
Genetic Programming



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Genetic Programming

Genetic algorithms for evolving programs
Instead of bitstrings, programs are evolved
M. Cramer. 1985. A Representation for 
the Adaptive Generation of Simple 
Sequential Programs, Proc. of an Intl. 
Conf. on Genetic Algorithms and their 
Applications.
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Genetic Programming
John R. Koza
Non-Linear Genetic Algorithms for Solving 
Problems. United States Patent 4,935,877. Filed May 20, 
1988. Issued June 19, 1990. 
1992. Genetic Programming: On the Programming 
of Computers by Means of Natural Selection. MIT 
Press.
1994. Genetic Programming: On the Programming 
of Computers by Means of Natural Selection.
1999. Genetic Programming III: Darwinian 
Invention and Problem Solving
2003. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Program Representation

LISP / parse trees
(dotimes i 3 (setq v (* i i)))
For i := 1 to 3 {v := i*i;}
Language = functions + 
terminals

dotimes
i 3 setq

v *

i i
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Example: Even-parity

Even-parity(1,0,0,0,1,0,0,1,1) -> TRUE
Language / primitives:

Functions: AND, OR, NAND, NOR, NOT (no 
XOR available!)
Terminals: D0, D1, D2, ..., D9

Heuristic / fitness: count number of 
input/output pairs (fitness cases) solved 
correctly
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Fitness cases 10 bit even-
parity

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 OUTPUT

0 0 0 0 0 0 0 0 0 0

1

0 0 0 0 0 0 0 0 1 1 TRUE

...

TRUE

0 0 0 0 0 0 0 0 0 FALSE
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Generational GP Algorithm

1. Create a random population of programs 
(individuals) using the functions and terminals

2. Run all the programs and compute their fitness
3. Select (stochastically) the best ones according to

some policy
4. Create a new population by applying the genetic 

operators to the selected individuals
5. Go to 2, until a “good enough” program is found
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Generational GP Algorithm

di 3 s
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i i
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i i
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i i
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i i
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i i
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i i
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i i
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v *
i i
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Generation N
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Steady-State GP
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v *
i i

di 3 s
v *
i i

di 3 s
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i i
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i i
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i i
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Only a few individuals (even 1) change between generations
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Genetic Operators. Crossover

Reproduction (just copy the program)
Crossover (recombination)

dotimes
i 3 setq

v *

i i

+

3 /

i 2

dotimes
i 3 setq

v /

i 2

+

3 *

i i
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Genetic Operators. Subtree 
Mutation

dotimes
i 3 setq

v *

i i

/

i 2

dotimes
i 3 setq

v

Chop off a subtree and grow a random one
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Genetic Operators. Point 
Mutation

dotimes
i 3 setq

v +

i i

dotimes
i 3 setq

v *

i i

Select a function with the same arity at the 
mutation point
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From Generation i to i+1
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i i
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i i
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0.7

0.5
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Random Creation of the Initial 
Population

AND

•Select randomly a function for the tree root from: 

•{AND(1,2), OR(1,2), NAND(1,2), NOR(1,2), NOT(1)}

•{D0, D1, D2, ..., D9}

•Create as many branches as the function’s arity
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Random Creation of the Initial 
Population

•Create as many subtrees as branches

OR

AND
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Random Creation of the Initial 
Population

OR

AND

D0 D0

D7

•It is important to create an initial population as diverse as 
possible:

•Different tree shapes

•Different tree depths
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Methods for Generating 
Diverse Individuals

“Full”: all tree paths have the same 
depth
“Grow”: variable depth
“Ramped half and half”:

Individuals are generated for depths 1, 2, 
3, ..., max-depth
50% full, 50% grow

Goal: maximize diversity



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Language

Language (primitives) = functions + 
terminals



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Functions
Have 1 or several arguments: +, not, ...
Kinds:

Functions: arguments are evaluated before calling the 
function: 

+(3, *(4,5)) = +(3,20) = 23
Macros: the macro controls which arguments are 
evaluated:

If(3>5, v:=3, v:=4) -> v:=4

Closure: every function must be able to accept 
any value (i.e. They must be protected):

3 / 0 = 1
3 + “joe” = 3
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Terminals
Input variables:

D0, D1, ..., D9
Functions with no arguments: 

go-forward
Constants: 

3, a, ...
“Ephemeral random constant” R: 

For numerical problems. Everytime R is selected 
during individual creation, a random real number 
is created
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The fitness Function
Raw:

Ex: number of fitness cases predicted 
correctly

Standard: GP always minimizes: 
Standard = maximum – raw

Adjusted: (normalized between 0 and 1)
1/(1+standard). 

Relative: 
Adjusted/Total fitness in the population
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Selection of Best Individuals
Fitness proportionated:

An individual is selected with a probability proportional 
to its relative fitness

Tournament selection
K individuals are sampled randomly
The best one is selected

Elitism: 
The best individual(s) are always selected
This is used to make sure that the best individual will 
not be lost
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Premature Convergence

Some selection methods lead to 
premature convergence
That is, we get a population that stops 
generating better and better individuals
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Fitness Proportionated 
(Roulette Wheel) Selection

On average good individuals will be selected more 
often 
Problem: superindividuals, no variety in the population
premature convergence

Program 0
Prog. 1

Prog. 2

Prog. 3
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Tournament Selection

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Tournament set 
k = 2 di 3 s

v *
i i

0.8

0.3

Winner
0.3<0.8
(minim.)

K controls selective pressure
The larger K, the more pressure (4 is ok)

Repeat, 
until the 
population 
is filled up
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Control Parameters
Population size (M: 500 to 10000)
Maximum number of generations (G: 50 to 100)
Probabilities of crossover, recombination, and 
mutation (mutation<5%)
Generation method for the initial population
(grow, full, ramped half and half)
Maximum depth of initial individuals
Maximum depth of individuals after 
recombination
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GP Tools

LIL-GP: c 
http://garage.cse.msu.edu/software/lil-gp/

ECJ: Java
http://cs.gmu.edu/~eclab/projects/ecj/
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Example with lil-gp
Individuals in lil-gp are represented as trees. When they 
are to be executed, lil-gp interprets the tree and calls the 
primitives as required
For instance, if the function set includes / and *, the 
following functions have to be defined:

DATATYPE f_protdivide (int tree, farg *args)
If (args[1].d == 0.0) return 1.0;
Else return args[0].d / args[1].d

DATATYPE f_multiply (int tree, farg *args)
Return args[0].d * args[1].d
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Lil-gp Fitness Function for a 
Regression Problem dv=f(x)

void app_eval_fitness ( individual *ind ){

for ( i = 0; i < fitness_cases; ++i ){

g.x = app_fitness_cases[0][i];               # x = input

dv = app_fitness_cases[1][i];                # dv = output

v = evaluate_tree ( ind->tr[0].data, 0 ); # v=value returned by individual

disp = fabs ( dv-v ); # difference between correct and predicted value

ind->r_fitness += disp;                        # Add to the fitness

}

ind->s_fitness = ind->r_fitness;           # Standard fitness

ind->a_fitness = 1/(1+ind->s_fitness); # Adjusted fitness

}
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GP is Stochastic

GP is stochastic: different runs may provide 
different results
No guarantee a GP will end with success 
(premature convergence)
Repeat many times, record the best result
Computational effort (informal definition): minimum 
number of individuals to be evaluated so that a 
perfect individual will be obtained with high 
probability
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Computational Effort for Even-
Parity

Even parity Computational 
effort

Time (hours)

3 96.000
4 384.000
5 6.528.000

6 70.176.000 3h (P-1.5GHz)
Note: 

Not all fitness evaluation take the same time. 
Most of the time is spent on fitness computation 
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GP Speedup

Large computational effort required
Interesting results can be obtained with 
current machines
Moore’s law: computational power duplicated
every 18 months
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GP Speedup
Machine Code evolution ([keller, 96], [friedrich, 
97], [Nordin, 95] x2000 wrt LISP, x100 wrt C)
Reconfigurable hardware (PGA)
Paralelism:

1 run per machine
Island model (or demes): 1 population per 
machine + migration
1 fitness case per machine
1 individual per machine
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Fitness Case Parallelism

Individual i

Individual i

Individual i

Case 1

Case 2

Case n

Fitness i,1

Fitness i,2

Fitness i,n

Population:

Individual 1

Individual 2

...

