
Genetic Programming

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Programming

Genetic algorithms for evolving programs
Instead of bitstrings, programs are evolved
M. Cramer. 1985. A Representation for
the Adaptive Generation of Simple
Sequential Programs, Proc. of an Intl.
Conf. on Genetic Algorithms and their
Applications.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Programming
John R. Koza
Non-Linear Genetic Algorithms for Solving
Problems. United States Patent 4,935,877. Filed May 20,
1988. Issued June 19, 1990.
1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press.
1994. Genetic Programming: On the Programming
of Computers by Means of Natural Selection.
1999. Genetic Programming III: Darwinian
Invention and Problem Solving
2003. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Program Representation

LISP / parse trees
(dotimes i 3 (setq v (* i i)))
For i := 1 to 3 {v := i*i;}
Language = functions +
terminals

dotimes
i 3 setq

v *

i i

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example: Even-parity

Even-parity(1,0,0,0,1,0,0,1,1) -> TRUE
Language / primitives:

Functions: AND, OR, NAND, NOR, NOT (no
XOR available!)
Terminals: D0, D1, D2, ..., D9

Heuristic / fitness: count number of
input/output pairs (fitness cases) solved
correctly

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Fitness cases 10 bit even-
parity

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 OUTPUT

0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 0 0 1 1 TRUE

...

TRUE

0 0 0 0 0 0 0 0 0 FALSE

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Generational GP Algorithm

1. Create a random population of programs
(individuals) using the functions and terminals

2. Run all the programs and compute their fitness
3. Select (stochastically) the best ones according to

some policy
4. Create a new population by applying the genetic

operators to the selected individuals
5. Go to 2, until a “good enough” program is found

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Generational GP Algorithm

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Generation 0 Generation 1

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Generation N

Selection,
Mutation,
Crossover

Selection,
Mutation,
Crossover

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Steady-State GP

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Generation 0 Generation 1

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Generation N

Selection,
Mutation,
Crossover

Selection,
Mutation,
Crossover

Only a few individuals (even 1) change between generations

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Operators. Crossover

Reproduction (just copy the program)
Crossover (recombination)

dotimes
i 3 setq

v *

i i

+

3 /

i 2

dotimes
i 3 setq

v /

i 2

+

3 *

i i

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Operators. Subtree
Mutation

dotimes
i 3 setq

v *

i i

/

i 2

dotimes
i 3 setq

v

Chop off a subtree and grow a random one

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Operators. Point
Mutation

dotimes
i 3 setq

v +

i i

dotimes
i 3 setq

v *

i i

Select a function with the same arity at the
mutation point

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

From Generation i to i+1

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Generation 0

Compute

fitness

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Crossover

0.3

0.7

0.5

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Selection

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Mutation

Generación 1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Random Creation of the Initial
Population

AND

•Select randomly a function for the tree root from:

•{AND(1,2), OR(1,2), NAND(1,2), NOR(1,2), NOT(1)}

•{D0, D1, D2, ..., D9}

•Create as many branches as the function’s arity

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Random Creation of the Initial
Population

•Create as many subtrees as branches

OR

AND

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Random Creation of the Initial
Population

OR

AND

D0 D0

D7

•It is important to create an initial population as diverse as
possible:

•Different tree shapes

•Different tree depths

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Methods for Generating
Diverse Individuals

“Full”: all tree paths have the same
depth
“Grow”: variable depth
“Ramped half and half”:

Individuals are generated for depths 1, 2,
3, ..., max-depth
50% full, 50% grow

Goal: maximize diversity

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Language

Language (primitives) = functions +
terminals

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Functions
Have 1 or several arguments: +, not, ...
Kinds:

Functions: arguments are evaluated before calling the
function:

+(3, *(4,5)) = +(3,20) = 23
Macros: the macro controls which arguments are
evaluated:

If(3>5, v:=3, v:=4) -> v:=4

Closure: every function must be able to accept
any value (i.e. They must be protected):

3 / 0 = 1
3 + “joe” = 3

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Terminals
Input variables:

D0, D1, ..., D9
Functions with no arguments:

go-forward
Constants:

3, a, ...
“Ephemeral random constant” R:

For numerical problems. Everytime R is selected
during individual creation, a random real number
is created

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

The fitness Function
Raw:

Ex: number of fitness cases predicted
correctly

Standard: GP always minimizes:
Standard = maximum – raw

Adjusted: (normalized between 0 and 1)
1/(1+standard).

