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aportaciones me ayudaron mucho para conseguir desarrollarlo de manera
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os resulte interesante este trabajo y me deis vuestra sincera opinión sobre
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Resumen

En este trabajo, se analiza una teoŕıa que es en cierto modo una ex-
tensión natural del campo de las telecomunicaciones clásicas a la mecánica
cuántica. Dicha teoŕıa se llama tomograf́ıa cuántica y es de hecho una
imagen de la mecánica cuántica equivalente a las más habituales que son la
imagen de Schrödinger [Sc26] o la de Heisenberg [He27]. Esta nueva imagen,
difiere de las precedentes en que está muy ligada a la capacidad tecnólogica
a la hora de medir observables (momento, enerǵıa, etc.) en el campo de la
óptica cuántica, ya que su objetivo primordial es el de conseguir reconstruir
el estado de un sistema cuántico a partir de mediciones en el laboratorio, y
dado al avance tecnológico del instrumental de laboratorio disponible como
láseres y fotodetectores, cada vez está suscitando mayor interés.

En el primer caṕıtulo, veremos cómo nace esta idea de reconstruir
estados cuánticos discutiendo brevemente la técnica clásica conocida como
Tomograf́ıa Axial Computerizada (TAC). Esta técnica está basada en
los trabajos de Johann Karl August Radon [Ra17] aplicando la transfor-
mada que lleva su nombre. Introduciremos la transformada de Radon
de una función de probabilidad definida en el espacio de fases para ver cómo
se aplica en el caso del TAC. Para aplicar esta idea para la reconstrucción
de estados cuáticos, veremos, en primer lugar, que existe una extensión
natural de las técnicas de demodulación de señales moduladas en am-
plitud (AM) en el campo de la óptica cuántica mostrando que el papel
que cumple un mezclador puede ser reemplazado por una combinación de
divisores de haz y fotodetectores y mostraremos expĺıcitamente cómo
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reconstruir el operador densidad que describe un estado cuántico a través
de un proceso reminiscente de la transformada de Radon clásica.

El segundo caṕıtulo será el corazón de este trabajo. En él, intro-
duciremos de manera formal la descripción tomográfica de la mecánica
cuántica. Presentaremos una teoŕıa general, para ello, trataremos a los
observables como elementos de un álgebra C˚ y los estados serán fun-
cionales lineales positivos que actúen en dicha álgebra. Veremos que
esta descripción de la mecánica cuántica puede dividirse en dos partes,
una primera con el objetivo de obtener una fórmula para reconstruir el
estado de un sistema cuántico a partir de una función definida sobre un
conjunto llamado conjunto tomográfico, que será un conjunto de obser-
vables que tendrá que cumplir una serie de condiciones que expondremos
debidamente. A esta primera parte de la teoŕıa, la bautizaremos como
Teoŕıa de muestreo generalizada en sistemas cuánticos.

La segunda parte estará relacionada con la parte puramente experimen-
tal. Lo que hace necesario tener que añadir esta segunda parte es el hecho
de que la función definida anteriormente sobre el conjunto tomográfico,
que llamaremos función de muestreo, en general, no puede ser medida
por medio de los dispositivos con los que contamos en un laboratorio de
óptica cuántica, sin embargo, a partir de las mediciones hechas con un fo-
todetector, podemos obtener distribuciones de probabilidad de cantidades
relacionadas con los observables. Entonces, tomando esto último como
motivación, esta segunda parte de la teoŕıa consistirá en relacionar esa
función de muestreo con una distribución de probabilidad que llamare-
mos tomograma , que será el resultado directo de un proceso de medida
en el laboratorio, y la llamaremos Transformada generalizada positiva
por motivos que se expondrán convenientemente.

Uno de los problemas más sutiles de esta teoŕıa consiste en hallar un
conjunto tomográfico que cumpla las condiciones necesarias para permi-
tir reconstruir el estado a partir de él. Sin embargo, veremos que de ma-
nera natural, las representaciones unitarias irreducibles de un grupo finito
o de Lie compacto proporcionan conjuntos tomográficos que cumplen
las condiciones requeridas, por eso, nos centraremos en el estudio de la
reconstrucción de estados a partir de grupos relacionados con el sistema
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f́ısico dado. Aunque también destacaremos que existen otras representa-
ciones unitarias que nos permiten reconstruir el estado cuántico a partir
de ellas, como lo es la representación unitaria irreducible del grupo de
Heisenberg–Weyl dada por el álgebra de Lie que forman los operadores
momento y posición cuánticos que es el ejemplo con el que nace la tomo-
graf́ıa cuántica introducido en el primer caṕıtulo.

En el tercer caṕıtulo presentaremos un algoritmo numérico que se
deriva a partir de unos estados que llamaremos estados adaptados que
habremos definido en el caṕıtulo anterior. Este algoritmo nace como un
problema inverso, ya que hasta entonces nos habremos centrado en recons-
truir estados a partir de un conjunto tomográfico, en especial, cuando
el conjunto tomográfico está definido a partir de una representación
unitaria de un grupo. Este problema inverso consiste en determinar
qué información es posible obtener de una representación unitaria de
un grupo si se tiene una familia de estados que describe un sistema f́ısico
relacionado con un grupo de simetŕıa. La respuesta a esta pregunta es muy
satisfactoria ya que es posible conocer la matriz de transformación de
base que nos permita transformar la base, en la que está descrita la repre-
sentación unitaria, en una base adaptada a los subespacios invariantes bajo
la acción de todos los elementos de la representación. Este problema se
conoce como descomposición de Clebsh–Gordan , ya que dicha trans-
formación aplicada a la representación unitaria la convierte en una matriz
diagonal por bloques en la que cada bloque corresponde a una repre-
sentación unitaria irreducible.

La manera en la que resolveremos este problema es con un algoritmo
numérico que sólo requiere dos estados adaptados como argumentos de
entrada, que pueden ser obtenidos de manera directa si se conoce de forma
expĺıcita la representación unitaria que queremos reducir. Este algoritmo lo
hemos bautizado con el nombre de SMILY. Hay que destacar que como este
algoritmo se ha generado sólo aplicando ciertas transformaciones unitarias
sobre matrices que representan un estado cuántico, tiene una extensión
natural que podŕıa implementarse en un ordenador cuántico.

Para acabar esta tesis, generalizaremos la descripción tomográfica a
campos clásicos y cuánticos. Para el caso clásico, primero realizaremos una
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descripicón tomográfica para sistemas con finitos grados de libertad y
obtendremos el equivalente tomográfico de la ecuación de Liouville para
una densidad de probabilidad y tras esto, haremos el mismo análisis para
sistemas con infinitos grados de libertad.

Para obtener la descripción tomográfica para campos cuánticos, par-
tiremos del concepto de segunda cuantización y mostraremos el equiva-
lente tomográfico de los axiomas de Wightman–Streater para una teoŕıa
cuántica de campos. Y para terminar, obtendremos un teorema de re-
construcción para campos escalares y calcularemos el tomograma de cier-
tos estados de un campo cuántico escalar libre. Comentemos esto
último diciento que es el inicio de una teoŕıa que permitiŕıa una descripción
tomográfica de estados, por ejemplo ligados, para teoŕıas con interacción.

Para concluir este resumen, quisiera resaltar que el lector especializado,
si lo considera conveniente, puede comenzar a leer a partir del segundo
caṕıtulo, ya que aunque el primer caṕıtulo sirve como motivación de
por qué desarrollar una descripción tomográfica de la mecánica cuántica,
el texto puede comprenderse si previamente no se ha léıdo.
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1
The birth of Quantum Tomography

As it was indicated in the summary, this chapter will be devoted
to provide an informal presentation of Quantum Tomography connecting
it with the foundations of classical tomography, i.e., the classical Radon
Transform, and the techniques used in Quantum Optics: homodyne and
heterodyne detection.

Because these ideas have their roots in classical telecommunications, an
effort has been made to offer a brief summary of the foundations of clas-
sical homodyne and heterodyne detection. So that, by means of the naive
canonical quantization of the Electromagnetic field, the reader will be able
to relate the quantum results with their classical counterparts. Needless
to say that the mathematical foundations of Quantum Tomography will be
addressed again under much more rigorous grounds in chapter 2, and the
extension of the corresponding ideas to classical and quantum fields will be
the subject of chapters 4 and 5.



2 The birth of Quantum Tomography

1.1. Radon Transform

The process of reconstruction of quantum states, that will be presented
in this work, is inspired on the technology for producing tomographic images
of sections of scanned bodies for medical purposes, known commonly as
CAT (Computerized Axial Tomography).

This technique is based on the mathematical transformation obtained by
Radon [Ra17] that allows to recover the value of a regular enough function
at any point pq, pq in the plane by averaging the value of that function over
all possible lines that pass through it.

More formally, let fpq, pq be a Schwarz function on R2. The Radon
Transform of f is defined as:

RfpX,µ, νq–
ż

R2

fpq, pqδpX µq νpqdqdp “

ż

LXpq0,p0q

f
`

qpsq, ppsq
˘

ds, (1.1.1)

where δ is the delta distribution defined on the space of test functions
D Ă S and LXpq0, p0q “

 `

qpsq, ppsq
˘

|X µqpsq νppsq “ 0
(

is the line
we integrate over, where pq0, p0q is the point of the line closest to the origin,
X is a parameter that indicates the distance of the point pq0, p0q to the
origin, and s is the affine variable that parametrizes such line, Figure 1.1.1.

The Schwartz space S is the space of smooth rapidly decreasing func-
tions on Rn. The Fourier Transform defines a continuous invertible map
F : S pRnq Ñ S pRnq by means of:

F pkq– pfpkq “
1

p2πqn{2

ż

Rn

fpxq e ik x dx1 ¨ ¨ ¨ dxn, (1.1.2)

and the Inverse Fourier Transform is the map F 1 : S pRnq Ñ S pRnq:

F 1pxq– qF pxq “
1

p2πqn{2

ż

Rn

F pkq eik x dk1 ¨ ¨ ¨ dkn. (1.1.3)
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so that, using the notation ˜̊ “ k ¨ ˚, we get:

pfpµ̃, ν̃q “
1

2π

ż

R2

fpq, pq e ikµq e ikνp dqdp “
1

2π

8
ż

8

RfpX,µ, νq e ikX dX.

Hence, the Inverse Radon Transform is obtained from the inverse of the
Fourier Transform as:

fpq, pq “
q

pfpq, pq “
1

2π

ż

R2

pfpµ̃, ν̃q eiµ̃q eiν̃p dµ̃dν̃

“
1

p2πq2

ż

R3

RfpX,µ, νq e ipkX µ̃q ν̃pq dXdµ̃dν̃,

and evaluating at k “ 1, we get:

fpq, pq “
1

p2πq2

ż

R3

RfpX,µ, νq e ipX µq νpq dXdµdν. (1.1.5)

1.2. Computerized Axial Tomography

The CAT technique consists on obtaining the absorption coefficient of
an object by measuring the intensity of a beam before and after crossing
through the object at different points [Fa10]. X-rays are the most common
radiation used in CAT processes because their wavelength is of the order of
atomic size (Å). If radiation with smaller wavelength is used, because the
energy of the radiation is proportional to the frequency, the damage to the
subjects would be greater.

When a photon interacts with matter, the probability that the photon
is absorbed is proportional to the space ds travelled by the photon, i.e.,

dppsq “ αpsqds, (1.2.1)

where αpsq is the absorption coefficient at point s.
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were not absorbed is

P0plq “
N

N0
.

Hence, because of the intensity I0 of the beam is the number of photons
per unit of time, we have that

P0plq “
I

I0
,

and finally, we have that the intensity measured at the output is

I “ I0 exp

ˆ

l
ż

0

αpsqds

˙

. (1.2.3)

By definition, α is a probability distribution on R2, therefore we can
use the Inverse Radon Transform to obtain the absorption function αpx, yq,
where px, yq are the coordinates of a point in the plane.

Let us insert a body in a cylinder tube, fixing the z-axis in the center of
the polar section, and let us put a X-ray source and a detector at opposite
points with respect to the z-axis as represented in Figure 1.2.1. Hence,
from equation (1.1.1) we have that

log

ˆ

I0

I

˙

“

l
ż

0

α
`

xpsq, ypsq
˘

ds

“

ż

R2

αpx, yqδpX x cos θ y sin θqdxdy “ RαpX, θq. (1.2.4)

If we change to polar coordinates in (1.1.5), this is,

µ “ k cos θ,

ν “ k sin θ,

and taking into account that

RfpkX, kµ, kνq “ 1

|k|
RfpX,µ, νq, (1.2.5)
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because of the homogeneity condition of the delta function:

δpkxq “
1

|k|
δpxq, k P C, (1.2.6)

we obtain:

αpx, yq “
1

p2πq2

8
ż

8

8
ż

0

2π
ż

0

RαpX, θq e ikpX x cos θ y sin θq kdθdkdX. (1.2.7)

Finally, to reconstruct the image, the absorption function α usually
is plotted in a grey scale, and because the absorption coefficient at point
px, yq is proportional to the quantity of matter in that point, this plot will
represent the distribution of matter in the interior of the body.

1.3. Reconstruction of signals in classical telecommunications

Physicists in Quantum Optics realized [Au09, sec. 15.4] that they could
implement a way for reconstructing the matrix elements of the matrix rep-
resentation of a quantum state of a light source by a clever use of the Radon
Transform described in the first section. The way for doing that is in-
spired on how signals are sent and detected in classical telecommunications
[Ru87,Si01].

In classical telecommunications, signals are emitted by modulating a
high frequency signal, usually called the carrier signal, with the signal that
we want to transmit, which is a low frequency signal called the modulating
signal.

There are two main modulations:

• AM (Amplitude Modulation).

• Angular Modulation:

– FM (Frequency Modulation).

– PM (Phase Modulation).
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The Maxwell’s equations that describe the classical electric and magnetic
fields in empty space are:

∇ˆE “ 1

c

BB

Bt
, (1.4.1a) ∇ ¨E “ 0, (1.4.1b)

∇ˆB “
1

c

BE

Bt
, (1.4.1c) ∇ ¨B “ 0, (1.4.1d)

where c is the velocity of light. From these equations, it is possible to see
that the electric field satisfies the wave equation:

∇2E
1

c2

B2E

Bt2
“ 0. (1.4.2)

The solution of this equation can be written as the sum of mode func-
tions:

Epx, tq “
8
ÿ

p“1

fpptquppxq,

where fpptq satisfies

d2fpptq

dt2
` c2k2

pfpptq “ 0, (1.4.3)

and uppxq satisfies the eigenvector equation for the Laplace operator:

∇2uppxq ` kpuppxq “ 0, (1.4.4a)

∇ ¨ uppxq “ 0 (1.4.4b)

n̂ˆ uppxq “ 0 (1.4.4c)

*

in BV

where n̂ is the unit vector normal to the surface. The last condition must be
imposed because the tangential component of the electric field must vanish
on the conducting surface. Because it is a Hermitian eigenvalue problem,
the functions uppxq are orthogonal:

ż

V

uppxq ¨ up1pxqd
3x “ δpp1 . (1.4.5)
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The magnetic field can be determined from (1.4.1a):

Bpx, tq “
8
ÿ

p“1

gpptq
`

∇ˆ uppxq
˘

,

with
dgpptq

dt
“ cfpptq. (1.4.6)

From (1.4.4c), we see that

n̂ ¨
`

∇ˆ uppxq
˘

“ 0, (1.4.7)

hence, from (1.4.4a) and (1.4.7), we obtain the following orthogonality con-
dition:

ż

V

`

∇ˆ uppxq
˘

¨
`

∇ˆ up1pxq
˘

d3x “ k2
pδpp1 . (1.4.8)

Notice that from Maxwell’s equation (1.4.1c), we see that gpptq verifies the
same equation as fpptq, eq. (1.4.3):

d2gpptq

dt2
` c2k2

pgpptq “ 0. (1.4.9)

If we define the classical Hamiltonian of the electromagnetic field by
computing its total energy:

Hcl “
1

8π

ż

V

`

|E|2 ` |B|2
˘

d3x “
1

8π

8
ÿ

p“1
p1“1

fpptqf̄p1ptq

ż

V

uppxq ¨ up1pxqd
3x

`

8
ÿ

p“1
p1“1

gpptqḡp1ptq

ż

V

p∇ˆ uppxqq ¨
`

∇ˆ up1pxq
˘

d3x

“
1

8π

8
ÿ

p“1

`

|fpptq|
2 ` k2

p|gpptq|
2
˘

, (1.4.10)

and if we think of fpptq as the position of a particle p at time t,

Qp “
fp

2ckp
?
π
, (1.4.11)
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because the classical momentum is the derivative of the position with re-
spect to time, from (1.4.6) and (1.4.9) we get that

Pp “
dQp
dt

“
kpgpptq

2
?
π

. (1.4.12)

Thus, denoting ωp “ ckp and using the previous identifications, the Hamil-
tonian becomes:

Hcl “
1

2

8
ÿ

p“1

`

P 2
p ` ω

2
pQ

2
p

˘

, (1.4.13)

which is the Hamiltonian of a set of infinite classical harmonic oscillators
of frequencies ωp, p “ 1, 2, . . . .

1.5. The quantum harmonic oscillator and the quantization of the
Electromagnetic field

To obtain a proper quantum description of the Electromagnetic field,
we have to provide a quantum description of the system given by the Hamil-
tonian in (1.4.13).

First of all, let us define two operators that usually appear in Quantum
Mechanics, the annihilation and creation operators. These two operators
are defined as:

a “
1
?

2~

ˆ

?
ωQ`

i
?
ω

P

˙

, a: “
1
?

2~

ˆ

?
ωQ

i
?
ω

P

˙

, (1.5.1)

where ~ is the reduced Planck constant ~ “ h{2π and ω the frequency.
The operators Q and P are the operators on the Hilbert space H “ L2pRq
corresponding to position and momentum respectively. The operator Q is
the multiplication operator and the operator P is the operator i~∇:

Qψpqq “ qψpqq, Pψpqq “ i~∇ψpqq. (1.5.2)

This framework is usually called coordinate representation. It is easy to
verify that the commutator of the position and momentum operators is
“

Q,P
‰

“ i~1.
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From here to the rest of this text, bold capital letters will denote opera-
tors on a Hilbert space. In cases in which may exist any confusion, we will
use the circumflex accent p but, in general, this symbol will be reserved to
denote the Fourier Transform.

The operator a is the annihilation operator and a: is the creation op-
erator and they satisfy the canonical commutation relation:

“

a, a:
‰

“ 1. (1.5.3)

The Hamiltonian of a quantum harmonic oscillator of frequency ω (and
mass m “ 1) is given by:

H “
P2

2
`
ω2

2
Q2. (1.5.4)

When one substitutes the momentum and position operators by the anni-
hilation and creation operators (1.5.1), the Hamiltonian becomes:

H “ ~ω
´

a:a`
1

2

¯

. (1.5.5)

The problem of finding the spectrum of H is reduced to the problem of
finding the spectrum of the number operator :

N “ a:a, (1.5.6)

which satisfies the commutation relations:

“

N, a
‰

“ a,
“

N, a:
‰

“ a:. (1.5.7)

To deal with the quantum system defined by (1.5.5) is better for the pur-
poses of this work (see later chapter 5) to consider an abstract realitation
of the Hilbert space of states of the system called Fock space F .
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1.5.1. Canonical commutation relations and the Fock space

Let us consider now that the creation and annihilation operators (1.5.1)
as abstract symbols, and consider the associative algebra generated by them
with the commutation relation given by (1.5.3). There is a natural repre-
sentation of this algebra as operators on the Hilbert space F defined as
the complex space generated by the eigenvectors |ny of the number oper-
ator (1.5.6), with eigenvalues n “ 0, 1, . . . , completed with respect to the
norm defined by them and where the symbols a and a: are realized as the
operators (denoted with the same symbols):

a:|ny “
?
n` 1|n` 1y, n “ 0, 1, . . . ,

a|ny “
?
n|n 1y, n “ 1, 2, . . . ,

a|0y “ 0. (1.5.8)

Notice that

|ny “
pa:qn
?
n!
|0y. (1.5.9)

From (1.5.8), it is easy to check that the operators a and a: are un-
bounded operators, which are adjoint to each other, and also that the spec-
trum of the positive self-adjoint operator N “ a:a is n “ 0, 1, . . . with
eigenvectors |ny.

In this representation, we think of the state |0y as the fundamental state
(or vacuum) of the theory. The vector |1y “ a:|0y is the state representing
of one “particle” and |ny is the state representing of n particles. Because of
the action of the operators a: and a over the vectors |ny, showed in (1.5.8),
it is easy to understand why the name of creation and annihilation.

If we have a multipartite system composed by N particles vibrating at
different frequencies ωk, the Hamiltonian of the total system is the sum of
the Hamiltonians of every one:

H “ ~
N
ÿ

k“1

ˆ

ωka
:

kak `
1

2
ωk

˙

, (1.5.10)
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where now, the canonical commutation relations are:

“

ak, a
:

k1

‰

“ δkk1 ,
“

ak, ak1
‰

“
“

a:k, a
:

k1

‰

“ 0. (1.5.11)

The physical meaning of this commutation relations is that the creation
and annihilation of particles of each mode does not affect the others.

Repeating the previous construction, we set now the Fock space FN that
will be generated by orthonormal vectors |n1, . . . , nNy with n1, . . . , nN “

0, 1, . . . , and denoting the fundamental state |0, . . . , 0y by |0y, we get:

a:k|0y “ |0, . . . ,
k
1, . . . , 0y, ak|0y “ 0. (1.5.12)

Notice that FN “ F1 b ¨ ¨ ¨ b FN
1 .

In addition to the abstract Fock space representation of the quantum
harmonic oscillator, it is sometimes useful (see later on section 2.8) to use
the representation provided by the operators presented before in (1.5.2).
For that, consider the function

ψ0pxq “
4

c

ω

π~
e ωx2{2~ ,

hence,

aψ0pxq “
1
?

2~

ˆ

?
ωQ`

i
?
ω

P

˙

ψ0pxq

“
1
?

2~

ˆ

?
ωx`

i
?
ω
piωxq

˙

ψ0pxq “ 0,

and

}ψ0}
2
L2 “

8
ż

8

|ψ0pxq|
2dx “

c

ω

π~

8
ż

8

e ωx2{~ dx “ 1.

Clearly the functions

ψnpxq “
pa:qn
?
n!
ψ0pxq,
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provide an orthonormal basis of L2pRq because they are the eigenfunctions
of the self-adjoint operator H in eq. (1.5.5).

The map F1 Ñ L2pRq defined by |ny ù ψn defines a unitary op-
erator between both spaces providing the coordinate representation of the
quantum harmonic oscillator.

Expanding the functions ψn, we get [Ba98, page 156]:

ψnpxq “
4

c

ω

π~

c

1

2nn!
Hn

ˆ
c

ω

~
x

˙

e ωx2{2~ ,

where Hnpxq are the Hermite Polynomials

Hnpxq “ p 1qn ex
2 dn

dxn
e x2 . (1.5.13)

We see that the difference between the Hamiltonians of the classical
harmonic oscillator (1.4.13) and of the quantum harmonic oscillator (1.5.4)
is the substitution of the classical position and momentum Q and P by the
operators Q and P respectively. This is a very extended way to generalize
classical results to the quantum case and it is commonly called canonical
quantization:

Qp Ñ Qp

Pp Ñ Pp

Hcl Ñ H “
1

2

8
ÿ

p“1

`

mpP
2
p ` ω

2
pQ

2
p

˘

. (1.5.14)

1.5.2. Canonical Quantization of the Electromagnetic field

Applying the canonical quantization scheme (1.5.14) to the E.M. field
and writing it in terms of the creation and annihilation operators (1.5.1),
the classical electric and magnetic fields become:

Epx, tq Ñ pEpx, tq “
?

2π~
8
ÿ

p“1

?
ωp

`

a:pptq ` apptq
˘

uppxq,

Bpx, tq Ñ pBpx, tq “ ic
?

2π~
8
ÿ

p“1

1
?
ωp

`

a:pptq apptq
˘`

∇ˆ uppxq
˘

,
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where
apptq “ ap e iωpt .

Therefore, the electric and magnetic fields can be written finally as:

pEpx, tq “
?

2π~
8
ÿ

p“1

?
ωp

`

a:p eiωpt`ap e iωpt
˘

uppxq,

pBpx, tq “ ic
?

2π~
8
ÿ

p“1

1
?
ωp

`

a:p eiωpt ap e iωpt
˘`

∇ˆ uppxq
˘

. (1.5.15)

Notice that the Electromagnetic field operators can be separated in two
parts, one that creates photons of frequencies ωp and other that destroys
them:

pEpx, tq “ pE px, tq ` pE
`
px, tq,

pBpx, tq “ pB px, tq ` pB
`
px, tq, (1.5.16)

where

pE
`
px, tq “

?
2π~

8
ÿ

p“1

?
ωpap e iωpt uppxq,

pB
`
px, tq “ ic

?
2π~

8
ÿ

p“1

1
?
ωp
ap e iωpt p∇ˆ uppxqq ,

is the part that destroys them, and

pE px, tq “ pE
`
px, tq:,

pB px, tq “ pB
`
px, tq:,

the part that creates them.
If we come back to section 1.3, we remember that in Amplitude Modu-

lation a signal is composed by a function, that only depends on the message,
multiplied by a sinusoidal function that corresponds to the frequency in
which the message is sent (1.3.1). If we emit different messages at different
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frequencies, the total signal is a linear superposition of all the modulated
signals, hence we can write it as:

xptq “
8
ÿ

k“1

`

1` xm,kptq
˘

e iωc,kt . (1.5.17)

If we compare this formula with eq. (1.5.15), we see that are similar,
however the role of the modulating signal is played by

a:p|n1, n2, . . . , np, . . . y “ |n1, n2, . . . , a
:
pnp, . . . y, (1.5.18)

for that, experimentalists thought that the way for reconstructing the quan-
tum state |npy should be an adaptation of the process saw in section 1.3
for demodulating signals in telecommunications. However, we cannot use
the same devices that were shown in section 1.3, because the quantum
modulating signal is an operator on BpHq, therefore here is where take into
action the photodetection process.

Before involving in this task, let us comment briefly the notation of
state we have described before. Recall that a quantum state |ny of the
harmonic oscillator is given by (1.5.9). However, physically, states differing
in phases are equivalent, so it is convenient to consider the projector op-
erators instead. Moreover, when dealing with ensembles of systems, their
states are statistical mixtures of such pure states, i.e.,

ρ “
N
ÿ

i“1

pi|niyxni|, pi ě 0,
N
ÿ

i“1

pi “ 1. (1.5.19)

We will call such states mixed states. Thus, a mixed state for the quantum
E.M. field will be an operator ρ of the form:

ρ “
ÿ

i1,...iN

pi1,...,iN |ni1 , . . . , niN yxni1 , . . . , niN | (1.5.20)

where pi1,...iN ě 0 and
ÿ

i1,...iN

pi1,...,iN “ 1.
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Typically, mixed states for the E.M. field consist of a finite number of
excitations, i.e., the sum above is finite. Hence, we may think of it as a
mixed state for a finite ensemble of harmonic oscillators. This is the point
of view we will adopt in what follows.

Let us point out that mixed states are also called density operators and
a formal treatment of them will be given in chapter 2.

1.6. Reconstruction of matrix elements of quantum density op-
erators

As it was commented at the beginning of section 1.3, experimen-
talists in Quantum Optics wondered how to measure the matrix elements
of the representation of the quantum state of a light source, and the answer
they found was to measure the Radon Transform of a quantity that is di-
rectly related with these matrix elements, the Wigner’s function‹, [Wi32]:

ρwpq,pq “
1

p2π~qn

ż

Rn

A

q
y

2

ˇ

ˇ

ˇ
ρ
ˇ

ˇ

ˇ
q `

y

2

E

eipy{~ dny, (1.6.1)

where ρ is the operator representing a mixed state (see eq. (2.1.2)), n the
number of excited modes describing such states, and

q “ pq1, q2, . . . , qnq, p “ pp1, p2, . . . , pnq.

To express the inner product on the Hilbert space H, we have used the
Bra-ket notation introduced by Dirac where |¨y denotes a vector on H and
x¨| denotes its dual.

The matrix elements of ρ, in coordinate representation, can be recovered
from the Fourier Transform of the Wigner’s function:

ρpq, q1q “

ż

Rn

e ip pq1 qq{~ ρw

ˆ

q1 ` q

2
,p

˙

dnp. (1.6.2)

‹More information about Wigner’s function and its relation with the reconstruction
of quantum density matrices can be found in modern texts due to Giuseppe Marmo et
al., as for example [Er07, Ca08, As151].
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An equivalent formula can be obtained in momentum representation.
The eigenvectors of momentum and position operators form an orthog-

onal basis that satisfy:

xq|py “
1

p2π~qn{2
eip q{~, (1.6.3)

and to pass from one representation to other, we use the Fourier Transform:

ψppq “ xp|ψy “

ż

Rn

xp|qyxq|ψydnq “
1

p2π~qn{2

ż

Rn

e ip q{~ψpqqdnq. (1.6.4)

A function ρpspq,pq is a probability distribution in phase space if there
exists a mixed state ρ such that:

xq|ρ|qy “

ż

Rn

ρpspq,pqd
np, (1.6.5a)

xp|ρ|py “

ż

Rn

ρpspq,pqd
nq, (1.6.5b)

ρpspq,pq ě 0. (1.6.5c)

Wigner proved that there is not a function that satisfy these three con-
ditions, however he found a function, that is not a probability distribu-
tion because is not bigger or equal than zero, which satisfies the marginal
probability conditions (1.6.5a) and (1.6.5b). That function is the Wigner’s
function ρwpq,pq defined previously in (1.6.1):

ż

Rn

ρwpq,pqd
np “

1

p2π~qn

ż

R2n

A

q
y

2

ˇ

ˇ

ˇ
ρ
ˇ

ˇ

ˇ
q `

y

2

E

eip y{~ dnydnp

“

8
ż

8

A

q
y

2

ˇ

ˇ

ˇ
ρ
ˇ

ˇ

ˇ
q `

y

2

E

δpnqpyqdny “ xq|ρ|qy, (1.6.5a)
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ż

Rn

ρwpq,pqd
nq “ xp|ρ|py, (1.6.5b)

where δpnqpxq is the n-dimensional analogue of Dirac’s delta function (1.1.4)
with integral representation given by:

δpnqpxq “
1

p2πqn

ż

Rn

eik x dnk. (1.6.6)

The Wigner’s function, although is not a probability distribution, is nor-
malized:

ż

R2n

ρwpq,pqd
nqdnp “

ż

Rn

xp|ρ|pydnp “ Trpρq “ 1. (1.6.7)

For the following computations, is important to define first functions of
operators on a Hilbert space. Let A be a self-adjoint operator on a Hilbert
space H. Let us define fpAq as a regular enough function on A:

fpAq–

8
ż

8

fpaqEApdaq, (1.6.8)

where EApdaq is the spectral measure associated to the self-adjoint oper-
ator A (see for instance [Re80, ch. 7]). From this, we can define the delta
function of an operator on a Hilbert space as a distribution with values in
operators (see section 2.6).

