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Abstract. Verification of multi-agent systems is a challenging task due
to their dynamic nature, and the complex interactions between agents.
An example of such a system is the RoboCup Soccer Simulator, where
two teams of eleven independent agents play a game of football against
each other. In the present article we attempt to verify a number of prop-
erties of RoboCup football teams, using a methodology involving testing.
To accomplish such testing in an efficient manner we use the McErlang
model checker, as it affords precise control of the scheduling of the agents,
and provides convenient access to the internal states and actions of the
agents of the football teams.

1 Introduction

The analysis and verification of multi-agent systems is not an easy task due to
their dynamic nature, and the complex interactions between agents. One method
that is often advocated to verify such systems is model-checking. However, in
performing model-checking on multi-agent systems two main issues arise: i) a
model needs to be constructed, and ii) the state space is bound to grow too
large. In this paper we propose an alternative approach to the verification of
properties in multi-agent systems by means of testing, in particular we use a
model checker to simulate RoboCup teams and verify properties during such
simulation runs. The tool we use, McErlang [6], permits precise control of con-
currency and communication, and detailed access to the internal states of agents
and communication channels.

The RoboCup Soccer Simulator, the soccer server [4], is a research and ed-
ucational tool for multi-agent systems and artificial intelligence. It enables two
teams of eleven simulated autonomous players to play a game of football. A
match is carried out in client/server style: the server provides a virtual field
and simulates all movements of a ball and the players, and each client controls
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the movements of one player. Communication is done via UDP/IP sockets, en-
abling players to be written in any programming language that supports UDP
communication.

Erlang [1] is a programming language developed at Ericsson for implementing
telecommunication systems. The principal characteristics of Erlang, i.e., a clear
separation between data and processes and a high level of abstraction thanks to
its functional style, together with excellent support for developing distributed
applications, makes writing code for RoboCup teams in Erlang an easy task.
Indeed, undergraduate students at the IT university of Gothenburg have been
developing such teams to compete in their local RoboCup simulation tourna-
ment. Given the rather complex nature of the application, and the availability
of capable verification tools for Erlang such as e.g. McErlang[6] , it seemed natu-
ral to try to use these verification tools in the task of analyzing some interesting
properties of multi-agent RoboCup teams.

The use of tool support in the task of verifying multi-agent systems is recently
attracting significant interest from the agent community. In [2], for
example, a variant of the abstract agent-oriented programming language AgentS-
peak, AgentSpeak(F), is proposed. By translating AgentSpeak(F) programs into
Promela or Java, properties written in LTL can be model-checked with SPIN
or the Java Path Finder [11], a general purpose model checker for Java. A dif-
ference between their approach and ours is that AgentSpeak is based on the
BDI agent architecture while we do not consider any specific agent architecture.
In [7] a combination of UML statecharts and hybrid automata was proposed for
modeling multi-agent systems, and the method was applied to the task of model
checking agents of the RoboCup rescue simulation league. In [3] a trace based
approach is used to study a complex agent scenario.

This paper is organized as follows. In the next section we introduce the Erlang
programming language, and in Sect. 3 a description of the McErlang tool is given.
In Sect. 4 the implementation of a RoboCup soccer team in Erlang is explained.
Our approach to checking properties on the football players is explained in
Sect. 5, together with a discussion of the type of experiments we have car-
ried out. We conclude in Sect. 6 with a discussion on the present results, and
directions for future work.

2 The Programming Language Erlang

Erlang [1] is a programming language developed at Ericsson for implementing
concurrent, distributed, fault-tolerant systems. Erlang software is typically orga-
nized into modules, which at runtime execute as a dynamically varying number
of lightweight processes communicating through asynchronous message passing.

3 The McErlang Tool

The internal construction of the model checker is parametric, enabling a user to
easily change its configuration for different verification runs. The input to the



model checker is the name of an Erlang function which starts the execution of the
program to verify, together with a special call-back module also written in Erlang
which specifies the behavioral property to be checked (called the monitor). The
output of a verification can be either a positive answer saying that the property
holds, or a negative one together with a counterexample.

