervals, where
the capacity is the idle time. Algorithm 2 is the pseudocode of the merge function.
Transfers from server to server (in case a server is requested a file that does not store
locally) are scheduled before transfers from servers to users in order to mitigate the
dependency problem.

For each transfer, the algorithm calls the function addTransfer (Algorithm 3),
which searches for an interval, in which a transfer can fit. The algorithm iterates
over the list of available intervals until it finds fitting intervals for both source and
destination.

Algorithm 2 Global schedule merge algorithm.

Input: serverTransfers, userTransfers

globalSchedule = ()

/ /Schedule server-to-server transfers

for each t € serverTransfers do
addTransfer(t, globalSchedule)

end for

/ /Schedule servers-to-users transfers

for each t € usersTransfers do
addTransfer(t, globalSchedule)

end for

return globalSchedule

Figure 31 shows the merge of two partial schedules, in a scenario in which 3 users
request 2 files from 3 servers. Interval tables are shown on the right of the computed
schedule. Initially, all machines in the system have the interval [0, co) available. After
three iterations, the partial schedule is shown. Notice how the transfer of file 1 to

67

68

DATA TRANSFER SCHEDULING

Algorithm 3 addTransfer algorithm

Input: gs: Current global schedule
// Transfer to add to the global schedule
Input: t: Transfer < src, dst, f, start, finish, dependency >
srcInterval = getNextAvailableInterval(t.src)
dstInterval = getNextAvailableInterval(t.dst)
assigned = False
while not assigned do
if fit(t, srcInterval) A fit(t, dstInterval) then
assign(t, srcInterval, dstInterval, gs)
updatelnterval(srcInterval, t)
updatelnterval(dstinterval, t)
assigned = True
else
srcInterval = getNextAvailableInterval(t.src)
dstInterval = getNextAvailablelnterval(t.dst)
end if
end while

user uq has been shifted in time, as there was a collision with the transfer of file o
from server s;. This causes the original interval of server s; to be split into [0, 2] and
[3, 00). The final schedule is obtained after all transfers have been assigned.

5.3 IMPROVEMENTS ON THE FORMULATION

The model presented in the previous section considers a scheduling problem whose
objective is to find a solution within an established makespan. In this section, we
explore different modifications of the model in order to support the multiplexing of
server bandwidth and the fault-tolerance capabilities of the resulting schedule.

5.3.1 Multiplexing server bandwidth

Multiplexing the server bandwidth permits to schedule parallel transfers from a
server based on a multiplexing degree m. To introduce server bandwidth multiplex-
ing in the previous model, we transform the previous definition of the scheduling
problem. To facilitate the transformation, we refer with S(S¢, D¢) to the scheduling
problem presented in Section 5.2.1, where S¢ is the set of servers and D¢ = {do, ..., dn}
is the set of destinations.

To assign the requesting destinations to the new multiplexed channels, we dis-
tribute the destinations uniformly among them. Consequently, our original problem
S becomes:

S =50(S¢, Do) ([JSm(Se, Dem) (30)

5.3 IMPROVEMENTS ON THE FORMULATION 69

Partial schedules per file

,,,

File 1 |

SO |
82 .
\ \ \ ;

1 2 3 4 5

Servers Users i

2} |
% S,: [1, inf) U, [3, inf)
s S, [2 inf) U,: [0, inf)
o 1
<<E§ S,:[0,2], [3,inf) U [1, inf) |

Servers Users
S, [3, inf) U,: [3, inf)

S, [0,2], [4inf) U [1,2], [4, inf)

Available intervals

S,: [4, inf) U,: [0,1], [4, inf) 3

Figure 31: Merge of two file schedules to obtain a global schedule. Transfers are represented
by boxes whose color represents different files. The length of the boxes indicates
the duration of the transfer. The source of the transfers appears in the Y axis, and
the destination is indicated in each box. The intervals are updated during the
merge as shown in the right tables.

70

DATA TRANSFER SCHEDULING

where the initial scheduling problem is now decomposed into a set of reduced
scheduling problems. Each problem shares the same set of servers, with a redefined
set of users:

HD’H —p (31)

In this manner, each sub-problem is assigned a portion of the users found in the
original problem. Additionally, it is necessary to multiplex the value of the existing
bandwidth between the servers and the users. For this purpose, and considering a
uniform distribution of the bandwidth on the channels, the time to transfer a file
between two sites is redefined as:

n
U, = qu : channel(u;)
0

ttiTnesrc,dst

ttime = 2
src,dst m (3)

The presented bandwidth multiplexing strategy does not require any changes in
the presented approximation model and can be employed to improve the bandwidth
utilization of the existing servers. Additionally, it is also possible to use the initial
part (Equation 30) of this approach to regulate the maximum number of users per
problem to reduce the overall complexity of the problem and speedup the solving
process.

5.3.2 Adding user-driven fault-tolerance capabilities with parallel downloads

The previous model considers a scenario where each user destination transfers its
files connecting to a single server. In this section, we are interested in adding fault-
tolerance capabilities to our model in order to support the transfer of files using
several servers in parallel.

We distinguish three types of download parallelism that could be added to the
model. To explain the differences between them, Figure 32 depicts the resulting
schedule of applying each type of parallel download considering a file f composed
of 4 chunks. For clarity purposes, the file is distributed to a single user and both
servers have the same available bandwidth.

First, in Figure 32a we observe the schedule produced when two servers are used
in parallel to obtain different chunks of the file. This approach is throughput-oriented
which translates into a significant speedup of the transference process. However, the
resulting schedule is not fault-tolerant making necessary to recalculate it in case of
a server failure as the file can not be transferred in the allocated time and/or some
chunks may not be available. To address this situation, a possible approach (Fig-
ure 32b) is to introduce some level of overlapping. In this way, a part of the file is
scheduled to be transferred from several available servers. However, this approach
is also susceptible of mirror failures. To solve this problem, the next approach (Fig-
ure 32c) is to schedule the complete transfer of a file from several servers at the same
time. In case of failure of one server, the makespan of the transfer is not affected.

It is important to notice, that in this section we are interested in providing a sched-
uled fault-tolerance, nor reducing the makespan by means of using non-overlapped

5.3 IMPROVEMENTS ON THE FORMULATION 71

(a) Parallel download of differ- (b) Parallel download with par- (c) Parallel download with full
ent chunks. tial overlapping. overlapping.

Figure 32: Different types of parallel downloads considering a file f with 4 chunks ¢, c1,
c2, and c3. From left to right, parallel download using two servers for different
chunks, parallel download with partial overlapping, and full overlapped parallel
download.

SERVER AVAILABILITY NUMBER OF SERVERS INVOLVED (Nsrc)
availability > 20% 1
60% < availability < 90%
40% < availability < 60%
availability < 40%

o W N

Table 5: Example configuration to determine the number of servers (15r¢) involved in a trans-
fer using the server availability.

parallel transfers. In this respect, we opt for the last configuration (Figure 32c), and
modify the model to support parallel transfers.

Before adding or modifying any equations, it is important to clarify the mecha-
nism used to determine the level of parallelism required for a transfer. An initial
approach would be to define a parameter 1 that represents the number of servers
required per transfer. Considering the fact that some servers may be more reliable
than others, we opt for a fine grain configuration permitting to specify the number
of required servers based on which server participates in the download. Using this
approach, we are able to permit different levels of parallelism based on the involved
servers. In order to do that, we introduce a new parameter ns,. that controls the
number of required servers in a transfer when server src participates in it. In prac-
tice, this parameter is configured by the system administrator based on the specific
requirements of each application scenario. As an example, Table 5 shows a possible
configuration of the parameters. In this case, a server with an availability of 85%
requires an additional server in order to participate in a transfer. In case the avail-
ability drops below 40%, the server is no longer used as the number of total servers
involved is zero.

By configuring the values of 1. using the aforementioned table the infrastruc-
ture administrator defines the type of fault-tolerance to be applied: optimistic, high-
availability, and probabilistic.

e Optimistic: If ng,c = 1,Vsrc € S¢, we employ an optimistic approach as the
schedule must be recalculated in case of a mirror failure during a transfer.

72

DATA TRANSFER SCHEDULING

e High-availability: If ns.c > 1,Vsrc € S¢, we assure that all transfers from a
server have at least one backup server in case the transfer fails.

e Probabilistic: If s > 1,Vsrc € S, we employ a similar approach to the high-
availability but considering that some server may be more prone to failures
than others. This approach is more flexible as it permits to adapt the level of
fault-tolerance depending on the characteristics of the servers.

Using the model presented in Section 5.2.1 as base, we introduce several modi-
fications. The first modification with respect to the feasibility model presented in
Section 5.2.1 is to transform the expression in Equation 17 into a new constraint
(Equation 33). This substitution is motivated by the fact that all parallel transfers
must start at the same point.

(transfergyc,ast = 1) = (tstartgse = startgrc,ast)
Vsrc € Sg,dst € Dy, stc # dst (33)

Second, we modify the expression shown in Equation 18 with a new expression
(Equation 34) to capture the new semantics of problem. As several transfers may be
active at the same time, we take the slowest time to mark the time the download is
available at the user. Using this approach, in case one of the mirrors fails during the
transfer, there is enough allocated time in the schedule to retrieve the complete file.

availablegsy = max finishg,c ast Vdst € M¢ (34)
sTcEM¢

Third, we replace Equation 20 by Equation 35 in order to assure that the number
of transfers received by a user is bounded between one and the maximum value of

Nsrc-

1< E transfersre ast < mMax Msrc
STCESt
STCESt

Vdst € Dy, stc # dst (35)

Fourth, we introduce Equation 36 to force parallel transfers from different servers
to be active at the same time for a common target destination. Similarly, we add
Equation 37 to assure that transfers from one server to several users do not start at
the same time.

(transfergyc,,ast + transfergyc, ast >=2) =
= (startsrc,,ast = startsrc,,dst)
Vsrcy,srca € S¢, dst € My, srcy # srca (36)
(transfergrc,ast, + transfersrc ast, >=2) =

= (Startsrc,dsh 7& Startsrc,dstz)
Vsrc € S¢, dsty, dsty € Mg, dsty # dsty (37)

5.4 EVALUATION

Ss4 Uy [Us Ug [Uso Uyg | Uss Uig

Sz Uy Uz | Ug [Ug Ugy Uyz| Uyg | Uss | Use

Source

Sz Uy [Us | Us | U7 Uz Use Uy7| U1g

Us [Ug | U7 [Ug | Ug |Uso| Uy |Usp|Usg|UsgfUss Uy7| Usg | U1g

Sp

o -

50 100 150

Time

Figure 33: Example schedule produced by the model with parallel downloads considering a
scenario with 5 servers and 20 users with a parallelism degreen = [1,1,2,2,3].

Finally, we add Equation 38 to enforce that at least 1, are involved in a transfer
whenever server src is involved.

(transfersrc,,ast = 1) = Nsre, < Z transfersye,,dst < mMax Msrc

srceS
STC2ESy f

Vsrcy € S¢, dst € Mg (38)

Using this modifications it is possible to introduce parallel downloads in the model.
To illustrate its behavior, Figure 33 shows the application of the modified model to a
scenario with 5 servers and 20 users with a parallelism degreen = (1,1, 2,2, 3].

At first, we notice a transfer from server s; to to server s4 as that server did
not have the file. At the same time, servers so and s3 transfer the file to server s;.
Notice that two parallel transfers are scheduled as n3 = 2. From that point, we
observe different parallel transfers depending on the parallelism level required by
the servers participating in the transfer. Notice that as a large value Tmax is being
used, some time slots are not occupied (interval [92, 129]). In addition, it is important
to highlight that depending on the value of Tmax, the number of parallel transfers
in the solution will change. As Tmax decreases, we expect less parallel transfers to
be scheduled due to the fact that more servers need to be involved in a transfer and
the total time may increase as a consequence.

5.4 EVALUATION

In this section we present the evaluation of the proposed solution. First, we dis-
cuss the implementation of our solution based on a linear programming solver and
Hadoop. Second, we study the quality of the solution provided by our feasibility

73

DATA TRANSFER SCHEDULING

model using a single file schedule. Third, we compare the results produced using
our distributed approach with two greedy transfer assignation policies, for scenarios
requiring between 28K and 228K transfers.

5.4.1 Implementation

The implementation of our solution is based on two main components: a linear pro-
gramming solver and a distributed computing framework. While various technolo-
gies can be employed, we have settled on IBM ILOG Suite * for linear programming
and Hadoop framework for distributed computing.

The selection of the ILOG Suite is motivated by the existence of a programming
API and the fact that is one of the best performing [75, 64] state-of-the-art solvers
available at the moment. Similarly, the selection of the Hadoop framework has been
motivated by it extensive documentation and the fact that is a widely extended solu-
tion for commercial and non-commercial environments.

Our model, presented in Sections 5.2.1 and 5.2.2, has been fully coded in CPLEX.
The distributed computations described in Sections 5.2.3 and 5.2.4 have been im-
plemented as a Map/Reduce program in the aforementioned Hadoop framework.
Hadoop ? is a map-reduce framework based on the Google MapReduce model [32].
Hadoop jobs consist of two main task types: map and reduce. A map task (Equa-
tion 39) takes one key/value pair (kq,v7) and applies a function producing a set of
key/values (k2,v2).

map(ki,vi) = {(k2,v2)} (39)

The reduce tasks (Equation 40) take the output of the map tasks and apply a given
operation to produce a combined result.

reduce(kz, {v2}) — (k3,v3) (40)

In our Hadoop solution, map tasks solve single file schedules using the IBM ILOG
Suite, while reducer tasks are mergers of partial schedules produced by map tasks,
as described in Section 5.2.4. The result of the Map/Reduce program is the global
data transfer schedule.