However, if X is an eigenvalue of A, A|Xy “ X|Xy, we can see that the
delta function δpX1 Aq is nothing but the projector over the eigenvector
|Xy:

δpX1 Aq “
1

2π

8
ż

8

eikpX1 Aq dk “

ż

R2

eikpX aqEApdaqdk

“

8
ż

8

δpX aqEApdaq “ |XyxX|. (1.6.9)
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Hence, if we compute the mean value of the delta function of the operator
X1 A (with X an eigenvalue of A) over a state ρ, we get:

xδpX1 Aqyρ “ Tr
`

ρδpX1 Aq
˘

“ Trpρ|XyxX|q “ xX|ρ|Xy. (1.6.10)

To implement the reconstruction setting of the matrix elements of a
state ρ, we need to define new position and momentum variables via a
rotation of angle φ:

ˆ

qφ
pφ

˙

“

ˆ

cosφ sinφ
sinφ cosφ

˙ˆ

q
p

˙

. (1.6.11)

The marginal probability distribution of qφ is

Pφpqφq “ xqφ|ρ|qφy

“

8
ż

8

ρwpqφ cosφ pφ sinφ, qφ sinφ` pφ cosφqdpφ, (1.6.12)

where |qφy is the eigenvector of Qφ “ Q cosφ`P sinφ with eigenvalue qφ.
We have put n “ 1 for simplicity, however this result can be generalized for
any n by changing the momentum and position variables by n-dimensional
vectors.

Let us prove now eq. (1.6.12). From (1.6.10), we have that

Pφpqφq “ xqφ|ρ|qφy “ Tr
`

ρδpqφ1 Q cosφ P sinφq
˘

. (1.6.13)

Hence, using the exponential representation of the delta function, we get:

Tr
`

ρδpqφ1 Q cosφ P sinφq
˘

“
1

2π
Tr

¨

˝ρ

8
ż

8

eikqφ1 e ikpQ cosφ`P sinφq dk

˛

‚,

and applying the Baker–Campbell–Hausdorff formula

eA`B “ eA eB e 1{2rA,Bs, (1.6.14)
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for A and B satisfying
“

A, rA,Bs
‰

“
“

B, rA,Bs
‰

“ 0, we obtain that

1

2π
Tr

¨

˝ρ

8
ż

8

eikqφ1 e ikpQ cosφ`P sinφq dk

˛

‚

“
1

2π
Tr

˜

ρ

8
ż

8

8
ż

8

eikqφ1 e ik2{21cosφ sinφ e ikP sinφ e ikQ cosφ |qyxq|dqdk

¸

“
1

2π

8
ż

8

8
ż

8

eikqφ e ik2{2 cosφ sinφ e ikq cosφxq|ρ|q ` k sinφydqdk.

Making the following change of variable in q:

q̃ “ q `
k

2
sinφ,

and using eq. (1.6.2), we obtain that

1

2π

8
ż

8

8
ż

8

eikqφ e ik2{2 cosφ sinφ e ikq cosφxq|ρ|q ` k sinφydqdk

“
1

2π

8
ż

8

8
ż

8

eikpqφ q̃ cosφqxq̃
k

2
sinφ|ρ|q̃ `

k

2
sinφydq̃dk

“
1

2π

8
ż

8

8
ż

8

8
ż

8

eikpqφ q̃ cosφ p sinφq ρwpq̃, pqdpdq̃dk

“

8
ż

8

8
ż

8

ρwpq̃, pqδpqφ q̃ cosφ p sinφqdpdq̃.
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Then, we have shown that

Tr
`

ρδpqφ1 Q cosφ P sinφq
˘

“

8
ż

8

8
ż

8

ρwpq, pqδpqφ q cosφ p sinφqdqdp. (1.6.15)

From (1.6.11), we have that

p “ qφ sinφ` pφ cosφ,

hence, finally we have:

Tr
`

ρδpqφ1 Q cosφ P sinφq
˘

“

8
ż

8

ρw

ˆ

qφ
cosφ

p tanφ, p

˙

dp

| cosφ|

“

8
ż

8

ρw

ˆ

qφ
cosφ

p1 sin2 φq pφ sinφ, qφ sinφ` pφ cosφ

˙

dpφ

“

8
ż

8

ρwpqφ cosφ pφ sinφ, qφ sinφ` pφ cosφqdpφ.

�
Because the probability distribution Pφpqφq is an average of the Wigner’s

function over the plane qφ q cosφ p sinφ “ 0, people working in Quantum
Optics decided to call it a Tomogram.

Applying now the Inverse Radon Transform in polar coordinates, as
in (1.2.7), to the tomograms Pφpqφq, we can recover the Wigner’s function
ρw:

ρwpq, pq “
1

p2πq2

8
ż

8

8
ż

0

2π
ż

0

PφpXq e ikpX q cosφ p sinφq kdφdkdX, (1.6.16)

and finally, from (1.6.2), we can reconstruct easily the matrix elements of
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the density operator ρpq, q1q:

ρpq, q1q “
1

p2πq2

8
ż

8

8
ż

8

8
ż

0

2π
ż

0

PφpXq e ippq1 qq{~

¨ e ikpX pq1`qq{2 cosφ p sinφqkdφdkdXdp. (1.6.17)

1.7. Photodetection

Now, we will focus in how to measure the tomograms of a quantum
state of a radiation source. To get that, we will adapt the homodyne
and heterodyne detection described in section 1.3 for quantum devices
[Ar03]. In this setting, the equivalent to the mixing of two electric fields
is more complicated because now, they are operators on a Hilbert space,
and instead of a simple multiplication, we have a tensorial product. The
devices that let us mix two signals in Quantum Optics are beam-splitters
and photodetectors.

Figure 1.7.1: Beam-splitter.
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(or in the same mode), we have that a:0a0 ` a:1a1 “ a:2a2 ` a:3a3, then it
must be verified that

R̃T ˚ `R˚T̃ “ 0.

Then, the reflectance and transmittance in the two outputs can be written
as:

R “ sin θ eiφ, R̃ “ sin θ eiφ̃, T “ cos θ eiψ, T̃ “ cos θ eiψ̃,

with
eiφ “ eipψ`ψ̃ φ̃q,

hence, we have:

ˆ

a3

a2

˙

“

˜

cos θ eiψ sin θ eiφ̃

sin θ eipψ`ψ̃ φ̃q cos θ eiψ̃

¸

ˆ

a1

a0

˙

,

and if we choose all phases 0, we have that

Ubs “

ˆ

cos θ sin θ
sin θ cos θ

˙

. (1.7.2)

In the configurations that we will show later, we will use 50{50 beam-
splitters with θ “ π{4, that is, beam-splitters that reflect and transmit at
50%:

a2 “
1
?

2
pa0 a1q, a3 “

1
?

2
pa0 ` a1q. (1.7.3)

b) Photodetectors:

A photodetector is a device that generates an electric current by photo-
electric effect when photons reach it. The transition probability of absorb-
ing n photons from an initial state |iy to a final state |fy is:

Tif “ |xf |pE
`
px, tq|iy|2. (1.7.4)

Thus, the probability of absorbing any photon (or average intensity of
the electric field) will be the sum of all the probabilities of absorbing 0, 1, . . .
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photons:

Ipx, tq “
ÿ

f

Tif “
ÿ

f

xi|pE px, tq|fy ¨ xf |pE
`
px, tq|iy

“ xi|pE px, tq ¨ pE
`
px, tq|iy.

If our initial state is a mixed state ρ “
ÿ

i

pi|iyxi| and
ÿ

i

pi “ 1, pi ě 0, the

average intensity will be:

Ipx, tq “
ÿ

i

pixi|pE px, tq ¨ pE
`
px, tq|iy “ Tr

´

ρpE px, tq ¨ pE
`
px, tq

¯

.

The intensity of the electric field measures the number of photons per
unit of time. In the classical case, the probability dp that a photodetector
counts one photon in a time dt will be:

dpptq “ αIclptqdt, (1.7.5)

where the parameter α measures the sensitivity of the photodetector and
Iclptq is the classical current. Notice that this formula is equivalent to the
formula (1.2.1), hence the probability that a count does not occur in the
interval rt, t` T s is similar to eq. (1.2.2):

P0pt, t` T q “ exp

ˆ

α

t`T
ż

t

Iclpt
1qdt1

˙

,

and by induction, we can get the probability of counting n photons:

Pnpt, t` T q “
1

n!

„

α

t`T
ż

t

Iclpt
1qdt1

n

exp

ˆ

α

t`T
ż

t

Iclpt
1qdt1

˙

. (1.7.6)
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1.8. Homodyne and heterodyne detection in Quantum Optics

If we write the tomogram (1.6.13) in terms of creation and annihilation
operators, we have:

PφpXq “ Tr
`

ρδpX1 wa wa:q
˘

, (1.8.1)

where

w “

c

~
2

ˆ

cosφ
?
ω
` i
?
ω sinφ

˙

.

Our aim in this section will be show how to measure this tomogram.

1.8.1. Homodyne detection

This first kind of detection is called homodyne because the radiation
source is mixed with a strong laser beam of the same frequency. A strong
laser beam is a radiation source which emits light in a highly excited co-
herent state˚, i.e., |z| Ñ 8:

|zy “ e |z|2{2

8
ÿ

n“0

zn
?
n!
|ny, a|zy “ z|zy. (1.8.2)

The answer to the question, why do we mix the signal with a strong laser
beam, is that in the limit |z| Ñ 8, the laser beam behaves as a semiclassical
source, then the action of the electric field of the laser over the state of the
radiation source will be only a change of phase, as we will see later.

Let our input be a single mode field:

pE
`
px, tq “

?
2π~ω a e iωt upxq,

that emits light at a state ρ, and a strong laser beam:

pE
`

L px, tq “
?

2π~ω b e iωt uLpxq,

˚A more detailed description specifying the most important properties of coherent
states will be presented in subsection 2.8.1.
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with tomogram

Whom
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρb |zyxz| e ik{|z|pa
:b`b:aq

¯

dk. (1.8.5)

The annihilation operators a and b satisfy eq. (1.5.11):
“

a, a:
‰

“
“

b, b:
‰

“ 1,
“

a, b
‰

“
“

a, b:
‰

“ 0, (1.8.6)

hence, the operators a:b, b:a and 2N0 “ a:a b:b satisfy the commutation
relations of the sup2q algebra:

“

a:b, b:a
‰

“ a:a b:b “ 2N0,
“

a:b,N0

‰

“ a:b,
“

b:a,N0

‰

“ b:a, (1.8.7)

where N0 corresponds to the z-component of the angular momentum and
a:b, b:a are ladder operators.

Therefore, if we use the Baker–Campbell–Hausdorff formula for the
SUp2q group [Wo85,Ar92], we have:

eξab
: ξ̄a:b “ eζb

:a e1{2logp1`|ζ|2qpb:b a:aq e ζ̄a:b, ζ “
ξ

|ξ|
tan |ξ|. (1.8.8)

If we insert this result in (1.8.5), we get:

1

2π

8
ż

8

eikR Tr
´

ρb |zyxz| e ik{|z|pa
:b`b:aq

¯

dk

“
1

2π

8
ż

8

eikR Tr
´

ρb |zyxz| e i tanpk{|z|qb
:a e 1{2log

`

cos2pk{|z|q
˘

pb:b a:aq

¨ e i tanpk{|z|qa
:b
¯

“
1

2π

8
ż

8

eikR Tr
´

ρ e i tanpk{|z|q z̄a e log
`

cospk{|z|q
˘

a:a

¨ e i tanpk{|z|qza
:
¯

exp

¨

˝

2|z|2

cos
´

k
|z|

¯ sin2

ˆ

k

2|z|

˙

˛

‚dk.
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Using the standard BCH formula (1.6.14) again, and the identity

eX eY “ eexppsqY eX , (1.8.9)

whenever
“

X,Y
‰

“ sY , we obtain:

Whom
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρ e i sinpk{|z|qza
:

e 2 sin2pk{2|z|qpa
:a`|z|2q

¨ exp

˜

8
ÿ

n“2

2n

n
sin2n

ˆ

k

2|z|

˙

a:a

¸

e i sinpk{|z|q z̄a
¯

dk.

And finally, in the limit |z|2"xa:ayρ, we get:

Whom
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρ e ik eiθ a: e k2{2 e ik e´iθ a
¯

dk

“
1

2π

8
ż

8

eikR Tr
´

ρ e ikpeiθ a:`e´iθ aq
¯

dk. (1.8.10)

If we use the creation and annihilation formulas (1.5.1) to write the
tomogram Whom

θ pRq in terms of the operators Q and P to compare it
with the Radon Transform formula (1.1.1) via the correspondence with the
average integral over the Wigner function ρw given in (1.6.15), we get that

Whom
θ pRq “

c

~
2
Rρw

˜

c

~
2
R,
?
ω cos θ,

sin θ
?
ω

¸

. (1.8.11)

That shows that the quantum tomogram Whom
θ pRq measured in the ho-

modyne detection device, Figure 1.8.1, is just the Radon Transform of the
Wigner’s function of the state ρ (in the strong laser limit).
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Hence, using a rescaled version of the change of variables that we used
to get the formula (1.2.7):

µ “ k
?
ω cos θ,

ν “
k
?
ω

sin θ,

we get the following formula to reconstruct the Wigner’s function:

ρwpq, pq “
1

p2πq2

8
ż

8

8
ż

0

2π
ż

0

Whom
θ pRq

¨ e ikpR q
?
ω cos θ p{

?
ω sin θqkdθdkdR, (1.8.12)

and the matrix elements of the state ρ are recovered by means of the Fourier
Transform (1.6.2).

1.8.2. Heterodyne detection

As in the classical case in telecommunications, the difference between
homodyne and heterodyne detection is that in the heterodyne case the
frequency of the local oscillator is different to the frequency of the signal.

We saw in section 1.3 that heterodyne detection has the inconvenient
that there are frequencies, that we called image frequencies, in which we
cannot emit signals. In quantum optical detection, information is emitted
at every frequency because even if we are not at an excited state, the state
is the vacuum. However, we will see that this is not an inconvenient in the
final result. We will show that it gives only an extra contribution because of
the nature of the expected value over a state composed by a tensor product.

Let the input signal be:

pE
`
px, tq “

?
2π~

´?
ω a e iωt uρpxq `

?
ω 2ωIFa0 e ipω 2ωIF qt u0pxq

¯

,

acting on the state ρ b |0yx0|, where a acts on ρ and a0 on |0yx0|. We do
not write in this formula the rest of frequencies that also act on the vacuum
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because they will not contribute to the final result. Let also be a strong
laser beam:

pE
`

L px, tq “
a

2π~pω ωIF q b e ipω ωIF qt uLpxq,

that emits light in a coherent state |zyxz| with phase θ “ 0, z “ |z| and
|z|2 " xpaζ̄`a0ζq

:paζ̄`a0ζqyρb|0yx0| with ζ P C and |ζ| “ 1. The heterodyne
detection process is the following (see Figure 1.8.2):

First, we mix the two fields in a 50{50 beam-splitter to get:

c “
1
?

2

´

a e iωt`a0 e ipω 2ωIF qt b e ipω ωIF qt
¯

,

d “
1
?

2

´

a e iωt`a0 e ipω 2ωIF qt`b e ipω ωIF qt
¯

. (1.8.13)

Second, we put two photodetectors in each output and substract the
result to obtain:

D “
1

2

´

pa:b` b:a0q eiωIF t`pb:a` a:0bq e iωIF t
¯

. (1.8.14)

Third, we divide the signal in two parts and multiply one by cospωIF t`
φq and the other by sinpωIF t`φq and we pass the results through a low-pass
filter to get:

D1 “ D ¨ cospωIF t` φq ˚ Flowptq “
1

2

´

pa:b` b:a0q e iφ`pb:a` a:0bq eiφ
¯

,

D2 “ D ¨ sinpωIF t` φq ˚ Flowptq “
i

2

´

pa:b` b:a0q e iφ pb:a` a:0bq eiφ
¯

.

The symbol ˚ indicates the convolution product. The low-pass filters are
necessary for removing the terms of other frequencies that appear during
the process.

Finally, if we sum D1 and D2 and divide it by |z|, we will get the
operator whose statistics we want to obtain:

R “
1

|z|
pD1 `D2q “

1

2|z|

´

pa:b` b:a0qp1` iq e iφ`pb:a` a:0bqp1 iq eiφ
¯

“
1

|z|
?

2

´

`

a: eiθ `a:0 e iθ
˘

b` b:
`

a e iθ `a0 eiθ
˘

¯

, (1.8.15)
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with
θ “

π

4
φ. (1.8.16)

Notice that the operator

A “
1
?

2
pa e iθ `a0 eiθq,

where
“

a, a:
‰

“
“

a0, a
:
0

‰

“ 1,
“

a0, a
:
‰

“ 0, (1.8.17)

verifies:
“

A,A:
‰

“ 1,

hence, the operators A:b, b:A and 2N0 “ A:A b:b determine again a sup2q
algebra as in (1.8.7). Because of this, we can repeat the computations made
in the homodyne case and then, the tomogram

Whet
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρb |0yx0| b |zyxz| e ik{|z|pA
:b`b:Aq

¯

dk,

in the limit |z|2"xA:Ayρb|0yx0| reads as:

Whet
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρb |0yx0| e ikpA:`Aq
¯

dk

“
1

2π

8
ż

8

eikR Tr

ˆ

ρb |0yx0| e ik{
?

2

`

pa:`a0q eiθ `pa`a:0q e´iθ
˘

˙

dk. (1.8.18)

Taking into account that a` a:0 commutes with its adjoint and because
a and a0 commute each other, we can split the contribution of the vacuum
using the BCH formula (1.6.14):

Tr

ˆ

ρb |0yx0| e ik{
?

2

`

pa:`a0q eiθ `pa`a:0q e´iθ
˘

˙

“ Tr
´

ρ e ik{
?

2 a e´iθ e ik{
?

2 a
: eiθ

¯

¨ x0| e ik{
?

2 a
:
0 e´iθ e ik{

?
2 a0 eiθ

|0y.
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Thus, because

x0| e ik{
?

2 a
:
0 e´iθ e ik{

?
2 a0 eiθ

|0y “ x0|0y “ 1,

we have that

Tr

ˆ

ρb |0yx0| e ik{
?

2

`

pa:`a0q eiθ `pa`a:0q e´iθ
˘

˙

“ Tr
´

ρ e ik{
?

2 a e´iθ e ik{
?

2 a
: eiθ

¯

. (1.8.19)

Hence, we have that the heterodyne tomogram is the Fourier Transform
over the variable k of expression (1.8.19):

Whet
θ pRq “

1

2π

8
ż

8

eikR Tr
´

ρ e ik{
?

2 a e´iθ e ik{
?

2 a
: eiθ

¯

dk. (1.8.20)

From the tomogram (1.8.20), we cannot obtain the Wigner’s function
ρwpq, pq as in the homodyne case, however we can obtain the matrix el-
ements of ρ in the coherent basis |zy by means of the Husimi distribu-
tion [Hu37]:

ρQpz, z̄q “
1

π
xz|ρ|zy. (1.8.21)

The way to do it is by noticing that the Husimi function ρQpz, z̄q and the
anti-normal ordered characteristic function

χApξ, ξ̄q “ Tr
´

ρ e ξ̄a eξa
:
¯

are related by a two-dimesional Fourier Transform. Let see it using the
properties of the coherent states that will be exposed in subsec. 2.8.1:

χApξ, ξ̄q “
1

π
Tr

˜

ż

R2

ρ e ξ̄a |zyxz| eξa
:

d2z

¸

“
1

π
Tr

˜

ż

R2

ρ e ξ̄z |zyxz| eξz̄ d2z

¸

“
1

π

ż

R2

xz|ρ|zy e ξ̄z eξz̄ d2z.

(1.8.22)
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Because of eq. (1.8.22), the Husimi function ρQpz, z̄q is obtained from
the Inverse Fourier Transform in the variables ξ and ξ̄:

ρQpz, z̄q “
1

π2

ż

R2

χApξ, ξ̄q eξ̄z e ξz̄ d2ξ, (1.8.23)

hence, writing this expression in terms of the heterodyne tomogram (1.8.20),
we finally obtain the inversion formula:

ρQpz, z̄q “
1

2π2

8
ż

8

8
ż

0

2π
ż

0

Whet
θ pRq

¨ e ik{
?

2 p
?

2R z e´iθ z̄ eiθqkdθdkdR. (1.8.24)

Then, if we express the coherent factor z in terms of the position and
momentum variables q and p:

z “
1
?

2~

´?
ωq `

i
?
ω
p
¯

, (1.8.25)

we can write the Husimi function ρQpz, z̄q as the convolution of the Wigner’s
function ρwpq, pq with a Gaussian filter [Le15]:

ρQpz, z̄q “
1

π~

ż

R2

ρwpq
1, p1q e pq1 qq2{2σ2

q e pp1 pq2{2σ2
p dq1dp1, (1.8.26)

where σq and σp are the variances of the Gaussian wave-packet which satisfy
the Heisenberg minimum uncertainty relation

σqσp “
~
2
.



2
The tomographic picture of quantum systems

The ideas presented in the introduction can be extended and formal-
ized by considering with more care the role of the observables of the system
in the construction of the tomograms W.

The description of a physical system involves always the selection of its
algebra of observables A and a family of states S. The outputs of measuring
a given observable a P A, when the system is in the state ρ P S, are
described by a probability measure µa,ρ on the real line such that µa,ρp∆q
is the probability that the output of a belongs to the subset ∆ Ă R. Thus, a
measure theory (or better a theory of measurement) for the physical system
under consideration is a pairing xρ, ay between states ρ and observables a
that assigns to pairs of them probability measures µa,ρ. Then, the expected
value of the observable a in the state ρ is given by:

xayρ “

ż

R

λdµa,ρpλq.

Such picture applies equally to both, classical and quantum systems. For
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closed quantum systems, the observables are usually described as a family
of self-adjoint operators on a Hilbert space H while states are described
by density operators ρ acting on such Hilbert space, that is, positive self-
adjoint operators ρ ě 0, ρ “ ρ: such that Trρ “ 1. The pairing xρ, ay
written before is provided by the assignment µa,ρ “ TrpρEaq, where Ea
denotes the projector-valued spectral measure associated to the Hermitean
operator a.

This picture of quantum systems can somehow be enhanced by using
a more algebraic presentation. The rest of this chapter will be devoted to
this. A general discussion of Quantum Tomography in the setting of C˚–
algebras will be analyzed and a number of applications, including Group
Tomography, will be discussed.

A Picture of Quantum Mechanics is a mathematical representation of
quantum systems. There are three main standard pictures [Ga90] that
differ in the role of time regarding states and observables:

• Schrödinger picture: Where the time evolution is carried by the state
and the observables are considered static.

• Heisenberg picture: Where the time evolution is carried by the obser-
vables and the states are independent of time.

• Dirac picture: In which both, states and observables, are time depen-
dent.

These pictures together with Wigner–Moyal representation constitute
the most common mathematical descriptions of quantum mechanical sys-
tems. The representation we will use here, by means of C˚–algebras, em-
braces all the previous ones in a clear mathematical way and it is the one
we will consider here.

Moreover, already in section 1.6, it was presented a way for recon-
structing matrix elements of density operators by means of certain measure-
ments of observables. This is the so called tomographic picture of Quantum
Mechanics. In this sense, Quantum Tomography would not be considered a
picture of Quantum Mechanics by itself because derives from Heisenberg’s
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picture, however it was shown by Ibort et al. [Ib10] that it is truly equivalent
to the standard ones.

2.1. C˚–algebras and Quantum Tomography

The algebra of bounded operators BpHq on a Hilbert space H is usually
considered as the algebra of (bounded) observables of the system, however,
as it was proposed by von Neumann, it is possible to generalize that and
consider more general algebras. In this Thesis, we will present a tomo-
graphic picture of Quantum Mechanics in which observables are elements
of a C˚–algebra A.

Let us recall that a ˚–algebra A [Pe79] is a complex Banach algebra
with a norm } ¨ } and an involution operation ˚ satisfying:

(a) pa˚q˚ “ a,

(b) pabq˚ “ b˚a˚,

(c) pa` λbq˚ “ a˚ ` λ̄b˚,

for all a, b P A and λ P C. A C˚–algebra is a ˚–algebra A such that

}a˚a} “ }a}2, @a P A.

We will also ask for the algebras considered here to be unital in the sense
that there exists a neutral element 1 such that 1a “ a1 for all a P A.

An element will be called self-adjoint if a˚ “ a. The subspace of all self-
adjoint elements is denoted by Asa and constitutes the Lie–Jordan Banach
algebra of observables of the corresponding quantum system (see [Fa13] for
more details).

In particular, we can consider the C˚–algebra BpHq equipped with the
operator norm and the involution defined by the adjoint operation, that is,
A˚ – A: where A: denotes the adjoint operator of A P BpHq.

The states of the theory are normalized positive functionals on A, that
is, linear maps ρ : AÑ C such that

ρp1q “ 1, ρpa˚aq ě 0, @a P A. (2.1.1)
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In the case in which A “ BpHq, because of Gleason’s theorem [Gl57],
states are in one-to-one correspondence with normalized non-negative Her-
mitean operators ρ acting on the Hilbert space H:

Trpρq “ 1, ρ: “ ρ, ρ ě 0, (2.1.2)

which are the density operators presented in section 1.6 and in the intro-
duction to this chapter.

The relation between states ρ of the C˚–algebra BpHq and density op-
erators ρ on the Hilbert space H is given by the formula:

ρpAq “ TrpρAq, @A P BpHq. (2.1.3)

The space of states of a given C˚–algebraA will be denoted by SpAq and
it is a convex weak˚-compact subset of the topological dual A1 of A [Al78].

Notice that according to the physical interpretation of the C˚–algebra
A as the algebra of observables of a given physical system, when the alge-
bra is commutative it will be describing a classical system, whereas non-
commutativity will correspond to “genuine” quantum systems.

A state ρ of the C˚–algebraA represents the state of the physical system
under consideration and the number ρpaq, for a given a P A, is interpreted as
the expected value of the observable a measured in the state ρ, consequently
it is also denoted as:

xayρ – ρpaq. (2.1.4)

In this sense, eq. (2.1.3) represents the expected value of the observable
described by the operator A when the system is in the state given by the
density operator ρ.

Each self-adjoint element a P Asa defines a continuous affine function
qa : SpAq Ñ R,

qa– ρpaq. (2.1.5)

A theorem by Kadison [Ka51] states that the correspondence a Ñ qa is an
isometric isomorphism from the self-adjoint part of A onto the space of all
continuous affine functions from SpAq into R. Thus, the self-adjoint part
of the algebra of observables can be recovered directly from the space of
states and its complexification provides the whole algebra [Fa13].
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2.1.1. The GNS construction

The Hilbert space picture is recovered by means of the called GNS
construction [Ge43,Se47] named in honor of Gel’fand, Naimark and Segal.

Given a state ρ of a C˚–algebra A, we can construct a representation
πρ of A in the C˚–algebra of bounded operators of a Hilbert space Hρ
canonically associated to it. The Hilbert space Hρ is constructed as the
completion of the inner product space A{Jρ where

Jρ “ ta P A| ρpa˚aq “ 0u (2.1.6)

is the Gel’fand’s ideal of null elements for ρ, and the inner product is defined
as:

xras, rbsyρ – ρpa˚bq, a, b P A, (2.1.7)

where ras denotes the class a`Jρ in the quotient space. The representation
πρ is defined as:

πρpaqrbs– rabs, @a, b P A. (2.1.8)

The GNS construction provides a cyclic representation of A with the
cyclic vector corresponding to the unit element 1. Such vector will be called
the vacuum vector of Hρ and denoted by |0y. Moreover, we get that the
state ρ is also described by:

ρpaq “ x0|πρpaq|0y, a P A. (2.1.9)

In addition, given any element a P A, we have the associated vector
πρpaq|0y “ ra1s “ ras. In what follows, we will denote by |ay the vec-
tors ras P Hρ, thus:

πρpaq|0y “ |ay. (2.1.10)

By duality, A acts on the space of states SpAq, i.e., pa ¨ ρqpbq “ ρpabq.
Thus, if we fix the state ρ, then the orbit of A through ρ can be identified
with the Hilbert space Hρ. Now, each unit vector |ay P Hρ defines a state
on A by means of

ρapbq “ xa|πρpbq|ay “ ρpa˚baq. (2.1.11)
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is measurable (and continuous in the topological setting) and integrable in
the sense that for any ρ P SpAq, the sampling function Fρ is integrable,
that is, Fρ P L

1pM, µq.

We will consider now the special case where there exists another map
D : M Ñ A1, measurable and integrable in the sense that for any a P A
the function

Gapxq “ xDpxq, ay (2.2.2)

is integrable, and such that

xDpxq, Upyqy “ δpx, yq, x, y PM, (2.2.3)

where δpx, yq is the delta distribution on M with integral representation:

φpxq “

ż

M

δpx, yqφpyqdµpyq, (2.2.4)

where φ is any test function on M. We will call the set Dpxq a dual
tomographic set.

If such map D exists, we will say that U and D are biorthogonal. These
two maps U and D define what could be called a Generalized Fourier Trans-
form because its resemblance to the standard Fourier Transform, that is, if
we denote the sampling function by

qρpxq– xρ, Upxqy (2.2.5)

and define:

pφ “

ż

M

φpxqDpxqdµpxq (2.2.6)

(notice that this integral is well-defined), we have two maps:

q : SpAq Ñ L1pM, µq
and

p : L1pM, µq Ñ SpAq, (2.2.7)
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where the map p is a left-inverse of the map q . We will write formally this
fact in the following theorem.‹

Theorem 2.2.1. Let U be a tomographic map in the C˚–algebra A, and
D : M Ñ A1 be an integrable map such that U and D are biorthogonal,
then the map p : L1pM, µq Ñ A1 given by

pφ “

ż

M

φpxqDpxqdµpxq

is the left-inverse of the tomographic map q : SpAq Ñ L1pM, µq given by
qρ “ Fρ if the function Gapxq “ xDpxq, ay is in L8 for any a P A.

Proof : Let us consider qρ “ Fρ, then, we will see that the element p

qρ is
equal to ρ. For that, we will check now that the following functional:

ρ̃paq “

ż

M

FρpxqxDpxq, aydµpxq, a P A,

is continuous. Notice that this functional satisfies

}ρ̃} ď }Fρ}L1}xDp¨q, ay}L8 ,

but Dpxq P A1, therefore this means that |xDpxq, ay| ď K}a} for some K
independent of x, hence ρ̃ is continuous.

To show that ρ “ ρ̃, we will prove that ρ̃
`

Upxq
˘

“ ρ
`

Upxq
˘

for all
x PM, hence because U separates states, we will have that ρ “ ρ̃ :

xρ̃, Upxqy “

ż

M

FρpyqxDpyq, Upxqydµpyq “ Fρpxq “ xρ, Upxqy.

‹The formalism involving a tomographic map U and a tomographic dual map D has
been widely used by Marmo et al. (see for instance [As152]) for applications in different
settings and it was introduced by G. Marmo and V. Man’ko under the name of the
“quantizer-dequantizer” formalism. Today, it is common to call the functions Fρpxq
“tomographic symbols” of the state ρ.
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Conversely, we may compute first the p map and later the q map on
Fρ. If we apply the first map, we have that

pFρ “

ż

M

FρpxqDpxqdµpxq,

then, if we apply the q map, we get what we expected:

q

pFρpxq “ x pFρ, Upxqy “

ż

M

FρpyqxDpyq, Upxqydµpyq “ Fρpxq.