Moreover, a tool user can also specify:

— the name of a language module providing an operational semantics!,

— the particular verification algorithm to use, (e.g., a safety property checker, a
liveness property checker, or simulation of the program in conjunction with
a correctness property),

— the name of a state table implementation, that records encountered program
states (typically a hash table),

— the name of an abstraction module that abstracts program states, and

— the name of a stack module that implements the stack of program states
(storing all or some of the states occurring on the path from the initial
program state to the current one)

3.1 Programming Language Semantics for Erlang

The main idea behind McErlang is to re-use as much of a normal Erlang pro-
gramming language implementation as possible, but adding a model checking
capability. To achieve this, the tool replaces the part of the Erlang runtime sys-
tem which implements concurrency and message passing, while still using the
runtime system for the evaluation of the sequential part of the input programs.

The model checker has a complex internal state in which the current state
of the runtime system is represented. The structure that is maintained by the
model checker records the state of all alive processes (their process identifiers,
mailboxes, computation state, etc). Moreover the global state kept by the model
checker runtime system includes a structure to record process links, information
about registered process identifiers, etc.

McErlang has built-in support for some Erlang/OTP component behaviours
that are used in almost all serious Erlang programs such as the supervisor com-
ponent (for fault-tolerant applications) and the generic server component (imple-
menting a client-server component), and a module for programming finite-state
machines. The presence of such high-level components in the model checker sig-
nificantly reduces the gap between original program and the verifiable model,
compared to other model checkers.

3.2 Correctness Properties

The model checker implements full linear-temporal logic (LTL) checking. Cor-
rectness properties are represented as Biichi automatons (monitors coded in Er-
lang) which are checked using a standard on-the-fly dept—first model

1 Apart from Erlang, we have also for instance implemented a semantics for the web
service specification language WS-CDL, thus providing a WS-CDL model checker|5].



checking algorithm [8]. For efficiency, there is a dedicated safety property only
checker available. A monitor checks whether the correctness property holds for
the combination of the new program state and the monitor state. If successful,
the monitor returns an updated monitor state (for safety checking). A Biichi
monitor (automaton) is a monitor that additionally may mark certain states as
accepting states. As is well known [10], linear temporal logic formulas can be
automatically translated to Biichi automata. Correctness properties can be im-
plemented, therefore, as finite state machines where depending on the monitor
state, actions leading to new states. The Erlang/OTP programming environ-
ment is a comparatively rich programming environment for programming sys-
tems composed of (possibly) distributed processes that communicate by message
passing. Fault tolerance is implemented by means of failure detectors, a standard
mechanism in the distributed algorithms community. Moreover there is a process
fairness notion, something which often makes it unnecessary to explicitly specify
fairness in correctness properties. The language provides explicit control of dis-
tribution, and a clean model of distribution semantics. For distributed processes
(processes executing on separate nodes) the communication guarantees are far
weaker than for processes co-existing on the same processor node. are accepted
or not. Such correctness properties have full access to the internal state of the
program run (including message queues, state of processes, and so on).

The memory aspect of monitors is implemented by sending along the old
monitor state as an argument to the Erlang function implementing the mon-
itor. Concretely a monitor defines two callback functions: init (parameters)
and stateChange(programState,monitorState,runStack). The init function re-
turns {ok,monState} where monState is the initial state of the monitor.

The stateChange function is called when the model checker encounters a new
program state programdState, and the current monitor state is monitorState, and
the execution history (a subset of the program states, and actions, between the
initial program state and the current one) is provided by the runStack parameter.
If a safety monitor finds that the combination of program and current monitor
state is acceptable, it should return a tuple {ok,newMonState} containing the
new monitor state. If future states along this branch are uninteresting the mon-
itor can return skip (e.g., to implement a search path depth limit), any other
value signals a violation of the correctness property implemented by the monitor.
A Biichi automatons should return a set of states, each state either accepting
{accepting, state} or not {nonaccepting,state}.

