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i Genetic Programming

= Genetic algorithms for evolving programs
= Instead of bitstrings, programs are evolved

= M. Cramer. 1985. A Representation for

the Adaptive Generation of Simple
Sequential Programs, Proc. of an Intl,
Conf. on Genetic Algorithms and their

Applications.
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i Genetic Programming

John R. Koza

= Non-Linear Genetic Algorithms for Solving
Problems. United States Patent 4,935,877. Filed May 20,
1988. Issued June 19, 1990.

= 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press.

= 1994. Genetic Programming: On the Programming
of Computers by Means of Natural Selection.

= 1999. Genetic Programming l11: Darwinian
Invention and Problem So/ving

s 2003. Genetic Programming 1V. Routine Human-
COm,U Etl tl ve M aCh I %alj{?ﬁ@./ /!ﬂ@(gb\gtgmatic Inductive Programming Tutorial




‘krog ram Representation

= LISP / parse trees
= (dotimes | 3 (setq
m Fori:=1to3{v

= Language = functions +

terminals

v (*11)))

= 1*1;}
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i Example: Even-parity

= Even-parity(1,0,0,0,1,0,0,1,1) -> TRUE
= Language / primitives:

= Functions: AND, OR, NAND, NOR, NOT (no
XOR available!)

= Terminals: DO, D1, D2, ..., D9

= Heuristic / fitness: count number of
iInput/output pairs (fitness cases) solved
correctly
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Fithess cases 10 bit even-
‘L parity

DO |D1 D2 |D3 |D4 |D5 |D6 |D7 |D8 D9 | OUTPUT

0 0 0 0 0 0 0 0 0 0O |TRUE
0 0 0 0 0 0 0 0 0 1 |FALSE
0 0 0 0 0 0 0 0 1 1 |TRUE
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i Generational GP Algorithm

1.

Create a random population of programs
(individuals) using the functions and terminals

Run all the programs and compute their fitness

Select (stochastically) the best ones according to
some policy

Create a new population by applying the genetic
operators to the selected individuals

Go to 2, until a “good enough” program is found
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‘L Generational GP Algorithm

Generation 0 Generation 1 Generation N

%?I Selection, %?I Selection, %?I
Mutation, Mutation,
Crossover rossover
—) ) )
=
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i Steady-State GP

Only a few individuals (even 1) change between generations

Generation 0 Generation 1 Generation N
%ﬁd Selection, %ﬁd Selection, %ﬁd
Mutation, Mutation,
@%‘ Crossover @%‘ frossover @

i
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* Genetic Operators. Crossover

= Reproduction (just copy the program)
= Crossover (recombination)

T

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial



Genetic Operators. Subtree

* Mutation

Chop off a subtree and grow a random one

=)
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Genetic Operators. Point

* Mutation

Select a function with the same arity at the
mutation point

=)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial



i From Generation 7 to /+1

Generation O

Compute

fithess

Selection

Crossover

Mutation

Generacion 1

7

4

Ky
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Random Creation of the Initial

* Population

eSelect randomly a function for the tree root from:
«{AND(1,2), OR(1,2), NAND(1,2), NOR(1,2), NOT(1)}
«{DO0, D1, D2, ..., D9}

<Create as many branches as the function’s arity

/
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Random Creation of the Initial

* Population

«Create as many subtrees as branches
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Random Creation of the Initial

* Population

|t is important to create an initial population as diverse as
possible:

eDifferent tree shapes

eDifferent tree depths
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Methods for Generating
i Diverse Individuals

= “Full”: all tree paths have the same
depth

= “Grow”: variable depth

= “Ramped half and half”:

= Individuals are generated for depths 1, 2,
3, ..., max-depth

= 50% full, 50% grow
= Goal: maximize diversity
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i Language

= Language (primitives) = functions +
terminals
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i Functions

= Have 1 or several arguments: +, not, ...

s Kinds:

= Functions: arguments are evaluated before calling the
function:
= +(3, *(4,5)) = +(3,20) = 23

= Macros: the macro controls which arguments are
evaluated.:

« If(3>5, vi=3, vi=4) ->vi=4
= Closure: every function must be able to accept
any value (i.e. They must be protected):
=3/0=1
= 3+ “joe” =
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Terminals

= Input variables:
= DO, D1, ..., D9

= Functions with no arguments:
« go-forward

= Constants:
s 34, ...

= “Ephemeral random constant” A

= For numerical problems. Everytime R is selected
during individual creation, a random real number
IS created
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i The fitness Function

s Raw:

= EX: number of fithess cases predicted
correctly

= Standard: GP always minimizes:
= Standard = maximum — raw

= Adjusted: (normalized between 0 and 1)
= 1/(1+standard).

