!'_ Genetic Programming

i Genetic Programming

= Genetic algorithms for evolving programs
= Instead of bitstrings, programs are evolved

= M. Cramer. 1985. A Representation for

the Adaptive Generation of Simple
Sequential Programs, Proc. of an Intl,
Conf. on Genetic Algorithms and their

Applications.

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Genetic Programming

John R. Koza

= Non-Linear Genetic Algorithms for Solving
Problems. United States Patent 4,935,877. Filed May 20,
1988. Issued June 19, 1990.

= 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press.

= 1994. Genetic Programming: On the Programming
of Computers by Means of Natural Selection.

= 1999. Genetic Programming l11: Darwinian
Invention and Problem So/ving

s 2003. Genetic Programming 1V. Routine Human-
COm,U Etl tl ve M aCh I %alj{?ﬁ@./ /!ﬂ@(gb\gtgmatic Inductive Programming Tutorial

‘krog ram Representation

= LISP / parse trees
= (dotimes | 3 (setq
m Fori:=1to3{v

= Language = functions +

terminals

v (*11)))

= 1*1;}

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Example: Even-parity

= Even-parity(1,0,0,0,1,0,0,1,1) -> TRUE
= Language / primitives:

= Functions: AND, OR, NAND, NOR, NOT (no
XOR available!)

= Terminals: DO, D1, D2, ..., D9

= Heuristic / fitness: count number of
iInput/output pairs (fitness cases) solved
correctly

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Fithess cases 10 bit even-
‘L parity

DO |D1 D2 |D3 |D4 |D5 |D6 |D7 |D8 D9 | OUTPUT

0 0 0 0 0 0 0 0 0 0O |TRUE
0 0 0 0 0 0 0 0 0 1 |FALSE
0 0 0 0 0 0 0 0 1 1 |TRUE

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Generational GP Algorithm

1.

Create a random population of programs
(individuals) using the functions and terminals

Run all the programs and compute their fitness

Select (stochastically) the best ones according to
some policy

Create a new population by applying the genetic
operators to the selected individuals

Go to 2, until a “good enough” program is found

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Generational GP Algorithm

Generation 0 Generation 1 Generation N

%?I Selection, %?I Selection, %?I
Mutation, Mutation,
Crossover rossover
—)))
=

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Steady-State GP

Only a few individuals (even 1) change between generations

Generation 0 Generation 1 Generation N
%ﬁd Selection, %ﬁd Selection, %ﬁd
Mutation, Mutation,
@%‘ Crossover @%‘ frossover @

i

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

* Genetic Operators. Crossover

= Reproduction (just copy the program)
= Crossover (recombination)

T

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Operators. Subtree

* Mutation

Chop off a subtree and grow a random one

=)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Operators. Point

* Mutation

Select a function with the same arity at the
mutation point

=)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i From Generation 7 to /+1

Generation O

Compute

fithess

Selection

Crossover

Mutation

Generacion 1

7

4

Ky

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Random Creation of the Initial

* Population

eSelect randomly a function for the tree root from:
«{AND(1,2), OR(1,2), NAND(1,2), NOR(1,2), NOT(1)}
«{DO0, D1, D2, ..., D9}

<Create as many branches as the function’s arity

/

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Random Creation of the Initial

* Population

«Create as many subtrees as branches

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Random Creation of the Initial

* Population

|t is important to create an initial population as diverse as
possible:

eDifferent tree shapes

eDifferent tree depths

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Methods for Generating
i Diverse Individuals

= “Full”: all tree paths have the same
depth

= “Grow”: variable depth

= “Ramped half and half”:

= Individuals are generated for depths 1, 2,
3, ..., max-depth

= 50% full, 50% grow
= Goal: maximize diversity

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Language

= Language (primitives) = functions +
terminals

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Functions

= Have 1 or several arguments: +, not, ...

s Kinds:

= Functions: arguments are evaluated before calling the
function:
= +(3, *(4,5)) = +(3,20) = 23

= Macros: the macro controls which arguments are
evaluated.:

« If(3>5, vi=3, vi=4) ->vi=4
= Closure: every function must be able to accept
any value (i.e. They must be protected):
=3/0=1
= 3+ “joe” =

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Terminals

= Input variables:
= DO, D1, ..., D9

= Functions with no arguments:
« go-forward

= Constants:
s 34, ...

= “Ephemeral random constant” A

= For numerical problems. Everytime R is selected
during individual creation, a random real number
IS created

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i The fitness Function

s Raw:

= EX: number of fithess cases predicted
correctly

= Standard: GP always minimizes:
= Standard = maximum — raw

= Adjusted: (normalized between 0 and 1)
= 1/(1+standard).

