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1. Introduction

Since the classic papers of Hurwicz in the early seventies, a great deal of attention has

been devoted to the problem of implementing social choice rules when preferences are

state dependent (see, e.g. Jackson [2000] for a survey). In contrast, very few contribu-

tions have dealt with the problem of implementing social choice rules when the set of

feasible outcomes is state dependent. The problem is that, in this case, some messages

yield unfeasible allocations. Thus, we have to describe how to deal with unfeasible al-

locations. The standard approach is to design a state dependent mechanism in which

the planner can ex-post verify if players are exaggerating endowments or technological

capabilities (i.e. by asking them to put endowments on the table). If infeasibility occurs,

players expect a serious punishment (Hurwicz et al., [1995], Tian [1993], Tian and Li

[1995], Hong [1995], [1996], [1998], Serrano and Vohra [1997] and Dagan et al. [1999]).

We have several reservations about this approach: The assumptions of ex-post ver-

ification of exaggeration only, and a serious punishment if infeasibility arise are rather

extreme. Moreover, it is not clear how to proceed without them. This approach also

produces a curious asymmetry between mechanisms coping with state dependent pref-

erences (“demand”) and mechanisms coping with state dependent endowments (“sup-

ply”). The former are state independent but the latter are state dependent. Finally,

the implementing mechanisms are hard to describe so it may be costly to use them.

In this paper we present a model based on the idea that unfeasible allocations are

renegotiated. We model the social process which transforms unfeasible allocations into

feasible ones by means of a reversion function. This concept originates in Maskin

and Moore (1999) and has been developed by Jackson and Palfrey (2001). In these

papers the reversion function formalized the process of renegotiation by means of which

agents trade goods allocated by the mechanism or veto some feasible allocations. In

our case, the reversion function represents the way in which society reacts to unfeasible
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allocations.1 Consequently, the properties that we impose on the reversion function are

very different from those assumed by the earlier literature.

In this paper we assume complete information. This is a clean scenario which looks

to be a good candidate for a first trial of our ideas. Thus we concentrate on Nash

implementation and assume that agents know the reversion function. Therefore the

reversion function induces new preferences, to be called reverted preferences (this is

the ”translation principle” in Maskin and Moore [1999]). Reverted preferences are

state dependent even if preferences are not. Hence, implementation when the feasible

set is state dependent reduces to the case of implementation when only preferences

are state dependent. However as remarked by Maskin and Moore, ”results from the

standard literature are too abstract to give a clear indication of how serious a constraint

renegotiation is...”.

We focus our attention in a class of reversion function in which, should an infeasi-

bility arise at least one agent is made worse off. We call this a non-rewarding reversion

function. Reversion functions considered before do not fall into this class because they

assume that agents are made better off by renegotiating. The difference is explained by

the fact that in their case, renegotiation comes from the inability of the mechanism to

stop agents from reaching mutually beneficial trades. In our case renegotiation arises

from the physical impossibility of carrying out the intended plans so that somebody has

to make a sacrifice in order to achieve feasibility. An extreme case of a non-rewarding

reversion function is when, should an infeasibility arise, all agents are punished so that

they prefer any allocation without punishment to the situation in which they are pun-

1Renegotiation may be channelled by institutions or may be totally free. A striking example is that

of a legal system. Once infractions are detected there are institutions designed to punish transgressors

and to restore feasibility. In our case we can think of the feasible set including not only the properly

feasible allocations, but also all punishments and additional devices that can be administrated by the

designed institutions, as well as the delays that may occur.
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ished. This strong form of punishment -which we will call generalized severe- resembles

the one implicitly assumed in the previous literature, but in our case it only serves an

instrumental role: we show that in the class of non-rewarding reversion functions, the

generalized severe reversion function implements the largest class of social choice rules

(Proposition 1).

An easy adaptation of the classic result shows that monotonicity, when reverted

preferences are given by the generalized severe reversion function, is a necessary and

almost sufficient condition of implementation in Nash equilibrium (Remark 1). Thus,

our first task is to characterize monotonicity. We show that it is equivalent to a weak

form of unanimity and a generalized form of contraction consistency (Proposition 2).

The former property is satisfied by most social choice rules and the latter is similar to

Nash’s independence of irrelevant alternatives.

Next, we apply the previous result to several frameworks and compare our findings

with the earlier literature. In the case of exchange economies, weak unanimity is trivially

satisfied by any individually rational social choice rule. We show that the Constrained

Walrasian rule satisfies generalized contraction consistency and thus is implementable

(Proposition 3). However the individual rationality requirement which in Hurwicz et

al. (1995) is necessary and sufficient for feasible implementation, is not sufficient for

implementation in our framework. The reason is that they not only assumed that players

never exaggerate their endowments. Since a mechanism is designed for each state of the

world, it is implicitly assumed that players never use messages designed for a different

state of the world even if such messages lead to an outcome which is feasible in the

current state of the world. We turn our attention to bargaining problems. We show

that if the disagreement point is not state dependent the Nash Bargaining solution is

implementable with a non-rewarding reversion function (Proposition 4). This agrees

with the findings of Serrano (1997) and Naeve (1999). We also show that the Kalai-

Smorodinski solution is not implementable. Finally we consider the taxation problem in
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which the mechanism has to collect a given amount of taxes. We find a negative result,

namely that a taxation method is implementable if and only if it is a serial dictatorship,

i.e. agents are arranged so that any agent pays the minimal tax compatible with the

following agents to be able to complete the required amount (Proposition 5). This

negative result contrasts with the permissive results obtained by Dagan et al. (1999).

The difference between our approaches is that in their case the report sent by agents

matters for the renegotiation and in our case it does not. Our result serves to highlight

the negative consequences of disregarding reports (i.e. a fiscal amnesty) even if all agents

show endowments.

