
 
 
Working Paper  09-88 (27) 
Statistics and Econometrics Series  

December  2009 
 

Departamento de Estadística  

                   Universidad Carlos III de Madrid 

Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (34) 91 624-98-49 

ROBUST ESTIMATION IN LINEAR REGRESSION MODELS 
 WITH FIXED EFFECTS 

 
MOLINA I.,  PEÑA D., AND PÉREZ B. 1 

 
 
Abstract 
 
In this work we extend the procedure proposed by Peña and Yohai (1999) for 
computing robust regression estimates in linear models with fixed effects. We propose 
to calculate the principal sensitivity components associated to each cluster and delete 
the set of possible outliers based on an appropriate robust scale of the residuals. Some 
advantage of our robust procedure are: (a) it is computationally low demanding, (b) it is 
able to avoid the swamping effect often present in similar methods, (c) it is appropriate 
for contamination in the error term (vertical outliers) and possibly masked high 
leverage points (horizontal outliers). The performance of the robust procedure is 
investigated through several simulation studies. 
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1. INTRODUCTION

Linear regression models are widely used in many fields of science. Probably the most popular

fitting method for linear regression models is the least squares (LS) method. The great popularity

of this method might be attributed to the fact that the idea behind this method, the minimization of

the sum of squared residuals, is simple and comprehensive. However, it is also well known that in

the presence of outliers, the LS estimators can be strongly affected. There are two main approaches

to address the problem of atypical data in linear regression models. The first one consists in the use

of a robust regression method which tries to devise estimators that are not so strongly affected by

outliers. A second approach consists in the use of a method to detect outliers and then obtaining a

robust fit by fitting the data discarding these outliers. Outliers can be of two types: high leverage

points (horizontal outliers) or observations with large residuals (vertical outliers).

In the literature a lot of effort has been done in the development of robust estimation methods.

Examples of these methods include the M-estimators (Huber, 1981), the least median of squares

(Rousseeuw, 1984) and the S-estimators (Rousseeuw and Yohai, 1984). However, when the model

includes continuous and categorical predictors, these robust estimation methods present some prob-

lems. For example, the M estimate becomes non robust while the S estimates become computa-

tionally very expensive (Maronna and Yohai, 2000). Solely a small body of the literature on robust

methods has been focused on the problem of robust fitting of linear models when continuous and

categorical variables are present.

In this work we follow the second approach to address the problem of atypical data. We con-

centrate on linear regression models with one categorical variable which divides observations in

(many) clusters. The proposed robust procedure is based on the principal sensitivity components

introduced by Peña and Yohai (1999). Some advantages of this robust procedure are: (a) it is
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Molina, I., Peña, D. and Pérez, B. Robust estimation in linear regression models with fixed effects

computationally low demanding, (b) it is able to avoid the swamping effect often present in sim-

ilar methods, (c) it is appropriate for contamination in the error term (vertical outliers) and high

leverage points (horizontal outliers).

The work is organized as follows. Section 2 introduces the ideas of the principal sensitivity com-

ponents. Section 3 describes the adapted procedure for fixed effects models. Section 4 describes

robust procedures appearing in the literature for fitting a linear regression model with categorical

variables. Section 5 presents the results of a Monte Carlo simulation study and finally, Section 6

concludes with a discussion.

2. THE PRINCIPAL SENSITIVITY COMPONENTS

Consider the lineal regression model with p continuous variables including the intercept if is the

case,

y = Xβ + ε, ε ∼ N(0, σ2
ε ) (2.1)

where y is an n× 1 vector of observations with i-th element yi, X is a full rank n× p matrix, β is

a p× 1 vector of parameters associated to X, and ε is an n× 1 vector of the random error term.

Let us consider the vector of estimated parameters, β̂ of model (2.1) defined by

β̂ = X(XTX)−1XTy, (2.2)

and the vector of fitted values

ŷ = Xβ̂ = Hy, (2.3)

whose elements are ŷ1, . . . , ŷn, H = X(XTX)−1X is the hat matrix with element in position (i, j)

denoted hij , and e is the vector of the LS residuals e = y−Xβ̂ = (I−H)y with i-th element ei,

where I represents the identity matrix of conformable size.