As an example, the code fragment below implements a simple safety monitor
that guards against program deadlocks: (a process is considered deadlocked if its
execution state as recorded by the process data structure in the run-time system
is blocked).

stateChange (State ,MonState , RunStack) —>
case lists:any(fun (P) —> P#process.status =/= blocked end,
Statef#tstate .processes) of
true = {ok, MonState};
false —> {deadlock, MonState}
end.



The syntax wvariable#recordName.field is used to access the field field of the
record variable variable, of type recordName.

The Erlang language standard requires that process schedulers must be fair.
The McErlang tool accordingly implements (weak) process fairness directly in
its (liveness) model checking algorithm by omitting non-fair loops (i.e., ones that
constantly bypass some enabled process) from the accepting runs.

3.3 Using the Model Checker for Simulation

Recently we have added a simulation facility to the model checker, whereby
instead of exploring the whole state space of an application only a single exe-
cution branch is followed. Which execution to branch to follow is by default a
random choice, however finer control can be exercised by the monitor module
above, which in addition to checking safety properties can mark certain states
an “uninteresting”, preventing the model checker to examine them and instead
choosing an alternative state in simulation mode.

The checking of the RoboCup agents has necessitated implementation of “real-
time support” for the McErlang model checker as well. The player agents are
time dependent, and have to respond in a timely fashion to information sent
from the soccer server by means of actuation commands.

Moreover the model checker had to be “opened up to the outside world”.
Agents send commands to the soccer server using UDP sockets, and the soc-
cer server regularly broadcasts sensory information to all agents. To support
sending UDP commands was trivial (we modified the Erlang API function that
supports UDP sending), whereas receiving messages was a bit more tricky. The
solution was to program a new Erlang process, constantly listening for incoming
UDP messages. This (real) Erlang process keeps a map of virtual (simulated)
Erlang processes to which incoming messages should be resent (using the virtual
message communication mechanism). Thus virtual processes wanting to receive
UDP messages on a certain UDP port communicates this to the UDP Erlang
process, which in turn starts receiving and forwarding incoming messages on
behalf of the virtual process.

4 RoboCup Teams in Erlang

The IT-university of Gothenburg has been organizing local RoboCup competi-
tions for their students?. Students were asked to developed in groups a RoboCup
soccer simulation team in Erlang to play against teams developed by other
groups. We have taken two such teams as a starting point for a case-study in
verifying properties of complex multi-agent systems.

In the case of the first team we have considered, each of the football players is
composed of four Erlang processes as shown in Fig. 1: a communicator process,
a planner process, an executor process and a timer process. All communication

% See http://www.ituniv.se/ "jalm/ecc06/
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Fig. 1. The soccer server and one player

between the processes uses Erlang’s built-in asynchronous message passing com-
munication facility. Thus the total Erlang application comprises around 11 * 4
processes.

In each cycle, the player receives messages from the soccer server through an
UDP connection containing sensor information, for example, a message “(see
Time ObjectInfo)” reports the objects currently seen by the player in a simu-
lation cycle of the soccer server. The messages are parsed and sent to a process
which updates and stores the contextual knowledge of the agent, and also to the
planner process which elaborates a plan (a list of actions) and sends it to the
executor process. During each cycle of the game, each player can send a limited
number of action commands. The executor process sends the action commands
to the server, for example, the command “(kick Power Direction)” to accel-
erate the ball with the given power in the given direction. The soccer server
executes the commands at the end of the cycle and simulates the next cycle
using the received commands and data from the previous cycles.

In total the number of lines of codes for this RoboCup team comprises around
3500 lines of Erlang code (including parsing), whereas the more complex (and
better playing) team comprises around 8400 lines of Erlang code.

5 Checking Robocup Agents

Seen as a verification task, checking properties of a RoboCup team is very chal-
lenging. A team consists of eleven to a large extent independently acting agents
with complex internal states, that cooperate to solve a common task in real-time.
Unfortunately the hostile environment, i.e., the opponent team, strives to greatly
complicate the task of the “home” team. Moreover, the setting is not static, the
opponents will vary, and in addition the soccer simulation server contains random
features® that will alter the outcome of various actions of the agents.