Relative:
Adjusted/Total fitness in the population

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Selection of Best Individuals
Fitness proportionated:

An individual is selected with a probability proportional
to its relative fitness

Tournament selection
K individuals are sampled randomly
The best one is selected

Elitism:
The best individual(s) are always selected
This is used to make sure that the best individual will
not be lost

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Premature Convergence

Some selection methods lead to
premature convergence
That is, we get a population that stops
generating better and better individuals

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Fitness Proportionated
(Roulette Wheel) Selection

On average good individuals will be selected more
often
Problem: superindividuals, no variety in the population
premature convergence

Program 0
Prog. 1

Prog. 2

Prog. 3

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Tournament Selection

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Tournament set
k = 2 di 3 s

v *
i i

0.8

0.3

Winner
0.3<0.8
(minim.)

K controls selective pressure
The larger K, the more pressure (4 is ok)

Repeat,
until the
population
is filled up

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Control Parameters
Population size (M: 500 to 10000)
Maximum number of generations (G: 50 to 100)
Probabilities of crossover, recombination, and
mutation (mutation<5%)
Generation method for the initial population
(grow, full, ramped half and half)
Maximum depth of initial individuals
Maximum depth of individuals after
recombination

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Tools

LIL-GP: c
http://garage.cse.msu.edu/software/lil-gp/

ECJ: Java
http://cs.gmu.edu/~eclab/projects/ecj/

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example with lil-gp
Individuals in lil-gp are represented as trees. When they
are to be executed, lil-gp interprets the tree and calls the
primitives as required
For instance, if the function set includes / and *, the
following functions have to be defined:

DATATYPE f_protdivide (int tree, farg *args)
If (args[1].d == 0.0) return 1.0;
Else return args[0].d / args[1].d

DATATYPE f_multiply (int tree, farg *args)
Return args[0].d * args[1].d

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Lil-gp Fitness Function for a
Regression Problem dv=f(x)

void app_eval_fitness (individual *ind){

for (i = 0; i < fitness_cases; ++i){

g.x = app_fitness_cases[0][i]; # x = input

dv = app_fitness_cases[1][i]; # dv = output

v = evaluate_tree (ind->tr[0].data, 0); # v=value returned by individual

disp = fabs (dv-v); # difference between correct and predicted value

ind->r_fitness += disp; # Add to the fitness

}

ind->s_fitness = ind->r_fitness; # Standard fitness

ind->a_fitness = 1/(1+ind->s_fitness); # Adjusted fitness

}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP is Stochastic

GP is stochastic: different runs may provide
different results
No guarantee a GP will end with success
(premature convergence)
Repeat many times, record the best result
Computational effort (informal definition): minimum
number of individuals to be evaluated so that a
perfect individual will be obtained with high
probability

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Computational Effort for Even-
Parity

Even parity Computational
effort

Time (hours)

3 96.000
4 384.000
5 6.528.000

6 70.176.000 3h (P-1.5GHz)
Note:

Not all fitness evaluation take the same time.
Most of the time is spent on fitness computation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Speedup

Large computational effort required
Interesting results can be obtained with
current machines
Moore’s law: computational power duplicated
every 18 months

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Speedup
Machine Code evolution ([keller, 96], [friedrich,
97], [Nordin, 95] x2000 wrt LISP, x100 wrt C)
Reconfigurable hardware (PGA)
Paralelism:

1 run per machine
Island model (or demes): 1 population per
machine + migration
1 fitness case per machine
1 individual per machine

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Fitness Case Parallelism

Individual i

Individual i

Individual i

Case 1

Case 2

Case n

Fitness i,1

Fitness i,2

Fitness i,n

Population:

Individual 1

Individual 2

...

...

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Individual Parallelism

Individual 1

Individual 2

Individual i

Case 1

Case 2

...Fitness 1

Fitness 2

Fitness i

...

Case 1

Case 2

...

Case 1

Caso 2

...

Population:

Individual 1

Individual 2

...

