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Abstract. In the social choice literature studying the problem of designing insti-
tutions for collective decision making, it is customary to (implicitly) assume that
each dimension of the social outcome is of public interest (i.e., that each indivi-
dual’s welfare depends on every dimension of the outcome). Thus, the scope of
the conclusions obtained is very limited. Here social decision problems with and
without that public character are considered and it is shown that the same negative
results arise in most cases; namely, that only dictatorial mechanisms are immune
to the participants’ manipulations. These results are obtained without requiring
that the mechanisms produce Pareto optimal outcomes (they must simply be
minimally responsive to the participants’ preferences), which deepens their pes-
simistic character.

The purpose of this paper is to investigate whether the results obtained in the
social choice literature can be extended to social decision problems other than
the purely public ones - that is, to problems in which some individuals’ welfare
might not be affected by some dimensions of the outcome. A broad class of social
decision problems is considered, and it is shown that the presence of a single
public dimension already produces the results previously obtained for the purely
public case.

The results reported here build on the seminal papers of Gibbard (1973) and
Satterthwaite (1975) and on a recent paper by Barbera and Peleg (1990). The
Gibbard-Satterthwaite Theorem states that when participants can claim all pos-
sible preferences over the set of alternatives (an assumption that is appropriate
only if the social decision problem is purely public), every voting scheme whose
range is finite and contains three or more alternatives must be either manipulable
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or dictatorial. Barbera and Peleg have extended the Gibbard-Satterthwaite
Theorem to include the cases in which the set of alternatives may be infinite (any
metric space), even when individuals’ preferences are restricted to be only the
continuous ones. The Barbera and Peleg Theorem suggests that this framework
might be suitable for the study of the social decision problems traditionally
considered in the literature on allocation mechanisms in economics.

Extending the results obtained for the purely public case to more general
collective decision problems requires one to deal with two new issues, both related
with the presence of dimensions in the social outcome that affect some individuals
but not others:

The first issue is to devise a measure of the extent to which a mechanism deals
with the conflict of interests present in a social decision problem. For purely
public collective decision problems, the cardinality of a mechanism’s range is an
appropriate measure. The concept of degree of conflict introduced here provides
a measure for more general problems.

The second issue arises from the fact that the above mentioned impossibility
results may be avoided if a mechanism can select some dimensions of the social
outcome on the basis of the preferences of individuals whose welfare is not
affected by those dimensions. Consider, for example, a social decision problem
in which three individuals must decide on the basis of their preferences how to
allocate one unit of a divisible and freely disposable private good. Assume that
the individuals admissible preferences are those representable by a continuous
function on [0, 1], and write m, for the smallest maximizer of Individual i’s
reported utility function.

The mechanism that assigns to individuals 1, 2 and 3, respectively,
(1 +my—my), (1 + my—m,), and L (1 +m, — m,) units of good, is nondictato-
rial (no individual gets always his most preferred outcome), and it is not subject
to the participants’ manipulations - in fact, no one can influence his own out-
come. Itis, however, a very unsatisfactory mechanism: the conflict among the parti-
cipants is circumvented by ignoring the preferences of those directly affected by
the choice to be made. If, for instance, individuals 1 and 2 report m, =m,, then
Individual 3 gets one third of a unit (independently of the utility function he
reports), even though the set of feasible outcomes for him (given the outcome
the mechanism selects for individuals 1 and 2) is [0,1].

We will rule out mechanisms having this feature by requiring that mechanisms
be responsive to the participants’ preferences: The alternative selected must be
such that each individual’s reported preference is maximized on the set of out-
comes that are feasible for him when combined with the outcome the mechanism
has selected for all other individuals. Responsive mechanisms therefore must
select minimally efficient outcomes, although they need not always produce Pareto
optimal outcomes.

In the literature on allocation mechanisms, most of the impossibility results
are obtained by requiring that the mechanisms produce Pareto optimal outcomes.
Hurwicz and Walker (1990), for example, show that nonmanipulable mechanisms
generally produce non-optimal outcomes. It seems likely, however, that their
result depends upon their requirement of exact optimality; might there be mech-
anisms that are nonmanipulable and produce outcomes that are not far (in some
sense) from being Pareto optimal? If so, the significance of the Hurwicz and
Walker impossibility result would not be so negative.



The results presented here, however, tend to confirm the more pessimistic
interpretations of the existing impossibility results for allocation problems: We
show that a substantially larger class of nonmanipulable mechanisms (not only
the ones that always produce Pareto optimal outcomes, but all the ones that are
merely responsive) are very unsatisfactory.

Satterthwaite and Sonnenschein (1981) were the first to extend the social
choice impossibility results to collective decision problems that are not purely
public. The approach taken here differs from theirs in that we do not restrict the
class of mechanisms to the differentiable ones, and more importantly, we do not
rule out bossy* mechanisms (those for which it is possible for an individual to
alter the outcome for some other individual without changing his own outcome).
The mechanism in the previous example is bossy: an individual can change some-
one else’s outcome and maintain his own unchanged. Its most negative feature,
however, is not its bossiness, but the fact that the mechanism selects each indi-
vidual’s outcome ignoring the preferences he declared, and therefore it produces
very inefficient outcomes. Responsiveness introduces an efficiency condition that
rules out these mechanisms.