�
It is also noticeable that

ż

M

Fρpxqdµpxq “

ż

M

xρ, Upxqydµpxq “ ρ

˜

ż

M

Upxqdµpxq

¸

,

thus, if U is normalized, that is:
ż

M

Upxqdµpxq “ 1, (2.2.8)

it is clear that Fρ is normalized too:
ż

M

Fρpxqdµpxq “ 1. (2.2.9)

We may also define another sampling function, but this time depending
on two arguments as follows:

Fρpx, yq “ xρ, Upxq
˚Upyqy, for any x, y PM . (2.2.10)

We will say that a function F :MˆMÑ C is of positive type or semidef-
inite positive if for all N P N, ξi P C and any xi P M, i “ 1, . . . , N , it
satisfies that

N
ÿ

i,j“1

ξ̄iξjF pxi, xjq ě 0. (2.2.11)

This notion of positivity implies the following theorem.
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Theorem 2.2.2. Given a state ρ and a tomographic set U : M Ñ A in
a C˚–algebra A, then the sampling function Fρpx, yq “ xρ, Upxq˚Upyqy,
x, y PM is of positive type.

Proof : It is a straightforward computation:
N
ÿ

i,j“1

ξ̄iξjFρpxi, xjq “
N
ÿ

i,j“1

ξ̄iξjxρ, Upxiq
˚Upxjqy

“ xρ,
N
ÿ

i,j“1

ξ̄iξjUpxiq
˚Upxjqy “ xρ,

˜

N
ÿ

i“1

ξiUpxiq

¸˚˜ N
ÿ

j“1

ξjUpxjq

¸

y ě 0.

�
We will take advantage of this property later on when dealing with

tomography in groups. We will conclude this section by establishing the
notion of equivalence of tomographic sets.

Given two tomographic sets U :M Ñ A and rU : rM Ñ A, we will say
that they are equivalent if there exists an invertible measure preserving map
ϕ : M Ñ rM such that rU “ U ˝ ϕ 1. Clearly, if U and rU are equivalent,
then the sampling functions corresponding to a given state are related by
rFρ “ Fρ ˝ ϕ

1:

rFρpx̃q “ xρ, rUpx̃qy

“ xρ, pU ˝ ϕ 1qpx̃qy “ Fρ
`

ϕ 1px̃q
˘

“ pFρ ˝ ϕ
1qpx̃q. (2.2.12)

Consider that ϕ is a measure preserving map µ̃pr∆q “ µ
`

ϕ 1pr∆q
˘

, for any

measurable set r∆ Ă rM, hence if U and rU are equivalent and D :MÑ A1
is biorthogonal to U , the pair p rU, rDq is biorthogonal too, with rD “ D ˝ ϕ:

x rDpx̃q, rUpỹqy “ xD
`

ϕ 1px̃q
˘

, U
`

ϕ 1pỹq
˘

y

“ δ
`

ϕ 1px̃q, ϕ 1pỹq
˘

“ δpx̃, ỹq. (2.2.13)

The theory that we have sketched in this section, which consists basi-
cally on reconstructing the functional ρ by means of a set of samples Fρpxq:

ρ “

ż

M

FρpxqxDpxq, ¨ ydµpxq, (2.2.14)
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2.3. A Generalized Positive Transform

The second tool in our programme is the choice of a Generalized Posi-
tive Transform. At the beginning of this text, we introduced the Radon
Transform which maps probability distributions into probability distribu-
tions. We will try to generalize this concept in what follows.

To offer an abstract presentation of this transform, we will consider a
second auxiliary space N that parametrizes a family of elements in the dual
space DpMq Ă FpMq1 of the space of continuous functions on M˚. If we
denote by y P N the elements of N , such family of elements will have the
form

 

Rpyq | y P N
(

. Thus, R will be a map R : N Ñ DpMq and it will
allow us to define a transform of any continuous function on M by means
of

RpF qpyq– xRpyq, F y, (2.3.1)

where x¨, ¨y denotes the natural pairing between DpMq and FpMq. We will
say that this map F ù RpF q is a Generalized Positive Transform if it
maps functions of positive type on M into non-negative functions on N ,
i.e., if F :MˆMÑ C is of positive type, then

RpF qpyq “ xRpyq, F y ě 0, @y P N . (2.3.2)

Again, if N is a measure space with measure σ, we will assume that R is
integrable in the sense that the function RpF q “ xRp¨q, F y is σ–integrable
for any F integrable.

We will say that R is normalized if
ż

N

RpF qpyqdσpyq “ 1 (2.3.3)

for any function F on M such that
ż

M

F pxqdµpxq “ 1.

˚M will be assumed to be a topological space in what follows and, consequently, a
Borelian measurable space.
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Notice that in this case, R : L1pM, µq Ñ L1pN , σq is a continuous map
and we will say that R is non-degenerate if it has a left inverse, i.e., if there
exists a map R 1 : L1pN , σq Ñ L1pM, µq such that

R 1 ˝R “ idL1pM,µq. (2.3.4)

Under this rather long list of conditions, we will conclude by noticing
that if ρ is a state and U is a normalized tomographic map, then Fρ will
be a normalized function of positive type, Thm. 2.2.2, and in consequence
RpFρq will be a normalized non-negative function on N :

ż

N

RpFρqpyqdσpyq “ 1. (2.3.5)

Moreover, if we know RpFρq, we could obtain Fρ by applying a left-inverse
map R 1, i.e., Fρ “ R 1 ˝RpFρq. The function RpFρq will be called the
tomogram of the state ρ and we will denote it by Wρ, Figure 2.3.1:

Wρpyq “ xRpyq, Fρy. (2.3.6)

Notice again that the tomogram Wρpyq satisfies that it is a probability
distribution related with the state ρ:

Wρ ě 0,

ż

N

Wρpyqdσpyq “ 1. (2.3.7)

A particular instance of this setting is obtained when the tomographic
set is trivial, i.e., M “ A and U “ idA. Then, we may assume that R is a
map R : N Ñ A Ă A2 , and in that case, the tomogram of the state ρ will
be obtained directly from:

Wρpyq “ xρ,Rpyqy. (2.3.8)

This is just the situation for the Classical Radon Transform presented at
the beginning of this Thesis, where now A can be taken to be the
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In such case, in order to obtain a reasonable theory, we will assume that
the group acts on the auxiliary spaces used to construct the tomographic
description. Thus, the group G will act onM and N and such actions will
be simply denoted by xù g ¨ x and y ù g ¨ y, g P G, x PM and y P N .

The natural compatibility condition for a tomographic map U :MÑ A
to be equivariant is that

Upg ¨ xq “ TgUpxq, @x PM and @g P G. (2.4.2)

This could be interpreted by saying that if x̃ “ g ¨ x, then the two obser-
vables Upxq and Upx̃q are equivariant with respect to G, that is:

Upx̃q “ TgUpxq. (2.4.3)

Under these conditions, it is easy to conclude that the sampling function
Fρ corresponding to the state ρ satisfies the following condition:

Fρpg ¨ xq “ Fg˚ρpxq, (2.4.4)

because

Fρpg ¨ xq “ xρ, Upg ¨ xqy “ xρ, TgUpxqy “ xT
˚
g ρ, Upxqy “ Fg˚ρpxq,

where g˚ρ “ T ˚g ρ is the adjoint action of G on A1. Notice that if ρ is an
invariant state, T ˚g ρ “ ρ, then the corresponding sampling function will be
invariant too:

Fρpg ¨ xq “ Fρpxq, @g P G, x PM . (2.4.5)

As indicated before, we will also consider that the group G acts on the
auxiliary space N used to define the Generalized Positive Transform. The
map R : N Ñ DpMq is said to be equivariant if

Rpg 1 ¨ yq “ g˚Rpyq, (2.4.6)

where g˚ indicates now the natural action induced on the space DpMq Ă
FpMq1 given by the action of G on M, more explicitly:

xg˚Rpyq, F y “ xRpyq, g
˚F y and g˚F pxq “ F pg ¨ xq.
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If R is actually a map that induces a Generalized Positive Transform and
Wρ the tomogram of the state ρ, we will have that:

Wρpg
1 ¨ yq “ xRpg 1 ¨ yq, Fρy “ xg˚Rpyq, Fρy

“ xRpyq, g˚Fρy “ xRpyq, Fg˚ρy “Wg˚ρpyq. (2.4.7)

Therefore, we will conclude this discussion by observing that under the
conditions stated before, if ρ is an invariant state, its tomogram is invariant
too:

Wρpg ¨ yq “Wρpyq, @g P G. (2.4.8)

2.5. A particular instance of Quantum Tomography: Quantum
Tomography with groups

We will discuss now a particular instance of the tomographic programme
where a group G plays a paramount role. Such situation happens, for
example, in Spin Tomography [Ma97] where the group G is SUpNq (see
section 2.7.1), in the standard tomography of quantum states presented
in chapter 1 with G being the Heisenberg–Weyl group (see section 2.8)
and other physical situations that will show up later on.

In this setting, we will assume that the auxiliary spaceM is a Lie group
G and the tomographic map U : GÑ A is provided by a continuous unitary
representation of G on A, this is:

Upgq˚ “ Upgq 1 “ Upg 1q, @g P G,

and
Upg1g2q “ Upg1qUpg2q, @g1, g2 P G. (2.5.1)

Notice that because of (2.5.1), then Upeq “ 1.
If we denote by Tg : GÑ AutpAq the action of G on A given by

Tgpaq “ Upgq˚aUpgq, (2.5.2)

with a P A and g P G, then we see immediately that

Upg 1hgq “ Upgq˚UphqUpgq “ TgUphq, @g, h P G, (2.5.3)
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which is the equivariant property (2.4.2) for the adjoint action of G on
itself, hù g 1 ¨ h ¨ g.

The sampling function corresponding to the state ρ is given by

Fρpgq “ xρ, Upgqy, (2.5.4)

and we may check that the map Fρ : GÑ C is of positive type because the
function Fρpg, hq “ Fρpg

1hq satisfies Thm. 2.2.2:

N
ÿ

i,j“1

ξ̄iξjFρpg
1

i gjq ě 0, (2.5.5)

for all N P N, ξi P C, gi P G with i “ 1, . . . , N . Moreover, it satisfies
property (2.4.4).

In the case in which A “ BpHq, because of the one-to-one correspon-
dence between states and density operators, the sampling function Fρ can
be written as:

Fρpgq “ Tr
`

ρUpgq
˘

, (2.5.6)

hence, because the character of a group representation is defined as:

χpgq “ Tr
`

Upgq
˘

, (2.5.7)

we will denote the sampling function χρpgq – Fρpgq and we will call it
a smeared character of the representation U with respect to the state ρ.
Let us notice that if H has finite dimension n and the state is the trivial
one, ρ “ 1

n1, the smeared character is just the standard character (2.5.7)
divided by n.

Consider again the strongly continuous action Tg of G on A and notice
that the map fapgq “ }Tgpaq} is continuous for all a P A. The GNS
construction described at the beginning of this chapter (section 2.1.1)
provides, given a state ρ, a representation πρ of A in Hρ and then, we get
a strongly continuous unitary representation of the group G by means of

Uρpgq “ πρ
`

Upgq
˘

. (2.5.8)
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Notice that Uρpgq is actually a unitary operator on the Hilbert space Hρ
because:

xUρpgqras, Uρpgqrbsyρ “ ρ
`

pUpgqaq˚pUpgqbq
˘

“ ρpa˚bq “ xras, rbsyρ,

for all g P G, ras, rbs P Hρ.
Now, the sampling function of a representation U corresponding to

a state ρ can be written as:

Fρpgq “ x0|Uρpgq|0y, (2.5.9)

where |0y is the fundamental vector of Hρ. Fixed the state ρ, the smeared
character of U with respect to any other state σ in the folium of ρ, (2.1.12),
will be given by

χσpgq “ xσ, Upgqy “ Tr
`

σπρ
`

Upgq
˘˘

“ Tr
`

σUρpgq
˘

. (2.5.10)

We can conclude this section by stating the following characterization
of states.

Theorem 2.5.1. Let ρ : AÑ C be a linear function and consider the sam-
pling function Fρpgq “ xρ, Upgqy where U is a completely reducible strongly
continuous unitary representation of the Lie group G on A. Then, ρ is a
state iff Fρ is a positive type function on G and Fρpeq “ 1.

Proof : We have seen before in (2.5.5) that Fρ is of positive type if ρ is a
state, and Fρpeq “ 1 because of the normalization of ρ. Conversely, if Fρ is
a positive type function on G, because of Naimark’s theorem [Na64], there
exist a complex separable Hilbert space H supporting a strongly continuous
unitary representation U of G, and a vector |0y P H such that

Fρpgq “ x0|Upgq|0y.

Now, because U is completely reducible, then U can be written as a direct
sum of irreducible representations:

U “
à

α

Uα,
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and any a P A can be written as:

a “
à

α

aα,

where aα P span
 

Uαpgqã
(

for some ã P A. Hence, we can restrict to the
subspaces Aα “ span

 

Uαã
(

where Uα is irreducible. Once we have that
we can restrict to the subspaces Aα, we can proceed similarly to the proof
made for finite groups in [Ib11] generalizing it to any Lie group G.

�

2.6. Quantum tomograms associated to group representations

We are ready now to introduce the notion of quantum tomogram of a
given state ρ associated to a unitary group representation pG,Uq.

Given an element ξ in the Lie algebra g of the Lie group G, we can
consider the space gˆR and the extended exponential map exp : gˆRÑ G
given by exppt, ξq– expptξq, where exp : gÑ G is the ordinary exponential
map. Notice that if G is a matrix Lie group, then:

expptξq “
8
ÿ

n“0

tn

n!
ξn. (2.6.1)

Also, we can consider the one-parameter group of unitary operators in
the Hilbert space Hρ, Uρ

`

expptξq
˘

, obtained using the GNS construc-
tion, eq.(2.5.8), with t P R. Because of Stone’s theorem [St32], there exists
a self-adjoint operator ξ on Hρ such that

eitξ “ Uρ
`

expptξq
˘

. (2.6.2)

Notice that the element ξ in the Lie algebra and the operator ξ have op-
posite symmetry because of the i factor in the exponent, that is, if G is a
matrix Lie group, then ξ P g is skew-Hermitian while ξ is Hermitean.

Let us denote by Θ the canonical left-invariant Cartan 1-form on G
that has the tautological definition Θpξq “ ξ, for any left-invariant vector
field ξ in G. Let also Θ be the “quantization” of that 1-form, i.e., Θ is a
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left-invariant 1-form on G with values in self-adjoint operators on Hρ, and
is defined as:

xΘ, ξy “ ξ, @ξ P g. (2.6.3)

Using that Cartan 1-form, we can see that the operators ξ provide a rep-
resentation of g in Hρ, this is:

rξ, ζs “ ixΘ, rξ, ζsy, @ξ, ζ P g. (2.6.4)

To prove it, notice that because

etξ etη e tξ e tη “ 1` t2rξ, ηs ` ¨ ¨ ¨ ,

we have:

ixΘ, rξ, ζsy “
d

dt
Uρ

`

expptrξ, ηsq
˘

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt
Uρ

´

e
?
tξ e

?
tη e

?
tξ e

?
tη
¯

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt

´

ei
?
tξ ei

?
tη e i

?
tξ e i

?
tη
¯

ˇ

ˇ

ˇ

ˇ

t“0

“ rξ,ηs.

We may use now the spectral theorem [Re80, ch. 7] to write each oper-
ator ξ on Hρ as follows:

ξ “

8
ż

8

λEξpdλq, (2.6.5)

where Eξ denotes the spectral measure of ξ, and using (2.6.2), we can write:

Uρ
`

expptξq
˘

“ eitξ “

8
ż

8

eitλEξpdλq. (2.6.6)

Now, let σ be a state on the folium of ρ, i.e., σ is a density operator
on Hρ defined by eq. (2.1.12), then let us consider the measure µσ,ξpdλq “
Tr
`

σEξpdλq
˘

. In other words, if ∆ is a Borel set in R, we have:

P pξ, σ; ∆q “

ż

∆

µσ,ξpdλq “ µσ,ξp∆q “ Tr
`

σEξp∆q
˘

. (2.6.7)
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Notice that the physical interpretation of the measure µσ,ξp∆q associ-
ated to the state σ and the observable ξ, as in the introduction of this
chapter, is that the number P pξ, σ; ∆q in eq. (2.6.7) is the probability of
getting the output of measuring the observable ξ in the set ∆ when the sys-
tem is in the state σ. Then, obviously, we see that µσ,ξpRq “ 1. Moreover, if
the measure µσ,ξpdλq is absolutely continuous with respect to the Lebesgue
measure dX, then there will exist a function WσpX; ξq in L1pR, dXq such
that for all measurable ∆:

ż

∆

µσ,ξpdλq “

ż

∆

WσpX; ξqdX ě 0. (2.6.8)

In general, this will not be true if the measure µσ,ξpdλq have singular part,
for instance, if ξ has eigenvalues.

Definition 2.6.1. Given a state σ in the folium of ρ and a unitary repre-
sentation U of a Lie group G on the unital C˚–algebra A, we will call the
quantum tomogram family of σ the family of Borelian probability measures
µσ,ξpdλq “ Tr

`

σEξpdλq
˘

on R, ξ P g and X P R. The absolutely continuous
part of them define a function Wσ : g ˆ R Ñ R given by eq. p2.6.8q, which
is commonly called the quantum tomogram of σ, in other words, WσpX; ξq
is the Radon–Nikodym derivative of the measure µσ,ξpdXq with respect to
the Lebesgue measure dX:

WσpX; ξq “
δµσ,ξpdXq

δX
. (2.6.9)

Notice that (2.6.9) is another way of rewriting (2.6.8) and recall that if
Wσ is continuous, then necessarily Wσ is non-negative, Wσ ě 0.

From (2.5.10) and (2.6.6), we get immediately:

χσ
`

expptξq
˘

“

8
ż

8

eitX µσ,ξpdXq, (2.6.10)



2.6. Quantum tomograms associated to group representations 71

i.e., χσ
`

expptξq
˘

is the Inverse Fourier Transform of the measure µσ,ξpdXq,
hence if the measure had only continuous part, we would have that

WσpX; ξq “
1

2π

8
ż

8

e itX χσ
`

expptξq
˘

dt. (2.6.11)

Proposition 2.6.2. Under the conditions stated above, the quantum tomo-
gram Wσ is non-negative and:

1.

8
ż

8

WσpX; ξqdX “ 1.

2. WσpsX; sξq “
1

s
WσpX; ξq, s ą 0.

We will obtain now a representation of the quantum tomogram Wσ, or
more properly a representation of the measure µσ,ξpdXq, in a form that it
will put the notion of quantum tomogram introduced in (2.6.11) in perfect
parallelism with the Radon Transform discussed in chapter 1. This will
justify that such expression could be called the Quantum Radon Transform
of a given state.

Theorem 2.6.3. Given a state ρ in a unital C˚–algebra A, then the quan-
tum tomogram WσpX; ξq of any state σ in the folium of ρ associated to the
unitary representation U of the Lie group G on A is given by

WσpX; ξq “ Tr
`

σδpX1 xΘ, ξyq
˘

, @ξ P g, X P R.

Inside the trace, the delta function of an operator on Hρ appears. We
have already introduced the concept of delta function of an operator in
chapter 1 in (1.6.9), however is convenient to consider it again and com-
ment a few aspects of it. The delta function of a bounded operator T on
Hρ is defined as the operator-valued distribution given by:

δpTq “
1

2π

8
ż

8

eikT dk, (2.6.12)
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and for any test function φpλq in the Schwartz space S pRq, it follows:

xδpTq, φy “
1

2π

8
ż

8

8
ż

8

eikλ φpλqETpdλqdk,

where ET is the spectral measure defined by T. Notice that the previous
integral is well-defined and notice also that if T is self-adjoint and if φ is
real, then the operator xδpTq, φy is self-adjoint too.

Thus, in our case we have that

xδpX1 xΘ, ξyq, φy “
1

2π

8
ż

8

8
ż

8

eikpX1 xΘ,ξyq φpλqETpdλqdk. (2.6.13)

In Prop. 2.6.2, we wrote the normalization and homogeneity conditions
that the quantum tomogram WσpX; ξq satisfies and before, in (2.6.8), we
wrote the non-negativity condition. But we know that a tomogram must
satisfy that it is a probability distribution, therefore let us see thatWσpX; ξq
is also real:

WσpX; ξq “ Tr
`

σδpX1 xΘ, ξyq
˘

“ Tr
`

σδpX1: xΘ, ξy:q
˘

“ Tr
`

σδpX1 xΘ, ξyq
˘

“WσpX; ξq. (2.6.14)

2.7. Reconstruction of states sampled with compact Lie groups

In previous section, we have discussed how to define tomograms using
a group representation. In this one, we will discuss how to recover the state
σ in the folium of a state ρ from its tomograms.

Recall that because (2.6.10), we can obtain the smeared character χσ
as the Inverse Fourier Transform of the tomogram Wσ:

Tr
`

σUρ
`

expptξq
˘˘

“ χσ
`

expptξq
˘

“

8
ż

8

eitXWσpX; ξqdX, (2.7.1)
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then, what we need is to recover the state σ from the smeared characters
χσ

`

expptξq
˘

.
In section 2.2, we have explained that we need a tomographic set Upxq

and a dual tomographic set Dpxq to reconstruct a state of a system. To
get the dual tomographic map D, we need a notion of orthogonality in our
theory.

In group theory, there exist natural orthogonality relations associated
to representations of finite groups or compact Lie groups. We will concen-
trate in these two cases because they appear commonly in many quantum
systems. Furthermore, there are other situations in which we can find or-
thogonality relations that allow us to reconstruct the desired states, for
instance, the cases of Heisenberg–Weyl and Poincaré groups that will be
considered later on.

Let pH, Uq be a unitary representation, U : G Ñ UpHq. The represen-
tation is irreducible if there are no proper invariant subspaces of H under
the action of the representation on the Hilbert space H. Let us suppose
that the Hilbert space H is finite dimensional with n “ dimpHq and let ei,
i “ 1, . . . , n, be a given orthonormal basis on such space. We will denote
by Uijpgq the elements of the unitary matrix associated to Upgq, g P G, in
the previous basis, i.e.,

Upgqei “
n
ÿ

i“1

Ujipgqej . (2.7.2)

In what follows, Upgq will refer to its associated matrix too assuming that
an orthonormal basis has been fixed.

Suppose that G is finite, then Schur’s orthogonality theorem (see for
instance [Jo97]) asserts that given two unitary irreducible representations
U paq and U pbq of dimensions na and nb respectively of a finite group G of
order |G|, then:

na
|G|

ÿ

gPG

U
paq
ij pgq

:U pbqrs pgq “ δabδirδjs. (2.7.3)

Therefore, if we choose as the dual tomographic map the Hermitean con-
jugate of Upgq, Dpgq “ Upgq:, we will get the biorthogonality condi-
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tion (2.2.3):
n

|G|

ÿ

gPG

DijpgqUrspgq “ δirδjs. (2.7.4)

Hence, if ρ is the corresponding density operator related to the state ρ and
U is irreducible, the reconstruction formula (2.2.14) becomes:

ρ “
n

|G|

ÿ

gPG

χρpgqUpgq
:. (2.7.5)

In the case of finite groups, the tomogram of the state ρ can be obtained
by using the discrete version of formula (2.6.11), [Ib11]. Let us transform
Upgq in a diagonal matrix dg by means of a unitary matrix Vg:

Upgq “ VgdgV
:
g , dg “ diag

”

eiθ1pgq, . . . , eiθnpgq
ı

, (2.7.6)

then, let us compute the smeared character of Upgq:

χρpgq “ Tr
`

ρVgdgV
:
g

˘

“ Tr
`

dgV
:
g ρVg

˘

“

n
ÿ

m“1

eiθmpgq
`

V :g ρVg
˘

mm
. (2.7.7)

Therefore, the tomograms of the state are given by:

Wρpm; gq–
`

V :g ρVg
˘

mm
. (2.7.8)

These tomograms are, by definition, a stochastic vector, i.e.,

n
ÿ

m“1

Wρpm; gq “
n
ÿ

m“1

`

V :g ρVg
˘

mm
“ Trpρq “ 1 (2.7.9)

and

0 ďWρpm; gq ď 1, m “ 1, . . . , n, @g P G. (2.7.10)

The proof of the last statement is a direct consequence of Schur’s inequali-
ties (see for instance [Bh97]).
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Therefore, we see that the smeared characters of the state ρ can be
obtained as a Discrete Fourier Transform of the tomograms defined before:

χρpgq “
n
ÿ

m“1

eiθmpgqWρpm; gq. (2.7.11)

If the group G is now a compact Lie group, we have the same orthogo-
nality relation (2.7.4) by making the obvious substitutions:

1

|G|

ÿ

gPG

ù

ż

G

dµpgq, (2.7.12)

with µpgq the normalized Haar measure on the group:
ż

G

dµpgq “ 1. (2.7.13)

Then, if U is an irreducible representation of dimension n, the state is
reconstructed with the formula:

ρ “ n

ż

G

χρpgqUpgq
:dµpgq, (2.7.14)

where n “ dimH is the dimension of the irreducible representation and
Dpgq “ nUpgq: is the dual tomographic set. The tomograms are defined
with the formula (2.6.11).

Let us consider now a subgroup H Ă G of a finite or compact Lie group
G. The restriction of the representation U to the subgroup H, sometimes
denoted by U ÓH and called the subduced representation of U to H, will
be, in general, reducible even if U is irreducible.

Let us suppose that the state ρ satisfies the following orthogonality
relations:

Tr
`

ρUpgq
˘

“ 0, g P GzH, (2.7.15)

that is, the inner products with the unitary operators corresponding to
the elements of G not in the subgroup H vanish. Therefore, in this case,
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we have similar formulas to (2.7.5) and (2.7.14) even if the representation
U ÓH is reducible:

ρ “
n

|G|

ÿ

gPH

χρpgqUpgq
:, (2.7.16a)

in the finite case and

ρ “ n

ż

H

χρpgqUpgq
:dµpgq, (2.7.16b)

in the compact situation.
Such states will be said to be adapted states to the subgroup H and

they will constitute the main tool of the numerical algorithm to decompose
reducible representations that will be presented in the following chapter.
Let us summarize this results by writing the following theorem.

Theorem 2.7.1. Let G be a compact Lie group and pA, Uq a unitary repre-
sentation of G on a C˚–algebra A. Given an adapted state σ in the folium
of the state ρ, the density operator σ in BpHρq can be obtained by means
of:

σ “ n

ż

G

χσpgqUρpgq
:dµpgq,

where Uρpgq “ πρ
`

Upgq
˘

, Hρ and πρ are the unitary representation, the
Hilbert space and representation of A obtained with the GNS construc-
tion, and n “ dimHρ.

Proof : The proof follows immediately from the arguments stated before
to obtain the formula (2.7.14) and from the definition of adapted states
(2.7.15) that allows to use the formula (2.7.14) even if the unitary repre-
sentation U is not irreducible.

�
Another case in which an orthogonality relation can be defined is when

we consider the regular representation of a group. The regular representa-
tion of a group G is the unitary representation obtained from the action
of the group G on the Hilbert space of square integrable functions on the
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group, H “ L2pG,µq, where µ denotes the left(right)-invariant Haar mea-
sure by left (right) translations.

Thus, the left regular representation U regL phq is defined as follows:
`

U regL phqψ
˘

pgq “ ψph 1gq, ψ P L2pG,µq. (2.7.17)

The right regular representation is defined analogously.
If G is finite, it is clear that L2pGq is isometrically isomorphic with the

group algebra CrGs:

H – CrGs “
!

|αy “
ÿ

gPG

αg|gy
ˇ

ˇαg P C
)

, (2.7.18)

with inner product xα, βy “
ÿ

gPG

αgβg. The action of the group is given by:

U regL phq|αy “
ÿ

gPG

αh´1g|gy “
ÿ

g1PG

αg1 |hg
1y, (2.7.19)

then, we can interpret the left regular representation U regL as:

U regL phq|gy “ |hgy, @g, h P G. (2.7.20)

From the orthogonality relation satisfied by the regular representation:

Tr
`

U regL pgq:U regL pg1q
˘

“ nδg´1g1 , (2.7.21)

the character of the representation is easily computed:

χregpgq “ nδg “

"

n g “ e,
0 otherwise ,

(2.7.22)

with n “ dimH. In that case the reconstruction formula of ρ is (2.7.16a).
For compact groups, we have similar results, however the character χreg

is now a Dirac’s delta distribution:

χregpgq “ δpgq, g P G, (2.7.23)

and the theorem of Harish–Chandra [Ar88] allows to extend the result in
eq. (2.7.22) to semisimple Lie groups. In that case, the reconstruction for-
mula is (2.7.16b) with n “ 1.
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The SUp2q group is a compact Lie group, hence we can reconstruct a
given state ρ by means of (2.7.14). The irreducible representation of this
group for spin one-half can be written in terms of the exponential of the
elements of the Lie algebra sup2q:

Upsx, sy, szq “ eipsxSx`sySy`szSzq, (2.7.25)

where the operators corresponding to the spin in the axis x, y, z are:

Si “
~
2
σi, i “ x, y, z, (2.7.26)

and where the σi are the Pauli matrices:

σx “

ˆ

0 1
1 0

˙

, σy “

ˆ

0 i
i 0

˙

, σz “

ˆ

1 0
0 1

˙

. (2.7.27)

We will define the tomograms of the state ρ of this system as:

WρpX, sx, sy, szq “ Tr
´

ρδ
`

X1
sx
2
σx

sy
2
σy

sz
2
σz
˘

¯

. (2.7.28)

Instead of using the exponential representation of the delta function, we
will use the result obtained in (1.6.10), i.e., we will use the interpretation
of the delta function of an operator as a projector over the eigenstates
corresponding to the eigenvalues equal to X:

δpX1 Aq “ |XyxX|, A|Xy “ X|Xy,

to write the tomogram as

WρpX, sx, sy, szq “ xX|ρ|Xy, (2.7.29)

where A “
sx
2
σx `

sy
2
σy `

sz
2
σz.

The eigenvalues of this operator are λ “ ˘|s|{2, and its corresponding
eigenvectors are

|v`y “
1

a

2|s|p|s| szq

ˆ

sx ` isy
sz |s|

˙

, |v y “
1

a

2|s|p|s| szq

ˆ

sz |s|
sx ` isy

˙

.
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Thus, the tomogram can be written as:

WρpX, sx, sy, szq “ δpX |s|{2qxv`|ρ|v`y ` δpX ` |s|{2qxv |ρ|v y,

and therefore, we finally get:

WρpX, sx, sy, szq “

1

2

ˆ

´

1`
sz
|s|
r cos θ

¯

` sin θ
´ sx
|s|

cosφ`
sy
|s|

sinφ
¯

˙

δpX |s|{2q

`
1

2

ˆ

´

1
sz
|s|
r cos θ

¯

sin θ
´ sx
|s|

cosφ`
sy
|s|

sinφ
¯

˙

δpX ` |s|{2q. (2.7.30)

2.8. Tomography with the Heisenberg–Weyl group

To finish this discussion, let us mention a case in which the group is
neither finite or compact but we know how to reconstruct their states.
We do not need to go far away to find it because it was the main topic in
previous chapter. We are talking about the quantum harmonic oscillator.

