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ABSTRACT With the increasing adoption of intelligent transportation systems and the upcoming era

of autonomous vehicles, vehicular services (such as remote driving, cooperative awareness, and hazard

warning) will have to operate in an ever-changing and dynamic environment. Anticipating the dynamics

of traffic flows on the roads is critical for these services and, therefore, it is of paramount importance to

forecast how they will evolve over time. By predicting future events (such as traffic jams) and demands,

vehicular services can take proactive actions to minimize Service Level Agreement (SLA) violations and

reduce the risk of accidents. In this paper, we compare several techniques, including both traditional time-

series and recent Machine Learning (ML)-based approaches, to forecast the traffic flow at different road

segments in the city of Torino (Italy). Using the the most accurate forecasting technique, we propose n-max

algorithm as a forecast-based scaling algorithm for vertical scaling of edge resources, comparing its benefits

against state-of-the-art solutions for three distinct Vehicle-to-Network (V2N) services. Results show that

the proposed scaling algorithm outperforms the state-of-the-art, reducing Service Level Objective (SLO)

violations for remote driving and hazard warning services.

INDEX TERMS Vehicle-to-Network, Scaling, Forecasting, Time-series, Machine Learning

I. INTRODUCTION

The 5th generation (5G) of mobile communications revis-

its the traditional design of cellular systems that focused

on connectivity, towards the support of a wide variety of

network services supporting a disparate set of requirements

and capabilities in a shared physical infrastructure. To offer

such distinct services, network operators’ infrastructure is

significantly changing, with 5G networks shifting from the

monolithic architecture of previous generations to a highly

modular, highly flexible, and highly programmable architec-

ture. Network Function Virtualization (NFV) and Software-

Defined Networking (SDN), along with the convergence of

mobile networks, Edge and Cloud technologies, are key

enablers for realizing such vision. In doing so, a custom-

fit paradigm emerges where virtual and isolated networks

(the so-called network slices [1]) are provided over the same

and shared infrastructure and tailored to particular network

services and their requirements.

Managing the lifecycle of such network services is a crit-

ical aspect of efficient service delivery in 5G. First, network

services and their corresponding network slices (hereinafter

referred only as services) must be orchestrated on-demand.

This step requires the initial dimensioning of the service

and relies mostly on pre-defined information. Second, ser-

vice elasticity is required, adapting the system to workload

changes in order to avoid any degradation of the service per-

formance and violation of Service Level Agreements (SLAs).

To this end, traditional scaling approaches include static
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or reactive (e.g., threshold-based) solutions. However, they

are incapable of facing unforeseen events, especially when

multiple services must coexist over the same infrastructure.

Consequently, service providers typically over-provision crit-

ical resources (i.e., network, computing) which increases

the cost of service provisioning and reduces the number of

services that can be supported simultaneously over the same

shared infrastructure.

An efficient allocation of resources to coexisting services

is essential in order to maximize the utilization of such

resources while reducing service costs. Traffic forecasting

may constitute a key component, aiding orchestrators and

management entities in their decision-making processes by

estimating the future demand of running services. Thus pre-

emptive scaling actions (e.g., scaling in/out or up/down) can

be taken to accommodate the expected demand beforehand,

taking also into consideration the actual time required to scale

the service.

Vehicular-to-Network (V2N) services constitute a set of

upcoming use cases that can benefit from forecasting in-

coming vehicular traffic to continuously meet their strict

reliability and low-latency constraints. At the same time, it

allows network, storage and computing resources to be scale

accordingly in a pro-active fashion. However, forecasting

real-time traffic information is not a straightforward task due

to unexpected events like e.g., car accidents. Nevertheless,

there are existing techniques (see Section II-B) that propose

traditional time-series and Machine Learning (ML)-based

methods to forecast vehicular traffic based on its periodic

patterns.

In this paper, we address network service elasticity through

vehicular traffic forecasting, and contribute to the state-of-

the-art as follows:

• We formulate the V2N service scaling as an optimiza-

tion problem using queuing theory to derive V2N ser-

vice delays.

• We compare several forecasting techniques, testing their

performance on a vehicular traffic dataset for the city

of Torino (Italy), before and after the COVID-19 lock-

downs.

• We propose an online training approach to update the

prediction on-the-fly, showing how it improves the ac-

curacy of forecasting techniques.

• We propose a scaling algorithm, denoted as n-max

scaling, to solve the V2N scaling problem using a fore-

casting techniques and assisted by the proposed online

training.

• We perform a comparison of the proposed n-max scal-

ing algorithm against existing state-of-the-art solutions,

demonstrating its feasibility with respect to V2N service

scaling for remote driving, cooperative awareness, and

hazard warning services.

The remainder of this paper is organized as follows: Sec-

tion II discusses the related work on forecasting techniques

and their application for forecasting road traffic, and net-

work or service dimensioning purposes. Section III presents

the considered system model based on queuing theory and

formulates the scaling problem to be solved. Section IV

describes several techniques to forecast road traffic and eval-

uates their performance using a road traffic dataset. Sub-

sequently, Section V describes how existing state-of-the-

art algorithms solve the formulated V2N scaling problem,

and presents the n-max algorithm and its performance on

different V2N services with strict latency constraints. Finally,

Section VI discusses the main findings of this study and

points out future research directions.

II. BACKGROUND AND RELATED WORK
This Section refers to state-of-the-art forecasting techniques

for (i) road traffic and (ii) network traffic flows. Moreover

it provides an overview of existing works on forecasting

methods used to support network service elasticity.

A. FORECASTING TECHNIQUES

As stated in [2], the “every-day life presents countless situ-

ations where one must somehow estimate what will happen

in the future, as a basis for reaching a decision or taking ac-

tion”. Such estimation can also be interpreted as a prediction

or forecast.

Traditionally, forecasting techniques involve time series

methods, such as Error, Trend, Seasonality (ETS), Auto-

Regressive Integrated Moving Average (ARIMA) [3], and

Triple Exponential Smoothing (TES) (i.e., Holt-Winters) [2].

These methods usually require a limited number of compu-

tational resources and low energy because they are mainly

based on simple analytical formulas [4].

With the fast growth of available datasets, forecasting

approaches started to adopt ML techniques, such as Long

Short-Term Memory (LSTM) [5] and Recurrent Neural Net-

works (RNN). In other words, ML is empowering forecasting

techniques with the means to implement complex multivari-

ate analysis, accounting for different factors that impact a

specific phenomenon. However, in contrast to traditional time

series techniques, ML-based forecasting require a large num-

ber of resources and energy, especially for training, which

might limit their effectiveness. A careful evaluation of the

tradeoff between cost and benefits of utilizing traditional time

series versus ML-based techniques must be conducted [6]

[7], before applying them to any specific scenario.

B. ROAD TRAFFIC FORECASTING

Forecasting techniques have been widely used in road traffic

scenarios since they follow a periodic and variable pattern

over time. However, time-series associated with road traf-

fic also present some irregularities that make forecasting a

challenging task. In particular, events as vehicle accidents

may break the periodicity of the traffic time-series, and will

detriment the forecasting accuracy; for it is difficult to predict

the the accident itself, the number of involved vehicles, or

even how many vehicles will be in congestion due to the

traffic.
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Other situations may lead to time-series irregularities diffi-

cult to predict, for example, concerts, road maintenance jobs,

or bank holidays that cause traffic jams in the city limits, etc.

