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Resumen

En este trabajo, se analiza una teoria que es en cierto modo una ex-
tension natural del campo de las telecomunicaciones clasicas a la mecénica
cuantica. Dicha teoria se llama tomografia cudntica y es de hecho una
imagen de la mecanica cuantica equivalente a las mas habituales que son la
imagen de Schrodinger [Sc26] o la de Heisenberg [He27|. Esta nueva imagen,
difiere de las precedentes en que estda muy ligada a la capacidad tecnélogica
a la hora de medir observables (momento, energia, etc.) en el campo de la
Optica cudntica, ya que su objetivo primordial es el de conseguir reconstruir
el estado de un sistema cuantico a partir de mediciones en el laboratorio, y
dado al avance tecnoldgico del instrumental de laboratorio disponible como
laseres y fotodetectores, cada vez esta suscitando mayor interés.

En el primer capitulo, veremos cémo nace esta idea de reconstruir
estados cuanticos discutiendo brevemente la técnica clasica conocida como
Tomografia Axial Computerizada (TAC). Esta técnica estd basada en
los trabajos de Johann Karl August Radon [Ral7] aplicando la transfor-
mada que lleva su nombre. Introduciremos la transformada de Radon
de una funcién de probabilidad definida en el espacio de fases para ver cémo
se aplica en el caso del TAC. Para aplicar esta idea para la reconstruccion
de estados cudticos, veremos, en primer lugar, que existe una extension
natural de las técnicas de demodulacién de senales moduladas en am-
plitud (AM) en el campo de la 6ptica cudntica mostrando que el papel
que cumple un mezclador puede ser reemplazado por una combinacién de
divisores de haz y fotodetectores y mostraremos explicitamente cémo
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reconstruir el operador densidad que describe un estado cudntico a través
de un proceso reminiscente de la transformada de Radon clasica.

El segundo capitulo sera el corazén de este trabajo. En él, intro-
duciremos de manera formal la descripcion tomogréfica de la mecanica
cudntica. Presentaremos una teoria general, para ello, trataremos a los
observables como elementos de un algebra C* y los estados serdan fun-
cionales lineales positivos que actien en dicha algebra. Veremos que
esta descripcion de la mecédnica cudntica puede dividirse en dos partes,
una primera con el objetivo de obtener una férmula para reconstruir el
estado de un sistema cudntico a partir de una funcién definida sobre un
conjunto llamado conjunto tomogrdfico, que sera un conjunto de obser-
vables que tendra que cumplir una serie de condiciones que expondremos
debidamente. A esta primera parte de la teoria, la bautizaremos como
Teoria de muestreo generalizada en sistemas cuanticos.

La segunda parte estara relacionada con la parte puramente experimen-
tal. Lo que hace necesario tener que anadir esta segunda parte es el hecho
de que la funcién definida anteriormente sobre el conjunto tomografico,
que llamaremos funciéon de muestreo, en general, no puede ser medida
por medio de los dispositivos con los que contamos en un laboratorio de
Optica cudntica, sin embargo, a partir de las mediciones hechas con un fo-
todetector, podemos obtener distribuciones de probabilidad de cantidades
relacionadas con los observables. Entonces, tomando esto 1iltimo como
motivacion, esta segunda parte de la teoria consistird en relacionar esa
funcién de muestreo con una distribucién de probabilidad que llamare-
mos tomograma, que serd el resultado directo de un proceso de medida
en el laboratorio, y la llamaremos Transformada generalizada positiva
por motivos que se expondran convenientemente.

Uno de los problemas més sutiles de esta teoria consiste en hallar un
conjunto tomografico que cumpla las condiciones necesarias para permi-
tir reconstruir el estado a partir de él. Sin embargo, veremos que de ma-
nera natural, las representaciones unitarias irreducibles de un grupo finito
o de Lie compacto proporcionan conjuntos tomograficos que cumplen
las condiciones requeridas, por eso, nos centraremos en el estudio de la
reconstruccién de estados a partir de grupos relacionados con el sistema
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fisico dado. Aunque también destacaremos que existen otras representa-
ciones unitarias que nos permiten reconstruir el estado cuantico a partir
de ellas, como lo es la representacion unitaria irreducible del grupo de
Heisenberg—Weyl dada por el dlgebra de Lie que forman los operadores
momento y posicién cudnticos que es el ejemplo con el que nace la tomo-
grafia cudntica introducido en el primer capitulo.

En el tercer capitulo presentaremos un algoritmo numérico que se
deriva a partir de unos estados que llamaremos estados adaptados que
habremos definido en el capitulo anterior. Este algoritmo nace como un
problema inverso, ya que hasta entonces nos habremos centrado en recons-
truir estados a partir de un conjunto tomogréfico, en especial, cuando
el conjunto tomografico estd definido a partir de una representacién
unitaria de un grupo. Este problema inverso consiste en determinar
qué informacion es posible obtener de una representaciéon unitaria de
un grupo si se tiene una familia de estados que describe un sistema fisico
relacionado con un grupo de simetria. La respuesta a esta pregunta es muy
satisfactoria ya que es posible conocer la matriz de transformacion de
base que nos permita transformar la base, en la que estd descrita la repre-
sentacion unitaria, en una base adaptada a los subespacios invariantes bajo
la accién de todos los elementos de la representacién. Este problema se
conoce como descomposicion de Clebsh—Gordan, ya que dicha trans-
formacién aplicada a la representacion unitaria la convierte en una matriz
diagonal por bloques en la que cada bloque corresponde a una repre-
sentacién unitaria irreducible.

La manera en la que resolveremos este problema es con un algoritmo
numérico que sélo requiere dos estados adaptados como argumentos de
entrada, que pueden ser obtenidos de manera directa si se conoce de forma
explicita la representacién unitaria que queremos reducir. Este algoritmo lo
hemos bautizado con el nombre de SMILY . Hay que destacar que como este
algoritmo se ha generado sélo aplicando ciertas transformaciones unitarias
sobre matrices que representan un estado cudantico, tiene una extensién
natural que podria implementarse en un ordenador cuantico.

Para acabar esta tesis, generalizaremos la descripcion tomografica a
campos clasicos y cudnticos. Para el caso clasico, primero realizaremos una
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descripicon tomografica para sistemas con finitos grados de libertad y
obtendremos el equivalente tomografico de la ecuacion de Liouville para
una densidad de probabilidad y tras esto, haremos el mismo andlisis para
sistemas con infinitos grados de libertad.

Para obtener la descripcién tomografica para campos cuanticos, par-
tiremos del concepto de segunda cuantizacion y mostraremos el equiva-
lente tomografico de los axiomas de Wightman—Streater para una teoria
cudntica de campos. Y para terminar, obtendremos un teorema de re-
construccion para campos escalares y calcularemos el tomograma de cier-
tos estados de un campo cuantico escalar libre. Comentemos esto
ultimo diciento que es el inicio de una teoria que permitiria una descripcién
tomografica de estados, por ejemplo ligados, para teorias con interaccion.

Para concluir este resumen, quisiera resaltar que el lector especializado,
si lo considera conveniente, puede comenzar a leer a partir del segundo
capitulo, ya que aunque el primer capitulo sirve como motivacién de
por qué desarrollar una descripciéon tomografica de la mecanica cudntica,
el texto puede comprenderse si previamente no se ha leido.
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The birth of Quantum Tomography

As it was indicated in the summary, this chapter will be devoted
to provide an informal presentation of Quantum Tomography connecting
it with the foundations of classical tomography, i.e., the classical Radon
Transform, and the techniques used in Quantum Optics: homodyne and
heterodyne detection.

Because these ideas have their roots in classical telecommunications, an
effort has been made to offer a brief summary of the foundations of clas-
sical homodyne and heterodyne detection. So that, by means of the naive
canonical quantization of the Electromagnetic field, the reader will be able
to relate the quantum results with their classical counterparts. Needless
to say that the mathematical foundations of Quantum Tomography will be
addressed again under much more rigorous grounds in chapter 2, and the
extension of the corresponding ideas to classical and quantum fields will be
the subject of chapters 4 and 5.



2 The birth of Quantum Tomography

1.1. Radon Transform

The process of reconstruction of quantum states, that will be presented
in this work, is inspired on the technology for producing tomographic images
of sections of scanned bodies for medical purposes, known commonly as
CAT (Computerized Axial Tomography).

This technique is based on the mathematical transformation obtained by
Radon [Ral7] that allows to recover the value of a regular enough function
at any point (g, p) in the plane by averaging the value of that function over
all possible lines that pass through it.

More formally, let f(g,p) be a Schwarz function on R2. The Radon
Transform of f is defined as:

RF(X, 1,v) = f F@p)S(X  pg  vp)dedp = f £(a(5),p(s))ds, (1.1.1)
R2

Lx (qo,po)

where ¢ is the delta distribution defined on the space of test functions
D < & and Lx(qo,p0) = {(q(s),p(s))|X pq(s) wvp(s) =0} is the line
we integrate over, where (go, po) is the point of the line closest to the origin,
X is a parameter that indicates the distance of the point (qo,pg) to the
origin, and s is the affine variable that parametrizes such line, Figure 1.1.1.

The Schwartz space .7 is the space of smooth rapidly decreasing func-
tions on R™. The Fourier Transform defines a continuous invertible map
F S (R") - Z(R"™) by means of:

~

T (k) = f(k) = W j fx)e ®=day - da, (1.1.2)
R

and the Inverse Fourier Transform is the map .# 1: 7 (R") — .7 (R"):

1

F 1(:13) = F(x) = W

f F(k)e*®dk, - - - dk,. (1.1.3)

Rn
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2y

L x (g0, po)

Figure 1.1.1: Geometric scheme of Radon Transform on the plane.

The Fourier Transform can be extended to .’ (the topological dual
space of .#’), which is the space of continuous linear functionals on R
(D c ¥ < & < D) called the space of tempered distributions. Thus, if
Te.# then(T,f)=(T,f)foral fe.&.

Therefore, we can define the delta function as the distribution whose
Fourier Transform is the constant function 1 /A/2m , hence it has the integral
representation:

s

5(z) = %f e dk. (1.1.4)
o0

Using formula (1.1.4), we can write:

RIGC ) = 5o | flap)e e He v akdgap,
B3
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so that, using the notation * = k - %, we get:

0

- 1 L ) |
17 =5 f fla,p)e e WP dgdp = %f RI(X,p,v)e *XdX.

R2 0

Hence, the Inverse Radon Transform is obtained from the inverse of the
Fourier Transform as:

f(g,p) = X(q,p) = f Fii, 7)€ &P dfdi

= J RF(X,p,v)e ‘0¥ 4 ") qXdjidp,

and evaluating at k = 1, we get:

fla,p) = (@) J Rf(X, p,v)e X 14 vP) dXdudy. (1.1.5)
R3

1.2. Computerized Axial Tomography

The CAT technique consists on obtaining the absorption coefficient of
an object by measuring the intensity of a beam before and after crossing
through the object at different points [Fal0]. X-rays are the most common
radiation used in CAT processes because their wavelength is of the order of
atomic size (A). If radiation with smaller wavelength is used, because the
energy of the radiation is proportional to the frequency, the damage to the
subjects would be greater.

When a photon interacts with matter, the probability that the photon
is absorbed is proportional to the space ds travelled by the photon, i.e.,

dp(s) = a(s)ds, (1.2.1)

where a(s) is the absorption coefficient at point s.
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If we have a photon beam, the probability that a photon will pass
through a portion of matter of length [ along the line Lx(zg,yp) is equal
to the product of the probabilities of not being absorbed along the path:

1

Po(l) = 1_[ dp(s)) ~ l_[exp dp(s))
s=0
1 i

- exp( [, dp(s)) - exp( L a(s)ds), (1.2.2)

where s is the parameter of the line.

Detectors

source

Figure 1.2.1: Section of a scanner of CAT detection.

If Ng is the number of photons emitted by the source and N is the
number of photons detected at the output, the probability that the photons
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were not absorbed is

N
=N
Hence, because of the intensity Iy of the beam is the number of photons

Po(l)

per unit of time, we have that

and finally, we have that the intensity measured at the output is

- fa@ds). 2
0

By definition, a is a probability distribution on R?, therefore we can
use the Inverse Radon Transform to obtain the absorption function «(z,y),
where (z,y) are the coordinates of a point in the plane.

Let us insert a body in a cylinder tube, fixing the z-axis in the center of
the polar section, and let us put a X-ray source and a detector at opposite
points with respect to the z-axis as represented in Figure 1.2.1. Hence,
from equation (1.1.1) we have that

log <§)> _ J la(:v(s),y(s))ds
0

= f a(z,y)0(X xcosf ysinh)dzdy = Ra(X,0). (1.2.4)
RZ
If we change to polar coordinates in (1.1.5), this is,
u = kcost,

v =ksinf,

and taking into account that

LRp(X, ), (1.2.5)

R (X ks ) = o
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because of the homogeneity condition of the delta function:

5(ka) — “16|5(:U), keC, (1.2.6)

we obtain:

0 00 27
1 ) .
a(z,y) = (277)2Jff Ra(X,0)e RX weost ysind) pagardx. (1.2.7)
o0 0

Finally, to reconstruct the image, the absorption function « usually
is plotted in a grey scale, and because the absorption coefficient at point
(z,y) is proportional to the quantity of matter in that point, this plot will
represent the distribution of matter in the interior of the body.

1.3. Reconstruction of signals in classical telecommunications

Physicists in Quantum Optics realized [Au09, sec. 15.4] that they could
implement a way for reconstructing the matrix elements of the matrix rep-
resentation of a quantum state of a light source by a clever use of the Radon
Transform described in the first section. The way for doing that is in-
spired on how signals are sent and detected in classical telecommunications
[Ru87,Si01].

In classical telecommunications, signals are emitted by modulating a
high frequency signal, usually called the carrier signal, with the signal that
we want to transmit, which is a low frequency signal called the modulating
stgnal.

There are two main modulations:

e AM (Amplitude Modulation).
e Angular Modulation:

— FM (Frequency Modulation).
— PM (Phase Modulation).
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We will only consider here AM because there are a lot of similitudes
between it and the “quantization” of an electric field.

Amplitude Modulation, as its name tells, consists on modulating the
amplitude of the carrier signal with the signal carrying the information,
then the envelope of the carrier will vary with the same modulating signal
frequencies. Maybe, the reader is wondering why is necessary to modu-
late a signal for transmitting the information. The prize we have to pay
for transmitting modulated signals is that the attenuation of radiation is
greater as the frequency grows (that produces losses in the signal) and that
the power emission necessary for transmitting increases as the frequency
does, then the cost in energy to transmit a modulated signal is greater.
However, the rest of arguments are advantages, let us see it.

A reception antenna is simply a resonance circuit. The resonance fre-
quencies greatly depend on the length of the antenna, however they de-
pend also on the design: half-wavelength dipole, inverted V-dipole, vertical
monopole, ete., and they also depend on the impedance and other circuit
factors [BaO8]. A simple half-wavelength dipole is an antenna composed by
two wires of same length L/9 connected to a coaxial cable, Figure 1.3.1.

le J
) L "
kL —  — 1 oA
Wires =
Coaxial cable
NS

Figure 1.3.1: Half-wavelength simple dipole.
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The current induced in the wires has two nodes in the extremes, then
the resonance wavelengths are 2L/, n=1,2,..., Figure 1.3.2. Thus, the
fundamental resonance is reached when L = A/9, for that, this dipole is
known as half-wavelength dipole. The addition of an impedance to the
antenna may reduce the length of the antenna in multiples of 2, L = A/4,
A/, ..., without changing the fundamental wavelength \.

/ \\ Intensity /_/ \

_x.—

\ A =2 “H«

!

\/

Figure 1.3.2: Current in a half~wavelength simple dipole.

Thanks to that, we see that the length of the antenna needed to trans-
mit or receive signals decreases the higher is the frequency. For example,
digital television in Spain transmits with frequencies between 400 Mhz and

800 Mhz, and the length needed for an ideal half-wavelength dipole is:

A
L=2-2X_  1875cm < L <37.5cm,
27 2f

where ¢ is the velocity of light.

The previous argument is an important reason for justifying the use of
modulation, however the most important reason for doing this is that the
carrier wave allows to sort the information in channels making possible to
send at the same time different information if the frequencies among their
carriers are separated enough for non superposing.
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Let us consider first a modulated signal of a simple tone. Let z,,(f) =
Vim cos(wmt) be the simple monotone modulating signal (or message) and
zc(t) = Vecos(wct) the carrier signal. The modulated signal is obtained
by adding to the carrier the product of the two signals with a modulating
factor j3:

2(t) = (1+ Brm(t))ze(t): (1.3.1)

The factor 8 depends on the modulator system we use. If |fV;,| < 1,
the maximum and minimum values of the modulated signal are:

Imar(t) = (]- + ﬁvm)vm
Tmin(t) = (1 BV Ve.

In this case, the signal is well modulated and it is possible to obtain the
modulating signal from the envelope of the signal, Figure 1.3.3.

ka(t)

B

“~, Modulating signal

D ]
A

-
- R ;

Carrier signal

A 4

. ~ ’ 5
s w s \
/4 W ; '.

Figure 1.3.3: Signal modulated to 57%.

If |AVin| = 1, the signal is overmodulated what produces a distortion in
the envelope, and for that, a loss of information at the time of recovering
the modulating signal, Figure 1.3.4.
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(S
\\\(;;;
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Ny
J’d S
]
a4

Figure 1.3.4: Signal overmodulated to 170%. This plot corresponds to the
output of a real circuit. Notice that differs to what we would have got from

eq. (1.3.1).

If we compute the Fourier Transform of (1.3.1), we get:

3(k) = Ve g [5(% k) + 6(we + k) + 5%""(5(% b wm k)

+0(we +wy +k)+ 0w, wy k)+0(w, wp,+ k})] (1.3.2)
In Figure 1.3.5, we show the amplitude of this Fourier Transform with
respect to the frequency. There, we can identify three resonance frequencies:

™

e At w, with amplitude A(w.) = V. 5

e At w, + w,, with amplitude A(w, + w,,) = ﬁv';v;\/g _
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z(k) m
gl 2 3 gl 7
2 2 2 2
| [

We — Wi We We + W k

Figure 1.3.5: Fourier Transform of AM monotone signal.

From the medium peak, we can identify the voltage and the frequency of
the carrier, and using this information, we can obtain the frequency of the
modulating signal and the factor 8V}, from one of the other resonances.

If we have a multitone signal, because the signals we generate are peri-
odic, we can express them as a Fourier series,

[v 8]

Tm(t) = Vin(wm) €mt .

m=1

If we modulate this signal with a carrier signal, as saw in (1.3.1), the Fourier
Transform of the modulated signal becomes:

z(k) = Vc\/g [é(wc k) + 0(we + k)
£ B Vinlwom) (8(wm + we F) + 6(wm we k))]. (1.3.3)
m=1

Plotting this result we obtain, instead of two delta functions, two bands
in both sides of the peak at w,., because of that, standard AM is usually
called Double Side Band Amplitude Modulation (DSB-AM), Figure 1.3.6.
The recovering of the modulating signal can be done in the same way as it
was done for the monotone case, however instead of one peak we have as
many peaks as frequencies compose the modulating signal.

We have shown how one can reconstruct the modulating signal by ana-
lyzing the spectrum of the modulated signal. By the way, the modulating
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signal can be obtained in the output of a demodulator. For an AM signal,
the demodulation can be done using several devices: envelope detectors,
homodyne detectors, heterodyne detectors, etc. The choice among them
depends on the frequency, simplicity or efficiency of the antenna, among
other variables. Following, we will describe homodyne and heterodyne de-
tectors because that kind of detection can be easily adapted to optical
devices in Quantum Mechanics.

#(k) - - -
pVnlen)le \/; Vc\/; AACALY
"\ e N\ F

We — Wm(mazx) We — Wm(min) We + wm(min)  we + wm(mazx)

Bl

Figure 1.3.6: Fourier Transform of AM multitone signal.

These two types of detectors consist on multiplying the signal received
in the antenna by a local oscillator to demodulate the carrier signal, and
after mixing the signal with the local oscillator, the modulating signal is
recovered by using a low-pass filter [Ki78].

A local oscillator is an oscillating circuit together with an amplifier
and a feedback circuit to counteract the softening of the oscillations due
to losses of energy because of Joule effect and other factors [Ru87, ch. 5.
The simplest oscillating circuit we can build consists of a capacitor and an
inductor in parallel.

If we feed the circuit during a small period of time, the capacitor will
become charged, hence when we stop of feeding, the capacitor will induce a
current in the inductor, Figure 1.3.7(a). When the capacitor is discharged,
the magnetic flux will tend to disappear and producing an electric current
in the same direction, Figure 1.3.7(b), that will charge the capacitor with
opposite polarity to (a), Figure 1.3.7(c) and the process will repeat.
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(b) (c)

Figure 1.3.7: (a) Discharge of the capacitor that induce a magnetic flux in
the inductance. (b) Electric field induced by the inductance. (¢) Charge of
the capacitor with different polarity than (a).

This process produces a sinusoidal signal of frequency

1
o’
where L is the inductance and C the capacity.

In the homodyne detector, first, the signal is amplified in Radio-Frequen-
cy and next, we pass the signal through a band-pass filter to remove noise
and other unwanted contributions. After that, the signal is mixed with a
local oscillator with the same frequency than the carrier signal to shift the
signal to baseband, this is lowering to frequency zero, then the signal is am-
plified in baseband and filtered with a low-pass filter to get the modulating
signal, Figure 1.3.8.

The heterodyne detector is similar to the homodyne, the only difference
is that we mix the signal in the output of the Radio-Frequency band-pass
filter with a local oscillator with different frequency than the carrier, hence
the name heterodyne (other force in classic greek), to shift the signal to an
intermediate frequency at the level of Medium Frequencies 10> 10° kHz.
Because of this, the homodyne detection is usually called zero intermediate
frequency detection. Following, the signal is treated the same way as in the
homodyne detector, this is, the signal is amplified in Medium-Frequency,

W =
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filtered with a band-pass filter and mixed with a local oscillator at the
intermediate frequency and so on, Figure 1.3.9.

Modulated RE Band-pass
signal amplifier Filter
wc
. . L.O
” L We
) BB Low-pass Modulating
amplifier Filter signal

Figure 1.2.8: Homodyne detector scheme.

When the modulated signal is mixed with the first oscillator, two bands
appear, one at |w  wro| and other at w+wyp. Obviously, the intermediate
frequency is the smallest frequency wyp = |w wrp|. A problem comes
from the fact that the intermediate frequency is different from zero. Usually,
information is emitted in channels of different frequencies at the same time,
then there are two frequencies, one smaller than wro and other bigger, with
the same intermediate frequency:

Wro W =Wip =Ws Wro-
The non desired frequency is called image frequency:
Wimage = |"-"-JI 2‘-’-"LO| . (134)

For that, the emission of information at the image frequency of every al-
lowed channel is forbidden.
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Modulated RF Band-pass wiF
signal =727 aplifier Filter
We
\ 4
> > L.O.
wrLo
WIF MF Band-pass
amplifier Filter
L.O.
> > Wir
BB . i
> _ Low.r pass Mo_dulatmg
amplifier Filter signal

Figure 1.3.9: Heterodyne detector scheme.

1.4. Classical Electromagnetic field

In section 1.8, we will adapt this treatment for demodulating signals
modulated in AM to Quantum Optics. For that purpose, we will discuss
the classical and quantum electromagnetic fields [Ba98, ch. 19] because we
want to use the similarity between an AM signal and the explicit form of
the quantum electromagnetic field.

Let us consider a manifold M = R x V, where R denotes the time part
and V a domain in the spatial part that represents a cavity with surface V.
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The Maxwell’s equations that describe the classical electric and magnetic
fields in empty space are:

VxE— 15;, (1.4.1) V.E=0,  (14.1b)
C
VxB- 16;;, (1.4.1¢) V.B=0, (L41d)
C

where c is the velocity of light. From these equations, it is possible to see
that the electric field satisfies the wave equation:

12E _

2
VEE 55 =0 (1.4.2)

The solution of this equation can be written as the sum of mode func-
tions:

E(z,t) =) fo(t)uy(),
p=1

where f,(t) satisfies
d?fp(t)
de?

and up(x) satisfies the eigenvector equation for the Laplace operator:

+ kL f,(t) =0, (1.4.3)

Viu,(x) + kpyuy(x) = 0, (1.4.4a)
V-up(x) =0 _ (1.4.4b)
n X upy(xc) = 0} i (1.4.4c)

where 7 is the unit vector normal to the surface. The last condition must be
imposed because the tangential component of the electric field must vanish
on the conducting surface. Because it is a Hermitian eigenvalue problem,
the functions u,(x) are orthogonal:

J up(x) - uy (x)dPz = 5,y (1.4.5)
v
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The magnetic field can be determined from (1.4.1a):

Z gp(t V X up(x ))
with dgy (1)
g
C’l’t = cfy(t). (1.4.6)
From (1.4.4c), we see that
n- (V xupy(x)) =0, (1.4.7)
hence, from (1.4.4a) and (1.4.7), we obtain the following orthogonality con-
dition:
f (V x up(®)) - (V x up(x)) &z = k20, (1.4.8)

1%
Notice that from Maxwell’s equation (1.4.1c), we see that g,(t) verifies the
same equation as fj(t), eq. (1.4.3):

d?g,(t
df;( ) + klgy(t) = 0. (1.4.9)

If we define the classical Hamiltonian of the electromagnetic field by
computing its total energy:

Hy— - j (IEP + B Z jup<m>~up/<a:>d3m
=1
1

1%

M8

+

95D (1 f (V x up(x)) - (v ¢ (@) P

1
1 1%

S

52 (5P +Elgp®)), (1:4.10)

and if we think of f,(¢) as the position of a particle p at time ¢,

_
Qp = 2ckp”ﬁ, (1.4.11)
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because the classical momentum is the derivative of the position with re-
spect to time, from (1.4.6) and (1.4.9) we get that

J gy (t) (1.4.12)

dt AV

Thus, denoting w,, = ck, and using the previous identifications, the Hamil-
tonian becomes:

1 o0
Ha =5 ), (P} +w,Qp), (1.4.13)
p=1
which is the Hamiltonian of a set of infinite classical harmonic oscillators
of frequencies wy,, p = 1,2,....

1.5. The quantum harmonic oscillator and the quantization of the
Electromagnetic field

To obtain a proper quantum description of the Electromagnetic field,
we have to provide a quantum description of the system given by the Hamil-
tonian in (1.4.13).

First of all, let us define two operators that usually appear in Quantum
Mechanics, the annihilation and creation operators. These two operators
are defined as:

a- \/12? (\/JQ + \%P), ot = \/1271 <\/EQ ﬁp), (1.5.1)

where 7 is the reduced Planck constant i = h/27 and w the frequency.
The operators Q and P are the operators on the Hilbert space # = L?(R)
corresponding to position and momentum respectively. The operator Q is
the multiplication operator and the operator P is the operator iAV:

Qv(q) = q¥(q), Py(g) = ihVi(q). (1.5.2)

This framework is usually called coordinate representation. It is easy to

verify that the commutator of the position and momentum operators is
[Q,P] = inl.
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From here to the rest of this text, bold capital letters will denote opera-
tors on a Hilbert space. In cases in which may exist any confusion, we will
use the circumflex accent = but, in general, this symbol will be reserved to
denote the Fourier Transform.

The operator a is the annihilation operator and a' is the creation op-
erator and they satisfy the canonical commutation relation:

[a,a'] = 1. (1.5.3)

The Hamiltonian of a quantum harmonic oscillator of frequency w (and
mass m = 1) is given by:

P2 2
H= -+ %Q? (1.5.4)

When one substitutes the momentum and position operators by the anni-
hilation and creation operators (1.5.1), the Hamiltonian becomes:

H- m(aTa + %) (1.5.5)

The problem of finding the spectrum of H is reduced to the problem of
finding the spectrum of the number operator:

N = ala, (1.5.6)
which satisfies the commutation relations:
[N,a] = a, [N, aT] =al. (1.5.7)

To deal with the quantum system defined by (1.5.5) is better for the pur-
poses of this work (see later chapter 5) to consider an abstract realitation
of the Hilbert space of states of the system called Fock space F.
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1.5.1. Canonical commutation relations and the Fock space

Let us consider now that the creation and annihilation operators (1.5.1)
as abstract symbols, and consider the associative algebra generated by them
with the commutation relation given by (1.5.3). There is a natural repre-
sentation of this algebra as operators on the Hilbert space F defined as
the complex space generated by the eigenvectors |n) of the number oper-
ator (1.5.6), with eigenvalues n = 0,1,..., completed with respect to the
norm defined by them and where the symbols a and a' are realized as the
operators (denoted with the same symbols):

aflny = Vn + 1jn + 1), n=0,1,...,
aln) = +v/njn 1), n=12...,
al0) = 0. (1.5.8)

Notice that
(ah)"
V!

From (1.5.8), it is easy to check that the operators a and a' are un-
bounded operators, which are adjoint to each other, and also that the spec-
trum of the positive self-adjoint operator N = afa is n = 0,1,... with
eigenvectors |n).

In this representation, we think of the state |0) as the fundamental state
(or vacuum) of the theory. The vector |1) = a'|0) is the state representing
of one “particle” and |n) is the state representing of n particles. Because of
the action of the operators a and a over the vectors |n), showed in (1.5.8),
it is easy to understand why the name of creation and annihilation.