...
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Individual Parallelism

Individual 1

Individual 2

Individual i

Case 1

Case 2

...Fitness 1

Fitness 2

Fitness i

...

Case 1

Case 2

...

Case 1

Caso 2

...

Population:

Individual 1

Individual 2

...
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Paralellism with Islands

Migration

Migration

Migration

Migration

Population 1

Population 2

Population 3

Population 1

Topology, prob. Migration

Maintains diversity
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Rational Allocation of Trials 
(RAT)

Teller, Andre. 1997. “Automatically Choosing 
the Number of Fitness Cases: The rational 
Allocation of Trials”. GECCO’97
Do not use all the fitness cases
Use only as many as necessary to differentiate 
between good and bad individuals
Every individual will evaluate the most
appropriate number of fitness cases
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RAT Algorithm

It uses tournament selection:
1. Do M times (M is the population size)

1. Pick K individuals at random from the population Pi

2. From this set, place a copy of the individual i with 
highest approximated fitness into the mating pool

2. Pi+1 is created by the application of genetic 
operators to the mating pool
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Tournament Selection

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

di 3 s
v *
i i

Tournament set 
k = 2 di 3 s

v *
i i

0.8

0.3

Winner
0.3<0.8
(minim.)

Repeat, 
until the 
population 
is filled up

Mating 
pool
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RAT Basic Idea

If an individual L in a tournament is 
unlikely to become the winner, then do 
not evaluate more fitness cases for L
If no other individual in the tournament 
set is likely to become the winner W, 
then do not evaluate more fitness cases 
for W
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RAT Algorithm. Initialization

Create M tournaments (all at once)
Initialize contention list Q with all 
individuals (it contains individuals for 
which it is required to evaluate more 
fitness cases)
Evaluate all individuals with Tmin fitness 
cases (out of a total T fitness cases)
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RAT Algorithm
Do T-Tmin times:

Remove any individual X from Q if for every 
tournament t that X is in:

X is not in the first place
AND it is not likely to become the winner

OR 
X is in the first place (temporary winner)
AND it is not likely that other individuals in tournament t
become better than X

Evaluate all individuals still in list Q on the current 
training example
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RAT Algorithm
How to determine if an individual i is likely (or 
not) to be better than another individual j?
If both individuals have been evaluated on a 
sample with k fitness cases
Then, the average error (ek

i, ek
j) and standard 

deviation can be estimated from the sample
Assuming normality, we can compute the 
probability that the true error of i (e*

i) is smaller 
than the true error of j (e*

j).  
If Pr(e*

i < e*
j - t) is small then i is not likely to be 

better than j
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RAT Algorithm
The gaussians are the distributions of the 
true error (assuming normality)
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Criticisms to Crossover
It is not clear that crossover actually 
recombines features from both parents 
(effects of code are very context dependent)

dotimes
i 3 setq

v

if

> /

i 2dotimes
k

5
incf

v

x 2

if

/

i 2

dotimes
k

5
incf

v
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[Nordin and Banzhaf, 95] (linear GP)
Destructive

Xover

Neutral 
Xover

“creative” 
Xover
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Headless Chicken Crossover 
Operator

Some studies show that crossover is basically a 
macromutation operator, although it works 
better than random search ([Lang, 95], [O’Reilly
& Oppacher, 94], [Angeline, 97])
[Luke, Spector, 97,98]: “A [Revised] Comparison 
of Crossover and Mutation in GP”:

Crossover works slightly better than mutation
[Chelapilla, 97]: “Evolving computer programs 
without subtree crossover”:

Crossover not necessary 
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New crossover operators
“Brood recombination”: two parents cross 
many times, the best offspring is chosen
[Tackett, 94]
“intelligent xover”: choose the crossover point
intelligently: PADO [Teller, 95]
“Homologous xover”: subtrees are exchanged 
only at the same position [Haeseleer, 94] 
[Poli & Langdon]
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Crossover in Genetic 
Algorithms

Crossover always maintains the position of 
bits
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One Point Crossover
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One-Point Crossover. 