Responsiveness is neither weaker nor stronger than nonbossiness. For ex-
ample, if the private good in the previous example is non-disposable (i.e., if the
unit of the good must be allocated), then the given mechanism will be (vacuously)
responsive — the set of outcomes that are feasible for an individual, given the
outcomes assigned to the other participants, is a singleton - and it will continue
to be bossy. Thus, the responsiveness property does not rule out all bossy mech-
anisms. An example of a nonbossy nonresponsive mechanism is given in the
discussion of Example 1.

It should be pointed out that the results presented here do not apply to social
decision problems like the one described in the example, involving more than
two individuals and with only private components. In fact, when public compo-
nents are absent from the collective decision problem, there are nonmanipulable,
nondictatorial mechanisms that are responsive (and nonbossy).

The results reported here also build on previous papers by Zhou (1991) and
by Moreno and Walker (1991). For purely public social decision problems, Zhou
shows that whenever the set of feasible alternatives is a subset of an euclidean
space, nonmanipulable mechanisms whose range is at least a two-dimensional
set must be dictatorial, even if individual preferences are restricted to be the ones
representable by quadratic functions. Moreno and Walker extend Zhou’s
Theorem to cover all collective decision problems for which the set of feasible
alternatives is a Cartesian product of the public dimensions and the other di-
mensions present in the outcome.

The remainder of the paper is organized as follows: In Sect. 1 the model is
described; in Sect. 2 the results are stated in discussed; the proofs are given in
Sect. 3.

! It is not clear why one should be interested in requiring a mechanism to be nonbossy. In
fact, there are interesting mechanism that are bossy (e.g., the competitive mechanism).



1. The Model

N denotes the set {1,...,n} of individuals. Throughout we assume n>2.

We assume that the set of possible outcomes for individual i has the form
X,=X*xY,cR™xR*, Z denotes the set of feasible alternatives, a subset of
X?xT]7 Y;, members of which are written as x=(x",y)=(x*,y,...,5,). We
refer to the coordinates of members of X? as public components®>. Representing
a social decision problem in this way does not impose any restriction: If there
are no public components, X? is a singleton; similarly, if there are only public
components, the sets Y, are singletons, and we say that Z is purely public. We
assume that Z is compact.

A utility function for individual i is a real-valued function on X,. For each
ieN, a set U, of admissible utility functions is given. % denotes the product
T 17 Us; the members u= (u,,...,u,) of % are called profiles. If u is a profile and
i, is a member of U,, then (&;,u_;) denotes the profile in which # has replaced
the i™ component of u.

A mechanism (or voting scheme) is a function f: %/ —Z. We denote the range
of f by %, and by %, and #* its projections into, respectively, X, and X7,
Given x e Z, we write x,=(x?, y,) and x_,=(x?,y_;) for its projections into,
respectively, X, and X?x ], ., ¥,. Similarly, for each we %, we write f;(u) and
f.:(n) for the projections of f(u) into, respectively, X, and X*X|[],.; ¥}
Finally, we reduce notation by writing #, f;(u) for @,(f;(u)), i.e., for i’s utility
(according to the utility function %) at the outcome associated with the pro-
file u.

A mechanism f is manipulable by individual i at profile u via utility function
i, if u, f, (@, w_;) > u, f; (). A mechanism f is nonmanipulable (NM) if, for each
profile u e %, each i e N, and each #; e U,, f is not manipulable by i at u via #,.

An individual i e N is a dictator for the mechanism f if for every profile
u=(u,,...,u,) € %, f,(n) maximizes u, on Z%,. A mechanism f is dictatorial if
there is a dictator for f, otherwise it is nondictatorial.

The Gibbard-Satterthwaite Theorem (G-S) and the Barbera and Peleg
Theorem (B & P) consider only problems for which the set of social alternatives
is purely public. They give conditions under which any voting scheme will be
either manipulable or dictatorial:

(G-8S) For each ie N, U, includes all functions on X,, and 2 is finite and contains
more than two alternatives.

(B&P) For each i€ N, X, is a metric space, U, includes all continuous functions
on X, and & contains more than two alternatives.

There are many social decision problems that are left out of the scope of the
G-S and the B &P theorems; examples of such problems are those in which the
social decision includes components that only single individuals care about
(Examples 1 and 2, below) or that include public components but also other
“externalities” that are not fully public goods - i.e., components that affect some
individuals but not others. The fact that only purely public decision problems
are considered in the G-S and the B & P theorems might give the impression that

2 The definition does not provide an obvious way of checking the presence of public components
in the social decision problem: this may require one to find the appropriate representation of
the problem.



it is the public relevance of every component of the social decision that drives
these results. We shall see that there are many situations other than purely public
ones for which the existence of opposing interests among individuals leads to the
same negative conclusions.

Responsive Mechanisms

Given an arbitrary set 7€ X? X Hf Y., we denote by 7 the projection of T into
X,; also, for each X e T, we write T'(X _,) for the set {x € T'|x_,=X_,}, and T;(X _,)
for the projection of 7'(X_;) into X,. Thus, given the set of feasible alternatives
Z, the set Z,(X_;) contains all outcomes for Individual i that are feasible when
combined with X_,.