The rest of the paper goes as follows: Section 2 spells out the model. Section

3 introduces reversion functions. Sections 4 and 5 study implementation under the

assumption that the reversion function is non rewarding. Section 6 concludes.

2. The model

In this section we provide the main definitions. Let us first describe the environment.

Let I = {1, ..., n} be the set of agents. Let ωi be type of i and Ωi be agent i’s type

set. Let Ω ⊂
Qn

i=1Ωi be the set of all possible states of the world. Each ω ∈ Ω is char-

acterized by a list of individual outcome sets (X1(ω), ...,Xn(ω)), a feasible set A(ω) ⊂Qn
i=1Xi(ω) ≡ X(ω) and a preference profile R(ω) = (R1(ω), ..., Rn(ω)). The outcome

set of i might include sanctions that can be charged to i and other constraints such as

individual rationality, etc. A(ω) contains all feasible allocations including punishments

that arise in state ω. Set A ≡
S
ω∈ΩA(ω). Let a = (a1, ..., an) ∈ A be an allocation also

written (ai, a−i). Let Ai(ω) = {ai ∈ Xi(ω) : ∃ a−i such that (ai, a−i) ∈ A(ω)} be agent

i’s feasibility constraint. Observe that A(ω) can be written too as
Tn
i=1 {a : ai ∈ Ai(ω)}.

Ri(ω) is a preference relation, a complete, reflexive and transitive binary relation on

X(ω). Pi(ω) denotes the corresponding strict preference relation. Let Li(a, ω) = {x ∈
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A(ω) : aRi(ω)x} be agent i’s lower contour set of ai. Let <i ≡ ∪ωi∈ΩiRi(ωi) be the set

of i’s admissible preferences relations. Set < =
Qn

i=1<i. With abuse of notation, for

every profile of preferences R ∈ < we will also denote by R the preference profile that

R induces on A.

A correspondence F : Ω ³ A such that F (ω) ⊂ A(ω) for all ω ∈ Ω will be called a

Social Choice Rule (SCR for brevity).

Amechanism is a pair (M,g) whereM ≡
Qn
1 Mi is themessage space and g :M → A

is the outcome function. Mi denotes agent i’s message space. Letm = (m1, ..,mn) ∈M ,

be a list of messages also written (mi,m−i). Given ω ∈ Ω, a mechanism (M,g) induces

a game (M,g,R(ω)).

A message profile m∗ ∈ M is a Nash equilibrium for (M,g,R(ω)) if, for all i ∈ I

g(m∗)Ri(ω)g(m
∗
−i,mi) for all mi ∈Mi.

NE(M,g,R(ω)) will denote the set of allocations that are yielded by all Nash equi-

libria for (M,g,R(ω)).

The mechanism (M,g) implements F in Nash equilibrium if, for all ω ∈ΩNE(M,g,R(ω)) =

F (ω).

3. Reversion functions

Since outcomes that are feasible in some states may be unfeasible in others, we have to

describe how society deals with unfeasible allocations. We assume that if an allocation

is unfeasible it is transformed into a feasible one by a process that might involve delays
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(because renegotiation takes time), penalties to some individuals, etc. This systematic

way in which the reallocation process takes place will be called a reversion function.2

This reallocation may correspond to a “free-market renegotiation” or to a process where

the planner applies some kind of punishment or a bankruptcy rule. Formally:

Definition 1. A reversion function is a map h : A×Ω→ A such that for each ω ∈ Ω,

i) h(a, ω) ∈ A(ω) ∀a ∈ A and ii) If a ∈ A(ω), h(a, ω) = a.

A reversion function always yields feasible allocations (condition i) above) and is

such that feasible allocations are not renegotiated (condition ii) above). The latter

condition is made in order to separate the issue of infeasibility from the issue of pure

renegotiation.3

If the reversion function can be chosen by the planner, under weak conditions, any

single valued SCR can be implemented as the next example shows.

Example 1. Assume that there is a state of the world, say ω0, in which the feasible

set is larger than in any other state, i.e. A(ω) ⊂ A(ω0), any ω 6= ω0. Then, any

single-valued SCR such that F (ω0) ∈ A(ω0) \
S

ω0 6=ω
A(ω) can be implemented for some

reversion function: Take a constant mechanism g(m) = F (ω0), ∀m ∈M and a reversion

function h(F (ω0), ω) ≡ F (ω), ∀ω ∈ Ω. h fulfils the conditions for a reversion function

since F (ω0) is unfeasible at any state different than ω0 and by definition it provides the

desired allocations. Notice that implementation occurs in dominant strategies.

This example implies that in order to obtain meaningful results it is better not to

allow the designer of the mechanism to also design the reversion function. This is also

intuitively agreeable because it seems reasonable that there are aspects of renegotiation

2See Amorós (2004) for a model with several renegotiation functions.
3A tautological interpretation of the latter condition is that A(ω) is the set of allocations that are

not renegotiated at ω.
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that are beyond the control of the designer. Thus, in the rest of the paper we will

assume that the reversion function is exogenously given.

To explain the next step, consider the simplest possible case: At states of the world

ω and ω0 the preference profile, say R, is the same. Let a, b and c be three allocations

that are feasible at state ω. Assume that aPibPic for some agent i. In state ω0, a is not

feasible and is renegotiated to c and b is feasible. So, even if the underlying preferences

are the same in both states, player i prefers a to b at state ω and b to a at ω0. To

formalize and extend this idea we give the following definition.

Definition 2. Given ω ∈ Ω and a reversion function h, the reversion of R(ω) on A(ω),

denoted by Rh(ω) is

aRh
i (ω)b⇔ h(a, ω)Ri(ω)h(b, ω), ∀ a, b ∈ A, i ∈ I.

Lh
i (a, ω) = {b ∈ A : h(a, ω)Ri(ω)h(b, ω)} will be called the lower contour set of a at ω

with respect to Rh(ω).