1. Alignment: Look for the common 
structure in both parents

2. Choose one random xover point in 
the common region

3. Exchange the subtrees
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Properties of One-point 
Crossover

At the beginning of evolution, xover points 
belong to the top part of parents (small common 
structure)
As evolution progresses, some structures 
become prevalent and deeper regions are 
explored
Top-down exploration, which makes sense for 
programs
Point mutation required (like in genetic 
algorithms)
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Uniform Crossover in Genetic 
Algorithms



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP Uniform Crossover (GPUX)
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GP Uniform Crossover (GPUX)
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Uniform Crossover

Determine the common and interior 
regions
Exchange nodes:

If in the interior region, just exchange the 
nodes
If not, exchange the subtrees as well
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Properties of Uniform 
Crossover

Search becomes more global (offspring 
less similar to parents than the 1-point 
crossover)
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Smooth Operators

Goal: to make small changes to 
programs
Instead of exchanging two functions, 
they are sort of “averaged”
GPSUX, GPPM: Smooth crossover and 
point mutation
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Smooth Operators for Boolean 
Functions
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Smooth Crossover and 
Mutation

AND(A,B) = ffft
OR(A,B) =   0111
Smooth xover AND/OR = 0f1t
Smooth mutation AND =  f1ft
Not clear how this could be extended to 
non-binary problems
(Note f=0, t=1)
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Results on even-parity-5 
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Results on even-parity-6
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Smooth operators

They seem to work better than non-
smooth
Not clear that xover is required in this 
problem
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Bloat

After several generations, individual size 
tends to grow, with no increase in fitness
Fast growth, nearly quadratic [Langdon, 
00]
Caused by “introns”: a+ (a-a+a-a), 
0*(a*b+c*d), if(F) then {...}
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Bloat

Average population fitness

Average individual size

# Generations
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Bloat Problems
Individuals take longer to run and take more 
memory
Search stagnates (genetic operators change
unused regions)
Although it is reported that in some 
occasions, introns protect sensitive parts of 
the code
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Bloat. Why?
It is expected it will happen when evolving variable-size 
structures, with a fixed fitness function
Accuracy theory: Defence against crossover, specially 
at the end of the run, when it is difficult to improve 
fitness
After a particular size, fitness is independent of fitness. 
There are more large programs than small ones, so there
is a tendency to grow
Removal bias theory: It is easier to add small subtrees
(inside the introns) than to remove large subtrees
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Bloat Control

Parsimony: fitness penalty for large 
individuals (k?):

F’(x) = F(x) + k*size(x)

Limit maximum size (which one?):
Problem: you get bloat!

Assign a bad fitness to large individuals so 
that they are not selected in the next 
generation
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Bloat Control

Tournament selection. If two individual 
draw in fitness, then select the small 
ones
Avoid destructive crossover:

brood recombination
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Bloat Control. Tarpeian 
Method

Removes a percentage of larger-than-average programs

n >= 2 (n=2, half of big programs die)
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Bloat Control. Tarpeian 
Method

Larger-than-average individuals are more likely 
to die
If it survives and it is a better than average 
individual, it will reproduce and the average size 
will increase
But there will still be opposition to growth
Saves time on large individuals (not evaluated)
Justification based on schema theorem
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Tarpeian: Fitness Hole for 
Large Individuals
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Tarpeian: Balloon Metaphor

Fitness = hot air
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Tarpeian Properties

Valid with point-mutation (no subtree 
mutation)
Beware of premature convergence
because of:

Small populations
Large pressure selection
Too large bias against large individuals
(with n small)
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Adding Syntactical Restrictions
Standard GP requires “closure” (i.e. Protected
functions)

3/0 = 1
“dog” + 4 = 4

Search space larger than necessary
Very unnatural solutions (some believe this is 
an advantage):

if (3+”dog”) then {10/0}
Solution: Use grammars or types
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Main Grammar Works
F. Gruau. 1996. “On using syntactic 
constraints with genetic programming”.
Advances in Genetic Programming III.
P. A. Whigham. 1995. “Grammatically-
based Genetic Programming”. Workshop 
on GP: From Theory to Real-World 
Applications.
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Context Free Grammars
[Gruau, 96]

Example of individual: 

DNF -> (OR (<TERM>) (<DNF>)) -> 

(OR (AND (<LETTER> <LETTER> <LETTER>) <DNF>) ->

(OR (AND (A B C) <DNF>) -> (OR (AND (A B C) <TERM>) -> ... ->

(OR (AND (A B C)) D)

(<DNF> (<TERM> (<LETTER> <LETTER> <LETTER>)) <LETTER>)
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Using Grammars

To generate the initial propulation 
(production rules used randomly)
To generate syntactically correct 
individuals by crossover: choose two
xover points generated by the same
production rule (ex: ‘A’ can be exchanged 
by another <letter>, like C)
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Example of Grammar Guided 
Crossover

OR
<INF>

AND
<TERM>

A
<LETTER>

B
<LETTER>

C
<LETTER>

D
<LETTER>

OR
<INF>

AND
<TERM>

D
<LETTER>

A
<LETTER>

A
<LETTER>

Xover 
points
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Grammars in [Whigham, 96] 
•Individuals are derivation trees

•Makes crossover easier

•It is necessary to build the program for fitness computation

Program: x-x+x

Individual
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Working with Derivation Trees
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Derivation Trees Crossover
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Grammar Adaptation

P. A. Whigham. 1995. “Inductive Bias and 
Genetic Programming”.
Grammars can be changed as evolution 
progresses, so that they generate good 
individuals more likely
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Other Grammar/Types Work

M. L. Wong, K. S. Leung. 1995. 
Genetic Logic Programming and 
Applications. IEEE Expert, 10(5).
D. Montana. 1995. Strongly Typed 
Genetic Programming. Evolutionary 
Computation
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Reuse in GP
Of computations: store them in a variable or
data structure (arrays, lifo, fifo, ...)
Of parameterized code: subroutines (ADF: 
Automatic Defined Functions)
Of repetitive code: iterations, loops, 
recursivity
Only with loops or recursivity, GP is Turing-
complete
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Use of Variables
Add functions to read and write on variables or 
arrays:

Ex: (write-m 3.0) (read-m)
EX: indexed memory (arrays): 

(write-array-m 5 3.0) 
(read-array-m 5)

Other data structures can be used (queues, 
stacks, ...)
Problems with (global) variables: secondary
effects, no functional programming anymore
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Example: variable m

Int write-m (value) {
m = value;
return(m);

}

Int read-m () {
return(m);

}
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Evolving Subroutines

Human programmers write subroutines for:
Creating new primitives, more amenable to the 
problem at hand
Generalize similar pieces of code found in 
differents parts of the main program 

By allowing subroutines, it is easier to write 
code, and the final program is simpler
Can GP use subroutines?
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ADFs (Automatically Defined 
Functions: subrutinas)

Prog.