Forecasting situations as the aforementioned is a challenging

task, especially because the associated time- series irregular-

ities – like a bump in the traffic flow due to an accident –

are rarely foreseen in the data used to train the algorithm.

Traffic forecasting algorithms should consider these artifacts

in the road traffic time-series, and cannot assume a periodic

and stable pattern over time; but rather, a time-series with

irregularities due to the cited unexpected events. Hence, it is

a challenge to design an algorithm to accurately forecast both

the traffic pattern and its unexpected irregularities.

Traditional time-series were firstly adopted to forecast

road traffic flows, with methods such as ETS, ARIMA, and

TES (i.e., Holt-Winters) [6] [8]. With the emergence of

ML, works such as [9] and [10] respectively applied, for

the first time, Stacked AutoEncoders (SAEs) and Restricted

Boltzmann Machine (RBM) models to forecast road traffic

flows. In [11], a deep regression model with four layers

(including one input, two hidden, and one output layers)

is used to forecast vehicle flows in a city. Other works

rely on the utilization of LSTM [12] [13], Deep Belief

Network (DBN) [14], Dynamic Fuzzy Neural Networks (D-

FNN) [15], and Gated Recurrent Units (GRU) [16], showing

promising results on the application of ML-based techniques

for road traffic forecasting.

C. FORECASTING APPROACHES FOR ELASTIC

NETWORK SERVICES

Forecasting techniques are also used in telecommunication

networks to ease and automate tasks related to the lifecy-

cle management of networks and services. As an example,

predictive analytics is a key component of the Zero touch

network & Service Management (ZSM) framework envi-

sioned by ETSI [17], as an alternative to static rule-based

approaches, which are inflexible and hard to manage.

In [18], deep artificial neural networks are used to forecast

network traffic demands of network slices with different

behaviors. Similarly, in [19], a Holt-Winters-based forecast-

ing analyzes and forecasts traffic requests associated with

a particular network slice, which is dynamically corrected

based on measured deviations. While the former proactively

adapts the resources allocated to different services, the latter

implements an admission control algorithm to maximize the

acceptance ratio of network slice requests. In [20], LSTM is

used by a dynamic bandwidth resource allocation algorithm,

aiming to compute the best resource allocation to reduce

packet drop probability.

A dynamic dimensioning of the Access and Mobility

management Function (AMF) in 5G, which relies on traffic

load forecasting using Deep Neural Network and LSTM, is

proposed in [21] and [22]. In doing so, scaling decisions can

be anticipated, avoiding the increase of the attachment time

of user equipment and the percentage of rejected requests. A

similar solution is also proposed in [23] targeting a dynamic

and proactive resource allocation to the AMF, where LSTM,

Convolutional Neural Networks (CNN), and a combined

CNN-LSTM are used to forecast the traffic evolution of a

mobile network.

There are also some works related to allocation of network

resources for V2N services, using forecasting techniques.

In π-ROAD [24], a deep learning architecture is proposed

based on LSTM layers and autoencoders [25] to detect traffic

events along a highway covered with an LTE deployment.

The authors use the architecture also to predict future events,

and formulate an optimization problem that allocates trans-

mission blocks to an emergency slice associated to vehicular

services as autonomous driving. Other works, such as [26],

use an LSTM Neural Network to forecast the incoming

vehicular traffic derived from a simulation, to perform the

scaling and the migration of vehicular service instances in

MEC platforms. The authors propose an algorithm called

AutoMEC, that decides the migration and scaling based on

the accuracy of the prediction and the load of neighboring

stations.

The use of forecasting to tackle V2N service scaling is

recent, given the late arise of applications as remote driving.

Indeed, the literature typically assesses the scaling of V2N

services [27], [28] with threshold-based mechanisms. How-

ever, even the papers that use forecasting for V2N scaling

do not include a comparison of time series analysis and ML-

based techniques. Moreover their performance is not assessed

for scaling operations of V2N services with real road traffic

traces. Such a scenario can highly benefit from the traffic

forecasting techniques in Section II-B to (i) adapt to changing

road traffic conditions (e.g., the COVID-19 lockdown wit-

nessed in 2020); and (ii) scale vehicular services efficiently.

This work addresses both challenges and, ultimately, paves

the way for a scaling solution applied to vehicular services

with strict end-to-end (E2E) delay requirements.

III. SYSTEM MODEL

We consider a 5G network infrastructure, with vehicles send-

ing V2N application traffic to a Next Generation NodeB

(gNB) located along the road. The gNB forwards packets to

an edge server connected to an access ring switch (see [29]

and [30] for the reference infrastructure). Packets are queued

at the edge server and then processed by any of the CPUs

allocated to the V2N application. In the example illustrated

in Figure 1, two (blue) CPUs are allocated for V2N traffic

processing. However, if the traffic demands a new (red)

V2N application, users cannot be satisfied by the current

configuration, thus the edge server scales vertically.

For the sake of tractability, we assume that vehicles arrive

at the road segment covered by the gNB following a Poisson

process with arrival rate λt. The arrival rate is time dependant

t because it is expected that the number of vehicles on the

road vary during the day. For example, there will be more

vehicles during rush hours than very early in the morning.
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FIGURE 1: System Architecture1

The New Radio (NR) wireless link is assumed to use

a numerology with 15 kHz Sub-Carrier Spacing (SCS) a

frequency range in between 410 MHz and 7.125 GHz, normal

cyclic prefix, 14 symbols per slot, maximum carrier band-

width of 50 MHz, and a slot duration of 1 ms [31]. Based

on [32] and the chosen numerology, packets are sent in a

1 ms transmission slot, rather than using the whole 10 slots

transmission frame.

The edge server processes the incoming V2N application

packets using any of the c CPUs allocated. The processing

time of each CPU follows a Poisson distribution with rate µ.

Thus, the scenario in Figure 1 is modeled using a M/M/c
queue [33]. Depending on the number of CPUs ct and the

arrival rate of vehicles λt at time t, the V2N application may

or may not satisfy service requirements (in this case latency

constraints).

Since the vehicles arrive according to a Poisson distri-

bution and CPUs’ processing time is also Poissonian, the

average sojourn time of a V2N packet at time t is expressed

as:

Tt =
1

µ
+

PQ,t

ctµ− λt

(1)

where PQ,t is the probability that a V2N packet, arriving at

time t, has to wait in the queue because the ct allocated CPUs

are busy. The expression of PQ,t is provided by the Erlang C

formula:

PQ,t =
p0(ctρt)

ct

ct!(1− ρt)
(2)

where ρt = λt

ctµ
. The probability of having zero packets in

the queue at the edge server at time t is

p0,t =

[(
ct−1∑

n=0

(ctρt)
n

n!