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Paralellism with Islands

Migration

Migration

Migration

Migration

Population 1

Population 2

Population 3

Population 1

Topology, prob. Migration

Maintains diversity

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Rational Allocation of Trials
(RAT)

Teller, Andre. 1997. “Automatically Choosing
the Number of Fitness Cases: The rational
Allocation of Trials”. GECCO’97
Do not use all the fitness cases
Use only as many as necessary to differentiate
between good and bad individuals
Every individual will evaluate the most
appropriate number of fitness cases

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Algorithm

It uses tournament selection:
1. Do M times (M is the population size)

1. Pick K individuals at random from the population Pi

2. From this set, place a copy of the individual i with
highest approximated fitness into the mating pool

2. Pi+1 is created by the application of genetic
operators to the mating pool

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Tournament Selection

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Tournament set
k = 2 di 3 s

v *
i i

0.8

0.3

Winner
0.3<0.8
(minim.)

Repeat,
until the
population
is filled up

Mating
pool

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Basic Idea

If an individual L in a tournament is
unlikely to become the winner, then do
not evaluate more fitness cases for L
If no other individual in the tournament
set is likely to become the winner W,
then do not evaluate more fitness cases
for W

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Algorithm. Initialization

Create M tournaments (all at once)
Initialize contention list Q with all
individuals (it contains individuals for
which it is required to evaluate more
fitness cases)
Evaluate all individuals with Tmin fitness
cases (out of a total T fitness cases)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Algorithm
Do T-Tmin times:

Remove any individual X from Q if for every
tournament t that X is in:

X is not in the first place
AND it is not likely to become the winner

OR
X is in the first place (temporary winner)
AND it is not likely that other individuals in tournament t
become better than X

Evaluate all individuals still in list Q on the current
training example

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Algorithm
How to determine if an individual i is likely (or
not) to be better than another individual j?
If both individuals have been evaluated on a
sample with k fitness cases
Then, the average error (ek

i, ek
j) and standard

deviation can be estimated from the sample
Assuming normality, we can compute the
probability that the true error of i (e*

i) is smaller
than the true error of j (e*

j).
If Pr(e*

i < e*
j - t) is small then i is not likely to be

better than j

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

RAT Algorithm
The gaussians are the distributions of the
true error (assuming normality)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Criticisms to Crossover
It is not clear that crossover actually
recombines features from both parents
(effects of code are very context dependent)

dotimes
i 3 setq

v

if

> /

i 2dotimes
k

5
incf

v

x 2

if

/

i 2

dotimes
k

5
incf

v

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

[Nordin and Banzhaf, 95] (linear GP)
Destructive

Xover

Neutral
Xover

“creative”
Xover

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Headless Chicken Crossover
Operator

Some studies show that crossover is basically a
macromutation operator, although it works
better than random search ([Lang, 95], [O’Reilly
& Oppacher, 94], [Angeline, 97])
[Luke, Spector, 97,98]: “A [Revised] Comparison
of Crossover and Mutation in GP”:

Crossover works slightly better than mutation
[Chelapilla, 97]: “Evolving computer programs
without subtree crossover”:

Crossover not necessary

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

New crossover operators
“Brood recombination”: two parents cross
many times, the best offspring is chosen
[Tackett, 94]
“intelligent xover”: choose the crossover point
intelligently: PADO [Teller, 95]
“Homologous xover”: subtrees are exchanged
only at the same position [Haeseleer, 94]
[Poli & Langdon]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Crossover in Genetic
Algorithms

Crossover always maintains the position of
bits

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

One Point Crossover

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

One-Point Crossover.

1. Alignment: Look for the common
structure in both parents

2. Choose one random xover point in
the common region

3. Exchange the subtrees

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Properties of One-point
Crossover

At the beginning of evolution, xover points
belong to the top part of parents (small common
structure)
As evolution progresses, some structures
become prevalent and deeper regions are
explored
Top-down exploration, which makes sense for
programs
Point mutation required (like in genetic
algorithms)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Uniform Crossover in Genetic
Algorithms

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Uniform Crossover (GPUX)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Uniform Crossover (GPUX)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Uniform Crossover

Determine the common and interior
regions
Exchange nodes:

If in the interior region, just exchange the
nodes
If not, exchange the subtrees as well

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Properties of Uniform
Crossover