A mechanism f is responsive® if for each ie N and each u=(u,,...,u,) € %,
f;(u) maximizes u, on Z,(f_,(n)).

Thus, a mechanism is responsive if at every profile, each individual’s utility
is conditionally maximized, given the outcome assigned to all other individuals.
Responsive mechanisms, however, need not always select Pareto optimal out-
comes. (An outcome x € Z is Pareto optimal for ue % if whenever there are
x’ € Z and ie N such that u;(x/) > u,(x;), then there is also j € N such that

u; (x;) <u;(x;).)

Example 1. There is a single unit of a divisible and freely disposable private good
to be allocated among two individuals. Hence we write X,=[0,1], i=1,2 (X7 is
a singleton that we suppress) and Z={x [0, 1]*|x; +x,<1}. Assume that all
continuous functions on [0, 1] are admissible utility functions for individuals 1
and 2, and let f be a mechanism that for each u e %, selects the alternative for
which f; (u) is the maximizer of u; closest to one, and f,(u) is a maximizer of
u, on Z,(f;(n)) (the set [0,1— f;(u)]). Clearly f is nonmanipulable and re-
sponsive. However, it does not always produce Pareto optimal outcomes: For
example, if u, is a constant function, then for each wu,e U,, one has
S (uy,u,)=(1,0); thus, if u, is an increasing function, this outcome is Pareto
dominated by (0, 1). Note that this is a dictatorial mechanism, but as Theorem 1
below shows, all nonmanipulable responsive mechanisms that can be designed
for this social decision problem are dictatorial.

Note that when Z is purely public, then every mechanism is vacuously re-
sponsive (because the sets Z,(x_,;) are singletons). By contrast, for collective
decision problems for which individuals’ interests are never in conflict (i.e., when
for each x € Zand each i € N one has Z,(x _;) = Z,), a nonmanipulable responsive
mechanism f must be such that for each i e N, f;(u) is a maximizer of 4, on Z;
hence, in this case, a nonmanipulable responsive mechanisms must always select
Pareto optimal outcomes.

* In a previous version of this paper, the term responsive was used for a slightly different
definition.



Degree of Conflict

The notion of degree of conflict provides of measure of the conflict of interests
present in a set of alternatives. Thus, the degree of conflict of the range of a
mechanism is a measure of the extent to which the mechanism deals with the
conflicting interests present in a social decision problem.

Given an arb1trary set TC XPx H Y,, x € T'is said to be a conflictive outcome
for Individual i if T;(x_;) is a proper subset of ;. For each ie N and each
TcX?PX[[1 Y, let &;(T) denote the set of conflictive outcomes for Individual
i, and write & (T) for the set (],.n %,(T) of conflicting outcomes.

Let TCcX PXH Y,. T is said to contain a conflict of degree one if % (T) is
empty. T is said to satlsfy Condition DC(/) if for each i € N and each C< & (T)
containing fewer than / elements, the set |J,oc Z;(X.;) is a proper subset
of T,. T is said to contain a conflict of degree k, if it satisfies Condition D C(k),
but it does not satisfy Condition DC (k+1).

Note that the concept of degree of conflict resembles the notion of dimension
of a vector space: given a set of conflicting outcomes, the set |, .o T;(x.,) is
its spanning in 7;; the degree of conflict of a set T7C XX ] [T Y, is the minimum
number of conflicting outcomes necessary to span every 7.

When Z is purely public, then the range of a mechanism f contains a degree
of conflict equal to its cardinality: If % is a singleton (i.e., if f is a constant
mechanism), then for each i € N the set %;(%) is empty; hence % contains a
conflict of degree one. If % is not a singleton, then for each ie N and each
xe Z#, one has Z,(X)=x#%,=H; hence F(R)=F= F(H#), and for
each i e N and each proper subset C of %, the set |J < ¢ #;(X.;) = C. Therefore
Z contains a conflict of degree equal to its cardinality.

For more general collective decision problems, the range of a mechanism
contains a conflict of degree greater than or equal to the cardmahty of Z* (the
projection of & into X?).

Theorem 1 below requires one to check whether the range of a mechanism
contains a conflict of degree greater than two. This condition plays the same role
in Theorem 1 as the cardinality condition on the range of a mechanism plays in
both the G-S and the B & P theorems.

1t should be noted that the notions of responsiveness and degree of conflict
are not independent; in the social decision problem of Example 1, if the set of
admissible utility functions is sufficiently rich (e.g., if it contains all the continuous
utility functions), it can be shown that any responsive and nonmanipulable mech-
anism must have Z as its range, which contains a conflict of degree greater than
two. (Recall Z={x [0, 1| x, +x,<1}; thus for xe(0,1] and ie N, one has
Z.(x)#Z, - see Fig. 1. Hence %,(Z2)=&,(Z)=F(Z)= {er|x~1>0} and
for each i e N and each Cc & (Z), the set ], Z;(x..,) is a proper subset of
Z,. Therefore Z contains a conflict of degree greater than two.)