In) = 10). (1.5.9)

If we have a multipartite system composed by N particles vibrating at
different frequencies wy, the Hamiltonian of the total system is the sum of
the Hamiltonians of every one:

N
1
_ T
H= h; <wkakak + 2wk>, (1.5.10)
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where now, the canonical commutation relations are:
[ak,aL,] = (5kk” [ak,ak/] = [CL]TC,CLL,] = 0 (1511)

The physical meaning of this commutation relations is that the creation
and annihilation of particles of each mode does not affect the others.
Repeating the previous construction, we set now the Fock space Fn that
will be generated by orthonormal vectors |ni,...,ny) with ny,...,ny =
0,1,..., and denoting the fundamental state |0,...,0) by |0), we get:

k
all0y=10,...,1,...,05,  agl0) = 0. (1.5.12)

Notice that Fy = F; ® - M QF .

In addition to the abstract Fock space representation of the quantum
harmonic oscillator, it is sometimes useful (see later on section 2.8) to use
the representation provided by the operators presented before in (1.5.2).
For that, consider the function

Yole) = e
hence,
1 )
avpo(x) = Von <\/5Q + \@P> Yo(z)
1 (P _
— \/ﬁ (\/Ex + \@(wa)> to(z) = 0,
and

o0 o0
2 _ 2 . i wm2/h .
HwoLz—f o ()| dw—\/;Je 1.
Y 0

Clearly the functions
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provide an orthonormal basis of L?(R) because they are the eigenfunctions
of the self-adjoint operator H in eq. (1.5.5).

The map i — L?(R) defined by |n) v~ 1, defines a unitary op-
erator between both spaces providing the coordinate representation of the
quantum harmonic oscillator.

Expanding the functions v, we get [Ba9d8, page 156]:

- et ()

where H,,(z) are the Hermite Polynomials
n

Hy(z)=( 1)"e” ddxn e ¥ (1.5.13)
We see that the difference between the Hamiltonians of the classical
harmonic oscillator (1.4.13) and of the quantum harmonic oscillator (1.5.4)
is the substitution of the classical position and momentum @ and P by the
operators Q and P respectively. This is a very extended way to generalize
classical results to the quantum case and it is commonly called canonical

quantization:

Qp - Qp

P =Py g

Ho —H=2 ) (mP) +wyQp). (1.5.14)
p=1

1.5.2. Canonical Quantization of the Electromagnetic field

Applying the canonical quantization scheme (1.5.14) to the E.M. field
and writing it in terms of the creation and annihilation operators (1.5.1),
the classical electric and magnetic fields become:

E(x,t) — Bz, t) = V2rh Y wp, (a(t) + ap(t)) up(),

p=1

B(z,t) — B(x,t) = icV2r Z ap(t)) (V x up(x)),

w
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where
ap(t) = ape “rt.

Therefore, the electric and magnetic fields can be written finally as:

o6}
E(z,t) = vV2rh Z Vwp (a;; e“rl 1a,e wrt) (),
p=1

0
B(x,t) = icV21h Z L (a;r, et aye ) (V x up(x)).  (1.5.15)
p=1 \/Fp

Notice that the Electromagnetic field operators can be separated in two
parts, one that creates photons of frequencies w, and other that destroys

them: ~ ~ ~
E(z,t) =E (x,t) + E (x,t),
B(z,t) =B (z,t) + B (z,1), (1.5.16)

where

e¢]
f)+(zc,t) =V27h Z Vwpape “rtuy(x),
p=1

0
~ 1 .
B (z.t) = ievarh Y ——aye “(V x uy(x)),
w
p=1V™P

is the part that destroys them, and

the part that creates them.

If we come back to section 1.3, we remember that in Amplitude Modu-
lation a signal is composed by a function, that only depends on the message,
multiplied by a sinusoidal function that corresponds to the frequency in
which the message is sent (1.3.1). If we emit different messages at different
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frequencies, the total signal is a linear superposition of all the modulated
signals, hence we can write it as:

m .
2 1+ @ p(t)) e ekl (1.5.17)

If we compare this formula with eq. (1.5.15), we see that are similar,
however the role of the modulating signal is played by

a;,|n1,n2, cey Ny = N1, N, .. ,a;,np, DR (1.5.18)

for that, experimentalists thought that the way for reconstructing the quan-
tum state |n,) should be an adaptation of the process saw in section 1.3
for demodulating signals in telecommunications. However, we cannot use
the same devices that were shown in section 1.3, because the quantum
modulating signal is an operator on B(H), therefore here is where take into
action the photodetection process.

Before involving in this task, let us comment briefly the notation of
state we have described before. Recall that a quantum state |n) of the
harmonic oscillator is given by (1.5.9). However, physically, states differing
in phases are equivalent, so it is convenient to consider the projector op-
erators instead. Moreover, when dealing with ensembles of systems, their
states are statistical mixtures of such pure states, i.e.,

N N
p= > pilniynil,  pi=0, D pi=1 (1.5.19)

We will call such states mized states. Thus, a mixed state for the quantum
E.M. field will be an operator p of the form:

pP = Z pi17...7iN ]nil, Ce ,nm><nz~1, ce ,niN| (1.5.20)

i1,in

where p;, iy = 0 and Z Din,.iy = L.

11,...iN
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Typically, mixed states for the E.M. field consist of a finite number of
excitations, i.e., the sum above is finite. Hence, we may think of it as a
mixed state for a finite ensemble of harmonic oscillators. This is the point
of view we will adopt in what follows.

Let us point out that mixed states are also called density operators and
a formal treatment of them will be given in chapter 2.

1.6. Reconstruction of matrix elements of quantum density op-
erators

As it was commented at the beginning of section 1.3, experimen-
talists in Quantum Optics wondered how to measure the matrix elements
of the representation of the quantum state of a light source, and the answer
they found was to measure the Radon Transform of a quantity that is di-
rectly related with these matrix elements, the Wigner’s function™, [Wi32]:

Pu(a:P) = (%lh)n J <q %’p‘q - g>e“’y/hd”y, (1.6.1)
-

where p is the operator representing a mixed state (see eq. (2.1.2)), n the
number of excited modes describing such states, and

q=(q1,q2,---,qn), p = (P1,P2,---,Pn)-

To express the inner product on the Hilbert space H, we have used the
Bra-ket notation introduced by Dirac where |-) denotes a vector on H and
{:| denotes its dual.

The matrix elements of p, in coordinate representation, can be recovered
from the Fourier Transform of the Wigner’s function:

ip (¢’ "+ n
p(q,q) =J e P Dhp, (q 5 q,p> d"p. (1.6.2)
Rn

*More information about Wigner’s function and its relation with the reconstruction
of quantum density matrices can be found in modern texts due to Giuseppe Marmo et
al., as for example [Er07, Ca08, As15'].
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An equivalent formula can be obtained in momentum representation.
The eigenvectors of momentum and position operators form an orthog-
onal basis that satisfy:

L gpan (1.6.3)

{qlp) = We )

and to pass from one representation to other, we use the Fourier Transform:

0(p) = @l) = [ Blaxalia - oo [ e P, (16

R™ R

A function p,, (g, p) is a probability distribution in phase space if there
exists a mixed state p such that:

{alpla) = f pps(q,p)d"p, (1.6.5a)
R'IL

(plplp) = f Pps(q,p)d"q, (1.6.5b)
.

Pps(q,p) = 0. (1.6.5¢)

Wigner proved that there is not a function that satisfy these three con-
ditions, however he found a function, that is not a probability distribu-
tion because is not bigger or equal than zero, which satisfies the marginal
probability conditions (1.6.5a) and (1.6.5b). That function is the Wigner’s
function p,,(q,p) defined previously in (1.6.1):

[ putantn= i [ o Ylolas)ernarus

R™ R2n

- f <q %Mq * %>5(")(y)d"y = (qlplg). (1.6.5a)
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f pw(q,p)d"q = {p|p|p), (1.6.5b)
Rn

where (") () is the n-dimensional analogue of Dirac’s delta function (1.1.4)
with integral representation given by:

1 ,

5 (x) = f k@ qng, 1.6.6

@ = G | © (16.6)
]Rn

The Wigner’s function, although is not a probability distribution, is nor-

malized:

J pu(q,p)d"qd"p = f (plplp)d"p = Tr(p) = 1. (1.6.7)
R2n Rn

For the following computations, is important to define first functions of
operators on a Hilbert space. Let A be a self-adjoint operator on a Hilbert
space H. Let us define f(A) as a regular enough function on A:

F(A) — J f(a)Ea(da), (1.6.8)

where Fa(da) is the spectral measure associated to the self-adjoint oper-
ator A (see for instance [Re80, ch.7]). From this, we can define the delta
function of an operator on a Hilbert space as a distribution with values in
operators (see section 2.6).

However, if X is an eigenvalue of A, A|X) = X|X), we can see that the
delta function 6(X1 A) is nothing but the projector over the eigenvector
| X

0

S(X1 A) = ;ﬂf XL A) g = J X9 B (da)dk
e¢] R2
e}

_ f 5(X  a)Ea(da) = |XXX|. (1.6.9)

o]
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Hence, if we compute the mean value of the delta function of the operator
X1 A (with X an eigenvalue of A) over a state p, we get:

(X1 A)p=Te(ps(X1  A)) = Tr(p|X)(X|) = (X|pX). (1.6.10)

To implement the reconstruction setting of the matrix elements of a
state p, we need to define new position and momentum variables via a

rotation of angle ¢:
g\ [ cos¢ sing) (q
<p¢> B ( sin¢g cos ¢) <p> : (1.6.11)

The marginal probability distribution of g4 is

Pylas) = {4slplag)
e}
:f Puw(@pcosd  pysing,qgsing + pgcos p)dpg, (1.6.12)

o0

where |gs) is the eigenvector of Q, = Q cos ¢ + P sin ¢ with eigenvalue g.
We have put n = 1 for simplicity, however this result can be generalized for
any n by changing the momentum and position variables by n-dimensional

vectors.
Let us prove now eq. (1.6.12). From (1.6.10), we have that
Py(ag) = {as|plas) = Tr(pd(gs1 Qeosd Psing)). (1.6.13)

Hence, using the exponential representation of the delta function, we get:

Tr(pd(gel Qeos¢ Psing))

1
Y

o0)
Tr pf eikq¢ﬂe 1k(Q cos ¢+P sin ¢) dk 7
e}

and applying the Baker—Campbell-Hausdorff formula

A+B _ oA B 1/2AB] (1.6.14)
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for A and B satisfying [A, [A, B]] = [B, [A, B]] = 0, we obtain that

Making the following change of variable in g:
k
g=q+ -sing,
2
and using eq. (1.6.2), we obtain that

0
;JJeikq¢e ik2/2005¢sin¢e ichos¢<q|p\q+ksin¢>dqdk
T
w0 ®
1

A _ k k
; oik(as Geos ¢)<(j 5 sin ¢|p|q + 3 sin ¢ydgdk

3

——g 8y

[

8%8 8——g

0
f oiklas dcosd psing) (& 1ydpddk
0

puw(@p)0(qp dGcos¢  psing)dpdq.

I
8"8
8—g 8
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Then, we have shown that
Tr(pd(gsl Qcos¢ Psing))

=ffpw(q,p)5(q¢ qcos¢ psing)dgdp. (1.6.15)

From (1.6.11), we have that

P = ¢ Sin ¢ + py cos @,

hence, finally we have:

a0
. d¢ dp
Tr 1 P = e
(polast Qeoso Psing)) = [ o, (2 pranop)
oo
o0
o d¢ .. 92 . .
— J pw(cosgb(l sin® @)  pgsin ¢, gy sin ¢ + pg cos ¢> dpg
o0
o0
= J Pu(qpcosd  pysing,qgsing + pg cos )dpy.
a0

[
Because the probability distribution Pp(ge) is an average of the Wigner’s
function over the plane g5 gcos¢ psin¢ = 0, people working in Quantum
Optics decided to call it a Tomogram.
Applying now the Inverse Radon Transform in polar coordinates, as
in (1.2.7), to the tomograms Py4(qg), we can recover the Wigner’s function
P:

00 00 27
1 A .
Pw(q:p) = 2n)? Jff Py(X)e kX acosé psind) pqopdkdX, (1.6.16)
o 0 0

and finally, from (1.6.2), we can reconstruct easily the matrix elements of
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the density operator p(q,q):

o0
p(q,q 2 J
o0

o0 00 27
f fp(z) p(q’ Q)/h
0

e (X (@+a)pcosd psind)pqsdkd Xdp. (1.6.17)

1.7. Photodetection

Now, we will focus in how to measure the tomograms of a quantum
state of a radiation source. To get that, we will adapt the homodyne
and heterodyne detection described in section 1.3 for quantum devices
[Ar03]. In this setting, the equivalent to the mixing of two electric fields
is more complicated because now, they are operators on a Hilbert space,
and instead of a simple multiplication, we have a tensorial product. The
devices that let us mix two signals in Quantum Optics are beam-splitters
and photodetectors.

Figure 1.7.1: Beam-splitter.
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a) Beam-splitters:

A beam-splitter (see Figure 1.7.1) is an optical device that separates a
ray in two components. Generally, it is composed by two triangular prisms
sticken together forming a cube. It reflects part of the ray and it transmits
the other part. In the classical picture, let us suppose that we have a
beam-splitter of reflectance R and transmittance T'. If the beam-splitter is
lossless, then |R|? + |T|? = 1.

If a ray enters with electric field E1, the electric field reflected will be
Es = RE; and the part transmitted will be E3 = T'Ey, see Figure 1.7.2.

E,

A

E; Eg

Figure 1.7.2: Classical beam-splitting.

Let us consider the quantum case. Here, the electrie field is an operator
with form (1.5.15), then because it can be separated in the sum of an
operator and its Hermitean conjugate (1.5.16), to obtain the output of
an electric field operator El, we only need to see how the annihilation
operator a; is transmitted and reflected. Notice that the annihilation and
creator operators satisfy the commutation relations (1.5.11), then if we
had a system similar to Figure 1.7.2, with as = Ra; and ag = Ta;, the
commutation relations would not be verified, so it would be necessary to
add something to them.

In Quantum Mechanics and Quantum Field Theory, the vacuum plays
an important role and in the previous discussion we have forgot it. If we
suppose that our initial state is a tensor product of two states py ® pq,
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where pg is the vacuum state |0>(0| and p; is the state in which E; acts,
we have to add a second input ag at the same frequency which acts on the
vacuum, see Figure 1.7.3.

az

aj as

ag

Figure 1.7.3: Quantum beam-splitting.

In Quantum Mechanics, two states differing in a phase are physically
equivalent, then let us suppose that for the second input we have a re-
flectance R and transmittance T with |R| = |R| and |T| = |T|. Now, the
new outputs in the beam-splitter will be:

as = Ra; + Tag, a3 = Tay + Rag. (1.7.1)

The operators ag and a; satisfy the commutation relations (1.5.11), then
as and az will satisfy them too if:

R?+|T|?=1, RIT*+R'T=0.

‘We are assuming that the beam-splitter is lossless, hence the energy is
conserved. From (1.5.10) and because agp and a; act at the same frequency
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(or in the same mode), we have that agao + aJ{al = agaQ + a;ﬂ)ag, then it

must be verified that . }
RT* + R*T =0

Then, the reflectance and transmittance in the two outputs can be written
as:

R =sinfe®, R= sinéei‘g, T =cosfe¥, T = cosee“z7

with A I
b = QiWHd 9)

hence, we have:

<a3> B cos 6 e sin 6 ei® <a1>
ag sinf elWt¥ @) cosfei? | \ao)’

and if we choose all phases 0, we have that

Uy, = < cos smH) . (1.7.2)

sinf cos6

In the configurations that we will show later, we will use 50/50 beam-
splitters with 6 = 7 /4, that is, beam-splitters that reflect and transmit at

50%:
1 1
ag = ﬁ(ao ai),  az= ﬁ(ao + ay). (1.7.3)

b) Photodetectors:

A photodetector is a device that generates an electric current by photo-
electric effect when photons reach it. The transition probability of absorb-
ing n photons from an initial state |i) to a final state |f) is:

Ty = [(FIE (2, 0)[D)]. (1.7.4)

Thus, the probability of absorbing any photon (or average intensity of
the electric field) will be the sum of all the probabilities of absorbing 0, 1, . ..
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photons:

= 2T = YGIB (@,0]F) - (FIB (.0l
f f
—GIE (z,t) B (x,t)]i).

If our initial state is a mixed state p = Z]pZ i)(i| and Zpl =1, p; = 0, the
average intensity will be:

I(z,1) :Zpl-<i|]?3 (z,t) - B (2, t)]i) = Tr(pﬁ (m,t)-ﬁ+(w,t)>.

The intensity of the electric field measures the number of photons per
unit of time. In the classical case, the probability dp that a photodetector
counts one photon in a time dt will be:

dp(t) = al(t)dt, (1.7.5)

where the parameter o measures the sensitivity of the photodetector and
I,(t) is the classical current. Notice that this formula is equivalent to the
formula (1.2.1), hence the probability that a count does not occur in the
interval [¢,¢ + T'] is similar to eq. (1.2.2):

t+T

Py(t,t +T) = exp ( ozf Icl(t’)dt’>,
t

and by induction, we can get the probability of counting n photons:

t+T t+T

P,(t,t+T) = il[af Icl(t’)dt’]nexp< aJ Icl(t’)dt’>. (1.7.6)

t t
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.

i3 T3 ta T4 TS

L

Tz

Figure 1.7.4: Process of absorption of photons in a photodetector.

It can be shown (see [Wa94]) that, in the quantum case, formula (1.7.6)
becomes:

t+T
P,(t,t+T) = %Tr(p:[aj E (x,t’).ﬁ*(x,t’)dtr]

t
t+T

.exp( aff} (I,t’)-ﬁ'(m,t’)dt’):), (1.7.7)

t

where :#: denotes the normal ordering of the operators inside, that is,
the creation operators to the left and the annihilation operators to the
right. The statistics of absorption of photons in the detector [Ou95] is
the probability of the independent events of absorbing n; photons in the
interval [t1,t1 + T1], no in [te,t2 + T3|, ... and ng in [tg,tx + Tk|, (see
Figure 1.7.4):

Pnl,‘..,nk (ltlatl + T1J1 sy tka ltk + Tk])

ti+T; n:
— Tr (p ]‘[m [ I (z,t) - B (z, t’}dt’]

i=1 X
T
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ti+Ti
. exp( CEJ E (z,t)- E' (z, t’)dt’) :) . (1.7.8)
tg
The photodetector produces an output that is the average of the inten-
sity of the beam over the state p. From here, we can obtain the probability
distribution of the intensity operator I = E -E ' by means of

AT
P(D) = —=. (1.7.9)

where A7y is the total time the detector has been measuring values in the
interval AI, and T is the time it has been taking measures, Figure 1.7.5.

IJ\

AT |

|
W AT ) T

Figure 1.7.5: Intensity statistics.

a4

Notice that from (1.6.13), we see that the probability distribution of I
is nothing but its tomogram:

P(I)=Tr(ps(I 1)), (1.7.10)

where I are the eigenvalues of 1.

For a single mode field, the average of the field is proportional to (af@,
then suitable configurations of beam-splitters and photodetectors can be
used to mix quantum electric fields in an analogue way as we saw in sec-
tion 1.3 for signals in telecommunications.
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1.8. Homodyne and heterodyne detection in Quantum Optics

If we write the tomogram (1.6.13) in terms of creation and annihilation
operators, we have:

Py(X) = Tr(pd(X1 wa waT)), (1.8.1)

where

w = Z(Cf/sg) +i\/asin¢>.

Our aim in this section will be show how to measure this tomogram.

1.8.1. Homodyne detection

This first kind of detection is called homodyne because the radiation
source is mixed with a strong laser beam of the same frequency. A strong
laser beam is a radiation source which emits light in a highly excited co-
herent state®, i.e., |z| — oo:

2) = e '2/2;0m|n>, al2) = z|2). (1.8.2)

The answer to the question, why do we mix the signal with a strong laser
beam, is that in the limit |z| — 0, the laser beam behaves as a semiclassical
source, then the action of the electric field of the laser over the state of the
radiation source will be only a change of phase, as we will see later.

Let our input be a single mode field:

E+(a:,t) = V2rhwae “u(x),
that emits light at a state p, and a strong laser beam:

EZ(w,t) = V2rhwbe “ur(x),

*A more detailed description specifying the most important properties of coherent
states will be presented in subsection 2.8.1.
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that emits at the same frequency with state |2){z|, where z = |z| e and
2|2 » (a'a),. Let mix both fields in a 50/50 beam-splitter, hence the two

outputs will be:

1 1
- b), d= —(a+b). 1.8.3
c \@(a ) \/5(“ ) (1.8.3)
R = i(dfd —cle)
|z
C
cle
A
c
p® |2z A
—iwt
pe g > \ > r
a 50/50 d
d'd
Ab
7}
Phase shift |2Xz| e—t‘cut’ 0
Strong laser
beam
=

Figure 1.8.1: Quantum homodyne detection.

If we put two photodetectors in each output, substract both results, as
it can be seen in Figure 1.8.1, and divide it by |z|, we get the statistics of

the operator:

1
R=—(d'd cc)=—(a'b+bla), (1.8.4)

1
|| El
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with tomogram
1 0 ¢]
Wi () = o J T (p@[ele WA ak (185)
T
o6}

The annihilation operators a and b satisfy eq. (1.5.11):
[a.aT] = [,T] =1,  [a,b] = [a,b7] =0, (1.8.6)

hence, the operators a'b, bTa and 2Ny = a'a  b'b satisfy the commutation
relations of the su(2) algebra:

[aTb, bTa] =a'a b'b=2N,,
[aTb, No] = a'b, [bTa,No] =bla, (1.8.7)

where Ny corresponds to the z-component of the angular momentum and
a'b, bla are ladder operators.

Therefore, if we use the Baker—Campbell-Hausdorff formula for the
SU(2) group [Wo85, Ar92], we have:

ofabt &alb _ (bla J/olog(1+[¢[*) (b0 ala) C_aTb7 ¢ = itan]ﬂ. (1.8.8)

€l
If we insert this result in (1.8.5), we get:

e 6}
1 kR k| (aTb+bTa)
— | e |2
5 f e Tr(p®|z><z\e )dk

21J\ szTr p®lz><z\ ztan(k/|z‘)b7ae 1/210g(0052(k/|z|))(bTb afa)
s

0

e itan(k:/|z|)a7b) _ i j ez‘kR Tr(pe itan(k’/|z|)2a elog(cos(k/‘zp)tﬂa
27
o0

. 2|2]2
e thjm(k/|z|)zaT> exp ¢sin2 <k> dk.
cos (Ikl) 2|z
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Using the standard BCH formula (1.6.14) again, and the identity

eX eV = PV X (1.8.9)

whenever [X ) Y] = sY, we obtain:

00]

1 A . .
Wgom(R) _ % f ezk:R Tr(pe 7,51n(k/|z|)zaTe 251n2(k/2|z‘)(aTa+\z|2)

0
- exp ( Z % sin" <2|kz|> aTa> e tsin(k/|z))za )dk.

n=2
And finally, in the limit |2|?» (a'a),, we get:

©
1 . i i
W™ (R) = %JelkRTr(Pe ikei?al o Ka o ike ea)dk

oe]

_ ;J ““RTr ik(e?® at +e—if ))dk. (1.8.10)
o0

If we use the creation and annihilation formulas (1.5.1) to write the
tomogram Whom(R) in terms of the operators Q and P to compare it
with the Radon Transform formula (1.1.1) via the correspondence with the
average integral over the Wigner function p,, given in (1.6.15), we get that

B B in6
Whem(R) = \ngw (\/;R,\/acose, S\%) . (1.8.11)

That shows that the quantum tomogram Whom(R) measured in the ho-
modyne detection device, Figure 1.8.1, is just the Radon Transform of the
Wigner’s function of the state p (in the strong laser limit).
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Hence, using a rescaled version of the change of variables that we used
to get the formula (1.2.7):

i = kr/wcosb,

V= —=sin6,

Vw
we get the following formula to reconstruct the Wigner’s function:

pu(a.p) = (2;2 ffofﬂwgom(l%)
o 0 0

ce (B avwcost B\ usinO)pqedkdR, (1.8.12)

and the matrix elements of the state p are recovered by means of the Fourier
Transform (1.6.2).

1.8.2. Heterodyne detection

As in the classical case in telecommunications, the difference between
homodyne and heterodyne detection is that in the heterodyne case the
frequency of the local oscillator is different to the frequency of the signal.

We saw in section 1.3 that heterodyne detection has the inconvenient
that there are frequencies, that we called image frequencies, in which we
cannot emit signals. In quantum optical detection, information is emitted
at every frequency because even if we are not at an excited state, the state
is the vacuum. However, we will see that this is not an inconvenient in the
final result. We will show that it gives only an extra contribution because of
the nature of the expected value over a state composed by a tensor product.

Let the input signal be:

ff(a:,t) = V27h (ﬁae “Wuy(x) +vw  2wipage w 2wre)t uo(a:)),

acting on the state p ® |0)(0|, where a acts on p and ag on |0)(0]. We do
not write in this formula the rest of frequencies that also act on the vacuum
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because they will not contribute to the final result. Let also be a strong
laser beam:

EL x,t) =/ 2rh(w  wrp)be @ Crrlty; (@),

that emits light in a coherent state |2)(z| with phase § = 0, z = |z| and
|22 » <(aC_+a0C)T(ag_“+a0g“)>p®|0><o‘ with ¢ € C and || = 1. The heterodyne
detection process is the following (see Figure 1.8.2):

First, we mix the two fields in a 50/50 beam-splitter to get:

1 ot (W 2wip)t i( )t
c=—ae " +age "W WIFT pe MW CIF)T)
V2 (
1 iwt i(w 2wrp)t i(w wrp)t
d= 7 (ae +ape +be ) . (1.8.13)

Second, we put two photodetectors in each output and substract the
result to obtain:

1 4 A
D= 3 ((aTb +blag) et 4 (bla + a(T)b) e "’”Ft> . (1.8.14)

Third, we divide the signal in two parts and multiply one by cos(w;pt +
¢) and the other by sin(w;rt+¢) and we pass the results through a low-pass
filter to get:

1 A .
D; =D cos(wrpt + @) # Flow(t) = 5 ((aTb +blag)e @ +(bla + agb) e’¢>,

Dy = D - sin(wrpt + ¢) # Flow(t) = % ((aTb +blag)e @ (bla+ alb) e ) .

The symbol # indicates the convolution product. The low-pass filters are
necessary for removing the terms of other frequencies that appear during
the process.

Finally, if we sum D; and D2 and divide it by |z|, we will get the
operator whose statistics we want to obtain:

1 1 . i -\ 4
= (D1 D) = 5 ((aTb +blag)1+i)e P+(bla+alb)(1 i)e ¢)
1

T V2

(( T vafe )b+ bl (ae 9+aoei9)), (1.8.15)
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with
0. (1.8.16)

Notice that the operator

1 . ‘
A =—(ae Y tage?),

V2
where
[a,aT] = [ao,ag] =1, [ao,aT] =0, (1.8.17)
verifies:
[A,AT] =1,

hence, the operators ATb, bTA and 2Ny = ATA  bTb determine again a su(2)
algebra as in (1.8.7). Because of this, we can repeat the computations made
in the homodyne case and then, the tomogram

0

1 [, .
W) = o [ T (p® 00| @ [2)ale WMD) ar,
0
in the limit |z]? » <ATA>p®|0><0| reads as:

0

Whet(R) _ ;ﬂf szTr(p®|O><0| AU—A))dk

;f ikR Tr(p@ |0><0| zk/\/i((aT+a0)ei9 +(a+a$)e—ie)) dk. (1.8.18)
o0

Taking into account that a + aJ(r) commutes with its adjoint and because

a and ag commute each other, we can split the contribution of the vacuum
using the BCH formula (1.6.14):

Tr (P ® |0%0|e Hv2 ((a+ao) e +(atah)e? ))

= Tr(pe ZAk/\/iae_we ik/\/iaTeie) ~{0e ik’/ﬁage_we ik/\/ﬁaoei9|0>.
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D=d'd-clc

“an

p® |0)X0[ ® |2)(z|

pe—iwt . c A
+|U><U| C—t(w—2w“r)t
L

g (o

> > '—
a, ag 50/50 4
d'd
! [2Xz| el
Strong laser
beam
>
cos(wrpt + ¢)

Low-pass| D¢

Filter

sin(wrrt + ¢)

Low-pass
Filter

R = |%|(D1 + Dg)

Figure 1.8.2: Quantum heterodyne detection.
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Thus, because
(0| e ik/ 3 ah ™ ik/ /3 a0 e¢o|0> ={0]0) =1,
we have that

Tr (P ® |0X0]e V2 ((a+ao) e +(atah)e=? ))

- Tr(pe ihfygae ik/\/i‘ﬁew) (1.8.19)

Hence, we have that the heterodyne tomogram is the Fourier Transform
over the variable k of expression (1.8.19):

0

1 [, A o i
W (R) = - f ek R Tr(pe ikj\gae™? g ”“/x/i‘”ee)dk. (1.8.20)

0
From the tomogram (1.8.20), we cannot obtain the Wigner’s function
P.(q,p) as in the homodyne case, however we can obtain the matrix el-
ements of p in the coherent basis |z) by means of the Husimi distribu-
tion [Hu37]:
_ 1
po(z,z) = ;<Z|P\Z>- (1.8.21)
The way to do it is by noticing that the Husimi function pg(2,2) and the
anti-normal ordered characteristic function

xa(§,€) = Tr<pe & eEaT)

are related by a two-dimesional Fourier Transform. Let see it using the
properties of the coherent states that will be exposed in subsec. 2.8.1:

xa(€,6) = %Tr (J pe €a |Z><z|e50” d2z>

R2

1 £ . 1 E, (3
—Tr (J pe Z|2)(z| e d22> = f<z|p|z>e 62 e8% 422,
T - T »

(1.8.22)



48 The birth of Quantum Tomography

Because of eq. (1.8.22), the Husimi function pg(z,2) is obtained from
the Inverse Fourier Transform in the variables € and &:

_ 1 — z

palzd) = 5 [ xal€.O e e, (1.8.23)
R2

hence, writing this expression in terms of the heterodyne tomogram (1.8.20),

we finally obtain the inversion formula:

) o0 00 27
pQ(Z,Z) = By} J JJ Wget(R)
o 0 0
e WV2(V2R ze? 2 pqpdkdR. (1.8.24)

Then, if we express the coherent factor z in terms of the position and
momentum variables ¢ and p:

1 ( l
r= —(Va +—>, 1.8.25
Tor Vwg NG ( )
we can write the Husimi function pg)(z, Z) as the convolution of the Wigner’s
function p,,(q,p) with a Gaussian filter [Lel5]:

1 ' /
pg(2,2) = 7rhf p.(d p)e (@ 0202 @ p)Q/Qagdq’dp’, (1.8.26)

R2

where o, and o), are the variances of the Gaussian wave-packet which satisfy
the Heisenberg minimum uncertainty relation
h

Oq0p = = -

2



The tomographic picture of quantum systems

The ideas presented in the introduction can be extended and formal-
ized by considering with more care the role of the observables of the system
in the construction of the tomograms W.