)

+
(ctρt)

ct

ct!(1− ρt)

]−1

(3)

The average sojourn time (Eq. 1), provides us with the

number of CPUs ct required to satisfy latency constraints of

V2N services. This paper solves the following optimization

problem of deciding how many CPUs ct+n (and so the

corresponding future λt+n demand) are required to satisfy

the V2N latency constraints.

Problem III.1. Given a latency constraint T0, and a look-

ahead value n ∈ N
+, find a function f : RN 7→ N

+ that

solves the optimization problem:

min
{ct}

∑

t

ct, (4)

s.t. ct+n = f(λt, λt−1, . . . , ct, ct−1, . . .) (5)

Tt+n ≤ T0 (6)

In Section V we propose a vertical scaling algorithm,

denoted as n-max to tackle the Problem III.1. The proposed

algorithm forecasts the future traffic demand λt+n and scales

up to ct+n CPUs to meet the delay requirements. Before go-

ing into details on the n-max algorithm, we compare existing

forecasting techniques in order to assess the best technique to

be used in the proposed n-max scaling algorithm.

IV. COMPARISON OF FORECASTING TECHNIQUES
This Section provides a brief description of selected forecast-

ing techniques and how offline and online training can be

implemented, followed by an analysis of their performance

using real road traffic traces.

A. SELECTED FORECASTING TECHNIQUES

In the scope of this work, distinct time series analysis and

ML-based techniques are selected, namely Double Expo-

nential Smoothing (DES) and Triple Exponential Smooth-

ing time series techniques, Hierarchical Temporal Memory

(HTM), Long Short-Term Memor (LSTM), Gated Recurrent

Unit (GRU), Temporal Convolutional Networks (TCN), and

Convolutional LSTM (TCNLSTM) ML-based techniques.

Although any time-series forecasting technique applies

to assess the road traffic prediction, we resort to DES and

TES based on their high performance in Edge and Cloud

predictive analytics [7]. Moreover, DES and TES are great

1Currently served V2N packets are queued, and latter processed at any
of the (blue) CPUs of an edge server. V2N packets are sent over a 5G
gNB, and traverse an access ring switch before reaching the edge server.
To accommodate the demand of new V2N users (red), the edge server scales
and uses an additional (red) CPU.
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FIGURE 2: Online training for traffic forecasting

candidates given the periodicity/seasonality observed in road

traffic time-series. Based on prior work in the state-of-the-

art [26], we also consider LSTMs to forecast the road traffic

and latter trigger V2N scaling. And with the goal of achieving

higher accuracies, we also investigate a variation of LSTM

using time convolution TCNLSTM, for the time convolution

may allow extracting useful time patterns. Since we try

TCNLSTM, we also give a chance to a plain TCN network

without LSTM units, just to check if the time convolution on

its own is enough to perform adequate forecasting. Last, we

investigate memory-based ML solutions as HTM and GRUs

that may succeed in saving representative events foreseen in

the training stage, e.g., sudden increases of traffic.

The above forecasting techniques are analyzed consider-

ing two types of training: (i) an offline training, in which

forecasting techniques learn their parameters in the training

set; and (ii) an online training, where the parameters are

also updated as the forecasting happens (see Figure 2). In

this work, the online training uses a moving window (called

online training window) comprising the most recent events,

which are used to update its parameters before forecasting.

The next paragraphs provide an explanation of the selected

forecasting techniques, their parameters, and how they are

updated in the online/offline training stages:

1) Double Exponential Smoothing (DES) [2]: DES is

a forecasting technique based on time series analysis.

DES uses a smoothing time scale with (i) a smooth

parameter; and (ii) a trend parameter. The smoothing

value is obtained based on the previous value of smooth

and trend. In DES, the smooth and trend parameters are

learned during the offline training stage. If DES is eval-

uated using online training, the smooth and trend values

are also updated using the online training window per

forecast.

2) Triple Exponential Smoothing (TES) [2]: TES is an-

other time series analysis technique. It exploits three

different forecasting parameters, namely (i) smooth; (ii)

trend; (iii) and seasonality. In TES, offline training is

performed by calculating smooth, trend, and seasonality

using the training set. Whereas in online training, the

smooth, trend, and seasonality are updated for every

forecast using the online training window.

3) Hierarchical Temporal Memory (HTM) [34]: The core

component of the HTM forecaster is a temporal memory

consisting of a two-dimensional array of cells that can

either be switched on or off and that evolves with time.

Cells can influence each other via (i) synapses and (ii)

update rules. The offline training involves adjusting

the synapses in such a way that the output bit strings

resemble the actual input bit strings as much as possible.

In that way, the temporal memory learns to forecast

the next sparse bit strings based on the patterns in the

sequence of input bit string it saw. The online training

also updates the synapses using the online training

window.

4) Long Short-Term Memory (LSTM) [5]: LSTM is a

special form of Recurrent Neural Network (RNN) that

can learn long-term dependencies based on the infor-

mation remembered in previous steps of the learn-

ing process. It consists of a set of recurrent blocks

(i.e., memory blocks), each of the block contains one

or more memory cells, and multiplicative units with

associated weights, namely, (i) input; (ii) output; and

(iii) forget gate. LSTM is one of the most successful

models for forecasting long-term time series, which can

be characterized by different hyper-parameters, specifi-

cally the number of hidden layers, the number of neu-

rons, and the batch size. For the offline training ap-

proach neurons’ weights are updated running the back-

propagation-through-time [35] over a training dataset.

If LSTM uses online training, neurons’ weights use

the online training window to update their values using

back-propagation-through-time.

5) Gated Recurrent Unit (GRU) [36]: Gated Recurrent

Units (GRUs) are neurons used in RNNs and, as LSTMs

cells, they store a hidden state that is recurrently fed

into the neuron upon each invocation. Each neuron uses

two gates, namely, (i) the update gate, and (ii) the reset

gate. The former gate is an interpolator between the

previous hidden state, and the candidate new hidden

state; whilst the latter gate decides what to forget for

the new candidate hidden state. GRUs keep track of

as much information as possible of past events. Thus,

their use in time-series forecasting is becoming popular

in current state-of-the-art. Regarding the offline/online

training, GRU works as the aforementioned LSTM.

6) Temporal Convolutional Networks (TCN) [11]: TCNs

are deep learning architectures based on performing a

temporal convolution over the input. The implemented

version consists of two hidden layers, namely (i) a first

layer to perform the temporal convolution; and (ii) a

second layer to readjust the dimension of the convolu-

tion output. In particular, the convolution layer has a

VOLUME X, 2021 5
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TABLE 1: Forecasting Features

Feature Name Values Description

φ1 flow integer vehicles/hour

φ2 accuracy {0, . . . , 100} percent accuracy
of the reported
measurement

φ3 speed float average vehicles’
speed (km/hour)

φ4 distance
to Corso
Orbassano

[0,35] distance to Corso
Orbassano road
probe (km)

φ5 day_of_week {1, . . . , 7} day of the week

φ6 month {1, . . . , 12} month of the mea-
surement

φ7 day {1, . . . , 31} day of the mea-
surement

φ8 year integer year of the mea-
surement

φ9 hour_min [0,24) hour+minute/60

window size that is a fourth of the input length in the

time domain. Both the online and offline training update

the weights of the densely connected layers, and follow

the same training procedure as LSTM.