In that chapter, we found a reconstruction formula for the matrix
elements of a density operator ρ, eq. (1.6.17), so it is natural to think that
we could find a reconstruction formula for the operator ρ.

The position and momentum operators, which satisfy the commutation
relation rQ,Ps “ i1, are a realization of the Lie algebra of the Heisenberg–
Weyl group which may be presented as the group of triples of real numbers
with the composition law:

pµ, ν, tq ˝ pµ1, ν1, t1q “
`

µ` µ1, ν ` ν 1, t` t1
1

2
pµν 1 νµ1q

˘

, (2.8.1)

and an irreducible representation of it is provided by:

Upµ, ν, tq “ eipµQ`νPq eit1 . (2.8.2)
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The symmetry group of the harmonic oscillator is the projective sub-
group of Heisenberg–Weyl group with t “ 0, then its representation is:

Upµ, νq– Upµ, ν, 0q “ eipµQ`νPq . (2.8.3)

If we compute the trace of the composition of two elements of the group,
we obtain:

Tr
`

Upµ, νqUpµ1, ν1q:
˘

“ e i{2

`

νpµ µ1q µ1pν ν1q
˘

8
ż

8

xp| eipµ µ1qQ eipν ν1qP |pydp

“ e i{2

`

νpµ µ1q µ1pν ν1q
˘

8
ż

8

8
ż

8

eipµ µ1qq eipν ν1qpxp|qyxq|pydqdp

“
1

2π
e i{2

`

νpµ µ1q µ1pν ν1q
˘

8
ż

8

8
ż

8

eipµ µ1qq eipν ν1qp dqdp

“ 2πδpµ µ1qδpν ν 1q, (2.8.4)

where we have used the BCH formula (1.6.14) and the inner product of
momentum and position eigenvectors (1.6.3). Finally, the reconstruction
formula for the state ρ reads as:

ρ “
1

2π

8
ż

8

8
ż

8

χρpµ, νqUpµ, νq
:dµdν

“
1

2π

ż

R3

WρpX,µ, νq eipX1 µQ νPq dXdµdν. (2.8.5)

If we compare this equation with the classical one obtained in chap-
ter 1 in (1.1.5), we see that are similar only by substituting the density
probability fpq, pq by the density operator ρ and the classical position and
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momentum q and p by its corresponding operators Q and P, however in-
stead of p2πq2 in the denominator here we have 2π. The factor p2πq2 is
due to the Fourier Transform of classical position and momentum, hence
for each one we have a factor 2π. But here, position and momentum are
operators on a Hilbert space and they are related by means of a Fourier
Transform, then that fact makes that in formula (2.8.5) only one factor 2π
appears.

2.8.1. The holomorphic representation of an ensemble of quan-
tum harmonic oscillators

The choice of the complex coordinates (2.8.25) in subsection 2.8.3,
that will be used to facilitate the computation of the tomograms of an
ensemble of quantum harmonic oscillators of a given state, is not just a
convenient mathematical transformation because it provides another real-
ization of the Fock space FN that will be fundamental when dealing with
tomograms of quantum fields (see chapter 5).

Let us consider first a quantum harmonic oscillator with Hamiltonian:

H “ ~ω
´

a:a`
1

2

¯

.

This quantum system is nicely described in the Fock space F1 discussed in
section 1.5.

It is easy to check that the coherent states presented in eq. (1.8.2),

|zy “ e |z|2{2

8
ÿ

n“0

zn

n!
pa:qn|0y P F1, (2.8.6)

are eigenvectors of the creation operator a with eigenvalue z, i.e.:

a|zy “ z|zy, @z P C, (2.8.7)

and similarly a:|z̄y “ z̄|z̄y. Such states have the beautiful property that
their evolution in time mimics the classical solution of the system, this is:

Ut|z0y “ e itH |z0y “ |zptqy, (2.8.8)
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with zptq “ z0 e iωt (this is easily checked by noticing that the evolution of
a is given by U :t aUt “ a e iωt).

The expression (2.8.6) for |zy can be written in compact form as:

|zy “ e |z|2{2 eza
:

|0y,

hence, as in other situations, taking advantage of the BCH formula (1.6.14),
it verifies the normalization of the coherent states:

xz|zy “ e |z|2x0| ez̄a eza
:

|0y “ x0| eza
:

ez̄a |0y “ x0|0y “ 1.

The displacement operator Dpzq, that is nothing but the unitary rep-
resentation of the Heisenberg–Weyl group (2.8.3) written in terms of anni-
hilation and creation operators:

Dpzq “ eza
: z̄a, (2.8.9)

satisfies
Dpzq|0y “ |zy (2.8.10)

and consequently, because of the composition law (2.8.1), we have that

Dpzq|wy “ |w ` zy and Dpzq:|wy “ |w zy. (2.8.11)

It is important to remark that the coherent states are not orthogonal:

xz|wy “ e 1{2 p|z|
2`|w|2q`z̄w ùñ |xz|wy| “ e |z w|2{2, (2.8.12)

but they obey the following completeness relation:

1

π

ż

R2

|zyxz|d2z “
1

π

ż

R2

e |z|2
8
ÿ

n,m“0

|nyxm|
znz̄m
?
n!m!

d2z

“
1

π

8
ż

0

2π
ż

0

e r2
8
ÿ

n,m“0

|nyxm|
rn`m
?
n!m!

eipn mqθ rdθdr

“ 2
8
ÿ

n“0

|nyxn|

8
ż

0

e r2 r
2n`1

n!
dr “

8
ÿ

n“0

|nyxn| “ 1. (2.8.13)
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Let us remark also, that the projectors Ez “ |zyxz|, providing a resolu-
tion of the identity, are not selft-adjoint E:z “ Ez̄ ‰ Ez neither orthogonal
to each other:

EzEw “ |zyxz|wyxw| “ e 1{2 p|z|
2`|w|2q`z̄w|zyxw| ‰ 0 if z ‰ w.

2.8.2. The Bargmann–Segal Hilbert space of entire functions

Consider an entire function ψpzq with proper series expansion

ψpzq “
8
ÿ

n“0

cnz
n. (2.8.14)

To such function, we may associate the vector |ψy P F1 given by:

|ψy “
8
ÿ

n“0

cn
?
n!|ny “

8
ÿ

n“0

cnpa
:qn|0y, (2.8.15)

and then, we get that

xz̄|ψy “
8
ÿ

n,m“0

cn
?
n!

1
?
m!
zmxm|ny e |z|2{2

“

8
ÿ

n“0

cnz
n e |z|2{2 “ e |z|2{2ψpzq. (2.8.16)

Thus, if we consider the space of entire functions ψpzq such that
ż

R2

e |z|2 |ψpzq|2d2z ă 8,

we have that the map which assigns to each function ψpzq the expression
|ψy in (2.8.15) is well-defined on F1 because:

xψ|ψy “
1

π

ż

R2

xψ|zyxz|ψyd2z “
1

π

ż

R2

e |z|2 |ψpzq|2d2z ă 8.
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Hence, we define the Bargmann–Segal space FBS as the Hilbert space
of entire functions ψ such that

}ψ}2BS “
1

π

ż

R2

e |z|2 |ψpzq|2d2z ă 8, (2.8.17)

with inner product:

xψ, φyBS “
1

π

ż

R2

e |z|2 ψpzqφpzqd2z. (2.8.18)

Clearly, the space FBS is unitarily equivalent to the Fock space F1 by
the following map:

T : FBS Ñ F1

ψ ù |ψy “ Tψ.

Moreover, the creation and annihilation operators become:

aBSψ “ T :aTψ “
B

Bz
ψ, a:BSψ “ T :a:Tψ “ zψ, (2.8.19)

then, the ground state of the theory is just:

ψ0 “ T :|0y “ 1, p}ψ0}
2
BS “ 1q, (2.8.20)

and

NBS “ a:BSaBS “ z
B

Bz
, (2.8.21)

which is the (complex) Euler operator.
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2.8.3. Tomograms of an ensemble of quantum harmonic oscilla-
tors

We will show the explicit form of the tomograms of a pure state of an
ensemble of quantum harmonic oscillators using the holomorphic represen-
tation described before in subsection 2.8.1. Let us recall the Hamiltonian
of an ensemble of harmonic oscillators given in (1.5.10):

H “

n
ÿ

k“1

ωka
:

kak `
1

2

n
ÿ

k“1

ωk,

where we have put ~ “ 1 to simplify the notation of the following results.
And also let us recall the canonical commutation relations of the annihila-
tion and creation operators given in (1.5.11):

“

ak, a
:

k1

‰

“ δkk1 ,
“

ak, ak1
‰

“
“

a:k, a
:

k1

‰

“ 0.

Let ρ be the pure state corresponding to the system in which each particle
has momentum ki, i “ 1, . . . , n:

ρ “ |1k1 , . . . , 1knyx1k1 , . . . , 1kn |. (2.8.22)

Recall that the annihilation and creation operators act on the ground state
|0, . . . , 0y this way:

a:j |0, . . . , 0y “ |0, . . . ,
j
1, . . . , 0y, aj |0, . . . , 0y “ 0. (2.8.23)

The center of mass tomogram has the following form:

WcmpX,µ,νq “ Tr
`

ρδpX µ ¨Q ν ¨Pq
˘

, (2.8.24)

and introducing the holomorphic variables

wj “
µj ` iνj
?

2
, (2.8.25)
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we have:

WcmpX,w,wq “ Tr
`

ρδpX w ¨ a w ¨ a:q
˘

“ x0|a1 ¨ ¨ ¨ an|δpX w ¨ a w ¨ a:q|a:n ¨ ¨ ¨ a
:
1|0y

“
1

2π

8
ż

8

eikX e k2|w|2{2x0|a1 ¨ ¨ ¨ an| e
ikpw a`w a:q |a:n ¨ ¨ ¨ a

:
1|0ydk.

(2.8.26)

From the canonical commutation relations (1.5.11) and the property of
the Lie bracket:

“

AB,C
‰

“ A
“

B,C
‰

`
“

A,C
‰

B, (2.8.27)

for any operators A, B and C on H, by recurrence we have that

“

ank , a
:

j

‰

“ nan 1
k δkj , (2.8.28)

therefore, we get the following:

x0|ak e ikwia
:

j “ x0|pak ikwiδkjq,

e ikwiaj a:k|0y “ pa
:

k ikwiδkjq|0y. (2.8.29)

Hence, using this result and the BCH formula (1.6.14), we get:

WcmpX,w,wq “
1

2π

8
ż

8

eikX e k2|w|2{2p1 k2|w1|
2q ¨ ¨ ¨ p1 k2|wn|

2qdk

“
1

a

πpµ2 ` ν2q

ˆ

1` α1
d2

dX2
` ¨ ¨ ¨

`αn
d2n

dX2n

˙

exp

ˆ

X2

µ2 ` ν2

˙

, (2.8.30)
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where

α1 “

n
ÿ

i1“1

|wi1 |
2 “ |w|2 “ 2 1pµ2 ` ν2q,

α2 “

n
ÿ

i1, i2ąi1

|wi1 |
2|wi2 |

2 “ 2 2
n
ÿ

i1, i2ąi1

pµ2
i1 ` ν

2
i1qpµ

2
i2 ` ν

2
i2q,

...

...

αn 1 “

n
ÿ

i1, i2ąi1,...,
in´1ą ąi1

|wi1 |
2 ¨ ¨ ¨ |win |

2 “ 2 pn 1q
ÿ

i1, i2ąi1,...,
in´1ą ąi1

pµ2
i1 ` ν

2
i1q ¨ ¨ ¨ pµ

2
in ` ν

2
inq,

αn “ |w1|
2 ¨ ¨ ¨ |wn|

2 “ 2 npµ2
1 ` ν

2
1q ¨ ¨ ¨ pµ

2
n ` ν

2
nq.

Thus, using the formula (1.5.13) of Hermite polynomials, we finally obtain:

WcmpX,µ,νq “
1

a

πpµ2 ` ν2q

«

1`
α1

µ2 ` ν2
H2

˜

X
a

µ2 ` ν2

¸

`

¨ ¨ ¨ `
αn

pµ2 ` ν2qn
H2n

˜

X
a

µ2 ` ν2

¸ff

exp

ˆ

X2

µ2 ` ν2

˙

. (2.8.31)



3
A numerical algorithm to reduce unitary
representations

3.1. The Clebsh–Gordan problem

In the previous chapter, we have discussed the tomographic problem
of reconstructing a state ρ of a quantum system from a family of probability
distributions. We have seen that in the case in which the auxiliary space
M is a compact Lie group, a reconstruction formula for recovering the state
ρ, using a unitary representation U of that group, can be obtained.

In this chapter, we will deal with a sort of converse problem where we
will try to determine a unitary representation U from the properties of a
family of states. We will show here that the adapted states presented in
section 2.7, eqs. p2.7.16q play a paramount role in the description of the
proper invariant subspaces under the action of the representation U .

More precisely, let G be a Lie group and pH, Uq a finite dimensional
irreducible unitary representation (irrep in what follows) of it. Let us con-
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sider now a closed subgroup H Ă G. The restriction of U to H will define,
in general, a reducible unitary representation of H.

If we denote by pH the family of equivalence classes of irreps of H (recall
that two unitary representations of H, V : H Ñ UpEq and V 1 : H Ñ UpE1q
are equivalent if there exists a unitary map T : E Ñ E1 such that V 1phq˝T “
T ˝ V phq for all h P H), because H is finite dimensional, then:

H “
à

αP pH

Lα , Lα “ cαHα , (3.1.1)

where cα denotes a non-negative integer, α labels a subset in the class of
irreps of the group H, that is, each α actually denotes a finite dimensional
irrep pHα, Uαq of H, and cαHα denotes the direct sum of the linear space
Hα with itself cα times.

Thus, the family of non-negative integer numbers cα denotes the mul-
tiplicity of the irrep Hα in H and it obviously satisfies n “

ř

α cαnα where
nα “ dimHα. Notice that similarly, the unitary operator Uphq will have
the block structure:

Uphq “
à

αP pH

cαU
αphq , @h P H , (3.1.2)

where Uαphq “ Uphq |Hα .
The problem of determining an orthonormal basis of H adapted to the

decomposition given in eq. (3.1.1) will be called the Clebsch–Gordan prob-
lem of pH, Uq with respect to the subgroup H, i.e., find an orthonormal
basis tuαa,ku, α P

pH, a “ 1, . . . , cα and k “ 1, . . . , nα, of H such that each
family tuαa,ku with given α, a defines an orthonormal basis of Hα. Thus,
if we are given an arbitrary orthonormal basis tujuj“1,...,n Ă H, we could
compute the nˆ n unitary matrix C such that:

ul “
ÿ

α,a,k

Cαa,klu
α
a,k , α P pH, a “ 1, . . . , cα, k, l “ 1, . . . , nα . (3.1.3)

The coefficients of the matrix C are usually expressed as the symbol Cαa,kl “
pl | α, a, kq and are called the Clebsch-Gordan coefficients of the decompo-
sition (3.1.2).
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The original Clebsh–Gordan problem (CGP for short) arises from the
composition of two quantum systems possessing the same symmetry group
(see for instance [Ga90, ch. 5]).

If HA and HB denote Hilbert spaces corresponding to two quantum
systems A and B respectively, and both support irreps UA and UB of a Lie
group G, then the composite system, whose Hilbert space is H “ HApbHB,
supports an irrep of the product group G ˆ G. The interaction between
both systems causes, typically, that the composite system just possesses G
as a symmetry group (considered as the diagonal subgroup G Ă G ˆ G of
the product group). The tensor product representation UA b UB will no
longer be irreducible with respect to the subgroup G Ă GˆG and we will
be compelled to consider its decomposition in irrep components, i.e.:

UA b UB “
à

αP pH

cαU
α. (3.1.4)

A considerable effort has been put in computing the CG matrix for
various situations of physical interest. In particular, the groups SUpNq have
been widely discussed (see for instance [Gl07,Al11] and references therein)
because in such cases, for instance when considering the groups SUp3q
and SUp2q, the CG matrix provides the multiplet structure and the spin
components of a composite system of particles with various spins [Wi94,
Ro97]. However all these results depend critically on the algebraic structure
of the underlying group G (and of the subgroup H) and no algorithm is
known that will allow the efficient computation of the CG matrix for a
general subgroup H Ă G.

On the other hand the problem of determining the decomposition of an
irreducible representation with respect to a given subgroup has not been
addressed from a numerical point of view. The general theory asserts that
the multiplicity of a given irreducible representation pHα, Uαq of the com-
pact group G in the finite-dimensional representation pH, Uq is given by
the inner product in L2pGq:

cα “ xχ
α, χyL2pGq,



92 A numerical algorithm to reduce unitary representations

where χα and χ are the characters of Uα and U respectively and x¨, ¨y
the standard inner product of central functions in G with respect to the
(left-invariant) Haar measure. Hence, if the characters χα of the irreducible
representations of G were known, the computation of the multiplicity would
become, in principle, a simple task. Moreover, given the characters χα of
the irreducible representations, the projection method [Tu85, ch. 4] would
allow to construct the CG matrix explicitly. However, there is not an easy
way of determining the multiplicities cα if the irreducible representations
are not known in advance or are not explicitly described.

Again, in principle, the computation of the irreducible representations
of a finite group could be achieved by constructing its character table, i.e.,
a nC ˆ nC unitary matrix where nC is the number of conjugacy classes
of the group describing the characters of its irreps, however there is not a
general numerical algorithm for doing that till now.

3.2. The SMILY algorithm

Let G be a compact Lie group (or a finite group) and H Ă G a closed
subgroup of it. Let us remember that an adapted state is a state p2.7.16q
of the form:

ρ “
n

|G|

ÿ

gPH

χρpgqUpgq
:,

or

ρ “ n

ż

H

χρpgqUpgq
:dµpgq,

depending whether the group G is finite or compact. Clearly, adapted states
satisfy (2.7.15):

Tr
`

ρUpgq
˘

“ 0, g R H.

The main idea of the algorithm is that the structure of proper invariant
subspaces for the representation Uphq, @h P H, is the same as that for
generic adapted states of the form written above, i.e., adapted states such
that their eigenvalues have the smallest possible degeneracy. Then, the
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unitary matrix C that diagonalizes in blocks any matrix representation of
generic adapted states ρ, p2.7.16q, will diagonalize in blocks the matrix
representation Uphq of H too, and each block will correspond to an irrep
of H.

Thus, we will get that if we find a unitary matrix C such that ρ trans-
forms as:

C:ρC “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1c1 b σ
1

1c2 b σ
2

¨ ¨ ¨ 0
¨ ¨ ¨

0 ¨ ¨ ¨

1cN b σ
N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (3.2.1)

where N is the number of irreps decomposing U in (3.1.2), and σα satisfy

σα “ σα:, σα ě 0 ,

then, it will follow that:

C:DphqC “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1c1 bD
1phq

1c2 bD
2phq

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

1cN bD
N phq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Notice that because of the form of the matrix (3.2.1), the state ρ will be
generic if every eigenvalue of σα has multiplicity one and the eigenvalues
of all matrices σα are different.

The algorithm will start from a generic adapted state ρ1. Consider a
unitary matrix V1 that diagonalizes the state ρ1. Then, using a second
generic adapted state ρ2, we will obtain several unitary transformations
that will lead to the desired CG matrix.

The SMILY algorithm is decomposed in eight steps:
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1. Generating the adapted states: Create two generic independent adap-
ted states ρ1 and ρ2. The states must be independent in the sense that
they must have different eigenvectors. To create them, we generate
first two random vectors ϕ1, ϕ2, with no zero components, of size |H|
and afterwards multiply their elements by the matrices Dphq, @h P H:

ρ̃1,2 “

|H|
ÿ

j“1

ϕ1,2pjqDphjq. (3.2.2)

After that, we construct the Hermitian matrices:

ρ̃11,2 “ ρ̃1,2 ` ρ̃
:
1,2,

and finally, after shifting them by their spectral radius and dividing
by their traces, we get two normalized positive definite matrices:

ρ̃21,2 “ ρ̃
1
1,2 ` sradiuspρ̃

1
1,2q1, ρ1,2 “

ρ̃21,2
Trpρ̃21,2q

. (3.2.3)

2. Diagonalizing the first state: Compute a matrix V1 that diagonalizes
the state ρ1:

V1 “

¨

˝

| | |

V 1
1 V 2

1 ¨ ¨ ¨ V n
1

| | |

˛

‚,

where V j
1 , j “ 1, . . . , n, are the eigenvectors of ρ1. Notice that be-

cause the matrix ρ1 is Hermitean, it is unitary diagonalizable.

3. Reorganizing: Construct the matrix V sort1
1 by reordering the columns

of V1 grouping the eigenvectors corresponding to the same proper
subspace Lα. The following routine will be used:

for j from 1 to n do
for k ‰ j from 1 to n do

εjk “ V j
1

:
ρ2V

k
1 ,
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if εjk ‰ 0 then

V j
1 and V k

1 belong to the same proper subspace.
end

end
end

Hence,
V sort1

1 “
“

W1 W2 ¨ ¨ ¨ WN

‰

,
loomoon

c1n1

loomoon

c2n2

loomon

cNnN

where the columns of Wα are the eigenvectors of ρ1 that belongs to
the same proper subspace Lα.

4. Sorting: Sort the columns of the matrices Wα in increasing or de-
creasing order according to their eigenvalues to group the eigenvec-
tors corresponding to same eigenvalues. The matrix we obtain after
this reordering will be denoted as V sort2

1 :

V sort2
1 “

“

W sort
1 W sort

2 ¨ ¨ ¨ W sort
N

‰

. (3.2.4)

A few comments are in order here. Already at this step, we can
get the multiplicities cα and the dimensions nα of Hα. Actually, the
multiplicity of the eigenvalues of W sort

α will be the multiplicity cα
of the irrep α. Then, the dimensions nα are obtained immediately
because the number of columns of W sort

α is equal to cαnα.

Notice that after applying W sort
α to ρ1, we get a diagonal matrix with

the eigenvalues ordered, that is, a matrix of the form:

W sort
α

:
ρ1W

sort
α “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

λα11cα
λα21cα

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

λαnα1cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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where λαk , k “ 1, . . . , nα, are the eigenvalues of ρ1 corresponding to
the subspaces Lα. Therefore, counting the multiplicity of the eigen-
values of these matrices, we get the multiplicities cα, and nα are
obtained by dividing the dimensions of these blocks by cα.

At this point, it would also be possible to obtain the characters of the
irreps in the decomposition of Dphq by computing:

χphq “
1

cα
Tr
`

W sort
α

:
DphqW sort

α

˘

.

5. Diagonalizing in blocks the second state: Transform ρ2 with V sort2
1 .

The resulting matrix V sort2
1

:
ρ2V

sort2
1 will have the following structure:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

*

c1n1

,

/

/

.

/

/

-

c2n2

¨ ¨ ¨
¨ ¨ ¨

cNnN

$

&

%

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Σ1

Σ2

ΣN

(3.2.5)

where
Σα “ Σα: and Σα ě 0.

In the remaining steps, we will focus on decomposing in a diagonal
block structure the blocks Σα obtained in this step. Here, is where the
key point of the algorithm appears and we see why only two adapted
states are necessary to get the CG matrix that diagonalizes in blocks
all the elements of the representation.
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6. Getting the tensor block structure: The matrices Σα have the follow-
ing block structure decomposition:

Σα “

¨

˚

˚

˚

˚

˚

˚

˝

R11
α R12

α ¨ ¨ ¨ ¨ ¨ ¨ R1nα
α

R21
α R22

α ¨ ¨ ¨ ¨ ¨ ¨ R2nα
α

¨¨
¨

¨ ¨
¨ ¨ ¨ ¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨ ¨ ¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨ ¨ ¨ ¨¨
¨

Rnα1
α Rnα2

α ¨ ¨ ¨ ¨ ¨ ¨ Rnαnαα

˛

‹

‹

‹

‹

‹

‹

‚

, (3.2.6)

where the blocks Rijα , i, j “ 1, . . . , nα, are square matrices of size cα.
The blocks in the diagonal are the identity, Riiα “ 1cα (we will verify
this fact in the next section).

Now, let us take the matrices of the first column (we can choose any
column but we will do it with the first one) and divide each matrix
by its norm:

R̃i1α “
Ri1α
}Ri1α }

, i “ 1, . . . , nα. (3.2.7)

Create the following block diagonal matrix:

Y α “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1cα
R̃21
α

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

R̃nα1
α

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.2.8)

Therefore, if we transfom the matrices Σα with Y α we get:

Y α:ΣαY α “

¨

˚

˚

˚

˚

˚

˚

˝

s̃α111cα s̃α121cα ¨ ¨ ¨ ¨ ¨ ¨ s̃α1nα1cα
s̃α211cα s̃α221cα ¨ ¨ ¨ ¨ ¨ ¨ s̃α2nα1cα

¨¨
¨

¨¨
¨ ¨ ¨ ¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨ ¨ ¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨ ¨ ¨ ¨¨
¨

s̃αnα11cα s̃
α
nα21cα ¨ ¨ ¨ ¨ ¨ ¨ s̃αnαnα1cα

˛

‹

‹

‹

‹

‹

‹

‚

(3.2.9)



98 A numerical algorithm to reduce unitary representations

where s̃ij , i, j “ 1, . . . , nα, are complex numbers which are the matrix
elements of the Hermitean non-negative matrix

rσ̃αsij “ s̃ij , (3.2.10)

and Y α:ΣαY α “ σ̃α b 1cα . (See following section for the proof of
these facts).

7. Switching the tensor block structure: Let us define now the nαcα ˆ
nαcα row shift matrix Sα:

Sα “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
1 0

¨ ¨ ¨
¨ ¨ ¨ 0
¨ ¨ ¨
¨ ¨ ¨

0 ¨ ¨ ¨
¨ ¨ ¨
1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.2.11)

and the nαcα ˆ nα matrix fα:

fα “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

¨¨
¨ ¨ ¨

¨ ¨¨
¨

0 1 ¨ ¨ ¨ 0
0 0¨ ¨ ¨ 0

¨¨
¨

¨¨
¨ ¨ ¨

¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨ ¨

¨ ¨¨
¨

¨¨
¨

¨¨
¨ ¨

¨
¨ ¨¨

¨

¨¨
¨

¨¨
¨ ¨

¨
¨ ¨¨

¨

0 0 ¨ ¨ ¨ 1
0 0 ¨ ¨ ¨ 0

¨¨
¨

¨¨
¨

0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

cα

#

cα 1

#

looooomooooon

nα

(3.2.12)
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If we have to matrices A and B, the matrix elements of the Kronecker
product AbB are equal to the elements of BbA up to a rearrange-
ment. Then, there exist two permutation matrices P and F [He81],
such that

F pAbBqP “ B bA.

However, if A and B are square matrices of size n and m respectively,
P can be chosen such that P “ F :, where F only depends on n and
m:

FnmpAn bBmqF
:
nm “ Bm bAn.

In our case, we want to find the permutation matrix which transforms
σ̃α b 1cα into 1cα b σ̃

α:

Fnαcαpσ̃
α b 1cαqF

:
nαcα “ 1cα b σ̃

α. (3.2.13)

The permutation matrix Fnαcα is constructed using the matrices de-
fined previously in (3.2.11) and (3.2.12) as:

Fnαcα “
“

fα Sαfα S2
αfα ¨ ¨ ¨ Scα 1

α fα
‰

. (3.2.14)

8. Getting the Clebsh–Gordan matrix: Finally, we construct the follow-
ing block diagonal matrices with the matrices obtained in steps 6 and
7:

Ŷ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Y 1

Y 2

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

Y N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.2.15)
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and

F̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Fn1c1

Fn2c2

¨ ¨ ¨ 0
¨ ¨ ¨

0 ¨ ¨ ¨

FnN cN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.2.16)

then, the particular CG matrix C which diagonalizes completely the
adapted state ρ1 and that block diagonalizes any state ρ2 is con-
structed by making the product of the matrices V sort2

1 , Ŷ and F̂ : in
eqs. (3.2.4), (3.2.15) and (3.2.16):

C1 “ V sort2
1 Ŷ F̂ :. (3.2.17)

3.3. The proof of SMILY

In this section, we will provide a proof of the SMILY algorithm pre-
sented in last section. Let us start with the following lemma.

Lemma 3.3.1. Let ρ be a generic adapted state with respect to a closed
subgroup H Ă G and pH, Uq an irreducible unitary representation of G.
Let also pHα, Uαq, α P pH, be the irreducible unitary representations into
which the representation pH, Uq is decomposed when restricted to H. Then,
the proper invariant subspaces of Hα are the same as the proper invariant
subspaces of ρ.

Proof : From the definition of adapted state p2.7.16q, if C is the CG matrix
that diagonalizes in blocks the matrix representation Dphq, because any
adapted state is a linear combination of elements Dphq, @h P H, C will
diagonalize in blocks any adapted state.

Conversely, we have to prove that if C is a matrix that diagonalizes in
blocks a set of |H| generic adapted states, then that matrix will diagonalize
every element of the representation Dphq.
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Let us write the smeared character (2.5.6) of the representation U with
respect to the state ρ as a vector over the elements of the group:

χρpHq “
“

χρpeq χρph1q ¨ ¨ ¨ χρphr 1q
‰

,

where r is the order of H.

Clearly, two states are independent if their smeared character vectors
are independent too. Then, let us consider the r ˆ r matrix Y defined by
r independent smeared character vectors, rYsjk “ χρj phk 1q, with j, k “
1, . . . r, that is:

»

—

—

—

–

ρ1

ρ2
...

ρr

fi

ffi

ffi

ffi

fl

“ Y

»

—

—

—

–

Dpeq

Dph1q

...

Dphr 1q

fi

ffi

ffi

ffi

fl

.

Therefore, because the rows of the matrix Y are independent, it is invertible.
Thus, we can write the elements of the representation as linear combinations
of adapted states:

»

—

—

—

–

Dpeq

Dph1q

...

Dphr 1q

fi

ffi

ffi

ffi

fl

“ Y 1

»

—

—

—

–

ρ1

ρ2
...

ρr

fi

ffi

ffi

ffi

fl

.

Then, we have proved that the unitary transformation that diagonalizes
in blocks r independent adapted states will diagonalize in blocks all the
elements of Dphq, and that matrix is the CG matrix C.

If the state ρ is generic and adapted, we can always construct a family
of r independent adapted states by taking permutations of the components
of χρpHq, therefore the conclusion is reached.

�
Notice that for simplicity, we have supposed that the group G is finite.

In the case of compact groups, if we are considering finite-dimensional rep-
resentations, the integral (2.7.16b) can be approximated as well as we want
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by using appropriate quadrature rules. Then, it becomes a finite sum and
the arguments written above can be repeated mutatis mutandis.

We will prove now that the matrix V sort2
1 (3.2.4) transforms every

adapted state ρ2 in a block diagonal matrix (3.2.5) where Σα has the struc-
ture (3.2.6). For that, let us start by choosing an arbitrary CG matrix C
and transform with it the generic adapted state ρ1:

C:ρ1C “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1c1 b σ
1
1

1c2 b σ
2
1

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

1cN b σ
N
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Next, we will diagonalize each block 1cα b σ
α
1 to get the relation between

V sort2
1 and C.