Search becomes more global (offspring
less similar to parents than the 1-point
crossover)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Smooth Operators

Goal: to make small changes to
programs
Instead of exchanging two functions,
they are sort of “averaged”
GPSUX, GPPM: Smooth crossover and
point mutation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Smooth Operators for Boolean
Functions

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Smooth Crossover and
Mutation

AND(A,B) = ffft
OR(A,B) = 0111
Smooth xover AND/OR = 0f1t
Smooth mutation AND = f1ft
Not clear how this could be extended to
non-binary problems
(Note f=0, t=1)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results on even-parity-5

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results on even-parity-6

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Smooth operators

They seem to work better than non-
smooth
Not clear that xover is required in this
problem

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat

After several generations, individual size
tends to grow, with no increase in fitness
Fast growth, nearly quadratic [Langdon,
00]
Caused by “introns”: a+ (a-a+a-a),
0*(a*b+c*d), if(F) then {...}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat

Average population fitness

Average individual size

Generations

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat Problems
Individuals take longer to run and take more
memory
Search stagnates (genetic operators change
unused regions)
Although it is reported that in some
occasions, introns protect sensitive parts of
the code

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat. Why?
It is expected it will happen when evolving variable-size
structures, with a fixed fitness function
Accuracy theory: Defence against crossover, specially
at the end of the run, when it is difficult to improve
fitness
After a particular size, fitness is independent of fitness.
There are more large programs than small ones, so there
is a tendency to grow
Removal bias theory: It is easier to add small subtrees
(inside the introns) than to remove large subtrees

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat Control

Parsimony: fitness penalty for large
individuals (k?):

F’(x) = F(x) + k*size(x)

Limit maximum size (which one?):
Problem: you get bloat!

Assign a bad fitness to large individuals so
that they are not selected in the next
generation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat Control

Tournament selection. If two individual
draw in fitness, then select the small
ones
Avoid destructive crossover:

brood recombination

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat Control. Tarpeian
Method

Removes a percentage of larger-than-average programs

n >= 2 (n=2, half of big programs die)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Bloat Control. Tarpeian
Method

Larger-than-average individuals are more likely
to die
If it survives and it is a better than average
individual, it will reproduce and the average size
will increase
But there will still be opposition to growth
Saves time on large individuals (not evaluated)
Justification based on schema theorem

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Tarpeian: Fitness Hole for
Large Individuals

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Tarpeian: Balloon Metaphor

Fitness = hot air

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Tarpeian Properties

Valid with point-mutation (no subtree
mutation)
Beware of premature convergence
because of:

Small populations
Large pressure selection
Too large bias against large individuals
(with n small)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Adding Syntactical Restrictions
Standard GP requires “closure” (i.e. Protected
functions)

3/0 = 1
“dog” + 4 = 4

Search space larger than necessary
Very unnatural solutions (some believe this is
an advantage):

if (3+”dog”) then {10/0}
Solution: Use grammars or types

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Main Grammar Works
F. Gruau. 1996. “On using syntactic
constraints with genetic programming”.
Advances in Genetic Programming III.
P. A. Whigham. 1995. “Grammatically-
based Genetic Programming”. Workshop
on GP: From Theory to Real-World
Applications.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Context Free Grammars
[Gruau, 96]

Example of individual:

DNF -> (OR (<TERM>) (<DNF>)) ->

(OR (AND (<LETTER> <LETTER> <LETTER>) <DNF>) ->

(OR (AND (A B C) <DNF>) -> (OR (AND (A B C) <TERM>) -> ... ->

(OR (AND (A B C)) D)

(<DNF> (<TERM> (<LETTER> <LETTER> <LETTER>)) <LETTER>)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Using Grammars

To generate the initial propulation
(production rules used randomly)
To generate syntactically correct
individuals by crossover: choose two
xover points generated by the same
production rule (ex: ‘A’ can be exchanged
by another <letter>, like C)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of Grammar Guided
Crossover

OR
<INF>

AND
<TERM>

A
<LETTER>

B
<LETTER>

C
<LETTER>

D
<LETTER>

OR
<INF>

AND
<TERM>

D
<LETTER>

A
<LETTER>

A
<LETTER>

Xover
points

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Grammars in [Whigham, 96]
•Individuals are derivation trees