The description of a physical system involves always the selection of its
algebra of observables A and a family of states S. The outputs of measuring
a given observable a € A, when the system is in the state p € S, are
described by a probability measure ji, , on the real line such that i, ,(A)
is the probability that the output of a belongs to the subset A < R. Thus, a
measure theory (or better a theory of measurement) for the physical system
under consideration is a pairing {p, ay between states p and observables a
that assigns to pairs of them probability measures fi,,,. Then, the expected
value of the observable a in the state p is given by:

@p = | A, .
R

Such picture applies equally to both, classical and quantum systems. For
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closed quantum systems, the observables are usually described as a family
of self-adjoint operators on a Hilbert space H while states are described
by density operators p acting on such Hilbert space, that is, positive self-
adjoint operators p = 0, p = p' such that Trp = 1. The pairing {p, a)
written before is provided by the assignment p,, = Tr(pE,), where E,
denotes the projector-valued spectral measure associated to the Hermitean
operator a.

This picture of quantum systems can somehow be enhanced by using
a more algebraic presentation. The rest of this chapter will be devoted to
this. A general discussion of Quantum Tomography in the setting of C*—
algebras will be analyzed and a number of applications, including Group
Tomography, will be discussed.

A Picture of Quantum Mechanics is a mathematical representation of
quantum systems. There are three main standard pictures [Ga90] that
differ in the role of time regarding states and observables:

e Schrodinger picture: Where the time evolution is carried by the state
and the observables are considered static.

e Heisenberg picture: Where the time evolution is carried by the obser-
vables and the states are independent of time.

e Dirac picture: In which both, states and observables, are time depen-
dent.

These pictures together with Wigner—-Moyal representation constitute
the most common mathematical descriptions of quantum mechanical sys-
tems. The representation we will use here, by means of C*—algebras, em-
braces all the previous ones in a clear mathematical way and it is the one
we will consider here.

Moreover, already in section 1.6, it was presented a way for recon-
structing matrix elements of density operators by means of certain measure-
ments of observables. This is the so called tomographic picture of Quantum
Mechanics. In this sense, Quantum Tomography would not be considered a
picture of Quantum Mechanics by itself because derives from Heisenberg’s
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picture, however it was shown by Ibort et al. [Ib10] that it is truly equivalent
to the standard ones.

2.1. C*—algebras and Quantum Tomography

The algebra of bounded operators B(H) on a Hilbert space H is usually
considered as the algebra of (bounded) observables of the system, however,
as it was proposed by von Neumann, it is possible to generalize that and
consider more general algebras. In this Thesis, we will present a tomo-
graphic picture of Quantum Mechanics in which observables are elements
of a C*-algebra A.

Let us recall that a =—algebra A [Pe79] is a complex Banach algebra
with a norm || - | and an involution operation * satisfying:

() (a*)* =a,
(b) (ab)* = b*a”,
(¢) (a+ Ab)* = a* + b,
for all a,be A and A € C. A C*-algebra is a *—algebra A such that
a*al = Jaf?,  VaeA

We will also ask for the algebras considered here to be unital in the sense
that there exists a neutral element 1 such that 1a = al for all a € A.

An element will be called self-adjoint if a* = a. The subspace of all self-
adjoint elements is denoted by A, and constitutes the Lie-Jordan Banach
algebra of observables of the corresponding quantum system (see [Fal3] for
more details).

In particular, we can consider the C*—algebra B(#) equipped with the
operator norm and the involution defined by the adjoint operation, that is,
A* = AT where AT denotes the adjoint operator of A € B(H).

The states of the theory are normalized positive functionals on A, that
is, linear maps p : A — C such that

p(1) =1, pla*a) =0, Va e A. (2.1.1)
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In the case in which A = B(H), because of Gleason’s theorem [G157],
states are in one-to-one correspondence with normalized non-negative Her-
mitean operators p acting on the Hilbert space H:

Tr(p) =1, pl=p, p=0, (2.1.2)

which are the density operators presented in section 1.6 and in the intro-
duction to this chapter.

The relation between states p of the C*—algebra B(H) and density op-
erators p on the Hilbert space H is given by the formula:

p(A) = Tr(pA), VA € B(H). (2.1.3)

The space of states of a given C*—algebra A will be denoted by S(.A) and
it is a convex weak*-compact subset of the topological dual A" of A [A178].

Notice that according to the physical interpretation of the C*—algebra
A as the algebra of observables of a given physical system, when the alge-
bra is commutative it will be describing a classical system, whereas non-
commutativity will correspond to “genuine” quantum systems.

A state p of the C*—algebra A represents the state of the physical system
under consideration and the number p(a), for a given a € A, is interpreted as
the expected value of the observable a measured in the state p, consequently
it is also denoted as:

{ay, = p(a). (2.1.4)
In this sense, eq.(2.1.3) represents the expected value of the observable
described by the operator A when the system is in the state given by the
density operator p.

Each self-adjoint element a € Ay, defines a continuous affine function
a:S(A) - R,

a = p(a). (2.1.5)
A theorem by Kadison [Ka51| states that the correspondence a — @ is an
isometric isomorphism from the self-adjoint part of A onto the space of all
continuous affine functions from S(A) into R. Thus, the self-adjoint part
of the algebra of observables can be recovered directly from the space of
states and its complexification provides the whole algebra [Fal3].
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2.1.1. The GNS construction

The Hilbert space picture is recovered by means of the called GNS
construction [Ge43, Se47] named in honor of Gel’fand, Naimark and Segal.

Given a state p of a C*—algebra A, we can construct a representation
7, of A in the C*-algebra of bounded operators of a Hilbert space H,
canonically associated to it. The Hilbert space H, is constructed as the
completion of the inner product space A/J, where

T, = {a € Al p(a*a) = 0} (2.1.6)

is the Gel’fand’s ideal of null elements for p, and the inner product is defined
as:

{la],[b])p = p(a™b),  a,be A, (2.1.7)

where [a] denotes the class a+ 7, in the quotient space. The representation

7, is defined as:
mp(a)[b] = [ab], Va,be A. (2.1.8)

The GNS construction provides a cyclic representation of A with the
cyclic vector corresponding to the unit element 1. Such vector will be called
the vacuum vector of H, and denoted by |0). Moreover, we get that the
state p is also described by:

p(a) = {0|m,(a)|0), ae A (2.1.9)

In addition, given any element a € A, we have the associated vector
mp(a)|0) = [al] = [a]. In what follows, we will denote by |a) the vec-
tors [a] € H,, thus:

mp(a)|0) = |a). (2.1.10)

By duality, A acts on the space of states S(A), i.e., (a-p)(b) = p(ad).
Thus, if we fix the state p, then the orbit of A through p can be identified
with the Hilbert space H,. Now, each unit vector |a) € H, defines a state
on A by means of

pa(b) = <alm,(b)|ay = p(a”ba). (2.1.11)
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Such states will be called vector states of the representation m,. More
general states can be defined by means of density operators o in B(#,) by
the formula:

o(a) = Tr(omy(a)), VYae A. (2.1.12)
Notice that

o(1) =1, o(a*a) = (alola) = 0, VYace A. (2.1.13)

The family of states given by (2.1.12) is called a folium of the representation
T, (see for instance [Ha96, page 124]).

The tomographic description of states p consists on assigning to this
state a probability density W, in some auxiliary space A/, in such a way
that given W, the state p can be reconstructed unambiguously [Ib09] (see
figure Figure 2.1.1).

Space of probability
measures on N

Tomographic problem

Figure 2.1.1: Tomographic problem.

There is not a single “tomographic theory” neither a standard way to
construct W, out of p. In what follows, we will show that it is possible to
construct the tomograms W, using the following two tools: a Generalized
Sampling Theory and a Generalized Positive Transform. We will discuss
these two basic ingredients in the following sections as well as the equiv-
ariant version of them. Finally, we will provide a particular instance of
the theory based on harmonic analysis in groups.
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2.2. Sampling theory on C*-algebras

We consider a family of elements U(z) in A parametrized by an index
T which can be discrete or continuous. This family can be described by a
map U : M — A where M is the space labeling the elements U(z).

pE S(A)

Ux)e A%
Observables \—/—\1

Figure 2.2.1: Tomographic map U.

Given a state p and a set U(zx), we will call the function F, : M — C
defined as

Fy(z) = {p,U(x)) = p(U(:I:}), Te M, (2.2.1)

the sampling function of p with respect to U, Figure 2.2.1. In what follows,
we will use indistinetly the notation p(a) or {p,a) to denote the evaluation
of the state p in the element a € A.

We will assume now that the map U separates states, i.e., given two
states p and p there exist z € M such that F,(z) # Fj(x). In such
case, sometimes the map U is called a tomographic map and its range
{U(z) |z € M} a tomographic set.

Let us consider that M is a measurable space with o-algebra ¥ (if M
is a topological space, > will be the Borelian o—algebra on M) and let
p: X — RY be a positive measure. We will also assume that the map U
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is measurable (and continuous in the topological setting) and integrable in
the sense that for any p € S(A), the sampling function F) is integrable,
that is, Fj, € L' (M, ).
We will consider now the special case where there exists another map
D : M — A, measurable and integrable in the sense that for any a € A
the function
Go(z) ={(D(x),a) (2.2.2)

is integrable, and such that
(D(x),U(y)) =6é(x,y), xyeM, (2.2.3)

where §(z,y) is the delta distribution on M with integral representation:

wm—fa@ww@mmw, (2.2.4)
M

where ¢ is any test function on M. We will call the set D(z) a dual
tomographic set.

If such map D exists, we will say that U and D are biorthogonal. These
two maps U and D define what could be called a Generalized Fourier Trans-
form because its resemblance to the standard Fourier Transform, that is, if
we denote the sampling function by

plx) = <{p,U(x)) (2.2.5)

and define:
$=jmmD@mmm (2.2.6)
M

(notice that this integral is well-defined), we have two maps:

T S(A) - LM, p)

and

~r MM, ) — S(A), (2.2.7)
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where the map ~ is a left-inverse of the map ~. We will write formally this
fact in the following theorem.*

Theorem 2.2.1. Let U be a tomographic map in the C*—algebra A, and
D : M — A be an integrable map such that U and D are biorthogonal,
then the map ~: LY(M,pu) — A’ given by

3= j o(2) D()dp(x)
M

is the left-inverse of the tomographic map ~ : S(A) — LY (M, i) given by
p = F, if the function G.(x) = (D(x),a) is in L® for any a € A.

Proof: Let us consider p = F),, then, we will see that the element 3 is
equal to p. For that, we will check now that the following functional:

:f F,(z){D(x),aydp(x), a€ A,
M

is continuous. Notice that this functional satisfies

1Al < 1El 1 [KDC)s @)l ee,

but D(x) € A’, therefore this means that [(D(z),a)| < K|a| for some K
independent of z, hence p is continuous.

To show that p = p, we will prove that p( ) ( (z )) for all
x € M, hence because U separates states, we will have that p = p:

G.U >f U@)duly) = Fo(x) = (p, U().

*The formalism involving a tomographic map U and a tomographic dual map D has
been widely used by Marmo et al. (see for instance [As15%]) for applications in different
settings and it was introduced by G. Marmo and V. Man’ko under the name of the
“quantizer-dequantizer” formalism. Today, it is common to call the functions F,(z)
“tomographic symbols” of the state p.
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Conversely, we may compute first the = map and later the ~ map on
F,. If we apply the first map, we have that

Fy = | Fola)Dia)dute),
M

then, if we apply the ™ map, we get what we expected:

Fy(e) = (B, U(a)) =J Fp(y)(D(y), U(x))duly) = F,(x).
M

[ |
It is also noticeable that
J J<p, z)ydp(x (J U(z)du(z )
M M
thus, if U is normalized, that is:
J U(z)dp(z) =1, (2.2.8)
M
it is clear that F}, is normalized too:
f Fy(x)dp(z) = 1. (2.2.9)

M

We may also define another sampling function, but this time depending
on two arguments as follows:

Fy(z,y) ={p,U(z)*U(y)), for any z,y e M. (2.2.10)

We will say that a function F': M x M — C is of positive type or semidef-
inite positive if for all N € N, & € C and any z; € M, ¢ = 1,..., N, it
satisfies that

N
N &g F (i, x5) = 0. (2.2.11)
ij=1
This notion of positivity implies the following theorem.
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Theorem 2.2.2. Given a state p and a tomographic set U : M — A in
a C*-algebra A, then the sampling function F,(xz,y) = {p,U(x)*U(y)),
x,y € M is of positive type.

Proof: It is a straightforward computation:

N
Z &i&j Fy(xi,xj) = Z &i&i<p, U(x:)*U (x5))

t,j=1 =1

N N * /N
= p, Y &&U () Ulxz)) = {p, (2 &-U(xz-)> (Z &U <xj>)> > 0.
i=1 j=1 n

ij=1

We will take advantage of this property later on when dealing with
tomography in groups. We will conclude this section by establishing the
notion of equivalence of tomographic sets.

Given two tomographic sets U : M — A and U: M— A, we will say
that they are equivalent if there exists an invertible measure preserving map
p: M- M such that U = U o ¢ 1. Clearly, if U and U are equivalent,
then the sampling functions corresponding to a given state are related by
F p=F,0p L

Fy(&) = {p, U(&))
={p,(Uop @) =Flp () =Fop NI (2212)
Consider that ¢ is a measure preserving map [L(A) = M(go 1(5)), for any

measurable set A /\71, hence i£ U and U are equivalent and D ~: M- A
is biorthogonal to U, the pair (U, D) is biorthogonal too, with D = D o ¢:

~

(D(@),0(@) =D '@).U(e @)
=d(¢ '(@),0 '®) =0(@.79). (22.13)

The theory that we have sketched in this section, which consists basi-
cally on reconstructing the functional p by means of a set of samples F),(z):

p= [ F)XD@). - duta), (2.2.14)

M
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could be called a Generalized Sampling Theory on C*-algebras, Figure
2.2.2.

Recently, there has been some results trying to extend the classical
theory of sampling to quantum systems (see for instance [Fel5| and refer-
ences therein). In this sense, notice that the tomographic map and its dual
generalize the notion of frame (and its dual coframe).

The problem we are dealing with now is how to get the samples F,(x).
In principle, it is not possible to measure directly the sampling function
F, because, in general, they are complex numbers and as we have seen
in section 1.7, what we can measure in the laboratory are probability
distributions. For that reason, we need to include another tool which will
allow us to obtain the sampling function F}, from probability distributions.
‘We will call this second tool a Generalized Positive Transform and we will
describe it in the following section.

Tomographic
set

tomographic set

Figure 2.2.2: Sampling diagram.
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2.3. A Generalized Positive Transform

The second tool in our programme is the choice of a Generalized Posi-
tive Transform. At the beginning of this text, we introduced the Radon
Transform which maps probability distributions into probability distribu-
tions. We will try to generalize this concept in what follows.

To offer an abstract presentation of this transform, we will consider a
second auxiliary space N that parametrizes a family of elements in the dual
space D(M) < F(M)’ of the space of continuous functions on M*. If we
denote by y € N the elements of A/, such family of elements will have the
form {R(y)|y € N'}. Thus, R will be a map R : N’ — D(M) and it will
allow us to define a transform of any continuous function on M by means
of

R(F)(y) = (R(y), F), (2.3.1)
where (-, -) denotes the natural pairing between D(M) and F(M). We will
say that this map F v~ R(F) is a Generalized Positive Transform if it

maps functions of positive type on M into non-negative functions on N,
ie., if F: M x M — C is of positive type, then

R(F)(y) = (R(y),F)=0, VyeN. (2.3.2)

Again, if N is a measure space with measure o, we will assume that R is
integrable in the sense that the function R(F) = (R(-), F') is o—integrable
for any F' integrable.

We will say that R is normalized if

| R @@ -1 (2.33)
N

for any function F' on M such that

J F(x)dp(x) = 1.
M

* M will be assumed to be a topological space in what follows and, consequently, a
Borelian measurable space.
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Notice that in this case, R : L'(M, u) — L'(N, o) is a continuous map
and we will say that R is non-degenerate if it has a left inverse, i.e., if there
exists a map R 1 : LY(NV,0) — LY(M, u1) such that

R 'oR =idpi- (2.3.4)

Under this rather long list of conditions, we will conclude by noticing
that if p is a state and U is a normalized tomographic map, then F), will
be a normalized function of positive type, Thm. 2.2.2, and in consequence
R(F,) will be a normalized non-negative function on N

| RED @)@ = 1. (2.3.5)
N

Moreover, if we know R(F,), we could obtain F), by applying a left-inverse
map R !, ie., F, = R 'oR(F,). The function R(F,) will be called the
tomogram of the state p and we will denote it by W,, Figure 2.3.1:

Wo(y) = (R(y), Fp)- (2.3.6)

Notice again that the tomogram W,(y) satisfies that it is a probability
distribution related with the state p:

W, =0, J W,(y)do(y) = 1. (2.3.7)
N

A particular instance of this setting is obtained when the tomographic
set is trivial, i.e., M = A and U = id4. Then, we may assume that R is a
map R: N — Ac A", and in that case, the tomogram of the state p will
be obtained directly from:

Wy(y) = {p, R(y))- (2.3.8)

This is just the situation for the Classical Radon Transform presented at
the beginning of this Thesis, where now A can be taken to be the
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algebra of continuous functions on a compact domain Q in R%, N will be
the set of lines on R? and R: N — A/, L v~ R(L) = 6p:

WilL) = (o RL) = | pla(s),(5))ds
L

which is just the Radon Transform (1.1.1).

Tomogram

R(y)
Tomographic
N distribution

Figure 2.3.1: Generalized Positive Transform diagram.

2.4. Equivariant tomographic theories on C*—-algebras

In many situations of interest, there is a group present in the system
whose states we want to describe tomographically. Such group could be,
for instance, a group of symmetries of the dynamics or a group which is
describing the background of the theory (as the Poincaré group in chapter
5). In any of these circumstances, we will assume that the group G is a
Lie group acting on the C*-algebra A, i.e., that there is a continuous map
T:G— Aut(A):

T.=1, TyTgp =Tpg  Vo1.02€G. (2.4.1)
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In such case, in order to obtain a reasonable theory, we will assume that
the group acts on the auxiliary spaces used to construct the tomographic
description. Thus, the group G will act on M and N and such actions will
be simply denoted by z v g-z and y v~ g -y, g€ G, € M and y e N.

The natural compatibility condition for a tomographicmap U : M — A
to be equivariant is that

U(g-x) =T,U(x), Ve M and VgeG. (2.4.2)

This could be interpreted by saying that if £ = ¢ - x, then the two obser-
vables U(x) and U(Z) are equivariant with respect to G, that is:

U(&) = T,U(x). (2.4.3)

Under these conditions, it is easy to conclude that the sampling function
F, corresponding to the state p satisfies the following condition:

F,(g-x) = Fyxp(x), (2.4.4)
because

Fy(g-z) ={p,U(g-z)) =<{p, TyU(x)) = {Typ,U(x)) = Fyxp(x),

where g*p = Tjp is the adjoint action of G on A’. Notice that if p is an
invariant state, T;'p = p, then the corresponding sampling function will be
invariant too:

Fy(g9-x) = Fy(x), Vge G, zeM. (2.4.5)

As indicated before, we will also consider that the group G acts on the
auxiliary space N used to define the Generalized Positive Transform. The
map R : N — D(M) is said to be equivariant if

R(g '-y) = g«R(y), (2.4.6)

where g, indicates now the natural action induced on the space D(M)
F (M) given by the action of G on M, more explicitly:

(9+R(y), F) = (R(y), 9" F) and g¢*"F(x)=F(g-x).
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If R is actually a map that induces a Generalized Positive Transform and
W, the tomogram of the state p, we will have that:

Wylg *y) =<(R(g "-y).F,) ={g«R(y), F,)
= <R(y),g* p> = <R(y), Fg*p> = Wg*p(y)' (2‘4'7)

Therefore, we will conclude this discussion by observing that under the
conditions stated before, if p is an invariant state, its tomogram is invariant
too:

Wolg-y) =Wely),  VgeG. (2.4.8)

2.5. A particular instance of Quantum Tomography: Quantum
Tomography with groups

We will discuss now a particular instance of the tomographic programme
where a group G plays a paramount role. Such situation happens, for
example, in Spin Tomography [Ma97| where the group G is SU(N) (see
section 2.7.1), in the standard tomography of quantum states presented
in chapter 1 with G being the Heisenberg—Weyl group (see section 2.8)
and other physical situations that will show up later on.

In this setting, we will assume that the auxiliary space M is a Lie group
G and the tomographic map U : G — A is provided by a continuous unitary
representation of G on A, this is:

Ul =Ulg) '=Ulg "), Vgeg,
and
U(g192) = U(g1)U(92),  VYg1,92 € G. (2.5.1)

Notice that because of (2.5.1), then U(e) = 1.
If we denote by T, : G — Aut(.A) the action of G on A given by

Ty(a) = U(g)*aU(g), (2.5.2)
with a € A and g € G, then we see immediately that

Ulg ‘hg) = U(g)*U(h)U(g) = T,U(h), Vg, h e G, (2.5.3)
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which is the equivariant property (2.4.2) for the adjoint action of G on
itself, h v~ g '-h-g.
The sampling function corresponding to the state p is given by

Fu(g) = <p.U(9)), (2.5.4)

and we may check that the map F, : G — C is of positive type because the
function F,(g,h) = F,(g 'h) satisfies Thm. 2.2.2:

N
> &&iFu(g; ) =0, (2.5.5)

ij=1

for all N e N, & € C, g; € G with ¢ = 1,...,N. Moreover, it satisfies
property (2.4.4).

In the case in which A = B(H), because of the one-to-one correspon-
dence between states and density operators, the sampling function F), can
be written as:

Fy(9) = Tr(pU(g)), (2.5.6)
hence, because the character of a group representation is defined as:
x(9) = Tr(U(9)), (2.5.7)

we will denote the sampling function x,(g9) = F,(g) and we will call it
a smeared character of the representation U with respect to the state p.
Let us notice that if H has finite dimension n and the state is the trivial
one, p = %]l, the smeared character is just the standard character (2.5.7)
divided by n.

Consider again the strongly continuous action 7, of G on A and notice
that the map f,(g9) = |Ty(a)| is continuous for all a € A. The GNS
construction described at the beginning of this chapter (section 2.1.1)
provides, given a state p, a representation m, of A in H, and then, we get
a strongly continuous unitary representation of the group G by means of

Up(9) = m,(U(9))- (2.5.8)
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Notice that U,(g) is actually a unitary operator on the Hilbert space H,
because:

Up(9)lal, Up(9)[b]), = p((U(9)a)*(U(g9)b)) = p(a™b) = {[a], [b]),,

for all g € G, [a], [b] € H,.
Now, the sampling function of a representation U corresponding to
a state p can be written as:

Fp(g9) = 0lU,(9)]0), (2.5.9)

where |0) is the fundamental vector of H,. Fixed the state p, the smeared
character of U with respect to any other state o in the folium of p, (2.1.12),
will be given by

Xo(g9) = (0, U(9)) = Tr(om,(U(9))) = Tr(aT,(9))- (2.5.10)

We can conclude this section by stating the following characterization
of states.

Theorem 2.5.1. Let p: A — C be a linear function and consider the sam-
pling function F,(g) = {p,U(g)) where U is a completely reducible strongly
continuous unitary representation of the Lie group G on A. Then, p is a
state iff F, is a positive type function on G and F,(e) = 1.

Proof: We have seen before in (2.5.5) that F}, is of positive type if p is a
state, and F),(e) = 1 because of the normalization of p. Conversely, if F), is
a positive type function on G, because of Naimark’s theorem [Na64], there
exist a complex separable Hilbert space H supporting a strongly continuous
unitary representation U of G, and a vector |0) € H such that

F,y(g9) = <{0|U(9)0).

Now, because U is completely reducible, then U can be written as a direct
sum of irreducible representations:

U=_QUue,
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and any a € A can be written as:

a= @ao‘,

«

where a® € span {U%(g)a} for some @ € A. Hence, we can restrict to the
subspaces A% = W{U ad} where U® is irreducible. Once we have that
we can restrict to the subspaces A“, we can proceed similarly to the proof
made for finite groups in [Ib11] generalizing it to any Lie group G.

|

2.6. Quantum tomograms associated to group representations

We are ready now to introduce the notion of quantum tomogram of a
given state p associated to a unitary group representation (G,U).

Given an element £ in the Lie algebra g of the Lie group G, we can
consider the space g x R and the extended exponential map exp : gxR —» G
given by exp(t, §) = exp(t£), where exp : g — G is the ordinary exponential
map. Notice that if G is a matrix Lie group, then:

exp(tf) = ). %g”. (2.6.1)
n=0 """

Also, we can consider the one-parameter group of unitary operators in
the Hilbert space H,, Up(exp(tf)), obtained using the GNS construc-
tion, eq.(2.5.8), with £ € R. Because of Stone’s theorem [St32], there exists
a self-adjoint operator £ on H, such that

e = U, (exp(t)). (2.6.2)

Notice that the element £ in the Lie algebra and the operator & have op-
posite symmetry because of the ¢ factor in the exponent, that is, if G is a
matrix Lie group, then £ € g is skew-Hermitian while & is Hermitean.

Let us denote by © the canonical left-invariant Cartan 1-form on G
that has the tautological definition ©(§) = &, for any left-invariant vector
field £ in G. Let also ® be the “quantization” of that 1-form, i.e., ® is a
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left-invariant 1-form on G with values in self-adjoint operators on H,, and
is defined as:

(©,§)=¢  Veg. (2.6.3)
Using that Cartan 1-form, we can see that the operators £ provide a rep-
resentation of g in H,, this is:

[£,¢] =i®,[5,¢D), ¥ (eq. (2.6.4)
To prove it, notice that because
eelme e M =1 4+ 26, 0]+,
we have:

1O, [8,¢h = %Up(exp(t[f,n])) p %U,, (e\/fée\/fne VIE \/%n>
t=

_ % (ei\/fﬁ oiVin o IVIE ix/in)

t=0

[€, 7).

t=0

We may use now the spectral theorem [Re80, ch. 7] to write each oper-
ator £ on H, as follows:

¢ f AEe(dN), (2.6.5)

where E¢ denotes the spectral measure of £, and using (2.6.2), we can write:

o0
U,(exp(tf)) = €€ = f " Be(dN). (2.6.6)
0
Now, let o be a state on the folium of p, i.e., o is a density operator

on H, defined by eq. (2.1.12), then let us consider the measure fi,¢(d\) =
Tr(oE¢(d))). In other words, if A is a Borel set in R, we have:

P53 8) = [ pineld)) = hoel &) = Te(0 Ee(A)). (26.7)
A
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Notice that the physical interpretation of the measure p,¢(A) associ-
ated to the state o and the observable &, as in the introduction of this
chapter, is that the number P(£,0;A) in eq. (2.6.7) is the probability of
getting the output of measuring the observable € in the set A when the sys-
tem is in the state 0. Then, obviously, we see that y,¢(R) = 1. Moreover, if
the measure 1, ¢(d)) is absolutely continuous with respect to the Lebesgue
measure dX, then there will exist a function W, (X;¢) in L'(R,dX) such
that for all measurable A:

Jumg(d)\) = JWJ(X;f)dX > 0. (2.6.8)
A A

In general, this will not be true if the measure ji,¢(d\) have singular part,
for instance, if £ has eigenvalues.

Definition 2.6.1. Given a state o in the folium of p and a unitary repre-
sentation U of a Lie group G on the unital C*-algebra A, we will call the
quantum tomogram family of o the family of Borelian probability measures
Loe(dX) = Tr (6 E¢(d))) onR, £ € g and X € R. The absolutely continuous
part of them define a function W, : g x R > R given by eq.(2.6.8), which
is commonly called the quantum tomogram of o, in other words, Wy(X;£)
is the Radon—Nikodym derivative of the measure jis¢(dX) with respect to
the Lebesgue measure dX :

Ofto 3 (dX )
X €)= "—2—=. 2.6.
Notice that (2.6.9) is another way of rewriting (2.6.8) and recall that if
W, is continuous, then necessarily W, is non-negative, W, = 0.