The reduction process can be iteratively executed in order to further exploit the
parallelism in the system. However, this approach would require the use of a map/re-
duce framework that supports iterative reduce phases [115, 38] without the execution
of the map phase. This implementation improvement remains out of the scope of the
thesis, as we are interested in testing the feasibility of the distributed solving process.

5.4.2 Computational complexity in practice

In this section, we study how different parameters of the model affect the computa-
tional complexity. To perform this study, we evaluate the time required to produce

1 IBM Ilog Suite: www.ibm.com/software/websphere/ilog/
2 Apache Hadoop hadoop.apache.org

www.ibm.com/software/websphere/ilog/
hadoop.apache.org

5.4 EVALUATION

a solution and the associated schedule makespan. To obtain the data, we solve two
configurations: one with a fixed number of 15 servers with a varying number of
users between 1 and 15; and other with a fixed number of 15 users and a varying
number of users between 1 and 15. In both cases, the Tmax value ranges between 1
and 1,000. As some values of Tmax may not produce a solution (the minimum time
required is greater than Tmax), we establish a timeout of 5 minutes for each configu-
ration. If a solution is not found in that time, we consider that the problem no longer
has a solution and therefore smaller values of Tmax are not further explored. The
objective of this test is to understand how the complexity is affected by the different
parameters of the model.

Figures 34a and 34b show the computational time required to obtain a solution
using the aforementioned configurations in scenarios with a fixed number of servers
and users respectively. Initially, without observing the figures, we expect that the
computational time required to solve a scenario increases with the number of users
and servers. However, our results demonstrate that the computational time is not
only affected by those parameters. In both figures we observe that the computational
the existence of “valleys” where the computational time is significantly lower than
in its proximity.

Based on our experience, we explain the existence of those valleys due to the
operation of the underlying solver. As our solver uses a modified version of the
Branch-and-cut heuristic, a tree-like structure is deployed in memory to track the
different configuration of the variables that produce a viable solution. The way this
tree is defined is based mainly on the structure of the instance of the model and
some startup parameters determined by the heuristics of the solver. Therefore, a
small change in the parameters of the model may produce a structure that is slightly
easier for the solver.

The implications of this behavior are quite important to optimize the execution of
this (and possible others) type of models. By understanding which configurations
represent a reduced complexity for the solver we could determine which is the opti-
mal number of users and servers per problem, which heuristics produce a reduced
computational time, etc.

Figures 34a and 34b depict the resulting schedule makespan for the same cases.
Similarly to the previous results we also observe the existence of configurations that
produce a smaller makespan. This behavior has two main implications. First, we ob-
serve that some values of Tmax produce a reduced makespan. This demonstrates the
viability of using a feasibility formulation as tight schedules can be produced with-
out drastically limiting the search space with the Tmax value. Second, by combining
the results of the produced makespan with the computational time, we could opti-
mize our heuristic to obtain solutions with a reduced makespan and computational
time.

To summarize, our evaluation demonstrates that the computational complexity
highly depends on the specific problem configuration. The intuitive behavior would
suggest that the complexity will increase with the number of users and servers, and
decrease with the maximum makespan. However, our results demonstrate that the
computational complexity in practice does not follow the expected behavior. We find
that there are some sweet spots around some configurations leading to situations
where it is easier to solve a problem for a large amount of servers and/or users, than

75

76 DATA TRANSFER SCHEDULING

(00s) AW uoendwod

(o0s) 3w uonendwod

(a) Fixed servers.

(b) Fixed users.
Figure 34: Impact of varying Tmax in the computational time required to solve scenarios

with a fixed number of servers and users respectively.

uedsaxienN

uedsayeN

(a) Fixed servers.

(b) Fixed users.

Figure 35: Impact of varying Tmax in the schedule makespan in scenarios with a fixed num-
ber of servers and users respectively.

5.4 EVALUATION

? o alpha=1.2 alpha=1.6 alpha=2

3 81 h

K 0

£ o]

s Sl X

.g o N X %()())((

S &

3 _

Q

o T T T T T >I<
250 300 350 400 450 500

- Tmax

a8

S o alpha=1.2 alpha=1.6 alpha=2

[} 8 N

E

g _

§

& 8-

£

«

E -

2 [=]

=]

& 250 300 350 400 450 500

Tmax

Figure 36: Effect of changing « in terms of computation time and schedule makespan.

solve it for a reduced set. We believe that this behavior is highly related with the
way the solver covers the solution space, and how the branches of the internal tree
structure that supports the solving process are explored and cut.

5.4.3 Sensitivity analysis of scheduling solutions

In the previous section, we have explored how the computational complexity evolves
depending on the parameters of the problem. In this section, we evaluate our heuris-
tic and study the effect of varying the o value that is used to compute the effective
Tmax. In this respect, we are interested in determining whether the heuristic is able
to find effective configurations of the problem, so that the computational time is
reduced.

We run experiments to empirically determine which is the impact of varying the
value of « in practice. We measure the computation time and the total scheduled
makespan for different values of Tmax ranging between 550 time units to the lowest
value where a solution can be found. For clarity purposes, we increase the timeout
until the problem is considered to be unsolvable in that configuration to 15 minutes.
The lowest Tmax value that produces a solution in the feasibility model matches
the optimum schedule makespan for the baseline model (for o« = 1). For experimen-
tal purposes, we consider a scenario with two servers and 45 users per problem.
However, as shown before, these effects are observable in all configurations. The ex-
periments have been executed on an Intel Xeon E4505 machine with 4GiB of RAM.

Figure 36 shows the computation time required by the solver (top), and the sched-
ule makespan obtained for each value of Tmax (bottom). As Tmax decreases, the
scheduled length decreases with an increment of the computation time. Using this
heuristic to compute Tmax allows to find a feasible schedule in a fraction of the time
required to find the optimum.

77

78

DATA TRANSFER SCHEDULING

500000 —
B RSS
O FSA
O Proposed

400000 —

300000 —

200000 —

gyl

1000 1500 2000 2500 3000 3500 4000 4500 5000 7500

Schedule makespan (time units)

Number of files

Figure 37: Schedule makespan in time units for the different configurations.

In order to see this effect, we explore the possible outcome when setting o to 1.2,
1.6, and 2. For o = 1.2 we get a schedule makespan of 277 time units in 36.80 seconds.
If we relax « to 1.6 the makespan is 369 time units calculated in 6.37 seconds. Finally,
o = 2 produces a makespan of 461 time units in 6.25 seconds.

The solution in the second case with & = 1.6 is 1.33 times larger than the one with
« = 1.2, but it requires 83% less computation time. Depending on the application
scenario, different heuristics can be explored. In a scenario with a small amount of
files, small values of Tmax reduce server idle times. Large values of Tmax increase
server idle time, being suitable for scenarios with large amounts of files. These idle
times are partially removed during the merging phase (section 5.2.4).

5.4.4 Evaluation of distributed transfer scheduling

In this section we evaluate the quality of the scheduled produced by our distributed
methodology and we compare two frequently used approaches in server-based re-
quest distribution [93]: RSS (Random Server Selection) and FAS (First Available
Server). In RSS the schedules are produced by randomly assigning requests to servers.
In FAS the schedule is built by assigning the first available server to the current re-
quest to be served.

The evaluation setup is the following. A variable number of files are stored ran-
domly over 8 servers. Each file is requested by 28 users (destinations) randomly
selected from a set of 60. We report results for different number of files from 1,000 to
7,500 (i.e. the total number of requests vary between 28K to 228K). The « value is set
to 2 (i.e. the schedule makespan for each file is at most twice the optimum value).

First, we report the schedule makespan produced by the different approaches. Fig-
ure 37 shows the makespan for the different transfer scheduling policies. In all cases
the schedule produced by our solution is considerable shorter than RSS and FAS.
For 7500 files FAS and RSS produce schedules which are 34% and 96% larger than
our solution, respectively. The standard deviation is less than 3% for all approaches.
Additionally, our approach scales well with the number of the files.

5.4 EVALUATION

0.25
|

0.20
1

0.15

Ratio of server transfers
0.10

0.05
1

Figure 38: Aggregate server miss rate.

1.0

1000
1500
2000
2500
3000
3500
4000
4500 T
5000
7500

0.8

D0000DOooEE®m

0.6

Ratio of server utilization
0.4

0.2

0.0
L

RSS FSA Proposed

Figure 39: Ratio of server utilization.

Second, we evaluate the aggregate server miss rate caused by our policy, RSS and
FAS. This value is calculated by dividing the number of requests that cause transfer
between servers over the total number of requests. This measure is a good indicator
of locality. Figure 38 shows the aggregate server miss rate for our proposed solution,

RSS and FAS. The miss rates are 22% for RSS, 23% for FAS, and 15% for our solution.

Thus, our solution improves by 7% and 8% on the number of transfers between
servers, which results in a lower contention inside the server infrastructure.

Third, we evaluate the server utilization caused by RSS, FAS and our solution. We
calculate the average server utilization as:

m(lkesp ansr\; - idlesrv
makespangyy

1
Serverytilization = @ Z (41)

STVES
where makespangy, is the total schedule length and idles,, is the inactive time of
server stv (i.e. server stv has no scheduled request). Intuitively, this metric evaluates
the amount of fragmentation of the produced schedules. A high amount aggregated
idle times causes low resource utilization and vice versa. A high utilization (close to
100%) indicates that the proposed solution is closed to optimum.
Figure 39 shows average server utilization for three policies (RSS, FSA and our
solution), and for a number of files varying between 1000 and 7500. We note that, for

each policy, the server utilization does not vary considerable with the number of files.

Our solution achieves around 95% server utilization in all cases, which indicates that

79

8o

DATA TRANSFER SCHEDULING

the produced schedules are close to optimum. This value represents a considerable
improvement over FSA and RSS, which show a utilization rate of 30% and 51%,
respectively.

5.4.5 Energy saving considerations

The utilization of a transfer schedule has several ramifications. In particular, there is
a direct relationship between the quality of a schedule and the energy consumption
of applying that schedule in a real scenario.

In this respect, we can assume that idle server times are periods of time where the
server may be powered down in order to save energy. However, we need to consider
two factors. First, continuos fast cycles of start and stop may impact the reliability
of the infrastructure. Second, shutting down and booting up machines involves an
overhead (p) due to the time cost of gracefully stoping all services, and requesting
an on-demand resource and configuring it when a new machine is required.

Therefore, an optimal schedule from the point of view of the energy consump-
tion should concentrate the utilization on the servers reducing idle periods. Notice,
that obtaining a minimal makespan schedule does not necessarily imply obtaining a
schedule with reduced idle periods in all involved servers.

In our case, we define the energy that could be saved by a good scheduling method
as:

E= Z (idlesrv - psrv) -energysrv (42)

srvin$

where idleg,, is the amount of time server srv is idle, psyy is the required delay to
stop and start a machine with the characteristics of srv, and energys, is the energy
consumed per unit of time by server srv.

Using the results presented in the previous section, our solution is the most energy
efficient requiring less than 5% of overhead energy, while RSS and FSA require 70%
and 49% extra energy. These results demonstrate the importance of employing effi-
cient dynamic infrastructures. This type of infrastructure should be able to react to
the ongoing demand, but at the same time maintain the level of overprovisioning at
a minimum level. Of especial interest are cloud-based infrastructure where the time
required to start new machines may take up to several minutes and booted machines
are pay by the hour usage. In this respect, other works [109, 110] outside the focus
of this thesis have been carried out to propose novel techniques for adaptive control
of elastic server infrastructures.

5.4.6 Performance impact of the underlying hardware

In this section, we are interested in analyzing the impact of changing the underly-
ing hardware architecture the solver is executed on. Our objective is to determine
what could be the possible performance gains of executing the solving process in a
different hardware architecture.

Our analysis consists of executing a scenario with 5 servers, 20 users and a Tmax
value between 1,000 and the minimum value that produces a solution. We execute

5.4 EVALUATION

CODE NAME CLOCK CACHE CORES THREADS
SPEED SIZE
A Intel©Xeon X7350 2.93 GHz L2 8 MiB 4 4
B Intel©Xeon E7-4807 1.87 GHz L3 18 MiB 6 12
C Intel©Xeon E5-2620 2.00 GHz L3 15 MiB 6 12

Table 6: Hardware characteristics

B Hardware A
B Hardware B
W Hardware C

15

10

Computational time (sec)

Tmax

Figure 40: Computational time depending on the underlying hardware.

this scenario in three different hardware configurations (A, B, and C) whose charac-
teristics are summarized in Table 6.

Figure 40 shows the computational time for the test scenario. The first conclusion
that can be drawn from this figure is the existence of different complexity levels on
the scenario. This situation matches the observations previously noticed in Figure 34
(Section 5.4.2). However, in this case, we notice that the number of levels and the
length of the valleys depends on the underlying hardware. For example, a heuristic
producing a Tmax value of 8oo will produce faster results in hardware C, whereas
if the heuristic value is 400, hardware A would be the most appropriate for the task.
Using this figure, we can also observe how larger values of Tmax do not necessarily
produce faster solutions.

Second, with regards to which hardware would be better to solve a particular prob-
lem, we observe that the computational time is influenced by many factors. First,
some results (Tmax value of 300) suggest that in some cases the clock speed may
be a critical factor as hardware A outperforms hardware B. However, in other cases

81

82

DATA TRANSFER SCHEDULING

(Tmax value of 200), a combination of L3 cache size and clock speed produce better
results as hardware C outperforms A and B. In general, our results suggest that the
underlying hardware produces a significant impact on the time required to solve
a particular configuration of our model. Moreover, the heuristic selected for deter-
mining the Tmax value should be tailored to the underlying hardware as a general
purpose heuristic does not produce proportional results when presented with differ-
ent hardware specifications. Finally, the number and size of the different levels of the
cache hierarchy may have a critical impact on the time required to obtain a solution.
As the focus of the section was to perform an initial analysis of the hardware impact,
it remains for future work the realization of a detailed study of these observations.