NOR ADF1

ADF1 ADF1

D0 D1 D2 D3

ADF0 ADF0NOT

AND

ARG1

ARG0 ARG0 ARG1
ARG1 ARG0

Main programADF1
ADF0

Homologous crossover

Each individual evolves its own subroutines in different 
branches of the tree 
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Effort and size for even-parity

Even-
parity

Effort w/o 
ADF

Effort with 
ADFs

Size w/o 
ADF

Size with 
ADF

3 96.000 64.000 
(x1,5)

176.000 
(x2,18)

464.000 
(x14,07)

6 70.176.000 1.344.000 
(x52,2)

900,8 450,3

7 a 11 NO YES

4 384.000

48,244,6

5 6.528.000

112,6 60,1

156,8299,9



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Other Subroutine Works
Angeline PJ and Pollack JB. 1992. “The 
Evolutionary Induction of Subroutines”, The 
Proceedings of the 14th Annual Conference of the 
Cognitive Science Society.
Rosca & Ballard. 1996.  “Discovery of Subroutines
in Genetic Programming”. Advances in Genetic 
Programming II.
Ricardo Aler, David Camacho, Alfredo Moscardini. 
2004."The Effects of Transfer of Global 
Improvements in Genetic Programming".
Computing and Informatics
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How Many ADFs and how 
many parameters?

Try and test, starting with small values
Use many ADFs and parameters and let 
GP discover how many are needed
Add automatic structure alteration
operators:

Duplicate ADF or arguments
Remove 1 ADFs or 1  argument
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Conclusions ADFs

GP can evolve a main program and 
several subroutines
If the problem is complex enough, 
computational effort and final size 
decrease a lot
Good idea, use them!
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Iteration in GP

Theoric result: 
Teller. 1994. “Turing Completeness in 
the Language of Genetic 
Programming with Indexed Memory
”. 1994 IEEE World Congress on 
Computational Intelligence

GP+IM (Genetic Programming + 
Indexed Memory (arrays))
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Iteration in GP [Teller, 1994]

Available primitives:
(IF X THEN Y ELSE Z)
(= X Y)
(AND X Y)
(ADD X Y), (SUB X Y)
Indexed memory (array):

(Read X), (Write Y X)
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Iteration in GP [Teller, 1994]

Then, any algorithm can be expressed
as:

REPEAT <GP+IM function>
UNTIL <some state happens in memory

(for instance a flag is raised)>
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Iteration in GP [Teller, 1994]

No loops are needed for Turing-
completeness! (not completely 
unexpected)
Just evolve a GP+IM program
In practice, it may be easier to evolve 
programs with explicit loops
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Use of Loops

Add to the function set a function that 
implements the loop:

(loop times loop-body)
(loop 10 (write-m (* (read-m) i))
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Use of Iterations and Loops

int loop (times; body) {
int i; int times, result;
for (i=0;  i<times; i++) {
result=evaluate_tree(body);

}
return(result);}
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Limitations of Loops (and 
Recursion)

Not used often
Not well studied in GP
Increase a lot fitness computation time
Iterative programs are fragile
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Solutions for Loops and 
Recursivity

Limit:
Fitness computation time
Number of loops
Number of iterations or recursive calls
Loop nesting

Coroutine model [Maxwell, 94]: Run 
programs in parallel and cancel the bad ones
Implicit recursion by means of high-level 
funcions: map, foldr, ... [Yu, 01]
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Turing-complete Program 
Space

W. B. Langdon and R. Poli. “The 
Halting Probability in von-
Neumann Architectures”. EuroGP’ 06
Space made of machine code random 
programs 
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Machine Code
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Programs that Terminate
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Number of Programs that End
The number of programs that end grow 
exponentially with length
But the total number of programs grows much 
faster
The proportion is: 

Execution time of programs that end is
proportional to:
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Proportion of programs that 
end
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Coroutine model [Maxwell, 94]

Maxwell. 1994. “Experiments with a 
Coroutine Execution Model for 
Genetic Programming”. IEEE World 
Congress on Computational 
Intelligence. 413-417 
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Coroutine Model [Maxwell, 94]

Problem of limiting time:
Threshold may be too small or too large 

Coroutine model:
Allows “parallel” run of programs
Do not limit execution time
Steady-state model: good/fast individuals 
replace bad/slow individuals
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Coroutine Model

Fair comparison: compare individuals 
with the same age (running time)
Requires programs return partial fitness
Not that difficult if there are many 
fitness cases (fitness accumulated so 
far)
Or in problems similar to the Pacman
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Coroutine Model
Create initial population and run them for a
seconds. Compute partial fitness