From (2.5.10) and (2.6.6), we get immediately:

oe]

Xo (exp(t€)) =Je“x fho g (dX), (2.6.10)
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ie., Xo ( exp(t& )) is the Inverse Fourier Transform of the measure i, ¢(dX),
hence if the measure had only continuous part, we would have that

0
1

Wy (X;€) = %J e "% s (exp(t€))dt. (2.6.11)

0

Proposition 2.6.2. Under the conditions stated above, the quantum tomo-
gram W, is non-negative and:

1. fWJ(X;f)dX = 1.

2 Wi (sX: 5€) — %wg(x;g), 5> 0.

We will obtain now a representation of the quantum tomogram W, or
more properly a representation of the measure fi5¢(dX), in a form that it
will put the notion of quantum tomogram introduced in (2.6.11) in perfect
parallelism with the Radon Transform discussed in chapter 1. This will
justify that such expression could be called the Quantum Radon Transform
of a given state.

Theorem 2.6.3. Given a state p in a unital C*—algebra A, then the quan-
tum tomogram Wy (X;&) of any state o in the folium of p associated to the
unitary representation U of the Lie group G on A is given by

Wo(X;6) = Tr(ad(X1  (©,6))), Veéeg, XeR.

Inside the trace, the delta function of an operator on H, appears. We
have already introduced the concept of delta function of an operator in
chapter 1 in (1.6.9), however is convenient to consider it again and com-
ment a few aspects of it. The delta function of a bounded operator T on
H, is defined as the operator-valued distribution given by:

0
5(T) = % J kT dk, (2.6.12)

0
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and for any test function ¢(\) in the Schwartz space . (R), it follows:

(T f fo kX (N Ex(dN)dE,

1
T or

where Er is the spectral measure defined by T. Notice that the previous
integral is well-defined and notice also that if T is self-adjoint and if ¢ is
real, then the operator (§(T), ¢) is self-adjoint too.

Thus, in our case we have that

1

GX1 (8,),0) = 5

f J XL ®O) (N Ep(dN)dk.  (2.6.13)

In Prop. 2.6.2, we wrote the normalization and homogeneity conditions
that the quantum tomogram W, (X;¢) satisfies and before, in (2.6.8), we
wrote the non-negativity condition. But we know that a tomogram must
satisfy that it is a probability distribution, therefore let us see that W, (X; €)
is also real:

Wo(X:€) =Tr(ad(X1 (0,8))) = Tr(ad(X1T  (©,6)1)
=Tr(od(X1 (©,8))) = W,(X;¢). (2.6.14)

2.7. Reconstruction of states sampled with compact Lie groups

In previous section, we have discussed how to define tomograms using
a group representation. In this one, we will discuss how to recover the state
o in the folium of a state p from its tomograms.

Recall that because (2.6.10), we can obtain the smeared character x,
as the Inverse Fourier Transform of the tomogram W;:

oe]

Tr(oU,(exp(t€))) = X0 (exp(t€)) = J X W, (X;€)dX, (2.7.1)

0
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then, what we need is to recover the state ¢ from the smeared characters
Xo (exp(t€)).

In section 2.2, we have explained that we need a tomographic set U(x)
and a dual tomographic set D(z) to reconstruct a state of a system. To
get the dual tomographic map D, we need a notion of orthogonality in our
theory.

In group theory, there exist natural orthogonality relations associated
to representations of finite groups or compact Lie groups. We will concen-
trate in these two cases because they appear commonly in many quantum
systems. Furthermore, there are other situations in which we can find or-
thogonality relations that allow us to reconstruct the desired states, for
instance, the cases of Heisenberg—Weyl and Poincaré groups that will be
considered later on.

Let (H,U) be a unitary representation, U : G — U(H). The represen-
tation is irreducible if there are no proper invariant subspaces of ‘H under
the action of the representation on the Hilbert space H. Let us suppose
that the Hilbert space H is finite dimensional with n = dim(#) and let e;,
i =1,...,n, be a given orthonormal basis on such space. We will denote
by Ui;(g) the elements of the unitary matrix associated to U(g), g € G, in
the previous basis, i.e.,

= > Uji(9)e;. (2.7.2)
i=1

In what follows, U(g) will refer to its associated matrix too assuming that
an orthonormal basis has been fixed.

Suppose that G is finite, then Schur’s orthogonality theorem (see for
instance [Jo97]) asserts that given two unitary irreducible representations
U@ and U® of dimensions n, and np respectively of a finite group G of
order |G|, then:

Z (9)TUL(9) = SapSirdis- (2.7.3)
geG’

Therefore, if we choose as the dual tomographic map the Hermitean con-
jugate of U(g), D(g) = Ul(g)!, we will get the biorthogonality condi-
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tion (2.2.3):

@ EGD” = 8ir0js. (2.7.4)
ge

Hence, if p is the corresponding density operator related to the state p and
U is irreducible, the reconstruction formula (2.2.14) becomes:

p= ‘—g, 3 xo(9)U ()" (2.7.5)

geG

In the case of finite groups, the tomogram of the state p can be obtained
by using the discrete version of formula (2.6.11), [Ib11]. Let us transform
U(g) in a diagonal matrix d, by means of a unitary matrix Vj:

Ulg) = Vyd,Vi,  dy = diag [ei‘)l(g), . ,ei"n@] , (2.7.6)
then, let us compute the smeared character of U(g):

Xo(9) = Tr(pVydg V) = Tr(dgVipVy) = > &9 (VipVy) . (2.7.7)
m=1

Therefore, the tomograms of the state are given by:

Wy(m; g) = (VngVg)mm ) (2.7.8)
These tomograms are, by definition, a stochastic vector, i.e.,
n n
DI Wolmig) = > (VipVy), —=Tr(p) =1 (2.7.9)
m=1 m=1
and
0 < W,(m;g) <1, m=1,...,n, Vg e G. (2.7.10)

The proof of the last statement is a direct consequence of Schur’s inequali-
ties (see for instance [Bh97]).
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Therefore, we see that the smeared characters of the state p can be
obtained as a Discrete Fourier Transform of the tomograms defined before:

= > W, (m;g). (2.7.11)

m=1

If the group G is now a compact Lie group, we have the same orthogo-
nality relation (2.7.4) by making the obvious substitutions:

D Jdu (2.7.12)

IGI foer

with p(g) the normalized Haar measure on the group:

Jd,u(g) =1. (2.7.13)

G

Then, if U is an irreducible representation of dimension n, the state is
reconstructed with the formula:

p=n [ x(9)U(0) duts), (2.7.14)
G

where n = dim# is the dimension of the irreducible representation and
D(g) = nU(g)' is the dual tomographic set. The tomograms are defined
with the formula (2.6.11).

Let us consider now a subgroup H < G of a finite or compact Lie group
G. The restriction of the representation U to the subgroup H, sometimes
denoted by U | H and called the subduced representation of U to H, will
be, in general, reducible even if U is irreducible.

Let us suppose that the state p satisfies the following orthogonality
relations:

Tr(pU(g)) = 0, ge G\H, (2.7.15)

that is, the inner products with the unitary operators corresponding to
the elements of G not in the subgroup H vanish. Therefore, in this case,
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we have similar formulas to (2.7.5) and (2.7.14) even if the representation
U | H is reducible:

n
p= 2 XU, (2.7.16a)
Gl
in the finite case and
p= nf Xo(9)U (9)Tdu(g), (2.7.16D)
H

in the compact situation.

Such states will be said to be adapted states to the subgroup H and
they will constitute the main tool of the numerical algorithm to decompose
reducible representations that will be presented in the following chapter.
Let us summarize this results by writing the following theorem.

Theorem 2.7.1. Let G be a compact Lie group and (A,U) a unitary repre-
sentation of G on a C*—algebra A. Given an adapted state o in the folium
of the state p, the density operator o in B(H,) can be obtained by means

of:

o=n f Xo(9)U,(9) (),
G

where Uy(g9) = m,(U(g)), H, and 7, are the unitary representation, the
Hilbert space and representation of A obtained with the GNS construc-
tion, and n = dimH,,.

Proof: The proof follows immediately from the arguments stated before

to obtain the formula (2.7.14) and from the definition of adapted states

(2.7.15) that allows to use the formula (2.7.14) even if the unitary repre-
sentation U is not irreducible.

|

Another case in which an orthogonality relation can be defined is when

we consider the regular representation of a group. The regular representa-

tion of a group G is the unitary representation obtained from the action

of the group G on the Hilbert space of square integrable functions on the
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group, H = L?(G, 11), where p denotes the left(right)-invariant Haar mea-
sure by left (right) translations.
Thus, the left regular representation U;“(h) is defined as follows:

(U7 (h)e)(g) = ¢(h 'g), ¢ e L*(G,p). (2.7.17)

The right regular representation is defined analogously.
If G is finite, it is clear that L?(G) is isometrically isomorphic with the
group algebra C[G]:

H =~ C[G] = {|a>=2a9|g>|agEC}, (2.7.18)
geG

with inner product {a, f) = Z @yfy. The action of the group is given by:

geG
UL (h)|a)y = > ap-iglgy = . aglhg), (2.7.19)
9eG q'eG

then, we can interpret the left regular representation U;% as:
Ur“(h)lg) = |hgy,  VYg,heG. (2.7.20)

From the orthogonality relation satisfied by the regular representation:

Tr(U;(9)'UL(9) = ndg-1y, (2.7.21)
the character of the representation is easily computed:
reg _ _ n g =e,
X*(9) ndg {O otherwise, (2.7.22)

with n = dim H. In that case the reconstruction formula of p is (2.7.16a).
For compact groups, we have similar results, however the character x"J
is now a Dirac’s delta distribution:

X"“(g) =0(9), ge€@G, (2.7.23)

and the theorem of Harish-Chandra [Ar88] allows to extend the result in
eq. (2.7.22) to semisimple Lie groups. In that case, the reconstruction for-
mula is (2.7.16b) with n = 1.
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2.7.1. Spin Tomography

The SU(2) group is the group that underlies the description of the
states of a particle with spin 1/2, [Ga90, ch. 5]. Is very common in Quantum
Optics to work with photons or qubits that are particles with this symmetry
group. The states of a particle with spin 1/2 may be represented in the so
called Bloch’s sphere, Figure 2.7.1.

Ags.

Pure state

ﬁmv

Figure 2.7.1: Bloch’s sphere representing states of a particle of spin 1/2.

These states can be parametrized as:

(2.7.24)

1 (1 +rcosf sinfe ';‘6)

2 \ sinfe® 1 rcosf

with
0<r<1, 0<h<m, 0< o< 2m.

The states in the surface, i.e., the states with r = 1, are the pure states of
the system.
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The SU(2) group is a compact Lie group, hence we can reconstruct a
given state p by means of (2.7.14). The irreducible representation of this
group for spin one-half can be written in terms of the exponential of the
elements of the Lie algebra su(2):

U8z, 8y, 55) = e 5oSetsuSyta:S:) (2.7.25)

where the operators corresponding to the spin in the axis z,y, z are:

S; = gai, i=2x,v,2, (2.7.26)

and where the o; are the Pauli matrices:

01 0 ¢ 1 0
Ug;—(l 0), O'y—<z, O>’ O'Z—<0 1). (2.7.27)

We will define the tomograms of the state p of this system as:

s s s
Wo(X, 50, 8y, 52) = Tr(pa(xn S Lo, 52(;2)). (2.7.28)
Instead of using the exponential representation of the delta function, we
will use the result obtained in (1.6.10), i.e., we will use the interpretation
of the delta function of an operator as a projector over the eigenstates
corresponding to the eigenvalues equal to X:

S(XT A)=|XXX|, A[X)=X[X),
to write the tomogram as

Wi(X, sz, 8y, 52) = (X|p|X), (2.7.29)

s s s
where A = 2o, + Eyay + Ezaz.
The eigenvalues of this operator are A = £|s|/2, and its corresponding

eigenvectors are

= R o ) = e i)
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Thus, the tomogram can be written as:

Wo(X, 55, 5y,52) = 0(X |sl/2)¢vylplvs) + 0(X + [sl/2)Cv |plv ),

and therefore, we finally get:
Wp<X7 Sxy Sy, Sz) =

1 2
3 ((1 + %rcos@)

S—xcosgzﬁ + Sysin(b)) (X Is]/9)

+sin0< 5

El
1 2

+ = (1 S—Tcose)
2 |s|

S—ICOSQS + Sysinq5>> 5(X +1sl/2). (2.7.30)

sin @
<|8| K]

2.8. Tomography with the Heisenberg—Weyl group

To finish this discussion, let us mention a case in which the group is
neither finite or compact but we know how to reconstruct their states.
We do not need to go far away to find it because it was the main topic in
previous chapter. We are talking about the quantum harmonic oscillator.

In that chapter, we found a reconstruction formula for the matrix
elements of a density operator p, eq. (1.6.17), so it is natural to think that
we could find a reconstruction formula for the operator p.

The position and momentum operators, which satisfy the commutation
relation [Q, P] = i1, are a realization of the Lie algebra of the Heisenberg—
Weyl group which may be presented as the group of triples of real numbers
with the composition law:

1
(w,v,t) o (p', v/ ) = (u +u v+t i(uyl

and an irreducible representation of it is provided by:

U(p, v, t) = WQHVP) it (2.8.2)

vi')), (2.8.1)
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The symmetry group of the harmonic oscillator is the projective sub-
group of Heisenberg—Weyl group with ¢t = 0, then its representation is:

U(p,v) = Uy, v,0) = WQHP) (2.8.3)

If we compute the trace of the composition of two elements of the group,
we obtain:

Tr (U (1, 1)U (', V/)T)

0e]

_ o 2(ve ) W ) (p| il 1R il VIP g,

N i/Q(V(u W) W v

8%8 {8 —

o0
f el 1)1 el VIP(p| g5 q|pydgdp
0

:iei/z((u H)#VV)
2T

8%8

0]
J el 1)q iy ”)pdqdp
e}

=2md(pn  p)s(v V), (2.84)
where we have used the BCH formula (1.6.14) and the inner product of

momentum and position eigenvectors (1.6.3). Finally, the reconstruction
formula for the state p reads as:

1 o0 o0
%JJ Xo (1, V)U (2, )T dpuds
o
= 2f W, (X, p,v) XL #Q VP qxdpudy. (2.8.5)
s

If we compare this equation with the classical one obtained in chap-
ter 1 in (1.1.5), we see that are similar only by substituting the density
probability f(g,p) by the density operator p and the classical position and
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momentum g and p by its corresponding operators Q and P, however in-
stead of (2m)? in the denominator here we have 27. The factor (27)? is
due to the Fourier Transform of classical position and momentum, hence
for each one we have a factor 27w. But here, position and momentum are
operators on a Hilbert space and they are related by means of a Fourier
Transform, then that fact makes that in formula (2.8.5) only one factor 27
appears.

2.8.1. The holomorphic representation of an ensemble of quan-
tum harmonic oscillators

The choice of the complex coordinates (2.8.25) in subsection 2.8.3,
that will be used to facilitate the computation of the tomograms of an
ensemble of quantum harmonic oscillators of a given state, is not just a
convenient mathematical transformation because it provides another real-
ization of the Fock space Fy that will be fundamental when dealing with
tomograms of quantum fields (see chapter 5).

Let us consider first a quantum harmonic oscillator with Hamiltonian:

H= hw(aToH— %)

This quantum system is nicely described in the Fock space JF; discussed in
section 1.5.
It is easy to check that the coherent states presented in eq. (1.8.2),

0 _n
|2y = e 723 %(CJ)”\@ e Fi, (2.8.6)
n=0 "

are eigenvectors of the creation operator a with eigenvalue z, i.e.:
alzy = z|z), Vz e C, (2.8.7)

and similarly af|z) = 2z|Z). Such states have the beautiful property that
their evolution in time mimics the classical solution of the system, this is:

Utlzo) = e itH |z0) = |2(1)), (2.8.8)
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with z(t) = zpe ™! (this is easily checked by noticing that the evolution of
a is given by UtTaUt =aqe “).
The expression (2.8.6) for |z) can be written in compact form as:

2y =e e o),

hence, as in other situations, taking advantage of the BCH formula (1.6.14),
it verifies the normalization of the coherent states:

(2]2) = e FP0]e® e |0) = (0] e €% |0) = (0]0) = 1.

The displacement operator D(z), that is nothing but the unitary rep-
resentation of the Heisenberg—Weyl group (2.8.3) written in terms of anni-
hilation and creation operators:

D(z) = e® 70, (2.8.9)
satisfies
D(2)]0) = |2) (2.8.10)
and consequently, because of the composition law (2.8.1), we have that
D)|w)=|w+z) and D(z)|lw)=|w 2). (2.8.11)

It is important to remark that the coherent states are not orthogonal:
Glwy =e Y2UPHwR 20 N = o 12 wlT2 (2.8.12)

but they obey the following completeness relation:

” |2)(z|d22 = Wf l* Z |n><m!ﬁ

R2 R2 n,m=0

m .
et M0 rqody

I
3=
—
—
s 378
o
3
>
L
=)
3

2n+1 0

=2 Z n><n]f e ™l o dr = Z Iny(n|=1. (2.8.13)

n=0 0 n=0




84 The tomographic picture of quantum systems

Let us remark also, that the projectors E, = |2)(z|, providing a resolu-
tion of the identity, are not selft-adjoint El = E; # E, neither orthogonal
to each other:

E.E, = |2)zlwXw| =e Y20ePHwP) 2050 20 i 2~ w.

2.8.2. The Bargmann—Segal Hilbert space of entire functions

Consider an entire function ¢ (z) with proper series expansion

0
z) = Z 2. (2.8.14)
n=0

To such function, we may associate the vector |¢) € F; given by:

[y = D eaVnllny = ) ealal)"|0), (2.8.15)
n=0 n=0

and then, we get that

! 2™{m|nye 12172
m!

<5|¢> = Z Cnm

n,m=0

0 ¢]
Z cnze P72 = o 1#72(2). (2.8.16)
Thus, if we consider the space of entire functions v (z) such that
| e P < e,

R2

we have that the map which assigns to each function 1 (z) the expression
[¢)) in (2.8.15) is well-defined on F; because:

iy = [ @it = L[ o 1 e < o
R2

RQ
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Hence, we define the Bargmann—Segal space Fgg as the Hilbert space
of entire functions ¢ such that

ols = - [ e HF ()P < o, 2.8.17)
R2
with inner product:
W ons = [ o Tl (28.15)

RQ

Clearly, the space Fpg is unitarily equivalent to the Fock space Fi1 by
the following map:

T:Fgs — F1
Y o ) =Ty,

Moreover, the creation and annihilation operators become:

agsy = TtaTy = a—iw, abhetp = TTa Ty = 24p, (2.8.19)
then, the ground state of the theory is just:
vo=T"0) =1, (lvolzs = 1), (2.8.20)
and

0

— 2.8.21

Ngg = a]gSaBs =z

which is the (complex) FEuler operator.
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2.8.3. Tomograms of an ensemble of quantum harmonic oscilla-
tors

We will show the explicit form of the tomograms of a pure state of an
ensemble of quantum harmonic oscillators using the holomorphic represen-
tation described before in subsection 2.8.1. Let us recall the Hamiltonian
of an ensemble of harmonic oscillators given in (1.5.10):

n n
1
_ f il E
H-= k_glwkakak + 5 k_lwk,

where we have put i = 1 to simplify the notation of the following results.
And also let us recall the canonical commutation relations of the annihila-
tion and creation operators given in (1.5.11):

[ak,az,] = 5kk’7 [ak,ak/] = [az,a};,] =0.

Let p be the pure state corresponding to the system in which each particle
has momentum k;, i = 1,...,n:

P = |1k17'"71k’n><1k17"'a1k‘n|' (2.8.22)

Recall that the annihilation and creation operators act on the ground state
|0,...,0) this way:

j
allo,...,0y=10,...,1,...,0),  a;[0,...,0)=0. (2.8.23)

The center of mass tomogram has the following form:
Wor( X, v) = Te(pd(X  p-Q v-P)),  (28.24)
and introducing the holomorphic variables

_ Mty

R (2.8.25)

Wj
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we have:

Wen (X, w,w) = Tr(pd(X w-a w-aT))

— Olar---anld(X W-a w-aa]---al]0)
) o0
_ 27 JeikXe k2\w|2/2<0|a1 an\e ik(w a+w a’) |(Z I|0>dk
T
a0

(2.8.26)

From the canonical commutation relations (1.5.11) and the property of
the Lie bracket:

|[AB,C] = A[B,C]| +[A,C]B, (2.8.27)
for any operators A, B and C on H, by recurrence we have that
[aZ,aT-] = na} o, (2.8.28)
therefore, we get the following:

. o f
(0lay e thwia; Of(ar  ikw;dg;),
e s 10y = (af  ikw;dk;)|0). (2.8.29)

Hence, using this result and the BCH formula (1.6.14), we get:

Wen (X, w, @) = ;J X e M1 j 21w 2y (1 k2w ) dk
0

d2
= (1 4+a1——= + -
m(p? +1/2)< Hdx?

2n X2
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where

n
ar= Y fwy [P = |w =2 Y(p?+0?),

i1=1
n n
2 2 2 2 2 2 2
a2 = Z |w11| |w12| = 2 Z (ILL’Ll + Vil)(HiQ + Vi2)7
i1,%2>11 i1,12>11
n
2 2 1 2 2 2 2
a1 = Dl P =2 DN () (i, ),
11,82>07 ..., 11,22>11,...,
ip—1> >11 Ip—1> >11

Qn = ‘wl‘z""wnP =2 n(ﬂ% +V%)"'(N%+V721)-

Thus, using the formula (1.5.13) of Hermite polynomials, we finally obtain:

1 (65} X
Wen(X,pv) = —— |1+ H +
(X, b, v) (pu? + v?) [ p2 2 («/MQ +1/2>

Qay, X X?
Hs, — . (2.8.31
" (pu? + v2)n ? (x/u2+u2>]exp< H2+I/2> (2.831)



A numerical algorithm to reduce unitary
representations

3.1. The Clebsh—Gordan problem

In the previous chapter, we have discussed the tomographic problem
of reconstructing a state p of a quantum system from a family of probability
distributions. We have seen that in the case in which the auxiliary space
M is a compact Lie group, a reconstruction formula for recovering the state
p, using a unitary representation U of that group, can be obtained.

In this chapter, we will deal with a sort of converse problem where we
will try to determine a unitary representation U from the properties of a
family of states. We will show here that the adapted states presented in
section 2.7, egs. (2.7.16) play a paramount role in the description of the
proper invariant subspaces under the action of the representation U.

More precisely, let G be a Lie group and (H,U) a finite dimensional
irreducible unitary representation (irrep in what follows) of it. Let us con-
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sider now a closed subgroup H < . The restriction of U to H will define,
in general, a reducible unitary representation of H.

If we denote by H the family of equivalence classes of irreps of H (recall
that two unitary representations of H, V: H — U(FE) and V': H — U(E')
are equivalent if there exists a unitary map 7': E — E’ such that V'(h)oT =
T oV (h) for all h € H), because H is finite dimensional, then:

H=P LY, L=cH", (3.1.1)

acH

where ¢, denotes a non-negative integer, a labels a subset in the class of
irreps of the group H, that is, each « actually denotes a finite dimensional
irrep (H*,U®) of H, and ¢, H® denotes the direct sum of the linear space
H* with itself ¢, times.

Thus, the family of non-negative integer numbers ¢, denotes the mul-
tiplicity of the irrep H* in H and it obviously satisfies n = ),  cqana Where
ne = dimH®. Notice that similarly, the unitary operator U(h) will have
the block structure:

U(h) = @ caU%(h), Vhe H, (3.1.2)

acH

where U%(h) = U(h) |3eo.

The problem of determining an orthonormal basis of H adapted to the
decomposition given in eq. (3.1.1) will be called the Clebsch—Gordan prob-
lem of (H,U) with respect to the subgroup H, i.e., find an orthonormal
basis {ul,}, o € .FAI, a=1,...,coand k = 1,...,n,, of H such that each
family {ug‘k} with given «,a defines an orthonormal basis of H“. Thus,
if we are éiven an arbitrary orthonormal basis {uj }j=1,._7n c H, we could
compute the n x n unitary matrix C' such that:

~

u = 2 Ca kil k » aceH, a=1,...,¢cq, kJd=1,...,n4. (3.1.3)
a,a,k
The coefficients of the matrix C' are usually expressed as the symbol C7' ;) =

(I'| @, a,k) and are called the Clebsch-Gordan coefficients of the decompo-
sition (3.1.2).
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The original Clebsh—Gordan problem (CGP for short) arises from the
composition of two quantum systems possessing the same symmetry group
(see for instance [Ga90, ch.5]).

If H4 and Hp denote Hilbert spaces corresponding to two quantum
systems A and B respectively, and both support irreps U4 and Up of a Lie
group G, then the composite system, whose Hilbert space is H = HaQH g,
supports an irrep of the product group G x G. The interaction between
both systems causes, typically, that the composite system just possesses G
as a symmetry group (considered as the diagonal subgroup G < G x G of
the product group). The tensor product representation U4 ® Up will no
longer be irreducible with respect to the subgroup G ¢ G x G and we will
be compelled to consider its decomposition in irrep components, i.e.:

Ua@Up = @ caU". (3.1.4)
achl

A considerable effort has been put in computing the CG matrix for
various situations of physical interest. In particular, the groups SU (V) have
been widely discussed (see for instance [G107, Al11] and references therein)
because in such cases, for instance when considering the groups SU(3)
and SU(2), the CG matrix provides the multiplet structure and the spin
components of a composite system of particles with various spins [Wi94,
R097]. However all these results depend critically on the algebraic structure
of the underlying group G (and of the subgroup H) and no algorithm is
known that will allow the efficient computation of the CG matrix for a
general subgroup H c G.

On the other hand the problem of determining the decomposition of an
irreducible representation with respect to a given subgroup has not been
addressed from a numerical point of view. The general theory asserts that
the multiplicity of a given irreducible representation (H®, U?%) of the com-
pact group G in the finite-dimensional representation (H,U) is given by
the inner product in L?(G):

Ca = <Xaa X>L2(G)7
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where x® and x are the characters of U* and U respectively and (-,-)
the standard inner product of central functions in G with respect to the
(left-invariant) Haar measure. Hence, if the characters x® of the irreducible
representations of G were known, the computation of the multiplicity would
become, in principle, a simple task. Moreover, given the characters x® of
the irreducible representations, the projection method [Tu85, ch.4] would
allow to construct the CG matrix explicitly. However, there is not an easy
way of determining the multiplicities ¢, if the irreducible representations
are not known in advance or are not explicitly described.

Again, in principle, the computation of the irreducible representations
of a finite group could be achieved by constructing its character table, i.e.,
a nc X ne unitary matrix where no is the number of conjugacy classes
of the group describing the characters of its irreps, however there is not a
general numerical algorithm for doing that till now.

3.2. The SMILY algorithm

Let G be a compact Lie group (or a finite group) and H < G a closed
subgroup of it. Let us remember that an adapted state is a state (2.7.16)
of the form: n

p =15 2 X)),
Gl

or

p=n f XU (9) (),
H

depending whether the group G is finite or compact. Clearly, adapted states
satisfy (2.7.15):

Tr (pU(g)) =0,  g¢ M.

The main idea of the algorithm is that the structure of proper invariant
subspaces for the representation U(h), Yh € H, is the same as that for
generic adapted states of the form written above, i.e., adapted states such
that their eigenvalues have the smallest possible degeneracy. Then, the
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unitary matrix C' that diagonalizes in blocks any matrix representation of
generic adapted states p, (2.7.16), will diagonalize in blocks the matrix
representation U(h) of H too, and each block will correspond to an irrep
of H.

Thus, we will get that if we find a unitary matrix C' such that p trans-

forms as: .
1., ®0c
1., ® o?

0

ClpC = o : (3.2.1)

0

where N is the number of irreps decomposing U in (3.1.2), and o satisfy

]ICN'® oN
o = o, o =0,
then, it will follow that:

1., ® D(h)
1., ® D?(h)

0

cTD(h)C =

0

Ley ® DN (h)

Notice that because of the form of the matrix (3.2.1), the state p will be
generic if every eigenvalue of o® has multiplicity one and the eigenvalues
of all matrices o are different.

The algorithm will start from a generic adapted state p,. Consider a
unitary matrix V; that diagonalizes the state p;. Then, using a second
generic adapted state py, we will obtain several unitary transformations
that will lead to the desired CG matrix.

The SMILY algorithm is decomposed in eight steps:
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1. Generating the adapted states: Create two generic independent adap-

ted states p; and p,. The states must be independent in the sense that
they must have different eigenvectors. To create them, we generate
first two random vectors ¢, ¢, with no zero components, of size |H |
and afterwards multiply their elements by the matrices D(h), Yh € H:

|H|
P12 = 2 ©1,2(7)D(h;). (32.2)
j=1

After that, we construct the Hermitian matrices:

f’,1,2 =pia2+ /5;2,

and finally, after shifting them by their spectral radius and dividing
by their traces, we get two normalized positive definite matrices:

~/
P ~ ~ P12
Plo =Pl + sradis(P12)1,  Pra= oDl (32.3)

. Diagonalizing the first state: Compute a matrix V; that diagonalizes

the state p;:

| |
Vi = V11 Vf v,

where Vlj, j =1,...,n, are the eigenvectors of p;. Notice that be-
cause the matrix p; is Hermitean, it is unitary diagonalizable.