Then, when the reversion function is h, we can interpret that agents’ preferences

are the reverted preferences, i.e. they only care about reverted allocations. The next

definition is a straightforward adaptation of the standard notion of implementation in

Nash equilibrium.

Definition 3. A social choice rule F is h-implementable in Nash Equilibrium if there

exists a game form (M,g) such that for all ω ∈ Ω

F (ω) = h(NE(M,g,Rh(ω)))

In words, F is h-implementable in Nash equilibrium if and only if it is implementable

in Nash equilibrium when for each ω ∈ Ω the correspondent preference profile is Rh(ω).

In other words, once we consider that agents’ preferences are those induced by the
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reversion function, we can deal with h-implementation exactly in the same way as done

in the classical implementation problem.

In the study of the restrictions that a state dependent feasible set imposes on im-

plementation, we concentrate on monotonicity (or Maskin-monotonicity). As observed

by Jackson (2001), monotonicity is the most important obstacle to implementation in

Nash equilibrium. For instance, it is not generally satisfied by the Walrasian social

choice rule. Monotonicity is a necessary and almost sufficient condition for a SCR to

be implementable in Nash equilibrium (see Maskin (1999) or Repullo (1987)). Thus it

is the first condition to deal with.

A SCR satisfies monotonicity whenever an alternative is chosen at a state of the

world and it rises in each agent’s preference ranking at another state of the world, then

it must be chosen also at this state. Now we restate the definition of monotonicity in

terms of reverted preferences. Let h be a reversion function.

Definition 4. A social choice rule F is h-monotonic if for any ω, ω0 ∈ Ω and a such

that h(a, ω) ∈ F (ω) such that Lh
i (a, ω) ⊂ Lh

i (a, ω
0) for all agents i then h(a, ω0) ∈ F (ω0).

The importance of h-monotonicity is highlighted by the following remark whose proof

is a straightforward adaptation of an standard result mentioned before and, therefore,

is omitted:

Remark 1. If a social choice rule is h-implementable in Nash equilibrium, it is h-

monotonic. Moreover in economic environments with #I > 2 if a social choice rule is

h-monotonic, it is h-implementable in Nash equilibrium.4

4An economic environment is one in which no two agents agree on the top allocation of their preference

rankings.
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4. Non-Rewarding Reversion Functions: Basic Results

In this section, we restrict our attention to a class of reversion functions where renego-

tiation is not advantageous for all players. We will call them Non-Rewarding. We will

show that inside this class a particular reversion function -that we will call Generalized

Severe- implements the maximal set of SCR. Then, we will characterize the SCR that

can be implemented under generalized severe reversion functions.

Let us start by defining the following class of reversion functions:

Definition 5. A reversion function is non-rewarding if for a ∈ A(ω) either there exists

i ∈ I and c ∈ A(ω0) such that aRi(ω)h(c, ω) with cPi(ω0)h(a, ω0) or Lh
j (a, ω) ⊂ Lh

j (a, ω
0)

for all j.

Consider the case where the feasible set is constant and only preferences change.

In this case the first condition in the definition postulates the existence of a pair of

allocations for which there is a preference reversal.5 In the case where preferences are

fixed and the feasible set varies, the idea is that when agents renegotiate, something bad

happens -delays, punishments engineered from the designer, etc.- and this is what causes

the inversion of the ranking of a and c in the reverted preferences. The second condition

in the definition considers the case where a has improved in everybody´s ranking when

passing from ω to ω0. It takes care of the case where A(ω0) ⊂ A(ω) because if a ∈ A(ω0)

no feasible reversal around a can take place.

Consider now a specific reversion function which belongs to the class of non-rewarding

ones. Suppose that, should an infeasibility arise, players are redirected to what they

consider to be the worst possible allocation. This reversion function resembles the

assumption made in previous papers that agents do not choose unfeasible messages be-

cause the planner detects infeasibility and imposes a punishment in such a way that
5This condition was emphsized by Maskin and Moore (1991): ”The other problem that renegotiation

poses is that it interferes with ”preference reversal”.
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agents prefer any other feasible allocation to this punishment. However our interest in

this particular reversion function arises from the fact that it allows finding the maximal

set of SCR that can be implemented under non-rewarding renegotiation (see Proposition

1 below).

Let G ∈ A(ω), ∀ω ∈ Ω be such that for all i, aPi(ω)G with a 6= G and a ∈ A(ω). G

will be called the “generalized punishment point”. The reversion function with h(a, ω) =

G if a /∈ A(ω) will be called generalized severe and the induced preferences Rh(ω) will

be called the saturation of R(ω) on A(ω) defined by the following properties.

For all i ∈ I:

(1) If a, b ∈ A(ω) then aRh
i (ω)b if and only if aRi(ω)b

(2) If a ∈ A(ω) and b /∈ A(ω) then aP h
i (ω)b

(3) If a, b /∈ A(ω) then aIhi (ω)b

We show that generalized severe reversion implements the largest set of social choice

rules among the class of non-rewarding reversion functions.

Proposition 1. Let F be a SCR which is h−implementable in Nash Equilibrium with

a non rewarding reversion function. Then F is implementable in Nash Equilibrium with

a generalized severe reversion function.

Proof Let (M,g) implementing F with reversion function h.

Let a ∈ F (ω). Let m(ω, a) be a Nash equilibrium of
©
M,g;Rh(ω)

ª
such that

g(m(ω, a)) = a.

Let Bi(ω, a) = g(Mi × {m−i(ω, a)}) be the attainable set of i.

Set Bh
i (ω, a) =

S
ω0∈Ω{c ∈ A(ω0) : aRi(ω)h(c, ω), cPi(ω0)h(a, ω0) if for some b ∈

Bi(ω, a), aRi(ω)h(b, ω), h(b, ω0)Pi(ω0)h(a, ω0)}

Set Bh = Im g ∪ (
S
ω,ω0∈Ω
i∈I

{c ∈ A(ω0) : aRi(ω)h(c, ω), aPi(ω0)h(c, ω0) if for some

b ∈ Bi(ω, a), aRi(ω)h(b, ω), h(b, ω0)Pi(ω0)h(a, ω0)}).