•Makes crossover easier

•It is necessary to build the program for fitness computation

Program: x-x+x

Individual

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Working with Derivation Trees

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Derivation Trees Crossover

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Grammar Adaptation

P. A. Whigham. 1995. “Inductive Bias and
Genetic Programming”.
Grammars can be changed as evolution
progresses, so that they generate good
individuals more likely

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Other Grammar/Types Work

M. L. Wong, K. S. Leung. 1995.
Genetic Logic Programming and
Applications. IEEE Expert, 10(5).
D. Montana. 1995. Strongly Typed
Genetic Programming. Evolutionary
Computation

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Reuse in GP
Of computations: store them in a variable or
data structure (arrays, lifo, fifo, ...)
Of parameterized code: subroutines (ADF:
Automatic Defined Functions)
Of repetitive code: iterations, loops,
recursivity
Only with loops or recursivity, GP is Turing-
complete

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Use of Variables
Add functions to read and write on variables or
arrays:

Ex: (write-m 3.0) (read-m)
EX: indexed memory (arrays):

(write-array-m 5 3.0)
(read-array-m 5)

Other data structures can be used (queues,
stacks, ...)
Problems with (global) variables: secondary
effects, no functional programming anymore

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example: variable m

Int write-m (value) {
m = value;
return(m);

}

Int read-m () {
return(m);

}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving Subroutines

Human programmers write subroutines for:
Creating new primitives, more amenable to the
problem at hand
Generalize similar pieces of code found in
differents parts of the main program

By allowing subroutines, it is easier to write
code, and the final program is simpler
Can GP use subroutines?

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ADFs (Automatically Defined
Functions: subrutinas)

Prog.

NOR ADF1

ADF1 ADF1

D0 D1 D2 D3

ADF0 ADF0NOT

AND

ARG1

ARG0 ARG0 ARG1
ARG1 ARG0

Main programADF1
ADF0

Homologous crossover

Each individual evolves its own subroutines in different
branches of the tree

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Effort and size for even-parity

Even-
parity

Effort w/o
ADF

Effort with
ADFs

Size w/o
ADF

Size with
ADF

3 96.000 64.000
(x1,5)

176.000
(x2,18)

464.000
(x14,07)

6 70.176.000 1.344.000
(x52,2)

900,8 450,3

7 a 11 NO YES

4 384.000

48,244,6

5 6.528.000

112,6 60,1

156,8299,9

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Other Subroutine Works
Angeline PJ and Pollack JB. 1992. “The
Evolutionary Induction of Subroutines”, The
Proceedings of the 14th Annual Conference of the
Cognitive Science Society.
Rosca & Ballard. 1996. “Discovery of Subroutines
in Genetic Programming”. Advances in Genetic
Programming II.
Ricardo Aler, David Camacho, Alfredo Moscardini.
2004."The Effects of Transfer of Global
Improvements in Genetic Programming".
Computing and Informatics

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

How Many ADFs and how
many parameters?

Try and test, starting with small values
Use many ADFs and parameters and let
GP discover how many are needed
Add automatic structure alteration
operators:

Duplicate ADF or arguments
Remove 1 ADFs or 1 argument

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions ADFs

GP can evolve a main program and
several subroutines
If the problem is complex enough,
computational effort and final size
decrease a lot
Good idea, use them!

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iteration in GP

Theoric result:
Teller. 1994. “Turing Completeness in
the Language of Genetic
Programming with Indexed Memory
”. 1994 IEEE World Congress on
Computational Intelligence

GP+IM (Genetic Programming +
Indexed Memory (arrays))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iteration in GP [Teller, 1994]

Available primitives:
(IF X THEN Y ELSE Z)
(= X Y)
(AND X Y)
(ADD X Y), (SUB X Y)
Indexed memory (array):

(Read X), (Write Y X)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iteration in GP [Teller, 1994]

Then, any algorithm can be expressed
as:

REPEAT <GP+IM function>
UNTIL <some state happens in memory

(for instance a flag is raised)>

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iteration in GP [Teller, 1994]

No loops are needed for Turing-
completeness! (not completely
unexpected)
Just evolve a GP+IM program
In practice, it may be easier to evolve
programs with explicit loops

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Use of Loops

Add to the function set a function that
implements the loop:

(loop times loop-body)
(loop 10 (write-m (* (read-m) i))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Use of Iterations and Loops

int loop (times; body) {
int i; int times, result;
for (i=0; i<times; i++) {
result=evaluate_tree(body);

}
return(result);}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Limitations of Loops (and
Recursion)

Not used often
Not well studied in GP
Increase a lot fitness computation time
Iterative programs are fragile

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Solutions for Loops and
Recursivity

Limit:
Fitness computation time
Number of loops
Number of iterations or recursive calls
Loop nesting

Coroutine model [Maxwell, 94]: Run
programs in parallel and cancel the bad ones
Implicit recursion by means of high-level
funcions: map, foldr, ... [Yu, 01]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Turing-complete Program
Space

W. B. Langdon and R. Poli. “The
Halting Probability in von-
Neumann Architectures”. EuroGP’ 06
Space made of machine code random
programs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Machine Code

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Programs that Terminate

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Number of Programs that End
The number of programs that end grow
exponentially with length
But the total number of programs grows much
faster
The proportion is:

Execution time of programs that end is
proportional to:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Proportion of programs that
end

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine model [Maxwell, 94]

Maxwell. 1994. “Experiments with a
Coroutine Execution Model for
Genetic Programming”. IEEE World
Congress on Computational
Intelligence. 413-417

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model [Maxwell, 94]

Problem of limiting time:
Threshold may be too small or too large

Coroutine model:
Allows “parallel” run of programs
Do not limit execution time
Steady-state model: good/fast individuals
replace bad/slow individuals

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model

Fair comparison: compare individuals
with the same age (running time)
Requires programs return partial fitness
Not that difficult if there are many
fitness cases (fitness accumulated so
far)
Or in problems similar to the Pacman

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
Create initial population and run them for a
seconds. Compute partial fitness

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

time

Individuals

a

0.3

0.8

0.7

0.1

Fitness

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
Create N new individuals by means of
tournament and genetic operators

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

time

Individuals

a

0.3

0.8

0.7

0.1

Indiv. 5
Indiv. 6

Indiv. 7

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
Run the N individuals for the same time than
the rest of individuals in the population

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

timea

Individuals 0.3

0.8

0.7

0.1

Indiv. 5
Indiv. 6
Indiv. 7

0.8

0.2

0.1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
Remove the worse individuals by tournament

Indiv. 1

Indiv. 4

timea

Individuals 0.3

0.1

Indiv. 6
Indiv. 7

0.2

0.1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
Run individuals for another time a. And so on
...

Indiv. 1

Indiv. 4

time2*a

Individuals

Indiv. 6
Indiv. 7

Indiv. 4

Indiv. 6
Indiv. 7

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Coroutine Model
It works well when an individual appears,
that solves all fitness cases in a finite time
Experiments show that it generates more
efficient individuals
But there is no guarantee that a better
individual at a particular time t will be the
best one in the long run. It is just a
heuristic

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Other Possibilities
Coroutines difficult to implement
Use different threads?
For every generation, store the best
fitness obtained so far
Cancel all programs that at that time,
get a worse fitness than the best
obtained so far
Or downward adjust its priority

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Experiments with loops

Not too many! Hard for GP, room for
research

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm
Kinnear. 1993. “Generality and Difficulty
in Genetic Programming: Evolving a
Sort”. Fifth International Conference on
Genetic Algorithms
Several general sorting algorithms were
evolved. O(N2)
Fitness function: complex, but basically, it
counts the number of swaps (how far a
number is from its right position)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Kinnear, 93]

Population size: 1000
Generations: 50
Maximum initial depth: 6
Fitness cases: 15 (5 fixed and 10 random).
Maximum list length: 30
Probability of success: from 40% (low-level
primitives) to 100% (high-level primitives) of
runs generated a correct individual

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Kinnear, 93]

Primitives (quite low-level):
if(test) {body}
x<y
Swap(x,y)
for(start, end, body), index
x+1, x-1, x-y
leng: length of the list of integers

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Ciesielski, Li, 04]

Ciesielski, Li. 2004. “Experiments
with Explicit For-loops in Genetic
Programming”. CEC’04.

Sorting problem:
It is more likely to evolve good sorting
programs by using loops. They are also simpler
But no general sorting algorithm was evolved!