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

time

Individuals

a

0.3

0.8

0.7

0.1

Fitness
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Coroutine Model
Create N new individuals by means of 
tournament and genetic operators

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

time

Individuals

a

0.3

0.8

0.7

0.1

Indiv. 5
Indiv. 6

Indiv. 7
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Coroutine Model
Run the N individuals for the same time than 
the rest of individuals in the population

Indiv. 1
Indiv. 2
Indiv. 3
Indiv. 4

timea

Individuals 0.3

0.8

0.7

0.1

Indiv. 5
Indiv. 6
Indiv. 7

0.8

0.2

0.1
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Coroutine Model
Remove the worse individuals by tournament

Indiv. 1

Indiv. 4

timea

Individuals 0.3

0.1

Indiv. 6
Indiv. 7

0.2

0.1
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Coroutine Model
Run individuals for another time a. And so on 
...

Indiv. 1

Indiv. 4

time2*a

Individuals

Indiv. 6
Indiv. 7

Indiv. 4

Indiv. 6
Indiv. 7
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Coroutine Model
It works well when an individual appears, 
that solves all fitness cases in a finite time
Experiments show that it generates more 
efficient individuals
But there is no guarantee that a better 
individual at a particular time t will be the 
best one in the long run. It is just a 
heuristic
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Other Possibilities
Coroutines difficult to implement
Use different threads?
For every generation, store the best 
fitness obtained so far
Cancel all programs that at that time, 
get a worse fitness than the best 
obtained so far
Or downward adjust its priority
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Experiments with loops

Not too many! Hard for GP, room for 
research
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Evolving a Sorting Algorithm
Kinnear. 1993. “Generality and Difficulty
in Genetic Programming: Evolving a 
Sort”. Fifth International Conference on 
Genetic Algorithms
Several general sorting algorithms were 
evolved. O(N2)
Fitness function: complex, but basically, it 
counts the number of swaps (how far a 
number is from its right position)
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Evolving a Sorting Algorithm. 
[Kinnear, 93]

Population size: 1000
Generations: 50
Maximum initial depth: 6
Fitness cases: 15 (5 fixed and 10 random). 
Maximum list length: 30
Probability of success: from 40% (low-level 
primitives) to 100% (high-level primitives) of 
runs generated a correct individual 
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Evolving a Sorting Algorithm. 
[Kinnear, 93]

Primitives (quite low-level): 
if(test) {body}
x<y
Swap(x,y)
for(start, end, body), index
x+1, x-1, x-y
*leng*: length of the list of integers
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Evolving a Sorting Algorithm. 
[Ciesielski, Li, 04]

Ciesielski, Li. 2004. “Experiments 
with Explicit For-loops in Genetic 
Programming”. CEC’04.

Sorting problem:
It is more likely to evolve good sorting 
programs by using loops. They are also simpler
But no general sorting algorithm was evolved!
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Evolving a Sorting Algorithm. 
[Spector, Klein, Keijzer, 05]

Spector, Klein, Keijzer. 2005. “The
Push3 Execution Stack and the 
Evolution of Control”. GECCO’2005
Stack-based GP
Evolved general programs for reversing 
a list, factorial, Fibonacci, N-even-
parity, and list sorting
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Evolving a Sorting Algorithm. 
[Spector, Klein, Keijzer, 05]

Complexity: O(N2): N*(N-1)/2
Fitness cases: lists of 4 to 8 integer 
elements
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Evolving a Sorting Algorithm. 
[Spector, Klein, Keijzer, 05]

Primitives (quite low-level):
List[i] (accesses position i of the list)
Length (of the list to be sorted)
Swap(i,j) = 

List[i] = List[j], List[j] = List[i]

Max(i,j) = Max(List[i],List[j])
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Evolving a Sorting Algorithm