. Reorganizing: Construct the matrix V;**"** by reordering the columns

of V1 grouping the eigenvectors corresponding to the same proper
subspace L%. The following routine will be used:

for j from 1 to n do
for k # j from 1 to n do

it
ek = Vi p2VEF,
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if €j; # 0 then
V! and Vlk belong to the same proper subspace.

end
end
end
Hence,
t
Vit = [ W | Wa || Wy ],
— ——
ciny  cang CNMN

where the columns of W, are the eigenvectors of p; that belongs to
the same proper subspace L.

4. Sorting: Sort the columns of the matrices W, in increasing or de-
creasing order according to their eigenvalues to group the eigenvec-
tors corresponding to same eigenvalues. The matrix we obtain after
this reordering will be denoted as V;*”**:

Vlsortz _ [ Wlsort ‘ W2sort ‘ ‘ Wﬁfort ] (324)

A few comments are in order here. Already at this step, we can
get the multiplicities ¢, and the dimensions n, of H®. Actually, the
multiplicity of the eigenvalues of W2t will be the multiplicity c,
of the irrep a. Then, the dimensions n, are obtained immediately
because the number of columns of Wj‘”’t is equal to cyng.-

Notice that after applying W2°™ to p;, we get a diagonal matrix with

the eigenvalues ordered, that is, a matrix of the form:

AL,
A1,

0

sortt sort K .
Wa P1 Wa = . s

0

A2 1,



96

A numerical algorithm to reduce unitary representations

ot

where A{, k = 1,...,nq, are the eigenvalues of p; corresponding to
the subspaces L. Therefore, counting the multiplicity of the eigen-
values of these matrices, we get the multiplicities ¢,, and n, are
obtained by dividing the dimensions of these blocks by c,.

At this point, it would also be possible to obtain the characters of the
irreps in the decomposition of D(h) by computing:

x(h) = (W D))

Ca

. Diagonalizing in blocks the second state: Transform p, with V"2,

The resulting matrix Vfort?T po V22 will have the following structure:

»! }clnl

22 Con9

, (3.2.5)

CNTUN »N

where
»o = yof and X% >0.

In the remaining steps, we will focus on decomposing in a diagonal
block structure the blocks X“ obtained in this step. Here, is where the
key point of the algorithm appears and we see why only two adapted
states are necessary to get the CG matrix that diagonalizes in blocks
all the elements of the representation.
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6. Getting the tensor block structure: The matrices 3 have the follow-
ing block structure decomposition:

11 pl2 Ina
Rg‘l R%Q cee R%n
R2! RZ .e +. R
=1 o : : (3.2.6)
ol Bna 7 pnana
Rrel RY ce ... Rlen
where the blocks Rg, 1,7 =1,...,nq, are square matrices of size c,.

The blocks in the diagonal are the identity, RY = 1., (we will verify
this fact in the next section).

Now, let us take the matrices of the first column (we can choose any
column but we will do it with the first one) and divide each matrix
by its norm:

. Ril
Rl— o = =1 n, (3.2.7)
| RE |
Create the following block diagonal matrix:
1.,
B2

ye = o . (3.2.8)

.Rnal
«
Therefore, if we transfom the matrices X% with Y we get:
g?l]lca 5(112]1@1 e T §?’na]]'ca
gglﬂca 5%21&1 e e g%na]]‘ca
yolsoye - : S ; (3.2.9)

o’ za za
Snal]lca Sna2]lca T e Sn(,na]lca
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where 55, 4,5 = 1,...,nq, are complex numbers which are the matrix
elements of the Hermitean non-negative matrix

[6°]; = 51, (3.2.10)

and YoT2Y® = 6% ®1,.,. (See following section for the proof of
these facts).

7. Switching the tensor block structure: Let us define now the nac, x
NaCq Tow shift matrix S,:

S, = e (3.2.11)

1 0
and the nqcq X 1o matrix fu:

1 0---0

~ 0 0
0 1 0
0 0

fa=1: % o (3.2.12)
0 0---1
00 0
Ca 1{ Do

00---0
[
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If we have to matrices A and B, the matrix elements of the Kronecker
product A® B are equal to the elements of B® A up to a rearrange-
ment. Then, there exist two permutation matrices P and F' [He81],
such that

F(A® B)P = B® A.
However, if A and B are square matrices of size n and m respectively,

P can be chosen such that P = F, where F only depends on n and
m:

In our case, we want to find the permutation matrix which transforms
c*®1,., into 1., ® o™

Fnaca (0"-01 ® HCQ)FT = ]lca ® &a- (3213)

NaCa

The permutation matrix F), ., is constructed using the matrices de-
fined previously in (3.2.11) and (3.2.12) as:

Frpco = [ fa | Safa | S2fa | -] Se Mfa ] (3.2.14)

8. Getting the Clebsh—Gordan matrix: Finally, we construct the follow-
ing block diagonal matrices with the matrices obtained in steps 6 and
T

Y2

~
|

(3.2.15)
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and
Fnlcl
Fnzcg

0

ieSPS
I

(3.2.16)

0

then, the particular CG matrix C' which diagonalizes completely the
adapted state p; and that block diagonalizes any state p, is con-
structed by making the product of the matrices V"2, Y and FT in
egs. (3.2.4), (3.2.15) and (3.2.16):

F

NMNCN

Oy = VEorty ph (3.2.17)

3.3. The proof of SMILY

In this section, we will provide a proof of the SMILY algorithm pre-
sented in last section. Let us start with the following lemma.

Lemma 3.3.1. Let p be a generic adapted state with respect to a closed
subgroup H < G and (H,U) an irreducible unitary representation of G.
Let also (H*,U%), « € ﬁ, be the irreducible unitary representations into
which the representation (H,U) is decomposed when restricted to H. Then,
the proper invariant subspaces of HY are the same as the proper invariant
subspaces of p.

Proof: From the definition of adapted state (2.7.16), if C' is the CG matrix
that diagonalizes in blocks the matrix representation D(h), because any
adapted state is a linear combination of elements D(h), Vh € H, C will
diagonalize in blocks any adapted state.

Conversely, we have to prove that if C' is a matrix that diagonalizes in
blocks a set of |H| generic adapted states, then that matrix will diagonalize
every element of the representation D(h).
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Let us write the smeared character (2.5.6) of the representation U with
respect to the state p as a vector over the elements of the group:

Xp(H) = [Xp(e) Xp(h1) = xp(he 1)]’

where 7 is the order of H.

Clearly, two states are independent if their smeared character vectors
are independent too. Then, let us consider the r x r matrix ) defined by
7 independent smeared character vectors, [V]jr = X, (h 1), with j, k =
1,...7, that is:

P D(e)
P2y D(:hl)
Pr D(hT‘ 1)

Therefore, because the rows of the matrix ) are independent, it is invertible.
Thus, we can write the elements of the representation as linear combinations
of adapted states:

D(e) P
D(:hl) _yt ﬁ
D(hT 1) Pr

Then, we have proved that the unitary transformation that diagonalizes
in blocks r independent adapted states will diagonalize in blocks all the
elements of D(h), and that matrix is the CG matrix C.

If the state p is generic and adapted, we can always construct a family
of r independent adapted states by taking permutations of the components
of x,(H ), therefore the conclusion is reached.

|

Notice that for simplicity, we have supposed that the group G is finite.
In the case of compact groups, if we are considering finite-dimensional rep-
resentations, the integral (2.7.16b) can be approximated as well as we want
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by using appropriate quadrature rules. Then, it becomes a finite sum and
the arguments written above can be repeated mutatis mutandis.

We will prove now that the matrix V"> (3.2.4) transforms every
adapted state p, in a block diagonal matrix (3.2.5) where 3¢ has the struc-
ture (3.2.6). For that, let us start by choosing an arbitrary CG matrix C'
and transform with it the generic adapted state p;:

]lcl®0'%
1, ®a]

0

CTP1CZ

0

1., ® U{V

Next, we will diagonalize each block 1., ® o to get the relation between
Vo and C.
Let rjo-‘ be the eigenvectors of o', j = 1,...,nq:

o = Ay, i re) = djk. (3.3.1)
Because the state p; is generic, then for o # v we have:
)\?#)\Z, a,y=1,....N, j=1,...,nq, k=1,...,n,.

Let {zg};il, j=1,...,nq, be n, arbitrary orthonormal basis of C¢.

The eigenvectors of 1., ® o¢ will be 2 ® K

(e, ® 00 (2] ®1F) = XY2) @7 (3.3.2)

If we construct.a matrix such that its columns are the orthonormal vectors
of the basis {z{,}ci :
p=1

Qfx: z{ z% zZa , (3.3.3)
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the matrix that diagonalizes 1., ® o will be:

Xo=[QL®ry | Q2@rs | | Query . (3.3.4)
thus,
AL,
ASTL,,

0

X1, ®0§) X, = e = A (3.3.5)

0

A% 1

Na - Ca
If we define now the matrix

Xl
X2

D>
I

(3.3.6)

0

._XN

we have that any matrix that diagonalize p;, in which the eigenvalues are
sorted in the same way as in A, in (3.3.5), has the form V”"* = CX:

Al
A2

Vlsorthplvlsortz _ XTCTpch _

0

.'AN

This factorization Vfom = CX, when applied to a generic adapted state



104 A numerical algorithm to reduce unitary representations

po, gives the structure (3.2.5), in fact, we get:

]1-01@0'%
1, ® 03

yeortal p yrsorta _ gtotp 0% = X7 o X

0

1., ® Uév

X{(1, ® o)X,
XJ(1e, ® 03) X5

0

- . , (3.3.7)

0

X]TV(]ICN ® UéV)XN
where
X1, ®08) X0 = %,

and now, it is easy to verify from the definition of X, (3.3.4) that the
matrix 3¢ has the block structure (3.2.6) with each block Ry given by:

RY = 5%:Q1'Q (3.3.8)

with

5 = rtogre. (3.3.9)
Here, we can see that the dependence on the state p, is only in §f;, because
the matrices Q', only depend on p;.

Finally, it is very easy to verify that the CG matrix C; = V; "2y Ff
diagonalizes in blocks the state p, and diagonalizes completely the state
P

|
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3.4. The decomposition of the regular representation of a finite
group

The algorithm we have presented in this chapter decomposes any finite
dimensional unitary representation of any compact Lie group. In the case of
finite groups, it is natural to apply it to the regular representation because
it contains every irreducible representation with multiplicity equal to the
dimension of the irreps, ¢, = ny [Se77, ch. 2|, thus:

N
G| = > n. (3.4.1)
a=1

Let us remember that the left regular representation U;* introduced in
section 2.7, eq. (2.7.20), is defined as

U?(h)lgy = |hg),  VYg.heG,

when considered as the group G acting on the group algebra C[G].*

The matrix elements of the regular representation are obtained by com-
puting the action of the group on the orthonormal basis |g;), i = 1,...,n,
of the Hilbert space H = C[G]:

[U7],59) = Gl (@)lg3) = <6il9g;) = 8,11 (3.42)

Then, the matrix representation of the left regular representation U;“ of
the element g; can be easily computed from the table of the group written
below (notice the inverse of the elements along the rows). The matrix U,
is obtained by constructing a matrix with ones in the positions where gy
appears in the table and zeros in the rest.

*Then, we may consider that G is a subgroup of the unitary group U(|G|) acting on
L?*(G) = C[G] by multiplication by unitary matrices, and apply to this situation the
SMILY algorithm.
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T e gl 1 o« e o« e e gnll
e 6 gl 1 Y o« e gnll
1
g1 g1 e s e g19
. . . n (3.4.3)
: : L . :
gn 1 | 9n 1 YGn 197 cee s e

The input of our algorithm will be the table relabeled by identifying
e with 1 and g; with ¢ + 1. Once we get the table T" in the desired form,
to create the matrices p in (3.2.2) it is not necessary to write explicitly
the regular representation of each element, we simply need to evaluate the
random vectors ¢ on the elements of the table, i.e.:

[P1,2]ij = p1.2(Tij), (3.4.4)

where Tj; are the elements of the relabeled table (3.4.3).

To show the SMILY algorithm in action, we will apply it to decompose
the regular representation of two simple cases: the permutation group Sj
and the alternating group Aj.

3.4.1. The decomposition of the left regular representation of the
permutation group S3

The S3 group is the group of permutations of three elements and it has
order six. The elements of this group can be generated with the set of
transpositions a = (k,k+ 1), k =1,2:

a? = a3 = (a1a9)® = e. (3.4.5)
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The CG matrix obtained with the SMILY algorithm is the following:

0.1120 0.4762¢
0.0063 + 0.1699:
0.2471  0.1699¢

0.4041 + 0.3695¢
0.5161 + 0.1068:

0.2534  0.00007

0.1997  0.23261¢
0.3182 + 0.4508¢
0.2006  0.4508:

0.0302 + 0.18051
0.2299 + 0.0521%

0.5188  0.0000¢

0.1408 + 0.468517
0.0167 4 0.1692:
0.2362 0.1847%
0.3809  0.393517
0.5217 0.0751¢
0.2529 + 0.01557

C =

0.1852 0.2444:  0.4082 0.0000¢ 0.4082 + 0.0000¢
0.2901 0.4693¢ 0.4082 + 0.0000¢ 0.4082 0.0000¢
0.2277 4 0.4377:  0.4082 4+ 0.0000¢  0.4082  0.0000¢
0.0411 4+ 0.1783%  0.4082 0.0000¢ 0.4082 0.0000¢
0.2263 + 0.0661% 0.4082  0.0000z 0.4082 + 0.0000:
0.5178 + 0.0317¢ 0.4082 0.4082

_ SMILY decomposes the regular representation in two representations
D' and D? of dimension one and multiplicity one, and another D? of di-
mension two and multiplicity two, exactly what it was expected®. The rep-
resentations obtained after applying the transformation C, written above,
are the following:

Ss Dt D?

e 1.0000 0.00002 1.0000 0.00002
ai 1.0000 1.0000 0.0000z
as 1.0000 1.0000 + 0.0000¢
araz | 1.0000 0.00004, | 1.0000 0.0000i
aza; | 1.0000 + 0.0000i | 1.0000 + 0.0000i
asaias | 1.0000 0.00002 1.0000

*The notation D used here is standard in numerical analysis and means that the

corresponding object is the actual computed result of the algorithm.



108 A numerical algorithm to reduce unitary representations

Ss D3
. 1.0000 + 0.0000i  0.0000 + 0.0000i
0.0000  0.0000i 1.0000 -+ 0.0000;
. 0.7501  0.0000i 0.6399 0.1671i
1 0.6399 + 0.1671i  0.7501 + 0.0000i
. 0.3542 + 0.0000i  0.5615 0.7479i
2 0.5615 + 0.7479;  0.3542  0.0000i
. 0.5000 + 0.5723i  0.1945 + 0.6202i
1%2 0.1945 + 0.6202;  0.5000 0.5723i
. 0.5000 0.5723i  0.1945 0.6202i
2% 0.1945 0.6202i  0.5000 + 0.5723i
o 0.3959 0.0000i  0.0784 + 0.9149i
20102 0.0784 0.9149; 0.3959

It is remarkable that these representations verify the table of the group
with very good precision.

3.4.2. The decomposition of the left regular representation of the
alternating group A,

The alternating group Ay is the group of even permutations of four
elements. This group has twelve elements and it can be generated with
three generators satisfying the relations:

a? = b? = & = (ab)? = ac’abc = bc’ac = e. (3.4.6)
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The left regular representation of this group has four irreducible rep-
resentations, three of dimension one and one of dimension three, hence
SMILY will decompose the regular representation of this group in the
three representations of dimension one with multiplicity one and in the

representation of dimension three with multiplicity three.

Below, we display the representation of dimension three obtained using

SMILY:
Ay D4
1.0000 0.0000 4+ 0.0000;  0.0000  0.0000i
e 0.0000  0.0000i 1.0000 0.0000 + 0.0000i
0.0000 + 0.0000i  0.0000  0.00003 1.0000
0.9852 0.0240 + 0.0941i 0.1176 + 0.0789i
a 0.0240  0.0941i 0.3653 0.3099  0.8724i
0.1176  0.0789i  0.3099 + 0.8724i 0.3504
0.6482 0.2501 + 0.4766i  0.3940 0.3672i
b 0.2501 0.4766i 0.8242 0.0464 + 0.1697i

0.3940 4 0.3672:

0.0464 0.1697¢

0.8240  0.0000:

0.1137  0.4209:
c 0.0136 + 0.5419:
0.6284 + 0.3482¢

0.4113 0.2302:
0.0028 + 0.57421
0.4483 0.4971:

0.4649 0.6096¢
0.5988 0.1335¢
0.1110 0.1533:

0.1137 + 0.4209:
c? 0.4113 + 0.2302
0.4649 + 0.60961

0.0136  0.5419:
0.0028 0.5742¢
0.5988 + 0.1335¢

0.6284 0.3482:
0.4483 + 0.4971%
0.1110 + 0.1533¢
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~

Ay D*
0.6631 0.2741  0.5707i  0.2765 + 0.2883i
ab 0.2741 + 0.5707i 0.1895 0.2635 + 0.7028i
0.2765 0.2883i  0.2635 0.7028i 0.5264

0.0400 + 0.3917%  0.4431 + 0.1902¢ 0.4347 + 0.65081
cb 0.0772 4 0.4789: 0.3076 0.7107:  0.3866 0.1247¢
0.7438 +0.2375:  0.4095 + 0.0115¢  0.3475 + 0.3190¢

0.1069 + 0.3505¢  0.8684 + 0.3002: 0.1455 + 0.0155¢
ca 0.1273 0.6109¢ 0.2504 + 0.2570¢  0.6673 + 0.1914¢
0.5625 0.4001:  0.0133 +0.1634¢  0.3573  0.6075¢

0.0468 0.3213: 0.9002 0.2602: 0.1153 0.0567%
be 0.1908 0.4100: 0.0544 0.1205¢ 0.8795 + 0.0669:
0.8097 0.1857: 0.0255 + 0.3222¢  0.1013 + 0.4419¢

0.0400 0.3917¢ 0.0772 0.4789¢ 0.7438  0.23757
bc? 0.4431 0.1902¢ 0.3076 4+ 0.7107¢  0.4095 0.0115¢
0.4347 0.6508:  0.3866 + 0.1247:  0.3475 0.3190¢

0.1069 0.3505¢ 0.1273 + 0.6109¢  0.5625 + 0.4001%
cbe 0.8684 0.3002¢ 0.2504 0.2570¢  0.0133 0.1634¢
0.1455 0.0155¢ 0.6673 0.1914:  0.3573 + 0.6075¢

0.0468 + 0.3213: 0.1908 4 0.4100¢  0.8097 + 0.1857%
c%b 0.9002 + 0.26027  0.0544 + 0.1205: 0.0255  0.3222%
0.1153 4 0.0567: 0.8795 0.0669:  0.1013 0.4419¢

Again, it is remarkable that the relations of the group (3.4.6) are verified
with very good precision.
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3.5. Clebsch—Gordan coefficients for SU(2)

Let G be a compact Lie group and H a closed subgroup (hence, compact
too). Adapted states to H will have the form:

p— ;J (WU (R dh, (3.5.1)
H

where Z is the normalization factor

7= [ xomxman,
fH :

and dh denotes the invariant Haar measure on H.

Because our algorithm is numerical, we need to approximate the inte-
gral (3.5.1) with a finite sum. Choosing a quadrature rule to approximate
the integral (3.5.1) for a given p is equivalent to use another p such that
Xp(h) # 0 only at a finite number of elements of the group. Then, the
integral (3.5.1) for p reduces to a finite sum and the representation of p
is exact. However, it could happen that the generic adapted states we ob-
tain doing that do not have enough degrees of freedom, that is, it could
happen that the block diagonal matrices of the representations would not
be irreducible. But this problem can be solved by choosing a set of points
large enough, for instance adaptive quadratures, because we know that the
representations of a compact Lie group can be written in terms of a finite
set of irreducible representations.

The original CG problem was discussed at the beginning of the chap-
ter. This problem consists on the reduction of a tensor product represen-
tation Ua(g) ® Up(g), g € G, of two representations of the same group
G restricted to the diagonal subgroup of the product group. By associa-
tivity, this problem can be generalized to any number of tensor products
Ui(9) ®@Uz2(9) @ --- ®Un(9)-

The CG problem appeared for the first time studying the composition
of two representations of the SU(2) group related to the composition of
angular momenta of two quantum systems.
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The examples below, will show the reduction of a bipartite system of
two spins with angular momenta 3/2 and 1 and the reduction of a tripartite
system of three spins with momenta 1/2, 1/2 and 3/2.

The angular momentum operators Jj satisfy the commutation relations:

[Jk,Jl] = t€kmIm, k., l,m=ux,y,z, (3.5.2)

and generate the Lie algebra su(2) of the group SU(2). Any element of a
representation of SU(2) can be written as:

U@ =e?d, 6, el0,2m). (3.5.3)

The matrix representation of momentum j of the angular momentum op-
erators Jy, is usually written in a basis of eigenvectors of J,:

Jz|jam>:m|jam>a m:j>j 17--'1 j) (354)

and the representation of the operators J, and J, is usually obtained from
the representation of the ladder operators J4 = J, + iJy:

Gom|I g, m'y = /(G Fm!) (G £m + 1) S 1 (3.5.5)

For instance, if j = 3/2 we have:

0 ¥ 0 0 0 ¥ 0 o0
JmZTO].O’J:?/TO 107
0 1 0 ¥ 1o 0 i
0 0 ¥ 0 0 0 ¥ 0
50 0 0
03 0 0
- 2
J“"00%0’
oo o 3
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in the standard basis

3/2,3/2) = ; 3/2,1/2) =

3/2, 1/2) = ; 3/2, 3/2) =

o OO OO o
_ o oo O oo

The standard CG matrix is constructed with eigenvectors of the total
angular momentum operator Jp with respect to the z component:

JTz:J12®:ﬂ-2®®]ln+]ll®t]2z®®]ln+
1 ®1,® - ®J,, (35.6)

where N is the number of parts of the system. The eigenvectors of this
operator are usually denoted by |J, M), where J represents the total angular
momentum and M =J,J 1,..., J:

Jr.|J, M)y = M|J, M). (3.5.7)

The standard procedure to obtain the CG matrix consists in applying
successively the ladder operator J  (or J) starting from the state of max-
imum (or minimum) momentum M, |Jmaz, Mimaz) = |j1 + Jo2,j1 + j2) (or
| Jmazs Mmin) = |71+ j2, j1 Jj2)). Because of this, if we come back to the
equation (3.5.5), because the matrix elements of the ladder operators are
real, the Clebsh—Gordan coeflicients are real.

Let us recall that the CG matrix provided by SMILY is written in
terms of the eigenvectors of the first adapted state p;. Thus, if we want to
compare the Clebsh—Gordan coefficients obtained with our algorithm with
the standard ones, we have to find a CG matrix C7 which is conformed by
eigenvectors of the operator J7,. To do that, first we will create two real
adapted states. To create them, we will use that the operators Jj verify:

J.=3,, J,= 3, J.=1J. (3.5.8)
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Therefore, for any adapted state p, p is an adapted state too. To create a
real adapted state from a complex one, we will add to the matrix p in (3.2.2)
its complex conjugate to obtain a real symmetric matrix and after that, we
will multiply the result by its transpose to make it definite positive. Then
finally, we will divide by the trace to normalize it:

. = 1
T=p+p, Preal = WT"'t- (3.5.9)

Once we have two real adapted states p;,.., and Py, .., We apply our
algorithm to get the real CG matrix Cy. After obtaining that real CG
matrix C1, we will transform the operator J7, with C7 to decompose it in
irreducible representations:

k *
* *
* * * *
* * & *
* * * %
C’IJTZC&: ok %k (3.5.10)
* * *
* * *
* % *

and after that, we will diagonalize each block of this matrix transforming it
with a block diagonal matrix V., VZTCIJTZC&VZ, which reorders the eigen-
values as follows:
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J1
Ji 1
J1
J2
Jjo 1

- 3.5.11
ia ( )

JN
Jjn 1

JN
Therefore, the CG matrix whose columns are the eigenvectors of Jr, re-
ordered in this way is given by:

C, = C1V,. (3.5.12)

3.5.1. Clebsh—Gordan coefficients for the spin system 3/2® 1

Suppose that we have a system of two particles in which the first par-
ticle has momentum 3/2 and the second momentum 1. It is well known
[Ga90, ch.5] that this system is decomposed in the direct sum of systems
of momentum 5/2, 3/2 and 1/2, each one with multiplicity one:

3/201=5/2@3/2®1/2,

or, in other words, that the representation of SU(2) corresponding to the
tensor product 3/2®1 has irreducible representations 5/2, 3/2 and 1/2 with
multiplicity one.

To create the adapted states that will be the input of our algorithm, we
have chosen 7 random angles 0,;, 0,;, 0. for each axis x, y, z and then,
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approximate the integral (3.5.1) by the sum:

7
P12 = Z 01203,k DU 2 (044,045, 0:1) @ U (03, 0y, 021),

Jiki=1

where 1 2(j, k,1) are the elements of two random vectors of size 7°.
To represent the CG coefficients, we will use the following standard
arrengement:

J J
M M

ma
my

M2
ma

coefficients

The coefficients obtained for the system 3/2 ® 1 applying the SMILY
algorithm are:

5/2
52 52 32
3/2 1 | 1.0000 | 3/2 3/2
3/2 0 |0.6325 0.7746 5/2 3/2 1/2
1/2 1 |0.7746 -0.6325| 1/2 1/2 1/2
3/2 -1 |0.3162 0.6325  0.7071
1/2  0]0.7746 0.2582 -0.5774
-1/2 1 ]0.5477 -0.7303  0.4082
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5/2 3/2 1/2
“1/2 -1/2 -1/2
1/2 -1 05477 0.7303  0.4082
-1/2 0 |0.7746 -0.2582 -0.5774 [~575 372
~3/2 1[03162 -0.6325 07071 | -3/2  -3/2
~1/2-1|0.7746 06325 [ 5/
~3/2 00.6325 -0.7746 | _5/2

~3/2 = 1| 1.0000

Figure 3.5.1: CG coefficients for 3/2® 1.

Comparing this table with the standard one in [Wi59], we can see that
the coefficients we have obtained are the same up to the precision of the
numerical computations.

3.5.2. Clebsh—Gordan coefficients for the spin system 1/2®1/2R3/2

To test the capabilities of the SMILY algorithm, we will compute the
CG coefficients of a system of three particles with spin. These coefficients
can be obtained from suitable choices of coefficients of products of two spins,
however there are not tables for systems with more than two particles.

The standard procedure consists on reducing the representation of the
first two particles, and after that, reducing the result with the next particle,
and so on till we have finished. In this case, the product of three particles
with spin 1/2, 1/2 and 3/2 yields:

1201/23/2=(001)®3/2=3/205/203/26¢1/2. (3.5.13)
In the first step, we diagonalize in blocks the first two spins:
(le.2®1;_2 ® Llf(Ulr"? ® Ul-*'@ ® UB_,,-Q}(le_2®1;.2 ® 1 4) — (UO ® Ul) ® US{,-Q

and secondly, we diagonalize the result:
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14 0 0 1 3/2) (1a 0
| (weuheuv?)
( 0 Clcxas;'?) 0 Cigs

_ U3_,-"2 'EB US_,-'IZ EB U3_,-"2 EB Ul_,-'-2.
Therefore, the CG matrix of this system is
Cliaw1/203/2 = (Cragiz ® 14)(La @ Cigap)- (3.5.14)

In this example, we see that for a multipartite system of spins, the
multiplicities of the representations can be greater than one, as it can be
seen in (3.5.13), then it may exist several eigenvectors with the same values
of J and M, so it is necessary to add another “quantum number”, that we
will denote by ¢, to differentiate them. This “quantum number” will be
a label that indicates for which copy of the representation of multiplicity
bigger than one belongs each eigenvector with the same J and M. For
that reason the symbol ¢ because it refers to the multiplicity and was used
before for this purpose (3.1.2).

Using SMILY, we do not need to group the system in groups of bipar-
tite systems as in (3.5.14), it can be done in one step. Again in this case,
we have used in our algorithm 7 random angles for each axis to get the
adapted states for the product of the three irreps. The coefficients will be
represented in similar arrengements to the case of two spins but including
the label e:

c c
J J
M M

my Mo Ms
my my my | cocflicients

The coefficients obtained for the tripartite system 1/2® 1/2® 3/2 are
the following:
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1
5/2 1 1 2
512 | 52 3/2 3/2
1/2 1/2 3/2 | 1.0000 | 3/2 3/2 3/2
/2 1/2 1/2| 07746 06295  0.0606
1/2 —1/2 3/2|0.4472 -0.4774 —0.7564
~1/2 1/2 3/2 04472 -0.6130  0.6513
T 1 2 1
5/2 3/2 32 1/2
1/2 1/2 12 1/2
1/2 1/2-1/2| 05477 07269  0.0700 0.4082
1/2 -1/2 1/2 | 0.5477 -0.1139 —0.7214 —0.4082
~1/2 1/2 1/2|0.5477 -0.2495  0.6863 —0.4082
~1/2 -1/2 3/2|0.3162 -0.6295 -0.0606 0.7071
1 1 2 1
5/2 3/2 32 1)2
12 -1)2 -1/2 -1)2
1/2 1/2-3/2|03162 06205 0.0606 0.7071
1/2 ~1/2-1/2 | 0.5477  0.2495 —0.6863 — 0.4082
~1/2 1/2-1/2|05477  0.1139  0.7214 -0.4082
~1/2 -1/2 1/2| 05477 -0.7269 -0.0700 0.4082
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1 1 2
5/2 3/2 3/2
-3/2  -3/2  -3/2

1/2-1/2-3/2 [ 04472 0.6130 0.6513 —
-1/2 1/2-3/2| 04472 04774 -0.7564 | 59
-1/2-1/2-1/2 | 0.7746 -0.6295  0.0606 | _5/2

~1/2-1/2-3/2 | 1.0000

Figure 3.5.2: CG coefficients for 1/2®1/2® 3/2.