= Relative:
= Adjusted/Total fitness in the population

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Selection of Best Individuals

= Fitness proportionated:

= An individual is selected with a probability proportional
to its relative fitness

s Tournament selection
= K individuals are sampled randomly
= The best one iIs selected

= Elitism:
= The best individual(s) are always selected

= This IS used to make sure that the best individual will
not be lost

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Premature Convergence

s Some selection methods lead to
premature convergence

= That is, we get a population that stops
generating better and better individuals

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Fitness Proportionated
‘L (Roulette Wheel) Selection

- Prog. 1
“ Prog. 2 Program O

On average good individuals will be selected more
often

Problem: superindividuals, no variety in the population
premature convergence

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Tournament Selection

Tournament set

k=2 /

K controls selective pressure

Repeat,
until the
population
s filled up

The Iarger K1 theRI’JQQJ%DI’@@%HK@O,G%J%JQK% Programming Tutorial

i Control Parameters

= Population size (M: 500 to 10000)
= Maximum number of generations (G: 50 to 100)

s Probabilities of crossover, recombination, and
mutation (mutation<5%)

= Generation method for the initial population
(grow, full, ramped half and half)

= Maximum depth of initial individuals

= Maximum depth of individuals after
recombination

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP Tools

s LIL-GP: c
= http://garage.cse.msu.edu/software/lil-gp/

= ECJ: Java
= http://cs.gmu.edu/—~eclab/projects/ecj/

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Example with lil-gp

= Individuals in lil-gp are represented as trees. When they
are to be executed, lil-gp interprets the tree and calls the
primitives as required

s For instance, If the function set includes / and *, the
following functions have to be defined:

DATATYPE f _protdivide (int tree, farg *args)
If (args[1].d == 0.0) return 1.0;
Else return args[0].d / args[1].d

DATATYPE f _multiply (int tree, farg *args)
Return args[0].d * args[1].d

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Lil-gp Fitness Function for a
‘L Regression Problem dv=f(x)

void app_eval_fitness (individual *ind){

for (1 = 0; 1 < fitness_cases; ++i){
g.x = app_fitness_cases[O][i]; # X = Input
dv = app_fitness_cases[1][i]; # dv = output
v = evaluate tree (ind->tr[0].data, 0); # v=value returned by individual
disp = fabs (dv-v); # difference between correct and predicted value

ind->r_fitness += disp; # Add to the fitness

ind->s_fitness = ind->r_fitness; # Standard fitness
ind->a_fitness = 1/(1+ind->s_fitness); # Adjusted fitness

} Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘_L GP Is Stochastic

= GP Is stochastic: different runs may provide
different results

= No guarantee a GP will end with success
(premature convergence)

= Repeat many times, record the best result

= Computational effort (informal definition): minimum
number of individuals to be evaluated so that a
perfect individual will be obtained with high
probability

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Computational Effort for Even-
Parity

Even parity |Computational |Time (hours)
effort

3 96.000

4 384.000

5 6.528.000

6 70.176.000| 3h (P-1.5GHz)

Note:
Not all fitness evaluation take the same time.
Most of the time is spent on fitness computation

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP Speedup

= Large computational effort required

= Interesting results can be obtained with
current machines

= Moore’s law: computational power duplicated
every 18 months

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP Speedup

= Machine Code evolution ([keller, 96], [friedrich,
97], [Nordin, 95] x2000 wrt LISP, x100 wrt C)

= Reconfigurable hardware (PGA)
= Paralelism:
= 1 run per machine

= Island model (or demes): 1 population per
machine + migration

= 1 fitness case per machine
=« 1 individual per machine

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Fithess Case Parallelism

Population: Individual i
Individual 1
Individual 2

Fitness I,n

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Individual Parallelism

e Case 1
\\ Case 2
Individual 1 - =5
iy ess 1
-l Individual 2) |Casel
— Fitness £22E | Case 2
Population: o _
ndividual 1 vidual |
ndividua . .
Fithess | Case 1
Individual 2
Caso 2
Ricardo Aler. ICML'06 Automatié 4nductive Programming Tutorial

* Paralellism with Islands

1

: %

—

Population 1

Topology, prob. Migration

Population 3

Maintains diversity

Ricardo Aler. ICML’06 Automatic Inductive Pfogramming Tutorial

Rational Allocation of Trials

i (RAT)

= Teller, Andre. 1997. “Automatically Choosing
the Number of Fithess Cases: The rational
Allocation of Trials”. GECCO’97

s Do not use all the fithess cases

= Use only as many as necessary to differentiate
between good and bad individuals

= Every individual will evaluate the most
appropriate number of fitness cases

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i RAT Algorithm

s It uses tournament selection:

1. Do Mtimes (Mis the population size)
1. Pick K'individuals at random from the population P,

2. From this set, place a copy of the individual /with
highest approximated fitness into the mating pool

2. P, Is created by the application of genetic
operators to the mating pool

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Tournament Selection

Tournament set

k=2 /

Mating
pool

Repeat,
until the
population
s filled up

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i RAT Basic lIdea

s If an individual L in a tournament Is
unlikely to become the winner, then do
not evaluate more fithess cases for L

s If no other individual in the tournament
set Is likely to become the winner W,
then do not evaluate more fithess cases

for W

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i RAT Algorithm. Initialization

= Create M tournaments (all at once)

= Initialize contention list Q with all
individuals (it contains individuals for
which it Is required to evaluate more
fithess cases)

= Evaluate all individuals with 7_ . fithess
cases (out of a total 7 fithess cases)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i RAT Algorithm

s Do 7-7._ . times:

mi
= Remove any individual X from Qif for every
tournament zthat Xis in:
= XIs not in the first place
« AND it is not likely to become the winner
OR
= Xis in the first place (temporary winner)
= AND it is not likely that other individuals in tournament ¢
become better than X
= Evaluate all individuals still in list Q on the current
training example