No O(N*ln(N)) algorithm has been 
evolved by GP (as far as I know!)
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Experiments in Recursivity
Wong. 2005. “Evolving Recursive 
Programs by Using Adaptive Grammar 
Based Genetic Programming.”
Yu. 2001. “Hierachical Processing for 
Evolving Recursive and Modular 
Programs Using Higher Order Functions 
and Lambda Abstractions”
In: Genetic Programming and Evolvable
Machines
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Implicit Recursion [Yu, 01]

No explicity recursive calls
High level functions:

Map. Ex: map 3+x (1 2 3) = (4 5 6)
Foldr. Ex: foldr + 0 (1 2 3) = 1+2+3+0 = 6

They are guaranteed to terminate
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Results Implicit Recursion

Solution:
(not (foldr xor (head L) (tail L)))

(xor también ha sido evolucionada) 

Equivalent
to:
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Limits to Explicit Recursion

Only for lists?
It does not work for evolving Fibonacci
equation f(n) = f(n-1)+f(n-2)
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GP Variants
Evolving Data Structures [Langdon, 98]
Machine Code Evolution (linear 
representation) [keller, 96], [friedrich, 97]
Immune Programing [Musilek, 06]:
Stack-based GP (lineal) [Perkins, 94] 
[Spector et al. 2005]
Cartesian Genetic Programming [Miller et al, 
03]
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Criteria for “human-
competitive”

(A) The result was patented as an invention in the past, is 
an improvement over a patented invention, or would qualify 
today as a patentable new invention. 
(B) The result is equal to or better than a result that was 
accepted as a new scientific result at the time when it was 
published in a peer-reviewed scientific journal. 
(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by an 
internationally recognized panel of scientific experts. 
(D) The result is publishable in its own right as a new 
scientific result ⎯ independent of the fact that the result was 
mechanically created. 
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Criteria for “human-
competitive”

(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for 
which there has been a succession of increasingly better
human-created solutions. 
(F) The result is equal to or better than a result that was 
considered an achievement in its field at the time it was 
first discovered. 
(G) The result solves a problem of indisputable difficulty
in its field. 
(H) The result holds its own or wins a regulated 
competition involving human contestants (in the form of 
either live human players or human-written computer 
programs). 
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GP successes
http://www.genetic-programming.com/ 
humancompetitive.html
Quantum algorithms better than existing ones
Aplication to Robosoccer 
Aplications to Bioinformatics
Aplication to analogical circuit design and 
antennae design (developmental GP)
Paralelization of computer programs
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Antenna designed by 
develomental GP

GP evolves programs that build the antenna
Launched in ST5 satellite, launched in March
2006



Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

GP in Quantum Computing
Creation of a better-than-classical quantum algorithm for the Deutsch-
Jozsa “early promise” problem (B, F)
Creation of a better-than-classical quantum algorithm for Grover’s 
database search problem (B, F)
Creation of a quantum algorithm for the depth-two AND/OR query 
problem that is better than any previously published result (D)
Creation of a quantum algorithm for the depth-one OR query problem 
that is better than any previously published result (D)
Creation of a protocol for communicating information through a 
quantum gate that was previously thought not to permit such 
communication (D)
Creation of a novel variant of quantum dense coding (D)

http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorpromise.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorgrover.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectorandor.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectoror.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
http://www.genetic-programming.com/hc/spectorcommunicationsmolin.html
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GP in Robosoccer

Creation of a team that won the first 
two matches at RoboCup 1997, [Luke
1998]
Creation of a whole team that ranked in 
the middle of 34 human programmed
teams at RoboCup 1998, [Andre and 
Teller 1999]
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Results at Robocup 1998
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Results at Robocup 1998
Grupo E:

(1) Miya2 (0-0)
(2) PasoTeam (0-5)
(3) Darwin United
(4) Ulm-Sparrow (1-0)

Darwin United obtained 4 points.
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GP in bioinformatics

Creation of four different algorithms for 
protein transmembrane identification
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Conclusions GP

Evolution of trees with functions and 
memory
Good idea: ADFs
Not many results with loops and 
recursivity, so far
Success in some real problems
Genetic operators, too low level
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