5.5 SUMMARY

In this chapter we have presented the Transfer Scheduling module of the architecture.
Using the virtual communities detected by the Community Detection module, the
subscriptions and the system state, the module is able to produce an optimized trans-
fer schedule. To achieve this objective, we presented a linear programming model
that captures the requirements of a data distribution system. We modify the model
so that it can be solved in parallel using the map/reduce approach and provide a
detailed evaluation.

Linear programming models for these type of scenarios are known to be complex
to solve. To address this issue, we introduce two major modifications. First, we trans-
form the original minimization problem into a feasibility problem. In this way, the
result of solving the model is the first solution found satisfying all requirements
and not the minimum possible schedule. In order to regulate how far from the op-
timal solution is our schedule we introduce a heuristic. Our heuristic regulates the
maximum time slots available to perform all transfers in the feasibility problem.

Our feasibility problem is focused on solving the scheduling problem for a single
file. Therefore we define a method based on the map-reduce approach that permits
to distribute single file problems to be solved in parallel and gather the final solu-
tion in the reducing steps. Additionally, we also defined several modifications of the
problem that permit to optimize other aspects of a data distribution scenario. First,
we permit to regulate the number of users per problem. If a problem involves a large
number of users, it is possible to split the problem into several subproblems sharing
the same servers, as the reduce step will produce a complete schedule. This per-
mits to regulate the complexity of each subproblem. Second, we permit to multiplex
server channels, so different users can be served in parallel from the same servers. Fi-
nally, we modify the model to permit parallel transfers of the same file from a set of
servers with a specific parallelization degree. In this way, if a server fails in the mid-
dle of transfer, it is possible to continue the process from the remaining scheduled
servers.

Our evaluation demonstrates that the computational complexity of such a model
highly depends on the input parameters and does not scale linearly. This motivates
the introduction of the heuristic that has been demonstrated to reduce the computa-
tional time required to obtain a schedule. Moreover, we also discover that the com-
putational complexity also depends on the underlying hardware configuration. In

5.5 SUMMARY

particular, we believe the cache hierarchy and size has a significant impact in the
solver performance.

Regarding the quality of the produced schedule, we compare the makespan pro-
duced by our distributed solving of a linear programming problem with the so-
lutions produced by two well-known policies: Random Server Selection and First
Server Available. The results demonstrate the advantages of our proposal in several
aspects: (1) the resulting schedule has shorter makespan when compared with the
alternative methods; (2) our solution reduces intermediate server to server transfers
and the associate miss rate in the selected servers; (3) our solution achieves a sig-
nificant 95% server utilization of the resources, and (4) our solution is more energy
efficient having an idle time of 5%.

83

FAST DATA TRANSFERS

In the recent years, the amount of information moved through the Internet has experi-
enced a spectacular growth. Some aspects such as computing and storage capabilities
had followed the increase; however, a fundamental key element is lagging: the net-
working infrastructure. While it is possible to maintain an up-to-date interconnection
inside an organization, the connectivity with other external organizations involves
multiple hops, providers and technologies (e.g., ethernet, fiber channels, etc.). In or-
der to update these types of infrastructures, all intermediate links must be updated
which requires a significant investment from different providers and organizations.
Due to the practical complexities, in this thesis we address the objective of provid-
ing fast data transfers without requiring changes in the underlying interconnection
infrastructure.

In this thesis, we focus our study on applications that require the transfer of large
amounts of data and could benefit from our proposal. In this respect, scientific appli-
cations are a good candidate for this type of study. As a practical example, the LHC
(Large Hadron Collider) project is expected to produce * around 15 petabytes of in-
formation per year. The VLT (Very Large Telescope) survey is expected to produce 2
around 100 Terabytes of data per year. In this type of applications, there is usually
an important gap in terms of connectivity between the sites where data is actually
produced and the institutions around the world that want to access it.

In this scenario, our proposal fills the gap providing automatic data transfers be-
tween different sites with a limited infrastructure. The work presented in this chapter
is based on the HIDDRA architecture [55]. In that work, we presented the main com-
ponents and general objectives of a data transfer architecture tailored to space science
applications and a basic evaluation of its capabilities.

In this thesis, we present an extended architecture that shares the same design
objectives of our previous work, but provides an improved scenario-independent
solution. In this chapter, we focus on the Distribution Controller module which
is responsible of 1) managing the distribution infrastructure, 2) processing events
that trigger download notifications on the interested communities, and 3) efficiently
downloading data from the available servers. As shown in Chapter 3, this module
is now part of a general architecture that offers capabilities to detect virtual commu-
nities and to schedule the data transfer in order to improve the performance of the
whole data distribution infrastructure.

Figure 41 shows a general overview of the distribution controller module. This
component receives events such the availability of new data and uses the informa-
tion from the other modules of the architecture to distribute it to interested users.

Large Hadron Collider expected data per year accessed on October, 2012.
http://public.web.cern.ch/public/en/lhc/Computing-en.html

Very Large Telescope expected data per year accessed on October, 2012.
http://www.eso.org/public/teles-instr/surveytelescopes.html

85

http://public.web.cern.ch/public/en/lhc/Computing-en.html
http://www.eso.org/public/teles-instr/surveytelescopes.html

86

FAST DATA TRANSFERS

New data [Transfer Scheduling J
/condition

schedule system

requests state

Distribution controller transfer
schedule
Data distribution ‘ Infrastructure ‘
manager manager
i

notify communities update

Distribution
infrastructure

retreive |

Download | data
engine

Figure 41: The distribution controller module uses the Transfer scheduling and Community
detection modules to produce an efficient data transfer schedule once new data
becomes available in the system.

The controller interacts with the Community Detection module (Chapter 4) in order
to have an updated version of the community structure required during the match-
ing of the subscriptions and creation of the notification messages to be sent. It also
uses the Transfer Scheduling module (Chapter 5) to produce an optimized schedule
of the data transfers to be performed based on the matching of the existing sub-
scriptions. The distribution module is composed of three main components that are
briefly described in the following paragraphs: Data Distribution Manager, Infrastruc-
ture Manager, and Download engine.

e Data distribution manager

This event-driven component is responsible of managing the different steps
involved in a data distribution scenario. The component awaits the arrival of
new events or conditions and depending of the type of each of them triggers
operations in other components of the Distribution Controller. Two main types
of events are processed by this component: new data notifications and system
messages.

The data notification messages are sent by the publisher organizations to signal
new data available in their servers. These data must be distributed to the sub-
scribed users and to do that, several steps must be taken into account. First,
based on the virtual community information and the subscription informa-
tion, the target users are selected. This information is then sent to the Trans-
fer Scheduling module in order to produce an optimized transfer schedule.

FAST DATA TRANSFERS

With this information the data distribution manager extracts the server-related
information from the schedule and informs the Infrastructure manager whe-
ther new additional on-demand resources should be booted, and if intra-server
transfers are required. After that, the notifications are sent to the download
engines associated with the user communities following the defined transfer
schedule.

The component is also responsible for processing other types of events such
as system messages. These types of messages are sent by other components
to inform about system changes such as the discovery of new virtual commu-
nities, new subscriptions, new publisher organizations, infrastructure changes,
etc. Upon receiving these messages, the distribution manager may decide to
trigger some actions or store the new information for future updates (e.g., new
subscriptions).

o Infrastructure manager

This component is responsible of managing the distribution infrastructures in
three key areas. The main responsibility of the component is to monitor the
state of the system. This includes the monitorization of the active server infras-
tructure and maintenance of an up-to-date catalog of which file are available
at which servers. This information is used by the Transfer Scheduling module
whenever a new distribution process is scheduled.

The second responsibility of this component is to monitor the status of the cur-
rent infrastructure. The component actively monitors the existing server infras-
tructure to have status information regarding server availability, server load,
etc. For instance, in case of a significant server failure during a distribution
process, this component may send an event to the data distribution manager
to reschedule the transfers. Finally, this component is also responsible of per-
forming the required intra-server transfers. These transfers are usually part of
a transfer schedule and are performed before transferring data to the users. Ad-
ditional intra-server transfers may be done in case of mirror failure or resource
consolidation (e.g., shutdown of an on-demand resource).

e Download engine

This component is responsible for downloading data on behalf of final users. It
receives the notifications from the data distribution manager component and
starts the required downloads. The engine is able to download files for differ-
ent users, and therefore can be seen as a local proxy. The motivation behind
having a local proxy is the fact that the connectivity inside an organization is
up to several orders of magnitude faster than with the external sites. From an
organization point of view, the cost of transferring files within the organiza-
tion is significantly smaller than transferring data from the outside. Thus, the
files are transferred once from the external sites to the organization, and then
distributed to local users using a faster connection.

It is important to highlight that our Distribution Controller uses a publish/sub-
scribe mechanism to determine which download engines will receive notifications
based on the associated user subscription. The underlying implementation manages

88

FAST DATA TRANSFERS

notifications S :

. Distribution |

’ manage credentials infrastructure :
‘ l L downloadé :

Download |request | Download |data ;
client data engine =

retrieve data /
progress update

................................

Figure 42: Detailed architecture of the Notification Module showing the two main compo-
nents: Download Client and Download Engine.

the subscriptions combining two sources of information. First, the data distribution
manager maintains the subscription information at user level (i.e., which type of files
a particular user is interested in). Second, the download engines maintain a list of
their local users. This information is sent to the data distribution manager in order
to determine the subscription mapping. Notice that in this way, when two users
are interested in the same file and they share the same download engine, only one
notification is sent.

The remainder of the chapter is organized as follows. First, we present the func-
tionality of the Download engine components in Section 6.1. The section details the
multiprotocol parallel download mechanism, the internal architecture of the engine,
the download lifecycle, the security aspects, and the method used to specify several
download sources. After that, in Section 6.2 we show the evaluation of the proposed
solution in terms of download performance and fault-tolerance capabilities.

6.1 DOWNLOAD ENGINE

The download engine is the component responsible for receiving notifications and
downloading the requested data for its registered users. The download engine is
a resource shared among the users of a virtual community. It behaves as a proxy
for all downloads permitting to reduce the total number of transfers when two or
more users request the same content. To access the download engine, each user has
a Client component installed in their system. In this manner, users are not required
to be online for their data to be downloaded in the proxy.

The interaction between the Download Engine and Download Client is shown in
Figure 42 and can be summarized as:

¢ Notification: When new data become available in the system, the Data Distri-
bution Manager matches the existing subscriptions and sends notification mes-
sages to the interested Download Engines. Upon receiving this type of message,
the download engine starts the transferring process.

6.1 DOWNLOAD ENGINE

e User requests: The Download Client, even though our primary use case is the
subscription based downloads, can send the engine interactive download re-
quests. These requests specify the requested URL of the data to be downloaded
and only affect the target Download Engine.

e Data transfer: Upon receiving a valid download request, coming either from
the Data Distribution Manager or from the Download Client, the engine starts
the download process described in Section 6.1.4. Before starting the download
process, the download engine checks the validity of the request (Section 6.1.4.1)
and its contents (Section 6.1.4.2).

e Credential management: The client interaction with the download engine re-
quires a basic credential (i.e., username and password) in order to manage her
downloads. Additional credentials, either basic or based on user certificates can
be stored in the Download Engine in order to retrieve data from secure sites.

e Progress update and data retrieval: During a transfer, if the user connects
to the Download Engine it will receive progress updates on the status of her
downloads. Once the downloads are finished, the download client retrieves the
required data from the download engine.

Based on the previous interactions, the lifecycle of a download process from a
high level point can be summarized as: 1) a notification is received by the Download
Engine, 2) the Download Engine access the required servers to transfer the data to
its repository, and 3) the users connect to the Download Engine and perform local
transfers of their data. The following sections provide detailed views of the inner
workings of the Download Engine describing the main design principles and objec-
tives, the benefits of using multiprotocol parallel downloads, its internal architecture
and how different protocols are supported, the management of the download life-
cycle, the security aspects surrounding the components and the specification of the
downloads.

6.1.1 Design objectives

The design of the notification module is based on four design principles as our
objective is to propose a distributed, autonomous, dependable, multiprotocol and
extendable system. The following paragraphs describe our view of each principle.

¢ Distributed: The module is composed of different components designed to
work independently of their location, performing the required communications
using the existing network. A distributed deployment permits a better utiliza-
tion of resources as each component can be located at its optimal location at-
tending to its requirements (e.g., CPU, memory, available bandwidth). As an
example, one Distribution Controller can manage the subscriptions of several
virtual communities; each community has at least one Download Engine that
communicates with several Download Clients installed in the machines of the
users belonging to that virtual community.

89

90

FAST DATA TRANSFERS

e Autonomous and Dependable: All the components have been designed to
work autonomously. This design reduces the administration overhead and im-
proves the system availability. To provide this feature, different types of errors
are supported by the system, and upon automatic reboots, the system recovers
from the previous known state. This is particularly useful for the Download
Engine. For example, in the event of a complete machine failure, upon reboot-
ing, the engine recovers the previous download states and determines which
portions of the file must be redownloaded to complete the transfer. Using this
approach, we avoid redownloading the whole file when the failure affects only
a small portion of the file. Additionally, we introduce a mirror scoring system,
permitting the download engine to dynamically switch between different mir-
rors according to their current error rate. In this way, we reduce the impact of
external errors on our system.

e Multiprotocol: Current solutions focus on using a single protocol to transfer
a file. In our work, we introduce multiprotocol support which permits to con-
currently use different available protocols (e.g., FTP, HTTP, HTTPS) to transfer
different parts of the same file. This characteristic has two main advantages: it
increases the compatibility with external systems and it removes the problem
of installing custom protocols in the publisher organizations. In our proposal,
the Download Engine uses a plugin system to facilitate the addition of new
protocols. Notice that this approach also improves the backward compatibility
as protocol updates in a organization can be introduced incrementally.

o Extendable: The architecture has been designed to be extendable through the
use of plugins and new connectors. In this way, the effort required to support
new protocols is reduced and only involves adding a new connector to the
system. The main functionality of the Download Engine is abstracted from the
particularities of each connector and does not need to be modified or updated
in these situations.