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i RAT Algorithm

= How to determine if an individual /is likely (or
not) to be better than another individual /?

s If both individuals have been evaluated on a
sample with 4 fitness cases

= Then, the average error (e¥, %) and standard
deviation can be estimated from the sample

= Assuming normality, we can compute the
probability that the true error of /(e™) is smaller
than the true error of j (e7)).

s If Pr(e”; < e*j - 1) Is small then /is not likely to be
better than y

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L RAT Algorithm

= The gaussians are the distributions of the
true error (assuming normality)

Proble; <&i =) <0 <o N

. / X "
o) \ \
' \ \ L4
“ . , .U 1 k

’ ' l"'
‘ ‘ lr".

J "! »
’ (. k ," N\ “" .'\ ‘ ,
o l / \ \ \ l

. %
- ’ _/ / - . \\
. - - - —
————— -

Error ——

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

* Criticisms to Crossover

= It is not clear that crossover actually
recombines features from both parents
(effects of code are very context dependent)

‘?T I@g‘?: ‘?T

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Effects of Crossover during Evolution

[Nordin and Banzhaf, 95] (linear GP) "Crossover Effect " —

Destructive Neutral
Xover Xover

fbefore

ST
- Adporeen = e Juier
il

Number of Crossover Events
7000 -

6000
5000
4000 H
3000
2000
1000
0'.

“creative”

-100 or less ~ 20
50 19 Generations

Fitness Change after Crossover (%90 00 0

Headless Chicken Crossover
i Operator

= Some studies show that crossover is basically a
macromutation operator, although it works
better than random search ([Lang, 95], [O'Reilly
& Oppacher, 94], [Angeline, 97])

= [Luke, Spector, 97,98]: “A [Revised] Comparison
of Crossover and Mutation in GP”:
= Crossover works slightly better than mutation

= [Chelapilla, 97]: “Evolving computer programs
without subtree crossover”:
= Crossover not necessary

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i New crossover operators

= “Brood recombination”: two parents cross
many times, the best offspring is chosen
[Tackett, 94]

= “Intelligent xover”: choose the crossover point
intelligently: PADO [Teller, 95]

= “Homologous xover”: subtrees are exchanged
only at the same position [Haeseleer, 94]
[Poli & Langdon]

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Crossover In Genetic
Algorithms

Parent 1 Parent 2
1111111 1000000
I Alignment Crossover always maintains the position of

bits

Paremllllllll

Parent 2|0 00000
I Salaction of

Conunoeon
Croszover Pomt
=y

Parent 1|1 1 1.1 11
Parent 2|0 0 OIO_CI 0

i

Swap

Offspring 1 Offspring 2
1110001 (000111

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

One Point Crossover

PARFEFNTS

Common

l .-%._'_\Crs\i Croszover |\

x v o= XYY

S .
‘-M _O_T_/r b
(aND) -~
l'\k:__'________./' -
=N AN T~a -7
5 i - - -
(AND) (OR)

= A x ' X 7 v +r
- - < 3

ing Tutorial

Parent 2
000000

Parent 1
111111

I Alignment

arentll 1111 |
Parent 7|00000 I

Salaction of
Conunoeon

Croszover Pomt

==y

Parent 1|11 1:11 1
Parent 2|0 0 OIO_O 0
I Swap

Offspring 1 Offspring 2
111000] |000111

(a)

f- ;\l,'—\

/ / /)\\

Selacton of
Conmon
Crozsover Point

Ay

Parent 1"-//‘\\\, Parent 2

j Swap

Offspnng 2

F\r,,)
Parent IQNB/XA Parent 2

Selecton of
‘.. .;.

Commoz
Crossoves Point

/\

" Offspring 2

Oftsp'mv

AN

i One-Point Crossover.

1. Alignment: Look for the common
structure in both parents

2. Choose one random xover point in
the common region

3. Exchange the subtrees

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Properties of One-point
i Crossover

= At the beginning of evolution, xover points
belong to the top part of parents (small common
structure)

= As evolution progresses, some structures
become prevalent and deeper regions are
explored

= Top-down exploration, which makes sense for
programs

= Point mutation required (like in genetic
algorithms)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Uniform Crossover In Genetic
Algorithms

1 i
o o 1 0o 1 1 1 0o 1 0 0 1

1 0o o o0 1 0 »

M ask _rossover
o i
1 1 1 o o 1 1] 1 1 1] 1 1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i GP Uniform Crossover (GPUX)

Parent 1

-~

-

Parent 2

common
region

4.
5]

'._\1 - ./-

imnterior
nodes P g

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP Uniform Crossover (GPUX)
o

Patent | Patent 2
common
tegion .
LY
atertor

Ty

|1rdo Ale

i Uniform Crossover

= Determine the common and interior
regions
= Exchange nodes:

=« If In the Interior region, just exchange the
nodes

= If not, exchange the subtrees as well

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Properties of Uniform

‘L Crossover

= Search becomes more global (offspring
less similar to parents than the 1-point
crossover)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Smooth Operators

= Goal: to make small changes to
programs

= Instead of exchanging two functions,
they are sort of “averaged”

s GPSUX, GPPM: Smooth crossover and
point mutation

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Smooth Operators for Boolean