Theorem 1 below will ensure that every nonmanipulable responsive mechanism
for this social decision problem will be dictatorial. It is possible, however, to
construct nonmanipulable and nondictatorial mechanisms that are nonbossy; for
example, for each ue %, let f(u) be (4,3 if #,(3)>u,(0), i=1,2, and (0,0)
otherwise. Thus, whereas for this problem nonmampulable responsive mecha-
nisms are dictatorial, one can construct nonbossy (but nonresponsive) mecha-
nisms that are nonmanipulable and nondictatorial.
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Example 2 illustrates further the concept of degree of conflict:

Example 2. There are two individuals whose sets of possible outcomes are
X,=[0,2] (X” is a singleton, which we suppress). The set of feasible alternatives
is Z=[0,1]?uU[1, 2% Individuals’ admissible utility functions are all the contin-
uous functions on X,.

Notice that for each i e Nand x € Z, either Z,(x_,)=[0,1]or Z,(x_;)=[1,2],
but not both (see Fig. 2); hence Z,(x_,) # Z,=[0,2]; thus &,(Z)=Z. Moreover,
take x [0, 1% x’ e[1,2% then Z,(x_)uZ,(x.)=Z,, i=1,2. Hence Z con-
tains a conflict of degree 2.

A nonmanipulable, responsive and nondictatorial mechanism can be con-
structed as follows: for each ie N, u;e U, and T,C Z,, let m(u,, ;) denote the
smallest maximizer of u, on 7; and write m (a) = (m (uy, Z,), m(u,, Z,)); for each
ue 7%, let the mechanism f be given by

m(u) if (mu)eZ
f@y=4 m@,Z,),m@u,,[1,2])) if (m(u)ell,2]1x[0,1]
(m(uy,[1,2]),m(u,, Z,)) if (m(w)e[0,1]1x[1,2] .

2
Z,(x}) I |
1

Zz(xl) I x

Fig. 2.
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The existence of this mechanism shows that the condition on the degree of
conflict of the range of a mechanism cannot be removed from Theorem 1 below.

2. The Results

Theorem 1 provides conditions under which a social decision situation involving
two individuals cannot be resolved by a mechanism that is simultaneously non-
manipulable and nondictatorial. It applies to social decision problems with and
without public components, but as the example in the introduction showed (in
the case in which the good is non-disposable), it cannot be extended to problems
involving more than two individuals. Theorem 1, however, plays an important
role in the proof of Theorem 2, which is applicable to social decision problems
with any number of individuals. The proof of Theorem 1 is given in Sect. 3.

Theorem 1. If N={1,2} and for each i € N, U, contains all the continuous functions
on X,, then every nonmanipulable responsive mechanism whose range contains a
conflict of degree greater than two is dictatorial.

Remark 1. As shown above, when the set of alternatives is purely public, re-
sponsiveness is satisfied vacuously and the range of f contains a conflict of degree
equal to the cardinality of .%Z. Thus, Theorem 1 includes the Barbera and Peleg
Theorem, for the case n=2, as a special case.

Remark 2. Mechanisms like the ones described in Example 2 show that there are
social decision problems for which it is possible to design nonmanipulable re-
sponsive mechanisms whose range contains a conflict of degree less than or equal
to two. It is not clear, however, whether responsiveness is a necessary condition
in Theorem 1.

Remark 3. Although our notion of dictator is weaker than the one used in most
of the related literature, within the assumptions of Theorem 1 the presence of a
dictator is unambiguously a very unsatisfactory feature of a mechanism: the
requirement that the range of the mechanism contains a conflict of degree greater
than two implies that the dictator will sometimes impose upon the other parti-
cipants an undesired outcome, since whenever a conflict arises the dictator’s
preferences will prevail.

Example 1 shows a social decision problem that falls within the scope of
Theorem 1 and that is not covered by the B & P Theorem. In fact, in this example
every nonmanipulable responsive mechanism satisfies # = Z, and therefore its
range contains a conflict of degree greater than two, which according to Theorem 1
implies that it is dictatorial.

Theorem 2 extends the conclusion of Theorem 1 to social decision problems
with more than two individuals, when the set of alternatives contains at least one
public component. (Section 3 contains the proof of the theorem.)

Theorem 2. If for each i€ N, U, contains all continuous utility functions on X,
then every nonmanipulable responsive mechanism for which Z*® contains more than
two elements is dictatorial.

Remark 4. When the set of alternatives is purely public, Theorem 2 becomes just
the Barbera and Peleg Theorem. Notice also that the condition on the cardinality



of the set 7 effectively requires than % contains a conflict of degree greater
than two.

Remark 5. The non-disposable version of the example in the introduction shows
that the presence of a public dimension cannot be dispensed with in Theorem 2.
It is unclear whether responsiveness is required: its only use in the proof by
induction of Theorem 2 is to allow us apply Theorem 1 to two-person mecha-
nisms.