To apply model checking techniques to such a verification problem one would
have to construct, with substantial effort, a simplified model of the soccer server
and the agents (of both teams). Even so the real state space would be huge, and
a model checking run would be unlikely to cover more than a very tiny fragment
of that state space. For this reason we decided upon a different “verification”
strategy: to use the McErlang model checker for executing the agents, and to for-
mulate correctness properties to check as monitors, but instead of model checking

3 E.g. reporting all positional information to an agent with a possible slight error.



a team we used the model checker as a testing/simulation environment. What
we lose by not performing a complete verification, which could anyway never be
complete due to the abstractions needed to obtain a verifiable model, we hope
to gain by checking the actual source code of the agents.

Concretely to check a football team we ran a number of simulated football
matches against a number of opposition teams. Each match consisted of two
halves of 300 seconds each, with time ticks (events during which the soccer
server calculates game changes, and transmits positional information to every
player) every 100 milliseconds. These are configurable parameters in the soccer
server; McErlang was sufficiently quick to keep up at the default settings. If
time deadlines are not met, then football agents would not act timely on sensory
information resulting in bad playing; a symptom of such a problem is increasing
message queues of processes, a property we did check during games. To ac-
complish such real-time execution, with over 50 simulated Erlang processes and
checking safety monitors in every global system state, proves that the simulated
runtime implementation is not overly slow.

To check a team in varying situations the opposition teams were chosen
with care. To evaluate defensive play we matched the team to check against
good teams from previous international Robocup competitions?. Concretely such
teams include fcportugal2004 and tokyotech2004, both from the 2004 inter-
national Robocup competition®. For evaluating offensive play a particularly bad
student team was selected as an opponent. Finally, to evaluate the team in a
more fluctuating situation we played the team against itself. All games were
repeated multiple times, to increase the coverage of the verification experiment.

By using McErlang compared to using traditional testing frameworks we ob-
tain a number of advantages:

— correctness properties can be elegantly expressed as automatons rather than
sets of tests,

— compared to running a team under the normal Erlang runtime system, the
McErlang tool provides detailed control of the scheduling of processes, and
delivery of messages (which control a traditional runtime system does not
provide at all). Testing a multi-agent system under different scheduling as-
sumptions can often reveal errors that are difficult to reproduce using normal
testing procedures,

— no or very little source code modification is necessary to interpret testing
outcome (i.e., as all the team state — including all its agents, and all the
processes implementing an agent — can be inspected, there is generally little
need to export extra information from an agent).

— since we are using an untyped functional programming language (Erlang) we
can treat programs (e.g., pending function calls, sent messages, etc) as data,
and analyse such data using powerful data abstraction functions. Moreover
we can often reuse functions and data structures used in the program itself,
when formulating correctness properties.

4 As the level of play of the student teams is generally not very good, this was easy.
® http://www.robocup2004.pt/
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Fig. 2. RoboCup verification setup

We use the monitor concept of McErlang to check properties of a RoboCup team
programmed in Erlang during games with opponents. Monitors to check correct-
ness properties of the team are written in Erlang as well, and have full access to the
state of all agents (players), messages in communication channels, and so on.

However, the states of player agents may of course not reflect reality, as they
may have incorrect or simply insufficient knowledge of the state of the game.
Clearly to determine whether a property holds, in general we need access to the
state of the soccer server as well. As the server is not written in Erlang, McEr-
lang does not have direct access to its internal state. However, by programming
a “Coach agent” in Erlang®, that repeatedly gets truthful and complete situa-
tional information from the soccer server (e.g., ball position, and the position
and movement of all players), we gain access, using the McErlang tool, to the
complete simulation state.

In case a property violation is detected by a monitor, the complete trace of
the simulation up to that point, including the states and actions of all agents
and the coach, are available for further analysis in the McErlang debugger.

The experimental setup is depicted in Fig. 2; note that there is no direct
communication between agents comprising a team.