* Functions

P Q" PAY PVQ pq peq
rE N : F v v

F V|V V ¥ |
Y F| ¥ ¥y |

v VI v ¥V ¥ ¥

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Smooth Crossover and

i Mutation

= AND(A,B) = ffft

= OR(A,B) = 0111

s Smooth xover AND/OR = Of1t
= Smooth mutation AND = f1ft

s Not clear how this could be extended to
non-binary problems

= (Note =0, t=1)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Results on even-parity-5

Operators |Population size|Fitness evaluations|Complexity[Success Rate
Standard GP 50 11,250 428 12%
Standard GP 200 568 68%

GPUX, GPPM a0 4,200 84 88%
GPUX, GPPM 200 19 98%
GPPM only 30 4,200 68 80%
GPPM only 200 49 98%
GPSUX, GPSPM ol 2,200 82 92%
GPSUX, GPSPM| 200 56 100%
GPSPM only 50 2,250 76 98Y%
GPSPM only 200 8,400 49 98%

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘__L Results on even-parity-6

Operators |Population size|Fitness evaluations|Complexity[Success Rate
Standard GP 50 No solution found| N/A 0%
Standard GP 200 No solution found| N/A 0%

GPUX, GPPM ol 34,850 38 36%
GPUX, GPPM 200 40 60%
GPPM only 50 35,550 43 44%
GPPM only 200 51 82%
GPSUX, GPSPM ol 17,000 49 62%
GPSUX, GPSPM[200 53 80%
GPSPM only a0 16,200 59 67%
GPSPM only 200 42 82%

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Smooth operators

= They seem to work better than non-
smooth

= Not clear that xover is required In this
problem

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Bloat

= After several generations, individual size
tends to grow, with no increase In fithess

= Fast growth, nearly quadratic [Langdon,
00]

= Caused by “introns”: a+ (a-a+a-a),
0*(a*b+c*d), if(F) then {...}

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Average population fitness

Ividual size

Generations

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Bloat Problems

= Individuals take longer to run and take more
memory

= Search stagnates (genetic operators change
unused regions)

= Although it is reported that in some
occasions, introns protect sensitive parts of

the code

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Bloat. Why?

= It is expected it will happen when evolving variable-size
structures, with a fixed fitness function

s Accuracy theory. Defence against crossover, specially
at the end of the run, when it is difficult to improve
fitness

= After a particular size, fitness is independent of fitness.
There are more large programs than small ones, so there
IS a tendency to grow

s Removal bias theory:. It is easier to add small subtrees
(inside the introns) than to remove large subtrees

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Bloat Control

= Parsimony: fitness penalty for large
iIndividuals (k?):
= F'(X) = F(X) + k*size(x)

= Limit maximum size (which one?):
= Problem: you get bloat!

= Assign a bad fithess to large individuals so
that they are not selected in the next
generation

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Bloat Control

= Tournament selection. If two individual
draw In fitness, then select the small
ONnes

= Avoid destructive crossover:
= brood recombination

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Bloat Control. Tarpeian

‘L Method

IF size(program) > average_pop_size AND random_int MOD n = 0
THEN

return(very_low_fitness);
ELSE

return(fitness(program));

Removes a percentage of larger-than-average programs

n >= 2 (n=2, half of big programs die)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Bloat Control. Tarpeian

i Method

= Larger-than-average individuals are more likely
to die

= If it survives and it is a better than average
individual, it will reproduce and the average size
will increase

= But there will still be opposition to growth
= Saves time on large individuals (not evaluated)
= Justification based on schema theorem

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Tarpelan: Fitness Hole for
i Large Individuals

VWhy “Tarpeian ?

[

N L AL
DA!’-‘.S/E-R ii ii'_i i ." T‘_”:’%@
S J
',/
|

I/'
P Ny

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘_L Tarpelan Balloon I\/Ietaphor

o e o s m e e et e awEe
— T —
(Population | (Population 'l | Population |

\é/ | N N8 _7/
'

Hard Parsimony Tarpesian 1(.,
Size Pressurs Method -
Limit

Fithess = hot air

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Tarpelan Properties

= Valid with point-mutation (no subtree
mutation)

= Beware of premature convergence
because of:

= Small populations
= Large pressure selection

= T0O0 large bias against large individuals
(with n2small)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Adding Syntactical Restrictions

= Standard GP requires “closure” (i.e. Protected
functions)

= 3/0=1
= “dog” +4 =4
= Search space larger than necessary

= Very unnatural solutions (some believe this is
an advantage):

« If (3+”dog”) then {10/0}
= Solution: Use grammars or types

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Main Grammar Works

= F. Gruau. 1996. “On using syntactic
constraints with genetic programming”.
Advances in Genetic Programming 111.

= P. A. Whigham. 1995. “Grammatically-
based Genetic Programming”. Workshop
on GP: From Theory to Real-World
Applications.