The final example describes a social decision situation which falls within the
scope of Theorem 2, and it is not covered by any of the existing impossibility
results:

Example 3. A community of n farmers controls a water reservoir which is used
for recreational pursuits (fishing, swimming, etc.), and also to irrigate all the
farmer’s crops. Everyone therefore cares about the amount of water in the res-
ervoir, and each farmer cares only about his own allocation of water. A social
alternative consists of as specification of the amount of water in the reservoir,
x”, which is a public component, and an allocation of water to farmers
Y=, Y2,.-., ¥,) for irrigation purposes. The amount of water is limited, so that
a social alternative (x?,y) must satisfy x”+ >, y,=b.

Theorem 2 tells us that every nonmanipulable responsive mechanism whose
range contains more than two outcomes that differ in the amount of water in
the Reservoir will be dictatorial. The following two remarks comment on the
limitations of Theorems 1 and 2.

Remark 6. It seems clear that in many situations other than those covered by
Theorems 1 and 2, no satisfactory mechanisms can be designed. Mechanisms such
as the one described in the introduction (which is a responsive mechanism in the
non-disposable case) show that when public dimensions are absent from the social
decision, it is possible to design nonmanipulable and nondictatorial mechanisms
that are also responsive. Clearly the mechanism proposed is very unsatisfactory,
since an individual’s preference is never considered in selecting his outcome. It
would be of interest to investigate whether all mechanisms that can be designed
for social decision problems involving more than two individuals and without
any public component have the same negative features.

Remark 7. An important issue that deserves further study is whether these results
arise when the sets of admissible utility functions are restricted in several ways;
e.g., to contain only monotonic and/or concave functions, etc.. Extensions of
the results in this direction will enable a wider application to economic problems.
An extension to concave functions ought to be possible, perhaps by taking an
approach similar to the one followed by Zhou for the purely public case with
only the quadratic utility functions. It is unclear how (or even whether) similar
results can be obtained when the set of utility functions is restricted to contain
only monotonic functions.

3. Proofs

Before proving Theorems 1 and 2, two preliminary lemmas are established.
Lemma 1 establishes that a NM mechanism must always select each coordinate
of the social alternative so as to maximize that individual reported utility function
on his option set (the set O,(u_,), given for each ie N and each u_, e 11, U;



by {x,e X;|3u,€ U;: x;= f;(u;,u_;)} - ie., the set of outcomes directly attainable
by Individual i given u_,). Lemma 2 establishes that if the U,’s sets are sufficiently
rich, then the option sets must be closed.

Lemma 1. Let f be a NM mechanism. Then for each ie N and eachue % f;(n)
maximizes u; on O,(u_;).

Proof. Suppose not; let u=(y,,u_j)e% and X,e€0;(u_,) be such that
u,(%,) > u; f:(u). Since X, e O,(u_;), let i, e U, be such that f;(%;,u_,)=2%,. Then
we have

u f (@, 0) =u, (%) > u, f,(u) .
Hence Individual i can manipulate f at u via #,, contradicting that f is NM. O

Lemma 2: Let f be a NM mechanism, and assume that for each i € N, U, contains
all the comtinuous functions on x;. Then for each ie N and each u_,e U_;:
0O;(u_;) is closed.

Proof. Let ie N and u_; e U_, arbitrary, and let X, be a limit point of O,(u_,).
Assume by way of contradiction that x,¢ O,(u_;). Consider the utility function
u;(x;)=—||X,—x;||. Let fi(;,u_;)=1x,. Since X%, is a limit point of O,(u_,), let
X;€ 0,(u_,) be such that ||X,—X%,|| < ||%,—x;||, and let 4, & U* be such that
m(f;) =%,; Lemma 1 yields f;(#;,u_,)=X,. Thus we have

w i) =u, (%) > w(x) =u, fi(u, 0 )

and therefore Individual i can manipulate f at u via #,. Hence X, must in fact be
a member of O,(u_,). O

Proof of Theorem 1. The proof of Theorem 1 follows the lines of the proof of the
B &P Theorem. As in their proof, the method of the pivotal-voter (developed in
Barbera 1983) plays a fundamental role. Before proving Theorem 1, a number
of preliminary results are established. For the remaining of the proof, let f be a
mechanism satisfying the assumptions of Theorem 1. Let U* denote the set of
continuous utility functions with a unique maximizer (denoted by m (u,)) on .%;,
and write %/* for the set U* X Uj*.

It is well known that if the social decision problem is purely public, and if the
mechanism f is nonmanipulable, then it satisfies the unanimity property that if
ueZ* and xe % are such that for each ie N, m(y,)=x, then f(uw)=x
Lemma 1.1 establishes a generalized version of this property for social decision
problems involving two individuals.

Lemma 1.1. If ue % and x e % are such that for each ie N, x,;=m(u,), then
fw)=x.

Proof. Let ie % and % e % be such that for each ie N, m,(u,)=1X%,, and let
u e be such that f(u)=x%. Since x,=m (%) € O,(1;), Lemma 1 implies that
£, (uy, L) = %,. If we can show that X, =m () € O, (ii), then another application
of Lemma 1 would yield f, (i7,, #,) = X,, and since %, € Z, (X,), responsiveness of
f would imply f,(4,,4,) =X,, and the proof would be complete.