To measure the outlyingness of the i-th observation, it seems appropriate to calculate the sensitivity
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of the forecast of the i-th observation when each of the sample elements is deleted. This intuitive

idea brings us the definition of the i-th sensitivity vector given by

ri =
(
ŷi − ŷi(1), ŷi − ŷi(2), . . . , ŷi − ŷi(n)

)T
, (2.4)

where ŷi(j) is the forecast of yi when the j-th observation is deleted.

Taking into account that

ŷi − ŷi(j) =
hijej

1− hjj
, (2.5)

the i-th sensitivity vector becomes

ri =

(
hi1e1

1− h11

,
hi2e2

1− h22

, . . . ,
hinen

1− hnn

)T
, (2.6)

with all sensitivity vectors we define the Sensitivity Matrix

R =


rT1

...

rTn

 (2.7)

This matrix can be obtained as R = HW, where W is a diagonal matrix with diagonal elements

equal to ej/(1− hjj).

Observe that the ri’s belong to the p-dimensional subspace generated by the columns of X. This

suggests to search for the directions in which the maximum sensitivity change occurs, and then, to

project the ri’s over these directions. But the directions of maximum sensitivity are the eigenvec-

tors v1, . . . ,vp associated to the nonnull eigenvalues λ1, . . . , λp of the matrix M = RTR. Then,

we just need to compute the projections

zq = Rvq, q = 1, . . . , p. (2.8)
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These projections are called the principal sensitivity components.

Note that the projections zq inherit the properties of the principal components, which means that

they are orthogonal vectors and that the variance associated to each projection zq is given by its

corresponding eigenvalue λq. For purposes of outlier detection, there are two relevant properties

that these projections satisfy:

1. The extreme coordinates of the projections zq correspond to high leverage points (horizontal

outliers), see Theorem 1 on page 438 in Peña and Yohai (1999).

2. The projections zq represent the directions of maximum standardized change in the regres-

sion parameters.

The full robust procedure proposed by Peña and Yohai (1999) for detecting horizontal and vertical

outliers is formalized in two stages:

Stage 1 This stage is iterative and we search for a preliminary robust estimator of β. In the first

iteration (r=1) we construct a set A1 of candidates β with 3p+1 elements. The first element

corresponds to the LS estimator. The following 3p elements are obtained by calculating the

p projections zq, q = 1, . . . , p, and deleting: (1) the half of the smallest coordinates of zq,

(2) the half of the largest coordinates of zq and (3) the half of the larges coordinates of zq

in absolute value. Then, from the set A1 of 3p + 1 candidates, we select the estimate β̂(1)

which minimizes of a certain scale s of the residuals, that is

β̂(1) = argmin
βεA1

s(ei(β), . . . , en(β)). (2.9)

In the next iterations (r≥2), we compute the vector of residuals, e(r) = y − Xβ̂(r−1) and

their robust scale s(r−1), and eliminate the observations such that |e(r)j | ≥ C1 · s(r−1) where

C1 is a constant. With the remaining observations, a LS estimator is computed and again we
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calculate the principal sensitivity components. We construct a set Ar with 3p+ 2 candidates

β. The first 3p + 1 candidates are obtained identically as in the first iteration, and the

last element is the previous estimator β(r−1). The iterations end when β(r+1) = β(r) and

β1 = β(r) is called the preliminary robust estimator, which is robust against possibly masked

groups of high leverage points.

Stage 2 Compute the residuals e = y−Xβ1, for all elements of the sample and let s be their robust

scale. Find a set n1 of observations such that |ej| > C2 · s where C2 is a constant. With the

remaining n− n1 observations, compute β̃ = (X̃T X̃)−1X̃T ỹ where X̃ and ỹ correspond to

the elements of the sample after delating the n1 observations. Then test whether each of the

n1 elements are outliers by using the test statistic

tj =
yj − xTj β̃

s̃2

√
1 + hjj

, (2.10)

where xTj represents the j-th row of X,

s̃2
2 =

∑n−n1−1
j=1 (yj − xTj β̃)2

n− n1 − p
and hjj = xTj (X̃T X̃)−1xj. (2.11)

The observations of the set n1 are finally eliminated if |tj| > C3 where C3 is a constant.