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

<axicom> ::=

<DNF>[0..¢] ::

ntext Free Grammars

<DNF>

= or (<term>) (<DNE>) <terr

= and (<literal>) (<term | <literal
= <letter:> T (<letter>)

Example of individual:

DNF -> (OR (<TERM>) (<DNF>)) ->

(OR (AND (<LETTER> <LETTER> <LETTER>) <DNF>) ->
(OR (AND (A B C) <DNF>) -> (OR (AND (A B C) <TERM>) -> ... ->
(OR (AND (ABC)) D)

(<DNF> (<TERM=> (<LETTER> gLE I IERRTIEALERERE Muthve blogRmming Tutoria

[Gruau, 96]

i Using Grammars

= T0O generate the initial propulation
(production rules used randomly)

= T0 generate syntactically correct
iIndividuals by crossover: choose two
Xover points generated by the same
production rule (ex: ‘A’ can be exchanged
by another <letter>, like C)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Example of Grammar Guided

‘L Crossover

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Grammars in [Whigham, 96]

° viduals are derivation trees

eMakes crossover easier

|t is necessary to build the program for fithess computation

S — Exp © | Individual depth 0
Exp — Exp Op Exp | (1) / ‘ \

— Pre Exp | (2)

— X (3) depth |
Op — + | (4)

— = | (5)

- x| (6) 3

— (7) et
Pre — sin | (8)

— cos | (9)

— ¢ | (10) dﬂpIhq

— In (11) cart rgeqram X-X+X

rial

* Working with Derivation Trees

Context-Free
Grammar

Declarative

Bias and Structure

N

3\ 4 3\

= Dernvation Trees ——== Proerams

/ \ J/

VAV
l\.__ ___./" "\._ _,/r]\,_ /

Genetic Operators Fitness Evaluation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Derivation Trees Crossover

\ AN R
or _ (B\ and /) B CYOSsSover Y B
B 'I ,! 1r 5 ,l] > B o
| e \
\ | | | z
| X "' 4
\./ \/
(or v v) (and x z) (or v x)
S ::= notB | andBR | orBR
B:i=xXx |y | z

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Grammar Adaptation

= P. A. Whigham. 1995. “Inductive Bias and
Genetic Programming”.

= Grammars can be changed as evolution
progresses, so that they generate good
iIndividuals more likely

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Other Grammar/Types Work

= M. L. Wong, K. S. Leung. 1995.
Genetic Logic Programming and
Applications. IEEE Expert, 10(5).

= D. Montana. 1995. Strongly Typed
Genetic Programming. Evolutionary
Computation

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Reuse In GP

= Of computations: store them in a variable or
data structure (arrays, lifo, fifo, ...)

= Of parameterized code: subroutines (ADF:
Automatic Defined Functions)

= Of repetitive code: iterations, loops,
recursivity

= Only with loops or recursivity, GP is Turing-
complete

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Use of Variables

= Add functions to read and write on variables or
arrays:
= Ex: (write-m 3.0) (read-m)
= EX: Indexed memory (arrays):
= (write-array-m 5 3.0)
= (read-array-m 5)
= Other data structures can be used (queues,
stacks, ...)

= Problems with (global) variables: secondary
effects, no functional programming anymore

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Example: variable m

Int write-m (value) {
m = value;
return(m);

}

Int read-m () {
return(m);

¥

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Evolving Subroutines

= Human programmers write subroutines for:

= Creating new primitives, more amenable to the
problem at hand

= Generalize similar pieces of code found In
differents parts of the main program

= By allowing subroutines, it is easier to write
code, and the final program is simpler

s Can GP use subroutines?

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

ADFs (Automatically Defined
Functions: subrutinas)

ch individual evolves its own subroutines in different
branches of the tree

ADFC
Main program

Homologous crossover

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Effort and size for even-parity

Even- Effort w/o Effort with | Size w/o | Sjze with
parity ADF ADFs ADF ADE

3 96.000 64.000 44,6 48,2
(x1.,5)

4 384.000| 176.000 112,6 60,1
(x2,18)

5 6.528.000| 464.000 299,9 156,38
(x14.,07)

6 70.176.000| 1.344.000 900,8 450,3
(x52,2)
/all NO YES

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Other Subroutine Works

= Angeline PJ and Pollack JB. 1992. “The
Evolutionary Induction of Subroutines”, The
Proceedings of the 14th Annual Conference of the
Cognitive Science Society.

= Rosca & Ballard. 1996. “Discovery of Subroutines

In Genetic Programming”. Advances in Genetic
Programming |l.

= Ricardo Aler, David Camacho, Alfredo Moscardini.
2004. "The Effects of Transfer of Global
Improvements in Genetic Programming".
Computing and Informatics

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

How Many ADFs and how
i many parameters?

= Try and test, starting with small values

= Use many ADFs and parameters and let
GP discover how many are needed

s Add automatic structure alteration
operators:

= Duplicate ADF or arguments
= Remove 1 ADFs or 1 argument

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Conclusions ADFs

= GP can evolve a main program and
several subroutines

= If the problem is complex enough,
computational effort and final size
decrease a lot

s Good 1dea, use them!