Let rαj be the eigenvectors of σα1 , j “ 1, . . . , nα:

σα1 r
α
j “ λαj r

α
j , xrαj , r

α
k y “ δjk. (3.3.1)

Because the state ρ1 is generic, then for α ‰ γ we have:

λαj ‰ λγk , α, γ “ 1, . . . , N, j “ 1, . . . , nα, k “ 1, . . . , nγ .

Let
 

zjp
(cα

p“1
, j “ 1, . . . , nα, be nα arbitrary orthonormal basis of Ccα .

The eigenvectors of 1cα b σ
α
1 will be zjp b rαj :

p1cα b σ
α
1 qpz

j
p b r

α
j q “ λαj z

j
p b r

α
j . (3.3.2)

If we construct a matrix such that its columns are the orthonormal vectors
of the basis

 

zjp
(cα

p“1
:

Qjα “

¨

˝

| | |

zj1 zj2 ¨ ¨ ¨ zjcα
| | |

˛

‚, (3.3.3)
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the matrix that diagonalizes 1cα b σ
α
1 will be:

Xα “
“

Q1
α b r

α
1 Q2

α b r
α
2 ¨ ¨ ¨ Qnαα b rαnα

‰

. (3.3.4)

thus,

X:αp1cα b σ
α
1 qXα “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

λα11cα
λα21cα

¨ ¨ ¨ 0
¨ ¨ ¨

0 ¨ ¨ ¨

λαnα1cα

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ Λα. (3.3.5)

If we define now the matrix

X̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

X1

X2

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

XN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (3.3.6)

we have that any matrix that diagonalize ρ1, in which the eigenvalues are
sorted in the same way as in Λα in (3.3.5), has the form V sort2

1 “ CX̂:

V sort2
1

:
ρ1V

sort2
1 “ X̂:C:ρ1CX̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Λ1

Λ2

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

ΛN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

This factorization V sort2
1 “ CX̂, when applied to a generic adapted state
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ρ2, gives the structure (3.2.5), in fact, we get:

V sort2
1

:
ρ2V

sort2
1 “ X̂:C:ρ2CX̂ “ X̂:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1c1 b σ
1
2

1c2 b σ
2
2

¨ ¨ ¨ 0

¨ ¨ ¨

0 ¨ ¨ ¨

1cN b σ
N
2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

X̂

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

X:1p1c1 b σ
1
2qX1

X:2p1c2 b σ
2
2qX2

¨ ¨ ¨ 0
¨ ¨ ¨

0 ¨ ¨ ¨

X:N p1cN b σ
N
2 qXN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (3.3.7)

where
X:αp1c1 b σ

α
2 qXα “ Σα,

and now, it is easy to verify from the definition of Xα (3.3.4) that the
matrix Σα has the block structure (3.2.6) with each block Rijα given by:

Rijα “ s̃αijQ
i
α
:
Qjα (3.3.8)

with
s̃αij “ rαi

:σα2 r
α
j . (3.3.9)

Here, we can see that the dependence on the state ρ2 is only in s̃αij , because

the matrices Qiα only depend on ρ1.
Finally, it is very easy to verify that the CG matrix C1 “ V sort2

1 Ŷ F̂ :

diagonalizes in blocks the state ρ2 and diagonalizes completely the state
ρ1.

�
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3.4. The decomposition of the regular representation of a finite
group

The algorithm we have presented in this chapter decomposes any finite
dimensional unitary representation of any compact Lie group. In the case of
finite groups, it is natural to apply it to the regular representation because
it contains every irreducible representation with multiplicity equal to the
dimension of the irreps, cα “ nα [Se77, ch. 2], thus:

|G| “
N
ÿ

α“1

n2
α. (3.4.1)

Let us remember that the left regular representation U regL introduced in
section 2.7, eq. (2.7.20), is defined as

U regL phq|gy “ |hgy, @g, h P G,

when considered as the group G acting on the group algebra CrGs.‹
The matrix elements of the regular representation are obtained by com-

puting the action of the group on the orthonormal basis |giy, i “ 1, . . . , n,
of the Hilbert space H “ CrGs:

“

U regL

‰

ij
pgq “ xgi|U

reg
L pgq|gjy “ xgi|ggjy “ δgig´1

j g´1 . (3.4.2)

Then, the matrix representation of the left regular representation U regL of
the element gk can be easily computed from the table of the group written
below (notice the inverse of the elements along the rows). The matrix U regL

is obtained by constructing a matrix with ones in the positions where gk
appears in the table and zeros in the rest.

‹Then, we may consider that G is a subgroup of the unitary group Up|G|q acting on
L2
pGq “ CrGs by multiplication by unitary matrices, and apply to this situation the

SMILY algorithm.
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T e g 1
1 ¨ ¨ ¨ ¨ ¨ ¨ g 1

n 1

e e g 1
1 ¨ ¨ ¨ ¨ ¨ ¨ g 1

n 1

g1 g1 e ¨ ¨ ¨ ¨ ¨ ¨ g1g
1

n 1
...

...
... ¨ ¨ ¨

...
...

...
... ¨ ¨ ¨

...

gn 1 gn 1 gn 1g
1

1 ¨ ¨ ¨ ¨ ¨ ¨ e .

(3.4.3)

The input of our algorithm will be the table relabeled by identifying
e with 1 and gi with i ` 1. Once we get the table T in the desired form,
to create the matrices ρ̃ in (3.2.2) it is not necessary to write explicitly
the regular representation of each element, we simply need to evaluate the
random vectors ϕ on the elements of the table, i.e.:

rρ̃1,2sij “ ϕ1,2pTijq, (3.4.4)

where Tij are the elements of the relabeled table (3.4.3).
To show the SMILY algorithm in action, we will apply it to decompose

the regular representation of two simple cases: the permutation group S3

and the alternating group A4.

3.4.1. The decomposition of the left regular representation of the
permutation group S3

The S3 group is the group of permutations of three elements and it has
order six. The elements of this group can be generated with the set of
transpositions ak “ pk, k ` 1q, k “ 1, 2:

a2
1 “ a2

2 “ pa1a2q
3 “ e. (3.4.5)
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The CG matrix obtained with the SMILY algorithm is the following:

C1 “

¨

˚

˚

˚

˚

˚

˚

˝

0.1997 0.2326i 0.1408` 0.4685i 0.1120 0.4762i
0.3182` 0.4508i 0.0167` 0.1692i 0.0063` 0.1699i
0.2006 0.4508i 0.2362 0.1847i 0.2471 0.1699i

0.0302` 0.1805i 0.3809 0.3935i 0.4041` 0.3695i
0.2299` 0.0521i 0.5217 0.0751i 0.5161` 0.1068i

0.5188 0.0000i 0.2529` 0.0155i 0.2534 0.0000i

0.1852 0.2444i 0.4082 0.0000i 0.4082` 0.0000i
0.2901 0.4693i 0.4082` 0.0000i 0.4082 0.0000i
0.2277` 0.4377i 0.4082` 0.0000i 0.4082 0.0000i
0.0411` 0.1783i 0.4082 0.0000i 0.4082 0.0000i

0.2263` 0.0661i 0.4082 0.0000i 0.4082` 0.0000i
0.5178` 0.0317i 0.4082 0.4082

˛

‹

‹

‹

‹

‹

‹

‚

.

SMILY decomposes the regular representation in two representations
pD1 and pD2 of dimension one and multiplicity one, and another pD3 of di-
mension two and multiplicity two, exactly what it was expected˚. The rep-
resentations obtained after applying the transformation C1, written above,
are the following:

S3
pD1

pD2

e 1.0000 0.0000i 1.0000 0.0000i

a1 1.0000 1.0000 0.0000i

a2 1.0000 1.0000` 0.0000i

a1a2 1.0000 0.0000i, 1.0000 0.0000i

a2a1 1.0000` 0.0000i 1.0000` 0.0000i

a2a1a2 1.0000 0.0000i 1.0000

˚The notation pD used here is standard in numerical analysis and means that the
corresponding object is the actual computed result of the algorithm.
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S3
pD3

e

ˆ

1.0000` 0.0000i 0.0000` 0.0000i
0.0000 0.0000i 1.0000` 0.0000i

˙

a1

ˆ

0.7501 0.0000i 0.6399 0.1671i
0.6399` 0.1671i 0.7501` 0.0000i

˙

a2

ˆ

0.3542` 0.0000i 0.5615 0.7479i
0.5615` 0.7479i 0.3542 0.0000i

˙

a1a2

ˆ

0.5000` 0.5723i 0.1945` 0.6202i
0.1945` 0.6202i 0.5000 0.5723i

˙

a2a1

ˆ

0.5000 0.5723i 0.1945 0.6202i
0.1945 0.6202i 0.5000` 0.5723i

˙

a2a1a2

ˆ

0.3959 0.0000i 0.0784` 0.9149i
0.0784 0.9149i 0.3959

˙

It is remarkable that these representations verify the table of the group
with very good precision.

3.4.2. The decomposition of the left regular representation of the
alternating group A4

The alternating group A4 is the group of even permutations of four
elements. This group has twelve elements and it can be generated with
three generators satisfying the relations:

a2 “ b2 “ c3 “ pabq2 “ ac2abc “ bc2ac “ e. (3.4.6)
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The left regular representation of this group has four irreducible rep-
resentations, three of dimension one and one of dimension three, hence
SMILY will decompose the regular representation of this group in the
three representations of dimension one with multiplicity one and in the
representation of dimension three with multiplicity three.

Below, we display the representation of dimension three obtained using
SMILY:

A4
pD4

e

¨

˝

1.0000 0.0000` 0.0000i 0.0000 0.0000i
0.0000 0.0000i 1.0000 0.0000` 0.0000i
0.0000` 0.0000i 0.0000 0.0000i 1.0000

˛

‚

a

¨

˝

0.9852 0.0240` 0.0941i 0.1176` 0.0789i
0.0240 0.0941i 0.3653 0.3099 0.8724i

0.1176 0.0789i 0.3099` 0.8724i 0.3504

˛

‚

b

¨

˝

0.6482 0.2501` 0.4766i 0.3940 0.3672i
0.2501 0.4766i 0.8242 0.0464` 0.1697i
0.3940` 0.3672i 0.0464 0.1697i 0.8240 0.0000i

˛

‚

c

¨

˝

0.1137 0.4209i 0.4113 0.2302i 0.4649 0.6096i
0.0136` 0.5419i 0.0028` 0.5742i 0.5988 0.1335i
0.6284` 0.3482i 0.4483 0.4971i 0.1110 0.1533i

˛

‚

c2

¨

˝

0.1137` 0.4209i 0.0136 0.5419i 0.6284 0.3482i
0.4113` 0.2302i 0.0028 0.5742i 0.4483` 0.4971i

0.4649` 0.6096i 0.5988` 0.1335i 0.1110` 0.1533i

˛

‚
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A4
pD4

ab

¨

˝

0.6631 0.2741 0.5707i 0.2765` 0.2883i
0.2741` 0.5707i 0.1895 0.2635` 0.7028i
0.2765 0.2883i 0.2635 0.7028i 0.5264

˛

‚

cb

¨

˝

0.0400` 0.3917i 0.4431` 0.1902i 0.4347` 0.6508i
0.0772` 0.4789i 0.3076 0.7107i 0.3866 0.1247i
0.7438` 0.2375i 0.4095` 0.0115i 0.3475` 0.3190i

˛

‚

ca

¨

˝

0.1069` 0.3505i 0.8684` 0.3002i 0.1455` 0.0155i
0.1273 0.6109i 0.2504` 0.2570i 0.6673` 0.1914i
0.5625 0.4001i 0.0133` 0.1634i 0.3573 0.6075i

˛

‚

bc

¨

˝

0.0468 0.3213i 0.9002 0.2602i 0.1153 0.0567i
0.1908 0.4100i 0.0544 0.1205i 0.8795` 0.0669i

0.8097 0.1857i 0.0255` 0.3222i 0.1013` 0.4419i

˛

‚

bc2

¨

˝

0.0400 0.3917i 0.0772 0.4789i 0.7438 0.2375i
0.4431 0.1902i 0.3076` 0.7107i 0.4095 0.0115i
0.4347 0.6508i 0.3866` 0.1247i 0.3475 0.3190i

˛

‚

cbc

¨

˝

0.1069 0.3505i 0.1273` 0.6109i 0.5625` 0.4001i
0.8684 0.3002i 0.2504 0.2570i 0.0133 0.1634i
0.1455 0.0155i 0.6673 0.1914i 0.3573` 0.6075i

˛

‚

c2b

¨

˝

0.0468` 0.3213i 0.1908` 0.4100i 0.8097` 0.1857i
0.9002` 0.2602i 0.0544` 0.1205i 0.0255 0.3222i

0.1153` 0.0567i 0.8795 0.0669i 0.1013 0.4419i

˛

‚

Again, it is remarkable that the relations of the group (3.4.6) are verified
with very good precision.



3.5. Clebsch–Gordan coefficients for SUp2q 111

3.5. Clebsch–Gordan coefficients for SUp2q

Let G be a compact Lie group and H a closed subgroup (hence, compact
too). Adapted states to H will have the form:

ρ “
1

Z

ż

H

χρphqUphq
:dh, (3.5.1)

where Z is the normalization factor

Z “

ż

H

χρphqχphqdh,

and dh denotes the invariant Haar measure on H.
Because our algorithm is numerical, we need to approximate the inte-

gral (3.5.1) with a finite sum. Choosing a quadrature rule to approximate
the integral (3.5.1) for a given ρ is equivalent to use another pρ such that
χ
pρphq ‰ 0 only at a finite number of elements of the group. Then, the

integral (3.5.1) for pρ reduces to a finite sum and the representation of pρ
is exact. However, it could happen that the generic adapted states we ob-
tain doing that do not have enough degrees of freedom, that is, it could
happen that the block diagonal matrices of the representations would not
be irreducible. But this problem can be solved by choosing a set of points
large enough, for instance adaptive quadratures, because we know that the
representations of a compact Lie group can be written in terms of a finite
set of irreducible representations.

The original CG problem was discussed at the beginning of the chap-
ter. This problem consists on the reduction of a tensor product represen-
tation UApgq b UBpgq, g P G, of two representations of the same group
G restricted to the diagonal subgroup of the product group. By associa-
tivity, this problem can be generalized to any number of tensor products
U1pgq b U2pgq b ¨ ¨ ¨ b UN pgq.

The CG problem appeared for the first time studying the composition
of two representations of the SUp2q group related to the composition of
angular momenta of two quantum systems.
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The examples below, will show the reduction of a bipartite system of
two spins with angular momenta 3{2 and 1 and the reduction of a tripartite
system of three spins with momenta 1{2, 1{2 and 3{2.

The angular momentum operators Jk satisfy the commutation relations:

“

Jk,Jl
‰

“ iεklmJm, k, l,m “ x, y, z, (3.5.2)

and generate the Lie algebra sup2q of the group SUp2q. Any element of a
representation of SUp2q can be written as:

Upθq “ eiθ J, θk P r0, 2πq. (3.5.3)

The matrix representation of momentum j of the angular momentum op-
erators Jk is usually written in a basis of eigenvectors of Jz:

Jz|j,my “ m|j,my, m “ j, j 1, . . . , j, (3.5.4)

and the representation of the operators Jx and Jy is usually obtained from
the representation of the ladder operators J˘ “ Jx ˘ iJy:

xj,m|J˘|j,m
1y “

a

pj ¯m1qpj ˘m1 ` 1q δmm1˘1. (3.5.5)

For instance, if j “ 3{2 we have:

Jx “

¨

˚

˚

˚

˝

0
?

3
2 0 0

?
3

2 0 1 0

0 1 0
?

3
2

0 0
?

3
2 0

˛

‹

‹

‹

‚

, Jy “

¨

˚

˚

˚

˝

0 i
?

3
2 0 0

i
?

3
2 0 i 0

0 i 0 i
?

3
2

0 0 i
?

3
2 0

˛

‹

‹

‹

‚

,

Jz “

¨

˚

˚

˝

3
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 3

2

˛

‹

‹

‚

,
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in the standard basis

|3{2, 3{2y “

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

, |3{2, 1{2y “

¨

˚

˚

˝

0
1
0
0

˛

‹

‹

‚

,

|3{2, 1{2y “

¨

˚

˚

˝

0
0
1
0

˛

‹

‹

‚

, |3{2, 3{2y “

¨

˚

˚

˝

0
0
0
1

˛

‹

‹

‚

.

The standard CG matrix is constructed with eigenvectors of the total
angular momentum operator JT with respect to the z component:

JTz “ J1z b 12 b ¨ ¨ ¨ b 1n ` 11 b J2z b ¨ ¨ ¨ b 1n ` ¨ ¨ ¨

` 11 b 12 b ¨ ¨ ¨ b JNz, (3.5.6)

where N is the number of parts of the system. The eigenvectors of this
operator are usually denoted by |J,My, where J represents the total angular
momentum and M “ J, J 1, . . . , J :

JTz|J,My “M |J,My. (3.5.7)

The standard procedure to obtain the CG matrix consists in applying
successively the ladder operator J (or J`) starting from the state of max-
imum (or minimum) momentum M , |Jmax,Mmaxy “ |j1 ` j2, j1 ` j2y (or
|Jmax,Mminy “ |j1` j2, j1 j2y). Because of this, if we come back to the
equation (3.5.5), because the matrix elements of the ladder operators are
real, the Clebsh–Gordan coefficients are real.

Let us recall that the CG matrix provided by SMILY is written in
terms of the eigenvectors of the first adapted state ρ1. Thus, if we want to
compare the Clebsh–Gordan coefficients obtained with our algorithm with
the standard ones, we have to find a CG matrix C1 which is conformed by
eigenvectors of the operator JTz. To do that, first we will create two real
adapted states. To create them, we will use that the operators Jk verify:

Jx “ Jx, Jy “ Jy, Jz “ Jz. (3.5.8)
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Therefore, for any adapted state ρ, ρ is an adapted state too. To create a
real adapted state from a complex one, we will add to the matrix ρ̃ in (3.2.2)
its complex conjugate to obtain a real symmetric matrix and after that, we
will multiply the result by its transpose to make it definite positive. Then
finally, we will divide by the trace to normalize it:

τ “ ρ̃` ρ̃, ρreal “
1

Trpττ tq
ττ t. (3.5.9)

Once we have two real adapted states ρ1 real and ρ2 real, we apply our
algorithm to get the real CG matrix C1. After obtaining that real CG
matrix C1, we will transform the operator JTz with C1 to decompose it in
irreducible representations:

C:1JTzC1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚

˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚
¨ ¨ ¨
¨ ¨ ¨

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.5.10)

and after that, we will diagonalize each block of this matrix transforming it
with a block diagonal matrix Vz, V

:
z C

:
1JTzC1Vz, which reorders the eigen-

values as follows:
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

j1
j1 1

¨ ¨ ¨
j1
j2
j2 1

¨ ¨ ¨
j2
¨ ¨ ¨
¨ ¨ ¨

jN
jN 1

¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

jN

(3.5.11)

Therefore, the CG matrix whose columns are the eigenvectors of JTz re-
ordered in this way is given by:

Cz “ C1Vz. (3.5.12)

3.5.1. Clebsh–Gordan coefficients for the spin system 3{2b 1

Suppose that we have a system of two particles in which the first par-
ticle has momentum 3{2 and the second momentum 1. It is well known
[Ga90, ch. 5] that this system is decomposed in the direct sum of systems
of momentum 5{2, 3{2 and 1{2, each one with multiplicity one:

3{2b 1 “ 5{2‘ 3{2‘ 1{2,

or, in other words, that the representation of SUp2q corresponding to the
tensor product 3{2b1 has irreducible representations 5{2, 3{2 and 1{2 with
multiplicity one.

To create the adapted states that will be the input of our algorithm, we
have chosen 7 random angles θxi, θyj , θzk for each axis x, y, z and then,
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(see chapter 2, eq. (2.7.1)).

To achieve it, we will use the Jordan–Schwinger map. The main idea
behind it is that the Lie algebra of n ˆ n complex matrices glpn,Cq can
be naturally represented in the Fock space Fn generated by n creation
and annihilation operators a:k, ak (see sections 1.5 and 2.8.1). The map
SJ : glpn,Cq Ñ LpFnq given by:

SJpξq “ ξ̃ “
n
ÿ

i,j“1

a:iξijaj (3.6.1)

defines a Lie algebra homomorphism between the Lie algebra glpn,Cq and
the Lie algebra of operators on Fn.

If we compute the commutator of two operators ξ̃ and ζ̃, we get:

“

ξ̃, ζ̃
‰

“

n
ÿ

i,j“1
r,s“1

ξijζrs
“

a:iaj , a
:
ras

‰

,

then, using the commutation relations of the creation and annihilation op-
erators (1.5.11), we get:

“

ξ̃, ζ̃
‰

“

n
ÿ

i,j“1
r,s“1

ξijζrs

´

a:iasδjr a:rajδis

¯

“

n
ÿ

i,j“1

a:i
“

ξ, ζ
‰

ij
aj “ η̃. (3.6.2)

where
“

ξ, ζ
‰

“ η.

Now, because of Ado’s theorem [Ja62, ch. 6], any finite dimensional Lie
algebra g can be considered as a subalgebra of the algebra glpn,Cq for n
large enough, hence we can represent the Lie algebra g by using the Jordan–
Schwinger map SJ as Hermitean operators on the Fock space Fn.

Notice that this result does not depend directly on the commutation
relations of the Heisenberg–Weyl algebra, it depends on the standard com-
mutator

“

a:iaj , a
:
ras

‰

“ a:iasδjr a:rajδis, (3.6.3)
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hence, for any set of operators Xij satisfying
“

Xij , Xrs

‰

“ Xisδjr Xrjδis, (3.6.4)

the result (3.6.2) holds.
Recall that we can obtain the tomogram of a:a on a given state from

the data gathered by a photodetector (see section 1.7), therefore if we
mix in a convenient way beam-splitters and photodetectors, we can get the
tomogram of the desired combination of creation and annihilation operators
a:kak1 for any k and k1.

To see how to implement this idea, we will show the configuration needed
to measure the tomograms of a particle of spin one-half corresponding to
the x, y and z components. Then, from linear combinations of them, we
will be able to obtain the tomograms of the representations of the elements
of the Lie algebra sup2q.

In section 2.7.1, the spin operators Si, eq. (2.7.26), i “ x, y, z, where
introduced. It is obvious, because they are a realization of sup2q, that they
satisfy the commutation relations of the angular momentum (3.5.2).

Using the Jordan–Schwinger map, we can write them in terms of cre-
ation and annihilation operators:

S̃x “
1

2
pa:1a2 ` a

:
2a1q, S̃y “

i

2
pa:1a2 a:2a1q,

S̃z “
1

2
pa:1a1 a:2a2q. (3.6.5)

Let us remember that we have already found the representation of the alge-
bra sup2q in the implementation of the homodyne and heterodyne detectors
in section 1.8.

Thus, the configurations to get the tomograms associated to spin x and
y are similar to the configuration of the homodyne detector, Figure 1.8.1,
the only difference is that now, the inputs are two laser beams with coherent
factors z1 and z2 excited at the same frequency, instead of a radiation source
with state ρ and a strong laser beam |zyxz|.

To get the tomogram of S̃x, we mix the laser beams with annihilation
operators associated a1 and a2 in a 50{50 beam-splitter, then the outputs











4
The tomographic picture of classical systems:
finite and infinite dimensional

4.1. Classical Lagrangian and Hamiltonian systems

The evolution of a large class of classical systems with a finite number
of degrees of freedom can be obtained from the principle of least action.
The action of a system is a functional S : F Ñ R on the space F of
smooth curves qptq “

`

q1ptq, . . . , qnptq
˘

in the configuration space Q of the
system, which is a smooth manifold of dimension n with local coordinates
qi, i “ 1, . . . , n, and it is defined as the integral of the Lagrangian of the
system Lpqptq, 9qptq, tq in the interval of time rt0, t1s:

Srqptqs “

t1
ż

t0

Lpqptq, 9qptq, tqdt. (4.1.1)

The principle of least action (see for instance [La69]) asserts that the
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Often and for different reasons, it is more convenient to express the
equations of motion in Hamiltonian form. The Hamiltonian of the system
can be written in terms of the Lagrangian function as:

H “
BL

B 9qi
9qi L. (4.1.5)

The canonical momentum corresponding to the local coordinate qi is defined
as:

pi “
BL

B 9qi
, (4.1.6)

thus, the equations of motion can be written in Hamiltonian form as follows:

9qi “
BH

Bpi
, 9pi “

BH

Bqi
. (4.1.7)

4.2. The tomographic picture of classical Hamiltonian systems

The statistical states of a classical Hamiltonian system with finite de-
grees of freedom can be described by a probability density ρpωq on its phase
space ω P Ω, [Is71,Re98].

At the beginning of this Thesis, in section 1.2, it was presented the
Computerized Axial Tomography. CAT is an example of a classical system
with finite degrees of freedom, in this case two, that is described by a
state, in this case the absorption coefficient of a portion of matter αpx, yq,
Figure 1.2.1. In a more abstract way, the Radon Transform (1.1.1) can be
considered too as an example of the tomographic analysis of the statistical
states of a classical system with two degrees of freedom pq, pq. In this
case, the domain Ω Ă R2 represents the phase space of the system and the
function f : Ω Ñ R would be a probability density. In what follows, we will
just call “states” to statistical states of classical systems.

The phase space carries a canonical measure, the Liouville’s measure
µLiouville, that in canonical coordinates pq,pq has the form dµLiouvillepq,pq“
dnqdnp. In the case that Ω is a domain in R2n, the center of mass tomogram
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Wcm of the probability density ρpq,pq is defined as the generalization to n
degrees of freedom of the Radon Transform (1.1.1):

WcmpX,µ,νq “

ż

Ω

ρpq,pqδpX µ ¨ q ν ¨ pqdnqdnp, (4.2.1)

where µ “ pµ1, . . . , µnq, ν “ pν1, . . . , νnq belong to Rn, and the equation
X µ ¨ q ν ¨ p “ 0 determines a hyperplane ΠXpµ,νq in Ω, that has
the same geometrical interpretation than the line LXpq0, p0q in Figure 1.1.1
but in dimension n. Because of the definition of the n-dimensional Fourier
Transform (1.1.2), repeating exactly the same analysis as in section 1.1,
but in a n-dimensional phase space, we have that the reconstruction for-
mula (1.1.5) for the classical state ρ is

ρpq,pq “
1

p2πq2n

ż

R2n`1

WcmpX,µ,νq e ipX µ q ν pq dXdnµdnν. (4.2.2)

The description of a classical system, whose phase space is Ω, can be
easily established in the terms discussed in the introduction of chapter 2
by considering as the algebra of operators A a class of functions on Ω, and
the states of the system as normalized positive functionals on A. Let us
remark that if A contains the algebra of continuous functions on Ω, the
states are probability measures on the phase space.

If we assume that the phase space is originally equipped with a measure
µ, for instance the Liouville’s measure µLiouville in the case of mechanical
systems, then we may restrict ourselves to the statistical states considered
by Boltzmann corresponding to probability measures which are absolutely
continuous with respect to the Liouville’s measure determined by probabil-
ity densities ρpωq on Ω.

Given an observable fpωq on Ω, the pairing between states and obser-
vables will be realized by assigning to the observable f its characteristic
distribution ρf with respect to the probability measure ρpωqdµpωq, thus
the probability of finding the measured value of the observable f in the
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interval ∆ is the following:

ż

∆

ρf pλqdλ “

ż

f´1p∆q

ρpωqdµpωq,

and the expected value of f on the state ρ will be given by:

xfyρ “

ż

R

λρf pλqdλ.

Sometimes, the center of mass tomogram Wcm (4.2.1) does not allow
to cope with systems that can not be easily averaged over hyperplanes
X µ ¨ q ν ¨p “ 0 or, simply, it is more convenient to work with another
parametrization. Hence, it is convenient to expand the scope of the for-
malism to make it more flexible for alternative and more general pictures.
Thus, we can reproduce here the general discussion of tomographic theories
for quantum systems but replacing the C˚–algebra A there by a commuta-
tive Banach algebra A containing the algebra of continuous functions CpΩq
(Ω will be assumed to be compact).

A general tomographic picture of a classical system can be given by
starting with a family of elements in A parametrized by an index x which
can be discrete or continuous. Often, x is a point on a finite dimensional
manifold that we will denote byM, thus x PM. The observables associated
to the element x will be denoted by Ux. Given a state ρ of the classical
system, the correspondence xÑ Ux allows to pull-back the observables Ux
toM by defining the function Fρpxq onM associated to the state ρpωq by:

Fρpxq “ xρ, Uxy–

ż

Ω

Uxpωqρpωqdµpωq. (4.2.3)

The observables Ux must be properly chosen so that the previous integral is
well-defined. For instance, we could have chosenM “ Ω as in the definition
of the center of mass tomogram (4.2.1) and then consider Uxpωq “ δpωq,
thus the function Fρ associated to the state ρpωq will be again ρpωq itself.
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The original state ρpωq could be reconstructed from Fρ if and only if the
family of observables Ux separate states, i.e., given two different states
ρ ‰ ρ̃, there exist x PM such that xρ, Uxy ‰ xρ̃, Uxy. Then, two states will
be different if and only if the corresponding functions Fρ are different.

Clearly up to now, our construction does not discriminate the descrip-
tion between classical and quantum systems‹. In the same way we intro-
duced the Generalized Positive Transform in the quantum setting, let us
introduce it now in this classical setting.

Let us consider, as it was in chapter 2, the space of functions on the
manifold M, FpMq and its topological dual FpMq1 (for that, we equip
FpMq with the appropriate topology). And also consider a second auxil-
iary space N that parametrizes a certain subspace of smooth functions of
compact support DpMq Ă FpMq1. In other words, for each y P N there
is an assignment y ù Rpyq with Rpyq P DpMq a linear functional on the
space of functions on M. A Classical Generalized Positive Transform is a
map from FpMq to FpN q assigning to each F P FpMq:

WF pyq “ xRpyq, F y,

and such that WF is normalized and non-negative, WF ě 0.

For instance, suppose that N parametrizes a family of submanifolds
Spyq of Ω. If the submanifold Spyq has the form Φpq,p;X1, . . . , Xnq “ X0,
where y “ pX0, X1, . . . , Xnq denotes a parametrization of N , the corre-
sponding Generalized Positive Transform would be written as:

WΦpyq “

ż

Ω

ρpq,pqδ
`

X0 Φpq,p;X1, . . . , Xnq
˘

dnqdnp, (4.2.4)

which is a generalization of the center of mass tomogram (4.2.1).