Based on simulation studies, Peña and Yohai (1999) proposed the use of the constantsC1 = 2

and C2 = C3 = 2.5, but for large sample size they recommend to increase them.
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3. ROBUST PROCEDURE FOR LINEAL MODELS WITH

FIXED EFFECTS

Consider the linear regression model with fixed cluster effects given by

yij = xTijβ + αi + εij

εij ∼ iid N(0, σ2
ε), j = 1, . . . , ni, i = 1, . . . , I. (3.1)

Now we assume that the data are clustered according to the categories of a qualitative variable.

Here i represents the cluster index and j the index of an observation within a cluster. There are I

clusters and each cluster contains ni elements, so that the total sample size is n = n1 + · · ·+ nI .

Let us define the following vectors and matrices obtained by stacking the elements as

y = col
1≤i≤I

( col
1≤j≤ni

(yij)), X = col
1≤i≤I

( col
1≤j≤ni

(xTij), ε = col
1≤i≤I

( col
1≤j≤ni

(εij))

and let Z = diag
1≤i≤I

(1ni
) be a block-diagonal matrix.

In matrix form, the model (3.1) can be written as

y = X?β? + ε, ε ∼ N(0, σ2
ε) (3.2)

where X? = [X Z] is a matrix with rank(X?) = p+ I and β? = (βT , α1, α2, . . . , αI)
T .

The hat matrix is H? = (X?TX?)−1X?Ty with element in position (ij, kl) denoted hij,kl.

Let yij be the j-th element in i-th cluster and ŷij(kl) the forecast of the observation yij when obser-
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vation ykl is deleted. Then, the Sensitivity Matrix takes the form

R =



ŷ11 − ŷ11(11) . . . ŷ11 − ŷ11(1n1) . . . ŷ11 − ŷ11(I1) . . . ŷ11 − ŷ11(InI)

...
...

...
...

...
...

...

ŷ1n1 − ŷ1n1(11) . . . ŷ1n1 − ŷ1n1(1n1) . . . ŷ1n1 − ŷ1n1(I1) . . . ŷ1n1 − ŷ1n1(InI)

...
...

...
...

...
...

...

ŷI1 − ŷI1(11) . . . ŷI1 − ŷI1(1n1) . . . ŷI1 − ŷI1(I1) . . . ŷI1 − ŷI1(InI)

...
...

...
...

...
...

...

ŷInI
− ŷInI(11) . . . ŷInI

− ŷInI(1n1) . . . ŷInI
− ŷInI(I1) . . . ŷInI

− ŷInI(InI)



,

(3.3)

From here, if j and l are two observations from the same cluster, the forecast of observation j when

observation l is deleted is given by

ŷij(il) = xTijβ̂(il) + α̂i(il). (3.4)

It holds that

ŷij − ŷij(il) = xTij(β̂ − β̂(il)) + (α̂i − α̂i(il)) =
hij,il eil
1− hil,il

, (3.5)

where eil = yil − xTil β̂ − α̂i is the residual of observation l within cluster i. Observe that (3.5) is

similar to (2.5).

Now let us partition the matrix R in I × I submatrices according to the clustered structure of the

data,

R =



R11 R12 . . . R1I

R21 R22 . . . R2I

...
...

...
...

RI1 RI2 . . . RII


, (3.6)

where Rij represents the matrix containing the sensitivity of the forecast of the observations of
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cluster i when each observation in cluster j is deleted.

Consider the set {R11, . . . ,RII} of submatrices in the diagonal of R. The elements of submatrix

Rii represent the sensitivity of the forecast of the observations belonging to cluster i when each

observation in the same cluster is deleted. For each submatrix i, we can obtain the principal

sensitivity components by computing the eigenvectors and the nonnull eigenvalues associated to

Mi = RT
iiRii. The maximum eigenvalue of Mi, λi1 can be interpreted as the measure of the

global effect of the observations of cluster i on the forecast of the observations in cluster i. The

eigenvector vi1 associated with the greatest eigenvalue λi1 can be interpreted as the direction of

maximum change on the forecast of the observations in cluster i when the observations in cluster i

are deleted. Thus, we can use the projections zq on the directions vq to detect high leverage points

(horizontal outliers) in cluster i.