If £, (u,,4,)=X,, there is nothing to prove. Suppose that f; (u,,) =%, #X;;
for each O < e < || %, —%,]|, let u{ € U;* be such that

10



(1) m@uf)=7%,, ]
(2) %, is the unique maximizer of ui on Z\B(%,, &), and
(3) for x,,x] € B(X;,&): ||x, =%, || < ||x] — %, || = uf (x) > 07 (x]),

where B(X,,¢) is the set {x; € X;]| ||x,— %, || <&}
Since f is nonmanipulable, we must have

ui f1(uf, uy) 2 uf (%)) .

Thus, (2) implies that either f,(uf,d,)=%, or f,(uf,%)e B(%,,¢&). Suppose
S (g, @) =2%y; since %, € Z, (%;) = Z, (f; (uf , 1)) (recall f (uy, %)= (%,,%,)) and
f is responsive, we have f, (uf,,) = X,; hence %, € Z, ( f,(uf, 1,)) which contra-
dicts that f is responsive. Therefore f, (uf,it,) € B(%,,¢).

We now show that in fact f;(uf,i,)=2=%,, and therefore that %, € O, ().
Suppose that f) (uf, @) =% #%,. Let O<e’ < ||%{ —&,||; the previous argu-
ment shows that f;(uf', @) e B(X,¢’); ie., || AW, %) —% || <% —%||
Thus, according to (3) we have

u fi (g s w) > uf (B)=uf fy(uf, )

and therefore Individual 1 can manipulate 1 at (uf,#,) via uf', contradicting that
f is NM. Thus f; (u5,4%,)=X,, and therefore X, € O0,(%,). O

Because every continuous function on X, is included in U,, we have the fol-
lowing corollary to Lemma 1.1.

Corollary 1.1. f(#*)=A.

Lemma 1.2. For each u, e Us*, Z; (m(u,)) € Oy (u).

Proof. Suppose not; let u, € U and X, € Z, (m(u,)), %, ¢ O, (4,). Let R € H be
such that £,=m(w,) and £, #X,. Lemma 2 allows us to construct a continuous
utility function* u; € U} satisfying

(1) m(u)=x
(2) %, is the unique maximizer of u, on O, (1,).

Lemma 1 yields f, (u;,u,)=%,. Responsiveness of f implies f,(u,,u,)=2%,. But
then X, e Z, (f,(u,,u,)) and u, (%) > u, (£,), contradicting that f is respon-
sive. [

Lemma 1.3 establishes that for each u, € U}, the set O, (u,) is determined
solely by m(u,).

Lemma 1.3. If u,,u; € US are such that m (1) =m(u}), then O, (1) = O, (u5).

Proof. Suppose not; let u,,u; e U} be such that m(u,)=m(u3), and let
£,€ 0, )\ O, (w3). Let %, € Z,(m(u5)); according to Lemma 1.2, we must
have %, € O, (#3). As in Lemma 1.2 we construct a continuous utility function
u; € U satisfying

* For an example see Barbera and Peleg (1990), Lemma 5.6.
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(1) m(u)=%,
(2) %, is the unique maximizer of u; on O, (#).

Lemma 1 implies that f, (u,,u,)=x,. Since x,¢ O, (1), Lemma 1.2 implies
that %, ¢ Z, (m (u})) = Z, ((m (u,)), and therefore f, (u,,un,) #m (u,).

On the other hand, Lemmal also implies that f, (u;,u})=2%,; thus
mu}) e Z,(%,)=2Z,{f, (uy,u})), and since f is responsive we must have that
fo(uy, u5)=m(us). Hence

wy (m )y =u, [, (0, ) > uy fo(ug, )

and therfore Individual 2 can manipulate f at (u,,u,) via u5. This contradiction
establishes the lemma. O

Lemma 1.4. For each u, e U, either O, (u,)=Z,(m(w,)), or O, ()= F,.

Proof. Suppose not; let u, e U and %, £, € %, be such that %, ¢ Z, (m(w,)),
X, € 0,(u,) and %, ¢ O, (u,). Let u, € U;* be such that

(1) m(u)=%,
(2) %, is the unique maximizer of u; on O, ().
Lemma 1 implies that fi(u,,u,)==%,, and therfore f,(u,,u,) € Z,(%,). Let
X, € Z,(%,), and without loss of generality (Lemma 1.3) assume that for each
Xy € Z, (%), u, (%,) > 1, (x,). (A continuous utility function with these properties
can be constructed since m (u,)¢ Z, (%), and Z, (%) is closed - recall that Z is
compact.)

If %,eZ,(%)=2Z,(fi(uy,u,)), responsiveness of f implies f,(u,,u,)=%,;
hence %, € Z, ( /5 (u;,u,)), which contradicts that f is responsive.

If %,¢Z,(%;), let e Us be such that m(#,)=3%,; Lemmal.l yields
S (uy,6,) =(%,, %,); hence

wp [ (1, @) =1, (%) > w, fo (g, )

and therefore Individual 2 can manipulate f at (u,,u,) via #,. This violation of
nonmanipulability establishes the lemma. O

Lemma 1.5. Either for each u, € U: O, (w,) =Z,(m(w,)), or for each u, e U}¥:
0, () = Z.