Let us recall that these coefficients are different to the coefficients that
are obtained with the formula (3.5.14) with the standard CG tables of two
spins. The reason for this is that, in general, for systems of more than two
spins, the choice of real Clebsh—Gordan coefficients of eigenvectors that only
differ in the multiplicity ¢ is not unique. Because of that, there exists more
than one linear combination that gives a valid CG matrix that diagonalizes
Jr, with the eigenvalues reordered in the way given in (3.5.11).

3.6. A proposal for the experimental construction of adapted
states

We have shown that to implement SMILY we only just need two generic
adapted states of the form (2.7.16). Numerically, as it was indicated in the
step 1 of the algorithm, we can create such states using just the unitary
representation of the group we want to reduce, however thinking on the
possible implementation of SMILY in a quantum computer, we will discuss
here an experimental setting to implement such states.

The proposed way to do it will be to measure the tomograms of certain
clever configurations of coherent states and reconstruct the adapted states
by means of formulas (2.7.16), where the smeared characters x,(g) are
recovered from the Inverse Fourier Transform of the tomograms W,(X; &)
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(see chapter 2, eq. (2.7.1)).

To achieve it, we will use the Jordan—Schwinger map. The main idea
behind it is that the Lie algebra of n x n complex matrices gl(n,C) can
be naturally represented in the Fock space F, generated by n creation
and annihilation operators aL,ak. (see sections 1.5 and 2.8.1). The map

Sy:gl(n,C) — £(F,) given by:

=¢= Z akijaj (3.6.1)

4,j=1

defines a Lie algebra homomorphism between the Lie algebra gl(n,C) and
the Lie algebra of operators on F,.
If we compute the commutator of two operators & and {, we get:

E & Z fzy(rs a,; a],aias]a

i,j=1
r,s=1

then, using the commutation relations of the creation and annihilation op-
erators (1.5.11), we get:

m:
J\?

Z 5@]@"5 (CL CLs Jr CL raj zs) Z I 5 C Z] = ’f] (362)

i,j=1
r,s=1

where [f,{] =1.

Now, because of Ado’s theorem [Ja62, ch. 6], any finite dimensional Lie
algebra g can be considered as a subalgebra of the algebra gl(n,C) for n
large enough, hence we can represent the Lie algebra g by using the Jordan—
Schwinger map S; as Hermitean operators on the Fock space F,.

Notice that this result does not depend directly on the commutation
relations of the Heisenberg—Weyl algebra, it depends on the standard com-
mutator

[a}aj,aias] = a;-raséjT aiajéis, (3.6.3)
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hence, for any set of operators X;; satisfying
[Xij. Xos] = XisGjp Xpjis, (3.6.4)

the result (3.6.2) holds.

Recall that we can obtain the tomogram of afa on a given state from
the data gathered by a photodetector (see section 1.7), therefore if we
mix in a convenient way beam-splitters and photodetectors, we can get the
tomogram of the desired combination of creation and annihilation operators
aLak/ for any k and &'

To see how to implement this idea, we will show the configuration needed
to measure the tomograms of a particle of spin one-half corresponding to
the z, y and z components. Then, from linear combinations of them, we
will be able to obtain the tomograms of the representations of the elements
of the Lie algebra su(2).

In section 2.7.1, the spin operators S;, eq. (2.7.26), i = x,y, z, where
introduced. It is obvious, because they are a realization of su(2), that they
satisfy the commutation relations of the angular momentum (3.5.2).

Using the Jordan—Schwinger map, we can write them in terms of cre-
ation and annihilation operators:

1 S Ut f

So = 3(alaz +ajar), S, = F(ajaz ala),

S. = %(aial a£a2). (3.6.5)
Let us remember that we have already found the representation of the alge-
bra su(2) in the implementation of the homodyne and heterodyne detectors
in section 1.8.
Thus, the configurations to get the tomograms associated to spin x and
y are similar to the configuration of the homodyne detector, Figure 1.8.1,
the only difference is that now, the inputs are two laser beams with coherent
factors z; and 29 excited at the same frequency, instead of a radiation source
with state p and a strong laser beam |2){z|.
To get the tomogram of S,, we mix the laser beams with annihilation
operators associated a; and ag in a 50/50 beam-splitter, then the outputs
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at the beam-splitter give:

cp = —(ﬂ.l ag), Cy = %(Gl + ﬂ.g). (366)
Thus, the photodetectors on each output will give (c; c1)1 and (c;@)g, where
the subindexes denote the mean value with respect to the states |z;)(2|
and |z2){z2| respectively. Finally, substracting the measurements of both
photodetectors and dividing by two the result, we get the statistics for the
operator éx, Figure 3.6.1:

[ Y]

1
r = 5(&-;&-2 + aéal)

O
cicl

C14
| | = r
Laser beam 50/50 ¥

Laser beam
| (S

Figure 3.6.1: Configuration to obtain the tomogram of éx

The configuration to obtain the tomogram of éy is completely similar to
the previous one, the only difference is that we have to add a phase factor
of /2 to the second laser beam, Figure 3.6.2. Thus:

1 = %(al iag), Ca = %(Gl + iag). (3.6.7)
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~ ]
Sy = —5(0,’{0.2 —alay)
C{Cl
A
01A
|Z]_><Z] | a’l 62
| o — r
50/50
Laser beam ole
. 202
109

A

7r/2
Laser beam
m |22){z2]

Figure 3.6.2: Configuration to obtain the tomogram of éy.

Finally, the configuration to get the tomogram of S, is simpler than
the previous ones, because we do not need a beam-splitter. We just need
two photodetectors to measure the intensity of both laser beams <a;a1>1,
<a£a2>2, substract them and divide the result by two, Figure 3.6.3.

To conclude this section and chapter, we just make a comment about
the experimental implementation of finite groups. We have shown that
there is a correspondence between elements of the Lie algebra gl(n,C) and
the quadratic bosonic algebra £(F,,) generated by creation and annihilation
operators. A finite group does not define a Lie algebra, however given a
finite group, we can associate a Lie algebra to it. Thus, given the finite
group G, consider its group algebra C|G| which is a finite dimensional
Hilbert space of dimension |G|. Then, G is faithfully represented on C|G]|
by unitary operators by using the left regular representation, hence we
may consider G as a subgroup of the group of unitary operators on C|G]|,
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v(Cla]) = U(lG]).

~ 1
T S;:= —(a1a1 — aTaz)
|Z]_><Z]_| alal z 2 1 2

Laser beam

ag

Laser beam

| z2)(22|

Figure 3.6.3: Configuration to obtain the tomogram of S,.

Then, to get the elements of the “Lie algebra” of a finite group is very
simple. We just have to consider that any unitary representation of a finite
group can be written as the imaginary part of a Hermitian matrix by using
the embedding of G in U(|G|) explained before:

Ug)=¢®, £=¢, (3.6.8)

hence, from the logarithm of the representation, we obtain the correspond-
ing Hermitean operator:
E= ilogU(g), (3.6.9)

and finally, the elements of the bosonic algebra are obtained from the
Jordan—Schwinger map Sy, eq. (3.6.1).






The tomographic picture of classical systems:
finite and infinite dimensional

4.1. Classical Lagrangian and Hamiltonian systems

The evolution of a large class of classical systems with a finite number
of degrees of freedom can be obtained from the principle of least action.
The action of a system is a functional S : 7 — R on the space F of
smooth curves q(t) = (¢*(¢),...,¢"(t)) in the configuration space Q of the
system, which is a smooth manifold of dimension n with local coordinates
¢',i=1,...,n, and it is defined as the integral of the Lagrangian of the
system L(q(t),q(t),t) in the interval of time [to,?;]:

Sla(t)] = f L(q(t), 4(t). t)dt. (4.1.1)

to

The principle of least action (see for instance [La69]) asserts that the
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evolution of a dynamical system follows a path in which the action is ex-
tremal, i.e.,

05 =0, (4.1.2)
where J in this context represents the differential of S.
A
q(t)
a(tr) |- -
q(to)
to ot

Figure 4.1.1: Various paths for g(t) with fixed end points at tp and 1. The
thick line indicates the path in which the action S is extremal.

The differential of a functional F|¢|, defined on functions ¢(x) on a
manifold M, in the direction of the variation é¢(x) is defined as provided
that the limit exists, as:

If F' is a local functional, it can be written as:

oF
A =I OF 54(a)da, 413
6108 = | 5ozy00(@) (413)
M
. oF . _y L
with ) a functional usually called the variational derivative of F'.

The equations of motion for a Lagrangian system can be obtained ap-
plying this principle and are called Euler—Lagrange equations:
65 d (E—’L) oL 0

- = —{ — - = i=1,...n. 4.1.4
3¢  dt\a¢) g P el (4.14)

1
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Often and for different reasons, it is more convenient to express the
equations of motion in Hamiltonian form. The Hamiltonian of the system
can be written in terms of the Lagrangian function as:

oL

H: oy
g !

L. (4.1.5)

The canonical momentum corresponding to the local coordinate ¢ is defined
as:

= 4.1.
pi =3 (4.1.6)

i

thus, the equations of motion can be written in Hamiltonian form as follows:

oH . oH
=50 B A (4.1.7)

33

q

4.2. The tomographic picture of classical Hamiltonian systems

The statistical states of a classical Hamiltonian system with finite de-
grees of freedom can be described by a probability density p(w) on its phase
space w € Q, [Is71,Re98]|.

At the beginning of this Thesis, in section 1.2, it was presented the
Computerized Axial Tomography. CAT is an example of a classical system
with finite degrees of freedom, in this case two, that is described by a
state, in this case the absorption coefficient of a portion of matter a(x,y),
Figure 1.2.1. In a more abstract way, the Radon Transform (1.1.1) can be
considered too as an example of the tomographic analysis of the statistical
states of a classical system with two degrees of freedom (¢,p). In this
case, the domain ©Q — R? represents the phase space of the system and the
function f : Q — R would be a probability density. In what follows, we will
just call “states” to statistical states of classical systems.

The phase space carries a canonical measure, the Liouville’s measure
ULiouville, that in canonical coordinates (g, p) has the form duyiouvine(q, P) =
d"qd™p. In the case that  is a domain in R?", the center of mass tomogram



130 The tomographic picture of classical systems

Wem of the probability density p(q,p) is defined as the generalization to n
degrees of freedom of the Radon Transform (1.1.1):

Wcm(X,u,V)=fp(q,p)5(X p-q v-p)d'qd'p, (4.2.1)
Q

where p = (g1, ..., tn), v = (v1,...,1,) belong to R™, and the equation
X p-q v-p =0 determines a hyperplane IIx(u,v) in €, that has
the same geometrical interpretation than the line Lx (qo, po) in Figure 1.1.1
but in dimension n. Because of the definition of the n-dimensional Fourier
Transform (1.1.2), repeating exactly the same analysis as in section 1.1,
but in a n-dimensional phase space, we have that the reconstruction for-
mula (1.1.5) for the classical state p is

1 .
pla,p) = WLJ Wen (X, p,v)e & #avP axdud v,  (4.2.2)

R2n+1

The description of a classical system, whose phase space is €2, can be
easily established in the terms discussed in the introduction of chapter 2
by considering as the algebra of operators A a class of functions on 2, and
the states of the system as normalized positive functionals on A. Let us
remark that if A contains the algebra of continuous functions on 2, the
states are probability measures on the phase space.

If we assume that the phase space is originally equipped with a measure
1, for instance the Liouville’s measure priouville in the case of mechanical
systems, then we may restrict ourselves to the statistical states considered
by Boltzmann corresponding to probability measures which are absolutely
continuous with respect to the Liouville’s measure determined by probabil-
ity densities p(w) on Q.

Given an observable f(w) on £, the pairing between states and obser-
vables will be realized by assigning to the observable f its characteristic
distribution py with respect to the probability measure p(w)du(w), thus
the probability of finding the measured value of the observable f in the
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interval A is the following:

| orvar= | pleiante),
f=1(4a)

A A

and the expected value of f on the state p will be given by:

D= | Aosax
R

Sometimes, the center of mass tomogram W, (4.2.1) does not allow
to cope with systems that can not be easily averaged over hyperplanes
X wp-q v-p=0or, simply, it is more convenient to work with another
parametrization. Hence, it is convenient to expand the scope of the for-
malism to make it more flexible for alternative and more general pictures.
Thus, we can reproduce here the general discussion of tomographic theories
for quantum systems but replacing the C*—-algebra A there by a commuta-
tive Banach algebra A containing the algebra of continuous functions C(2)
(© will be assumed to be compact).

A general tomographic picture of a classical system can be given by
starting with a family of elements in A parametrized by an index x which
can be discrete or continuous. Often, = is a point on a finite dimensional
manifold that we will denote by M, thus x € M. The observables associated
to the element x will be denoted by U,. Given a state p of the classical
system, the correspondence x — U, allows to pull-back the observables U,
to M by defining the function F,(x) on M associated to the state p(w) by:

Fyla) = .U = | Ualwlp()dn(o). (4.23)
Q

The observables U, must be properly chosen so that the previous integral is
well-defined. For instance, we could have chosen M = € as in the definition
of the center of mass tomogram (4.2.1) and then consider U, (w) = d(w),
thus the function F), associated to the state p(w) will be again p(w) itself.
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The original state p(w) could be reconstructed from F), if and only if the
family of observables U, separate states, i.e., given two different states
p # p, there exist x € M such that {p, Uz) # {p, Uz). Then, two states will
be different if and only if the corresponding functions F), are different.

Clearly up to now, our construction does not discriminate the descrip-
tion between classical and quantum systems*. In the same way we intro-
duced the Generalized Positive Transform in the quantum setting, let us
introduce it now in this classical setting.

Let us consider, as it was in chapter 2, the space of functions on the
manifold M, F(M) and its topological dual F(M)" (for that, we equip
F (M) with the appropriate topology). And also consider a second auxil-
iary space N that parametrizes a certain subspace of smooth functions of
compact support D(M) < F(M)’. In other words, for each y € N there
is an assignment y v R(y) with R(y) € D(M) a linear functional on the
space of functions on M. A Classical Generalized Positive Transform is a
map from F(M) to F(N) assigning to each F' € F(M):

Wr(y) = (R(y), F),

and such that Wp is normalized and non-negative, Wr = 0.

For instance, suppose that N parametrizes a family of submanifolds
S(y) of Q. If the submanifold S(y) has the form ®(q,p; X1,...,X,) = Xo,
where y = (Xo, X1,...,X,,) denotes a parametrization of N, the corre-
sponding Generalized Positive Transform would be written as:

Wa(y) =J p(q,p)6(Xo @(q,p; X1,...,X,))d"qd"p, (4.2.4)
Q

which is a generalization of the center of mass tomogram (4.2.1).

When the embedding is properly chosen, it turns out that Wg(y) is a
fair probability distribution on N, which we have constructed out of the
state p. In the case in which Q = R?” and A is the space of hyperplanes

*The difference will appear only at the level of the product structure on the sampling
functions F, as the Wigner—Weyl-Moyal approach shows.
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Iy, let us recall the homogeneity condition (1.2.5) that the center of mass
tomogram W,,, satisfies:

1
Wcm()\X, )\’J/, )\V) == WWCTTL(X;I'L7V)7 (4.2.5)

then, we can derive the following relation for the center of mass tomogram
by taking derivatives with respect to A in (4.2.5) and evaluating in A = 1:

0 0
X— C— c— + 1| Wen (X, ,v) = 0. 4.2.6
[ ety ay+] o (X, 11,7 (1.2.6)
Due to the homogeneity condition (4.2.6), We,, depends effectively only on
2n variables instead of 2n + 1.

Similarly to (4.2.1), we can introduce another kind of tomographic rep-
resentation of the state p, the classical symplectic tomogram:

n
Wsym(quay):J pla.p) [ [6(Xk  mwae  vipe)d"qd"p.  (4.2.7)
k=1
R2n

Notice that in this case, we have taken M = R*® and N = N} x --- x N,
with N}, the space of lines in R?, that is, the phase space of each individual
degree of freedom of the physcal system under consideration. Thus, we
have obtained a joint probability distribution of the n random variables
(X1,...,X,) = X. In contrast to the center of mass case, because of the
presence of n Dirac distributions, we find that the symplectic tomogram
Wsym satisfies n homogeneity conditions:

0 0 0
Xp—— — — 4+ 1| W X =0 4.2.8
[ kan+MkaHk+VkaVk+ ] Sym( 7.“7”) 9 ( )
k = 1,...,n. In other words, the classical symplectic tomogram W,

depends effectively only on 2n variables instead of 3n. In fact, one can
show that the symplectic tomogram Wiy, can be transformed into the
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center of mass tomogram W,,, of the same state p and vice versa:

1 : ! 1 !
Weym (X, p,v) = Wf Wem (X', !, V') e (X' p' q v p)

R4n+1
: H 5(Xk MEqk l/kpk)dX'd"u'd"V/d"qd"p. (4.2.9)
k=1

Because the symplectic tomogram is composed by a product of delta
distributions, we can obtain easily its reconstruction formula from the re-
construction formula of the center of mass tomogram (4.2.2) for n = 1:

p(a,p) = (%Tl)%f Wsym (X, p, V)

R3n n
i 2 (Xp prqr veDk)
k1

e d"Xd"pd"v. (4.2.10)

4.3. Tomograms for states of an ensemble of classical oscillators

In contrast to what was done in chapter 2, where the tomograms of an
ensemble of quantum harmonic oscillators were discussed, it is illuminating,
for reasons that will be clear at the end of the computations, to do it again
for their classical counterparts (see [Ib12]).

4.3.1. The canonical ensemble

If we consider a family of n independent one-dimensional oscillators
with frequencies wy, > 0, its phase space € will be R?” with canonical
coordinates (qx,px), k = 1,...,n. The Hamiltonian of the system will be
(recall eq. (1.4.13)):

n
H = Z Hk(qupk)v (431)
k=1
with Hj, the Hamiltonian of the oscillator of index k:
1

Hy, = 5( i+ Whay)-



4.3. Tomograms for states of an ensemble of classical oscillators 135

The dynamics of the system will be given by

(jk = Pk, pk = w,%qk, k = 1, N (4.3.2)
and the Liouville’s measure will take again the form duriouvie = d*qd™p.
Making the change of variables

q
& = \/—57 M = \/@rPks (4.3.3)

the dynamics is written in the “symmetrical” form

ék = WMk, 7716 = wkfk, k= 1, N (4.3.4)

and the Hamiltonian becomes:

n n

2 k(e ) = Z (& +n¢) (4.3.5)

M\H

The state of a classical system can be used, instead of the equations
of motion (4.1.7), to describe the dynamical evolution of a system in the
phase space §2. Notice that Liouville’s measure remains unchanged under
the change of variables, dupiouvile = d"qd"p = d"€d"n, and statistical
states are described by probability densities p(q,p) = p(&,n).

Liouville’s equation [Re98, ch. 6] determines the evolution of the state:

Co={nH}, (4.3.6)

where the Poisson bracket {-,-} is defined by the canonical commutation
relations:

{ak, 01} = Ou, {ae, ai} = {pr.mi} = 0. (4.3.7)
In particular, the Gibbs state or canonical distribution is given by
e PH
pcan(q;p) = 7 (438)
0

(see [Is71, ch.2]), where the normalization constant Z is easily evaluated:
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ZO :j e fH(q.p) dﬂLiouvill@(qap)

Q n n
= [ o e agan - ey [ [ )
R2n k=1

where 3 = (kgT) ! is the thermodynamic constant given by the inverse of
the temperature of the system T multiplied by the Boltzmann constant kp.

For a given observable f, we have that its expected value over the Gibbs
state pean 1S

1 S
<f>ﬂcan = 7 J f(£7,r,) € ﬁ/zkxl k(§£+n£)d€dn (439)
0
R2n

More detailed information can be found in [KI68].
Because of the form of the change of variables (4.3.3), we can perform
the symplectic tomogram of a state p(€,n) by means of:

Won(Xov) = [ plem [0 & vmdéd™n,  (43.0)
k=1

R2n

therefore, a simple computation shows that the Gibbs state tomogram reads
as:

By < Buwp X}
)P 2

n
Wean (X, p,v) = ————r €X ) , (4.3.11)
can ]1:[1 27r(,u% + 1/,% (,u% + 1/,%)

and the state will be able to be reconstructed by means of eq. (4.2.10) only
by changing q by & and p by 1 in that formula (compare with (2.8.31)).

An interesting family of states, which is the classical counterpart of
quantum coherent states (1.8.2), can be introduced by means of the holo-
morphic representation of phase space:

G = \}5(&@ + i), E=1,...,n. (4.3.12)
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Hence, the phase space becomes into the complex space C™ with the Her-

mitean structure
n

H((, Q) = ) weldel, (4.3.13)
k=1
and given a point z = (z1,..., 2,) € C", we can construct the distribution
p=z(¢,¢) = N(z)exp (Z (2kCk + Zka)) pean(§, C)‘ . (4.3.14)
k=1 B=1

where the normalization factor N(z) reads as

n 2
_ He w|zk|®
k=1

The symplectic tomogram distribution corresponding to p.(¢,¢) is a
product

n

sz(X,[L,V,Z H anukaykazk) (4315)
where the tomogram W(]:) of a single degree of freedom is a Gaussian dis-

tribution

Wk
2m(p2 + v2)

.eXp( w (X <Xk(ﬂk,’/k7zk)>)2> (4.3.16)

W,[()]:) (Xk:7 BEs Vi, Zk) =

2(,u% + 1/,3)
of the random variable X with mean value

Xk (s v 20) ) = V2R (20) + 123 (21))

and variance
2 2
pi T v

ox, =
k Wi
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If we compare the formulas (4.3.11) and (4.3.16) with the tomograms
obtained in chapter 2 for the quantum harmonic oscillator (2.8.31), we
see that are similar to the tomogram corresponding to the ground state of
(2.8.31).

4.3.2. A new class of states: Gauss—Laguerre states

We will introduce now a family of classical states, called Gauss—Laguerre
(GL) states, inspired on the Wigner functions of the excited states of a
quantum harmonic oscillator. These functions are only quasi-distributions
on phase space, as we have seen in section 1.6, however their square is
related to the purity of the corresponding quantum states and are true
probability distributions [Do89]. These kind of states appear, for instance,
in a physical system in which an electron is moving on a perpendicular
plane to a constant magnetic field with quantum azimuthal number m = 0
(see Landau states in [La30]).

The family of classical states we are considering is defined as:

pGLm(&:m) H el e (Gl Tk ) (4.3.17)
k=1
where m = (mq, ms, ..., my,) is a multi-index that is not related with the

azimuthal quantum number we mentioned in the previous paragraph, and

Wk 1 2.2
pE}L - (s i) = 27T 2 ( (gk )) e 1/2wk(Et+ng) (4.3.18)
Here, the function L,,, is the Laguerre polynomial of degree mj. Notice
that pg?’mk (&, mi) is a classical state on a bidimensional phase space.

The symplectic Radon Transform of the state factorizes as the state
does:

n
WeLm (X, p, v H e (X s Vi) (4.3.19)
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with
(k) 1 X,%
Wetmy, (Xks by Vi) = Tror O o
2 X
: % ! 2(mk s) 2s w (4 3 20)
922my My s s 225(28)! 0.
s=0
and
2 (w2 +v3
O'k, = M7

Wk

while Hog is the Hermite polynomial of degree 2s. The above result can be
obtain as follows.
First, we will drop the label k£ and will write W,,, (X, u,v) in place of

W((Q’mk (Xk, pk, i) to simplify the notation. Thus,

Win( X, 1, v) = wJ L2 (5 (@ +n7))e Vel

2m
R2
(2:)2 f KX 2 (g (§2+772)>

SO(X pE wp)dédn =

R3
e V2wE@in?) o iK(ugtin) dédnd K. (4.3.21)
Now, we put /p? + v? = ry,, and
[ = Ty COS Oy, V=T Sinay,,
& =rsind, 1N =rcosb,
and we recast the previous formula as:
1 0
WiXomw) = 5= | X WKopddK, (@322
T

0
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where the Fourier Transform W\m is given by

21 o0

2
Wil pv) = % JJ Ly, (OJ;> e “l2e KTmrsinOtaum) pqpdg,
00

The integral over the angular variable 6, = 0 + «ay, yields the Bessel
function Jy, so:

o0

P 2

Win (K, 1, v) =J L% <332> e x2/2J0 (iigf;) xdz. (4.3.23)
0

The above integral can be evaluated and gives [Gr07, n.7.422 2]:

2

2\ Vi
m 2
_ 1/9 (Kr v/ w)2 2(m S) 2s Kr,u,y
e v/ \Jw 227”;)( ol ) Los 7o ) (4.3.24)

where the last line has been obtained by a well known addition formula of
Laguerre polynomials [Gr07, n.8.976 3.

We remark that the above equation yields, by multiplication over the
restored label k, the Fourier Transform WGL’m(K , i, V) of the tomogram
WGL’m(K,p,, I/) with K = (Kl, K, ... ,Kn).

Besides, as WGL,m (0, u,v) = 1, we get at once the normalization prop-
erty of the tomogram War, m (X, p, v).

Finally, we are able to perform the integral (4.3.22) by means of the
integral over y = Ky, /y/w, (G107, n.7.418 3]:

0
L5 e P ()

T T Ty

NG < w 2) 1 9 < Vw >
= ex X H X |. (4.3.25
Varr P\ 22, g () )

Therefore, we have got the predicted expression of W, (X, u, V).
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4.4. The tomographic picture of Liouville’s equation

Let us discuss in this section the tomographic form of the evolution
equation for states, the Liouville’s equation (4.3.6). The evolution equation
in the tomographic description was obtained in [Ch07] in relation with
a relativistic wave function description of harmonic oscillators. We will
describe it here in the realm of our previous discussion. Notice that because
of the symplectic reconstruction formula (4.2.10), we can compute:

1 d
&P(Eﬂ?at) = (27T>2nj |:dthym(X,Hf7V,t):|
R3n

i3 (X k€ vem)
o T g qrpdiy,  (4.41)

(is important to highlight that the symplectic tomogram is computed at a
given fixed time) and, on the other hand:

0H 0 0H 0 1 =
{p,H} = { ]P=n f Waym(X, p, v, 1)
Z Ok 05k O O, (27)? ,;1 o

[8H o OH 0 } P Xk wn vime)
. e k1

_— — d*" Xd"pud™v
ong 08 0& Ong, H

oH 0 0H 0

- (X . e

&) Q"ZLW?’ I
Rn

i3 (X € vem)
e i TR e drpdry. (4.4.2)

If we equal the formulas (4.4.1) and (4.4.2), we get:
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oOH o1'te o1t

e 197 [axj] ag [ale v )"
0
0X),

Weym (X, p,v,t).  (4.4.3)

a 1
The operator {] is defined in terms of a Fourier Transform as

0X
o1 F(K
{é’X] J (K) e X qk = f (K) KX 4K, (4.4.4)
(3
o0 a0

and the notation {* — *} means that the variable in the left side, which
belongs to the phase space, is replaced by the operator at the right side,
which belongs to the space of hyperplanes Ilx;, (p5,v5). This fact happens,
in a similar way, in the Fourier framework when one wants to change vari-
ables from the time domain to the frequency domain. This replacing law
can be deduced in the Fourier framework in this way:

. d ~
ikt ikt
dt = dt = k).

i)k f mdkff

d
Therefore, the variable ¢ in time domain becomes the operator 2@ in fre-

quency domain. If we make the same in the Radon framework, we get:

R[fp(&m](x,u,u)=f§p<§,n>6<x ue  vm)dedn

- f Ep(E,m) X B ) dhdedn = -

0

X 1E v qrdedn = [(9X

o
:| %Wsym(Xa ,LL, V)u
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hence,
o1 ‘e
- |=—=| =—. 4.4.
¢ [M] - (1.4.5)
Doing the same for 1, we have that
Rime. N Xopnr) =[] LW (X p0)
ne\s,n y V) = 6X 61/ sym s s V),
then,
o1 ‘o
n— [&X] W (4.4.6)

Let us also remark that for obtaining the formula (4.4.3), we have used the
property of the derivative of a product:

0 ikil(Xk rék VkME)

Wsym(X»HaVat)me
0 @ i (X prée vemK)
:T‘X'k (Wsym(X)lJ’7V>t)e ko1 )

li Xk meée vink)

0
<a)(kwsym(X)lJ‘7yat)> € ko1 9

and the fact that the tomogram must satisfy

li X t) =0.
innioo Wsym( NTR78)

Due to the presence of the terms (4.4.5) and (4.4.6), for a generic Hamil-
tonian H the tomographic evolution equation (4.4.3) is integro-differential.
In the particular instance of H given by (4.3.5), the tomographic evolution
equation takes the form of a differential equation:

0 0

d n
1. SmX7 9 Jt: -~ N sz7 3 ,t. 4..4.
G ) = Y g g | Won (X v ). (147
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4.5. Tomography of the Klein—Gordon classical field in a cavity

We have just described the tomographic description of states of a clas-
sical system with finite degrees of freedom, however this description is not
enough to deal with systems involving infinite degrees of freedom. To deal
with this problem, we need to introduce the concept of field. A field, please
excuse the redundancy, is a generalization of the generalized coordinates
¢*, introduced at the beginning of this chapter, that describes a certain
continuous system supported on a given space-time M = R x V, where V
is a manifold of dimension d. In the present context, a field will be a real
function (¢, ) of space and time that represents the configurations of the
system, hence they describe the configurations of a system with infinite de-
grees of freedom (for example, see the section of Classical fields in chapter
2 of [Pe95] and [Ti99] or [Cal5, sec. 1.3]).