The new robust procedure for detecting horizontal and vertical outliers for a linear regression

model with clustered observations is formalized in two stages:

Stage 1 Construct a set A1 = {β?1,β?2,β?3,β?4} of candidates β?. The first element, β?1, is the

LS estimator using all elements of the sample and the rest are constructed by eliminating

given percentages of outliers as follows. First construct the Sensitivity Matrix (3.3) using

the model (3.2). For each cluster i, i = 1, . . . , I , consider its corresponding submatrix Rii

and compute the principal sensitivity components ziq, q = 1, . . . , p. For each component

q, compute the difference diq = |zjq − median(ziq)| and delete the set of observations

whose corresponding element of diq exceeds C1 ·MAD(diq), where MAD stands for the

median absolute deviation. We add the restriction that the maximum number of observations

eliminated in each cluster can not exceed 50%.
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The last step is applied to every cluster i, i = 1, . . . , I . Then we delete all the sets of possible

outliers, and with the remaining observations we compute a LS estimator. In our simulation

studies we used three different options for C1: (a) the 90th percentile of a normal distribution

for computing β?2; the 95th percentile for β?3; and the 99th percentile for β?4.

Then, we select the preliminary robust estimator β̂?(1) under the criterion:

β̂?(1) = argmin
β?εA1

s(e11(β
?), . . . , eInI

(β?)) (3.7)

Stage 2 Compute the residuals eij = yij − x?Tij β̂
?(1) for all elements of the sample.

For each cluster i, i = 1, . . . , I , compute a robust scale of the residuals si defined by

si = 1.481 ·Med(|eij|, eij 6= 0), j = 1, . . . , ni (3.8)

Delete the observations such that |eij| > C2 · si, where C2 is a constant.

Let n1 be the number of observations eliminated in the last step. With the remaining n− n1

observations, compute
≈̂
β = (

≈
XT

≈
X)−1

≈
XT ≈y where

≈
X and ≈

y correspond to the elements of

the sample after delating the n1 observations. Then, we test each of the n1 elements by using

the test statistic

tij =
yij − xTij

≈̂
β

≈̂
s2
2

√
1 + hij,ij

(3.9)

where

≈̂
s2
2 =

∑n−n1−1
j=1 (yij − xTij

≈̂
β)2

n− n1 − (p+ I)
and hij,ij = xTij(

≈
XT

≈
X)−1xij

The observations of set n1 are finally eliminated if |tij| > C3 where C3 is a constant. In the

simulation studies we found that C2 = 2.5 and C3 = 3.5 work well.
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4. OTHER ROBUST PROCEDURES

The RDL1 estimator was proposed by Hubert and Rousseeuw (1997) and it uses a robust distance

and L1 regression. The RDL1 estimator is defined by using a three stage procedure:

1. First, search for leverage points over the set of continuous variables applying the minimum

volume ellipsoid (MVE) estimator (Rousseeuw, 1985) and then, based on it, compute robust

distances.

2. Based on the robust distances, construct strictly positive weights for each observation. Then,

regression parameters are estimated by a weighted L1 procedure.

3. Compute a robust scale of residuals using the median absolute deviation (MAD) over the

vector of residuals coming from the weighted L1 regression.

4. An observation is considered as atypical if the absolute value of the corresponding standard-

ized residual exceeds 2.5.

A possible disadvantage of the RDL1 method is that it suffers of the swamping effect. This prob-

lem will be discussed and illustrated in Section 5.

Maronna and Yohai (2000) proposed two other classes of robust fitting methods when categorical

variables are present in the model. They proposed the M -GM estimator, which is a weighted L1

estimator, and an alternating M and S estimator, where a M-estimator is used for the categorical

predictors and the S-estimator for the continuous ones. Two versions of the M -S estimator were

proposed. Maronna and Yohai (2000) suggested that, as the number of continuous predictors

increases, the advantages of the M -S method over the M -GM one also increase.
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5. MONTE CARLO SIMULATIONS

In this section we present two simulation studies to compare the performance of our robust pro-

cedure base on the principal sensitivity components (PSC) against the RDL1, M -GM or M -S

methods. Two main performance criteria were used to compare the different robust methods. The

first one is the mean percentage of correct detection defined as follows. Let L be the number of

simulations, l = 1, . . . , L. Then, the mean percentage of correct detection is defined as

MPCD =
1

L

L∑
l=1

100 · number of true outliers detected in simulation l
number of true outliers

. (5.1)

The second criterion is the total incorrect detection defined as:

TID =
L∑
l=1

number of false outliers detected in simulation l. (5.2)

In fact, this last criterion attempts to summarize a measure of the swamping effect. The swamping

effect occurs when non-outliers are wrongly identified due to the effect of some hidden outliers,

see Lawrence (1995).