These characteristics have been reflected in the design of the main components
of the architecture: Distribution Controller, Download Engine and Download Client.
Section 6.1.3 details the internal architecture of the Download Engine describing the
aforementioned abstraction layer at protocol level.

6.1.2 Multiprotocol parallel downloads

The main idea behind the design of our Download Engine is to combine the use of
parallel downloads with multiprotocol support. This combination permits to benefit
from both techniques at the same time without sacrificing performance or flexibility.

The use of parallel downloads permits to increase the available throughput of a
download process between two ends improving the fault-tolerance during the trans-
fer at the same time. To demonstrate the benefits of using parallel connections, we
study the maximum available throughput of a connection with and without parallel
connections. In order to do that, we need to take into account the underlying trans-
port protocol, as it is the key element to maximize the existing bandwidth provided
by the technology of the link.

6.1 DOWNLOAD ENGINE

In our case, we study the performance of TCP as we are interested in using reliable
protocols. In this respect, we use the estimation defined by Padhye et al. [84] which
is based on the work of Mathis et al. [74]. To estimate the effective throughout of a
TCP connection, the authors use the following expression:

Winax
Bwindow ~ RT-TI}-?— (43)
B ~ M9 (44)
transfers ~
RTT/ 252 + To-min(1,3-1/352) - p(1 +32p2)
BTCP ~ min(Bwindow, Btransfers) (45)

where MSS is the maximum segment size, Wmax is the maximum window size,
RTT is the round trip time, b is the number of packets acknowledged per ACK, and
p is the constant probability of a packet lost. Equation 45 estimates the bandwidth
using two auxiliary equations. Equation 43 estimates the bandwidth considering
the maximum window size and the round trip time. That is, the sliding window
mechanism can only sent one full window of packets before receiving the first ACK.
We expect this behavior to dominate Equation 45 for small values of RTT. On the
other hand, Equation 44 estimates the bandwidth based on the transfer performance
considering a packet lost probability.

In order to apply this formula to a scenario with n parallel connections, we modify
the previous expression as:

parallel Nsre " Wimax
Bwindow ~ Z RTTsrc (46)
STCES
el Nsrc - MSS
Bgragﬁsfirs ~ Z b . e 3b
stceS RTTsrcy/ =25 + To -min(1,3 -/ 228r¢) - pore (14 32p2,)
(47)

where RTT;, is the round trip time with server src, and psy is the probability of
a packet loss when transferring data from src. In the previous formula we assume a
common MSS as it is determined by the local end of the connection. Moreover, we
need to take into account the limit imposed by the underlying interconnect BLTk.
Therefore, the effective bandwidth (Equation 48) could be estimated as:

Bparallel

par ~ min(Blink Bparallel Bparallel) (48)

max’/ “window’ “transfers
Assuming a common server src it can be easily seen that:

BRATSel > By, 49)

which confirms that the upper bound for a transfer using TCP is larger or equal
if we use parallel connections. To graphically illustrate this effect, Figure 43 shows
the bandwidth estimation for 1, 2, 4, 8, 16, and 32 parallel connections in a scenario

91

92

FAST DATA TRANSFERS

- R 7]:_’]_
n=2
8 n=4
1 T T NTTTTTTN n=8
- --- n=16
8 I n=32
@
o
=z 8 |
- o
5 [<5}
=
o)) o
3 S
o
(= o | Vv o=~ S~ T
o |\ N TSI T
o 1\ v TSSO T e
D e e S
o ~—
oS I N o T Tl T T T .
[T N U et S
STl N el e T T e
o 4
I I I I I I I I
0 100 200 300 400 500 600 700

RTT (msec)

Figure 43: Maximum throughput estimation using parallel downloads using TCP.

where BLNK corresponds to the maximum bandwidth of a Ethernet 100 Mbits con-
nection, Wiax = 64kiB, b =2, Ty = 1, psrc = 107°. As it can be seen in the figure,
for small values of RTT, the maximum bandwidth is limited by the interconnect. As
the RTT increase, the bandwidth decreases with a speed proportional to the number

of parallel connections.

6.1.3 Internal Architecture

The Download Engine is the component responsible for managing the interaction
with the clients and processing the incoming download notifications. This section
details the internal architecture describing each internal component of the engine.

Figure 44 depicts the main internal components: Download daemon, Workers, and
the Local repository. To describe the functionality of each internal component, we
consider the use case of the download engine receiving a new notification and follow
its processing.

The messages from the notification module are received through an available com-
munication port that is continuously listening in the Download daemon. This compo-
nent is continuously listening for new notifications or for incoming connections from
the clients. Upon receiving a notification message and checking its correctness, the
Download Engine decides whether the data needs to be downloaded or it is already
available in the local repository.

If the requested data is available at the local repository due to being previously
requested by any other users, the content is directly served from the repository to the
local user. In order to grant access to the file, the user credentials are checked against

6.1 DOWNLOAD ENGINE

Client

|
~

Client

|
~

Download engine

Download daemon
17 1
~ ~
Workers
Abstract connector
HTTP HTTPS GridFTP Local
Connector | Connector | Connector repository

Figure 44: Download engine components.

the existing mirrors to determine whether the user can retrieve the stored copy or
the data or not. The existence of a local repository also permits to reduce the number
of transfers when more than one user is interested in the same data. In those cases,
the data is transferred once to the local repository, and the users access the local copy
assuming they have the necessary credentials. The storage space and the replacement
algorithm (e.g., LRU, FIFO, etc.) can be configured by the organization administrator.

If the requested data is not available at the local repository, the Download daemon
transfers the data to the repository. For this task, the Download daemon uses the
download workers to retrieve the requested data. Each worker represents a set of
connections to an external site with a single protocol. To manage the different pro-
tocols, an Abstract connector interface has been defined, so that every protocol that
is supported by the download engine uses the same interface. This provides the ca-
pability of extending the number of supported protocols by adding new connectors.
For example, if the data to be requested is accessible by HTTP, the download dae-
mon will launch a worker with the abstract connector implemented by the HTTP
Connector.

The Download Engine supports the utilization of several mirrors in parallel to
transfer a single file (not necessarily using the same protocol). The selection of which
mirrors participate in a particular transfers and which protocols are used is dynam-
ically decided by the Download daemon. For this task, we employ Algorithm 4 to
determine the number of workers that are launched connecting to a particular server.
The algorithm receives three parameters: the download object (d) that contains all the
associated metadata, the maximum number of workers to be launched (maxyworkers),
and the failure threshold for a mirror (failureThreshold). Using this information,
the algorithm retrieves the list of mirrors associated with the download ordered by
their priority (line 3). Notice that the priority is specified in the notification informa-

93

94

FAST DATA TRANSFERS

tion sent to the Download Engine. Next, the algorithm iterates over the list of mirrors
and for each mirror checks (line 8) that the number of failures does not overpass the
failure threshold and that the mirror is alive at that time. Each time a chunk transfer
fails, the score of that mirror is reduced. If the number of errors overpasses the es-
tablished threshold the mirror is no longer used. Once the algorithm decides that a
mirror can participate in a download, it adds a number of workers (lines 9-10) that
corresponds to the minimum between the number of pending worker slots for the
download and the number of available slots remaining for that mirror. To calculate
this number, each connector specifies the maximum number of connections that can
be opened with a server using a particular protocol.

Algorithm 4 Algorithm to launch the necessary download workers taking into ac-

count the mirror failure.
Input: d /* Associated download */

Input: max,orkers /* Maximum number of workers to be launched */
Input: failureThreshold
result = ()
/*Get the mirror list ordered by preference */
3: mirrors = d.getOrderedMirrors()
index =0
pending = maxworkers
6: while index < mirrors.size() Apending > 0 do
m = mirrors[index]
if m.failures > failureThreshold A m.isAlive() then
9: numWorkers = min(pending, m.availableConnections())
for i € numWorkers do
result.add(newWorker(d, m))

12: end for
pending— = numWorkers
end if
15: index++
end while

return result

This approach introduces a fault-tolerance layer against server failures in the Down-
load Engine without requiring any type of user intervention. In the event of mirror
failures or maintenance situations, there is no need of resending the new list of
available servers to the interested Download Engines. For example, let us consider
a scenario with two mirrors transferring different parts of the same file. If one of
them fails, the Download Engine will try to reconnect a configured number of times.
If reconnection is not possible, the remaining pieces of the file will be downloaded
from the other mirror.

6.1.4 Download lifecycle

The Download Engine manages the download processes using a finite state machine
that covers the complete download lifecycle. Figure 45 contains all states of a trans-

6.1 DOWNLOAD ENGINE 95

#New download

repository space & no .
available threads? Pending
yes available
N resources
EObtaining information
) all mirrors unavailable
ok
v
) error
Allocating
ok
'
: user
Downloadlng m{ Stopped
transfer all mirrors fail
omplete

integrity
information?

*

Figure 45: Download states diagram. Darker boxes represent final states of the download.

96

FAST DATA TRANSFERS

fer process including the initial, final and error states. Notice that the lifecycle of a
download is abstracted from the underlying protocols and configurations that will
be used to transfer the data.

The lifecycle of a download starts with the arrival of a new download request.
Before starting the download, the Engine checks whether there is enough space in the
local repository and there are available slots for the download to start immediately.
If any of the conditions is not satisfied, the download goes to the Pending state.
When these conditions are fulfilled, the download makes a transition to the Obtaining
information state. At this point point, the Download Engine identifies which mirrors
are available and retrieves the size of the download. If no mirror is available, the
download passes to the Mirrors not available error state. This information could be
used by the users of the system or the Download Engine itself to report errors to the
publisher organizations.

If the download size can be obtained and at least a mirror is active, the Download
Engine uses this information to compute the number of chunks to be downloaded.
To calculate this number, a chunki,. value is configured into the Download En-
gine. The number of chunks (which matches the number of connections if no error
appears) is then calculated as:

e] (50)

NMUMconnections 2 MUMchunks = [
Chunksize

The assignation of which chunk will be transferred by which connection is done by
defining a pool of available connections. When a connection is not transferring any
data it will request another chunk to be downloaded until all chunks in a download
have been transferred.

However, as the Download Engine has a maximum storage space for the repos-
itory, it is necessary first to go into the Allocating state, where physical disk space
is reserved. If there is no sufficient space or there is a disk failure, the download
makes a transition to the Insufficient disk error state. After a successful allocation, the
download goes into the Downloading state. In this state, each of the chunks defined
before is assigned and transferred. Upon user request, the download can be Stopped
and resumed. If during the download process, a complete mirror failure is detected,
the download goes into the previous Mirrors not available error state. On completion,
the integrity information metadata of the download is checked. If it exists (e.g., a
hash of the file), the download makes a transition to the Checking integrity state. If
not, the download is considered successful and goes to the final Complete state. If the
integrity check fails, the download goes into the Integrity error state.

The aforementioned figure contains the main state diagram. For clarity purposes,
some error states have been omitted. In case any error is detected during any stage,
the download will make a transition to the Error state. Additionally, if the download
contains extended integrity information (e.g., partial hashes of the file), the down-
loaded chunks will be checked during the Downloading state to determine whether
it is necessary to re-download any of them. This permits to avoid re-downloading
the whole file when one chunk fails. In case of Download Engine failure (e.g., power
outtake), once the engine is restarted, the downloads will continue from the previous
known state.

6.1 DOWNLOAD ENGINE

[Infrastructure CA]

 J 4

Notification CA Subscriptions CA

|
v v

Organization Organization_

v v ‘ v L

Data Distribution Download Download Download
Manager Engine Engine . Engine_

0

Figure 46: Public key infrastructure for secure notifications. Starting from the infrastructure
certification authority, a hierarchy is built in order to delegate the management of
local certificates at the final organization level.

6.1.4.1 Security aspects

The download engine has been modeled considering the requirement that it must be
able to download data from sites that require some type of authentication. Therefore,
we must provide a mechanism to manage the user credentials on the Download
Engines. Moreover, as the engines rely on a notification mechanism to launch new
download, it is important to authenticate the notifications. The main security aspects
addressed in the initial design are:

e Secure notifications: Notifications send to the download engines must be send
from trusted endpoints in order to avoid denial of service attacks making the
Download Engine transfer non-desired files. In this type of attack, a malicious
endpoint will send notifications to a Download Engine to download a set of
files that the user has not requested. In this way, it would be possible to make
the Download Engine use all available download slots to retrieve this non-
requested data, inducing starvation in the legitimate user requests. In order to
implement this mechanism, we employ a public key infrastructure. Figure 46
depicts how the certificates of different components of the system are managed.
On the top of the infrastructure, a global certification authority is used to create
two new certification authorities. The first one is called Notification CA and it is
used to issue certificates to the components responsible of sending notifications.
The second one receives the name of Subscriptions CA and it is used to issue
certificates that will permit the download engines to authenticate themselves.
In order to facilitate the management of the download engines certificates, a
certificate is issued to the trusted organization, and it is the responsibility of
each organization administrator to manage its certificates.

97

98

FAST DATA TRANSFERS

o User credentials: The users of the system retrieve the files from the download
engines using their download clients. To connect to the download clients the
users need to specify a username and password to establish an authentication
and establish a connection. This username and password are only used by the
clients to connect to the download engines. Additionally, the users are able to
store other credentials in the download engines in order to access external sites.
The system currently supports the storage of username and password and user
certificates. The utilization of these credentials by the download engine works
in a similar manner as the credentials stored in a common web browsers.