5.1 Correctness Property Classification

Roughly we can separate desirable properties of RoboCup teams into three kinds:

— observable properties can be evaluated by observing only the actions
(or inactions) of an agent and its external stimuli, without considering the
internal state of an agent

5 The coach interface is provided by the soccer simulation server.



— discrepancy properties concern the difference between an agents’s beliefs
and the objective reality

— internal properties concern the general consistency of an agent, and the
efficacy of its internal logic decisions

Externally observable properties can be decided solely by examining the data
the soccer server sends to the coach process, and the actions (UDP data) sent
from an agent to the soccer server. There are countless such properties that
can be formulated and checked. For example: “players stay inside the playing
field” (opl), “the goalie doesn’t leave the goal area” (op2), “a pass cannot be
intercepted by a player from the opponent team” (op3), and so on. An obvious
externally observable property is that an agent may never crash (nocrash).

If we find that such an observable property is violated, the cause can either be
that the internal logic of the agent is faulty, or that the agent is acting correctly
but on faulty data.

An example of a discrepancy property is: “the difference between the believed
position of a player and its real position must not exceed some safety margin”
(dpl). Discrepancy properties requires us to examine both the objective state
of the RoboCup simulation (the information sent to the coach process) as well
as the internal beliefs (internal data structures) of the processes comprising a
player agent.

Internal properties range from quite general properties such that: “the size
of a message queue is never greater than some limit [” (mq) to very specific
properties. As an example, we can reformulate the property about safe passes
(op3) above into a property about the internal state of agents: “the agent never
attempts a pass when it knows that an opponent player may intercept the ball”
(ip3). Note that it is perfectly possible for an agent to fail the property ip3 while
not failing op3 (or vice verse) if the knowledge of the position of the players of
the opposition team is particularly poor (a discrepancy property).

While it is easy to formulate such high-level properties in English, with much
ambiguity, the challenge is to formulate these properties precisely, and to provide
a framework for determining whether they are satisfied by Robocup teams or
not. Below we exemplify how this is achieved for two such teams.

5.2 Verification of the First RoboCup Team

The first RoboCup team analysed by us was rather simplistic in nature, generally
being reactive (every new sensor information causes a complete new plan to be
formed) rather than proactive (players have long term plans that they attempt
to realise).

We exemplify the specification of properties by formulating a simple observ-
able property, i.e., that no player strays far outside the playing area (opl). As
explained earlier, such a property can be checked by examining the accurate
information sent to the coaching process, without considering the internal states
of agents.



stateChange (State , MonState , Stack) —>
try
{ok, CoachState} = coach:getCoachState (State),
AllPlayers = coach:getOwnPlayers(CoachState),

%% Verify that all players are in the allowed area
{LowerX ,LowerY , UpperX , UpperY} = MonState ,
case lists:any
(fun (P) —>
{PosX ,PosY} = P#player.position ,
(PosX < LowerX) orelse (PosX > UpperX) orelse
(PosY < LowerY) orelse (PosY > UpperY)
end, AllPlayers) of
true —> error
false — {ok, MonState}
end
catch —> {ok,MonState} end.

The function stateChange is called by the model checker every time a new
state is generated. Its arguments are the new state State, the previous monitor
state MonState (for this property the coordinates for the allowable area for a
player), and the entire stack of program states leading to the current state”.

The implemented monitor begins by extracting the state of the “coach” process
using the function coach:getCoachState. This function attempts to retrieve the
process datastructure of the coach process using its name “coach”, and from that
structure the internal datastructure that records the data sent from the soccer
server. This is achieved by accessing the expr field of a process datastructure, that
records the current state of the process (always waiting for a new UDP message
to arrive from the soccer server) together with the state data (a part of which is
the internal datastructure that records data sent by the soccer server).

getCoachState (State) —>
%% Retrieve process mamed “coach”
P = findProcessByRegisteredName (” coach” ,State ),
case P#process.expr of
{recv, { , ,{ ,CoachState}}, } —> CoachState
end.