In this new context, in which the space is also a parameter, it is natural
to consider systems whose dynamics are defined again by means of an action
functional of the form

Sle] = J L (p(t, @), dup(t, a:))dda:dt. (4.5.1)
M

The functional .Z is called the Lagrangian density.

Applying the principle of least action in the same way as done for a sys-
tem of finite degrees of freedom (4.1.2), we get the Euler—Lagrange equation
of a classical field:

4S 0 0% 0L
- - == = 4.5.2
5ot @) aw( > 0, (4.5:2)

Aoup)) dp
where 0, denotes the partial derivative with respect to z# = (¢, x).”

In the same way that we have introduced the Lagrangian density, we
can introduce the Hamiltonian density:

0L 0
H = ? 2 (4.5.3)
3(0rp) Ot
*Notice that we have removed the symbol of sum along 1 = 0, ..., d in (4.5.2) accord-

ing with Finstein’s convention.
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where the total Hamiltonian of the system is the integral over the space V
of its density:

H :J Hde. (4.5.4)
1%

Recalling the definition of canonical momentum (4.1.6), we can define
the canonical momentum field as:
0L
o(0rp)

therefore, we can write the Euler-Lagrange equations in a similar way
to (4.1.7) in terms of the Hamiltonian density:

dp o om oA a<a%> a(a%
o(0usp) ) 0t \0(0rp)

or using the concept of variational derivative defined previously (4.1.3),
these equations can be written in the following way:

op SH or  OH
E —_— E, E —_ %’ (4.5-7)

w(t, @) = (4.5.5)

ot on’ ot op oz

) . (4.5.6)

which have the canonical structure of equations (4.1.7).

Having shown that an interesting family of states for a finite ensemble
of harmonic oscillators is amenable to be described tomographically, we
will discuss now a particular instance of a field theory, the Klein—-Gordon
equation for a real scalar field ¢ in a cavity on 1+ d Minkowski space-time,
and we will describe tomographically a remarkable state of the theory: the
canonical state [Ib12].

Thus, we will consider Minkowski space-time M = M = R'*¢, where d
is the dimension of space with the standard Minkowski metric of signature
( ,4,...,+) (see appendix A).

The dynamics of the real scalar field ¢(¢, x) is defined now by the La-
grangian density:

Z¢] =% wpdte Vgl (4.5.8)
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where V[y] is the potential functional of the system. The Euler-Lagrange
equation (4.5.2) in this case is:

0,0 = Vel (4.5.9)

op

1
Considering V[y] = §m2<p2 (the potential field of an harmonic oscillator),

we get the Klein—Gordon equation:
o1 Ap+mPp =0, (4.5.10)

with A the d-dimensional Laplacian in R

As we have extensively discussed before (section 4.3), tomographic
methods are described on phase space where conjugated variables and Pois-
son brackets are available. On such carrier, space dynamical equations are
described by a vector field (4.3.4). Thus, for our Klein-Gordon equation,
we have to introduce a larger carrier space where the equations will be of
first order in time.

The transition from second order equations to first order differential
equations in time may be done in many ways [Ma85], here we shall con-
sider one in which the new variables will make the equations of motion
more “symmetric”. We would stress that by using a specific splitting of
space-time into the space part and the time part, then the explicit Poincaré
invariance of the theory breaks, but of course our description is still rela-
tivistic invariant.

To proceed, we will consider the Cauchy hypersurface C = {0} x R% and
the finite cavity will be defined as V < C. We consider the restriction of the
field to the cavity V using the same notation ¢(x) = ¢(0,x), x € V, see
Figure 4.5.1, and also consider that the field ¢(x) evolves in time according
to i(x) = ¢(t,z). Therefore, the Klein-Gordon equation becomes the
evolution equation, of second order in time, in the space of fields ¢(x):

d2g0

= | A +m?)e. (4.5.11)
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7T
a2 e = et x)

27> @
‘?a"’yl g
p(x) = p(0,)

t=20

Figure 4.5.1: Evolution of a field restricted to a cavity.

For solutions of Euler-Lagrange equations to be critical points of the ac-
tion functional S, the following boundary term must vanish at the boundary
aVv:

f dppd? lz =0, (4.5.12)
v
where ¢ denotes the normal derivative of ¢ at the boundary V.

We can choose boundary conditions such that this integral vanishes and
the operator A + m? will be strictly positive and self-adjoint on square
integrable functions on V with respect to the Lebesgue measure. Thus, we
can define the invertible positive self-adjoint operator B = v A + m?2. We
will also assume for simplicity that boundary conditions are chosen in such
a way the spectrum of B is nondegenerate, therefore the eigenvalues of B
have the form 0 < w; < wp < -+ < wy, < --- with eigenfunctions @ (z):

Bdi(z) = wpdi(z), k=1,2,.... (4.5.13)

Actually, assuming that the cavity V is a compact manifold with bound-
ary ¢V, then the space of self-adjoint extensions of the Laplace-Beltrami
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operator A is parametrized by unitary operators at the boundary U €
U(L*(0V)). The structure of such extensions is discussed in [Ib15] (for
instance, see also [As05]). We will select among them the class € of self-
adjoint semibounded extensions with lower bound ¥ > m?, then the
operator A + m? > 0 and B will be well-defined. The domain of B will
be contained in the Sobolev space H'(V) and will be given by functions
satisfying the boundary conditions given by Asorey’s equation:

o ip=U(p+ip).

In addition, if we choose boundary conditions in such a way that the ex-
tended operator Ay is elliptic, i.e., U belongs to the Elliptic Grassmannian
space of elliptic self-adjoint extensions of A [As05], then because V is com-
pact, well-known results assert that the spectrum of Ay is discrete, finitely
degenerated and its eigenfunctions are smooth functions.

Hence, we may assume, as it was done above, that the spectrum of B
is discrete, non-degenerate and ®y(x) are smooth functions in L?(V).

Equation (4.5.11) may be transformed into a first order evolution dif-
ferential system by introducing the new fields:

¢=B"2p, =B Y, (4.5.14)

(notice that B2 is well defined because B is positive and invertible) and
the equation of motion (4.5.11) for the field ¢ takes the simple symmetric

form
FO-(5 DO

Then, the equations of motion for the Klein—Gordon field constitute
an infinite-dimensional extension of the dynamics of a finite number of
independent oscillators, (4.3.4). Using the Fourier expansion of the real
fields ¢ and 7 (that here we may consider to be in L?(V)) with respect to
the eigenfunctions ®; of B:

() =) G®k(@), ) = > mPi(w), (4.5.16)
k=1 k=1
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with
& - @@z, n= | n(@)en@)’e,
1%
then, the mechanical variables

Nk
= Jw = — 4.5.17
T = VWi, Dk o ( )
can be interpreted as position and momentum for a one-dimensional oscil-
lator of frequency wy and their evolution in time, given by eq. (4.3.2), as a
trajectory in phase space ) = R?®.
If we compute the Hamiltonian of the system, we have that

1f (¢7 + V- Vo +m?e?) dlx

Hlpl = 5
v

0
1>+ 1Bl?) Z R(€R + 7). (45.18)

l\DM—A

= - (I

In the presence of field fluctuations, we introduce a statistical interpre-
tation to the mechanical degrees of freedom (g, px) of the field ¢(x). Thus,
the classical statistical description of the field, whose physical meaning cor-
responds to the probability that a certain fluctuation of the field takes place,
will be provided by a probability law p on the infinite-dimensional phase
space R?®. Therefore, in the presence of field fluctuations, the state of
the field will induce a marginal probability density on each mode pg(qx, pr)
defined by

a0
Pk (@ i) = f p(q1, G2, Qs iDL P2 Dy - ) | [ dardpr.
R2© l#k

Such marginal probability could be understood as a probability density for
the k-th mode of the field ¢ described by the one-dimensional oscillator
with Hamiltonian Hy (&, ng). Similar considerations could be applied to
finite-dimensional subspaces of modes of the field, whose statistical and
tomographic description would be made as in section 4.3.
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The canonical or Gibbs state for the field ¢ () is given by the probability
distribution on the infinite-dimensional phase space of the system as

Pean(&1,62, ... iM1,12,...) = Ne ﬁ/szIWk(§z+n%)a (4.5.19)

with /N the normalization factor of the state. If we compute the integral to
get the normalization factor, we have:

© o
J e B/Qklek(fiwi) Hdgkdnk
k=1

(M1 (hsan)] = [per(28)] - caso

Because of the infinite product, we must regularize the determinant
of the operator B by using, for instance, the (-function regularization of
determinants [E194, page 9] defined by:

RQOO

Det (fﬁB) = exp[ g’ﬁrB(o)] : (4.5.21)

where ( g B(s) denotes the generalized Riemann’s {-function:
2m

Cople) =Y (;wk) N

k=1
The justification of equation (4.5.21) is very simple. Let us define

~ f
B-Ln
o’

~

with spectrum o(B) = {0 <@ <@y < -+ <@ < ---}, where

O = — W
o
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hence, if we differentiate the (-function

0
1
:ZE

3
—_

thus, we will get:
! © * ~
e 50— exp <log (H cbk)) = Hdzk = Det B.
k=1

Let us remark that if the operator B is finite-dimensional, defined on a
space of dimension n, then

n
Det B = [ [ @y = det B. (4.5.22)

Let us compute the value of Det B, eq.(4.5.21), in an explicit case.
Suppose that @ = k with k =1,2,..., then

3 5 =)

S
©
Il
P8

i.e., (3(s) is the Riemann’s (-function and then, it is well-known [An99,
page 16] that

G0) = = Ch(0) = %logQw.

Hence,

Det <2€TB> — exp <; log 27r> =/2r. (4.5.23)
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Thus, the canonical state for the real scalar Klein—Gordon field is defined
as the Gaussian measure (4.5.19) with variance

1 B 1
0=——|Det| —B
7o e (5]
on R2®. The canonical ensemble for the Klein-Gordon field at finite tem-
perature T' will be written in the usual form:

dﬂcan[@] =Ne pHIg] Do, (4524)

with the symbol Dy denoting the “infinite dimensional” measure:

00]
Dy = [ | dgrdps.
k=1

In what follows we will use this notation to remove infinite products.

Moreover, if F[¢] denotes an observable over the field ¢ (like energy,
momentum, etc.), then the expected value of F' on the canonical distribu-
tion will be given by:

f Flp]e PHIFIDy

<F>can = R . (4525)
f e BHle] Do
RQ%

The tomographic description of the states of the Klein—Gordon field
will be performed, as in the case of an ensemble of harmonic oscillators, by
choosing the spaces

0
M=R>**® and N = HNk,

k=1
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with NV}, the space of straight lines on the phase space of the one-dimensional
oscillator (€, mi). Then, as in eq. (4.3.10), we will define:

me[XaH,V]Zf peanl&nl [ [ 0(Xk pbi i) iy,
R20 k=1
— [ e IS (X @) ue)t@) vi@m@)] DD (15.20)

R20

Here, the Dirac functional distribution must be understood as an infinite
product':

0[X(x) n@)é(@) vimn@)]=]]0Xk mé& vene)
k=1

=f exp | i | K(x)(X(x) plx)é(x) V(m)n(m))dda: DK, (4.5.27)
R® 1%

where X (x), p(x) and v(x) are fields whose expansions over the modes wy,
of the field p(x) are given by:

k=1
p) = > m®r(z),  v@) =) ndi(z). (4.5.28)
k=1 k=1
Notice that

0 0 0
Xl = | 3 Xee | < 3 IXull@elz = ) 1%,
k=1 k=1 k=1

TNotice that we are omitting here a normalization factor that will be absorbed by the
regularization used in the definition of the integration over the spaces of fields £ and 7.
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therefore, the field X (x) is in L?(V) if the I!-norm of the vector X =
(X1, Xo,...) is finite. Moreover, we may consider X (x) to be a distribution
as follows. Let ¢ be a test function, then let us define

X[6] = > X @, ), (4.5.29)
k=1
and we see that
IXT[1] < D5 1XklKPry )] < D 1 Xkl 1@ ]2 )62
k=1 k=1

_ (2 ,Xk|> 612 = 1 1ol

k=1

then, it makes sense to consider that the fields X (x), pu(x) and v(x) are
distributions on V.

Notice also that the time dependence of the various fields is encoded in
the coefficients of the corresponding expansions. Hence, from eq. (4.3.11)
putting n = o0 and using the homogeneity property (4.2.5), we have that
the tomogram of the canonical state of the Klein—Gordon field is:

Wﬂcan[Xulj“vV]:H 6w}€)exp< W)

i1 \ 2 + v (1j; + 1)
1/2 0 1 x© w S92
= [Det (;B)} [H 5 2] e P22 wnXi

Xk

\HE VR

And if we define the self-adjoint operator A[u,v]| depending on the fields

w(x) and v(x) as
Alp, V] @k () = A/ 12 + v} Oy (), (4.5.30)

with
X =
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hence, we finally have:

ﬁ 1/2 1 8 1/2 X2
W ixad = et (BB L smmese s
Pcan[ 7/"l’7y] |: € (27T >:| Det(A[lu7y])e 7 ( )

and the reconstruction formula of the state can be performed by means of
eq. (4.2.10):

pcan[‘fan] = J w can[X7 1y V]

R3%0

- exp ZJ(X(:IB) w(x)é(x) y(m)n(m))dd:c DXDuDv. (4.5.32)
1%

4.6. Tomographic picture of continuous modes

If we consider the scalar field in a finite volume cavity or in the full
Minkowski space-time for instance, many or all of the modes of the system
will become continuous. For simplicity, we will assume that we are dis-
cussing the field again in the 1 + d Minkowski space-time M = R!'*¢ and
the continuous modes of the fields ¢(x), £(x) and n(x) are described by
the wave vector k, that is:

&(x) =J (Ere FT e e ®)dlk, etc. (4.6.1)
1%

Now, a state of the field ¢ will be represented by a probability measure
pl&, 1], again non-negative and normalized. Notice that the fields {(x) and
n(x) are, in general, any parametrization of the phase space of fields which
leaves invariant the canonical measure, i.e., Dy = DEDn and satisfy the
canonical commutation relations:

{¢@),ny)} =04z y), {&=).&@w)}={n(x),ny)}=0. (462)
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An example of such states will be given by the canonical ensemble, that
is, the Gaussian measure whose covariance is given by the operator B as
n (4.5.24):

dpican[p] = ¢ PHPI DY — ¢ BHIEM DeDy), (4.6.3)

with the normalization constant N absorbed in the definition of the mea-
sure.

We will consider, as analogue of Gibbs states, states that are absolutely
continuous with respect to the canonical state, i.e., states of the form:

pslelDy = fI€,nldbcan, (4.6.4)
with
fl€;m] =0, J‘ﬂ&ﬂeﬁmmM%DnzL (4.6.5)
R2

Even though, at a formal level, we may introduce as in (4.5.26) a to-
mographic probability density for a state of a field of the form (4.6.4) as a
functional of three auxiliary tomographic fields X (x), pu(x) and v(x) and
apply, at the functional level, the usual Radon Transform. The expan-
sions (4.5.28) will be replaced by the Fourier Transform:

X(z) = (%rl)a,pf (Xpe **4+X pe*®)d'k,  etc. (4.6.6)
%
Therefore,
nan f flemolX (@) pl@)ez)  v@n)]e PHED DeDy,

R0 (4.6.7)

and the Inverse Radon Transform is given again by:

fKM=JMHXmﬂ
R3OO

- exp ZJ(X(%) w(x)é(x) y(m)n(m))ddm DXDuDv. (4.6.8)
1%
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The tomographic probability functional (4.6.7) has, by construction, the
well-known properties of non-negativity and normalization:

WX, 0] > 0, f WX, s v]DX = 1. (4.6.9)

RQOO

These formulas hold true for any value of the auxiliary fields X (x), u(x)
and v(x).

In the current case, the manifold N used to construct the Generalized
Positive Transform, is described by the tomographic fields X («), pu(x) and
v(x), which would be a continuum version of the finite-mode version of the
straight lines

Xe k. vemr = 0. (4.6.10)

We will end this discussion by emphasizing again the homogeneity prop-
erty of the tomographic description of the scalar field we have just pre-
sented, homegeneity that is described by the condition:

) 1) 1)
X))

+ 1] WX (), (), v(z)] = 0.
(4.6.11)

4.7. The tomographic picture of the evolution equation for clas-
sical fields

In the previous section, we have seen that the state of the classical
scalar field ¢ can be described either by a probability density functional
p¢l€,m] on the field phase space or by the tomographic probability density
functional W¢[X, i, v]. Both probability density functionals are connected
by the invertible functional Radon Transform egs. (4.6.7) and (4.6.8) and
in view of this, they both contain equivalent information about the random
field states. The dynamical evolution of the states of the field ¢(t, ) can
be determined by the Euler-Lagrange equation (4.5.9).

If the Hamiltonian providing the evolution of the field is given by
Hlyp| = H[{,n], in a similar way as Liouville’s equation of a system of finite
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degrees of freedom (4.3.6) is a consequence of the Hamiltonian equations
of motion (4.1.7), then from the similar ones of a Hamiltonian field (4.5.7),
we can obtain the Liouville functional differential equation

0
—pr = H 4.7.1
8tpf {pf7 }? ( 7 )

where here, the functional Poisson bracket {-,-} is given by:

_[(0F 0G  GF 5G \ .
{F’G}‘L (iwne R a2

for any functionals F' and G.
Therefore, working as in section 4.4, we get the tomographic evolution
equation for fields:

d SH 0 Lo
a VXl :J [ow) ({g(w) - [5}((;::)} 5“(‘”)}7
%

And for the case in which the field is a collection of non-interacting oscil-
lators described by the potential energy
1

Vig] = 5m?e® (4.7.4)



4.7. The tomographic picture of the evolution equation for classical
fields 159

parametrized with the fields (4.5.14), therefore the equation (4.7.3) be-
comes:

%Wf (X, p,v] = J B [u(x) e () 51/(96)] Wi[X, p,v]die. (4.7.5)
%






Tomography in Quantum Field Theory

5.1. From Quantum Mechanics to Quantum Field Theory

In chapter 1, it was shown how Quantum Tomography is in a sense
a natural continuation of ideas born in classical telecommunications. For
that, it was shown that after a canonical quantization of the E.M. field,
some of these ideas could be extended to describe the states of photons.

The quantization of the E.M. field used in section 1.5 is perhaps the
simplest way to proceed when dealing with a classical field and was tradi-
tionally called canonical second quantization. There is not a natural tran-
sition from Quantum Mechanics to a Quantum Theory of Fields, thus we
will not pretend here to do a full development of a tomographic description
of arbitrary quantum fields. However, what we will do will be, using as
inspiration the canonical quantization of the E.M. field, to work, system-
atically, the example of a free quantum scalar field in a cavity and provide
a tomographic description of some of its quantum states. Notice that such
quantum field can be described as an infinite ensemble of harmonic oscilla-
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tors and then, using again the techniques developed in chapter 2, we will
be able to obtain nice tomographic pictures for it.

Quantum fields can be described axiomatically in various (equivalent)
ways. We will use here the Wightman-Streater axioms [St64] which are
closer to the formalism developed so far and we will use an adaptation of
Group Quantum Tomography based on Poincaré group, similar to the one
developed in section 2.5, to construct a tomographic description of them.

It is a fundamental axiom of the theory that the space of quantum
states supports a unitary representation of Poincaré group. Then, we will
use such data as a main ingredient in the construction. In this way, the
constructed tomographic theory is explicitly Poincaré invariant, something
that is not obvious at all in the canonical picture.

We will end this chapter by proving a reconstruction theorem that shows
that the tomographic picture is equivalent to the Wightman—Streater ax-
iomatic picture.

5.2. The holomorhpic quantization of the scalar field in a cavity

Similar to the classical setting discussed in section 4.5, let us consider
Minkowski space-time M = R!'*¢ with metric of signature ( ,+...,+). Let
us consider again the Cauchy hypersurface C = {0} x R? and the compact
smooth cavity V < C.

We will consider a scalar field ¢ : R x ¥V — R where the dynamics is
given by Klein—Gordon equation (4.5.10). Such field can be used to describe
a number of physical systems, but for the moment, we will be considering
just its mathematical aspects.

The canonical quantization of the classical field ¢ and its momentum w
is obtained by defining the canonical commutators for the quantum fields
@ and 7 with the Dirac’s correspondence principle:

Hence, the equal time canonical commutators are:

[o(x), m(x)] =ib(x ), [p)n(@)]=|r),x@)]=0 (522)
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The fields &(x) and n(x) defined in (4.5.16) become now quantum field
operators:

(@) = ) &Pi(x), @) = ) m®x(w), (5.2.3)
k=1 k=1

where the operators &, and n;, satisfy the commutation relations:

(&) =6k, [€r&] = [mm] =0, kI=12,.... (524)

As it was done in the study of the harmonic oscillator in subsec-
tion 2.8.3, it would be convenient to deal with the quantum scalar field
by using the corresponding extension of the holomorphic quantization (or
Bargmann—Segal quantization scheme) discussed in subsection 2.8.1.

For that, we will proceed first to construct the Fock Hilbert space of
the system. Consider the family of creation and annihilation operators aL,

ayp, by means of:

1 ) t 1 )
ay = — + M), a; = — M) 5.2.5
k \/§(£k M) k \/i(fk M) ( )
Clearly, we have the canonical commutation relations:
[ak,a” = g, [ak,al] = [al,a” =0, vk, 1. (5.2.6)

The Fock space of the theory is the Hilbert space F4 generated by the
set of vectors

{a],-a] 10>}, (5.2.7)
where |0) denotes the ground state or vacuum of the theory that satisfies:
a0y =0,  Vk. (5.2.8)
The multipartite state corresponding to the modes kq,...,ky will be
denoted as |1k, ..., 1y, ) and:

ooy Ligy = af oeal [0y, ki, kv =1,2,.... (5.2.9)
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The inner product is defined as:

B 1 if JoeSy st ki=ls3),
Ay Iy Ly - gy ) = Onar - {() otherwise.

(5.2.10)
Thus, the particle state corresponding to the mode ®; will be denoted as:

1) = al|0), (5.2.11)

and because of the bosonic nature of the field, a state of N particles will
be:

1
|nk1?nk27""nkN> = \/nk- 'nk- | | (a;;;l)nkl(aLQ)nkQ
1 2

Poeong,!
- (af, )™V [0y (5.2.12)

Therefore, the Fock space Fy, can be written as follows:

Foo =Span{|ng,, ...,y |YN €N, ki,....kn =1, ngy, ..., ngy =0}
(5.2.13)
The canonical state may be defined as the “quantization” of the classical

one:
p(&,m) = e PHEN, (5.2.14)

then, we can define the quantum canonical tomogram for the canonical state
of the theory in analogy with (4.5.26):

Wy can| X, pt,v] = Tr (e BH(&m)
S(X (@)1 p(x)é(x) V(m)n(:c))). (5.2.15)

In general, if p denotes a state of the quantum field ¢, that is, a density
operator on the Fock space of ¢, we will define its quantum canonical
tomogram as:

Wl X, v] = Te(pd(X (@)1 pl@)b(x) vi@m(@)).  (5.2.16)
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in close analogy with the definition of quantum tomogram given in chap-
ter 2.
It is easy to show that defining the complex fields

1 1 <
w=—=(ux) +iv(@) = —= ) (e +ive)Pr(x)
V2 V2 kzl
and
1 L e (5217)
w=—(ulx) v(r)=— e i) Pp(x), 5.2.17
V2 V2 &5
with components
Wk = pg + Wk, W = fi Wk,
the quantum canonical tomogram of the ground state p, = |0)(0| of the

free quantum field ¢ is given by:
WeolX,w, @] = Tr(pyd (X ()1  wW(z)a(z) w(z)a'(z))), (5.2.18)

where

l\D
e
I
—

oo 1 oo
=Zwka Zuk+zvk<1>k )L
k=1

and

Hence, we will obtain:
0
WqO[X w, ’LU f 1_[ (X, 1 Wrar wrar ) %
Rre =1

. (5.2.19)

-11 f 01D ()

o0]
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where 2z, = ik,w, and D(z,) denotes the displacement operator:
T2
D(z) = egr®r =%, (5.2.20)

Notice that
D(z)|0) = |z), (5.2.21)

where |z,) is the coherent state defined in (1.8.2). Therefore, from (2.8.12)
we have that

Olzry =e 2, (5.2.22)
hence,
o 7 dk
| — ik’V‘X’l‘ k%lw”‘|2 T
VVQ’O[X,w,w]—7[[1 Je e /2?
- o0
o0 1 9
=[[p| =g “/uied), (5.2.23)

Notice that the divergent factor appearing in the r.h.s of this formula can
be analyzed as in section 4.5 using the (-function regularization of de-
terminants (4.5.21). Thus, if we consider the self-adjoint operator A[u,v]

with eigenvalues
lwg| = A/ 12 + V2, (5.2.24)

then, if |mwy| > k, we have that the formula (5.2.23) is finally written as:

1 2
Weol X, w,w] = ——— e X7, 5.2.25
| ] Det (A[y, v]) ( )
where recall that the definition of the coefficients of X is

Xk

\ HR Vi

% -
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5.3. Wightman—Streater axioms of a Quantum Field Theory

The Wightman—Streater axioms [St64, ch. 3] for a Quantum Field The-
ory provide an axiomatic setting to describe a quantum scalar field ¢ in
Minkowski space-time M = R'*3. The main ingredients of the theory are
a complex separable Hilbert space Fy, a distribution in Minkowski space-
time with values in bounded operators in Fo:

¢ :DM) - B(Fs), [ plf), V¥feDM), (5.3.1)

and a unitary representation U of the proper orthochronous Poincaré group
Pl =R* x Ly (see appendix A) in Fy:

U:Pl > UFy), {Aa}weU(Aa), V{Aa}ePl. (532)

The states of the theory are described by unit rays in the Hilbert space
Foo- The relativistic transformation law of the states is given by the contin-
uous unitary representation U(A, a) of the proper orthochronous Poincaré
group PL Since U(1,a) is unitary, it can be written as

U(l,a) = e@Pu,

where P, are the unbounded self-adjoint operators representing the energy
(= 0) and the momentum (p = 1,2,3) of the theory. These operators
satisfy P#P,, = m?. The spectrum of the energy-momentum operators lies
inside the future component of the hyperboloid H,}:

U(P“)CH;L: {pMeR4| p%+p2:m2,p020}.
All of this is subjected to the following axioms:

1. Existence of the vacuum:

This first axiom requires the existence of a unique state |0) in the
Hilbert space F such that

U (A,a)|0) = |0). (5.3.3)
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ot

. Completeness:

The set of vectors in the Fock Hilbert space Fo,

{e(fa) - e(f1)10)}, (5.3.4)
for all n € N and any set of functions f; € D(M), ¢ = 1,...,n, is dense
in Foo.

. Covariance:

The scalar field ¢ must transform, under the action of the Poincaré
group 731, in the natural covariant way:

U (A7 a) So(f)U (A, a)T =@ ((A7 a)* f) ) (5'3'5>

where (A,a)*f denotes (A,a)* f(z) = f((A,a) ' ). Notice that in
the rest of this thesis,  will denote vectors in the spatial part of R3
and x will denote events, that is, x € M.

Microscopic causality:

If the support of the test functions f and g are space-like separated,
ie., if f(x)g(y) = 0 for all pairs of points x and y in M such that
x y is space-like (see 2 in appendix A) then:

[e(f), p(g)] = 0. (5.3.6)

. Asymptotic completeness:

In a collision of particles, we will require that Hilbert spaces before
and after the collision are equal:

Fit = Fopo = FO". (5.3.7)

There are several approaches to this notion, but the one which is
closer to the other axioms is due to Haag and Ruelle. Ruelle has
shown that axioms 1-4 imply the existence of collision states, that is,
incoming and outgoing states of one, two, or more particles provided
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that the one-particle states may be created by a polynomial in the
fields. Then, one can formulate this axiom in terms of these collision
states. More information may be found in [Ha59, Ru62].

5.4. Smeared covariant characters and tomograms of a quantum
real scalar field

In analogy with the smeared characters of a quantum state discussed
at length in section 2.5, eq. (2.5.6), we can extend this notion to quantum
states of fields using the unitary representation U of the Poincaré group 731
provided by the theory. Given a family of test functions fq,..., f,, we will
define the smeared covariant character of the state p corresponding to the
vector p(fn) -+ p(f1)|0) in Fo as follows:

Xo(fise o fu) = Te(pU(9)), g =(Aa)ePL. (5.4.1)

Notice that in this case (where the scalar field ¢ is real):

Xg(f1,- -5 fn) = Ol@(f1) - @(f)U(g)p(fn) - - p(f1)[0). (5.4.2)

In this formula, we should divide by the factor (0| ¢(f1) - @(fn)p(fn) -
@(f1)|0) to normalize the state p but for simplicity in the writing, we will
assume in what follows that the state is normalized.