6.1.4.2 Specifying download sources

Our Download Daemon is able to download a file using different protocols concur-
rently from a set of available servers. It is therefore necessary to define a user-friendly
method to specify which are the servers and protocols that can be used to retrieve
a particular data. For this purpose, we employ the metalink 3 standard. A metalink
is a XML document where the necessary information for a multi-source download
is specified. The metalink specification considers that a download can be composed
of several files. For example, the download of a new kernel release (e.g., 3.0) could
involve the download of several files: System.map-3.0.0, vmlinuz-3.0.0, initrd.img-
3.0.0, and config-3.0.0. The metalink specification permits to define a single metalink
file (kernel-3.0.0.metalink) that contains all the information required to download all
files.

An example of a metalink file is shown in the Listing 1. First, we specify the in-
formation about the contents of the download such as the content identifier, version,
publisher, license, description, etc. After that, the download information is presented.
As multiple files can be specified in a metalink, we will focus on the information con-
tained in a single file.

For each file, the metalink file contains the integrity information and the list of
available resources to obtain the data. The integrity information is an optional field
and contains a hash per file, and a list of hashes per chunk of the file. This permits
to check the integrity of the file as it is being downloaded and upon completion
of the transfer. The list of resources specifies where we can obtain the data from.
Each resource is characterized by its protocol (ur! type), the location of the mirror and
the preference. The protocol definition permits to automatically choose which is the
connector suitable for the connection. The preference and location values can be used
to establish an order of preferred mirrors and how many connections can be made
to each of them.

Listing 1: Sample metalink

<?xml version="1.0" encoding="utf-8"?>
<metalink version="3.0" generator="Metalink Editor version 0.4.1" xmlns="http://
www.metalinker.org/">
<publisher>
<name>Publisher organization</name>
<url>http://www.publisher.com/</url>
</publisher>

3 Metalink standard. www.metalinker.org/

www.metalinker.org/

6.2 EVALUATION 99

<identity>Test image</identity>
<version>1.0</version>
<copyright>Copyright Information</copyright>
<description>File 1 description.</description>
<files>
<file name="filel.dat">
<size>5410865</size>
<verification>
<hash type="sha256">685a82c...f62</hash>
<pieces type="shal" length="262144">
<hash piece="0">51777f8...7c2</hash>

<hash piece="20">5075863...0cd</hash>

</pieces>
</verification>
<resources>
<url type="http" location="es" preference="70">

http://mirrorl/dirl/file.iso</url>
<url type="http" location="uk" preference="70">
http://mirror2/dirl/dir2/f.iso</url>
<url type="gsiftp" location="es" preference="20">
gsiftp://backup.mirrorl/file.iso</url>
</resources>
</file>
</files>
</metalink>

In this thesis, we modify the standard metalink schema to permit the use of the
GridFTP protocol by introducing the gsiftp type. Additional protocols can be added
to the metalink specification in the same way. Regarding the use of the integrity
information, the Download Engine it is able to check the integrity of the file while it
is being downloaded using the hashes found in the metalink. Notice that the chunk
size in the metalink may not match the chunk size used by the engine. In this case,
the Download Engine determines the equivalence between the metalink chunks and
the download chunks and waits until the involved pieces are transferred to perform
the integrity checks.

6.2 EVALUATION

In this section, we present the evaluation of the proposed Download Engine. First, we
present the results obtained when using the parallel download mechanism presented
in this chapter. After that, we present results regarding the fault-tolerance capabilities
of the engine when presented with different types of failures. All the tests have been
carried out deploying the Download Engine in a machine with a 100 Mbps ethernet
connectivity using the HTTP connector. We will refer to that machine as client in
the following sections. To capture the information, we use the well-known network
protocol analyzer Wireshark 4 1.8.3 limiting the capture to TCP packages.

4 Wireshark: http://www.wireshark.org/

http://www.wireshark.org/

100

FAST DATA TRANSFERS

—— Bytes In Flight S1 —— Bytes In Flight S2 - - HTTP Request
S -
—
§ e 1
3
o
c
o o _|
5 ©
o
8) Wﬂ
= ! !
- Yl LT T
. 1 ‘ ‘ [
£ ! \
0 ! {
g‘ o | | | I
[| (] I
| | | 1 il
i | | | | (] Ut
| | [1 1
o | | | | | 11 [t}

o
o
=
o
=
o

Time (sec)

Figure 47: Parallel download performance using two servers. Notice that the sum of the
bandwidth from each server matches the maximum effective bandwidth of the
Ethernet link.

6.2.1 Parallel downloads

In this section, we explore the benefits in terms of speedup of using the proposed
parallel download mechanism. Before entering in details about what could be the
achievable speedup, we want to illustrate the inner workings of the mechanism. In
order to do that, we capture the traffic between the client machine and two servers
(S1 and S2) located in the same LAN. The maximum connectivity with the servers
is 100 Mbps, and both of them can be accessed in less than 3 hops. Additionally, the
system is configured to launch 4 parallel connections with 2 parallel connections per
server.

To detail the timeline of the transfer, Figure 47 shows the number of bytes trans-
mitted per server and unit of time (resolution of 0.01 sec) and a vertical line each
time a new HTTP request is sent. As the download engine splits the file into chunks,
ideally the number of HTTP requests should match the file size divided by the chunk
size. This number may vary in reality depending on the error rate of the connection,
number of retransmissions, etc. The first part of the figure shows the startup of the
download process, with the Engine configured to launch connections to S1 and S2
in that order (the priority value in the metalink file). At first, all requests are sent by
S1 due to the ordering. Notice how the effective bandwidth is limited only by the
ethernet connectivity of the client.

Approximately, at time 2.5 seconds, the connections established with Sz start re-
ceiving data. In the interval 5 to 15 seconds, we observe how the client is accessing

6.2 EVALUATION 101

both servers at the same time. It is important to highlight that the effective band-
width is split between both servers as both have the same connectivity capabilities
and the sum of the bandwidths matches the client ethernet limit. Around time 12 sec-
onds, the threads connecting to S1 finish downloading their assigned chunks, and
only connections to S2 remain active. After this, connections with S2 finish and the
requested file is available at the Download Engine.

After illustrating the basic mechanism, we are interested in analyzing the possible
benefits of varying the number of parallel connections and the chunk size in the
Download Engine. For this purpose, we compare the average download speed when
transferring the same file from three different mirrors. In the test, we vary the num-
ber of connections between 1 and 16, and the chunk size between 1024 kiB and 16
MiB. The test file corresponds to the core OpenOffice file (OOo_3.3.0_src_core.tar.bzz2)
which has a size of 105 MiB. The servers involved in the test are selected from the
official mirror list 5. The main characteristics when selecting the servers are the RTT
with the client and the distance in hops between the client and the server (as mea-
sured with the traceroute tool). In our case, we choose three servers with a RTT of
265, 40, and 45 milliseconds, and a hop distance of 16, 13, and 11 hops respectively.

Figure 48 shows the average speed when accessing each of the servers. First, in
Figure 48a we show the download performance when connecting to a slow server
with an RTT of 265 milliseconds. The results show the benefits of using parallel
downloads in this type of servers as the average speed increases in most cases with
the number of connections. Some cases with 16 connections show slowdowns with
a performance similar to 4 or 8 connections. Regarding the chunk size, we observe
that in general medium size chunks of 4096 KiB offer the best performance. The
average speedup in this server when using parallel connections is 1.74 + 0.30 with a
maximum speed of 0.55 MiB per second.

In Figures 48b and 48c we show the results when connecting to faster servers with
an RTT of 40-45 milliseconds. In both cases, medium sized chunks of 4096 KiB and
8192 KiB offer the best performance. Regarding the number of parallel connections,
we observe an average speedup of 1.93 £ 0.50 and 2.95 + 1.39 respectively. As before,
we also notice that with 16 connections, the speed usually decreases. It is important
also to highlight that the maximum speed in both test is 9.39 and 10.18 MiB per
seconds respectively, which are significantly close to the maximum speed of the
ethernet local link.

In all scenarios, the results suggest that using small sized chunks do not provide
the best configurations. While smaller chunks provide faster responses on the event
of failures (i.e., retransmission involve less data), they impose a significant overhead
in the connection. To show this behavior, Figure 49 shows the number of connections
to be established depending on the size of the file and the selected chunk size. As
it can be shown, smaller chunks have a significant impact in the number of connec-
tions to be opened. In this respect, when transferring large files, we are interested
in reaching the steady state of the TCP connections. Therefore, medium size chunks
provide the best tradeoff between the number of connections and the impact of re-
transmissions. With regards to the number of connections, we have also seen that
16 connections usually provide less effective bandwidth. This situation can be ex-
plained by different factors such as the overhead of opening new connections or the

5 OpenOffice mirror list: www.openoffice.org/distribution/mirrors/master.html

www.openoffice.org/distribution/mirrors/master.html

102 FAST DATA TRANSFERS

H 1l W2 @4 8 16

Speed (MiB/s)
00 01 02 03 04 05 06

1024 2048 4096 8192 16384
Chunk size (kiB)

(a) Slow server with a RTT of 265 milliseconds and a distance of 16 hops.

12

H 1l W2 W4 8 16

10

Speed (MiB/s)

1024 2048 4096 8192 16384
Chunk size (kiB)

(b) Fast server with a RTT of 40 milliseconds and a distance of 13 hops.

HE 1l m2 m4 8 16

10

Speed (MiB/s)

1024 2048 4096 8192 16384
Chunk size (kiB)

(c) Fast server with a RTT of 45 milliseconds and a distance of 11 hops.

Figure 48: Download speed depending on the number of parallel connections and the chunk
size for different servers. Each bar is colored according to the number of parallel
connections launched.

6.2 EVALUATION 103

— 10MiB
- 50 MiB
7 100 MiB
= e 500 MiB
) --- 1000 MiB
2]
c —
S
B
e B
c
o
O
I+
o _|
—
0o
o

T I I I I I
512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB

Chunk size

Figure 49: Theoretical number of connections depending on the chunk size for various file
sizes.

effect of having a significant number of concurrent connections with a single server.
Internet etiquette usually suggests not opening more than 4 parallel connections to
a server. This is motivated by the fact that servers must be able to respond request
to multiple users and too much connections with a single user can monopolize all
resources causing starvation to other users.

6.2.2 Analyzing fault tolerance in the event of mirror failures

After showing the advantages of using parallel downloads for improving the band-
width utilization, we focus on the fault tolerance capabilities of the Download Engine.
For these experiments, we employ 3 scenarios with different levels of complexity. The
first scenario depicted in Figure 50 consists of a single server that experiences a tran-
sient connectivity failure. For example, imagine that the server is unreachable due
to an intermediate router being overloaded, or the client disconnecting momentar-
ily from an unstable wireless connection. In this scenario, the client starts sending
requests for content and the download is stable until the failure zone is reached. Dur-
ing this period, the client tries to reconnect to the server, and some retransmissions
are sent. When the connectivity becomes normal again, the client receives retransmis-
sions from lost packages and the download is recovered. Notice how the effective
bandwidth during normal operation is bounded by the ethernet link between the
client and the server.

The second experiment involves a scenario with 2 servers (S1 and S2) and dur-
ing the transfer S1 suffers a permanent failure. For example, imagine that the server

104

FAST DATA TRANSFERS

—— Bytes In Flight Failure Zone - - HTTP Request --- Retransmission

:F n J——

80
|
__F

40
L NN N

Bytes in Flight (resolution 0.01 sec)
20
l

T T T T T I
2 4 6 8 10 12

Time (sec)

Figure 50: Fault tolerance on the event of transient failures. Mirror S1 suffers a transient
failure and the Download Engine recovers the transfer process as the connectivity
is restored.

suffers a hardware crash or the facility suffers a blackout. Figure 51 depicts how
the Download Engine manages the connections in this situation. When the down-
load starts, connections are established first with S1 and then with S2. When the
connections to S2 start receiving data, S1 crashes. We observe that in this situation
a significant amount of retransmissions is sent to try to retrieve data. During this
failure, connections to S2 continue to receive data and as shown in the figure, the
effective bandwidth starts being consumed by S2. Notice how the bytes in flight are
at first dominated by the connections to S1, and after the failure S2 consumes all the
available bandwidth.

The third experiment is a modified version of the previous one to demonstrate the
use of backup mirrors when necessary. For this scenario, the Download Engine is
configured to launch 4 connections per server, thus using only one of the available
servers. The first part of the trace shows transfers from S1 until the system crashes.
In this state, the connections are not closed by the server and the TCP mechanisms
for this type of failure are activated. In particular, the TCP standard mandates to wait
2MSL (Maximum Segment lifetime) in order to determine that the connection is lost.
The download engine awaits this situation and once is detected, new connections to
S2 are launched to finish the download. Notice that the value of MSL changes be-
tween different implementations (between 30 seconds and 4 minutes) and we cannot
avoid waiting 2MSL in case the connection is reestablished. The same mechanism is
used in the first scenario and permits to support transient failures without reconnec-
tions.

In summary, the fault tolerance capabilities of the Download Engine permit to
recover from external failures while maintaining a maximum effective bandwidth

6.2 EVALUATION 105

—— Bytes In Flight S1 Failure Zone - =+ Retransmission
—— BytesInFlight S2 - - HTTP Request
o
< 4
-
o o
& S 7
-
S |
o
| | N
5 2 n L Tt f f W
5
©
[}
L o |
- © 1] | 1
g, " 1 1
T] l "
c 9 " l "
» n 1 11
Fi [1 1
n o 1 l 1
N T [| (]
1 1 "
[[} [
o - | 1 11
T T T T T
0 5 10 15 20
Time (sec)

Figure 51: Fault tolerance on the event of permanent failures. Mirror S1 suffers a perma-
nent failure once the download is in progress. As the Download Engine used two
concurrent servers at the same time, the transfer is finished from the remaining
connections to S2.

—— Bytes In Flight S1 Failure Zone - =+ Retransmission
—— BytesInFlight S2 - - HTTP Request
o -
S - a
o
Q
2]
—
=
o o _|
c ©
i)
5
©
[}
[
T 9 - !
= 1
i |
£ !
%] 1
g o | 1
> N
) l
I
1
I
o - L1 L
T T T T
0 20 40 60
Time (sec)

Figure 52: Fault tolerance on the event of permanent failures with a backup server. The trans-
fer is interrupted as S1 hunts. After the TCP established timeout of 2MSL is done,
new connections are launched to Sz to finish the transfer.