5.1. Simulation 1

We simulated data imitating a data set concerning 1652 Australian farms from the Australian Agri-

cultural and Grazing Industries Survey (AAGIS). The data set contains various variables among

which we selected four of them: hectares, crops, beef and sheep. We simulated 10 clusters with

a total sample size of 400 observations. The 10 clusters were divided into groups with the same

cluster sample size each consisting of 2 clusters. The cluster sample sizes in the five groups were

respectively 20, 30, 40, 50 and 60. Based on the distribution of the original variables we simulated

four continuous variables from X1 ∼ N(3.31, 0.68), X2 ∼ N(1.74, 1.23), X3 ∼ N(1.70, 1.65),

X4 ∼ N(2.41, 2.61), were the mean and standard deviations are those of hectares, crops, beef and
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sheep respectively. The L=1000 iterations were carried out as follows. We simulated I=10 values

from a normal variable with zero mean and standard deviation σα = 0.05 to generate the fixed

effects αi associated to the clusters; n = 400 values from a normal variable with zero mean and

standard deviation σε = 0.05 to generate the random error terms. In the simulation process we

held the fixed effects and continuous variables invariant. In each iteration we calculated yij from

model (3.2). Then, we considered three different scenarios:

1. No atypical data are present.

2. Type I (vertical outliers). We introduced contamination in three clusters i, specifically i =

{5, 7, 9}. For each cluster, the contamination was created by calculating the mean of cluster

i, say yi, and its corresponding standard deviation, γi. Then, we substitute some observations

yij by a constant c1 = yi + k · γi and other few by c2 = yi − k · γi, where k = 5.

3. Type 2 (horizontal and vertical outliers). Again we introduced contamination in the same

three clusters {5, 7, 9}. The contamination over the set of continuous variables Xa, a =

{1, 2, 3, 4} was created by calculating the mean of the cluster, sayXl,i, and their correspond-

ing standard deviation, γXa,i
. Then, we substitute some observations xl,ij by a constant

c3 = Xl,i + k · γXa,i
and then we replace their corresponding observations yij by a constant

c4 = yi − k · γi, where k = 5.

12
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To illustrate graphically the kind of contamination. Figure 1 shows the observations of one simu-

lation under the type of contamination 1 using a level of contamination of 15%.
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Figure 1: Scatterplot of y versus observation index for all observations of the sample (top left), for observations of

cluster 5 (top right), for observations of cluster 7 (bottom left) and for observations of cluster 9 (bottom right).
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Figure 2 shows graphically the type of contamination 2 using a level of contamination of 15%.
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Figure 2: Scatterplot of y versus X1 (top left), versus X2 (top right), versus X3 (bottom left), versus X4 (bottom

right).
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The results of the simulation study is reported in Table 1. The table summarizes the results of the

two performance criteria MPCD and TID under levels of contamination 5%, 10% and 15%.

Table 1. Contamination 5%, 10% and 15%.

No atypical Contamination 5% Contamination 10% Contamination 15%

data Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Method TID MPCD TID MPCD TID MPCD TID MPCD TID MPCD TID MPCD TID

PSC 409 100,00% 359 100,00% 354 99,93% 314 100,00% 318 99,95% 300 99,96% 284

RDL1 7462 100,00% 6397 100,00% 6325 100,00% 5312 100,00% 5349 100,00% 4511 100,00% 4511

M -S 6112 100,00% 5197 100,00% 167 100,00% 4307 100,00% 123 100,00% 3576 100,00% 93

Observe that the PSC method presents a high percentage of correct detection while keeping small

the number of observations wrongly identified as outliers. Furthermore, when the sample is not

contaminated by outliers, the PSC method presents the lowest TID as compared with the RDL1

and M -S methods. On the other hand, when contamination type 1 is present it seems that the

RDL1 and M -S methods suffer of the swamping effect because several non-outliers are wrongly

identified as outliers.