Proof. Suppose not; then Lemma 1.4 implies that there are 1,4, € U,* satisfying
both O, (i) = Z, (m (i1,)) # &, and O, (4,) = F,# Z, (m(1,)). Note that for each
1y € Uy, Z,(m(u,)) = %, (m (). (Lemma 1.2 yields Z, (m (1)) < O, (1,) S 72,
and %, =Z,). Thus, one has & (m(iL,)=2Z,(m(%,))# %, and F, (m(d,))
=Z, (m{i,)) #+ Z,, and therefore if x € F satisfies either x, =m (i,) or x, =m (%,),
then x € %, (F).

Since % contains a conflict of degree greater than two, there is
%, € B\ F, (m (i) U P, (m(%,))]. Without loss of generality (Lemma 1.3) as-
sume that u, (m (1,)) > u, (x,), for each x, € Z, (%,).

Let 4, € U* be such that m (é,) = X, . Since O, (4,) = %, , Lemma 1 implies that
fi(d,, 4,y =%, and therefore f,(#,,4,) € Z,(X,). Also since O, (i1,) = Z, (m(i,))
one has m (i) € Z, ( f, (i1, %,)), and responsiveness of f yields £, (i, i) = m (i,).
Hence

iy o, 1) =1, (m (@) > i, 5, (7, 1) ;
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thus Individual 2 can manipulate f at (#,4,) via %,, which contradicts the
nonmanipulability of f and completes the proof of Lemma 1.5. O

We introduce now a concept that will be useful for the remaining of the proof
of Theorem 1 as well as for the proof of Theorem 2. Let f: % — Z be a mechanism
and let % be an arbitrary proper subset of 7. We say that Individual i is a
dictator for fon % if for each ue %, f,(u) maximizes u; on f( 97). If there is a
dictator for f on %, we say that f is dictatorial on %,

Proof of Theorem 1. The proof that f is dictatorial on %/* is immediate from
Yemma 1.5:

If for eachw e %*, O, (u,) = Z, (m(u,)), then one has m (u,) € Z, ( f; (w)), and
since f is responsive one has that f, (n) =m (u,). Hence Individual 2 is a dictator
for f on Z/*.

If for each ue %*, O,(u,) =%, then Lemmal yields f, (u)=m(u,), and
therefore Individual 1 is a dictator for f on %*.

Suppose that Individual 1 is a dictator for f on %Z*. We show that he is a
dictator for f on %.

It is easy to show that Individual 1 is a dictator for f; on U¥ X U,. Suppose
not; let (#,u,)eU¥xU, be such that f (G, u,)#m(G). Clearly
m (i) ¢ Z, ( f, (i, u,)), for otherwise f would not be responsive. Let i, € U be
such that m ()= f,(4,,u,). Since m(i,) e 0,(#), Lemmal implies that
fo(idy,1,)=m(i,). Notice that (#,%,)e #* and recall that f(#¥*)=%
(Corollary 1.1).  Furthermore, m (i) ¢ Z, (m (4,)) = Z, ( f,(d;,%,)); hence
Jf1 (4, %) #£m (i), which contradicts that Individual 1 is a dictator for f on #%/*.

Finally, it is easy to show that Individual 1 is a dictator for f on %, since
F=f(#*)< f(UFxU,) and therefore he could otherwise manipulate f by
claiming as his utility function a member of U*. O

Proof of Theorem 2. The outline of the proof of Theorem 2 is as follows: first it
is shown that the mechanism is dictatorial when restricted to certain domains
(Lemmas 2.1 and 2.2); then the theorem is proved by induction on the number
of individuals. Henceforth, let f be a mechanism satisfying the assumptions of
Theorem 2. We introduce now some additional notation.

For each ue 7, f,(u) denotes the public part of the outcome, f,(u) e X”.
Let UF < U, be the set of all utility functions of the form u,(x?, y) uf (x?),
where 17 is a continuous real valued function on X?. We write %7 for the set

Inur
Lemma 2.1. f is dictatorial on %/*.

Proof. The proof of Lemma 2.1 is essentially an application of the Barbera and
Peleg Theorem to the restriction of f, to %/”. First, note that for each i e N and
each ne %%, u,f (0)=u? f,(u). Indeed the set %7 can be put in a one-to-
one correspondence with the set of all the continuous utility profiles on X2, and
therefore the restriction of £, to %7 (which we denote also by f,), f,: % P—»X P
is a mechanism for a purely public social decision problem. Moreover Sy is
nonmanipulable (since /" is nonmanipulable) and £, (%?)=#Z?*. (Given %7 ¢ ,% ?
let ue % be such that f (W) =x, with x?=x?; fox each ie N, choose #; e UP
such that %7 is the unique maximizer of #7; nonmanipulability of f ylelds
J,(@W=%?) Since #? contains more than two elements, it follows from the
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Barbera and Peleg Theorem that J, must be dictatorial; i.e., there is j € N such
that for each we %7 and each (x%, y;) e 9%;, we have

u f@=u?f,(W=u? (x?)=u;(x?y;) .
Thus j is a dictator for f on #*». O
Lemma 2.2. Some Individual j is the dictator for fon U?X |, U;.