106

FAST DATA TRANSFERS

utilization during the downloads. Notice that no user intervention is necessary in
any of the cases.

6.3 SUMMARY

In this chapter we have presented the Distribution module of the proposed architec-
ture. This module is responsible of managing the whole distribution infrastructure
and processing the events that trigger download notifications in the interested com-
munities. It is also responsible of providing an efficient fast data transfer mechanism
in the form of a Download Engine. Our engine behaves as a proxy for the users of a
virtual community and it is able to perform multi-protocol parallel connections. Us-
ing this approach, we can transfer several pieces of the same file concurrently using
several concurrent connections to each server, and different protocols at the same
time.

To demonstrate the benefits of our approach, we first provide a theoretical upper
bound of the effective bandwidth when using parallel downloads. Our evaluation
shows the benefits of parallel connections in two aspects. First, our results show that
the effective bandwidth of a download is equally distributed on the accessed servers.
In this way, we reduce the impact on the infrastructure and maintain the quality level
on the user end. Second, we evaluate different failure scenarios to demonstrate the
fault-tolerance capabilities of our proposal. In this respect, we show how the down-
load process can be restored in the event of complete mirror failures by changing to
alternate servers, in the event of a mirror failure in a multi-server scenario, and in
the event of transient failures with a single server.

FINAL REMARKS AND
CONCLUSIONS

In this thesis, we have proposed an efficient and reliable data distribution architec-
ture that leverages the knowledge extracted from the user community in order to
improve the data movement performance. In Chapter 1.2 we decomposed the main
objective into three main areas, that have been addressed throughout this document.

In Chapter 3 we introduce the data distribution problem and describe its main
challenges. We present our proposed data distribution architecture from a high level
point of view and describe the applicability of our proposal in several scenarios.
Chapter 4 focuses on providing a method to analyze social networks in order to
extract knowledge that can be leveraged in the data distribution process. In this
respect, we propose to apply well-known community detection methods to the social
networks inferred in data distribution scenarios. The different algorithms are evalu-
ated using several metrics, and an iterative weighted community detection algorithm
is proposed to overcome the detected limitations. We also address the possibility of
filtering out certain relationships in the social network, and study the impact on the
resulting virtual communities.

The second sub-objective of this thesis is to provide a reliable and fast data trans-
fer mechanism. This goal can be addressed at different levels depending on whether
we consider the point of view of a single user accessing some data or we consider the
fact that we would like to improve the overall performance of the data distribution
process when several users request data concurrently. In this respect, in Chapter 5
we address the problem of data transfer scheduling. Our approach consists on for-
malizing this problem as a linear programming model. Due to the complexity of the
problem itself and the fact that solving performance is a key factor, we devise a fea-
sibility formulation of the original problem. The new model makes use of a heuristic
to limit the solution space and permits to produce a distributed solving by using
a map-reduce implementation. In this chapter, we also evaluate the complexity of
solving this type of problems in practice and provide an evaluation of the quality of
the resulting schedules.

In Chapter 6 we address the previous objective by defining a download engine
that is able to use different protocols concurrently to retrieve the same file and also
provides fault-tolerance mechanisms in case of failures. The last sub-objective of
defining a novel architecture that exploits social knowledge to improve the data
distribution process is also addressed in this chapter. We show a complete architec-
ture that uses the virtual communities and the data transfer schedule from previous
chapters and defines a distribution controller that is able to orchestrate and manage
data distribution scenarios.

107

108

FINAL REMARKS AND CONCLUSIONS

The remainder of this chapter is organized as follows. First, in Section 7.1 we
detail the contributions of this thesis. Second, in Section 7.2 we present future lines
of research that are opened by the results of this thesis. Finally, Section 7.3 concludes
presenting the results of this thesis in terms of publications, research internships,
and research grants.

7.1 CONTRIBUTIONS

The main objective of this thesis as presented in Chapter 1.2 is to define a new
efficient and reliable data distribution architecture that leverages the knowledge
extracted from the user community in order to improve the data movement perfor-
mance. In this respect, the main contributions of this thesis are:

c1 Data distribution architecture: Addressing the main objective of this thesis, we
have defined a complete solution for data distribution scenarios. In this docu-
ment, we have presented a new architecture that employs an underlying work-
flow to efficiently distribute data. First, we extract knowledge from the social
network of users requesting data by defining an overlay of virtual commu-
nities. The definition of these communities permits to optimize the distribu-
tion process reducing the total number of transfers from the servers. Second,
our architecture employs a publish/subscribe paradigm to determine which
users should be informed as new data becomes available. By leveraging this
paradigm, we open the possibility of assuring the service level requested by
each user by creating a prioritized schedule. Third, our architecture employs a
scheduling component to define the distribution plan. In this way, we can opti-
mize the use of resources avoiding hot spots in the infrastructure. Finally, our
architecture contains a fast data transfer solution that is able to concurrently
employ several protocols to retrieve data.

c2 Iterative weighted community detection algorithm: The evaluation of the exist-
ing community detection algorithms showed that the quality of the resulting
partitions is not suitable for data distribution scenarios. In particular, in this
type of scenario we would like to control de maximum number of users as-
signed to a community as well as the number of resources that are going to be
accessed per community. Our analysis of the results suggests that the main rea-
son behind this behavior is that most algorithms rely on the modularity metric
to determine how network should be partitioned. Due to the high-connectivity
nature of data distribution networks, we propose an iterative algorithm that
mitigates this problem. The algorithm combines the partitions defined by any
community detection algorithm with user configured parameters to determine
whether a partition must be iterative split into smaller ones. Our evaluation
demonstrates the advantages of this solution as shown by the high quality of
the produced communities.

c3 Formalization of the file transfer scheduling problem: The first challenge when
deciding to solve a problem using a linear programming approach is its for-
malization. In this respect, the quality of the solution highly depends on how

7.2 OPEN RESEARCH DIRECTIONS

complete is the model with regards to the real problem. As an abstraction pro-
cess, the formalization also has the benefit of providing a better understanding
of the inner workings of the problem to the author. In our case, we address the
problem by building our model using elements from a well known scheduling
problem. However, as the results show, successfully modeling a problem is not
the only challenge, as we need solutions in a reasonable time. In order to ad-
dress this issue, we refine our model by converting the original problem into
a feasibility problem with the help of a heuristic. By doing this, we are able to
significantly reduce the time required to solve a scheduling problem. Addition-
ally, we have also complemented the problem to introduce different levels of
fault-tolerance in the schedule.

c4 Distributed solving of the transfer scheduling problem: The definition of the
aforementioned feasibility problem permits to use a divide and conquer ap-
proach to create a transfer schedule. In this thesis, we introduce the map-reduce
paradigm and provide a tractable solution to permit the distributed solving of
a scheduling problem. To the best of our knowledge, it is the first time this com-
bination of feasibility formulation and map-reduce approach has been used to
distribute the solving of a linear programming problem.

c5 Parallel multi protocol download engine: In this thesis we have introduced a
novel parallel multi protocol download engine to speedup the transfer process.
Our engine provides two main characteristics. First, it is able to support paral-
lel connections to the same or different servers in order to retrieve difference
pieces of a file concurrently. Second, it supports the use of multiple protocols
at the same time. This permits to use more mirrors in a transfer independently
of the underlying protocol. The download engine supports different failure sce-
narios providing adequate fault-tolerance to recover or maintain the transfers.
Additionally, our download engine offers access to secure remote sites using
basic and certificate credentials.

7.2 OPEN RESEARCH DIRECTIONS

The results obtained during the realization of this thesis open several research direc-
tions that can be explored in the future as a continuation of the presented work.

ONLINE COMMUNITIES

e Propose a new algorithm that is not based on the modularity metric. As
shown on Chapter 4 most community detection algorithms try to maxi-
mize the modularity of a network. Our results demonstrate that the value
of this metric may not provide enough information in networks that show
a high connectivity degree among nodes. In this respect, a possible future
research line would consider the definition of a new community detection
algorithm based on non-modularity metrics.

e Incremental community detection algorithms. A social network is an
evolving entity that may change its structure, its size or its connectivity

109

110

FINAL REMARKS AND CONCLUSIONS

degree over time. In this respect, a future research line would explore
different approaches to permit incremental application of the community
detection algorithms.

FILE TRANSFER SCHEDULING

o Definition of new heuristics: The results presented in Section 5.4.2 demon-

strate the importance of selecting a good heuristic for determining the
Tmax value of a problem. In this respect, a future research line would
explore the definition of improved heuristics to maximize the probability
of assigning values of Tmax that reduce the computational complexity of
solving the scenario.

Additional minimization objectives: The model presented in Section 5.2.1
tries to minimize the makespan of a schedule. However, other objectives
may be of interest. In particular, we identify three main objective that
may be pursued in the future: 1) To reduce the number of intermediate
transfers of a file in order to increase the fault-tolerance. 2) To characterize
the energy consumed by the different elements of the system: servers, user
destination and intermediate appliances such as routers and minimize the
total energy consumed. And 3) to consider the cost of using different types
of servers when using on-demand resources.

Effect of the hardware on the solving process: Scalability has been proven
to be one of the most important challenges presented by current state-of-
the-art solvers. In this respect and based on our initial experiments pre-
sented in Section 5.4.6 a future research line would explore the benefits of
using different hardware architectures with regards to the solving compu-
tational time. In particular, we are interested in studying the benefits of
multicore architectures and analyze the effect of the different cache hier-
archies (number, connectivity, and size).

Comparison between reactive and proactive scheduling: In Section 5.2.1
we presented a model that is able to produce a schedule given the current
state of the system. This model needs to be reactively executed each time
a new condition changes that may affect the current schedule. By contrast,
on Section 5.3.2 we presented an extension of the model that permits to
introduce fault-tolerant capabilities in the schedule. In this respect, we
are interested in studying the benefits of each technique when presented
with changing scenarios. In particular, we want to determine which is the
overhead impose by the reactivity of the first model, and compare it to the
overhead of solving a more complex scenario with the proactive model.

FAST DATA TRANSFERS

e Adaptative download fault-tolerance: The evaluation of the Download

Engine presented in Section 6.2 demonstrated the fault-tolerance capabil-
ities of the engine when presented with different types of failures. While
some failures can be detected rapidly, others involve timers in the TCP
layer outside of our control. In this respect, we plan to extend the existing

7.3 THESIS RESULTS

fault-tolerance capabilities by reducing the delay required for recovering a
download process. In order to do that, we plan to add a monitoring layer
on the download engine that is able to actively register the evolutions of
the downloads. This will permit to detect other type of situations such as
low performing servers, or automatically decide that a connection is lost
without requiring the TCP timer to expire.

7.3 THESIS RESULTS

This section presents the published results of this thesis, as well as the effort put on
the dissemination of the results. The section also details a research internship and
other research performed during the realization of this thesis.

7.3.1 Publications

The main results of this thesis have been published in international journals and
conferences related with the studied topic. We enumerate the different references in
the following paragraphs.

JOURNALS

e D. Higuero,]J. M. Tirado, J. Carretero, F. Felix, and A. Fuente "HIDDRA:
A Highly Independent Data Distribution and Retrieval Architecture for
Space Observation Missions”, Journal of Astrophysics & Space Science, vol.
321, issue 3, pp. 169 - 175, 2009.

¢ J. M. Tirado, D. Higuero, F. Isaila, J. Carretero, and A. Iamnitchi, “Affinity
P2P: A self-organizing content-based locality-aware collaborative peer-to-
peer network”, Computer Networks, vol. 54, pp. 2056 - 2070, August 2010.

CONFERENCES

e D. Higuero, J. M. Tirado, F. Isaila, and J. Carretero, “Enhancing file trans-
fer scheduling and server utilization in data distribution infrastructure”
in Proceedings of the IEEE 20th International Symposium on Modeling, Anal-
ysis and Simulation of Computer and Telecommunication Systems MASCOTS,
August 2012, pages 431-438.

WORKSHOPS

e D. Higuero. F. Isaila, and J.Carretero. “Optimizing the design of elastic
content distribution systems for data-intensive scientific communities”. In
The s5th EuroSys Doctoral Workshop, EuroSys 2011, April 2011, Salzburg,
Austria.

e D. Higuero, J. M. Tirado, and J. Carretero. “Distributing Data to Scientific
Communities”. In European Geosciences Union General Assembly 2011, EGU
2011, April 2011, Vienna, Austria.

111

112 FINAL REMARKS AND CONCLUSIONS

e J. M. Tirado, D. Higuero, and]. Carretero. “Hiddra: Filling the gap be-
tween the archive and the user”. In 12th NASA-ESA Workshop on Product
Data Exchange, PDE 2010, June 2010.

e J. M. Tirado, D. Higuero, and J. Carretero. “High Performance Data Dis-
tribution for Scientific Community”. In European Geosciences Union General
Assembly 2010, EGU 2010, May 2010, Vienna, Austria.

e J. M. Tirado, D. Higuero, J. Carretero, F. Félix, and A. de la Fuente. “HID-
DRA: Highly Independent Data Distribution and Retrieval Architecture
for Earth Observation Missions”. In 4th GRID & e- Collaboration Workshop
- Digital Repositories, Poster session, ESRIN, Frascati, Italy, February 2009.
European Space Agency.

Regarding the dissemination of the research, we have established contact with
the Genesi-DR project during the realization of this thesis. The Genesi-DR project
(http:/ /www.genesi-dr.eu/) from the Seventh Framework Program showed interest
in the data transfer approach presented in this thesis as a solution to provide efficient
data transfer between repositories resulting in a Memorandum of Understanding
between both projects.