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Iteration in GP

= [heoric result:

» Teller. 1994. “Turing Completeness In
the Language of Genetic
Programming with Indexed Memory
”. 1994 IEEE World Congress on
Computational Intelligence

= GP+IM (Genetic Programming +
Indexed Memory (arrays))

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Iteration In GP [Teller, 1994]

= Available primitives:

= (IF X THEN Y ELSE 2)
s (= XY)

= (AND XY)

= (ADD X Y), (SUB X Y)

= Indexed memory (array):
» (Read X), (Write Y X)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Iteration In GP [Teller, 1994]

= Then, any algorithm can be expressed
as:

REPEAT <GP+IM function>

UNTIL <some state happens in memory
(for instance a flag Is raised)>

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Iteration In GP [Teller, 1994]

= No loops are needed for Turing-
completeness! (not completely
unexpected)

= Just evolve a GP+IM program

= In practice, it may be easier to evolve
programs with explicit loops

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Use of Loops

s Add to the function set a function that
Implements the loop:

= (loop times loop-body)
= (loop 10 (write-m (* (read-m) 1))

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘_hlee of Iterations and Loops

Int loop (times; body) {
Int I; Int times, result;
for (1=0; i<times; i1++) {
result=evaluate_tree(body);

}

return(result);}

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Limitations of Loops (and

‘L Recursion)

= Not used often

= Not well studied in GP

= Increase a lot fithess computation time
= |terative programs are fragile

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Solutions for Loops and
i Recursivity

s Limit;
= Fitness computation time
= Number of loops
= Number of iterations or recursive calls
= Loop nesting

= Coroutine model [Maxwell, 94]: Run
programs in parallel and cancel the bad ones

= Implicit recursion by means of high-level
funcions: map, foldr, ... [Yu, 01]

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Turing-complete Program

i Space

= W. B. Langdon and R. Poli. “The
Halting Probability in von-
Neumann Architectures”. EuroGP’ 06

= Space made of machine code random
programs

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

* Machine Code

Table 1. T7 Turing Complete Instruction Set

I[nstruction #operands operation vset Kvery ADD operation either sets or
ADD 3 A 4+ B=C v clears the overflow bit v.

BVS | #addr—pc if v=1 L.Di and STi, treat one of their argu-
COPY 2 A—B ments as the address of the data. They
LDi 2 aA—B allow array manipulation without the
STi 2 A—aB need for self modifying code. (LDi and
COPY_PC | pc—A STi data addresses are 8 bits.)

JUMP | addr—pe To ensure JUMP addresses are legal,

they are reduced modulo the program
length.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘L Programs that Terminate

Log 10 Count

1e+09 g T T - T T -
I Programs which stop +]
1e+08 F =
! +]
1e+07 F + -
: _F';{_]
1e+06 F _/++/ _
100000 [e 3

I 4
10000 [T 2

4+
! »]
1000 F -
.//+/++ ;
100 |]]]] L
100 1000 1e+4 1e+5 1e+6 1e+7/
Program length

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Number of Programs that End

= The number of programs that end grow
exponentially with length

= But the total number of programs grows much
faster

= The proportion is:

L/\/length.

= Execution time of programs that end Is
proportional to:

\1;1 1igth.

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Proportion of programs that

‘L end

H
Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Coroutine model [Maxwell, 94]

= Maxwell. 1994. “Experiments with a
Coroutine Execution Model for
Genetic Programming”. /EEE World
Congress on Computational
Intelligence. 413-417

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

iCoroutine Model [Maxwell, 94]

= Problem of limiting time:
= Threshold may be too small or too large

= Coroutine model:
= Allows “parallel” run of programs
= Do not limit execution time

= Steady-state model: good/fast individuals
replace bad/slow individuals

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Coroutine Model

= Fair comparison: compare individuals
with the same age (running time)

= Requires programs return partial fithess

= Not that difficult if there are many
fithess cases (fithess accumulated so
far)

= Or in problems similar to the Pacman

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Coroutine Model

= Create Initial population and run them for a
seconds. Compute partial fitness

A

Individuals Dndivaa] o3
L Indiv.2] 08 ~Fitness

fime

Ricardo Aler. ICML’'06 Automatic Inductive Programming Tutorial

Coroutine Model

= Create N new individuals by means of
tournament and genetic operators

A

Individuals Dndivaa] o3
| Indiv. 5
| Indiv. 6
| Indiv. 7
3 > time

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

* Coroutine Model

s Run the N Individuals for the same time than
the rest of individuals in the population

A

Individuals 0.3

0.8
0.7
0.1
0.8

0.2

0.1

>

fime

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

* Coroutine Model

= Remove the worse individuals by tournament

A

Individuals

IhdE7 o
< >

a time

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model

= Run individuals for another time 4. And so on

A

Individuals

<

%3 > time

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Coroutine Model

= It works well when an individual appears,
that solves all fithess cases In a finite time

= EXperiments show that it generates more
efficient individuals

= But there Is no guarantee that a better
iIndividual at a particular time £ will be the
best one Iin the long run. It is just a
heuristic

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Other Possibilities

= Coroutines difficult to implement
s Use different threads?

= For every generation, store the best
fithess obtained so far

= Cancel all programs that at that time,
get a worse fitness than the best
obtained so far

= Or downward adjust its priority

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Experiments with loops

= Not too many! Hard for GP, room for
research

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Evolving a Sorting Algorithm

= Kinnear. 1993. “Generality and Difficulty
IN Genetic Programming: Evolving a
Sort”. Fifth International Conference on
Genetic Algorithms

= Several general sorting algorithms were
evolved. O(N?)