Observe that for all ω ∈ Ω, a ∈ F (ω), and i, Bh
i (ω, a) ⊂ Bh. Thus:

11



-Bh
i (ω, a) ∩A(ω) ⊂ Bi(ω, a) ∩A(ω) for all ω

-aRh
i (ω)x for all x ∈ Bi(ω, a) and for all i ∈ I

-if aRi(ω
0)x for all i ∈ I , x ∈ Bh

i (ω, a) ∩ A(ω0) then a ∈ F (ω0). Otherwise there

would exist j ∈ I and b ∈ Bj(ω, a) such that h(b, ω0)Pi(ω0)h(a, ω0). h is non-

rewarding so there exists c ∈ A(ω0) such that aRj(ω)h(c, ω), cPj(ω0)h(a, ω0). By

definition c belongs to Bh
j (ω, a).

Using the assumption that h is non-rewarding we can prove, exactly as above:

-if b ∈ Bh
i (ω, a) for some i ∈ I is such that for some ω0 ∈ Ω, bRi(ω

0)x for all

x ∈ Bh
i (ω, a) ∩ A(ω0), and if bRh

j (ω
0)x for all x ∈ Bh ∩ A(ω0) for each j 6= i then

b ∈ F (ω0).

-if b ∈ Bh is such that for some ω0 ∈ Ω, bRh
i (ω

0)x ∀ x ∈ B for all i, then b ∈ F (ω0)

For all i set M 0
i = {(ω, a); a ∈ F (ω)} × Bh ×N, where N is the set of integers.

Let M 0 =
QN
1 M 0

i , and g0 :M 0 −→ A such that:

a) g0(m) = a if mi = (ω, a, b, n) ∀i.

b) If there exists a unique i such that for all j 6= i mj = (ω, a, b, n) and mi =

(ωi, ai, bi, ni) is such that (ω, a, b, n) 6= (ωi, ai, bi, ni) then set g0(m) = b if bi ∈

Bh
i (ω, a), otherwise set g

0(m) = a.

c) Otherwise set g0(m) = bi where i = min argmaxj{nj ;mj = (ωj , aj , bj , nj)}.

This is the canonical mechanism in Nash implementation. It is proved immediately

that(M 0, g0) implements F by generalized severe punishment.

In words, generalized severe reversion implements any SCR implementable with non-
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rewarding reversion functions.6 , 7 The rest of this section will be devoted to study the

former. According to Remark 1 this leads us to study h-monotonicity under saturated

preferences.

We now introduce two properties that are necessary and sufficient for h-monotonicity

under generalized severe reversion.

Definition 6. A SCR F satisfies Weak Unanimity (WU) if for all ω,ω0 ∈ Ω such that

A(ω0) ⊂ A(ω) and for all a ∈ A(ω)\A(ω0) such that Li(a, ω) ∩A(ω0) ⊂ Li(a, ω
0) for all

i ∈ I, a /∈ F (ω).

When preferences are fixed, WU says that if all alternatives available at ω0 are also

available at ω, the SCR will not select at ω an alternative which is available at ω but

not at ω0 if all players prefer any allocation available at ω0 to it. If this condition is

not satisfied, when the actual state is ω all agents have incentives to underrepresent

the economy and implement the decision intended for state ω0. Notice that WU is

equivalent to the following condition: if A(ω0) ⊂ A(ω) and a ∈ F (ω)\A(ω0) then there

exists b ∈ A(ω0), b 6= G such that aRib for some i ∈ I.

6Proposition 1 can be proved under the following assumption that generalizes that of a non-rewarding

reversion function: whenever there exists i ∈ I with aRi(ω)h(b, ω) and h(b, ω0)Pi(ω
0)h(a, ω0) a ∈ A(ω)

then there exists j and c ∈ A(ω0) such that: i) aRj(ω)h(b, ω) and h(b, ω0)Pj(ω
0)h(a, ω0) and ii)

aRj(ω)h(c, ω) with cPj(ω
0)h(a, ω0). This says that at least one agent suffers as a consequence of unfea-

sibility in a way that could have been done through a feasible allocation. For instance, the agent who is

deemed responsible for the unfeasibility is punished and there is an agent who does not get the bundle

she consumed at the other state.
7The assumption of non rewarding is necessary for Proposition 1 to hold. Let Ω = {ω, ω0}, A(ω) =

{a, b, c,G} and A(ω0) = {a, b,G}. Let n = 2 and Ri(ω) = Ri(ω
0) = R for i = 1, 2 where bPaPc. Let

F (ω) = a and F (ω0) = b. Let h(c, ω0) = b. h does not satisfy the non rewarding assumption at c. F is

h-implementable in NE by the simple mechanism which leaves agent 1 to choose among a and c. But it

cannot be implemented by severe generalized punishment because F ( ) is not monotonic with respect

to saturated preferences.
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Definition 7. A SCR F satisfies Generalized Contraction Consistency (GCC) if, for

ω, ω0 ∈ Ω, and for a ∈ F (ω) ∩A(ω0) such that Li(a, ω) ∩A(ω) ∩A(ω0) ⊂ Li(a, ω
0) and

A(ω0)\A(ω) ⊂ Li(a, ω
0).for all i ∈ I, a ∈ F (ω0).

When preferences are fixed and A(ω0) ⊂ A(ω), A(ω0)\A(ω) = ∅ ⊂ Li(a, ω) for all i.