Applying axiom 3, we get after a simple computation that

Xg(f1- o fn) =<0l@(f1) - p(fa)p(g™ fn) - p(g" 1) 10y, (54.3)

where g*f(z) = f(g '-z).
The r.h.s. of the equation (5.4.3) defines a distribution in M x 2% x M
that can be written as:

Ofp(f1) - p(fa)p(g" fn) - @(g" f1)0)
:Wnn(fla'">fn7.g*fn7---,g*f1), (544)
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where W,,,, are Wightman functions [St64, page 106]. We can write this
distribution as a linear functional:

Wnn(flu-- . 7fnvg*fTI7' . '7g*f1) :J fl(xl) o 'fn(.fn)Wnn([Bl,... y Ty
MQn

n’
and, in what follows, we will just use the kernels

1 / 1 /
Wnn(wla---axn7g Tpyeeen g 'xl)

= Ol (a1) - p(za)plg - al)--plg '-21)[0) (5.4.6)
instead of the full functions. Now, we will use the notation z = (x1,...,z,)
to indicate the collection of n points in Minkowski space-time, x; € M,
i=1,...,n,ie,zeM" Then, g-z=(g9-x1,...,9x,) is the diagonal
action of 771 on x.

By analogy, we can write the kernel of the smeared characters as follows:

Xg(.’B,.T/> = Xg(l'l,- . 'axnax;w"wm,l)
= Won(z1,..., %0, g Yoal g lxll) (5.4.7)

In the following enumeration, we will write the properties that satisfy
the kernels of the smeared characters induced by the axioms presented in
the previous section and the properties of Wightman functions.

(a) Covariance:
Xg(hz, ha') = xp-1gn (2, 2'), Vg,h e ’PL (5.4.8)

This property comes directly from a direct application of the covari-
ance axiom 3. Notice that the Wightman functions (5.4.6) are invari-
ant under the action of the group, this is:

Won(z,2") = g Won(z,2") = Wyn(g - 2,9 - 2'), (5.4.9)

hence, from this fact, (5.4.8) is easily obtained.
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(b) Hermiticity:
Xg(,a') = xg-1 (2, ). (5.4.10)
This property is also obtained from the invariance of the Wightman

functions under the action of the group (5.4.9) and the unitarity of
the representation U.

(c) Positivity:

Z fi(z ol (z,2") fj(2")d"z d 2" = 0, (5.4.11)
M2n J 1
for all N in N, f; in D(M) and g; in 731, i=1,...,N.

The proof of this property is a direct consequence of the positivity
(see also Thm. 2.2.2) of the smeared characters x4(fi,..., fn):

N
Xy, (1o ) = D0 G&Wan(frs- - s (95 197)

Mz

2,7=1 7,7=1
(g g ) =2@@ff1x1 TFulen)
t,j=1 M2n

W ( (gz ) )fn( P fr(2))d e d™a

N

Z (&fri(@1) - fr(@n)) Wan (2, (9; Tg5) '+ a')

M2n i7j=1
' (fifn(l”%) e f1(95'1))d”x d"ax’
N
B f 2 mnglyj (z,2")hj(2")d"z d 2.

V2w 31
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(d)

Local symmetry:

/ /
Xg(T1se ooy Ty Tjgdy ooy Ty Ty o - T7)

/ /
= Xg(@1, o, Tjr1, Ly ooy Ty Ty, - - - X)),

provided that |xz; x;41] > 0. This property follows immediately
from microscopic causality (axiom 4).

Clustering;:
im x(1,q)(7,2") = Wy (z) W, ('), (5.4.12)

a— 100

where W, (z) is the Wightman function:
Wi (z) = O] ¢(z1) - - p(2n)]0). (5.4.13)

This property is obtained from the clustering property of Wightman
functions, that is, Wightman functions factorize when the points z
and 2’ are asymptotically apart (see [St64, page 111] for mathematical
details). We will provide a physical interpretation of this property.

Let us see that

X(Il,a)($7l‘/) = Wnn(I',SL'/ a)
= Olp(@1) - plan)p(z, a) -y a)]0). (54.14)

The smeared character x(q,q) (z,2") is the expected value of the state
p when the second n arguments are translated by the 4-vector a.
However, if the events in  and 2’ a are separated enough to not
be causally related, what happens in x will be independent to what
happens in 2’ a, then the expected value should be the product of
the expected values in both events:

Olp(@r) - plan)p(a, a)---pl) a)l0)=
Olp(1) - (an) [0)Olp(a,  a)---p(z1  a)]0), (54.15)
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which is the property we have enunciated.
|

The Wightman function W, (x) for odd n is equal to zero. It is a
fact that can be directly determined from the explicit form of the
solution of the scalar free field Klein—-Gordon equation (4.5.11) with
( an operator,

3
o ol gren) TP 5 6)

1
p(t,x) = f \/TTP (ape (27‘1’)3
R?j

where I, = p° = A/p? + m?, because of the commutation relations of
the annihilation and creation operators (5.2.6) and because the action
of the annihilation operator on the vacuum vanishes (5.2.8).

Then, the clustering property for odd n gives:

lim  x(q,q) (z,2') =0, (5.4.17)

a—=+00

and for even n, we may write it in terms of smeared characters:

Jm X a (2, ') = X0,0) (%15 -+ Trj2s Trjasts - - Tn)

X0 (@3 T gy T e Th)- (5.4.18)

Finally, let us finish this section by writing the tomogram of a pure
state of the quantum scalar field corresponding to an element £ of the Lie
algebra of the Poincaré group 771. The tomogram is obtained by applying
Thm. 2.6.3:

Wq,f1,...,fn(X;§) = Tr(pé(X]l <®,§>))
=0[@(f1) - e(f)0(XT (©,)|e(fn) - @(f1)[0). (5.4.19)

Recall that the Lie algebra of the Poincaré group 771 is the ten-dimensional
Lie algebra generated by P, (corresponding to the translation part of R!*3)
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and M, (corresponding to the Lorentz group SO(1,3)), where u,v =
0,...,3, and with commutation relations:

[Pua Pu] =0, [Mum Pa] = i(gauPu gaVPu)v
[M,uzn Maﬁ] = i(.guonuﬁ guﬁMzza gz/aMuﬁ + gVBMua)7 (5-4-20)

where o, 8 = 0,...,3, g, is the metric tensor, and M, is the infinitesimal
generator of the proper orthochronous Lorentz group Lg*:

U(A, ) = el@P" ¢ /oM (5.4.21)

where a,, is the four-vector denoting the infinitesimal translations of the
origin and wy, is a rank-2 antisymmetric tensor defined by the matrix
elements of the infinitesimal Lorentz transformation A:

Ay = O + Wy (5.4.22)
Therefore, if (@,&) = £ belongs to the Poincaré algebra P_TH we get:
1
€= a P wuM" (5.4.23)
and the tomogram becomes:
1
Watronfn(Xswuw, ay) = Tr(pd (X1 a,PH + inMW)). (5.4.24)

Also recall that again the smeared characters X(Wuwau)< fi,-+-, fn) and the
tomograms Wy ¢, .. 1, (X;wu, a,) are related by a Fourier Transform:

o0]

fe FE X oo o) (1o - fn)dk. (5.4.25)

0

1
Wq7f17"'7f’ﬂ (X; wl“” aﬂ) = %
These formulas also hold for the corresponding kernels W, ; o/ (X wuw, ay)
and X(w,,,.a,) (T, 7).

*See appendix A or [Cal5, section 4.6] for more details.
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5.5. A reconstruction theorem for states in Quantum Field The-
ory

Here, we will present a variation of the reconstruction theorem of Wight-
man—Streater stated in terms of smeared characters and we will give a
sketch of the proof. After that, to finish the reconstruction process for
states, we will see in which cases we can find an orthogonality condition
that allows us to obtain the state p through an expansion in the represen-
tation elements U(g), g in 731.

Theorem 5.5.1. Let {Xg(l‘l, U R A ,x'l)}, n=12,... be a family
of distributions with g = (A, a) € 73_1 forany x1,xa, ..., xy and 2y, 2, ... ),
in Minkowski space-time M. Suppose that these distributions satisfy the
properties (a)—(e) stated before for all finite sequences fi(x1), fa(x2),... of
test functions. Then, there exist a separable Hilbert space Fy, a continu-
ous unitary representation U of 771 in that Hilbert space, a unique state |0)

invariant under U(A,a), and a scalar field ¢ such that:

Ol (1) - plza)plg '-al)---plg 21100 = xg(@1, ., @0, 2y, 20).

Proof: The proof of this theorem is inspired directly in the original the-
orem stated in [St64, page 117]. We will show only part of the proof,
mainly the reconstruction of the Hilbert space Fy, the vacuum state |0),
the representation U and the scalar field ¢.

Let us begin with a vector space H formed by sequences (hg, h1,...) of
test functions where hg is any constant function and h, e M", n =1,2,...:

hi(z1) = fi(x1),
ha(x1,72) = fi(21) f2(22),

hn(l‘l, Ly e v ,{L‘n) = fl(xl)fg(aig) e fn(l‘n) (5.5.1)
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Addition and multiplication by scalars, are defined in the usual way:

(h07 h‘la . ) + (koakla . ) = (hO + kOa hl + kla e ')7
Oé(ho,hl, .o ) = (Oého,Oéhl, e ) (552)

To obtain a Hilbert space, we need to define an inner product {-,-).
Because of the positivity property (c), it is natural to define:

0 ¢]
(hy k) = Z f hz‘(iﬂl,---;%‘)Xg;lgj(wl,--~7$i,$},---,9311)
1520 g2

ckj(ay, .. af)day - - dagdaly - - da. (5.5.3)
Notice that this inner product satisfies:
(hoky = T, Ty, (5.5.4)

thanks to the Hermiticity condition (b). And also, from the positivity
condition (c), |h[? = (h,h) = 0.

Let us define now the linear transformation U(A, a) on the vector space
given by:

U(A,a)(ho, hi, ha....) = (ho, (A a)*hy, (A, a)*ha, . ..), (5.5.5)
where
(Aya)*ho(z1, .. 20) = ho(A Y1 a),...,A Yz a)). (5.5.6)
If we denote the vector (1,0,0,...) by |0), we have:
U(A,a)|0) = |0). (5.5.7)

Notice also that the operator U(A,a) leaves invariant the inner product
defined before in (5.5.3) by virtue of the covariance condition (a), and it is
a representation of the Poincaré group 731 because it verifies:

U(A1,a1)U (A2, a2) = U(A1A2, a1 + Ajaz). (5.5.8)
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Let us introduce now the linear operator ¢(f) defined for each test
function f:

o(f)(ho, h1, ha,...) = (0, fho, f @ h1, f®ha, ...), (5.5.9)

where

(f®hn)(1,.. s xny1) = f(x1)hn(z2, .. s Tny1) (5.5.10)

is a test function too. If we apply the operator U(A,a) to the operator
P(f), we get:

U(A,a)(p(f)(ho,hl,...) = U( ,a)(O,fhg,f®h1,f®h2,...)
= (0, (A, a)* fho, (A, a) f®h1,...)

( A,a)*f) ho, A a hl,...)

(A, a)* f)U(A, a)(ho, b, ...), (5.5.11)

hence, we have that

U(A7 a)‘f’(f)U(Av a)T = ‘P((Av G,)*f),

i.e., the linear operator ¢(f) satisfy the covariant transformation law (ax-
iom 3), then ¢ is a quantum scalar field.

At this point, we have found a representation U of the Poincaré group
731, a vector |0) that is invariant under the transformation of the group, a
scalar field ¢ and a vector space H that can be created by the recurrent
action of the field over the state |0). Therefore, to conclude the proof we
should show that the Hilbert space Fo, is the completion of the quotient
of that vector space H with the space of distributions different from zero
with norm 0. This process can be done in a similar way as the GNS
construction described in section 2.1, for that, we will not repeat it.

Also, it remains to prove that the state |0), invariant under the group,
is unique, however we will not show that in this text.

|

To finish this section, we will find a biorthogonal condition for the uni-

tary representation of the Poincaré group to obtain the formula that allows
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to reconstruct the state p. Because the states prepared in the laboratory
are static in time, we will consider the subgroup of the Poincaré group with
no translation in time, then let us compute the following trace:

Tr(U(A, a)U(N,d)T), (5.5.12)

where a = (0, a).

First of all, let us make a few remarks about the standard situation
when d = 3 (M = R!*3), however the generalization to any d can be made
in a natural way. We will consider the Lorentz invariant resolution of the
identity and the inner product of Lorentz invariant momentum vectors:

3
1= (2;)3f |p><p|;iEpp, (plp’y = 2E,(2m)36(p p'),  (5.5.13)
R3

with E, = 4/p? + m?. Now, we can compute the trace (5.5.12):

3
T (UL U )) = s [ BT U ) 52

RB

Hence, using the transformation law of the Poincaré group (5.5.8), and
splitting the representation U in the part corresponding to the translation
subgroup and the part corresponding to the Lorentz group:

U(A,a) = " Puy(p), (5.5.14)

we have:

1 d3p
- A A ) IpS—2
| UV )
R3
_ 1 r 1 1 d3p
- G | @TAN e A Y
R3

1 ; I—1\H v d3p
_ - i(a* (AN ~H)pad")P 1 it 4
R3



5.5. A reconstruction theorem for states in Quantum Field Theory 179

1 . 1—1\K v d3
_ ila (AN~HEa)P In 1, \4P
(27T)3J<P|e VA g
R3
1 . I—1\E (A A—1YT d?
— i(a* (ANHPa)(NATY) ] pr / 1 7p
(27r)3je TPINA TpoE
R3
- f ella (ANTHEWATDIer 5((1 A'A Hp)d®p. (5.5.15)
R3

Notice that the delta function §((1 ~A’A !)p) is different from zero only
if A = A’, hence we have formally:

/ 1\ _ Q0 AZA/?
S(A'A 1Y) = {0 Az A (5.5.16)

Thus,
5(A'A l)f il (ML WA g3 §(ATA 1) f e g,
R3 R3

and because we are supposing that there is not temporal translation, we
get:

5(A,A I)J ei(a“ a'M)py d3p= 5(A/A I)J ei(a a’>pd3p
R3 R3
= 27)6(NA Yé(a a'). (5.5.17)

Then
Tr(Up(A, a)Up(N, @)T) = (27)36(A'A Y)o(a  a), (5.5.18)

where Uy(A, a) is the representation of the Poincaré group with no temporal
displacement:

Up(A,a) = e@Pe r/2M™ (5.5.19)
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Finally, we can write a formula similar to (2.8.5) for the subgroup of the
Poincaré group with no temporal displacement:

o0 OO
3JJ X(A,a)(f15 -5 fn)Uo(A, a)TdﬁAd3a
o0 00
1

= 2n) J XU (A, @)Wy gy 1 (X5 A, @)dXd°Ad%a,  (5.5.20)

R3

where Wy 7, .1, (X; A, a) is the tomogram given by (5.4.24) with a = (0, a).

5.6. Canonical tomograms of a real scalar field

Let us consider the commutator of the annihilation and creation oper-
ators given by:

[GP’GL’] — 2m)36C (p P, [ap, ap | = [aL,aL,] =0, (5.6.1)

and let be the vector ¢(f)|0) and its corresponding pure state p:

= e ()10)X0e(f)] =Jf(f13)|<P(fE)|0><0|<P(y)If(y)dwdy- (5.6.2)
M2

The canonical tomogram of the state p of a scalar field is defined as (recall
eq. (5.2.18) in section 5.2):

Wy r(X,w,w) =Tr (p6(X1 wap waL))

=Jf(90)<0|90(96)|5(X11 wap  wal)le(y)|0) f(y)dzdy, (5.6.3)
M2

hence, let us compute the kernel of the tomogram:

Waay(X, 0, @) = Ol p(@)|6(X1 wap  wa})le(y)]0). (5.6.4)



5.6. Canonical tomograms of a real scalar field 181

In a similar way to the computation of an ensemble of harmonic oscil-
lators of subsection 2.8.3 and using the BCH formula (1.6.14), we get:

o0]

1 . 21,2
W (Xo0,) = 5[ e P2 0] i)
0

e ikwal, e ikwap ‘CP(Z/) |0>dk, (5.6.5)

therefore, because of the action of the annihilation and creation operators
on the vacuum:
1

apl0) =0, abjo) = ——

Ip), (5.6.6)

E

if we use the definition of the scalar field (5.4.16), the equation (5.6.5)
becomes:

0

1 . 21 12 1 o
o0

R6
d3 p/ d3 p//
A/ 2Ep/ A /QEP//

Notice that to simplify the notation, we have written

) t I
. <0|6Lp/ e tkway, e ikwap (l;,,|0>

)dk. (5.6.7)

p-x = plz,.

From the definition of the commutator of the creation and annihilation
operators (5.6.1), we get that

[ag,a;] = na, 1(27r)35(3)(p D),

hence,
Olare #% = Of(ay  ikw(2r)*s@ (P p)),
o ikwapa;g/’@:(a; ik@(Qﬂ)35(3)(p p’))|0>.



182 Tomography in Quantum Field Theory

Then, substituting this result in (5.6.7), we get:

0

1 . 2 2 1 ., o
R = e
0 R6

0| (ap  ikw(2m)?6® (p  p))

3./ 3.4
(al,  kw(2n)*6 (p  p"))l0) dp dp )dk.

Using the formula (5.6.1), we obtain:
Ol(ap  ikw(2r)’s®(p  p))(a), ikw2r)*sP(p p"))0)
= @2m)*@ (" ) @n) R P (P p)sPp p"), (568

and finally, using the representation for the propagator for the Klein—
Gordon field:

0
D y) = Olpl@o)) = oo [0 #€ W IP (s560)
(2m)3 2By’ o
e}
and after integrating over the variable k, we get the following expression
for the kernel of the tomogram:

V2 |wl

— (X |w|2)>e Xl (5.6.10)
1Y

1
Wq,m,y (Xa w, w) = (D(:E y)



The Minkowski space-time and the Poincaré
group

Newtonian Mechanics proposes a concept in which the time is absolute,
however it is well-known that closer to the speed of light this concept is
no longer available. That framework is known as special relativity and it is
based in two fundamental postulates: the speed of light ¢ in vaccum is a
universal constant and that the laws of physics are the same in all inertial
frames (systems moving at constant velocity).

When dealing with fields that propagate at speed of light, we are in the
special relativity framework and there, instead of working in an Euclidean
space, we have to work in a Minkowski space-time (see for instance [Calb,
sec. 4.6]).

Minkowski space-time is a four dimensional manifold M = R'*3 with
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the pseudo-Riemannian metric:

G = ) ) (A.1)
1

Events in this space-time are points in Minkowski space-time M, z# =
(ct,z,y, z), that are usually called in the literature “contravariant vectors”.
The elements of the cotangent bundle are usually called “covariant vectors”
and they are usually written with the index below, z, = ( ¢t,z,y, 2), to
emphasize that the indexes of contravariant and covariant vectors cancel
out when an element of the cotangent bundle acts on an element of the
tangent bundle (here we are identifying vectors in the tangent bundle with
points in M):

Ty = gux’. (A.2)

The distance between two events A, B € M is usually called interval
and is defined as the product of the vector x*, that joins the two events,
with itself with respect to the metric (A.1):

g = o = . (A.3)
Vectors can be classified as:

1. Temporal: vectors x € M such that |z| < 0.

2. Spatial: vectors x € M such that |z| > 0.
3. Light, isotropic or null: vectors z € M such that |z| = 0 if z # 0.
4. x=0.

Two events are said to be temporal, spatial or light related if the as-
sociated vector is temporal, spatial or light. Light events are events, as
its name tells, that only can be linked by particles traveling at speed of
light, temporal events are events that are related in a causal-effect way,
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and spatial events are events that can not be related in a causal-effect way,
that is, that they would be only linked by particles traveling “faster” than
light. These facts are usually shown in the so called light cone diagram,
Figure A.1.

Future A

|zl =0

|z >0

"""""%ﬁ:ﬂﬂl"'""“"
Wﬂl f .

i
...

Past
Figure A.1: Light cone.

The Poincaré group P is the group of Minkowski isometries, i.e., is
the group of affine transformations in M that leaves invariant the interval
between two events. This group of isometries can be written explicitly as
the set of transformations

z, = a* + AF 2", (A.4)

where A*, denotes the transformations leaving the origin invariant and is
called the Lorentz group £, and the four-vector o, p = 0,...,3, that
denotes the group of translations of the origin.
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The Lorentz transformation A, satisfies:

guuAHaAyﬁ = GaB> (A5)

and its explicit form for a Lorentz boost in z-direction is the following:

/0 sinh@ 0 0 coshpj\ [z°
't 0 10 0 zt
m/2 = 0 0 1 0 IE2 ) (AG)
z3 coshBf 0 0 sinhB/ \a3

where the physical meaning of 3 is given by:

v
tanh g = —,
c

where v is the relative velocity between the two systems x, and .CEL
The condition (A.5) can be written in matrix form as

ATGA =G, (A7)
hence, it is immediate to see that
|det A| = 1. (A.8)

Transformations such that det A = +1 define a unimodular subgroup in
L denoted by L.

Because Lorentz transformations preserve the metric, then in particular
\Ag\ > 1, and as a topological space, £ is not connected, however it has
four connected components characterized as follows:

Ly = EL Proper orthochronous, det A =1, A8 =1,
cl Improper orthochronous, detA = 1, A8 > 1,
[,i Proper antiorthochronous, detA =1, A8 < 1,
ct Improper antiorthochronous, detA = 1, A8 < 1. (A9)
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Only the proper orthochronous component L, that contains the identity,
is a subgroup.
If we consider an infinitesimal Lorentz transformation

A =6 + W, (A.10)
if we approximate the Lorentz condition (A.5) to first order in w, we get:
Jap = g,ul/(ég + WZ)(% + wg) = gap T Wag + Waa t+ O(wz)a (A.11)

but since the metric g, is symmetric with respect to the change of its two
indexes, we have:
Wapg + wga =0, (A.12)

hence, wy,, is a rank-2 antisymmetric tensor with 6 independent components
that determines the Lie algebra of the Lorentz group. Notice that then, the
Lorentz group has dimension 6.

The Poincaré group is the semidirect product of the Lorentz group and
the group of translations P = £ x R*. We will denote by 731, or simply Py,
its connected component that corresponds to Lo x R%.

Accordingly, the Lie algebra of Poincaré group is (as a vector space)
the direct sum of the Lie algebra of £ and the Lie algebra of R* (identified
with R* itself). Then, we conclude that the Lie algebra of P (also Pp) is
determined by the generators P, of R* and six generators M,,, of the Lie
algebra of the Lorentz group satisfiying the commutation relations:

[P.,P,] =0, M, Po| = i(gauPr  gaPu),
[My, Mag] = i(9uaMip  9usMua  goaMus + 9usMya),  (A.13)

hence, a generic element & of the Poincaré algebra can be written as follows:

1
€= a,P' Suwu M. (A.14)






The end of a long journey and the beginning of
another: conclusions and further work

Conclusions

In this work, we have discussed a still not so well developed way of de-
scribing the state of a quantum system different from the usual Schrédinger
and Heisenberg pictures, and known as the Tomographic picture. In gen-
eral, observables in Quantum Mechanics are treated as self-adjoint opera-
tors on a Hilbert space H. Here, we have considered a different scenario
of Quantum Mechanics in which the algebra of observables is a C*-algebra
A. We have taken advantage of tools in that algebra, mainly the GINS
construction [Ge43, Se47] and Naimark’s theorem [Na64], to reach the
goal of getting a reconstruction formula of the state p of a quantum system
by means of a family of observables in the algebra A.

At the beginning of chapter 2 in sections 2.2 and 2.3, we have shown
that the tomographic description of Quantum Mechanics may be achieved
by using two main ingredients: a Generalized Sampling Theory and a
Generalized Positive Transform.

The first one consists on recovering the state of the system by sampling
it with a family of observables, called a tomographic set. The sampling
function F), introduced there is nothing but the expected value of the
elements of that family of observables on the state p. One of the problems
there is that the sampling function, in general, is not a quantity that
can be measured directly in the laboratory because is not a probability
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distribution, for that reason, a second ingredient is needed.

The Generalized Positive Transform consists basically on a map
that transforms sampling functions in probability distributions. Such
distributions are the so called tomograms in this picture (2.3.6). This second
tool is clearly inspired on the Classical Radon Transform [RalT|.

Once we have identified a procedure to get our purpose of reconstruct-
ing a state by means of the tomograms that can be measured in the
laboratory, we have to deal with the problem of how to recover the state
of a concrete system and which family of observables should be used. One
answer of these questions can be given using Group Theory, sec. 2.5.

We have seen that for any finite and compact Lie group, we can imple-
ment this tomographic picture and reconstruct the state of any system,
although we have seen too that there are other important groups that allow
to reconstruct the state of a system, as for example the Heisenberg—Weyl
group, which is neither finite nor compact, that appears in many problems
in Quantum Mechanics, sec. 2.7. We have also shown an experimental
setting to get the desired tomograms in such case in section 1.8.

Let us also point out that a tomographic picture beyond standard Quan-
tum Mechanics giving a tomographic description of classical systems of in-
finite degrees of freedom have been started, chapter 4 (in particular, the
free scalar field in a cavity, section 4.5). We have also given a reconstruc-
tion theorem, sec. 5.5, in the case of a quantum scalar field described
using the Wightman—Streater axiomatic description.

To finish this summary, it is important to say that thanks to this tomo-
graphic description of Quantum Mechanics and inspired by methods and
ideas developed in this context, we have been able to solve a problem that,
in principle, is not related to this, which is the decomposition of reducible
representations of groups into their irreducible components. To achieve
that it has been developed the SMILY algorithm presented in chapter 3.

This numerical algorithm solves the problem of computing the irre-
ducible components of any finite dimensional unitary representation of a
compact Lie group, with respect to a closed subgroup, without any a pri-
ori knowledge of its irreducible representations. We have realized that
there is a family of states associated to the unitary representation we want
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to decompose, called adapted states, which can be decomposed in states
in those irreducible representations. The result we got is that when one
transforms generic adapted states with a unitary matrix that diagonal-
izes another one, it emerges a block structure that is shared with the
rest of the adapted states. That makes easy to find a unitary transfor-
mation which transforms all the adapted states in block diagonal matrices
such that on each block, we get the states spanned by the corresponding
irreducible representation. Thus, that unitary transformation, usually
called the Clebsh—Gordan matrix, reduces in block diagonal matrices
all the elements of the initial representation and each block gives one of the
irreducible representations decomposing it.

Further work

We have seen that the tomographic picture we have been explaining
may have a good perspectives of future because is a theory that depends
directly on the technological capacities in Quantum Optics. For instance,
one immediate application of this theory is in the domain of detection of
radiation in Quantum Information technologies or for medical purposes.

In chapter 1, an effort has been done to offer a historical perspective
of the birth of this theory and we have seen that Quantum Tomography
is, in the sense discussed there, a natural prolongation of classical telecom-
munications. Thus, one path to follow in the future is to adapt techniques
from classical telecommunications to quantum optical devices.

We have shown in this work the implementation of homodyne and
heterodyne detectors to Quantum Optics by means of suitable configura-
tions of beam-splitters and photodetectors, hence the idea is to extend
this configurations to other techniques of detection.

In the latest section of chapter 3 (section 3.6), we have presented a
way to obtain adapted states with SU(2) symmetry. However, we would
like to proceed further and see if, in a similar way as we remove frequencies
of electric signals, we can try to get only a desired part of a mixed state by
removing part of it.
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Another further work is the study of the reconstruction formula of states
from the point of view of Sampling Theory. It would be relevant to estimate
the errors made in the reconstruction of states when we approximate the
integrals that appear in the reconstruction formulas by finite sums.

Future work related with chapter 5 is, first, to generalize the canonical
tomograms obtained in section 5.6 for other fields. Also, it would be
interesting to see in which cases it is possible to compute explicitly the
covariant tomograms and also to extend the theory beyond the scalar free
field developing a tomographic description of perturbation theory.

Also, there are a lot of interesting questions related with the SMILY
algorithm presented in chapter 3. It is important to highlight that because
we have used only arguments of Quantum Mechanics to create the algorithm
and we only just need unitary transformations to obtain the CG matrix of
a representation of a group, the SMILY algorithm has a natural extension
to be implemented as a quantum algorithm in a quantum computer. Thus,
we could try to prepare the adapted states and implement the unitary
transformations we need with quantum gates to run it into a quantum
computer.

Finally, let us mention another problem that can be addressed using this
algorithm, the characterization of quantum entanglement, that is, finding
out whether a state is entangled or separable. This is one of the most
important open problems in Quantum Information Theory. The idea in
which we are thinking is trying to see when we would be able to decompose
a state as a linear combination of adapted states of several subgroups of
the product group G x --- x G.
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Publications

e Chapter 2: A. Ibort, A. Lopez—Yela. Quantum Radon Transform.
(In preparation).

e Chapter 3: A. Ibort, A. Lépez—Yela and J. Moro. The SMILY algo-
rithm to compute the reduction of unitary representations and their
Clebsh—Gordan coefficients. (In preparation).

e Chapter 4: A. Ibort, A. Lépez—Yela, V.I. Man’ko, G. Marmo, A.
Simoni, E.C.G. Sudarshan and F. Ventriglia. On the tomographic
description of classical fields. Phys. Let. A. 376, 1417-1425 (2012).

e Chapter 5: A. Ibort, A. Lépez—Yela. On the tomographic description
of a quantum real scalar field. (In preparation).
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