Proof. Without loss of generality, assume that Individual 1 is the dictator for f
on %?. It will shown that he is a dictator for f on Uf XH;’ U, (i.e., for each
ue UfXJ[; U, f,(u) maximizes uf). Suppose not; let ue Uf X[ U, and
X7 e Z? be such that uf (X7) > uf f, (u).

Write f, (w)=2X7, and for i=2,...,n, let &, e U7 be such that £7 is the unique
maximizer of 47. Since f is nonmanipulable, for k=2,...,n, one has

Sl s fyu g, k}) =%’

-----

Thus, f,(u,,1_,)=%?%X?. But notice that (,,1.,) € %”; therefore Individual
1is not a the dictator for f on %7, contrary to our assumption. This contradiction
establishes the lemma. O

For the proof of Theorem 2 some additional notation needs to be introduced.
Let ie N and u, e U, arbitrary. Consider the function fu, defined, for each
u e[ U by fu,(u.)=f (4;,u_;). Although the fu, functions are not mech-
anisms stricto sensu, the notions of manipulability and dictatorship, as well as
the conclusions of the previous two lemmas apply to them. Indeed if f is nonmani-
pulable and responsive, then for each ie N and each u, e U;, fu, is nonmani-
pulable and responsive. Write % ( fu,) for the range of fu,, and #Z?( fu,) and
Z; (fu;) for its projections into, respectively, X” and X .

Proof of Theorem 2. The theorem is proved by induction. The case n=2is a
simple application of Theorem 1, since the requirement on the cardinality of %7
implies that the range of the mechanism contains a conflict of degree greater than
two. Now we can assume that f is dictatorial for n— 1, and we must show that
it is dictatorial for n.

Without loss of generality, let Individual 1 be the dictator for f on
U xT 1, U;(Lemma 2.2). Letu, € U, be arbitrary. Clearly fu, is nonmanipulable
and responsive, and it involves only »— 1 individuals; furthermore, since Indi-
vidual 1 is a dictator for f on Uf x| [} U;, we have Z7( fu,) = Z*. Thus, the
induction assumption implies that fu, is dictatorial.

We show that Individual 1 must be the dictator for fu,. Suppose not; again
without loss of generality, let Individual 3 be the dictator for fu, and let X% e #Z7*
and i, € U¥ be such that £7 is the unique maximizer of i#. Let u, € U} be such
that u? (X?) > u? (£7), for some %7 e Z ?\{%?}. Since Individual 3 is the dictator
for fu,, we have

Jp(Us 03,0y 5 3y) = X7,

which contradicts the fact that Individual 1 is the dictator for f on
Ufx [, U;. Thus, for each u, € U,, Individual 1 must be the dictator for fu,;
i.e., for each ue %, f (u) maximizes v, on %, ( fu,).
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In order to establish Theorem 2, one has to show that for each u, e U,,
F, = F, ( fu,). Suppose not; let it, € U, and %, =(x?, j,) € #,\F, ( fi1,). Note
that since Individual 1 is a dictator for f on Uf X H;’ U,, then Z*( fil,)= F°*.
Let £, =(%?, ;) € %, ( fit,), ¥ #x*. Since Individual 1 is also a dictator for fi,,
then %, ( fi1,) is closed (%, ( fii,) is Individual 1’s option set for fi,, which is
closed by Lemma 2). Thus, we can construct a utility function #, € U, satisfying

(11) m(i)=%, _
(1.2) %, is the unique maximizer of 4, on % ( fi,).

Let (u3,...,%,) =U_; 5 € H;’ U, be arbitrary. Since Individual 1 is a dictator for
fity, one has f (i, dy,0_;; 5,) =(£?, 7,..., ¥,). Since .Z? contains at least three
different outcomes, let £2 € Z#\{£?, %7} and 1, € U, be such that

(2.1) m(d,)=(x?, J,)
(2.2) (X2, y,) > 4, (%2, 3,), Yy, € ¥,

Since f is NM, f,(d;,d,,0_ (1 5)=(£%,7,), and therefore X, ¢.% (fi,).
(Otherwise, since Individual 1 is a dictator for fi,, one would have
@y, dy,u g 5)=5%,, and hence f, (i, 4,,0_;; 5,) = X7 #%7.) Let J, be such that
X, =(X?, §)) e Z#, (fii,), and let i, € U, be such that

(3.1) m(@)=% .
(3.2) %, is the unique maximizer of #, on %, ( fi,).

As Individual 1 is a dictator for fii, and x,¢ %, (fil,), one has
Si(@ ty,u g 5)=5%,. Also since X, € %, let ii=(i,,0_,)e % be such that
Si(@)=2x,. Thus, X, € %, ( fii,) and since Individual 1 is a dictator for fii,,
S1(@y,%,8_, 5)=%,. Hence for some J,, 7, € Y, one has

iy [ (i, 1, “~{1,2;) = (X7, 7,) > i, (%2, 7,)
=i, f, (i, by, “~{1,2}) )

and therefore Individual 2 can manipulate f at (i,,#,,u_, ) via #,. This con-
tradiction establishes that for each u, € U,, %, ( fu,) = %,, completing the proof
of Theorem 2. O
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