In such a case GCC prescribes choosing at state ω0 any feasible allocation we have chosen

at ω. Thus GCC is a weak version of Nash Independence of Irrelevant Alternatives (see

Roemer [1996], p. 55). In the general case, GCC says that if a is selected at state ω,

is feasible at ω0 and no better alternatives are available in A(ω0)\A(ω), then a must be

selected also at ω0.

Proposition 2. A SCR is h-monotonic under generalized severe punishment if and

only if it satisfies Generalized Contraction Consistency and Weak Unanimity.

Proof Let h denote the generalized severe punishment reversion function.

We begin by proving the necessity of WU and GCC. Let F be h-monotonic.

Then F must satisfy WU. Let ω,ω0 ∈ Ω, let A(ω0) ⊂ A(ω) and let a ∈ A(ω)\A(ω0)

such that Li(a, ω) ∩ A(ω0) ⊂ Li(a, ω
0) and i ∈ I. By contradiction, let a ∈ F (ω).

Then Lh
i (a, ω) = (Li(a, ω) ∩A(ω)) ∪A\A(ω) = (Li(a, ω) ∩A(ω0))∪

(Li(a, ω)∩A(ω)\A(ω0))∪A\A(ω) ⊂ (Li(a, ω
0)∩A(ω0))∪A\A(ω0) = Lh

i (a, ω
0) for

all i ∈ I. Then h-monotonicity implies that a ∈ F (ω0), which is a contradiction

as F (ω0) ⊂ A(ω0).

Now we consider GCC. Let a ∈ F (ω)∩A(ω0) such that Li(a, ω)∩A(ω)∩A(ω0) ⊂

Li(a, ω
0) and A(ω0)\A(ω) ⊂ Li(a, ω

0) for all i ∈ I.

Lh
i (a, ω) = (Li(a, ω) ∩A(ω) ∩A(ω0)) ∪ (Li(a, ω) ∩A(ω)\A(ω0))∪

(A(ω0)\A(ω)) ∪ ((A\A(ω))\A(ω0)) ⊂ (Li(a, ω
0) ∩A(ω) ∩A(ω0))∪

(Li(a, ω
0) ∩A(ω0)) ∪A\A(ω0) = Lh

i (a, ω
0). h-monotonicity implies a ∈ F (ω0).

We next show the sufficiency of WU and GCC for F to be h-monotonic.

14



Let ω, ω0 ∈ Ω, and let a ∈ F (ω) such that Lh
i (a, ω) ⊂ Lh

i (a, ω
0) for all i. Consider

the following three cases.

i) A(ω) ∩A(ω0) = {G}

ii) A(ω) ∩A(ω0) 6= {G} and a /∈ A(ω0)

iii) A(ω) ∩A(ω0) 6= {G} and a ∈ A(ω0)

i) It is not possible. In such a case there is no i ∈ I Lh
i (a, ω) ⊂ Lh

i (a, ω
0), since,

from the definition of saturated preferences it follows that aP h
i (ω)b and bPh

i (ω
0)a

for all b ∈ A(ω0).

ii) It must be the case that A(ω0) ⊂ A(ω). Otherwise from the definition of

saturated preferences for all b ∈ A(ω0)\A(ω): aP h
i (ω)b and bPh

i (ω
0)a for all i.

Then we must have Li(a, ω) ∩ A(ω0) ⊂ Li(a, ω
0) for all i ∈ I Otherwise for some

i ∈ I,. b ∈ A(ω0): aRi(ω)b and bPi(ω
0)a. But from WU it would follow that

a /∈ F (ω), a contradiction.

iii) It must be the case that Li(a, ω) ∩A(ω) ∩A(ω0) ⊂ Li(a, ω
0) and

A(ω0)\A(ω) ⊂ Li(a, ω
0) for all i ∈ I. Otherwise either there exists b ∈ A(ω) ∩A(ω0)

such that aRi(ω)b and bPi(ω0)a for some i ∈ I, or there exists b ∈ A(ω0)\A(ω) such that

aP h
i (ω)b and bPi(ω

0)a for some i ∈ I. Then GCC implies that a ∈ F (ω0).

So F is monotonic. .

5. Non-Rewarding Reversion Functions: Applications

In this section we apply the findings of previous sections to exchange economies and to

bargaining and bankruptcy problems.

5.1. Exchange Economies: Withholding

First, we notice that in this environment with more than two agents, h-monotonicity is

necessary and sufficient for F to be h-implementable in Nash equilibrium.

15



There are n agents and K goods. Let Xi = R
K
+ be i’s consumption set. We assume

that agents’ preferences and consumption sets do not vary but endowments do. Let

ui be a utility function that represents agent i’s preferences. Let Ωi ⊂ RK
+ be the

set of agent i’s possible endowments. For ω = (ω1, ..., ωn) ∈ Ω set ω =
Pn

i=1 ωi. We

consider that the planner can only transfer goods among players. Then the allocation

set contains the set of the balanced net transfers and the generalized punishment point,

A = {x ∈ RK×n :
PK

s=1 xs = 0}∪{G}. For all ω ∈ Ω the feasible set is A(ω) = {x ∈ A :

xi + ωi ≥ 0 for i = 1, ..., n} ∪ {G}. Then A(ω0) ⊂ A(ω) if and only if ω0 ≤ ω. In

order to describe preferences on net transfers, notice that the utility agent i gets from

transfer xi when her endowment is ωi is ui(xi + ωi). Thus, the utility function is state

dependent even if preferences are not. For each ω and for all x ∈ A(ω) for all i set

ui(x, ω) ≡ ui(xi + ωi).

Saturated preferences can be represented by the following utility functions:

uωi (x) = ui(x, ω) x ∈ A(ω)\ {G}

uωi (G) = ui(0)− ε, ε > 0.

Let us first consider WU. It is easily seen that it suffices to consider only endowments

ω, ω0 such that ω0 ≤ ω. Then WU amounts to the following condition:

Condition α : For all ω, ω0 ∈ Ω such that ω0 ≤ ω, if a ∈ F (ω)\A(ω0) there exists i

such that ui(ωi + ai) ≥ ui(ωi − ω0i).