When the embedding is properly chosen, it turns out that WF pyq is a
fair probability distribution on N , which we have constructed out of the
state ρ. In the case in which Ω “ R2n and N is the space of hyperplanes

‹The difference will appear only at the level of the product structure on the sampling
functions Fρ as the Wigner–Weyl–Moyal approach shows.
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ΠX , let us recall the homogeneity condition (1.2.5) that the center of mass
tomogram Wcm satisfies:

WcmpλX, λµ, λνq “
1

|λ|
WcmpX,µ,νq, (4.2.5)

then, we can derive the following relation for the center of mass tomogram
by taking derivatives with respect to λ in (4.2.5) and evaluating in λ “ 1:

„

X
B

BX
` µ ¨

B

Bµ
` ν ¨

B

Bν
` 1



WcmpX,µ,νq “ 0. (4.2.6)

Due to the homogeneity condition (4.2.6), Wcm depends effectively only on
2n variables instead of 2n` 1.

Similarly to (4.2.1), we can introduce another kind of tomographic rep-
resentation of the state ρ, the classical symplectic tomogram:

WsympX,µ,νq “

ż

R2n

ρpq,pq
n
ź

k“1

δpXk µkqk νkpkqd
nqdnp. (4.2.7)

Notice that in this case, we have taken M “ R2n and N “ N1 ˆ ¨ ¨ ¨ ˆNn
with Nk the space of lines in R2, that is, the phase space of each individual
degree of freedom of the physcal system under consideration. Thus, we
have obtained a joint probability distribution of the n random variables
pX1, . . . , Xnq “ X. In contrast to the center of mass case, because of the
presence of n Dirac distributions, we find that the symplectic tomogram
Wsym satisfies n homogeneity conditions:

„

Xk
B

BXk
` µk

B

Bµk
` νk

B

Bνk
` 1



WsympX,µ,νq “ 0, (4.2.8)

k “ 1, . . . , n. In other words, the classical symplectic tomogram Wsym

depends effectively only on 2n variables instead of 3n. In fact, one can
show that the symplectic tomogram Wsym can be transformed into the
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center of mass tomogram Wcm of the same state ρ and vice versa:

WsympX,µ,νq “
1

p2πq2n

ż

R4n`1

WcmpX
1,µ1,ν 1q e ipX 1 µ1 q ν1 pq

¨

n
ź

k“1

δpXk µkqk νkpkqdX
1dnµ1dnν 1dnqdnp. (4.2.9)

Because the symplectic tomogram is composed by a product of delta
distributions, we can obtain easily its reconstruction formula from the re-
construction formula of the center of mass tomogram (4.2.2) for n “ 1:

ρpq,pq “
1

p2πq2n

ż

R3n

WsympX,µ,νq

¨e
i
n
ř

k 1
pXk µkqk νkpkq

dnXdnµdnν. (4.2.10)

4.3. Tomograms for states of an ensemble of classical oscillators

In contrast to what was done in chapter 2, where the tomograms of an
ensemble of quantum harmonic oscillators were discussed, it is illuminating,
for reasons that will be clear at the end of the computations, to do it again
for their classical counterparts (see [Ib12]).

4.3.1. The canonical ensemble

If we consider a family of n independent one-dimensional oscillators
with frequencies ωk ą 0, its phase space Ω will be R2n with canonical
coordinates pqk, pkq, k “ 1, . . . , n. The Hamiltonian of the system will be
(recall eq. (1.4.13)):

H “

n
ÿ

k“1

Hkpqk, pkq, (4.3.1)

with Hk the Hamiltonian of the oscillator of index k:

Hk “
1

2
pp2
k ` ω

2
kq

2
kq.



4.3. Tomograms for states of an ensemble of classical oscillators 135

The dynamics of the system will be given by

9qk “ pk, 9pk “ ω2
kqk, k “ 1, . . . , n (4.3.2)

and the Liouville’s measure will take again the form dµLiouville“ dnqdnp.
Making the change of variables

ξk “
qk
?
ωk
, ηk “

?
ωkpk, (4.3.3)

the dynamics is written in the “symmetrical” form

9ξk “ ωkηk, 9ηk “ ωkξk, k “ 1, . . . , n (4.3.4)

and the Hamiltonian becomes:

Hpξ,ηq “
n
ÿ

k“1

Hkpξk, ηkq “
1

2

n
ÿ

k“1

ωk
`

ξ2
k ` η

2
k

˘

. (4.3.5)

The state of a classical system can be used, instead of the equations
of motion (4.1.7), to describe the dynamical evolution of a system in the
phase space Ω. Notice that Liouville’s measure remains unchanged under
the change of variables, dµLiouville “ dnqdnp “ dnξdnη, and statistical
states are described by probability densities ρpq,pq “ ρpξ,ηq.

Liouville’s equation [Re98, ch. 6] determines the evolution of the state:

d

dt
ρ “

 

ρ,H
(

, (4.3.6)

where the Poisson bracket t¨, ¨u is defined by the canonical commutation
relations:

 

qk, pl
(

“ δkl,
 

qk, ql
(

“
 

pk, pl
(

“ 0. (4.3.7)

In particular, the Gibbs state or canonical distribution is given by

ρcanpq,pq “
e βH

Z0
, (4.3.8)

(see [Is71, ch. 2]), where the normalization constant Z0 is easily evaluated:
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Z0 “

ż

Ω

e βHpq,pq dµLiouvillepq,pq

“

ż

R2n

e β{2

n
ř

k 1
ωkpξ

2
k`η

2
kqdξdη “ p2πqn

n
ź

k“1

pβωkq
1,

where β “ pkBT q
1 is the thermodynamic constant given by the inverse of

the temperature of the system T multiplied by the Boltzmann constant kB.
For a given observable f , we have that its expected value over the Gibbs

state ρcan is

xfyρcan “
1

Z0

ż

R2n

fpξ,ηq e β{2

n
ř

k 1
ωkpξ

2
k`η

2
kqdξdη. (4.3.9)

More detailed information can be found in [Kl68].
Because of the form of the change of variables (4.3.3), we can perform

the symplectic tomogram of a state ρpξ,ηq by means of:

WsympX,µ,νq “

ż

R2n

ρpξ,ηq
n
ź

k“1

δpXk µkξk νkηkqd
nξdnη, (4.3.10)

therefore, a simple computation shows that the Gibbs state tomogram reads
as:

WcanpX,µ,νq “
n
ź

k“1

d

βωk
2πpµ2

k ` ν
2
kq

exp

ˆ

βωkX
2
k

2pµ2
k ` ν

2
kq

˙

, (4.3.11)

and the state will be able to be reconstructed by means of eq. (4.2.10) only
by changing q by ξ and p by η in that formula (compare with (2.8.31)).

An interesting family of states, which is the classical counterpart of
quantum coherent states (1.8.2), can be introduced by means of the holo-
morphic representation of phase space:

ζk “
1
?

2
pξk ` iηkq, k “ 1, . . . , n. (4.3.12)
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Hence, the phase space becomes into the complex space Cn with the Her-
mitean structure

Hpζ, ζ̄q “
n
ÿ

k“1

ωk|ζk|
2, (4.3.13)

and given a point z “ pz1, . . . , znq P Cn, we can construct the distribution

ρzpζ, ζ̄q “ Npzq exp

˜

n
ÿ

k“1

ωk
`

zkζ̄k ` z̄kζk
˘

¸

ρcanpζ, ζ̄q

ˇ

ˇ

ˇ

ˇ

β“1

, (4.3.14)

where the normalization factor Npzq reads as

Npzq “
n
ź

k“1

e ωk|zk|
2
.

The symplectic tomogram distribution corresponding to ρzpζ, ζ̄q is a
product

WρzpX,µ,ν, zq “
n
ź

k“1

Wpkq
ρz pXk, µk, νk, zkq, (4.3.15)

where the tomogram Wpkq
ρz of a single degree of freedom is a Gaussian dis-

tribution

Wpkq
ρz pXk, µk, νk, zkq “

c

ωk
2πpµ2

k ` ν
2
kq

¨ exp

˜

ωk
`

Xk xXkpµk, νk, zkqy
˘2

2pµ2
k ` ν

2
kq

¸

(4.3.16)

of the random variable Xk with mean value

@

Xk

`

µk, νk, zkq
D

“
?

2
`

µkRpzkq ` νkIpzkq
˘

and variance

σXk “

d

µ2
k ` ν

2
k

ωk
.
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If we compare the formulas (4.3.11) and (4.3.16) with the tomograms
obtained in chapter 2 for the quantum harmonic oscillator (2.8.31), we
see that are similar to the tomogram corresponding to the ground state of
(2.8.31).

4.3.2. A new class of states: Gauss–Laguerre states

We will introduce now a family of classical states, called Gauss–Laguerre
(GL) states, inspired on the Wigner functions of the excited states of a
quantum harmonic oscillator. These functions are only quasi-distributions
on phase space, as we have seen in section 1.6, however their square is
related to the purity of the corresponding quantum states and are true
probability distributions [Do89]. These kind of states appear, for instance,
in a physical system in which an electron is moving on a perpendicular
plane to a constant magnetic field with quantum azimuthal number m “ 0
(see Landau states in [La30]).

The family of classical states we are considering is defined as:

ρGL,mpξ,ηq “
n
ź

k“1

ρ
pkq
GL,mk

pξk, ηkq, (4.3.17)

where m “ pm1,m2, . . . ,mnq is a multi-index that is not related with the
azimuthal quantum number we mentioned in the previous paragraph, and

ρ
pkq
GL,mk

pξk, ηkq “
ωk
2π
L2
mk

´ωk
2

`

ξ2
k ` η

2
k

˘

¯

e 1{2 ωkpξ
2
k`η

2
kq. (4.3.18)

Here, the function Lmk is the Laguerre polynomial of degree mk. Notice

that ρ
pkq
GL,mk

pξk, ηkq is a classical state on a bidimensional phase space.

The symplectic Radon Transform of the state factorizes as the state
does:

WGL,mpX,µ,νq “
n
ź

k“1

Wpkq
GL,mk

pXk, µk, νkq, (4.3.19)
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with

Wpkq
GL,mk

pXk, µk, νkq “
1

?
πσk

exp

ˆ

X2
k

σ2
k

˙

¨

mk
ÿ

s“0

1

22mk

ˆ

2pmk sq
mk s

˙ˆ

2s
s

˙ H2
2s

´

Xk
σk

¯

22sp2sq!
(4.3.20)

and

σk “

d

2
`

µ2
k ` ν

2
k

˘

ωk
,

while H2s is the Hermite polynomial of degree 2s. The above result can be
obtain as follows.

First, we will drop the label k and will write WmpX,µ, νq in place of

Wpkq
GL,mk

pXk, µk, νkq to simplify the notation. Thus,

WmpX,µ, νq “
ω

2π

ż

R2

L2
m

´ω

2

`

ξ2 ` η2
˘

¯

e 1{2 ωpξ
2`η2q

¨ δpX µξ νηqdξdη “
ω

p2πq2

ż

R3

eiKX L2
m

´ω

2

`

ξ2 ` η2
˘

¯

¨ e 1{2 ωpξ
2`η2q e iKpµξ`νηq dξdηdK. (4.3.21)

Now, we put
a

µ2 ` ν2 “ rµν and

µ “ rµν cosαµν , ν “ rµν sinαµν ,

ξ “ r sin θ, η “ r cos θ,

and we recast the previous formula as:

WmpX,µ, νq “
1

2π

8
ż

8

eiKX xWmpK,µ, νqdK, (4.3.22)
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where the Fourier Transform xWm is given by

xWmpK,µ, νq “
ω

2π

2π
ż

0

8
ż

0

L2
m

ˆ

ωr2

2

˙

e ωr2{2 e iKrµνr sinpθ`αµνq rdrdθ.

The integral over the angular variable θµν “ θ ` αµν yields the Bessel
function J0, so:

xWmpK,µ, νq “

8
ż

0

L2
m

ˆ

x2

2

˙

e x2{2J0

ˆ

Krµν
?
ωx

˙

xdx. (4.3.23)

The above integral can be evaluated and gives [Gr07, n.7.422 2]:

xWmpK,µ, νq “ e 1{2 pKrµν{
?
ω q

2

L2
m

˜

1

2

ˆ

Krµν
?
ω

˙2
¸

“ e 1{2 pKrµν{
?
ω q

2 1

22m

m
ÿ

s“0

ˆ

2pm sq
m s

˙ˆ

2s
s

˙

L2s

ˆ

Krµν
?
ω

˙2

, (4.3.24)

where the last line has been obtained by a well known addition formula of
Laguerre polynomials [Gr07, n.8.976 3].

We remark that the above equation yields, by multiplication over the
restored label k, the Fourier Transform xWGL,mpK,µ,νq of the tomogram
WGL,mpK,µ,νq with K “ pK1,K2, . . . ,Knq.

Besides, as xWGL,mp0,µ,νq “ 1, we get at once the normalization prop-
erty of the tomogram WGL,mpX,µ,νq.

Finally, we are able to perform the integral (4.3.22) by means of the
integral over y “ Krµν{

?
ω, [Gr07, n.7.418 3]:

1

π

?
ω

rµν

8
ż

0

L2s

`

y2
˘

e y2{2 cos

ˆ?
ω

rµν
Xy

˙

dy

“

?
ω

?
2πrµν

exp

ˆ

ω

2r2
µν

X2

˙

1

22sp2sq!
H2

2s

ˆ ?
ω

?
2rµν

X

˙

. (4.3.25)

Therefore, we have got the predicted expression of WmpX,µ, νq.
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4.4. The tomographic picture of Liouville’s equation

Let us discuss in this section the tomographic form of the evolution
equation for states, the Liouville’s equation (4.3.6). The evolution equation
in the tomographic description was obtained in [Ch07] in relation with
a relativistic wave function description of harmonic oscillators. We will
describe it here in the realm of our previous discussion. Notice that because
of the symplectic reconstruction formula (4.2.10), we can compute:

d

dt
ρpξ,η, tq “

1

p2πq2n

ż

R3n

„

d

dt
WsympX,µ,ν, tq



¨ e
i
n
ř

k 1
pXk µkξk νkηkq

dnXdnµdnν, (4.4.1)

(is important to highlight that the symplectic tomogram is computed at a
given fixed time) and, on the other hand:

 

ρ,H
(

“

n
ÿ

k“1

„

BH

Bηk

B

Bξk

BH

Bξk

B

Bηk



ρ “
1

p2πq2n

n
ÿ

k“1

ż

R3n

WsympX,µ,ν, tq

¨

„

BH

Bηk

B

Bξk

BH

Bξk

B

Bηk



e
i
n
ř

k 1
pXk µkξk νkηkq

dnXdnµdnν

“
1

p2πq2n

n
ÿ

k“1

ż

R3n

WsympX,µ,ν, tq

„

BH

Bξk
νk

B

BXk

BH

Bηk
µk

B

BXk



¨ e
i
n
ř

k 1
pXk µkξk νkηkq

dnXdnµdnν. (4.4.2)

If we equal the formulas (4.4.1) and (4.4.2), we get:

d

dt
WsympX,µ,ν, tq “

n
ÿ

k“1

«

BH

Bηk

˜#

ξj Ñ

„

B

BXj

 1
B

Bµj

+

,

#

ηj Ñ

„

B

BXj

 1
B

Bνj

+¸

µk
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BH

Bξk

˜#

ξj Ñ

„

B

BXj

 1
B

Bµj

+

,

#

ηj Ñ

„

B

BXj

 1
B

Bνj

+¸

νk

ff

¨
B

BXk
WsympX,µ,ν, tq. (4.4.3)

The operator

„

B

BX

 1

is defined in terms of a Fourier Transform as

„

B

BX

 1
8

ż

8

F pKq eiKX dk “

8
ż

8

F pKq

iK
eiKX dK, (4.4.4)

and the notation
 

˚ Ñ ˚
(

means that the variable in the left side, which
belongs to the phase space, is replaced by the operator at the right side,
which belongs to the space of hyperplanes ΠXj pµj , νjq. This fact happens,
in a similar way, in the Fourier framework when one wants to change vari-
ables from the time domain to the frequency domain. This replacing law
can be deduced in the Fourier framework in this way:

iztfptqpkq “
i

?
2π

8
ż

8

tfptq e ikt dt “
1
?

2π

d

dk

8
ż

8

fptq e ikt dt “
d

dk
pfpkq.

Therefore, the variable t in time domain becomes the operator i
d

dk
in fre-

quency domain. If we make the same in the Radon framework, we get:

Rrξρpξ, ηspX,µ, νq “
ż

R2

ξρpξ, ηqδpX µξ νηqdξdη

“

ż

R3

ξρpξ, ηq eikpX µξ νηq dkdξdη “
B

Bµ

ż

R3

ρpξ, ηq

ik

¨ eikpX µξ νηq dkdξdη “

„

B

BX

 1
B

Bµ
WsympX,µ, νq,
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hence,

ξ Ñ

„

B

BX

 1
B

Bµ
. (4.4.5)

Doing the same for η, we have that

Rrηρpξ, ηspX,µ, νq “
„

B

BX

 1
B

Bν
WsympX,µ, νq,

then,

η Ñ

„

B

BX

 1
B

Bν
. (4.4.6)

Let us also remark that for obtaining the formula (4.4.3), we have used the
property of the derivative of a product:

WsympX,µ,ν, tq
B

BXk
e

i
n
ř

k 1
pXk µkξk νkηkq

“
B

BXk

˜

WsympX,µ,ν, tq e
i
n
ř

k 1
pXk µkξk νkηkq

¸

ˆ

B

BXk
WsympX,µ,ν, tq

˙

e
i
n
ř

k 1
pXk µkξk νkηkq

,

and the fact that the tomogram must satisfy

lim
XjÑ˘8

WsympX,µ,ν, tq “ 0.

Due to the presence of the terms (4.4.5) and (4.4.6), for a generic Hamil-
tonian H the tomographic evolution equation (4.4.3) is integro-differential.
In the particular instance of H given by (4.3.5), the tomographic evolution
equation takes the form of a differential equation:

d

dt
WsympX,µ,ν, tq “

n
ÿ

k“1

ωk

„

νk
B

Bµk
µk

B

Bνk



WsympX,µ,ν, tq. (4.4.7)
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4.5. Tomography of the Klein–Gordon classical field in a cavity

We have just described the tomographic description of states of a clas-
sical system with finite degrees of freedom, however this description is not
enough to deal with systems involving infinite degrees of freedom. To deal
with this problem, we need to introduce the concept of field. A field, please
excuse the redundancy, is a generalization of the generalized coordinates
qi, introduced at the beginning of this chapter, that describes a certain
continuous system supported on a given space-time M “ R ˆ V, where V
is a manifold of dimension d. In the present context, a field will be a real
function ϕpt,xq of space and time that represents the configurations of the
system, hence they describe the configurations of a system with infinite de-
grees of freedom (for example, see the section of Classical fields in chapter
2 of [Pe95] and [Ti99] or [Ca15, sec. 1.3]).

In this new context, in which the space is also a parameter, it is natural
to consider systems whose dynamics are defined again by means of an action
functional of the form

Srϕs “

ż

M

L
`

ϕpt,xq, Bµϕpt,xq
˘

ddxdt. (4.5.1)

The functional L is called the Lagrangian density.
Applying the principle of least action in the same way as done for a sys-

tem of finite degrees of freedom (4.1.2), we get the Euler–Lagrange equation
of a classical field:

δS

δϕpt,xq
“

B

Bxµ

ˆ

BL

BpBµϕq

˙

BL

Bϕ
“ 0, (4.5.2)

where Bµ denotes the partial derivative with respect to xµ “ pt,xq.˚

In the same way that we have introduced the Lagrangian density, we
can introduce the Hamiltonian density :

H “
BL

BpBtϕq

Bϕ

Bt
L , (4.5.3)

˚Notice that we have removed the symbol of sum along µ “ 0, . . . , d in (4.5.2) accord-
ing with Einstein’s convention.
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where the total Hamiltonian of the system is the integral over the space V
of its density:

H “

ż

V

H ddx. (4.5.4)

Recalling the definition of canonical momentum (4.1.6), we can define
the canonical momentum field as:

πpt,xq “
BL

BpBtϕq
, (4.5.5)

therefore, we can write the Euler–Lagrange equations in a similar way
to (4.1.7) in terms of the Hamiltonian density:

Bϕ

Bt
“
BH

Bπ
,

Bπ

Bt
“

BH

Bϕ
`

B

Bxµ

ˆ

BH

BpBµϕq

˙

B

Bt

ˆ

BH

BpBtϕq

˙

, (4.5.6)

or using the concept of variational derivative defined previously (4.1.3),
these equations can be written in the following way:

Bϕ

Bt
“
δH

δπ
,

Bπ

Bt
“

δH

δϕ
, (4.5.7)

which have the canonical structure of equations (4.1.7).
Having shown that an interesting family of states for a finite ensemble

of harmonic oscillators is amenable to be described tomographically, we
will discuss now a particular instance of a field theory, the Klein–Gordon
equation for a real scalar field ϕ in a cavity on 1`d Minkowski space-time,
and we will describe tomographically a remarkable state of the theory: the
canonical state [Ib12].

Thus, we will consider Minkowski space-timeM– M “ R1`d, where d
is the dimension of space with the standard Minkowski metric of signature
p ,`, . . . ,`q (see appendix A).

The dynamics of the real scalar field ϕpt,xq is defined now by the La-
grangian density:

L rϕs “
1

2
BµϕB

µϕ V rϕs, (4.5.8)
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where V rϕs is the potential functional of the system. The Euler–Lagrange
equation (4.5.2) in this case is:

BµB
µϕ “

BV rϕs

Bϕ
. (4.5.9)

Considering V rϕs “
1

2
m2ϕ2 (the potential field of an harmonic oscillator),

we get the Klein–Gordon equation:

ϕtt ∆ϕ`m2ϕ “ 0, (4.5.10)

with ∆ the d-dimensional Laplacian in Rd.
As we have extensively discussed before (section 4.3), tomographic

methods are described on phase space where conjugated variables and Pois-
son brackets are available. On such carrier, space dynamical equations are
described by a vector field (4.3.4). Thus, for our Klein–Gordon equation,
we have to introduce a larger carrier space where the equations will be of
first order in time.

The transition from second order equations to first order differential
equations in time may be done in many ways [Ma85], here we shall con-
sider one in which the new variables will make the equations of motion
more “symmetric”. We would stress that by using a specific splitting of
space-time into the space part and the time part, then the explicit Poincaré
invariance of the theory breaks, but of course our description is still rela-
tivistic invariant.

To proceed, we will consider the Cauchy hypersurface C “ t0uˆRd and
the finite cavity will be defined as V Ă C. We consider the restriction of the
field to the cavity V using the same notation ϕpxq – ϕp0,xq, x P V, see
Figure 4.5.1, and also consider that the field ϕpxq evolves in time according
to ϕtpxq – ϕpt,xq. Therefore, the Klein–Gordon equation becomes the
evolution equation, of second order in time, in the space of fields ϕpxq:

d2ϕ

dt2
“ p ∆`m2qϕ. (4.5.11)
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operator ∆ is parametrized by unitary operators at the boundary U P

U
`

L2pBVq
˘

. The structure of such extensions is discussed in [Ib15] (for
instance, see also [As05]). We will select among them the class C of self-
adjoint semibounded extensions with lower bound C ą m2, then the
operator ∆ `m2 ě 0 and B will be well-defined. The domain of B will
be contained in the Sobolev space H1pVq and will be given by functions
satisfying the boundary conditions given by Asorey’s equation:

ϕ i 9ϕ “ Upϕ` i 9ϕq.

In addition, if we choose boundary conditions in such a way that the ex-
tended operator ∆U is elliptic, i.e., U belongs to the Elliptic Grassmannian
space of elliptic self-adjoint extensions of ∆ [As05], then because V is com-
pact, well-known results assert that the spectrum of ∆U is discrete, finitely
degenerated and its eigenfunctions are smooth functions.

Hence, we may assume, as it was done above, that the spectrum of B
is discrete, non-degenerate and Φkpxq are smooth functions in L2pVq.

Equation (4.5.11) may be transformed into a first order evolution dif-
ferential system by introducing the new fields:

ξ “ B1{2ϕ, η “ B 1{2ϕt, (4.5.14)

(notice that B1{2 is well defined because B is positive and invertible) and
the equation of motion (4.5.11) for the field ϕ takes the simple symmetric
form:

d

dt

ˆ

ξ
η

˙

“

ˆ

0 B
B 0

˙ˆ

ξ
η

˙

. (4.5.15)

Then, the equations of motion for the Klein–Gordon field constitute
an infinite-dimensional extension of the dynamics of a finite number of
independent oscillators, (4.3.4). Using the Fourier expansion of the real
fields ξ and η (that here we may consider to be in L2pVq) with respect to
the eigenfunctions Φk of B:

ξpxq “
8
ÿ

k“1

ξkΦkpxq, ηpxq “
8
ÿ

k“1

ηkΦkpxq, (4.5.16)
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with

ξk “

ż

V

ξpxqΦkpxqd
dx, ηk “

ż

V

ηpxqΦkpxqd
dx,

then, the mechanical variables

qk “
?
ωkξk, pk “

ηk
?
ωk

(4.5.17)

can be interpreted as position and momentum for a one-dimensional oscil-
lator of frequency ωk and their evolution in time, given by eq. (4.3.2), as a
trajectory in phase space Ω “ R28.

If we compute the Hamiltonian of the system, we have that

Hrϕs “
1

2

ż

V

`

ϕ2
t `∇ϕ ¨∇ϕ`m2ϕ2

˘

ddx

“
1

2

`

}ϕt}
2 ` }Bϕ}2

˘

“
1

2

8
ÿ

k“1

ωkpξ
2
k ` η

2
kq. (4.5.18)

In the presence of field fluctuations, we introduce a statistical interpre-
tation to the mechanical degrees of freedom pqk, pkq of the field ϕpxq. Thus,
the classical statistical description of the field, whose physical meaning cor-
responds to the probability that a certain fluctuation of the field takes place,
will be provided by a probability law ρ on the infinite-dimensional phase
space R28. Therefore, in the presence of field fluctuations, the state of
the field will induce a marginal probability density on each mode ρkpqk, pkq
defined by

ρkpqk, pkq “

ż

R28

ρpq1, q2, . . . , qk, . . . ; p1, p2, . . . , pk, . . .q
8
ź

l‰k

dqldpl.

Such marginal probability could be understood as a probability density for
the k-th mode of the field ϕ described by the one-dimensional oscillator
with Hamiltonian Hkpξk, ηkq. Similar considerations could be applied to
finite-dimensional subspaces of modes of the field, whose statistical and
tomographic description would be made as in section 4.3.
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The canonical or Gibbs state for the field ϕpxq is given by the probability
distribution on the infinite-dimensional phase space of the system as

ρcanpξ1, ξ2, . . . ; η1, η2, . . .q “ N e β{2

8
ř

k 1
ωkpξ

2
k`η

2
kq, (4.5.19)

with N the normalization factor of the state. If we compute the integral to
get the normalization factor, we have:

ż

R28

e β{2

8
ř

k 1
ωkpξ

2
k`η

2
kq

8
ź

k“1

dξkdηk

“

«

8
ź

k“1

ˆ

1

2π
βωk

˙

ff 1

“

„

Det

ˆ

β

2π
B

˙ 1

. (4.5.20)

Because of the infinite product, we must regularize the determinant
of the operator B by using, for instance, the ζ-function regularization of
determinants [El94, page 9] defined by:

Det

ˆ

β

2π
B

˙

“ exp

„

ζ 1β
2π
B
p0q



, (4.5.21)

where ζ β
2π
B
psq denotes the generalized Riemann’s ζ-function:

ζ β
2π
B
psq “

8
ÿ

k“1

ˆ

β

2π
ωk

˙ s

.

The justification of equation (4.5.21) is very simple. Let us define

rB “
β

2π
B,

with spectrum σp rBq “ t0 ă ω̃1 ă ω̃2 ă ¨ ¨ ¨ ă ω̃k ă ¨ ¨ ¨ u, where

ω̃k “
β

2π
ωk,
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hence, if we differentiate the ζ-function

ζ
rB
psq “

8
ÿ

n“1

1

ω̃sk
,

we get:

ζ 1
rB
psq “

8
ÿ

k“1

log ω̃k
ω̃sk

ùñ ζ 1
rB
p0q “

8
ÿ

k“1

log ω̃k “ log

˜

8
ź

k“1

ω̃k

¸

,

thus, we will get:

e
ζ1
B
p0q
“ exp

˜

log

˜

8
ź

k“1

ω̃k

¸¸

“

8
ź

k“1

ω̃k “ Det rB.

�

Let us remark that if the operator rB is finite-dimensional, defined on a
space of dimension n, then

Det rB “
n
ź

k“1

ω̃k “ det rB. (4.5.22)

Let us compute the value of Det rB, eq. (4.5.21), in an explicit case.
Suppose that ω̃k “ k with k “ 1, 2, . . ., then

ζ
rB
psq “

8
ÿ

k“1

1

ks
“ ζRpsq,

i.e., ζ
rB
psq is the Riemann’s ζ-function and then, it is well-known [An99,

page 16] that

ζRp0q “
1

2
, ζ 1Rp0q “

1

2
log 2π.

Hence,

Det

ˆ

β

2π
B

˙

“ exp

ˆ

1

2
log 2π

˙

“
?

2π. (4.5.23)
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Thus, the canonical state for the real scalar Klein–Gordon field is defined
as the Gaussian measure (4.5.19) with variance

σ “
1
?

2π

„

Det

ˆ

β

2π
B

˙ 1

on R28. The canonical ensemble for the Klein–Gordon field at finite tem-
perature T will be written in the usual form:

dµcanrϕs “ N e βHrϕsDϕ, (4.5.24)

with the symbol Dϕ denoting the “infinite dimensional” measure:

Dϕ “
8
ź

k“1

dqkdpk.

In what follows we will use this notation to remove infinite products.

Moreover, if F rϕs denotes an observable over the field ϕ (like energy,
momentum, etc.), then the expected value of F on the canonical distribu-
tion will be given by:

xF ycan “

ż

R28

F rϕs e βHrϕsDϕ

ż

R28

e βHrϕsDϕ
. (4.5.25)

The tomographic description of the states of the Klein–Gordon field
will be performed, as in the case of an ensemble of harmonic oscillators, by
choosing the spaces

M “ R28 and N “

8
ź

k“1

Nk,
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withNk the space of straight lines on the phase space of the one-dimensional
oscillator pξk, ηkq. Then, as in eq. (4.3.10), we will define:

WρcanrX,µ, νs “

ż

R28

ρcanrξ, ηs
8
ź

k“1

δpXk µkξk νkηkqdξkdηk

“

ż

R28

e βHrξ,ηs δ rXpxq µpxqξpxq νpxqηpxqsDξDη. (4.5.26)

Here, the Dirac functional distribution must be understood as an infinite
product::

δ rXpxq µpxqξpxq νpxηpxqqs “
8
ź

k“1

δpXk µkξk νkηkq

“

ż

R8

exp

»

–i

ż

V

Kpxq
`

Xpxq µpxqξpxq νpxqηpxq
˘

ddx

fi

flDK, (4.5.27)

where Xpxq, µpxq and νpxq are fields whose expansions over the modes ωk
of the field ϕpxq are given by:

Xpxq “
8
ÿ

k“1

XkΦkpxq,

µpxq “
8
ÿ

k“1

µkΦkpxq, νpxq “
8
ÿ

k“1

νkΦkpxq. (4.5.28)

Notice that

}X}2 “
›

›

›

8
ÿ

k“1

XkΦk

›

›

›

2
ď

8
ÿ

k“1

|Xk|}Φk}2 “

8
ÿ

k“1

|Xk|,

:Notice that we are omitting here a normalization factor that will be absorbed by the
regularization used in the definition of the integration over the spaces of fields ξ and η.
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therefore, the field Xpxq is in L2pVq if the l1-norm of the vector X “

pX1, X2, . . .q is finite. Moreover, we may consider Xpxq to be a distribution
as follows. Let φ be a test function, then let us define

Xrφs “
8
ÿ

k“1

XkxΦk, φy, (4.5.29)

and we see that

}Xrφs} ď
8
ÿ

k“1

|Xk||xΦk, φy| ď
8
ÿ

k“1

|Xk|}Φk}2}φ}2

“

˜

8
ÿ

k“1

|Xk|

¸

}φ}2 “ }X}l1}φ}2,

then, it makes sense to consider that the fields Xpxq, µpxq and νpxq are
distributions on V.