The RDL1 estimator was generated by using the code provided in the article by Hubert, M. and

Rousseeuw, P. J. (1997). The M -S estimator was generated by using the lmRob function imple-

mented in S-PLUS version 8.0. Following the suggestions of Rousseeuw and Zomeren (1990)

we plot robust distances (mahalanobis distances based on a robust covariance matrix) versus stan-

darized residuals (using the MAD). Then, we considered an observation as a vertical outlier if

the absolute value of the standarized residual exceeds 2.5. On the other hand, we considered an

observation as a horizontal and vertical outlier if the observation is a vertical outlier and is on the

right of the vertical line located at the upper 0.975 percent point of a chi-squared distribution with

p degree of freedom.
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5.2. Simulation 2

In this simulation we considered larger variability in the true fixed effects σα = 1 and smaller in the

errors σε = 0.1. Tabla 2 summarizes the results of MPCD and TID under levels of contamination

5%, 10% and 15%.

Table 2. Contamination 5%, 10% and 15%.

No atypical Contamination 5% Contamination 10% Contamination 15%

data Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Method TID MPCD TID MPCD TID MPCD TID MPCD TID MPCD TID MPCD TID

PSC 409 100,00% 353 100,00% 362 100,00% 272 100,00% 307 100,00% 280 100,00% 287

RDL1 7462 100,00% 6397 100,00% 6325 100,00% 5312 100,00% 5348 100,00% 4512 100,00% 4511

M -S 6112 100,00% 5147 100,00% 170 100,00% 4279 100,00% 120 100,00% 3546 100,00% 91

Table 2 shows that the three robust methods correctly identify 100% of outliers. However, again

when contamination type 1 is present the number of incorrectly identified outliers is large for

RDL1 and M -S methods.

6. RESULTS AND DISCUSSION

In this work we studied the detection of atypical data in linear regression models with fixed effects.

Since the data are clustered into (many) clusters, we proposed to calculate the principal sensitivity

components in each cluster to detect possibly masked high leverage points (horizontal outliers).

Then, we fit the data and discard the observations with large residuals (vertical outliers). The sim-

ulation studies show that our robust procedure present a high mean percentage of correct detection

(MPCD) and a small number of observations were wrongly detected as outliers (TID). Particulary,

when contamination type 1 is present, the level of the swamping effect in our robust procedure is

the lowest among the three robust methods. In this work we used the criterion of the minimization
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of a certain scale of the residuals and then we discard the observations with large residuals with

respect to that scale. However, an other alternative is to approximate the quantiles of the max|eij|

by a resampling procedure, and then to examine each possible candidate and to decide whether it

is atypical or not by comparing with a selected quantile. This last option might be computationally

much more intensive.
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Molina, I., Peña, D. and Pérez, B. Robust estimation in linear regression models with fixed effects

[8] Peña, D. and Yohai, V. J. (1995). The detection of influential substets in Linear Regression

using an Influence Matrix, Journal of the Royal Statistical Society. B. 57, 145–156.

[9] Rousseeuw, P. J. (1984). Last Median of Squares Regression, Journal of the American Statis-

tical Association. 79, 871–880.

[10] Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In W. Gross-

mann, Pflug G., Vincze T. and Wertz W. Eds., Mathematical Statistics and Applications, B.

Reidel, Dordrecht. The Netherlands. 283–297.

[11] Rousseeuw, P. J. and Leroy, A.M. (1987). Robust regression and outlier detection. Wiley ,

New York.

[12] Rousseeuw, P. J. and Yohai, V. J. (1984). Robust regression by Means of S-estimators. Robust

and Nonlinear Time Series Analysis. Lectures Notes in Statistics, 26, Springer , New York.

256–272.

[13] Rousseeuw, P. J. and Van Zomeren, B. C. (1990). Unmasking multivariate outliers and lever-

age points, Journal of the American Statistical Association. 85, 633–639.

18