7) Convolutional LSTM (TCNLSTM) [37]: In the Con-

volutional LSTM, both TCN and LSTM models are

combined into a single unified framework. The input

features are initially given to TCN layers. Then, the

TCN layer output is fed to the LSTM layer. Lastly, the

LSTM output feeds a final dense layer to produce the

forecasting output. This model blends both the feature

extraction of TCN layers and the memory of LSTM

cells. In [38], it is shown that the LSTM performance

can be improved by providing better features. Indeed,

TCN helps by reducing the frequency variations in the

input features. In this work, TCNLSTM is trained as

LSTM for both in the offline and online training.

B. PERFORMANCE EVALUATION

In order to evaluate the performance of the techniques de-

scribed above, a real road traffic dataset was collected from

28/01/2020 to 25/03/2020. The dataset comprises measure-

ments from more than 100 road probes in the city of Torino

(Italy), reporting their location, traffic flow, and vehicles

speed. This dataset encompasses data pre- and post lockdown

due to COVID-19.

Each forecasting technique is used to forecast the vehi-

cles/hour traffic flow λt seen at Corso Orbassano road probe2

at time t. The dataset includes a set of features φi reported

by road probes sj (s1, . . . , s92). The numerical value of a

feature reported by a probe at instant t is denoted as x
φi,sj
t .

Table 1 enumerates the features φi, i = {1, . . . , 9} used by

the selected techniques. The dataset granularity is of 5 min.,

and throughout this paper t+1 represents the instant t+5 min.

2This is the road probe with the highest number of reported measurements
in Torino (Italy).

Among all analyzed techniques, some of them can incor-

porate all features of past events to forecast the future flow

of Corso Orbassano road. Thus, they take as input a matrix

containing every feature reported by a road probe during the

last h timestamps:

Xt,h =





















xφ1,s1
t−1 . . . xφ9,s1

t−1
...

. . .
...

xφ1,s92
t−1 . . . xφ9,s92

t−1

...
...

...

xφ1,s1
t−h . . . xφ9,s1

t−h
...

. . .
...

xφ1,s92
t−h . . . xφ9,s92

t−h





















(7)

Since the dataset contains periods of COVID-19 and non-

COVID-19, it is divided into two parts, each with its training

and testing sets, namely:

• non-COVID-19 scenario:

– training: 28th January - 28th February

– testing: 29th February - 07th March

• COVID-19 scenario:

– training: 06th February - 07th March

– testing: 8th March - 15th March

For the performance evaluation, offline training uses only

the training sets to learn the weights/parameters, while online

training also updates the learned weights/parameters using

the testing sets and the online training window.

The selected techniques of Section IV-A were imple-

mented using Python and the TensorFlow library. LSTM

and TCN use the whole feature matrix Xt,h to derive the

predictions, while the other techniques just use the traffic

flow feature. Table 2 summarizes the parameters that allowed

to get the lowest Root Mean Square Error (RMSE) for each

forecasting technique in the following experiments.

TABLE 2: Evaluation Parameters

Parameter Forecasting tech-
niques

Value

Level factor (α) DES, TES 0.5, 0.5

Trend factor (β) DES, TES 0.001, 0.001

Seasonality factor (γ) TES 0.001 (3 days)

Hidden layers TCN, LSTM,
GRU, TCNLSTM

2,2, 1, 4

Neurons in hidden layer TCN, LSTM,
GRU, TCNLSTM

100

Epochs TCN, LSTM,
GRU, TCNLSTM

100

History window size (h)
TCN, LSTM, TC-
NLSTM

60 min.

GRU 120 min.

Batch size TCN, LSTM,
GRU

5

Temporal memory
HTM

32x2048
Encoder representation 1024 bit str
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In the following, we compare the performance of Sec-

tion IV forecasting techniques as we increase the look-ahead

time in the predictions, i.e., the number of future traffic

flow values to predict. This analysis is of special impor-

tance given the time required to reconfigure and allocate the

resources for a given virtualization technology, or type of

service. That is, in case a service takes more than 5 min.

to scale/instantiate, it is important to predict the demand

5 min. ahead to scale/instantiate on time. Results in Figure 3

illustrate how increasing the look-ahead time forecast leads

to an increasing RMSE for every type of training (i.e., online

and offline training) and dataset combinations (COVID-19

and non-COVID-19 scenario), as it becomes more difficult

to forecast the traffic further in the future.

Figures 3a and 3b show the RMSE values of offline train-

ing in non-COVID-19 and COVID-19 scenarios. It can be

observed that the HTM technique does not outperform a

sample-and-hold benchmark, i.e., assume that the traffic in

the next timestamp will be equal to the traffic in the current

timestamp. Moreover, in the online training scenarios, it

yields the worst performance. For the rest of the techniques,

the ML-based approaches achieve the best performance for

offline training. DES is not capable of capturing the trend,

and the TES only does not capture the trend in the COVID-

19 scenario (see Figure 3b). Unlike DES and TES, ML-based

techniques can capture the evolving traffic trend thanks to

the update of their hidden states (apart from the TCN). This

explains why ML-based techniques achieve lower RMSE

when using offline forecasting. Furthermore, Figure 3a shows

that DES technique has the highest RMSE values as the

smooth and the trend values initially calculated during train-

ing are not updated in the testing phase. The other time-

series technique (i.e., TES) mitigates the problem since its

seasonality factor can capture the trend. Figure 3b shows the

RMSE values of the considered techniques in offline training

with COVID-19 traffic. The considered scenario does not

show any seasonality during 8th Mar - 15th Mar due to the

COVID-19 lockdown. Thus, the obtained TES results exhibit

the highest RMSE value compared to all other techniques.

This behavior is discussed later in this section.

Figure 3c and Figure 3d show the RMSE values of online

training in non-COVID-19 and COVID-19 scenarios. The

TES method outperforms all considered ML-based tech-

niques even when the look-ahead time increases. In addition,

results show that TES does not increase the RMSE as much

as the ML-based techniques. This is due to the fact that it

captures faster the new trends of traffic over time. Thus, the

long look-ahead time forecasts are better as smoothing, trend,

and seasonality are updated for every data point in the test

set. Even though the traditional time series techniques (i.e.,

DES/TES) are limited to univariate time series, the online

update of their parameters achieve a better performance

than the ML-based techniques that account for all features

reported in Table 1.

Finally, Figure 4 shows the real and the forecasted road

traffic flow as a function of time. Here, the look-ahead time

is set to 5 min., and offline training is used to forecast the

traffic flow during the COVID-19 scenario (i.e., same con-

ditions as in Figure 3b). Figure 4 shows how the real traffic

flow exhibits a seasonality pattern. However, the traffic flow

gradually decreases due to COVID-19 lockdown. As TES

was trained in the offline training stage using pre-COVID-19

traffic, it still forecasts a higher number of vehicles/hour

than the envisioned after the lockdown, thus its high RMSE

in Figure 3b. This is not the case for the TCN forecasting

approach, which despite the use of offline training, adapts its

forecasts, capturing the traffic flow decrease experienced due

to the lockdown.