Notice also that the time dependence of the various fields is encoded in
the coefficients of the corresponding expansions. Hence, from eq. (4.3.11)
putting n “ 8 and using the homogeneity property (4.2.5), we have that
the tomogram of the canonical state of the Klein–Gordon field is:

WρcanrX,µ, νs “
8
ź

k“1

d

βωk
2πpµ2

k ` ν
2
kq

exp

ˆ

βωkX
2
k

2pµ2
k ` ν

2
kq

˙

“

„

Det

ˆ

β

2π
B

˙1{2
«

8
ź

k“1

d

1

µ2
k ` ν

2
k

ff

e β{2

8
ř

k 1
ωk rX2

k,

with
rXk “

Xk
b

µ2
k ` ν

2
k

.

And if we define the self-adjoint operator Arµ, νs depending on the fields
µpxq and νpxq as

Arµ, νsΦkpxq “
b

µ2
k ` ν

2
k Φkpxq, (4.5.30)
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hence, we finally have:

WρcanrX,µ, νs “

„

Det

ˆ

β

2π
B

˙1{2 1

Det
`

Arµ, νs
˘ e β{2}B

1{2
rX}2, (4.5.31)

and the reconstruction formula of the state can be performed by means of
eq. (4.2.10):

ρcanrξ, ηs “

ż

R38

WρcanrX,µ, νs

¨ exp

»

– i

ż

V

`

Xpxq µpxqξpxq νpxqηpxq
˘

ddx

fi

flDXDµDν. (4.5.32)

4.6. Tomographic picture of continuous modes

If we consider the scalar field in a finite volume cavity or in the full
Minkowski space-time for instance, many or all of the modes of the system
will become continuous. For simplicity, we will assume that we are dis-
cussing the field again in the 1 ` d Minkowski space-time M “ R1`d and
the continuous modes of the fields ϕpxq, ξpxq and ηpxq are described by
the wave vector k, that is:

ξpxq “

ż

V

pξk e ik x`ξ k eik xqddk, etc. (4.6.1)

Now, a state of the field ϕ will be represented by a probability measure
ρrξ, ηs, again non-negative and normalized. Notice that the fields ξpxq and
ηpxq are, in general, any parametrization of the phase space of fields which
leaves invariant the canonical measure, i.e., Dϕ “ DξDη and satisfy the
canonical commutation relations:

 

ξpxq, ηpyq
(

“ δdpx yq,
 

ξpxq, ξpyq
(

“
 

ηpxq, ηpyq
(

“ 0. (4.6.2)
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An example of such states will be given by the canonical ensemble, that
is, the Gaussian measure whose covariance is given by the operator B as
in (4.5.24):

dµcanrϕs “ e βHrϕsDϕ “ e βHrξ,ηsDξDη, (4.6.3)

with the normalization constant N absorbed in the definition of the mea-
sure.

We will consider, as analogue of Gibbs states, states that are absolutely
continuous with respect to the canonical state, i.e., states of the form:

ρf rϕsDϕ “ f rξ, ηsdµcan, (4.6.4)

with

f rξ, ηs ě 0,

ż

R28

f rξ, ηs e βHrξ,ηsDξDη “ 1. (4.6.5)

Even though, at a formal level, we may introduce as in (4.5.26) a to-
mographic probability density for a state of a field of the form (4.6.4) as a
functional of three auxiliary tomographic fields Xpxq, µpxq and νpxq and
apply, at the functional level, the usual Radon Transform. The expan-
sions (4.5.28) will be replaced by the Fourier Transform:

Xpxq “
1

p2πqd{2

ż

V

pXk e ik x`X k eik xqddk, etc. (4.6.6)

Therefore,

Wf rX,µ, νs “

ż

R28

f rξ, ηsδrXpxq µpxqξpxq νpxqηpxqs e βHrξ,ηsDξDη,

(4.6.7)

and the Inverse Radon Transform is given again by:

ρf rξ, ηs “

ż

R38

Wf rX,µ, νs

¨ exp

»

– i

ż

V

`

Xpxq µpxqξpxq νpxqηpxq
˘

ddx

fi

flDXDµDν. (4.6.8)
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The tomographic probability functional (4.6.7) has, by construction, the
well-known properties of non-negativity and normalization:

Wf rX,µ, νs ě 0,

ż

R28

Wf rX,µ, νsDX “ 1. (4.6.9)

These formulas hold true for any value of the auxiliary fields Xpxq, µpxq
and νpxq.

In the current case, the manifold N used to construct the Generalized
Positive Transform, is described by the tomographic fields Xpxq, µpxq and
νpxq, which would be a continuum version of the finite-mode version of the
straight lines

Xk µkξk νkηk “ 0. (4.6.10)

We will end this discussion by emphasizing again the homogeneity prop-
erty of the tomographic description of the scalar field we have just pre-
sented, homegeneity that is described by the condition:
„

Xpxq
δ

δXpxq
` µpxq

δ

δµpxq
` νpxq

δ

δνpxq
` 1



Wf rXpxq, µpxq, νpxqs “ 0.

(4.6.11)

4.7. The tomographic picture of the evolution equation for clas-
sical fields

In the previous section, we have seen that the state of the classical
scalar field ϕ can be described either by a probability density functional
ρf rξ, ηs on the field phase space or by the tomographic probability density
functional Wf rX,µ, νs. Both probability density functionals are connected
by the invertible functional Radon Transform eqs. (4.6.7) and (4.6.8) and
in view of this, they both contain equivalent information about the random
field states. The dynamical evolution of the states of the field ϕpt,xq can
be determined by the Euler–Lagrange equation (4.5.9).

If the Hamiltonian providing the evolution of the field is given by
Hrϕs “ Hrξ, ηs, in a similar way as Liouville’s equation of a system of finite
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degrees of freedom (4.3.6) is a consequence of the Hamiltonian equations
of motion (4.1.7), then from the similar ones of a Hamiltonian field (4.5.7),
we can obtain the Liouville functional differential equation

B

Bt
ρf “ tρf , Hu, (4.7.1)

where here, the functional Poisson bracket t¨, ¨u is given by:

 

F,G
(

“

ż

V

ˆ

δF

δξpxq

δG

δηpxq

δF

δηpxq

δG

δξpxq

˙

ddx, (4.7.2)

for any functionals F and G.

Therefore, working as in section 4.4, we get the tomographic evolution
equation for fields:

d

dt
Wf rX,µ, νs “

ż

V

«

δH

δηpxq

˜#

ξpxq Ñ

„

δ

δXpxq

 1 δ

δµpxq

+

,

#

ηpxq Ñ

„

δ

δXpxq

 1 δ

δνpxq

+¸

µpxq

δH

δξpxq

˜#

ξpxq Ñ

„

δ

δXpxq

 1 δ

δµpxq

+

,

#

ηpxq Ñ

„

δ

δXpxq

 1 δ

δνpxq

+¸

νpxq

ff

¨
δ

δXpxq
Wf rX,µ, νsd

dx. (4.7.3)

And for the case in which the field is a collection of non-interacting oscil-
lators described by the potential energy

V rϕs “
1

2
m2ϕ2 (4.7.4)
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parametrized with the fields (4.5.14), therefore the equation (4.7.3) be-
comes:

d

dt
Wf rX,µ, νs “

ż

V

B

„

νpxq
δ

δµpxq
µpxq

δ

δνpxq



Wf rX,µ, νsd
dx. (4.7.5)





5
Tomography in Quantum Field Theory

5.1. From Quantum Mechanics to Quantum Field Theory

In chapter 1, it was shown how Quantum Tomography is in a sense
a natural continuation of ideas born in classical telecommunications. For
that, it was shown that after a canonical quantization of the E.M. field,
some of these ideas could be extended to describe the states of photons.

The quantization of the E.M. field used in section 1.5 is perhaps the
simplest way to proceed when dealing with a classical field and was tradi-
tionally called canonical second quantization. There is not a natural tran-
sition from Quantum Mechanics to a Quantum Theory of Fields, thus we
will not pretend here to do a full development of a tomographic description
of arbitrary quantum fields. However, what we will do will be, using as
inspiration the canonical quantization of the E.M. field, to work, system-
atically, the example of a free quantum scalar field in a cavity and provide
a tomographic description of some of its quantum states. Notice that such
quantum field can be described as an infinite ensemble of harmonic oscilla-
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tors and then, using again the techniques developed in chapter 2, we will
be able to obtain nice tomographic pictures for it.

Quantum fields can be described axiomatically in various (equivalent)
ways. We will use here the Wightman–Streater axioms [St64] which are
closer to the formalism developed so far and we will use an adaptation of
Group Quantum Tomography based on Poincaré group, similar to the one
developed in section 2.5, to construct a tomographic description of them.

It is a fundamental axiom of the theory that the space of quantum
states supports a unitary representation of Poincaré group. Then, we will
use such data as a main ingredient in the construction. In this way, the
constructed tomographic theory is explicitly Poincaré invariant, something
that is not obvious at all in the canonical picture.

We will end this chapter by proving a reconstruction theorem that shows
that the tomographic picture is equivalent to the Wightman–Streater ax-
iomatic picture.

5.2. The holomorhpic quantization of the scalar field in a cavity

Similar to the classical setting discussed in section 4.5, let us consider
Minkowski space-time M “ R1`d with metric of signature p ,` . . . ,`q. Let
us consider again the Cauchy hypersurface C “ t0u ˆ Rd and the compact
smooth cavity V Ă C.

We will consider a scalar field ϕ : R ˆ V Ñ R where the dynamics is
given by Klein–Gordon equation (4.5.10). Such field can be used to describe
a number of physical systems, but for the moment, we will be considering
just its mathematical aspects.

The canonical quantization of the classical field ϕ and its momentum π
is obtained by defining the canonical commutators for the quantum fields
ϕ and π with the Dirac’s correspondence principle:

t¨, ¨u Ñ ir¨, ¨s. (5.2.1)

Hence, the equal time canonical commutators are:
“

ϕpxq,πpx1q
‰

“ iδpx x1q,
“

ϕpxq,πpx1q
‰

“
“

πpxq,πpx1q
‰

“ 0. (5.2.2)
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The fields ξpxq and ηpxq defined in (4.5.16) become now quantum field
operators:

ξpxq “
8
ÿ

k“1

ξkΦkpxq, ηpxq “
8
ÿ

k“1

ηkΦkpxq, (5.2.3)

where the operators ξk and ηk satisfy the commutation relations:

“

ξk,ηl
‰

“ iδkl,
“

ξk, ξl
‰

“
“

ηk,ηl
‰

“ 0, k, l “ 1, 2, . . . . (5.2.4)

As it was done in the study of the harmonic oscillator in subsec-
tion 2.8.3, it would be convenient to deal with the quantum scalar field
by using the corresponding extension of the holomorphic quantization (or
Bargmann–Segal quantization scheme) discussed in subsection 2.8.1.

For that, we will proceed first to construct the Fock Hilbert space of
the system. Consider the family of creation and annihilation operators a:k,
ak by means of:

ak “
1
?

2
pξk ` iηkq, a:k “

1
?

2
pξk iηkq. (5.2.5)

Clearly, we have the canonical commutation relations:

“

ak, a
:

l

‰

“ δkl,
“

ak, al
‰

“
“

a:k, a
:

l

‰

“ 0, @k, l. (5.2.6)

The Fock space of the theory is the Hilbert space F8 generated by the
set of vectors

 

a:k1 ¨ ¨ ¨ a
:

kN
|0y

(

, (5.2.7)

where |0y denotes the ground state or vacuum of the theory that satisfies:

ak|0y “ 0, @k. (5.2.8)

The multipartite state corresponding to the modes k1, . . . , kN will be
denoted as |1k1 , . . . , 1kN y and:

|1k1 , . . . , 1kN y “ a:k1 ¨ ¨ ¨ a
:

kN
|0y, k1, . . . , kN “ 1, 2, . . . . (5.2.9)
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The inner product is defined as:

x1k1 , . . . , 1kN |1l1 , . . . , 1lM y “ δNM ¨

"

1 if Dσ P SN s.t. ki “ lσpiq,

0 otherwise.
(5.2.10)

Thus, the particle state corresponding to the mode Φ1 will be denoted as:

|1y “ a:1|0y, (5.2.11)

and because of the bosonic nature of the field, a state of N particles will
be:

|nk1 , nk2 , . . . , nkN y “
1

a

nk1!nk2! ¨ ¨ ¨ nkN!

`

a:k1
˘nk1

`

a:k2
˘nk2

¨ ¨ ¨
`

a:kN

˘nkN |0y. (5.2.12)

Therefore, the Fock space F8 can be written as follows:

F8 “ span
 

|nk1 , . . . , nkN y | @N P N, k1, . . . , kN ě 1, nk1 , . . . , nkN ě 0
(

.
(5.2.13)

The canonical state may be defined as the “quantization” of the classical
one:

ρpξ,ηq “ e βHpξ,ηq, (5.2.14)

then, we can define the quantum canonical tomogram for the canonical state
of the theory in analogy with (4.5.26):

Wq,canrX,µ, νs “ Tr
´

e βHpξ,ηq

¨δ
`

Xpxq1 µpxqξpxq νpxqηpxq
˘

¯

. (5.2.15)

In general, if ρ denotes a state of the quantum field ϕ, that is, a density
operator on the Fock space of ϕ, we will define its quantum canonical
tomogram as:

Wq,ρrX,µ, νs “ Tr
`

ρδ
`

Xpxq1 µpxqξpxq νpxqηpxq
˘˘

, (5.2.16)
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in close analogy with the definition of quantum tomogram given in chap-
ter 2.

It is easy to show that defining the complex fields

w “
1
?

2
pµpxq ` iνpxqq “

1
?

2

8
ÿ

k“1

pµk ` iνkqΦkpxq

and

w “
1
?

2
pµpxq iνpxqq “

1
?

2

8
ÿ

k“1

pµk iνkqΦkpxq, (5.2.17)

with components

wk “ µk ` iνk, wk “ µk iνk,

the quantum canonical tomogram of the ground state ρ0 “ |0yx0| of the
free quantum field ϕ is given by:

Wq,0rX,w,ws “ Tr
`

ρ0δ
`

Xpxq1 wpxqapxq wpxqa:pxq
˘˘

, (5.2.18)

where

wpxqa:pxq “
8
ÿ

k“1

wka
:

k “
1
?

2

8
ÿ

k“1

pµk ` iνkqΦkpxqa
:

k

and

wpxqapxq “
8
ÿ

k“1

wkak “
1
?

2

8
ÿ

k“1

pµk iνkqΦkpxqak.

Hence, we will obtain:

Wq,0rX,w,ws “ Tr

»

–

ż

R8

ρ0

8
ź

r“1

eikrpXr1 wrar wra
:
rq

dkr
2π

fi

fl

“

8
ź

r“1

8
ż

8

eikrXrx0|Dpzrq|0y
dkr
2π

, (5.2.19)
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where zr “ ikrwr and Dpzrq denotes the displacement operator:

Dpzrq “ ezra
:
r z̄ra

r . (5.2.20)

Notice that
Dpzrq|0y “ |zry, (5.2.21)

where |zry is the coherent state defined in (1.8.2). Therefore, from (2.8.12)
we have that

x0|zry “ e |zr|2{2, (5.2.22)

hence,

Wq,0rX,w,ws “
8
ź

r“1

8
ż

8

eikrXr e k2r |wr|
2
{2

dkr
2π

“

8
ź

r“1

d

1

πpµ2
r ` ν

2
r q

e X2
r {pµ2r`ν

2
r q . (5.2.23)

Notice that the divergent factor appearing in the r.h.s of this formula can
be analyzed as in section 4.5 using the ζ-function regularization of de-
terminants (4.5.21). Thus, if we consider the self-adjoint operator rArµ, νs
with eigenvalues

|wk| “
b

µ2
k ` ν

2
k , (5.2.24)

then, if |πwk| ą k, we have that the formula (5.2.23) is finally written as:

Wq,0rX,w,ws “
1

Det
`

rArµ, νs
˘

e } rX}2 , (5.2.25)

where recall that the definition of the coefficients of rX is

rXk “
Xk

b

µ2
k ` ν

2
k

.
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5.3. Wightman–Streater axioms of a Quantum Field Theory

The Wightman–Streater axioms [St64, ch. 3] for a Quantum Field The-
ory provide an axiomatic setting to describe a quantum scalar field ϕ in
Minkowski space-time M “ R1`3. The main ingredients of the theory are
a complex separable Hilbert space F8, a distribution in Minkowski space-
time with values in bounded operators in F8:

ϕ : DpMq Ñ BpF8q, f ù ϕpfq, @f P DpMq, (5.3.1)

and a unitary representation U of the proper orthochronous Poincaré group
PÒ` “ R4 ˆ L0 (see appendix A) in F8:

U : PÒ` Ñ UpF8q, tΛ, auù U pΛ, aq , @ tΛ, au P PÒ`. (5.3.2)

The states of the theory are described by unit rays in the Hilbert space
F8. The relativistic transformation law of the states is given by the contin-
uous unitary representation UpΛ, aq of the proper orthochronous Poincaré
group PÒ`. Since Up1, aq is unitary, it can be written as

Up1, aq “ eia
µPµ ,

where Pµ are the unbounded self-adjoint operators representing the energy
(µ “ 0) and the momentum (µ “ 1, 2, 3) of the theory. These operators
satisfy PµPµ “ m2. The spectrum of the energy-momentum operators lies
inside the future component of the hyperboloid H`m:

σpPµq Ă H`m “
 

pµ P R4
ˇ

ˇ p2
0 ` p

2 “ m2 , p0 ě 0
(

.

All of this is subjected to the following axioms:

1. Existence of the vacuum:

This first axiom requires the existence of a unique state |0y in the
Hilbert space F8 such that

U pΛ, aq |0y “ |0y . (5.3.3)
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2. Completeness:

The set of vectors in the Fock Hilbert space F8,

 

ϕpfnq ¨ ¨ ¨ϕpf1q |0y
(

, (5.3.4)

for all n P N and any set of functions fi P DpMq, i “ 1, . . . , n, is dense
in F8.

3. Covariance:

The scalar field ϕ must transform, under the action of the Poincaré
group PÒ`, in the natural covariant way:

U pΛ, aqϕpfqU pΛ, aq: “ ϕ
`

pΛ, aq˚ f
˘

, (5.3.5)

where pΛ, aq˚f denotes pΛ, aq˚fpxq “ f
`

pΛ, aq 1 ¨ x
˘

. Notice that in
the rest of this thesis, x will denote vectors in the spatial part of R3

and x will denote events, that is, x PM.

4. Microscopic causality:

If the support of the test functions f and g are space-like separated,
i.e., if fpxqgpyq “ 0 for all pairs of points x and y in M such that
x y is space-like (see 2 in appendix A) then:

rϕpfq,ϕpgqs “ 0. (5.3.6)

5. Asymptotic completeness:

In a collision of particles, we will require that Hilbert spaces before
and after the collision are equal:

F in
8 “ F8 “ F out

8 . (5.3.7)

There are several approaches to this notion, but the one which is
closer to the other axioms is due to Haag and Ruelle. Ruelle has
shown that axioms 1–4 imply the existence of collision states, that is,
incoming and outgoing states of one, two, or more particles provided
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that the one-particle states may be created by a polynomial in the
fields. Then, one can formulate this axiom in terms of these collision
states. More information may be found in [Ha59,Ru62].

5.4. Smeared covariant characters and tomograms of a quantum
real scalar field

In analogy with the smeared characters of a quantum state discussed
at length in section 2.5, eq. (2.5.6), we can extend this notion to quantum
states of fields using the unitary representation U of the Poincaré group PÒ`
provided by the theory. Given a family of test functions f1, . . . , fn, we will
define the smeared covariant character of the state ρ corresponding to the
vector ϕpfnq ¨ ¨ ¨ϕpf1q|0y in F8 as follows:

χgpf1, . . . fnq “ Tr
`

ρUpgq
˘

, g “ pΛ, aq P PÒ`. (5.4.1)

Notice that in this case (where the scalar field ϕ is real):

χgpf1, . . . , fnq “ x0|ϕpf1q ¨ ¨ ¨ϕpfnqUpgqϕpfnq ¨ ¨ ¨ϕpf1q |0y . (5.4.2)

In this formula, we should divide by the factor x0|ϕpf1q ¨ ¨ ¨ϕpfnqϕpfnq ¨ ¨ ¨
ϕpf1q |0y to normalize the state ρ but for simplicity in the writing, we will
assume in what follows that the state is normalized.

Applying axiom 3, we get after a simple computation that

χgpf1, . . . , fnq “ x0|ϕpf1q ¨ ¨ ¨ϕpfnqϕpg
˚fnq ¨ ¨ ¨ϕpg

˚f1q |0y , (5.4.3)

where g˚fpxq “ f
`

g 1 ¨ x
˘

.

The r.h.s. of the equation (5.4.3) defines a distribution in Mˆ ¨ ¨ ¨ ˆM2n

that can be written as:

x0|ϕpf1q ¨ ¨ ¨ϕpfnqϕpg
˚fnq ¨ ¨ ¨ϕpg

˚f1q |0y

“Wnnpf1, . . . , fn, g
˚fn, . . . , g

˚f1q, (5.4.4)
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where Wnn are Wightman functions [St64, page 106]. We can write this
distribution as a linear functional:

Wnnpf1, . . . , fn, g
˚fn, . . . , g

˚f1q “

ż

M2n

f1px1q ¨ ¨ ¨ fnpxnqWnn

`

x1, . . . , xn,

g 1 ¨ x1n, . . . , g
1 ¨ x11

˘

fnpx
1
nq ¨ ¨ ¨ f1px

1
1q dx1 ¨ ¨ ¨ dxn dx1n ¨ ¨ ¨ dx

1
1, (5.4.5)

and, in what follows, we will just use the kernels

Wnn

`

x1, . . . , xn, g
1 ¨ x1n, . . . , g

1 ¨ x11
˘

“ x0|ϕpx1q ¨ ¨ ¨ϕpxnqϕpg
1 ¨ x1nq ¨ ¨ ¨ϕpg

1 ¨ x11q |0y (5.4.6)

instead of the full functions. Now, we will use the notation x “ px1, . . . , xnq
to indicate the collection of n points in Minkowski space-time, xi P M,
i “ 1, . . . , n, i.e., x P Mn. Then, g ¨ x “ pg ¨ x1, . . . , g ¨ xnq is the diagonal
action of PÒ` on x.

By analogy, we can write the kernel of the smeared characters as follows:

χgpx, x
1q– χgpx1, . . . , xn, x

1
n, . . . , x

1
1q

“Wnn

`

x1, . . . , xn, g
1 ¨ x1n, . . . , g

1 ¨ x11
˘

. (5.4.7)

In the following enumeration, we will write the properties that satisfy
the kernels of the smeared characters induced by the axioms presented in
the previous section and the properties of Wightman functions.

(a) Covariance:

χgphx, hx
1q “ χh´1ghpx, x

1q, @g, h P PÒ`. (5.4.8)

This property comes directly from a direct application of the covari-
ance axiom 3. Notice that the Wightman functions (5.4.6) are invari-
ant under the action of the group, this is:

Wnnpx, x
1q “ g ¨Wnnpx, x

1q “Wnnpg ¨ x, g ¨ x
1q, (5.4.9)

hence, from this fact, (5.4.8) is easily obtained.
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(b) Hermiticity:
χgpx, x1q “ χg´1px1, xq. (5.4.10)

This property is also obtained from the invariance of the Wightman
functions under the action of the group (5.4.9) and the unitarity of
the representation U .

(c) Positivity:

ż

M2n

N
ÿ

i,j“1

fipxqχg´1
i gj

px, x1qfjpx
1qdnx dnx1 ě 0, (5.4.11)

for all N in N, fi in DpMq and gi in PÒ`, i “ 1, . . . , N .

The proof of this property is a direct consequence of the positivity
(see also Thm. 2.2.2) of the smeared characters χgpf1, . . . , fnq:

0 ď
N
ÿ

i,j“1

ξ̄iξjχg´1
i gj

pf1, . . . , fnq “
N
ÿ

i,j“1

ξ̄iξjWnn

`

f1, . . . , fn, pg
1

i gjq
˚fn,

. . . , pg 1
i gjq

˚f1

˘

“

N
ÿ

i,j“1

ξ̄iξj

ż

M2n

f1px1q ¨ ¨ ¨ fnpxnq

¨Wnn

`

x, pg 1
i gjq

1 ¨ x1
˘

fnpx
1
nq ¨ ¨ ¨ f1px

1
1qd

nx dnx1

“

ż

M2n

N
ÿ

i,j“1

`

ξif1px1q ¨ ¨ ¨ f1pxnq
˘

Wnn

`

x, pg 1
i gjq

1 ¨ x1
˘

¨
`

ξifnpx
1
nq ¨ ¨ ¨ f1px

1
1q
˘

dnx dnx1

“

ż

M2n

N
ÿ

i,j“1

hipxqχg´1
i gj

px, x1qhjpx
1qdnx dnx1.

�
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(d) Local symmetry:

χgpx1, . . . , xj , xj`1, . . . , xn, x
1
n, . . . x

1
1q

“ χgpx1, . . . , xj`1, xj , . . . , xn, x
1
n, . . . x

1
1q,

provided that }xj xj`1} ą 0. This property follows immediately
from microscopic causality (axiom 4).

(e) Clustering:
lim

aÑ˘8
χp1,aqpx, x

1q “WnpxqWnpx1q, (5.4.12)

where Wnpxq is the Wightman function:

Wnpxq “ x0|ϕpx1q ¨ ¨ ¨ϕpxnq|0y. (5.4.13)

This property is obtained from the clustering property of Wightman
functions, that is, Wightman functions factorize when the points x
and x1 are asymptotically apart (see [St64, page 111] for mathematical
details). We will provide a physical interpretation of this property.

Let us see that

χp1,aqpx, x
1q “Wnnpx, x

1 aq

“ x0|ϕpx1q ¨ ¨ ¨ϕpxnqϕpx
1
n aq ¨ ¨ ¨ϕpx11 aq |0y . (5.4.14)

The smeared character χp1,aqpx, x
1q is the expected value of the state

ρ when the second n arguments are translated by the 4-vector a.
However, if the events in x and x1 a are separated enough to not
be causally related, what happens in x will be independent to what
happens in x1 a, then the expected value should be the product of
the expected values in both events:

x0|ϕpx1q ¨ ¨ ¨ϕpxnqϕpx
1
n aq ¨ ¨ ¨ϕpx11 aq |0y “

x0|ϕpx1q ¨ ¨ ¨ϕpxnq |0y x0|ϕpx
1
n aq ¨ ¨ ¨ϕpx11 aq |0y , (5.4.15)
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which is the property we have enunciated.
�

The Wightman function Wnpxq for odd n is equal to zero. It is a
fact that can be directly determined from the explicit form of the
solution of the scalar free field Klein–Gordon equation (4.5.11) with
ϕ an operator,

ϕpt,xq “

ż

R3

1
a

2Ep

`

ap e ipµxµ `a:p eip
µxµ

˘ d3p

p2πq3
, (5.4.16)

where Ep “ p0 “
a

p2 `m2 , because of the commutation relations of
the annihilation and creation operators (5.2.6) and because the action
of the annihilation operator on the vacuum vanishes (5.2.8).

Then, the clustering property for odd n gives:

lim
aÑ˘8

χp1,aqpx, x
1q “ 0, (5.4.17)

and for even n, we may write it in terms of smeared characters:

lim
aÑ˘8

χp1,aqpx, x
1q “ χp1,0qpx1, . . . , xn{2, xn{2`1, . . . xnq

¨ χp1,0qpx
1
1, . . . , x

1
n{2, x

1
n{2`1, . . . x

1
nq. (5.4.18)

Finally, let us finish this section by writing the tomogram of a pure
state of the quantum scalar field corresponding to an element ξ of the Lie
algebra of the Poincaré group PÒ`. The tomogram is obtained by applying
Thm. 2.6.3:

Wq,f1,...,fnpX; ξq “ Tr
`

ρδpX1 xΘ, ξyq
˘

“ x0|ϕpf1q ¨ ¨ ¨ϕpfnq|δpX1 xΘ, ξyq|ϕpfnq ¨ ¨ ¨ϕpf1q |0y . (5.4.19)

Recall that the Lie algebra of the Poincaré group PÒ` is the ten-dimensional
Lie algebra generated by Pµ (corresponding to the translation part of R1`3)
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and Mµν (corresponding to the Lorentz group SOp1, 3q), where µ, ν “
0, . . . , 3, and with commutation relations:

“

Pµ,Pν

‰

“ 0,
“

Mµν ,Pα

‰

“ i
`

gαµPν gανPµ

˘

,
“

Mµν ,Mαβ

‰

“ i
`

gµαMνβ gµβMνα gναMµβ ` gνβMµα

˘

, (5.4.20)

where α, β “ 0, . . . , 3, gµν is the metric tensor, and Mµν is the infinitesimal
generator of the proper orthochronous Lorentz group L0

‹:

UpΛ, aq “ eiaµPµ e iωµν{2Mµν

, (5.4.21)

where aµ is the four-vector denoting the infinitesimal translations of the
origin and ωµν is a rank-2 antisymmetric tensor defined by the matrix
elements of the infinitesimal Lorentz transformation Λ:

Λµν “ δµν ` ωµν . (5.4.22)

Therefore, if xΘ, ξy “ ξ belongs to the Poincaré algebra PÒ`, we get:

ξ “ aµP
µ 1

2
ωµνM

µν (5.4.23)

and the tomogram becomes:

Wq,f1,...,fnpX;ωµν , aµq “ Tr
`

ρδ
`

X1 aµP
µ `

1

2
ωµνM

µν
˘˘

. (5.4.24)

Also recall that again the smeared characters χpωµν ,aµqpf1, . . . , fnq and the
tomograms Wq,f1,...,fnpX;ωµν , aµq are related by a Fourier Transform:

Wq,f1,...,fnpX;ωµν , aµq “
1

2π

8
ż

8

e ikX χpkωµν ,kaµqpf1, . . . , fnqdk. (5.4.25)

These formulas also hold for the corresponding kernels Wq,x,x1pX;ωµν , aµq
and χpωµν ,aµqpx, x

1q.