As the problem of distributing large quantities of data to different communities
is common to many scenarios, the European Community has also recognized the
original HIDDRA [55] project as an initiative for interoperability data management
in the e-IRG Report on Data Management [45].

7.3.2 Research internship

The realization of this thesis provided the opportunity to perform a research intern-
ship in the Kerdata * team at INRIA Rennes - Bretagne Atlantique Center in France.
The internship lasted three months from September, 2011 to November, 2011 and
was supervised by Gabriel Antoniu.

The internship focused on analyzing and modeling the behavior of the BlobSeer >
distributed data storage system in order to determine the optimal component config-
urations attending to the profile of the target application.

7.3.3 Research grants

This thesis have been supported by the following grants:

e Beca de Personal Investigador en Formacién, PIF UC3M 02-0910, Ref. 494, Car-
los III University, Funding: 48 months.

e Programa propio de investigacién, Ayudas de Movilidad 2011, Carlos III Uni-
versity, Funds: 1.050 €.

Additionally, the produced publications have been partially supported by:

1 www.irisa.fr/kerdata/
2 blobseer.gforge.inria.fr

www.irisa.fr/kerdata/
blobseer.gforge.inria.fr

7.3 THESIS RESULTS

o Input/Output techniques for distributed and high performance computing environ-
ments, Spanish Ministry of Science and Innovation under grant TIN2010-16497.

e TEALES: New scalable storage techniques for high-performance computing, Spanish
Ministry of Education and Science under grant TIN2007-63092.

7.3.4 Related research

Additionally, other work presenting ideas related with this thesis focusing on elastic
web server infrastructures has been published:

JOURNALS

¢ J. M. Tirado, D. Higuero, J. Blas, F. Isaila, and J. Carretero, “CONDESA: A
Framework for Controlling Data Distribution on Elastic Server Architec-
tures,” Transactions on Parallel and Distributed Systems, Under Review

CONFERENCES

e J. M. Tirado, D. Higuero, F. Isaila, and]J. Carretero, “Reconciling dynamic
system sizing and content locality through hierarchical workload forecast-
ing”. In 18th IEEE International Conference on Parallel and Distributed Systems
ICPADS 2012.

e J. M. Tirado, D. Higuero, F Isaila, and J. Carretero, “Multi-model predic-
tion for enhancing content locality in elastic server infrastructures”, In
IEEE International Conference on High Performance Computing, 2011.

e J. M. Tirado, D. Higuero, F. Isaila, and]. Carretero, “Predictive data group-
ing and placement for cloud-based elastic server infrastructures”, In 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
CCGrid 2011, pp. 285 - 294.

WORKSHOPS
e J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero. “Analyzing the Impact

of Events in an Online Music Community”. In Workshop on Social Network
Systems, held at Eurosys, 2011.

113

BIBLIOGRAPHY

[1]

[2]

[3]

(4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

M. Abdullah, M. Othman, H. Ibrahim, and S. Subramaniam. Optimal work-
load allocation model for scheduling divisible data grid applications. Future
Generation Computer Systems, 26(7):971—-978, 2010.

VXK. Adhikari, Y. Guo, F. Hao, V. Hilt, and Z.L. Zhang. A tale of three CDNSs:
An active measurement study of Hulu and its CDNSs. In Proceedings of the 2012
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 7-12. IEEE, 2012.

VXK. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.L. Zhang.
Unreeling netflix: Understanding and improving multi-CDN movie delivery.
In Proceedings of the 31st Annual IEEE International Conference on Computer Com-
munications (IEEE INFOCOM 2012), pages 1620-1628. IEEE, 2012.

Y.Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological
characteristics of huge online social networking services. In Proceedings of the
16th international conference on World Wide Web, pages 835-844. ACM, 2007.

B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, 1. Foster, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data management and
transfer in high-performance computational grid environments. Parallel Com-

puting, 28(5):749—771, 2002.

W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke.
Gridftp: Protocol extensions to ftp for the grid, April 2003. URL http://www.
ggf.org/documents/GWD-R/GFD-R.020.pdf.

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and
I. Foster. The globus striped gridftp framework and server. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 54. IEEE Computer Society,
2005.

H. Arend and A. Christoph. Modularity and anti-modularity in networks with
arbitrary degree distribution. Biology Direct, 5, 2010.

J.M. Badia, J.L. Movilla, J.I. Climente, M. Castillo, M. Marqués, R. Mayo, E.S.
Quintana-Orti, and J. Planelles. A parallel solver for huge dense linear systems.
Computer Physics Communications, 182(11):2441 — 2442, 2011. ISSN 0010-4655.
doi: 10.1016/j.cpc.2011.06.010.

M. Balman. Data Transfer Scheduling with Advance Reservation and Provisioning.
PhD thesis, Louisiana State University, August 2010.

S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-
hop wireless networks. In Proceedings of the 20th Conference on Computer Com-
munications (IEEE INFOCOM 2001), volume 2, pages 1028-1037. IEEE, 2001.

115

http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf
http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

116

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. Baptiste and R. Sadykov. Time-indexed formulations for scheduling chains
on a single machine: An application to airborne radars. European Journal of
Operational Research, 203(2), 2010.

R. Bartdk. Data transfer optimization: Going beyond heuristics. In Proceedings
of the 13th International Workshop on Advanced Computing and Analysis Techniques
in Physics Research, volume 1, page 9, February 2010.

M. Belshe and R. Peon. Spdy protocol draft, August 2012. URL http://tools.
ietf.org/html/draft-mbelshe-httpbis-spdy-00.

P. Berkhin. A survey of clustering data mining techniques. Grouping multidi-
mensional data, pages 25-71, 2006.

A.R. Bharambe, S. Rao, and S. Seshan. Mercury: a scalable publish-subscribe
system for internet games. In Proceedings of the 1st workshop on Network and
system support for games, pages 3—-9. ACM, 2002.

RS Bhuvaneswaran, Y. Katayama, and N. Takahashi. Dynamic co-allocation
scheme for parallel data transfer in grid environment. In Proceedings of the 1st
International Conference on Semantics, Knowledge and Grid (SKG’05), pages 17-17.
IEEE, 2005.

V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

M. Budiu, D. Delling, and R.FE. Werneck. Dryadopt: branch-and-bound on dis-
tributed data-parallel execution engines. In Proceedings of the 2011 IEEE Inter-

national Parallel & Distributed Processing Symposium (IPDPS), pages 1278-1289.
IEEE, 2011.

V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The state of the art in
locally distributed web-server systems. ACM Computing Surveys (CSUR), 34(2):
263-311, 2002.

G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Modeling data transfer
in content-centric networking. In Proceedings of the 23rd International Teletraffic
Congress, pages 111-118. ITCD, 2011.

M. Castro, P. Druschel, A.M. Kermarrec, and A.IT. Rowstron. SCRIBE: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal
on Selected Areas in Communications, 20(8):1489—-1499, 2002.

M. Cha, H. Kwak, P. Rodriguez, Y.Y. Ahn, and S. Moon. I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content video
system. In Proceedings of the 7th ACM SIGCOMM conference on Internet measure-
ment, pages 1-14. ACM, 2007.

M. Cha, H. Kwak, P. Rodriguez, Y.Y. Ahn, and S. Moon. Analyzing the
video popularity characteristics of large-scale user generated content systems.
IEEE/ACM Transactions on Networking (TON), 17(5):1357-1370, 2009.

http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

BIBLIOGRAPHY

[25] R.S. Chang and PH. Chen. Complete and fragmented replica selection and
retrieval in data grids. Future Generation Computer Systems, 23(4):536—546, 2007.

[26] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data
grid: Towards an architecture for the distributed management and analysis
of large scientific datasets. Journal of network and computer applications, 23(3):
187—200, 2000.

[27] A. Clauset, M.E.]. Newman, and C. Moore. Finding community structure in
very large networks. Physical review E, 70(6):066111, 2004.

[28] B. Cohen. The bittorrent protocol specification, June 2009. URL http://www.
bittorrent.org/beps/bep_0003.html.

[29] European Commission. Work program 2008 for information and commu-
nication technologies. Technical report, European Commission, 2008. URL
http://cordis.europa.eu/fp7/wp-2008_en.html.

[30] European Commission. Work program 2009 for information and commu-
nication technologies. Technical report, European Commission, 2009. URL
http://cordis.europa.eu/fp7/wp-2009_en.html.

[31] European Commission. Work program 2013 - cooperation theme 3 - ict
- information and communication technologies. Technical report, Euro-
pean Commission, July 2012. URL http://cordis.europa.eu/fp7/ict/docs/
ict-wp2013-10-7-2013-with-cover-issn.pdf.

[32] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

[33] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K.W. Ross, and A. Ghose. Broadcast
Yourself: Understanding YouTube Uploaders. In Proceedings of the ACM SIG-
COMM Internet measurement conference (IMC), pages 361-370, 2011.

[34] A. Dogan. A study on performance of dynamic file replication algorithms for
real-time file access in data grids. Future Generation Computer Systems, 25(8):
829-839, 2009.

[35] A. Domenici, F. Donno, G. Pucciani, H. Stockinger, and K. Stockinger. Replica
consistency in a data grid. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 534(1):
24-28, 2004.

[36] N. Du, B. Wang, and B. Wu. Community detection in complex networks. Jour-
nal of Computer Science and Technology, 23(4):672-683, 2008.

[37] J. Duch and A. Arenas. Community detection in complex networks using
extremal optimization. Physical review E, 72(2):027104, 2005.

[38] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H. Bae,]. Qiu, and G. Fox.
Twister: a runtime for iterative mapreduce. In Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing, pages 810—
818. ACM, 2010.

117

http://cordis.europa.eu/fp7/wp-2008_en.html
http://cordis.europa.eu/fp7/wp-2009_en.html
http://cordis.europa.eu/fp7/ict/docs/ict-wp2013-10-7-2013-with-cover-issn.pdf
http://cordis.europa.eu/fp7/ict/docs/ict-wp2013-10-7-2013-with-cover-issn.pdf

118

BIBLIOGRAPHY

[39] M. Eleyat and L. Natvig. Mixed-precision parallel linear programming solver.
In Proceedings of the 22nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), pages 41—46. IEEE, 2010.

[40] P. Eugster. Type-based publish/subscribe: Concepts and experiences. ACM
Transactions on Programming Languages and Systems (TOPLAS), 29(1):6, 2007.

[41] PT. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114-131, 2003.

[42] Facebook. Key facts, August 2012. URL http://newsroom.fb.com/.

[43] J. Feng and M. Humphrey. Eliminating replica selection-using multiple repli-
cas to accelerate data transfer on grids. In Proceedings of the 10th International
Conference on Parallel and Distributed Systems (ICPADS), pages 356—366. IEEE,

2004.

[44] R.Fielding, J. Gettys,]. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Rfc 2616: Hypertext transfer protocol-http/1.1, June 1999. URL http:
//tools.ietf.org/html/rfc2616.

[45] Data Management Task Force. e-IRG Report on Data Management. Technical
report, European Strategy Forum on Research Infrastructures, 2009.

[46] P. Ford-Hutchinson. Rfc 4217: Securing ftp with tls, October 2005. URL http:
//tools.ietf.org/html/rfc4217.

[47] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75-174,
2010.

[48] I Foster and C. Kesselman. The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann, 2004.

[49] L. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International journal of high performance computing
applications, 15(3):200-222, 2001.

[50] L. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for distributed
system integration. Computer, 35(6):37-46, 2002.

[51] J. Galbraith and O. Saarenmaa. Ssh file transfer protocol (sftp), July 2006. URL
http://tools.ietf.org/html/draft-ietf-secsh-filexfer-13.

[52] U. Gargi, W. Lu, V.S. Mirrokni, and S. Yoon. Large-Scale Community Detection
on YouTube for Topic Discovery and Exploration. In Proceedings of the Fifth
International AAAI Conference on Weblogs and Social Media (ICWSM 2011), 2011.

[53] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload analysis and
demand prediction of enterprise data center applications. In Proceedings of the
IEEE 10th International Symposium on Workload Characterization (IISWC 2007),
pages 171-180. IEEE, 2007.

http://newsroom.fb.com/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc4217
http://tools.ietf.org/html/rfc4217
http://tools.ietf.org/html/draft-ietf-secsh-filexfer-13

BIBLIOGRAPHY

[54] T.A. Henzinger, IST Austria, A.V. Singh, V. Singh, T. Wies, and D. Zufferey.
Static scheduling in clouds. In Proceedings of the 3rd USENIX Workshop on Hot
Topics in Cloud Computing, June 2011.

[55] D. Higuero,].M. Tirado, J. Carretero, F. Félix, and A. de La Fuente. Hiddra:
a highly independent data distribution and retrieval architecture for space ob-
servation missions. Astrophysics and Space Science, 321(3):169—175, 2009.

[56] P. Holub, H. Rudov4, and M. Liska. Data transfer planning with tree placement
for collaborative environments. Constraints, pages 1—34, 2011.

[57] C. Huang, A. Wang, J. Li, and K. W. Ross. Measuring and evaluating large-
scale cdns. In Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement, IMC 08, pages 15-29, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-334-1.

[58] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment.
Wireless Networks, 10(6):643—652, 2004.

[59] A.lamnitchi, M. Ripeanu, E. Santos-Neto, and I. Foster. The small world of file
sharing. IEEE Transactions on Parallel and Distributed Systems, 22(7):1120 — 1134,
July 2011.

[60] K. Jain, AV Vidhate, V. Wangikar, and S. Shah. Design of file size and type
of access based replication algorithm for data grid. In Proceedings of the Inter-

national Conference & Workshop on Emerging Trends in Technology, pages 315-319.
ACM, 2011.

[61] P. Jancura, D. Mavroeidis, and E. Marchiori. DEEN: A Simple and Fast Algo-
rithm for Network Community Detection. In Computational Intelligence Methods
for Bioinformatics and Biostatistics, pages 150-163. Springer Berlin Heidelberg,
2012.