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Spector, Klein, Keijzer, 05]

Spector, Klein, Keijzer. 2005. “The
Push3 Execution Stack and the
Evolution of Control”. GECCO’2005
Stack-based GP
Evolved general programs for reversing
a list, factorial, Fibonacci, N-even-
parity, and list sorting

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Spector, Klein, Keijzer, 05]

Complexity: O(N2): N*(N-1)/2
Fitness cases: lists of 4 to 8 integer
elements

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm.
[Spector, Klein, Keijzer, 05]

Primitives (quite low-level):
List[i] (accesses position i of the list)
Length (of the list to be sorted)
Swap(i,j) =

List[i] = List[j], List[j] = List[i]

Max(i,j) = Max(List[i],List[j])

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Evolving a Sorting Algorithm

No O(N*ln(N)) algorithm has been
evolved by GP (as far as I know!)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Experiments in Recursivity
Wong. 2005. “Evolving Recursive
Programs by Using Adaptive Grammar
Based Genetic Programming.”
Yu. 2001. “Hierachical Processing for
Evolving Recursive and Modular
Programs Using Higher Order Functions
and Lambda Abstractions”
In: Genetic Programming and Evolvable
Machines

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Implicit Recursion [Yu, 01]

No explicity recursive calls
High level functions:

Map. Ex: map 3+x (1 2 3) = (4 5 6)
Foldr. Ex: foldr + 0 (1 2 3) = 1+2+3+0 = 6

They are guaranteed to terminate

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results Implicit Recursion

Solution:
(not (foldr xor (head L) (tail L)))

(xor también ha sido evolucionada)

Equivalent
to:

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Limits to Explicit Recursion

Only for lists?
It does not work for evolving Fibonacci
equation f(n) = f(n-1)+f(n-2)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Variants
Evolving Data Structures [Langdon, 98]
Machine Code Evolution (linear
representation) [keller, 96], [friedrich, 97]
Immune Programing [Musilek, 06]:
Stack-based GP (lineal) [Perkins, 94]
[Spector et al. 2005]
Cartesian Genetic Programming [Miller et al,
03]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Criteria for “human-
competitive”

(A) The result was patented as an invention in the past, is
an improvement over a patented invention, or would qualify
today as a patentable new invention.
(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.
(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by an
internationally recognized panel of scientific experts.
(D) The result is publishable in its own right as a new
scientific result ⎯ independent of the fact that the result was
mechanically created.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Criteria for “human-
competitive”

(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a result that was
considered an achievement in its field at the time it was
first discovered.
(G) The result solves a problem of indisputable difficulty
in its field.
(H) The result holds its own or wins a regulated
competition involving human contestants (in the form of
either live human players or human-written computer
programs).

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP successes
http://www.genetic-programming.com/
humancompetitive.html
Quantum algorithms better than existing ones
Aplication to Robosoccer
Aplications to Bioinformatics
Aplication to analogical circuit design and
antennae design (developmental GP)
Paralelization of computer programs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Antenna designed by
develomental GP

GP evolves programs that build the antenna
Launched in ST5 satellite, launched in March
2006

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP in Quantum Computing
Creation of a better-than-classical quantum algorithm for the Deutsch-
Jozsa “early promise” problem (B, F)
Creation of a better-than-classical quantum algorithm for Grover’s
database search problem (B, F)
Creation of a quantum algorithm for the depth-two AND/OR query
problem that is better than any previously published result (D)
Creation of a quantum algorithm for the depth-one OR query problem
that is better than any previously published result (D)
Creation of a protocol for communicating information through a
quantum gate that was previously thought not to permit such
communication (D)
Creation of a novel variant of quantum dense coding (D)

http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP in Robosoccer

Creation of a team that won the first
two matches at RoboCup 1997, [Luke
1998]
Creation of a whole team that ranked in
the middle of 34 human programmed
teams at RoboCup 1998, [Andre and
Teller 1999]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results at Robocup 1998

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results at Robocup 1998
Grupo E:

(1) Miya2 (0-0)
(2) PasoTeam (0-5)
(3) Darwin United
(4) Ulm-Sparrow (1-0)

Darwin United obtained 4 points.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP in bioinformatics