Observe that if (0, ωi) ⊂ Ωi for all i then Condition α requires simply the SCR to

be individually rational for at least one agent. It is a very weak requirement and it is

obviously satisfied by many SCR, e.g., any Pareto efficient or any individually rational

SCR.

Stronger requirements are imposed by GCC. Also in this case, it suffices to consider

only endowments ω, ω0 ∈ Ω such that ω0 ≤ ω. GCC is satisfied if and only if the

following condition holds:
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Condition β. For all ω, ω0 ∈ Ω such that ω0 ≤ ω, if a ∈ F (ω)∩A(ω0) and a /∈ F (ω0)

there exists i and x ∈ A(ω0) such that

ui (ωi + ai) ≥ ui (ωi + xi)

ui
¡
ω0i + ai

¢
< ui

¡
ω0i + xi

¢
Let us compare our conditions with Hong (1998). She showed that a SCR is imple-

mentable by a collection of state dependent mechanisms if and only if the following

condition is satisfied

ui(ωi + fi(ω)) ≥ ui(ωi − ω0i) for all i (H)

Our Condition (α) is weaker than condition (H): If x ∈ A(ω0) then ui(ωi+xi) ≥ ui(ωi−

ω0i) for all i as all ui are increasing. Then if f(ω) ∈ A(ω0), ui(ωi + fi(ω)) ≥ ui(ωi − ω0i)

for all i. So for ω,ω0 with f(ω) ∈ A(ω0) condition (H) holds. Notice that our condition

depends on the fact that each agent cannot simply retain part of her endowment, but

she has to make it compatible with other agents’ messages. But our Condition (β) is

not implied by Condition (H). Assume for instance that f(ω) ∈ A(ω0) then (H) imposes

no restrictions on f(ω0). If the translations by ω − ω0 of all agents’ indifference curves

through ω0+f(ω) are strictly above all agents’ indifferences curves through ω+f(ω), then

condition (β) implies f(ω) = f(ω0). Formally if for all y ∈ {y : ui(ω0i + fi(ω))) = ui(yi)

for all i} we have ui(yi + ωi − ω0i) > ui(ωi + fi(ω)) for all i, condition (β) imposes that

f(ω) = f(ω0).

The difference between our conditions and Hong’s is explained by the fact that her goal

is to design one feasible mechanism (M(ω), g(ω)) for each possible endowments ω, in

a way such that the larger the feasible set, the larger the message space. Two of her

assumptions make our approaches different:

i) Hong assumes that players can not exaggerate their endowment and that they can be

punished by the message they send, not only for the allocation they intend to obtain, if

such an allocation is not feasible.
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ii) Hong gives each player the power of retaining part of her endowments. In our frame-

work we assume that players can collectively cheat the planner through the mechanism

by asking for a feasible allocation in which some agents retain a part of their endowment.

Finally, let us analyze the implementation of the Constrained Walrasian SCR. a is

a Constrained Walrasian Allocation (CWA) at ω iff there exists p ∈ RK
+ such that ∀

i = 1, ..., n, a ∈ argmax {ui(ωi + xi) : pxi ≤ 0, x ∈ A(ω)}. p is said to be an equilibrium

price supporting a at ω. Let CW (ω) denote the set of CWA at ω.

Proposition 3. Let utility functions be increasing, continuous and quasi-concave. Let

Ωi = (0, ωi) for all i for some ωi ∈ (0,∞). Then the Constrained Walrasian SCR is

implementable in Nash Equilibrium by generalized severe punishment.

Proof Under our assumptions CW (ω) is not empty for all ω ∈ Ω. To prove the claim

it suffices to show that CW satisfies Condition β. Let ω0 ≤ ω, a ∈ CW (ω) ∩

A(ω0) and a /∈ CW (ω0). Let p an equilibrium price at ω. Then there exists

x ∈ A(ω0) with ui(ω
0 + xi) > ui(ω

0 + ai) and pxi ≤ 0 some i. A(ω0) ⊂ A(ω)

so x ∈ {pxi ≤ 0, x ∈ A(ω)} . From the definition of CW it follows ui (ωi + ai) ≥

ui (ωi + xi). Then CW satisfies Condition β.8

5.2. Bargaining with unknown utility possibility set

We now consider the non-cooperative implementation of cooperative solution concepts

(Dagan and Serrano [1998] and Naeve [1999]).

A bargaining problem is a pair (U, v) where U ⊂ Rn
+ is the utility possibility set and

v ∈ U is the disagreement point. We assume that U is convex, closed, with a non empty

8The Walrasian Correspondence WC defined by WC(ω) = argmax {ui(ωi + xi) : pxi ≤ 0} is not

implementable in Nash Equilibrium by generalized severe punishment. An example is available from

the authors under request but intuitively it is clear that in our case preferences vary, so we are back to

the classical framework where such a problem is well known.
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interior and comprehensive (i.e. u ∈ U and u0 ≤ u, u0 ∈ Rn
+ implies u

0 ∈ U). For each

bargaining problem, (U, v) let Uv = {u ∈ U : u ≥ v} be bounded. The Nash Bargaining

Solution (NBS) is defined as NBS(U, v) = argmaxu∈Uv
Qn

i=1(ui − vi). It is completely

characterized by the following properties: strong efficiency, individual rationality, scale

covariance, symmetry and independence of irrelevant alternatives. Let NBS(U, v)i be

the utility received by i.

We consider here non rewarding reversion function more suited to the situation. We

say that a reversion function is Not Severe if for all a ∈ A and ω ∈ Ω h(a, ω) 6= G.

We consider Uv as the feasible set of (U, v) and we assume that unfeasible allocations

are renegotiated into the disagreement point. Let h to denote such reversion function.