V. FORECAST-BASED SCALING FOR V2N SERVICES

Section V-A presents how existing solutions tackle the V2N

scaling problem formulated in Section III, and explains in

Section V-B the proposed n-max scaling algorithm. In the

following, Section V-C compares the performance of n-max

algorithm against existing state-of-the-art solutions.

A. V2N SCALING SOLUTIONS

As mentioned in Section II, C-V2X scaling solutions are typ-

ically based on threshold-based mechanisms. These mostly

assume that the latency T0 in Problem III.1 is exceeded

when the edge server reaches its maximum load, i.e., when

ρt = 1. But according to our system model (see Section III),

it may happen that, at a given time t, the experienced latency

exceeds the constraint Tt > T0 with ρt < 1, as the latency

Tt depends on both the current vehicle arrival rate λt, and the

number of CPUs ct allocated in the edge server – see (Eq. 1).

To this extent, we define ρC(T0) as the maximum load the

edge server can handle to meet a T ms latency constraint

when it has C CPUs allocated for V2N traffic processing.

For example, ρ2(5ms) = 0.2 means that an edge server with

2 CPUs will meet the 5 ms latency constraint whenever the

load is below 0.2. The next list describes how existing V2N

scaling solutions can solve Problem III.1:

• Threshold-based [28]: in our system model, the algo-

rithm proposed in n [28] scales up when

ρt > τ · ρct(T0), τ ∈ [0, 1] (8)

with τ being a threshold specified by the edge server

owner. In other words, if the current load exceeds the

maximum load, then the approach in [28] adds an addi-

tional CPU. To scale down, we define ρ∗t = λt

µ(ct−1) as

the load that the edge server would experience without

one of its allocated CPUs. Thus, [28] will release a CPU

when

ρ∗t < τ · ρct−1(T0) (9)

that is, if the load without one CPU is τ times less than

then the maximum load that supports a latency of T0 ms.

• Threshold + wait [27]: to prevent increasing the amount

of CPUs upon spurious peaks of road traffic, the ap-

proach in [27] allocates another CPU in the edge server

VOLUME X, 2021 7
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(b) offline training and COVID-19 scenario
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(c) online training and non-COVID-19 scenario
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(d) online training and COVID-19 scenario

FIGURE 3: Accuracy of Section IV look-ahead forecasts.
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FIGURE 4: TES, TCN forecasts vs. real flow values. 5 min.

look-ahead in COVID-19 scenario using offline training.

if the threshold τ is exceeded during a waiting period of

w time units. That is, one CPE is added when

min{ρt−w, . . . , ρt} > τ · ρct(T0) (10)

Similarly, one CPU is released if

max{ρt−w, . . . , ρt} < τ · ρct(T0) (11)

• AutoMEC [26]: contrary to the former threshold solu-

tions, AutoMEC does not trigger the scaling based on

load thresholds, but rather on the predicted increase in

the arrival rate. To derive the traffic predictions λ̂t+n,

AutoMEC uses a LSTM neural network. In case the

condition

λ̂t+n > α · λt (12)

is satisfied, AutoMEC will scale. Condition (Eq. 12)

uses a factor α that weights the scaling decision based

on the forecasting accuracy, namely, α = ar

a
with

a ∈ [0, 1] being the forecasting accuracy of the LSTM

prediction, and ar ∈ R
+ the relevance given to such

prediction. Hence, if (Eq. 12) is satisfied AutoMEC

allocates ct+1 CPUs. The number of allocated CPUs

satisfied

λt + (λt − αλ̂t+n)

ct+1 · µ
< ρct+1

(T0) (13)

That is, AutoMEC chooses ct+1 to accommodate an

additional demand of λt − αλ̂t+n. Thus it ensures that

the load that satisfies the latency constraint T0 will not

be exceeded. Similarly, when the following formula is

satisfied the number of allocated CPUs ct+1 should also

satisfy (Eq. 13).

λ̂t+n < α · λt (14)

On top of the list above with state-of-the-art V2N scaling

techniques, over-provisioning, and average scaling are also

considered for comparison latter in Section V-C:
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FIGURE 5: Illustration of n-max scaling.

• Over-provisioning: this solution assumes that the allo-

cated CPUs c is fixed to satisfy the latency constraint T0

upon a maximum arrival rate λmax

λmax

c · µ
≤ ρc(T0) (15)

where λmax = max{λt−j}
∞
j=0.

• Average scaling: contrary to the prior solution, this one

fixes the number of allocated CPUs c to meet the latency

constraint for the average arrival rate λavg

λavg

c · µ
≤ ρc(T0) (16)

where λavg = limN→∞
1
N

∑N
j=0 λt−j .

B. N-MAX SCALING ALGORITHM

This section describes n-max, the V2N scaling solution pro-

posed by this paper. The algorithm utilizes the best fore-

casting algorithm, according to the performance analysis in

Section IV-B (TES with online training, as shown in Table 4),

to predict the upcoming road traffic for the next n timestamps

λ̂t+1, . . . , λ̂t+n. Based on the prediction, it allocates a suffi-

cient number of CPUs to satisfy the latency requirement T0.

In particular, ct+1 is set so that:

max

{

λ̂j

ct+1µ

}t+n

j=t+1

≤ ρct+1
(T0) (17)

That is, n-max sets the number of CPUs ct+1 such that

the maximum forecasted load (left term) remains below the

maximum load to satisfy the latency constraint T0 (right

term). Prior state-of-the-art scaling solutions only compute

the required number of CPUs if the scaling conditions are

met (see Section V-A). On the other hand, n-max checks ct+1

each time it forecasts the incoming demand. The frequency

at which n-max triggers a forecast is a parameter that the user

can decide. It is worth mentioning that upon predictions of

future traffic loads, n-max allocates enough CPUs to process

on time the future peaks. This is due to the maximum consid-

ered in (Eq. 17). Overall, n-max procedure is summarized as

follows:

i) Forecast the traffic n steps ahead λ̂t+n using the best

forecasting technique in Table 4;

ii) Compute the maximum traffic forecasted for the n steps

ahead λ̂max = max{λ̂t+1, . . . , λ̂t+n}; and

iii) Scale the number of CPUs in the next timestamp ct+1 to

meet the maximum traffic forecasted λ̂max.

Figure 5 illustrates the described steps. At time t n-max

invokes the best forecasting technique (i.e., TES with online

training) and obtains the predicted traffic flow n steps ahead

(until t+n). Based on the maximum predicted flow λ̂max, n-

max scales up another CPU such that at t+ 1 the edge server

can already accomodate a demand λ̂max. In other words, n-

max anticipates the scaling to meet the incoming forecasted

peak of demand λ̂max.

Algorithm 1 details how n-max works. The algorithm has

a frequency parameter F that details how often n-max is

invoked (see line 1). Given that our dataset has a granularity

of 5 min., F should satisfy F ≡ 0 mod 5, with F expressed

in minutes. If we take F = 10, this will result in entering

the scaling routine every 10 min. In case we enter in the

scaling routine, the first thing to do is to forecast the flow for

the n time steps ahead using a forecasting function f(Xt,h)
(e.g., TES with online training), as shown in line 2. Later,

we compute what is the maximum forecasted flow λ̂max in

line 3.