Creation of four different algorithms for
protein transmembrane identification

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions GP

Evolution of trees with functions and
memory
Good idea: ADFs
Not many results with loops and
recursivity, so far
Success in some real problems
Genetic operators, too low level

	Genetic Programming
	Genetic Programming
	Genetic Programming
	Program Representation
	Example: Even-parity
	Fitness cases 10 bit even-parity
	Generational GP Algorithm
	Generational GP Algorithm
	Genetic Operators. Crossover
	Genetic Operators. Subtree Mutation
	Genetic Operators. Point Mutation
	From Generation i to i+1
	Random Creation of the Initial Population
	Random Creation of the Initial Population
	Random Creation of the Initial Population
	Methods for Generating Diverse Individuals
	Language
	Functions
	Terminals
	The fitness Function
	Selection of Best Individuals
	Premature Convergence
	Fitness Proportionated (Roulette Wheel) Selection
	Tournament Selection
	Control Parameters
	GP Tools
	Example with lil-gp
	Lil-gp Fitness Function for a Regression Problem dv=f(x)
	Computational Effort for Even-Parity
	GP Speedup
	GP Speedup
	Fitness Case Parallelism
	Individual Parallelism
	Paralellism with Islands
	Rational Allocation of Trials (RAT)
	RAT Algorithm
	Tournament Selection
	RAT Basic Idea
	RAT Algorithm. Initialization
	RAT Algorithm
	RAT Algorithm
	RAT Algorithm
	Criticisms to Crossover
	Headless Chicken Crossover Operator
	New crossover operators
	Crossover in Genetic Algorithms
	One Point Crossover
	One-Point Crossover.
	Properties of One-point Crossover
	Uniform Crossover in Genetic Algorithms
	GP Uniform Crossover (GPUX)
	GP Uniform Crossover (GPUX)
	Uniform Crossover
	Properties of Uniform Crossover
	Smooth Operators
	Smooth Operators for Boolean Functions
	Smooth Crossover and Mutation
	Results on even-parity-5
	Results on even-parity-6
	Smooth operators
	Bloat
	Bloat
	Bloat Problems
	Bloat. Why?
	Bloat Control
	Bloat Control
	Bloat Control. Tarpeian Method
	Bloat Control. Tarpeian Method
	Tarpeian: Fitness Hole for Large Individuals
	Tarpeian: Balloon Metaphor
	Tarpeian Properties
	Adding Syntactical Restrictions
	Main Grammar Works
	Context Free Grammars
	Using Grammars
	Example of Grammar Guided Crossover
	Grammars in [Whigham, 96]
	Working with Derivation Trees
	Derivation Trees Crossover
	Reuse in GP
	Use of Variables
	Example: variable m
	Evolving Subroutines
	ADFs (Automatically Defined Functions: subrutinas)
	Effort and size for even-parity
	Other Subroutine Works
	How Many ADFs and how many parameters?
	Conclusions ADFs
	Iteration in GP
	Iteration in GP [Teller, 1994]
	Iteration in GP [Teller, 1994]
	Iteration in GP [Teller, 1994]
	Use of Loops
	Limitations of Loops (and Recursion)
	Solutions for Loops and Recursivity
	Turing-complete Program Space
	Machine Code
	Programs that Terminate
	Number of Programs that End
	Proportion of programs that end
	Coroutine model [Maxwell, 94]
	Coroutine Model [Maxwell, 94]
	Coroutine Model
	Coroutine Model
	Coroutine Model
	Other Possibilities
	Experiments with loops
	Evolving a Sorting Algorithm
	Evolving a Sorting Algorithm. [Kinnear, 93]
	Evolving a Sorting Algorithm. [Kinnear, 93]
	Evolving a Sorting Algorithm. [Ciesielski, Li, 04]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm. [Spector, Klein, Keijzer, 05]
	Evolving a Sorting Algorithm
	Experiments in Recursivity
	Implicit Recursion [Yu, 01]
	Results Implicit Recursion
	Limits to Explicit Recursion
	GP Variants
	Criteria for “human-competitive”
	Criteria for “human-competitive”
	GP successes
	Antenna designed by develomental GP
	GP in Quantum Computing
	GP in Robosoccer
	Results at Robocup 1998
	GP in bioinformatics
	Conclusions GP