Clearly h is Non Rewarding. Agent i’s reverted preferences at (U, v) are described by

uhi (u(U, v))) = ui if u ∈ Uv

uhi (u(U, v)) = vi otherwise.

If the disagreement point is not known by the planner, NBS fails to satisfy GCC:

Let n = 2 and let U =
©
x ∈ R2+ : x21 + x22 ≤ 1

ª
. Let v = (0, 0) and let v0 =

³
(12)

1
2 , 0
´
.

Then NBS(U, v) =
³¡

1
2

¢ 1
2 ,
¡
1
2

¢ 1
2

´
∈ Uv0 ⊂ Uv but NBS(U, v) 6= NBS(U, v0). Thus,

according to Proposition 1, NBS is not implementable in NE by any non-rewarding

reversion function.9

The Kalai-Smorodinski solution does not satisfy GCC even with fixed disagreement

point. Then Proposition 1 implies that it cannot be implemented in NE by any non

rewarding reversion function.10

Instead, when the disagreement point is known, the NBS satisfies both GCC andWU

as the reader can easily check. However, Proposition 2 cannot be used to conclude that
9This result agrees with the findings of Serrano (1997).
10A different interpretation of preferences on the utility possibility set may lead to more permissive

results. One can interpret them as if they were a measure of agents’ satisfaction with respect to the

disagreement point. A representation consistent with this view is ui(u, (U, v)) = ui − vi. Then the
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the NBS is implementable by generalized severe punishment because Maskin Theorem

requires at least three agents (see Remark 1).11

We prove the result directly by using the characterizations by Moore and Repullo

(1990).

Proposition 4. Let n ≥ 2. The Nash Bargaining Solution is h-implementable in Nash

Equilibrium with a Non-Severe h if the disagreement point v is known.

Proof Let x = NBS(U, v). Let i ∈ I and let (U 0, v) be a bargaining problem. Let

u ∈ Lh
i (x, (U, v)) such that, at (U

0, v) and with reverted preferences u is maximal

for i in Lh
i (x, (U

0, v)) and u is maximal in Rn
+ for all agents different from i.

We first prove that u = NBS(U 0, v). Observe that it must be the case that u

is feasible at U 0 otherwise all agents different from i would prefer some point in

the interior of U 0v and that uj = max
n
u0j : u

0 = (u0j , u
0
−j) ∈ U 0v

o
for all j 6= i. In

particular u lies on the boundary of U 0. If u 6= NBS(U 0, v) then NBS(U 0, v)i >

ui. If NBS(U 0, v) /∈ Uv u is not maximal in Lh
i (x, (U, v)) for i when preference

are reverted at (U 0, v), a contradiction. Finally consider the case NBS(U 0, v) ∈

preferences that h induces in this case are

uhi (u, (U, v)) = ui − vi if u ∈ Uv

uhi (u, (U, v)) = 0 otherwise

Observe that uhi (u, (U, v)) = uhi (u−v, (U −v, 0)). The reader can easily check that from the translation

invariance property of the NBS the analysis of the problem with unknown endowments amounts to the

previous situation with the endowment fixed and known at 0. In this case applying Proposition 4 below

yields a positive result.

11NBS does not satisfy no-veto power either. Let v = (0, 0, 0) and U =©
x ∈ R3

+ : max {x1, x2} ≤ 1,max {x1 + x3, x2 + x3} ≤ 1
ª
. Agent 1 and agent 2 prefer u = (1, 1, 0) ∈ U

to any other allocation, under saturated preferences but NBS(U, v) = ( 23 ,
2
3 ,

1
3 ).
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Uv. NBS(U 0, v) 6= NBS(U, v) and NBS (U, v) /∈ U 0v0 otherwise u would not be

maximal in Lh
i (x, (U, v)) for i under reverted preferences. Consider the segment

joining NBS(U 0, v) and u. Such a segment lies in U 0v because U
0
v is convex and it

intersects {u0 ∈ Uv : NBS(U, v)i ≥ u0i } because Uv is convex and NBS (U, v) /∈

U 0v. All along the segment the coordinate i increases from u0i to NBS(U 0, v)i. Then

there exists a point in {u0 ∈ Uv : NBS(U, v)i ≥ u0i } which has the i-th coordinate

strictly greater than ui, a contradiction. Let u be maximal in Rn
+ for all agents

when preferences reverted at (U 0, v) then uj = max
n
u0j : u

0 = (u0j , u
0
−j) ∈ U 0v

o
for

all j. From efficiency it follows that u = NBS(U 0, v).

NBS satisfies Individual Rationality, Pareto efficiency and GCC, too. Then, when

n ≥ 3 the family of sets
©
Lh(x, (U, v))

ª
x=NBS(U,v)

satisfies condition μ in Moore

and Repullo (1990). When n = 2 it satisfies condition μ1 in the same paper,

because of the disagreement point. Then the application of Theorems 1 and 2

there, respectively leads to the claim.

5.3. Taxation

A taxation problem, is a pair (x, T ) ∈ Rn
+ × R+ where x is the vector of taxable in-

comes and T is the total amount to be collected such that
Pn

i=1 xi ≥ T (Dagan

et alia [1999]). A tax allocation t is a vector of Rn
+ and it is feasible for the tax-

ation problem (x, T ) if t ≤ x and
Pn

i=1 ti = T . A taxation method is a function

f which associates a tax allocation to each taxation problem. We assume that the

planner knows the amount to be collected, T , but she does not know the taxable vec-

tor x. Let Sn(T ) =
©
t ∈ Rn

+ :
Pn

i=1 ti = T
ª
be the set of tax allocations that collect

T . Let Ωn(T ) =
©
x ∈ Rn

+ :
Pn

i=1 xi ≥ T
ª
be the set of the states of the world. Let

Tn(x) = Tn(x, T ) =
©
t ∈ Rn

+ : 0 ≤ t ≤ x,
Pn

i=1 ti = T
ª
be the set of feasible tax al-

locations at x. Each agent’s preferences only depend on her after tax income and are
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strictly increasing. Then we can assume ui(t, x) = xi−ti for each x ∈ Ωn(T ) and for each

t ∈ Tn(x, T ). Assume that only income exaggeration can be detected and punished.