Once the maximum forecasted flow is computed, n-max

enters in a loop in line 5, and starts to increase the number of

future CPUs ct+1 until it ensures that the maximum demand

can be accommodated, that is, it keeps increasing the number

of CPUs as long as the average latency remains above the

target delay T0. Remember that in Section III we consider

the edge server as an M/M/c queue, hence, n-max keeps

increasing the number of CPUs if the average sojourn time

with demand λ̂max stays above T0 (see line 8). Note that

this is equivalent to increasing the number of CPUs until

the load remains below ρct+1
(T0), as stated in (17). Line 6

computes the Earlang-C formula for the maximum demand

λ̂max, to later compute the average sojourn time and decide

if n-max keeps increasing the number of CPUs. If n-max

exits the do-while loop (line 9), that means that it has already

Algorithm 1: n-max scaling algorithm

Data: µ, T0, n, F
1 for t ∈

{
i·F

5 min.
: i ≥ 0

}
do

2 λ̂t+n, . . . , λ̂t+1 = f (Xt,h);

3 λ̂max = max
{

λ̂t+i

}n

i=1
;

4 ct+1 = 1;

5 do

6 PQ(ct+1, λ̂max) =
p0

(

ct+1
λ̂max

µ

)ct+1

ct+1!
(

1− λ̂max
µ

) ;

7 ct+1 = ct+1 + 1;

8 while 1
µ
+

PQ(ct+1,λ̂max)

ct+1µ−λ̂max
> T0;

9 scale(ct+1);

10 end
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TABLE 3: Scaling worst-case run-time complexity

Threshold-based,

Threshold+wait
AutoMEC

Average,

over-provisioning,

n-max

Complexity O
(

λmax·c2max
δ

)

O
(

λmax·c3max
δ

)

O(c3max)

increased the number of CPUs enough to meet (on average)

the target latency T0; and that is the number of CPUs ct+1

that are required in the scaling.

We now proceed and present the run time complexity

analysis of the n-max scaling algorithm. To derive the number

of operations we resort to the prior summary i) − iii) of the

steps that n-max makes:

i) Forecasting the traffic for the next n steps takes as

many operations as required by the forecasting tech-

nique f(Xt,h) in Algorithm 1, line 2. In the performance

evaluation in Section V-C we use TES for f(Xt,h),
which makes a linear amount of operations on the step

size O(n);
ii) Computing the maximum traffic forecasted for the n

steps ahead takes also a linear amount of operations

O(n); and

iii) Scaling the number of CPUs is the most complex opera-

tion, for it enters the loop to compute the Earlang-C for-

mula PQ(ct+1, λ̂max), and check if the average sojourn

time is satisfied (line 8). In particular, in Appendix B, we

proof that Algorithm 1’s loop has a run-time complexity

of is O(c3max), for it is dominated by the computation

of the Earlang-C formula. With cmax we refer to the

maximum number of CPUs that we can scale up in the

edge server.

Hence, the n-max algorithm is dominated by the scaling

loop, and its worst-case run-time complexity is O(c3max). In

Appendix B we also proof the run time complexity of the

other state-of-the-art algorithms that we introduced in Sec-

tion V-A. Table 3 summarizes the complexity of both n-max

and the state-of-the-art scaling algorithms, and shows that

n-max worst-time complexity is better than AutoMEC (the

other forecasting-based scaling solution that we presented in

Section V-B). In Table 3, δ represents the numerical precision

of the arrival rate λ – see Appendix B. Higher precision is

achieved with smaller values of δ, hence, the precision results

in an increase in the run-time complexity due to the 1
δ

factor

in the worst-case complexity in Table 3.

C. FORECAST-BASED SCALING PERFORMANCE

Given the system model of Section III, this Section analyses

the performance of the proposed n-max algorithm to scale

remote driving, cooperative awareness, and hazard warning

V2N services.

The algorithm’s performance is assessed by means of cost

savings and latency violations. Moreover, n-max is compared

against existing scaling strategies explained in Section V-A.

Experiments used the most accurate forecasting technique

among the ones evaluated in Section IV-B. Finally, results are

TABLE 4: Best Traffic Flow Forecasting Techniques

Forecasting task Most accurate

Step-ahead Scenario Technique Online

5 min
non-COVID-19 LSTM ✓

COVID-19 TES ✓

15 min
non-COVID-19 TES ✓

COVID-19 TES ✓

30 min
non-COVID-19 TES ✓

COVID-19 TES ✓

45 min
non-COVID-19 TES ✓

COVID-19 TES ✓

60 min
non-COVID-19 TES ✓

COVID-19 TCNLSTM ✓

derived using (i) a real traffic dataset from the city of Torino;

and (ii) reference service rate values reported by a European

Research project, namely 5G-TRANSFORMER.

In particular, the service rate µ is obtained from

5G-TRANSFORMER [39] that reports the results of an

Enhanced Vehicular Service (EVS); this is a service that

deploys sensing, video streaming, and processing facilities

to the edge. The deliverable reports not only the required

physical resources to deploy an EVS service, but also the

flow of cars used to perform their evaluations. Moreover, it

details that an EVS instance, i.e. c = 1 in our notation, offers

a service rate of µEV S = 208.37 vehicles/second.

The experiments consist in running the proposed n-max

scaling algorithm in the COVID-19 scenario. In particular,

n-max decides what is the required number of servers ct to

meet the V2N service latency requirement T0 within the next

n minutes. The value of µ is set to be proportional to µEV S

depending on the V2N service, and traffic flow forecasting

(Algorithm 1, line 2) is performed using TES with online

training, which was the technique that gave the lowest RMSE

for n minutes look-ahead predictions (see Table 4).

Figure 6 and Figure 7 compare the performance of the

proposed n-max scaling algorithm against the existing state-

of-the-art solutions presented in Section V-A. Every solution

was tested in the COVID-19 scenario, and both AutoMEC

and n-max performed scaling actions considering forecasts

of 30, 45, and 60 minutes ahead. Remote driving, cooperative

awareness, and hazard warning were the considered services

in the experiments. Each V2N service has different latency

requirements T0 and service rates µ. Namely, (i) remote

driving has a latency constraint of T0 = 5 ms and the service

rate was set to be µ = µEV S ; (ii) cooperative awareness asks

for a latency constraint of T0 = 100 ms and we set a service

rate of µ = µEV S

20 ; and (iii) hazard warning needs latencies

below T0 = 10 ms and experiments were executed with a

service rate µ = µEV S

2 .

In the experiments, AutoMEC was executed with α = 0.8.

This was the value that achieved the best performance by

means of cost and delay, given that the accuracy of the offline

trained LSTM is a = 0.36, a = 0.37, and a = 0.42 for 30,

45, and 60 minutes forecasts; respectively. While searching

for the best α value for AutoMEC, only values of α2 < 1
were considered to prevent AutoMEC from not scaling (see

Appendix A for further details).
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FIGURE 7: Delay violations due to SoA and proposed scaling solution (n-max).