‹See appendix A or [Ca15, section 4.6] for more details.
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5.5. A reconstruction theorem for states in Quantum Field The-
ory

Here, we will present a variation of the reconstruction theorem of Wight-
man–Streater stated in terms of smeared characters and we will give a
sketch of the proof. After that, to finish the reconstruction process for
states, we will see in which cases we can find an orthogonality condition
that allows us to obtain the state ρ through an expansion in the represen-
tation elements Upgq, g in PÒ`.

Theorem 5.5.1. Let
 

χgpx1, . . . , xn, x
1
n, . . . , x

1
1q
(

, n “ 1, 2, . . . be a family

of distributions with g “ pΛ, aq P PÒ` for any x1, x2, . . . , xn and x11, x
1
2, . . . , x

1
n

in Minkowski space-time M. Suppose that these distributions satisfy the
properties (a)–(e) stated before for all finite sequences f1px1q, f2px2q, . . . of
test functions. Then, there exist a separable Hilbert space F8, a continu-
ous unitary representation U of PÒ` in that Hilbert space, a unique state |0y
invariant under UpΛ, aq, and a scalar field ϕ such that:

x0|ϕpx1q ¨ ¨ ¨ϕpxnqϕpg
1 ¨x1nq ¨ ¨ ¨ϕpg

1 ¨x11q |0y “ χgpx1, . . . , xn, x
1
n, . . . , x

1
1q.

Proof : The proof of this theorem is inspired directly in the original the-
orem stated in [St64, page 117]. We will show only part of the proof,
mainly the reconstruction of the Hilbert space F8, the vacuum state |0y,
the representation U and the scalar field ϕ.

Let us begin with a vector space H formed by sequences ph0, h1, . . .q of
test functions where h0 is any constant function and hn PMn, n “ 1, 2, . . . :

h1px1q “ f1px1q,

h2px1, x2q “ f1px1qf2px2q,

...

hnpx1, x2, . . . , xnq “ f1px1qf2px2q ¨ ¨ ¨ fnpxnq. (5.5.1)
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Addition and multiplication by scalars, are defined in the usual way:

ph0, h1, . . .q ` pk0, k1, . . .q “ ph0 ` k0, h1 ` k1, . . .q,

αph0, h1, . . .q “ pαh0, αh1, . . .q. (5.5.2)

To obtain a Hilbert space, we need to define an inner product x¨, ¨y.
Because of the positivity property (c), it is natural to define:

xh, ky “
8
ÿ

i,j“0

ż

M2n

hipx1, . . . , xiqχg´1
i gj

px1, . . . , xi, x
1
j , . . . , x

1
1q

¨ kjpx
1
1, . . . , x

1
jqdx1 ¨ ¨ ¨ dxidx

1
j ¨ ¨ ¨ dx

1
1. (5.5.3)

Notice that this inner product satisfies:

xh, ky “ xk, hy, (5.5.4)

thanks to the Hermiticity condition (b). And also, from the positivity
condition (c), }h}2 “ xh, hy ě 0.

Let us define now the linear transformation UpΛ, aq on the vector space
given by:

UpΛ, aqph0, h1, h2. . . .q “ ph0, pΛ, aq
˚h1, pΛ, aq

˚h2, . . .q, (5.5.5)

where

pΛ, aq˚hnpx1, . . . , xnq “ hn
`

Λ 1px1 aq, . . . ,Λ 1pxn aq
˘

. (5.5.6)

If we denote the vector p1, 0, 0, . . .q by |0y, we have:

UpΛ, aq|0y “ |0y. (5.5.7)

Notice also that the operator UpΛ, aq leaves invariant the inner product
defined before in (5.5.3) by virtue of the covariance condition (a), and it is
a representation of the Poincaré group PÒ` because it verifies:

UpΛ1, a1qUpΛ2, a2q “ UpΛ1Λ2, a1 ` Λ1a2q. (5.5.8)
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Let us introduce now the linear operator ϕpfq defined for each test
function f :

ϕpfqph0, h1, h2, . . .q “ p0, fh0, f b h1, f b h2, . . .q, (5.5.9)

where

pf b hnqpx1, . . . , xn`1q “ fpx1qhnpx2, . . . , xn`1q (5.5.10)

is a test function too. If we apply the operator UpΛ, aq to the operator
ϕpfq, we get:

UpΛ, aqϕpfqph0, h1, . . .q “ UpΛ, aqp0, fh0, f b h1, f b h2, . . .q

“ p0, pΛ, aq˚fh0, pΛ, aq
˚f b h1, . . .q

“ ϕ
`

pΛ, aq˚f
˘

ph0, pΛ, aq
˚h1, . . .q

“ ϕ
`

pΛ, aq˚f
˘

UpΛ, aqph0, h1, . . .q, (5.5.11)

hence, we have that

UpΛ, aqϕpfqUpΛ, aq: “ ϕ
`

pΛ, aq˚f
˘

,

i.e., the linear operator ϕpfq satisfy the covariant transformation law (ax-
iom 3), then ϕ is a quantum scalar field.

At this point, we have found a representation U of the Poincaré group
PÒ`, a vector |0y that is invariant under the transformation of the group, a
scalar field ϕ and a vector space H that can be created by the recurrent
action of the field over the state |0y. Therefore, to conclude the proof we
should show that the Hilbert space F8 is the completion of the quotient
of that vector space H with the space of distributions different from zero
with norm 0. This process can be done in a similar way as the GNS
construction described in section 2.1, for that, we will not repeat it.

Also, it remains to prove that the state |0y, invariant under the group,
is unique, however we will not show that in this text.

�
To finish this section, we will find a biorthogonal condition for the uni-

tary representation of the Poincaré group to obtain the formula that allows
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to reconstruct the state ρ. Because the states prepared in the laboratory
are static in time, we will consider the subgroup of the Poincaré group with
no translation in time, then let us compute the following trace:

Tr
`

UpΛ, aqUpΛ1, a1q:
˘

, (5.5.12)

where a “ p0,aq.
First of all, let us make a few remarks about the standard situation

when d “ 3 (M “ R1`3), however the generalization to any d can be made
in a natural way. We will consider the Lorentz invariant resolution of the
identity and the inner product of Lorentz invariant momentum vectors:

1 “
1

p2πq3

ż

R3

|pyxp|
d3p

2Ep
, xp|p1y “ 2Epp2πq

3δpp p1q, (5.5.13)

with Ep “
a

p2 `m2 . Now, we can compute the trace (5.5.12):

Tr
`

UpΛ, aqUpΛ1, a1q:
˘

“
1

p2πq3

ż

R3

xp|UpΛ, aqUpΛ1, a1q:|py
d3p

2Ep
.

Hence, using the transformation law of the Poincaré group (5.5.8), and
splitting the representation U in the part corresponding to the translation
subgroup and the part corresponding to the Lorentz group:

UpΛ, aq “ eia
µPµ UpΛq, (5.5.14)

we have:

1

p2πq3

ż

R3

xp|UpΛ, aqUpΛ1, a1q:|py
d3p

2Ep

“
1

p2πq3

ż

R3

xp|UpΛΛ1 1, a ΛΛ1 1a1q|py
d3p

2Ep

“
1

p2πq3

ż

R3

xp| eipa
µ pΛΛ1´1q

µ
νa
1νqPµ UpΛΛ1 1q|py

d3p

2Ep
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“
1

p2πq3

ż

R3

xp| eipa
µ pΛΛ1´1q

µ
νa
1νqPµ |Λ1Λ 1py

d3p

2Ep

“
1

p2πq3

ż

R3

eipa
µ pΛΛ1´1q

µ
νa
1νqpΛ1Λ´1qτµpτ xp|Λ1Λ 1py

d3p

2Ep

“

ż

R3

eipa
µ pΛΛ1´1q

µ
νa
1νqpΛ1Λ´1qτµpτ δ

`

p1 Λ1Λ 1qp
˘

d3p. (5.5.15)

Notice that the delta function δ
`

p1 Λ1Λ 1qp
˘

is different from zero only
if Λ “ Λ1, hence we have formally:

δ
`

Λ1Λ 1
˘

“

"

8 Λ “ Λ1,
0 Λ ‰ Λ1.

(5.5.16)

Thus,

δ
`

Λ1Λ 1
˘

ż

R3

eipa
µ pΛΛ1´1q

µ
νa
1νqpΛ1Λ´1qτµpτ d3p “ δ

`

Λ1Λ 1
˘

ż

R3

eipa
µ a1µqpµ d3p,

and because we are supposing that there is not temporal translation, we
get:

δ
`

Λ1Λ 1
˘

ż

R3

eipa
µ a1µqpµ d3p “ δ

`

Λ1Λ 1
˘

ż

R3

eipa a1qp d3p

“ p2πq3δpΛ1Λ 1qδpa a1q. (5.5.17)

Then

Tr
`

U0pΛ,aqU0pΛ
1,aq:

˘

“ p2πq3δ
`

Λ1Λ 1
˘

δpa a1q, (5.5.18)

where U0pΛ,aq is the representation of the Poincaré group with no temporal
displacement:

U0pΛ,aq “ eia P e iωµν{2Mµν

. (5.5.19)
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Finally, we can write a formula similar to (2.8.5) for the subgroup of the
Poincaré group with no temporal displacement:

ρ “
1

p2πq3

8
ż

8

8
ż

8

χpΛ,aqpf1, . . . , fnqU0pΛ,aq
:d6Λd3a

“
1

p2πq3

ż

R3

eiX1 U0pΛ,aqWq,f1,...,fnpX; Λ,aqdXd6Λd3a, (5.5.20)

whereWq,f1,...,fnpX; Λ,aq is the tomogram given by (5.4.24) with a “ p0,aq.

5.6. Canonical tomograms of a real scalar field

Let us consider the commutator of the annihilation and creation oper-
ators given by:

“

ap, a
:

p1

‰

“ p2πq3δp3qpp p1q,
“

ap, ap1
‰

“
“

a:p, a
:

p1

‰

“ 0, (5.6.1)

and let be the vector ϕpfq|0y and its corresponding pure state ρ:

ρ “ |ϕpfq|0yx0|ϕpfq| “

ż

M2

fpxq|ϕpxq|0yx0|ϕpyq|fpyqdxdy. (5.6.2)

The canonical tomogram of the state ρ of a scalar field is defined as (recall
eq. (5.2.18) in section 5.2):

Wq,f pX,w,wq “ Tr
`

ρδ
`

X1 wap wa:p
˘˘

“

ż

M2

fpxq x0|ϕpxq|δpX1 wap wa:pq|ϕpyq| |0y fpyqdxdy, (5.6.3)

hence, let us compute the kernel of the tomogram:

Wq,x,ypX,w,wq “ x0|ϕpxq|δpX1 wap wa:pq|ϕpyq |0y . (5.6.4)
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In a similar way to the computation of an ensemble of harmonic oscil-
lators of subsection 2.8.3 and using the BCH formula (1.6.14), we get:

Wq,x,ypX,w,wq “
1

2π

8
ż

8

eikX e k2|w|2{2 x0|ϕpxq|

¨ e ikwa:p e ikwap |ϕpyq |0ydk, (5.6.5)

therefore, because of the action of the annihilation and creation operators
on the vacuum:

ap|0y “ 0, a:p|0y “
1

a

2Ep
|py, (5.6.6)

if we use the definition of the scalar field (5.4.16), the equation (5.6.5)
becomes:

Wq,x,ypX,w,wq “
1

2π

8
ż

8

eikX e k2|w|2{2

˜

1

p2πq6

ż

R6

e ip1 x eip
2 y

¨ x0|ap1 e
ikwa:p e ikwap a:

p2
|0y

d3p1
a

2Ep1

d3p2
a

2Ep2

¸

dk. (5.6.7)

Notice that to simplify the notation, we have written

p ¨ x– pµxµ.

From the definition of the commutator of the creation and annihilation
operators (5.6.1), we get that

“

anp, a
:

p1

‰

“ nan 1
p p2πq3δp3qpp p1q,

hence,

x0|ap1 e
ikwa:p “ x0|

`

ap1 ikwp2πq3δp3qpp p1q
˘

,

e ikwap a:p1 |0y “
`

a:p1 ikwp2πq3δp3qpp p1q
˘

|0y.
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Then, substituting this result in (5.6.7), we get:

Wq,x,ypX,w,wq “
1

2π

8
ż

8

eikX e k2|w|2{2

˜

1

p2πq6

ż

R6

e ip1 x eip
2 y

¨ x0|
`

ap1 ikwp2πq3δp3qpp p1q
˘

¨
`

a:p2 ikwp2πq3δp3qpp p2q
˘

|0y
d3p1

a

2Ep1

d3p2
a

2Ep2

¸

dk.

Using the formula (5.6.1), we obtain:

x0|
`

ap1 ikwp2πq3δp3qpp p1q
˘`

a:p2 ikwp2πq3δp3qpp p2q
˘

|0y

“ p2πq3δp3qpp2 p1q p2πq6k2|w|2δp3qpp p1qδp3qpp p2q, (5.6.8)

and finally, using the representation for the propagator for the Klein–
Gordon field:

Dpx yq– x0|ϕpxqϕpyq|0y “
1

p2πq3

8
ż

8

e ip px yq d3p

2Ep
, (5.6.9)

and after integrating over the variable k, we get the following expression
for the kernel of the tomogram:

Wq,x,ypX,w,wq “
1

?
2π|w|

˜

Dpx yq

`
X

|w|2
e ip px yq

2Ep

`

X |w|2
˘

¸

e X2
{2|w|2. (5.6.10)



A
The Minkowski space-time and the Poincaré
group

Newtonian Mechanics proposes a concept in which the time is absolute,
however it is well-known that closer to the speed of light this concept is
no longer available. That framework is known as special relativity and it is
based in two fundamental postulates: the speed of light c in vaccum is a
universal constant and that the laws of physics are the same in all inertial
frames (systems moving at constant velocity).

When dealing with fields that propagate at speed of light, we are in the
special relativity framework and there, instead of working in an Euclidean
space, we have to work in a Minkowski space-time (see for instance [Ca15,
sec. 4.6]).

Minkowski space-time is a four dimensional manifold M “ R1`3 with
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the pseudo-Riemannian metric:

gµν “

¨

˚

˚

˝

1
1

1
1

˛

‹

‹

‚

. (A.1)

Events in this space-time are points in Minkowski space-time M, xµ “
pct, x, y, zq, that are usually called in the literature “contravariant vectors”.
The elements of the cotangent bundle are usually called “covariant vectors”
and they are usually written with the index below, xµ “ p ct, x, y, zq, to
emphasize that the indexes of contravariant and covariant vectors cancel
out when an element of the cotangent bundle acts on an element of the
tangent bundle (here we are identifying vectors in the tangent bundle with
points in M):

xµ “ gµνx
ν . (A.2)

The distance between two events A,B P M is usually called interval
and is defined as the product of the vector xµ, that joins the two events,
with itself with respect to the metric (A.1):

s2
AB “ }x}

2 – xµx
µ. (A.3)

Vectors can be classified as:

1. Temporal: vectors x PM such that }x} ă 0.

2. Spatial: vectors x PM such that }x} ą 0.

3. Light, isotropic or null: vectors x PM such that }x} “ 0 if x ‰ 0.

4. x “ 0.

Two events are said to be temporal, spatial or light related if the as-
sociated vector is temporal, spatial or light. Light events are events, as
its name tells, that only can be linked by particles traveling at speed of
light, temporal events are events that are related in a causal-effect way,





186 The Minkowski space-time and the Poincaré group

The Lorentz transformation Λµν satisfies:

gµνΛµαΛνβ “ gαβ, (A.5)

and its explicit form for a Lorentz boost in z-direction is the following:

¨

˚

˚

˝

x10

x11

x12

x13

˛

‹

‹

‚

“

¨

˚

˚

˝

sinhβ 0 0 coshβ
0 1 0 0
0 0 1 0

coshβ 0 0 sinhβ

˛

‹

‹

‚

¨

˚

˚

˝

x0

x1

x2

x3

˛

‹

‹

‚

, (A.6)

where the physical meaning of β is given by:

tanhβ “
v

c
,

where v is the relative velocity between the two systems xµ and x1µ.

The condition (A.5) can be written in matrix form as

ΛTGΛ “ G, (A.7)

hence, it is immediate to see that

|det Λ| “ 1. (A.8)

Transformations such that det Λ “ `1 define a unimodular subgroup in
L denoted by L`.

Because Lorentz transformations preserve the metric, then in particular
|Λ0

0| ě 1, and as a topological space, L is not connected, however it has
four connected components characterized as follows:

L0 “LÒ` Proper orthochronous, det Λ “ 1, Λ0
0 ě 1,

LÒ Improper orthochronous, det Λ “ 1, Λ0
0 ě 1,

LÓ` Proper antiorthochronous, det Λ “ 1, Λ0
0 ď 1,

LÓ Improper antiorthochronous, det Λ “ 1, Λ0
0 ď 1. (A.9)
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Only the proper orthochronous component L0, that contains the identity,
is a subgroup.

If we consider an infinitesimal Lorentz transformation

Λµν “ δµν ` ωµν , (A.10)

if we approximate the Lorentz condition (A.5) to first order in ω, we get:

gαβ “ gµνpδ
µ
α ` ω

µ
αqpδ

ν
β ` ω

ν
βq “ gαβ ` ωαβ ` ωβα `Opω

2q, (A.11)

but since the metric gµν is symmetric with respect to the change of its two
indexes, we have:

ωαβ ` ωβα “ 0, (A.12)

hence, ωµν is a rank-2 antisymmetric tensor with 6 independent components
that determines the Lie algebra of the Lorentz group. Notice that then, the
Lorentz group has dimension 6.

The Poincaré group is the semidirect product of the Lorentz group and
the group of translations P “ LˆR4. We will denote by PÒ`, or simply P0,
its connected component that corresponds to L0 ˆ R4.

Accordingly, the Lie algebra of Poincaré group is (as a vector space)
the direct sum of the Lie algebra of L and the Lie algebra of R4 (identified
with R4 itself). Then, we conclude that the Lie algebra of P (also P0) is
determined by the generators Pµ of R4 and six generators Mµν of the Lie
algebra of the Lorentz group satisfiying the commutation relations:

“

Pµ,Pν

‰

“ 0,
“

Mµν ,Pα

‰

“ i
`

gαµPν gανPµ

˘

,
“

Mµν ,Mαβ

‰

“ i
`

gµαMνβ gµβMνα gναMµβ ` gνβMµα

˘

, (A.13)

hence, a generic element ξ of the Poincaré algebra can be written as follows:

ξ “ aµP
µ 1

2
ωµνM

µν . (A.14)





The end of a long journey and the beginning of
another: conclusions and further work

Conclusions

In this work, we have discussed a still not so well developed way of de-
scribing the state of a quantum system different from the usual Schrödinger
and Heisenberg pictures, and known as the Tomographic picture. In gen-
eral, observables in Quantum Mechanics are treated as self-adjoint opera-
tors on a Hilbert space H. Here, we have considered a different scenario
of Quantum Mechanics in which the algebra of observables is a C˚–algebra
A. We have taken advantage of tools in that algebra, mainly the GNS
construction [Ge43,Se47] and Naimark’s theorem [Na64], to reach the
goal of getting a reconstruction formula of the state ρ of a quantum system
by means of a family of observables in the algebra A.

At the beginning of chapter 2 in sections 2.2 and 2.3, we have shown
that the tomographic description of Quantum Mechanics may be achieved
by using two main ingredients: a Generalized Sampling Theory and a
Generalized Positive Transform .

The first one consists on recovering the state of the system by sampling
it with a family of observables, called a tomographic set . The sampling
function Fρ introduced there is nothing but the expected value of the
elements of that family of observables on the state ρ. One of the problems
there is that the sampling function, in general, is not a quantity that
can be measured directly in the laboratory because is not a probability
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distribution, for that reason, a second ingredient is needed.
The Generalized Positive Transform consists basically on a map

that transforms sampling functions in probability distributions. Such
distributions are the so called tomograms in this picture (2.3.6). This second
tool is clearly inspired on the Classical Radon Transform [Ra17].

Once we have identified a procedure to get our purpose of reconstruct-
ing a state by means of the tomograms that can be measured in the
laboratory, we have to deal with the problem of how to recover the state
of a concrete system and which family of observables should be used. One
answer of these questions can be given using Group Theory, sec. 2.5.

We have seen that for any finite and compact Lie group, we can imple-
ment this tomographic picture and reconstruct the state of any system,
although we have seen too that there are other important groups that allow
to reconstruct the state of a system, as for example the Heisenberg–Weyl
group, which is neither finite nor compact, that appears in many problems
in Quantum Mechanics, sec. 2.7. We have also shown an experimental
setting to get the desired tomograms in such case in section 1.8.

Let us also point out that a tomographic picture beyond standard Quan-
tum Mechanics giving a tomographic description of classical systems of in-
finite degrees of freedom have been started, chapter 4 (in particular, the
free scalar field in a cavity, section 4.5). We have also given a reconstruc-
tion theorem, sec. 5.5, in the case of a quantum scalar field described
using the Wightman–Streater axiomatic description.

To finish this summary, it is important to say that thanks to this tomo-
graphic description of Quantum Mechanics and inspired by methods and
ideas developed in this context, we have been able to solve a problem that,
in principle, is not related to this, which is the decomposition of reducible
representations of groups into their irreducible components. To achieve
that it has been developed the SMILY algorithm presented in chapter 3.

This numerical algorithm solves the problem of computing the irre-
ducible components of any finite dimensional unitary representation of a
compact Lie group, with respect to a closed subgroup, without any a pri-
ori knowledge of its irreducible representations. We have realized that
there is a family of states associated to the unitary representation we want
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to decompose, called adapted states, which can be decomposed in states
in those irreducible representations. The result we got is that when one
transforms generic adapted states with a unitary matrix that diagonal-
izes another one, it emerges a block structure that is shared with the
rest of the adapted states. That makes easy to find a unitary transfor-
mation which transforms all the adapted states in block diagonal matrices
such that on each block, we get the states spanned by the corresponding
irreducible representation. Thus, that unitary transformation, usually
called the Clebsh–Gordan matrix, reduces in block diagonal matrices
all the elements of the initial representation and each block gives one of the
irreducible representations decomposing it.

Further work

We have seen that the tomographic picture we have been explaining
may have a good perspectives of future because is a theory that depends
directly on the technological capacities in Quantum Optics. For instance,
one immediate application of this theory is in the domain of detection of
radiation in Quantum Information technologies or for medical purposes.

In chapter 1, an effort has been done to offer a historical perspective
of the birth of this theory and we have seen that Quantum Tomography
is, in the sense discussed there, a natural prolongation of classical telecom-
munications. Thus, one path to follow in the future is to adapt techniques
from classical telecommunications to quantum optical devices.

We have shown in this work the implementation of homodyne and
heterodyne detectors to Quantum Optics by means of suitable configura-
tions of beam-splitters and photodetectors, hence the idea is to extend
this configurations to other techniques of detection.

In the latest section of chapter 3 (section 3.6), we have presented a
way to obtain adapted states with SUp2q symmetry. However, we would
like to proceed further and see if, in a similar way as we remove frequencies
of electric signals, we can try to get only a desired part of a mixed state by
removing part of it.
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Another further work is the study of the reconstruction formula of states
from the point of view of Sampling Theory. It would be relevant to estimate
the errors made in the reconstruction of states when we approximate the
integrals that appear in the reconstruction formulas by finite sums.

Future work related with chapter 5 is, first, to generalize the canonical
tomograms obtained in section 5.6 for other fields. Also, it would be
interesting to see in which cases it is possible to compute explicitly the
covariant tomograms and also to extend the theory beyond the scalar free
field developing a tomographic description of perturbation theory.

Also, there are a lot of interesting questions related with the SMILY
algorithm presented in chapter 3. It is important to highlight that because
we have used only arguments of Quantum Mechanics to create the algorithm
and we only just need unitary transformations to obtain the CG matrix of
a representation of a group, the SMILY algorithm has a natural extension
to be implemented as a quantum algorithm in a quantum computer. Thus,
we could try to prepare the adapted states and implement the unitary
transformations we need with quantum gates to run it into a quantum
computer.

Finally, let us mention another problem that can be addressed using this
algorithm, the characterization of quantum entanglement, that is, finding
out whether a state is entangled or separable. This is one of the most
important open problems in Quantum Information Theory. The idea in
which we are thinking is trying to see when we would be able to decompose
a state as a linear combination of adapted states of several subgroups of
the product group Gˆ ¨ ¨ ¨ ˆG.
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Publications

• Chapter 2: A. Ibort, A. López–Yela. Quantum Radon Transform.
(In preparation).

• Chapter 3: A. Ibort, A. López–Yela and J. Moro. The SMILY algo-
rithm to compute the reduction of unitary representations and their
Clebsh–Gordan coefficients. (In preparation).

• Chapter 4: A. Ibort, A. López–Yela, V.I. Man’ko, G. Marmo, A.
Simoni, E.C.G. Sudarshan and F. Ventriglia. On the tomographic
description of classical fields. Phys. Let. A. 376, 1417–1425 (2012).

• Chapter 5: A. Ibort, A. López–Yela. On the tomographic description
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Verhandlungen der Königlich Sächsischen Gesellschaft der Wis-
senschaften zu Leipzig. Mathematisch-Physische Klasse. 69, 262–
277 (1917).

[Re80] M. Reed and B. Simon. Methods of modern mathematical physics.
Vol. 1: Functional analysis, revised and enlarged edition. Academic
Press. USA (1980).

[Re98] L.E. Reichl. A modern course in statistical physics. Second edition.
John Wiley & Sons. USA (1998).

[Ro97] D.J. Rowe and J. Repka. An algebraic algorithm for calculating
Clebsch–Gordan coefficients, application to SUp2q and SUp3q. J.
Math. Phys. 38, 4363 (1997).

[Ru62] D. Ruelle. On the Asymptotic Condition in Quantum Field Theory.
Helv. Phys. Acta. 35, 147–163 (1962).

[Ru87] F. Ruiz–Vassallo. Radio. Ediciones Ceac. España (1987).

[Sc26] E. Schrödinger. Quantisierung als Eigenwertproblem I. Annalen der
Physik. 79, 361–376. Quantisierung als Eigenwertproblem II. An-
nalen der Physik. 79, 489–527. Quantisierung als Eigenwertprob-
lem III. Annalen der Physik. 80, 734–756. Quantisierung als Eigen-
wertproblem IV. Annalen der Physik. 81, 109–139 (1926).

[Se47] I. Segal. Irreducible representations of operator algebras. Bull. Am.
Math. Soc. 53, 73–88 (1947).

[Se77] J.P. Serre. Linear Representations of Finite Groups. Graduate
Texts in Mathematics, 42. Springer–Verlag. New York (1977).

[Si01] E. da Silva. High Frequency and Microwave Engineering. Butter-
worth–Heinemann (2001).



References 201

[St32] M. Stone. On one-parameter unitary groups in Hilbert Space. Ann.
Math. 33, 643–648 (1932).

[St64] R.F. Streater and A.S. Wightman. PCT, spin and statistics, and
all that. W.A. Benjamin. New York (1964).

[Ti99] R. Ticciati. Quantum field theory for mathematicians. Cambridge
University Press. UK (1999).

[Tu85] W.K. Tung. Group Theory in Physics: An Introduction to Sym-
metry Principles, Group Representations, and Special Functions in
Classical and Quantum Physics. World Scientific (1985).

[Wa94] D.F. Walls and G.J. Milburn. Quantum Optics. Springer–Verlag.
Berlin (1994).

[We95] S. Weinberg. The Quantum Theory of Fields. Volume I. Cambridge
University Press. USA (1995).

[Wi32] E. Wigner. On the Quantum Correction For Thermodynamic Equi-
librium. Phys. Rev. 40, 749–759 (1932).

[Wi59] E. Wigner. Group Theory. Academic Press. New York (1959).

[Wi94] H.T. Williams and C.J. Wynne. A new algorithm for computa-
tion of SUp3q Clebsch–Gordan coefficients. Comput. Phys. 8, 355
(1994).

[Wo85] K. Wodkiewicz and J.H. Eberly. Coherent states, squeezed fluc-
tuations, and the SUp2q and SUp1, 1q groups in quantum-optics
applications. JOSA B. 2, 458–466 (1985).


	Contents
	1 The birth of Quantum Tomography
	1.1 Radon Transform
	1.2 Computerized Axial Tomography
	1.3 Reconstruction of signals in classical telecommunications
	1.4 Classical Electromagnetic field
	1.5 The quantum harmonic oscillator and the quantization of the Electromagnetic field
	1.5.1 Canonical commutation relations and the Fock space
	1.5.2 Canonical Quantization of the Electromagnetic field

	1.6 Reconstruction of matrix elements of quantum density operators
	1.7 Photodetection
	1.8 Homodyne and heterodyne detection in Quantum Optics
	1.8.1 Homodyne detection
	1.8.2 Heterodyne detection


	2 The tomographic picture of quantum systems
	2.1 C*–algebras and Quantum Tomography
	2.1.1 The GNS construction

	2.2 Sampling theory on C*–algebras
	2.3 A Generalized Positive Transform
	2.4 Equivariant tomographic theories on C*–algebras
	2.5 A particular instance of Quantum Tomography: Quantum Tomography with groups
	2.6 Quantum tomograms associated to group representations
	2.7 Reconstruction of states sampled with compact Lie groups
	2.7.1 Spin Tomography

	2.8 Tomography with the Heisenberg–Weyl group
	2.8.1 The holomorphic representation of an ensemble of quantum harmonic oscillators
	2.8.2 The Bargmann–Segal Hilbert space of entire functions
	2.8.3 Tomograms of an ensemble of quantum harmonic oscillators


	3 A numerical algorithm to reduce unitary representations
	3.1 The Clebsh–Gordan problem
	3.2 The SMILY algorithm
	3.3 The proof of SMILY
	3.4 The decomposition of the regular representation of a finite group
	3.4.1 The decomposition of the left regular representation of the permutation group S3
	3.4.2 The decomposition of the left regular representation of the alternating group A4

	3.5 Clebsch–Gordan coefficients for SU(2)
	3.5.1 Clebsh–Gordan coefficients for the spin system 3/21
	3.5.2 Clebsh–Gordan coefficients for the spin system 1/21/23/2

	3.6 A proposal for the experimental construction of adapted states

	4 The tomographic picture of classical systems: finite and infinite dimensional
	4.1 Classical Lagrangian and Hamiltonian systems
	4.2 The tomographic picture of classical Hamiltonian systems
	4.3 Tomograms for states of an ensemble of classical oscillators
	4.3.1 The canonical ensemble
	4.3.2 A new class of states: Gauss–Laguerre states

	4.4 The tomographic picture of Liouville's equation
	4.5 Tomography of the Klein–Gordon classical field in a cavity
	4.6 Tomographic picture of continuous modes
	4.7 The tomographic picture of the evolution equation for classical fields

	5 Tomography in Quantum Field Theory
	5.1 From Quantum Mechanics to Quantum Field Theory
	5.2 The holomorhpic quantization of the scalar field in a cavity
	5.3 Wightman–Streater axioms of a Quantum Field Theory
	5.4 Smeared covariant characters and tomograms of a quantum real scalar field
	5.5 A reconstruction theorem for states in Quantum Field Theory
	5.6 Canonical tomograms of a real scalar field

	A The Minkowski space-time and the Poincaré group
	The end of a long journey and the beginning of another: conclusions and further work
	Conclusions
	Further work
	Publications

	References