= Fitness function: complex, but basically, it
counts the number of swaps (how far a
number is from its right position)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
i [Kinnear, 93]

= Population size: 1000
= Generations: 50
= Maximum initial depth: 6

= Fitness cases: 15 (5 fixed and 10 random).
Maximum list length: 30

= Probability of success: from 40% (low-level
primitives) to 100% (high-level primitives) of
runs generated a correct individual

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
‘L [Kinnear, 93]

= Primitives (quite low-level):
=« If(test) {body}
n X<y
= Swap(x,y)
= for(start, end, body), index
s X+1, X-1, x-y
= *leng™: length of the list of integers

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
i [Ciesielski, Li, 04]

= Clesielski, Li. 2004. “Experiments
with Explicit For-loops in Genetic
Programming”. CEC'O4.

= Sorting problem:

= It Is more likely to evolve good sorting
programs by using loops. They are also simpler

= But no general sorting algorithm was evolved!

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
i |Spector, Klein, Keijzer, 05]

= Spector, Klein, Keljzer. 2005. “The
Push3 Execution Stack and the
Evolution of Control”. GECCO’2005

s Stack-based GP

= Evolved general programs for reversing
a list, factorial, Fibonacci, N-even-
parity, and list sorting

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
‘L |Spector, Klein, Keijzer, 05]

s Complexity: O(N?%): N*(N-1)/2
= Fitness cases: lists of 4 to 8 integer
elements

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
‘L |Spector, Klein, Keijzer, 05]

= Primitives (quite low-level):
= List[i] (accesses position i of the list)
« Length (of the list to be sorted)
= Swap(l,]) =
« List[i] = List[j], List[j] = List[i]
= Max(i,)) = Max(List[i],List[j])

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

‘L Evolving a Sorting Algorithm

= No O(N*In(N)) algorithm has been
evolved by GP (as far as | know!)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Experiments in Recursivity

= Wong. 2005. “Evolving Recursive

Programs by Using Adaptive Grammar
Based Genetic Programming.”

= Yu. 2001. “Hierachical Processing for
Evolving Recursive and Modular

Programs Using Higher Order Functions
and Lambda Abstractions”

s In: Genetic Programming and Evolvable
Machines

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Implicit Recursion [Yu, 01]

= No explicity recursive calls

= High level functions:

= Map. Ex: map 3+x (12 3) = (4 5 6)

« Foldr. Ex: foldr + 0 (1 2 3) = 1+2+3+0 =6
= They are guaranteed to terminate

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Results Implicit Recursion

Resulte Im}_)licit Recu;‘sio_n Generic Gel_letic GP with ADE<
+ 7. Abstractions Programming
Programs general even-parity general even-parity even-7-parity
Runs/Success 60/57 60/17 29/10
Minimum I(M.1.2) 14000 220.000 1.440.000
Number of Fitness Cases 12 8 128
Fitness Cases Processed 168.000 1,760,000 184.320.00

Solution: 101 (foldr 16 (head L)(tail L)) False

Equivalent (not (foldr xor (head L) (tail L)))

to:
(xor también ha sido evolucionada)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Limits to Explicit Recursion

= Only for lists?

= It does not work for evolving Fibonacci
equation f(n) = f(n-1)+f(n-2)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP Variants

= Evolving Data Structures [Langdon, 98]

= Machine Code Evolution (linear
representation) [keller, 96], [friedrich, 97]

= Immune Programing [Musilek, 06]:

= Stack-based GP (lineal) [Perkins, 94]
[Spector et al. 2005]

= Cartesian Genetic Programming [Miller et al,
03]

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Criteria for “human-
competitive”

(A) The result was patented as an invention in the past, is
an improvement over a patented invention, or would qualify
today as a patentable new invention.

(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.

(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by an
Internationally recognized panel of scientific experts.

(D) The result is publishable in its own right as a new
scientific result — /ndependent of the fact that the result was
mechanically created.

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Criteria for “human-
competitive”

(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

(F) The result is equal to or better than a result that was
considered an achievement In its field at the time it was
first discovered.

(G) The result solves a problem of indisputable difficulty
In its field.

(H) The result holds its own or wins a regulated
competition involving human contestants (in the form of
either live human players or human-written computer
programs).

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP successes

= http://www.genetic-programming.com/
humancompetitive.html

= Quantum algorithms better than existing ones
s Aplication to Robosoccer
s Aplications to Bioinformatics

= Aplication to analogical circuit design and
antennae design (developmental GP)

= Paralelization of computer programs

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

Antenna designed by
‘_Hievelomental GP

= GP evolves programs that build the antenna

s Launched Iin ST5 satellite, launched in March
2006

-

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

* GP in Quantum Computing

Creation of a better-than-classical guantum algorithm for the Deutsch-
Jozsa “early promise” problem (B, F)

m Creation of a better-than-classical guantum algorithm for Grover’s
database search problem (B, F)

s Creation of a quantum algorithm for the depth-two AND/OR query
problem that is better than any previously published result (D)

m Creation of a gquantum algorithm for the depth-one OR query problem
that is better than any previously published result (D)

m Creation of a protocol for communicating information through a
quantum gate that was previously thought not to permit such
communication (D)