Both Figure 6 and Figure 7 are complementary to under-

stand the cost and delay trade-off among the different solu-

tions. In Figure 6, the bars illustrate the cost ration between

over-provisioning scaling and each solution. A ratio of 1

would mean that the considered solution (e.g., average scal-

ing) costs as much as over-provisioning CPUs for the V2N

service. Figure 7 illustrates the corresponding percentage of

delay violations for each V2N service during the COVID-19

scenario.

As expected, Figure 6 shows that every scaling solution

reduces the scaling cost compared to over-provisioning. In

particular, they lead to costs that are below a 75% of the over-

provisioning approach. In the case of cooperative awareness,

and hazard warnings, the scaling costs are below a 47%

and 69% of the over-provisioning case; respectively. The

proposed n-max algorithm with 30 min. forecasts is a 5%

more expensive that AutoMEC with 60 min. forecasts when

scaling remote driving services. It is also a 2% more expen-

sive than the threshold+wait and threshold solutions in the

case of cooperative driving , and a 6% more expensive than

average scaling in hazard warning services.

However, Figure 7 shows that every n-max solution, with

either 30-60 min ahead forecasts, has fewer delay violations

than all other solutions in remote driving and hazard warning

scenarios. In particular, n-max with forecasts of 45 min

results in only a 1.09% of delay violations in a remote driving

service, and just a 2.52% of violations in hazard warning. For

the cooperative awareness service, AutoMEC with 30 min

forecasts achieves the lowest number of delay violations (just

a 3.26%), followed by n-max scaling, which leads to 5.82%

delay violations. This difference in the number of violations

is due to the fact that AutoMEC with 30 min allocates more

CPUs for the remote driving service (see in Figure 6 how its

cost is higher than n-max with 60 min. forecasts).

Figure 8a and Figure 8b give insights on how each scaling

solution works in the cooperative awareness scenario. 3 The

illustrated time-lapse conveys both the end and beginning of

a day in Torino. As shown in between 18:00 and 20:00, the

threshold solution incurs in a ping-pong effect due to the os-

cillation of traffic demand, whilst the threshold+wait solution

prevents such effect in the two hours interval. However, the

waiting in the latter solution leads to an under-provisioning

that causes the violation of the 100 ms delay constraint in

between 6:00 to 8:00 of the next day (see Figure 8a). That is,

when the day starts and traffic increases, the threshold+wait

solution reacts late and does not allocate enough resources

for the cooperative awareness demand. Nevertheless, also

the threshold-based solution and AutoMEC with 30 min. of

forecasts lead to delay violations in the increase of traffic

foreseen in 6:00-8:00. It is only the n-max algorithm which

predicts such demand increase, and preemptively allocates

enough CPUs to process on-time V2N service requests.

However, our proposed n-max solution also presents draw-

backs in the cooperative awareness time-lapse of Figure 8.

Contrary to the remote driving and hazard warning V2N

services, n-max resulted in a resource under-provisioning that

lead to the violation of the 100 ms latency constraint of the

cooperative awareness service (see Figure 8b around 18:00,

20:00, and the start of 1st March). This explains why n-max

with 60 min. forecasts save more cost in the scaling process

than AutoMEC with 30 min. forecasts (see Figure 6), since

n-max is more prone than AutoMEC to under-provisioning

in such a scenario. As a consequence, in Figure 7 n-max

with 60 min. forecasts incur in a 2.56% of additional latency

violations.

3We choose cooperative awareness because the scaling requires more
CPUs due to its low service rate µ, thus, it evidences better the algorithm
differences.
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FIGURE 8: Impact of cooperative awareness scaling on (a)

allocated CPUs; and (b) latency violations. TES with online

training was used for n-max with 60 min. predictions.

In summary, experiments show that n-max with online

TES forecasting prevents the ping-pong scaling and await-

ing artifacts foresaw in another state-of-the-art solutions

(see Figure 8). Hence, n-max with TES online forecasting

reduces the E2E delay violations (see Figure 7) in remote

driving by more than a half (from 2.04% in threshold-based

scaling, down to a 1.09% in n-max with n = 45 min.), and

by almost a half in hazard warning use cases (from 4.47%

in the threshold+wait solution, down to 2.52% in n-max with

n = 45, 60 min.).

VI. CONCLUSIONS AND FUTURE WORK

This paper provides an extensive analysis of state-of-the-art

techniques to forecast the road traffic for the city of Torino,

either based on traditional time-series methods or on ML-

based techniques. The performed analysis compares each

forecasting technique’s RMSE by considering (i) forecasting

intervals from 5 to 60 minutes; (ii) offline/online training; and

(iii) COVID-19 lockdown. Results show that under offline

training, ML-based techniques outperform traditional time-

series methods, especially during the COVID-19 lockdown,

as they adapted to the Torino traffic drop better. With online

training, time-series techniques achieve results better or as

good as the analyzed ML-based techniques.

Furthermore, we introduce a V2N scaling algorithm (n-

max), which leverages on the most accurate forecasting tech-

nique, and evaluate its performance via simulation.

Results show that n-max outperformed existing solutions

to scale remote driving and hazard warning services, re-

sulting in the lowest E2E delay violations. However, when

it comes to E2E delay violations in cooperative awareness

services, AutoMEC is able to perform better due to over-

provisioning.

A first direction to extend this work is to consider other

time-series forecasting solutions (as Prophet) to boost the

scaling performance of n-max, and to find techniques that

can incorporate information neighboring road probes, such

as spatial analysis techniques. Furthermore, the applicability

of the presented techniques to different scenarios is also envi-

sioned as a next step. The use of different datasets, including

operator records with respect to the base stations used by

mobile phones to access the Internet, is also going to be taken

into consideration depending on the availability of datasets.

In such a scenario, forecasting the user density distribution

along time would enable better decisions regarding the edge

server placement and service migrations.

Similar to the adopted scaling strategy of this work, en-

hancing orchestration algorithms with forecasting informa-

tion would contribute to smarter orchestration and resource

control. The resulting decisions would be impacted in terms

of improved quality and accuracy. Optimized deployment,

enhanced management and control of elastic network slices

that support dynamic demands and their respective SLAs,

improved resource arbitration and allocation, or maximized

service request admission, are some examples where fore-

casting information can impact the decisions.

The aforementioned mechanisms are going to be devel-

oped and leveraged in selected use cases in the scope of

the 5Growth project, which comprises Industry 4.0, trans-

portation, and energy scenarios. They will be integrated to

support full automation and SLA control for elastic network

services life-cycle management. Hence, it would be worth

studying the probability of forecasting less demand than what

is required by each use case, i.e., P(F̂ < F ); so as to perform

preemptive actions under high probabilities of forecasting

error. Such a calculus deserves a detailed analysis on how to

compute max-statistics for correlated random variables (e.g.,
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speed and traffic flow) [40].

.