The reversion function is non rewarding. Therefore, the hypothesis of Proposition 1 are

fulfilled.

Let σ : I → I be a permutation or ranking on the agents. Set (i) = σ−1(i). Let f (σ)

be the following feasible taxation method.

fσ(1)(x) = min
©
t(1) : t ∈ Tn(x, T )

ª
fσ(j)(x) = min

(
t(j) : t ∈ Tn−j+1(x−{(1),...,(j−1)}, T −

j−1X
i=1

fσ(n−i)(x))

)
j = 1, .., n

The first agent (1) pays her last feasible amount. The second agent pays her last

feasible amount given (1) payment and so on. Each agent is a dictator with respect to

the following players. For this reason fσ will be called the σ-serial dictatorship.12

An equivalent definition for fσ is

fσ(n)(x) = min
©
x(n), T

ª
fσ(n−j)(x) = min

(
x(n−j), T −

n−j+1X
i=n

fσ(n−i)(x)

)
j = 1, .., n− 1

In words, player n pays the whole amount to be collected if she has enough income.

Otherwise what is left is paid by player n− 1 if she has enough income and so on.

Proposition 5. Let h be a non rewarding reversion function and let f be a continuous

feasible taxation method. If f is h−implementable in Nash Equilibrium then it is a

serial dictatorship. If f is a serial dictatorship then it is h-implementable for any non

rewarding h.
12Serial dictatorship plays an important part in the characterization of SCF truthfully implementable

in Dominant Strategies (Satterthwaite and Sonnenschein [1981]) and in the equilibrium in social systems

in which property rights are weakly protected (Piccione and Rubinstein [1993]).
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Proof For each x and t ∈ Tn(x) set I(t, x) = {y : t ≤ y ≤ x}. We first prove that

f((I(f(x), x)) = {f(x)} for all x. In particular, if I(f(x), x) ∩ I(f(x0), x0) 6= ∅,

then f(x) = f(x0). Let x0 ≤ x. In such a case T (x0) ⊂ T (x). Let t = f(x) ∈ T (x0),

which is f(x) ≤ x0 then Li(t, x)∩T (x)∩T (x0) ⊂ Li(t, x
0). If x0 ≤ x and f(x) ≤ x0

then GCC prescribes that f(x0) = f(x). In particular f(x) = f(y) for all y such

that f(x) ≤ y ≤ x.

By contradiction let f be not a serial dictatorship. Then exist x,i, j such that

0 < fi(x) < xi and 0 < fj(x) < xj . Then I(f(x), x) is at least 2 dimensional.

Let y ≥ x. We show that f(y) = f(x). On the contrary assume f(y) 6= f(x).

There is no loss of generality in assuming that f(z) 6= f(x) for all z on the segment

joining y and x. Otherwise, by continuity, we can substitute x with the point x0,

on the segment, having the largest coordinates. From the observation above it

follows that for all such z, f(z) /∈ T (x). Let z → x on this segment then. By

continuity f(z)→ f(x). If f(z) converges then f(z)→ t∗, where t∗i = 0 or t
∗
j = 0.

Let x∗ = (T, ..., T ). It follows that f(y) = f(x) for all y ≥ f(x). If y ¤ f(x) then

f(y) = fσ(y) for some σ, because otherwise I(f(y), y) ∩ I(f(x∗), x∗) 6= ∅ and

f(x∗) = f(x) is not feasible at y. But in such a case f would not be continuous.

A contradiction.

The proof of the second part of the claim is as in Proposition 4.

We end this section by noting that there are also discontinuous feasible taxation

methods that are h−implementable in Nash equilibrium as the proof of the previous

result suggests. Let x∗ = (T, ..., T ), let t ∈ Ω(T ) and let σ be a permutation on I.

f(x) = (
T

n
, ...,

T

n
) for all x ≥ (T

n
, ...,

T

n
)

f(x) = fσ(x) otherwise

It is not difficult to prove that f is implementable in NE through generalized severe
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punishment.

6. Conclusions

In this paper we have presented a new approach to deal with the implementation problem

when feasible sets are state dependent. It is based on the idea that agents renegotiate

unfeasible allocations into feasible ones. We have presented a class of reversion functions

that are suited to our problem and we have found necessary and sufficient conditions

for implementation when renegotiation takes this form. Finally we have used our char-

acterization results to study the implementation in Nash equilibrium of social choice

rules in exchange economies, bargaining problems and taxation methods, and we have

compared our results with those obtained by the earlier literature.

A feature of the traditional approach of implementation when feasible sets are state

dependent is that it requires a collection of state dependent mechanisms, contrary to

the case when preferences are state dependent. This distinction contrast vividly with

our intuition on how markets cope with unfeasible allocations, namely that the sign of

excess demand entirely determines the adjustment irrespectively of the cause of infea-

sibility.13 Thus our approach may offer a better understanding of market mechanisms

than does the traditional one. But the traditional approach is better suited to deal

with topics like withholding of endowments -in our case the state of the world, and thus

endowments, is common knowledge- or tax evasion given the importance of reports in

the renegotiation. Actually our approach can be generalized to deal with these cases by

introducing uncertainty in the renegotiation process or the mechanism as an argument

in the reversion function. These two extensions are easy to write, but require completely

new analytical methods. Thus, they are left for future research.

13 In fact, following the lead of Benassy (1986) many papers dealing with markets from the implemen-

tation point of view disregard the issue of individual feasibility.
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