[62] B. Keller and G.U.IL. Bayraksan. Scheduling jobs sharing multiple resources
under uncertainty: A stochastic programming approach. IIE Transactions, 42(1),
2010.

[63] H. Kllapi, E. Sitaridi, M. Tsangaris, and Y. Ioannidis. Schedule optimization
for data processing flows on the cloud. In Proceedings of the 2011 international
conference on Management of data, pages 289—300. ACM, 2011.

[64] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby,
E. Danna, G. Gamrath, A.M. Gleixner, S. Heinz, et al. Miplib 2010. Mathe-
matical Programming Computation, pages 1—61, 2011.

[65] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. File-based replica man-
agement. Future Generation Computer Systems, 21(1):115-123, 2005.

[66] LX.Y. Leung, P. Hui, P. Lio, and J. Crowcroft. Towards real-time community
detection in large networks. Physical Review E, 79(6):066107, 2009.

119

120

BIBLIOGRAPHY

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

[78]

[79]

[8o]

C.E. Liaw. An efficient tabu search approach for the two-machine preemptive
open shop scheduling problem. Computers & Operations Research, 30(14):2081—
2095, 2003.

L. Liming, J.P. Navarro, E. Blau, J. Brechin, C. Catlett, M. Dahan, D. Diehl,
R. Dooley, M. Dwyer, K. Ericson, et al. Teragrid’s integrated information ser-

vice. In Proceedings of the 5th Grid Computing Environments Workshop, page 8.
ACM, 2009.

H. Liu, V. Ramasubramanian, and E. G. Sirer. Client behavior and feed charac-
teristics of rss, a publish-subscribe system for web micronews. In Proceedings
of the 5sth ACM SIGCOMM conference on Internet Measurement, IMC “o5, pages
3-3, Berkeley, CA, USA, 2005. USENIX Association.

Y. Liu and B. Plale. Survey of publish subscribe event systems. Technical report,
Computer Science Dept, Indiana University, 2003.

Z. Liu, P. Li, Y. Zheng, and M. Sun. Community detection by affinity propaga-
tion. Technical report, Technical Report, 2008.

A. Loewenstern. Dht protocol, June 2008. URL http://www.bittorrent.org/
beps/bep_0005.html.

A. Makhorin. Modeling language gnu mathprog, December 2008. URL http:
//www.cs.unb.ca/~bremner/docs/glpk/gmpl.pdf.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the
tcp congestion avoidance algorithm. ACM SIGCOMM Computer Communication
Review, 27(3):67-82, 1997.

B. Meindl and M. Templ. Analysis of commercial and free and open source
solvers for linear optimization problems. Technical report, Technische Univer-
sitdt Wien, March 2012.

A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee. Mea-
surement and analysis of online social networks. In Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 29—42. ACM, 2007.

A. Mislove, B. Viswanath, K.P. Gummadi, and P. Druschel. You are who you
know: inferring user profiles in online social networks. In Proceedings of the
third ACM international conference on Web search and data mining, pages 251—-260.
ACM, 2010.

G. Miihl. Large-Scale Content-Based Publish-Subscribe Systems. PhD thesis, TU
Darmstadt, November 2002. URL http://tuprints.ulb.tu-darmstadt.de/
274/.

M.E.J. Newman. Fast algorithm for detecting community structure in networks.
Physical review E, 69:066133, Jun 2004. doi: 10.1103/PhysRevE.69.066133.

M.E.J. Newman. Finding community structure in networks using the eigenvec-
tors of matrices. Physical review E, 74(3):036104, 2006.

http://www.cs.unb.ca/~bremner/docs/glpk/gmpl.pdf
http://www.cs.unb.ca/~bremner/docs/glpk/gmpl.pdf
http://tuprints.ulb.tu-darmstadt.de/274/
http://tuprints.ulb.tu-darmstadt.de/274/

BIBLIOGRAPHY

[81] M.E.J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical review E, 69(2):026113, 2004.

[82] T.V. Nguyen. Content distribution networks over shared infrastructure: a paradigm
for future content network deployment. PhD thesis, School of Electrical, Computer
and Telecommunications Engineering, University of Wollongong, 2005.

[83] E. Nygren, RK. Sitaraman, and J. Sun. The akamai network: A platform for
high-performance internet applications. ACM SIGOPS Operating Systems Re-
view, 44(3):2—19, 2010.

[84] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp throughput:
A simple model and its empirical validation. In ACM SIGCOMM Computer
Communication Review, volume 28, pages 303—314. ACM, 1998.

[85] S. Pandey and R. Buyya. Scheduling data intensive workflow applications
based on multi-source parallel data retrieval in distributed computing net-
works. Technical report, The University of Melbourne, September 2010.

[86] M. Pathan and R. Buyya. A taxonomy of CDNs. Content delivery networks,
pages 33—77, 2008.

[87] PR. Pietzuch. Hermes: A scalable event-based middleware. PhD thesis, University
of Cambridge, 2004.

[88] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer Verlag, 2012.

[89] P. Pons and M. Latapy. Computing communities in large networks using ran-
dom walks. Computer and Information Sciences-ISCIS 2005, pages 284-293, 2005.

[90] J. Postel and J. Reynolds. File transfer protocol, October 1985. URL http:
//tools.ietf.org/html/rfc959.

[91] U.N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E, 76(3):036106,
2007.

[92] V. Ramasubramanian, R. Peterson, and E. G. Sirer. Corona: a high performance
publish-subscribe system for the world wide web. In Proceedings of the 3rd
conference on Networked Systems Design & Implementation - Volume 3, NSDI'06,
pages 2—2, Berkeley, CA, USA, 2006. USENIX Association.

[93] .M. Ramirez-Alcaraz, A. Tchernykh, R. Yahyapour, U. Schwiegelshohn,
A. Quezada-Pina, J.L. Gonzélez-Garcia, and A. Hirales-Carbajal. Job allocation
strategies with user run time estimates for online scheduling in hierarchical
grids. Journal of Grid Computing, 9(1), 2011.

[94] K. Ranganathan and I. Foster. Identifying dynamic replication strategies for a
high-performance data grid. Grid Computing—GRID 2001, pages 75-86, 2001.

[95] E. Rescorla. Rfc 2818: Http over tls, May 2000. URL http://tools.ietf.org/
html/rfc2818.

121

http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2818

122 BIBLIOGRAPHY

[96] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming, vol-
ume 35. Elsevier Science, 2006.

[97] M. Rosvall, D. Axelsson, and C.T. Bergstrom. The map equation. The European
Physical Journal-Special Topics, 178(1):13—23, 2009.

[98] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware 2001, pages
329-350. Springer, 2001.

[99] T. Sawik. Scheduling in Supply Chains Using Mixed Integer Programming. Wiley
Online Library, 2011.

[100] M. Smelyanskiy, V. W. Lee, D. Kim, A. D. Nguyen, and P. Dubey. Scaling per-
formance of interior-point method on large-scale chip multiprocessor system.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing, volume 22.
ACM, 2007. ISBN 978-1-59593-764-3.

[101] D. Soumitra and I. Mia. Global information technology report 2008-2009. In
The World Economic Forum, Geneva, Switzerland, 2009.

[102] R. Stewart and C. Metz. Sctp: new transport protocol for tcp/ip. Internet
Computing, IEEE, 5(6):64 —69, nov/dec 2001. ISSN 1089-7801. doi: 10.1109/

4236.968833.

[103] I Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review, 31(4):149—160, 2001.

[104]]J. Sun, Z. Jiang, S. Gao, and W. Yang. A new optimal replica placement strategy
in content distribution networks. In Proceedings of the 2010 International Confer-
ence on Intelligent Computing and Integrated Systems (ICISS), pages 351-354. IEEE,
2010.

[105] D. Tam, R. Azimi, and H.A. Jacobsen. Building content-based publish/sub-
scribe systems with distributed hash tables. Databases, Information Systems, and
Peer-to-Peer Computing, pages 138-152, 2004.

[106] W.W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A.P. Buchmann. A peer-
to-peer approach to content-based publish/subscribe. In Proceedings of the 2nd
international workshop on Distributed event-based systems, pages 1-8. ACM, 2003.

[107]]J. Thompson, S. Bergqvist, M. McKeay, M. Sintorn, M. Smith, P. Kersch,
R. Moller, and M. Levy. The state of the internet 4th quater 2012. Technical
report, Akamai, 2012.

[108]]J. M. Tirado, D. Higuero, F. Isaila, J. Carretero, and A. Iamnitchi. Affinity
P2P: A self-organizing content-based locality-aware collaborative peer-to-peer
network. Computer Networks, 54(12):2056 — 2070, 2010. ISSN 1389-1286. doi:
10.1016/j.comnet.2010.04.016.

BIBLIOGRAPHY

[109]]J.M. Tirado, D. Higuero, F. Isaila, and J. Carretero. Predictive data grouping
and placement for cloud-based elastic server infrastructures. In Proceedings
of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 285-294. IEEE, 2011.

[110] J.M. Tirado, D. Higuero, F. Isaila, and]. Carretero. Reconciling dynamic sys-
tem sizing and content locality through hierarchical workload forecasting. In
Proceedings of the 18th International Conference on Parallel and Distributed Systems
(ICPADS). 1EEE, 2012.

[111] R. Torres, A. Finamore, J.R. Kim, M. Mellia, M.M. Munafo, and S. Rao. Dis-
secting video server selection strategies in the youtube cdn. In Proceedings of
the 2011 315t International Conference on Distributed Computing Systems (ICDCS),
pages 248-257. IEEE, 2011.

[112]]J. Touch, J. Heidemann, and K. Obraczka. Analysis of http performance. Tech-
nical Report ISI/RR-98-463, USC/Information Sciences Institute, 1998.

[113] P. Triantafillou and I. Aekaterinidis. Content-based publish-subscribe over
structured p2p networks. In IET, editor, Proceedings of the third international
workshop on distributed event-based systems (DEBS), pages 104—109, 2004.

[114] M. Tu, P. Li, LL. Yen, B.M. Thuraisingham, and L. Khan. Secure data objects
replication in data grid. IEEE Transactions on Dependable and Secure Computing,
7(1):50-64, 2010.

[115] R. Tudoran, A. Costan, and G. Antoniu. Mapiterativereduce: a framework
for reduction-intensive data processing on azure clouds. In Proceedings of 3rd
international workshop on MapReduce and its Applications Date. ACM, 2012.

[116] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia workload analysis for
decentralized hosting. Computer Networks, 53(11):1830-1845, 2009.

[117] A. Vakali and G. Pallis. Content delivery networks: Status and trends. Internet
Computing, IEEE, 7(6):68—74, 2003.

[118] S. Vazhkudai. Enabling the co-allocation of grid data transfers. In Proceed-
ings of the 4th International Workshop on Grid Computing, GRID ‘03, pages 44—,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2026-X.

[119] V.V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., 2004.

[120] S. Voulgaris, E. Riviere, A.M. Kermarrec, and M. Van Steen. Sub-2-Sub: Self-
Organizing Content-Based Publish and Subscribe for Dynamic and Large Scale
Collaborative Networks. Rapport de recherche RR-5772, INRIA, 2005.

[121] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz. Opti-
mizing latency and throughput of application workflows on clusters. Parallel
Computing, 37(10):694—712, 2011.

[122] D.J. Watts. Small worlds: the dynamics of networks between order and randomness.
Princeton university press, 2003.

123

124

BIBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

J. Wulf, R. Zarnekow, T. Hau, and W. Brenner. Carrier activities in the CDN
market-An exploratory analysis and strategic implications. In Proceedings of
the 2010 14th International Conference on Intelligence in Next Generation Networks
(ICIN), pages 1-6. IEEE, 2010.

R. Xu, D. Wunsch, et al. Survey of clustering algorithms. Neural Networks, IEEE
Transactions on, 16(3):645—678, 2005.

C.T. Yang, M.E. Yang, and W.C. Chiang. Enhancement of anticipative recur-
sively adjusting mechanism for redundant parallel file transfer in data grids.
Journal of Network and Computer Applications, 32(4):834-845, 2009.

T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community
detection: a discriminative approach. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 927-936.
ACM, 2009.

H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min. Inside
the bird’s nest: measurements of large-scale live vod from the 2008 olympics.
In Proceedings of the gth ACM SIGCOMM conference on Internet measurement con-
ference, pages 442—455. ACM, 2009.

D. Yuan, Y. Yang, X. Liu, and J. Chen. A data placement strategy in scientific
cloud workflows. Future Generation Computer Systems, 26(8):1200 — 1214, 2010.
ISSN 0167-739X. doi: 10.1016/j.future.2010.02.004.

M. Zerola, M. Sumbera, R. Bartdk, and]J. Lauret. Using constraint program-
ming to plan efficient data movement on the grid. In Proceedings of the 21st
International Conference on Tools with Artificial Intelligence (ICTAI'09), pages 729—
733. IEEE, 2009.

M. Zerola, J. Lauret, R. Bartdk, and M.S umbera. Building efficient data plan-
ner for peta-scale science. In Proceedings of the 13th International Workshop on Ad-
vanced Computing and Analysis Techniques in Physics Research, volume 1, page 25,
February 2010.

M. Zerola, J. Lauret, R. Bartdk, and M.S umbera. Efficient multi-site data move-
ment using constraint programming for data hungry science. In Journal of
Physics: Conference Series, volume 219, page 062069. IOP Publishing, 2010.

B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on Selected Areas in Communications, 22(1):41-53, 2004.

P. Zhao and C.Q. Zhang. A new clustering method and its application in social
networks. Pattern Recognition Letters, 32(15):2109 — 2118, 2011. ISSN 0167-8655.
doi: 10.1016/j.patrec.2011.06.008.

S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and].D. Kubiatowicz. Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemination.
In Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, pages 11—20. ACM, 2001.