If this fails (e.g., probably because the coach process has not been created
yet) the try ... catch statement ensures that the simulation continues. Given the
coach state, the coach:getOwnPlayers function returns the information sent by
the soccer server regarding the team players (e.g., position and so on). It is then
easy to compute whether any player strays outside the allowable area, and if so
the monitor returns error which indicates to the model checker that an error has
been encountered. As a result the simulator will offer the possibility to examine
in detail the trace leading to the erroneous state detected by the monitor. During
testing, the checker quickly produced a run leading to a violation of this property.

7 The stack implementation is also parametric and we frequently use a bounded stack
which forgets old states when runs become too large.



As another example, we formulated the op2 property, i.e., that the goalie
doesn’t leave the goal area, and attempted to verify that property. This property
is also easily checked using the knowledge from the coach process. Unfortunately
the first team fails even this simple property: the goalkeeper was very far from
his penalty area. However, from visual inspection (using the soccer monitor to
view a game progress) the goalie did not appear to have left his penalty area.
Program inspection found the source of the error: the team had assumed a fixed
assignment of player numbers to their processes, whereas the soccer server could
randomly assign player numbers. In other words, the player which resided in
the penalty area was in fact not the goal keeper, thus the player did not have
permission to handle the ball with his hands.

In conclusion, the first team analysed possessed grave problems indeed, and
we didn’t think it interesting to consider the analysis further at that point but
continued with the second team.

5.3 Verification of the Second RoboCup Team

The second RoboCup team analysed is far more complex, comprising more lines
of code, and having a much more complex internal state. Although generally
playing much better than the first team, we were able to discover a number of
bugs that had gone undetected using normal testing techniques. We illustrate
the kinds of properties checked, and the bugs found, using a number of small
examples below.

Observable properties. When trying to execute the second RoboCup team
under the McErlang model checker, and playing a game, the program sometimes
crashed with an error message. This had never been experienced when running
the team outside the model checker. The reason for the crash turned out to be
typical of a class of hard—to—reproduce errors which occur only for some very in-
tricate sequences of concurrent actions. Players of the second team are composed
of different processes; one such process responsible for executing plans have two
states: idle when it awaits a new plan, and execute when it executes a received
plan. The execution of each step of a plan is performed by a subordinate process,
which reports the success or failure of the step back to the executor process. The
executor process and its subordinates communicate using asynchronous message
passing. The error occurs when a second plan reaches the executor process before
it has finished executing a prior plan. In such a situation the process (correctly)
terminates the subordinate process, resends the second plan to itself, and enters
the idle state (awaiting the second plan sent to itself). However, it turns out
that the subordinate process may have sent a message to the executor process
that arrived after it was itself terminated, but arriving before the second plan
(when the executor process was in the idle state). Moreover the executor process
was not able to handle incoming messages from a subordinate process in its idle
state, leading it to crash.

A graphical depiction of the error is shown in Fig. 3, where the idle state (of
the executor process) is in white, and the executor state is in gray.
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Fig. 3. RoboCup Agent Bug

During extensive testing of the team this error had never been seen, however
using McErlang (which has a much less deterministic agent scheduler compared
to the normal Erlang runtime system) the error was immediately discovered.

We also coded up the property of safe passes (op3); however, it turned out
that agents could attempt quite unsafe passes. A possible reason for such unsafe
behaviour is analysed below, in the formalisation of a logic property (Ip3).

A discrepancy property. A central correctness property is whether the agent’s
beliefs of the position of the ball in the field are accurate or not.

To formulate the property we have to compare the belief about the ball po-
sition, as retrieved from the internal store of an agent, compared to the real
position of the ball as given by the coach agent. Clearly these values can be
substantially different, for instance if the ball is kicked away behind the back of
a player. However, we want to require the agent to eventually correct his ball
estimate.

The formulation of the property should thus be parametric on two parame-
ters: 1) what is a bad estimate, and ii) for how long time must an estimate be
continuously bad until an error is signalled.