APPENDIX A AUTOMEC α CONSTRAINT

The AutoMEC algorithm [26] was considered for compar-

ison in this paper. Its scaling condition (Eq. 12) uses a

parameter α = ar

a
to weight the scaling decision based

on the LSTM forecasting accuracy a, and the relevance ar
given to the forecasting. Given the accuracy a of the LSTM

forecasting, [26] does not provide insights on how to select

ar. This appendix shows that ar must be selected to satisfy

α2 < 1, otherwise, AutoMEC never increases the number of

allocated CPUs. Thus, the election of a value of α2 < 1 in

Section V-C performance evaluation.
Lemma A.1. If α2 ≥ 1, AutoMEC never increases the

number of CPUs.

Proof. According to [26, Algorithm 1], AutoMEC scales the

number of CPUs when the forecasted future demand λ̂t+n

satisfies

λ̂t+n > α · λt (18)

In particular the number of additional CPUs is expressed as

c+t+1 =

⌈

λt − α · λ̂t+n

ct · µ

⌉

(19)

Given that condition (18) is satisfied, we have

c+t+1 ≤ ⌈λt(1−α2)
ct·µ

⌉. If α2 ≥ 1, this means that c+t+1 ≤ 0,

and AutoMEC will never increase the number of CPUs.

APPENDIX B ALGORITHMS RUN-TIME COMPLEXITY

Here we analyze what is the worst-case run-time complexity

of the algorithms presented in Section V-A. All algorithms

are based on the maximum load accepted to meet the target

delay T0, i.e., all algorithms are formulated based on ρc(T0).
Hence, we should look at it to derive the run-time complexity

of our algorithms.

We can express the average sojourn time as a function

T = g(λ, µ, c) = 1
µ
+

1

cµ− λ
·

pc0(cρ)

c!(1− ρ)
(20)

with ρ = λ
cµ

. Note that (20) corresponds to the expression

given in (Eq. 1). And we see that the maximum load that

meets a target delay T0 is precisely the inverse of the average

sojourn time, i.e., ρc(T0) = g−1(ρ). However, we should

express g(·) in terms of ρ, and even if we did that, still g(·)
would not be an invertible function. Rather than computing

an approximation of the inverse function, we fix some input

parameters, and iterate over a single input parameter – as λ
or c – until g(·) = T0.

So, lets check the complexity of evaluating g(·). If the

reader checks (Eq. 20), the dominating term by means of

operations is pc0(cρ), whose expression is given in (Eq. 3).

Thus, we can state:

Lemma B.1. Given that the maximum number of CPUs in

an Edge server is cmax, the worst-case run-time complexity

of p0(cρ) is O(c2max).

Proof. Following (3), the most dominating term is the sum-

mation
∑cmax−1

n=0
(cρ)n

n! , which unrolls as:

0

0!
+
cρ

1!
+
(cρ) · (cρ)

2 · 1
+. . .+

2·(cmax−2) multiplications
︷ ︸︸ ︷

(cρ) · . . . · (cρ)

(cmax − 1) · (cmax − 2) · . . . · 1
︸ ︷︷ ︸

cmax−2 multiplications

(21)

and the number of multiplications/divisions performed is
∑cmax−1

n=0 3n + 1, which is equivalent to 1
2 (3cmax − 1)cmax

= O(c2max). Hence, the computation of p0(cρ) has worst-

case complexity O(c2max).

Equipped with the above lemma, we know the complexity

of evaluating g(·), which is what we are looking for:

Corollary B.2. Computing the average sojourn time of

an M/M/c system has worst-case run-time complexity

O(c2max).

Proof. If we check (Eq. 20), the dominating term by means

of operations (multiplications) is the computation of p0(cρ);
which has complexity O(c2max) based on what we have

just shown in Lemma B.1. Hence, the average sojourn time

calculus g(λ, µ, c) has worst-case complexity O(c2max).

Now that we know how much it takes to evaluate g(·), we

can derive the complexity of ρc(T0), i.e., the maximum load

that c CPUs stand to dispatch requests below a time T0, on

average. As aforementioned, ρc(T0) = g−1(·), but g is not

an invertible function, so we have to fix two input parameters

of g(λ, µ, c) and iterate over the other depending on what we

want:

• Arrival rate λ: in this case we fix µ0, c0 and

iterate taking steps of size δ until we satisfy

g(λmin + iδ, µ0, c0) < T0, with i ∈ {0, 1, . . . , λmax

δ
}.

In other words, we are looking for the maximum load

that can be satisfied on time, in particular we look for the

number of steps imax = maxi{g(λmin + iδ, µ0, c0) < T0},

such that ρ(T0) ≃ λmin+imaxδ
c0µ0

. Since we need to

iterate over different values of i and check if g(·) <
T0 each time, the worst-case run-time complexity is

O(
λmaxc

2
max

δ
); or

• number of CPUs c: in this case we fix λ0, µ0 and

evaluate g(λ0, µ0, c) < T0 with c = 0, 1, . . . , cmax,

And increase c until ρ(T0) ≃ λ0

cµ0
. Then, the worst-

case run-time complexity will be O(c3max), for we have

to evaluate g(·) (with complexity O(c2max) according to

Corollary B.2) a maximum of cmax times.

Taking these two cases into account, we can derive the worst-

case run-time complexity of the algorithms in Section V-A;

depending on whether the value they look for, the arrival rate,

or the number of CPUs:

• Threshold solutions: both threshold-based and thresh-

old+wait fix the number of CPUs to c = ct, and compute

the value of ρct(T0). In other words, both look for the

maximum arrival rate that can be processed below T0
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seconds in (Eq. 8) and (Eq. 10), respectively; and scale

up another CPU (same for scaling down). In both cases,

the dominating term by means of complexity is the

computation of ρct(T0), which is O(
λmaxc

2
max

δ
). Thus,

the run-time complexity is reported in Table 3;

• AutoMEC: this solution performs a forecasting of the

future load λ̂t+n, and checks in (Eq. 12) if it has to

scale up resources. The complexity4 of computating a

forward pass in a LSTM network is O(h · m), with h
the history size (12 samples related to 60 min. in our

case), and m the number of neurons in a hidden layer

(100 in our experiments). Given the forecast, which is

not the dominating term, AutoMEC decides the number

of CPUs to set in (Eq. 13). In particular, it iterates over

c = 0, 1, . . . , cmax, and for each value of c it looks for

the maximum arrival rate it can process below T0 sec-

onds. In other words, given c it looks for λ that satisfies

g(λ, µ0, c) < T0. As aforementioned, this has a run-

time complexity of O(
λmaxc

2
max

δ
), and such operation is

performed cmax times. Thus, the worst-case run-time

complexity of AutoMEC is O(
λmaxc

3
max

δ
), as shown in

Table 3; and

• average, over-provisioning, n-max: both the average,

and over-provisioning solutions fix λ to λavg or λmax,

respectively; and compute the value of ρc(T0). This

means that they iterate over c until g(λavg,max, µ0, c) <
T0 is satisfied. As shown in the second item in the prior

list, this implies that both solutions have a worst-case

complexity of O(c3max). Also the n-max algorithm has

the complexity O(c3max), for the loop in Algorithm 1

iterates increasing the number of CPUs up to cmax,

and computes g(λ̂max, µ, c) (with complexity O(c2max)
according to Lemma B.1) in every comparison at line 8

– with µ a fixed value given in the input.
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