= Creation of a novel variant of quantum dense coding (D)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html

i GP In Robosoccer

s Creation of a team that won the first
two matches at RoboCup 1997, [Luke
1998]

= Creation of a whole team that ranked In
the middle of 34 human programmed
teams at RoboCup 1998, [Andre and
Teller 1999]

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

* Results at Robocup 1998

1 2 £ 2
1. PaSo Team (Ttaly) N e
1) L] M =1 11 [
2. Tn-Sparrow (Germany) N - U3 0:1
n A niea
3. Miva 2 (Japan) 10 | 30 | - 0:0
Y g | | [21
4. Darwin Tluted (TTZ480 05 1:0 -0 -
Cualfied:
1. Miva

2. Pazo Teatn

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

esults at Robocup 1998

= Grupo E:
= (1) Miya2 (0-0)
= (2) PasoTeam (0-5)
= (3) Darwin United
= (4) Ulm-Sparrow (1-0)
= Darwin United obtained 4 points.

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i GP In bioinformatics

= Creation of four different algorithms for
protein transmembrane identification

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

i Conclusions GP

s Evolution of trees with functions and
memory

s Good i1dea: ADFs

= Not many results with loops and
recursivity, so far

= Success in some real problems
= Genetic operators, too low level

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial

	Genetic Programming
	Genetic Programming
	Genetic Programming
	Program Representation
	Example: Even-parity
	Fitness cases 10 bit even-parity
	Generational GP Algorithm
	Generational GP Algorithm
	Genetic Operators. Crossover
	Genetic Operators. Subtree Mutation
	Genetic Operators. Point Mutation
	From Generation i to i+1
	Random Creation of the Initial Population
	Random Creation of the Initial Population
	Random Creation of the Initial Population
	Methods for Generating Diverse Individuals
	Language
	Functions
	Terminals
	The fitness Function
	Selection of Best Individuals
	Premature Convergence
	Fitness Proportionated (Roulette Wheel) Selection
	Tournament Selection
	Control Parameters
	GP Tools
	Example with lil-gp
	Lil-gp Fitness Function for a Regression Problem dv=f(x)
	Computational Effort for Even-Parity
	GP Speedup
	GP Speedup
	Fitness Case Parallelism
	Individual Parallelism
	Paralellism with Islands
	Rational Allocation of Trials (RAT)
	RAT Algorithm
	Tournament Selection
	RAT Basic Idea
	RAT Algorithm. Initialization
	RAT Algorithm
	RAT Algorithm
	RAT Algorithm
	Criticisms to Crossover
	Headless Chicken Crossover Operator
	New crossover operators
	Crossover in Genetic Algorithms
	One Point Crossover
	One-Point Crossover.
	Properties of One-point Crossover
	Uniform Crossover in Genetic Algorithms
	GP Uniform Crossover (GPUX)
	GP Uniform Crossover (GPUX)
	Uniform Crossover
	Properties of Uniform Crossover
	Smooth Operators
	Smooth Operators for Boolean Functions
	Smooth Crossover and Mutation
	Results on even-parity-5
	Results on even-parity-6
	Smooth operators
	Bloat
	Bloat
	Bloat Problems
	Bloat. Why?
	Bloat Control
	Bloat Control
	Bloat Control. Tarpeian Method
	Bloat Control. Tarpeian Method
	Tarpeian: Fitness Hole for Large Individuals
	Tarpeian: Balloon Metaphor
	Tarpeian Properties
	Adding Syntactical Restrictions
	Main Grammar Works
	Context Free Grammars
	Using Grammars
	Example of Grammar Guided Crossover
	Grammars in [Whigham, 96]
	Working with Derivation Trees
	Derivation Trees Crossover
	Reuse in GP
	Use of Variables
	Example: variable m
	Evolving Subroutines
	ADFs (Automatically Defined Functions: subrutinas)
	Effort and size for even-parity
	Other Subroutine Works
	How Many ADFs and how many parameters?
	Conclusions ADFs
	Iteration in GP
	Iteration in GP [Teller, 1994]
	Iteration in GP [Teller, 1994]
	Iteration in GP [Teller, 1994]
	Use of Loops
	Limitations of Loops (and Recursion)
	Solutions for Loops and Recursivity
	Turing-complete Program Space
	Machine Code
	Programs that Terminate
	Number of Programs that End
	Proportion of programs that end
	Coroutine model [Maxwell, 94]
	Coroutine Model [Maxwell, 94]
	Coroutine Model
	Coroutine Model
	Coroutine Model
	Other Possibilities
	Experiments with loops
	Evolving a Sorting Algorithm
	Evolving a Sorting Algorithm. [Kinnear, 93]
	Evolving a Sorting Algorithm. [Kinnear, 93]
	Evolving a Sorting Algorithm. [Ciesielski, Li, 04]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm
	Experiments in Recursivity
	Implicit Recursion [Yu, 01]
	Results Implicit Recursion
	Limits to Explicit Recursion
	GP Variants
	Criteria for “human-competitive”
	Criteria for “human-competitive”
	GP successes
	Antenna designed by develomental GP
	GP in Quantum Computing
	GP in Robosoccer
	Results at Robocup 1998
	GP in bioinformatics
	Conclusions GP