The implementation of the property as a state monitor is as follows:

stateChange (State , ,Mst={Time,Params={BadEstim, Intval}}) —>
try
%% Fetch coach info; check if game is halted, get pos info
{ok, CoachState} = coach:getCoachState(State),
play on = CoachState#coachInfo .play mode,
CurrentTime = CoachState#coachInfo .time,
CoachPlayer = coach:getOwnPlayer (Number, CoachState),
CoachPlayerPos = coach:playerPos(CoachPlayer),
CoachBall = coach:getGall (CoachState),
CoachBallPos = coach:ballPos (CoachBall),

%% Fetch Agent internal data, with ball & player position
Player = kb:ask ({player ,myself}),
Ball = kb:ask(ball),



%% Calculate Players distance approximation and error
DistPlayer = dist (Player#player.position , Ball#ball.position),
DistCoach = dist (CoachPlayerPos , CoachBallPos),

Error = abs(DistCoach—DistPlayer )/DistCoach ,

if Error >= BadEstim —>
case Time of
%% First time bad estimate seen, set timer
ok = {ok,{{until,CurrentTime+Intval} ,Params}};

%% Estim bad during interval , report error
{until ,EndTime} when EndTime =< CurrentTime —> badEstim;

%% Estim continously bad, mnot end of interval
{until ,EndTime} when EndTime > CurrentTime —> {ok,Mst}
end;

%% Estim is good
true —> {ok, {ok,Params}}
end
catch ... end

The function dist calculates the distance between two points, and the function
kb:ask (present in the agent source code) returns the belief of the agent regard-
ing its parameter. Note that the kb:ask function is called without a parameter
specifying the player; this is because the monitor is executed in the context of
the agent that caused the last program step.

The error is calculated as the absolute difference between the believed
distance to the ball and the real distance to the ball, divided by the real
distance.

There are indeed dubious beliefs in the second agent. The model checker
found, for instance, a sequence of states where a player thought the distance
to be around 7.6 meters, for over a second, while the real distance hovered
around 17 meters (with an error of 0.5 meters and interval of 10 time units —
a second).

A logic property. To illustrate the coding of a logic property we considered
first the property (ip3): “the agent never attempts a pass when it knows that
an opponent player may intercept the ball”.

We can illustrate the idea of the property using Fig. 4; there may be no
opponent player in the gray zone around the (believed) path of the ball from its
originating player to the destination.

In each state the formalisation of the property has to determine whether a pass
attempt has been made. This turned out to be rather difficult, as the difference
between what is a pass, shooting or just clearing the ball in a dangerous situation
is hidden quite deep in the code (and all three operations are executed by sending
a “kick” command to the soccer server). In the end it turned out to be easier
to modify one line of the player program, by introducing a new (artificial) state



Fig. 4. Property ip3

labelled by a tuple encoding the operation of passing the ball, and the destination
position of the corresponding kick:

{do pass, TargetPosition}

After the introduction of this “probe state”, the property is easily specified.
Essentially whenever a kick is made, it is necessary to retrieve from the player
agent its beliefs about the opponent players and calculate whether any of these
players are too close to the path of the ball between source and target.

Running an example quickly reveals that the second agent exhibits dubious
behaviour. We found a situation when, using as the unsafe distance 0.5 me-
ters, an agent could attempt a pass in the following situation: source player at
{—23.9, —24.27}, destination player at {—13.57, —8.4}, and an opposition player
at {—17.56, —14.59} which could quite easily intercept the pass.

6 Conclusions

In this paper we have used the McErlang model checking tool to perform run-
time verification on a set of agents comprising a RoboCup soccer simulation
team written in the Erlang programming language. Correctness properties were
specified as monitors (automatons) observing the detailed behavior and states of
all the players in the team, and the opponent team. The agents checked were not
modified nor abstracted for the purpose of the study, rather the standard source
code of the agents was used essentially unchanged. One of the key functionalities
of the McErlang tool is the capability to observe the inner state of agents, and
of coping with temporal agent behaviors.

The properties checked include a number of obvious correctness criteria for
football play (respecting playing field boundaries etc), including also a number
of properties that concern the inner logic of the agents. We aim to continue this
experiment in order to formulate further more detailed properties regarding the
internal state of agents (beliefs, plans, etc) of more RoboCup teams and agents,
to further illustrate the practicality of the approach.
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