= Relative:
= Adjusted/Total fitness in the population
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i Selection of Best Individuals

= Fitness proportionated:

= An individual is selected with a probability proportional
to its relative fitness

s Tournament selection
= K individuals are sampled randomly
= The best one iIs selected

= Elitism:
= The best individual(s) are always selected

= This IS used to make sure that the best individual will
not be lost
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i Premature Convergence

s Some selection methods lead to
premature convergence

= That is, we get a population that stops
generating better and better individuals
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Fitness Proportionated
‘L (Roulette Wheel) Selection

- Prog. 1
“ Prog. 2 Program O

On average good individuals will be selected more
often

Problem: superindividuals, no variety in the population
premature convergence
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‘L Tournament Selection

Tournament set

k=2 /

K controls selective pressure

Repeat,
until the
population
s filled up

The Iarger K1 theRI’JQQJ%DI’@@%HK@O,G%J%JQK% Programming Tutorial



i Control Parameters

= Population size (M: 500 to 10000)
= Maximum number of generations (G: 50 to 100)

s Probabilities of crossover, recombination, and
mutation (mutation<5%)

= Generation method for the initial population
(grow, full, ramped half and half)

= Maximum depth of initial individuals

= Maximum depth of individuals after
recombination
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i GP Tools

s LIL-GP: c
= http://garage.cse.msu.edu/software/lil-gp/

= ECJ: Java
= http://cs.gmu.edu/—~eclab/projects/ecj/
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i Example with lil-gp

= Individuals in lil-gp are represented as trees. When they
are to be executed, lil-gp interprets the tree and calls the
primitives as required

s For instance, If the function set includes / and *, the
following functions have to be defined:

DATATYPE f _protdivide (int tree, farg *args)
If (args[1].d == 0.0) return 1.0;
Else return args[0].d / args[1].d

DATATYPE f _multiply (int tree, farg *args)
Return args[0].d * args[1].d
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Lil-gp Fitness Function for a
‘L Regression Problem dv=f(x)

void app_eval_fitness ( individual *ind ){

for (1 = 0; 1 < fitness_cases; ++i ){
g.x = app_fitness_cases[O][i]; # X = Input
dv = app_fitness_cases[1][i]; # dv = output
v = evaluate tree ( ind->tr[0].data, 0 ); # v=value returned by individual
disp = fabs ( dv-v ); # difference between correct and predicted value

ind->r_fitness += disp; # Add to the fitness

ind->s_fitness = ind->r_fitness; # Standard fitness
ind->a_fitness = 1/(1+ind->s_fitness); # Adjusted fitness
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‘_L GP Is Stochastic

= GP Is stochastic: different runs may provide
different results

= No guarantee a GP will end with success
(premature convergence)

= Repeat many times, record the best result

= Computational effort (informal definition): minimum
number of individuals to be evaluated so that a
perfect individual will be obtained with high
probability
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Computational Effort for Even-
Parity

Even parity |Computational |Time (hours)
effort

3 96.000

4 384.000

5 6.528.000

6 70.176.000| 3h (P-1.5GHz)

Note:
Not all fitness evaluation take the same time.
Most of the time is spent on fitness computation
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i GP Speedup

= Large computational effort required

= Interesting results can be obtained with
current machines

= Moore’s law: computational power duplicated
every 18 months
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i GP Speedup

= Machine Code evolution ([keller, 96], [friedrich,
97], [Nordin, 95] x2000 wrt LISP, x100 wrt C)

= Reconfigurable hardware (PGA)
= Paralelism:
= 1 run per machine

= Island model (or demes): 1 population per
machine + migration

= 1 fitness case per machine
=« 1 individual per machine
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‘L Fithess Case Parallelism

Population: Individual i
Individual 1
Individual 2

Fitness I,n
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i Individual Parallelism

e Case 1
\\ Case 2
Individual 1 - =5
iy ess 1
-l Individual 2 ) |Casel
— Fitness £22E | Case 2
Population: o _
ndividual 1 vidual |
ndividua . .
Fithess | Case 1
Individual 2
Caso 2
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* Paralellism with Islands

1

: %

—

Population 1

Topology, prob. Migration

Population 3

Maintains diversity
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Rational Allocation of Trials

i (RAT)

= Teller, Andre. 1997. “Automatically Choosing
the Number of Fithess Cases: The rational
Allocation of Trials”. GECCO’97

s Do not use all the fithess cases

= Use only as many as necessary to differentiate
between good and bad individuals

= Every individual will evaluate the most
appropriate number of fitness cases
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i RAT Algorithm

s It uses tournament selection:

1. Do Mtimes (Mis the population size)
1. Pick K'individuals at random from the population P,

2. From this set, place a copy of the individual /with
highest approximated fitness into the mating pool

2. P, Is created by the application of genetic
operators to the mating pool
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‘L Tournament Selection

Tournament set

k=2 /

Mating
pool

Repeat,
until the
population
s filled up

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



i RAT Basic lIdea

s If an individual L in a tournament Is
unlikely to become the winner, then do
not evaluate more fithess cases for L

s If no other individual in the tournament
set Is likely to become the winner W,
then do not evaluate more fithess cases

for W
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i RAT Algorithm. Initialization

= Create M tournaments (all at once)

= Initialize contention list Q with all
individuals (it contains individuals for
which it Is required to evaluate more
fithess cases)

= Evaluate all individuals with 7_ . fithess
cases (out of a total 7 fithess cases)
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i RAT Algorithm

s Do 7-7._ . times:

mi
= Remove any individual X from Qif for every
tournament zthat Xis in:
= XIs not in the first place
« AND it is not likely to become the winner
OR
= Xis in the first place (temporary winner)
= AND it is not likely that other individuals in tournament ¢
become better than X
= Evaluate all individuals still in list Q on the current
training example
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i RAT Algorithm

= How to determine if an individual /is likely (or
not) to be better than another individual /?

s If both individuals have been evaluated on a
sample with 4 fitness cases

= Then, the average error (e¥, %) and standard
deviation can be estimated from the sample

= Assuming normality, we can compute the
probability that the true error of /(e™) is smaller
than the true error of j (e7)).

s If Pr(e”; < e*j - 1) Is small then /is not likely to be
better than y
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‘L RAT Algorithm

= The gaussians are the distributions of the
true error (assuming normality)
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o) \ \
' \ \ L4
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* Criticisms to Crossover

= It is not clear that crossover actually
recombines features from both parents
(effects of code are very context dependent)

‘?T I@g‘?: ‘?T
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Effects of Crossover during Evolution

[Nordin and Banzhaf, 95] (linear GP) "Crossover Effect " —

Destructive Neutral
Xover Xover

fbefore

ST
- Adporeen = e Juier
il

Number of Crossover Events
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1000
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“creative”
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Headless Chicken Crossover
i Operator

= Some studies show that crossover is basically a
macromutation operator, although it works
better than random search ([Lang, 95], [O'Reilly
& Oppacher, 94], [Angeline, 97])

= [Luke, Spector, 97,98]: “A [Revised] Comparison
of Crossover and Mutation in GP”:
= Crossover works slightly better than mutation

= [Chelapilla, 97]: “Evolving computer programs
without subtree crossover”:
= Crossover not necessary
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i New crossover operators

= “Brood recombination”: two parents cross
many times, the best offspring is chosen
[Tackett, 94]

= “Intelligent xover”: choose the crossover point
intelligently: PADO [Teller, 95]

= “Homologous xover”: subtrees are exchanged
only at the same position [Haeseleer, 94]
[Poli & Langdon]
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Crossover In Genetic
Algorithms

Parent 1 Parent 2
1111111 1000000
I Alignment Crossover always maintains the position of

bits

Paremllllllll

Parent 2|0 00000
I Salaction of

Conunoeon
Croszover Pomt
=y

Parent 1|1 1 1.1 11
Parent 2|0 0 OIO_CI 0

i

Swap

Offspring 1 Offspring 2
1110001 (000111
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One Point Crossover
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Parent 2
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I Alignment
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i One-Point Crossover.

1. Alignment: Look for the common
structure in both parents

2. Choose one random xover point in
the common region

3. Exchange the subtrees
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Properties of One-point
i Crossover

= At the beginning of evolution, xover points
belong to the top part of parents (small common
structure)

= As evolution progresses, some structures
become prevalent and deeper regions are
explored

= Top-down exploration, which makes sense for
programs

= Point mutation required (like in genetic
algorithms)
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Uniform Crossover In Genetic
Algorithms

1 i
o o 1 0o 1 1 1 0o 1 0 0 1

1 0o o o0 1 0 »

M ask _rossover
o i
1 1 1 o o 1 1] 1 1 1] 1 1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial



i GP Uniform Crossover (GPUX)

Parent 1

-~

-

Parent 2

common
region

4.
5 ]

'._\1 - ./-

imnterior
nodes P g
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i GP Uniform Crossover (GPUX)
o
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i Uniform Crossover

= Determine the common and interior
regions
= Exchange nodes:

=« If In the Interior region, just exchange the
nodes

= If not, exchange the subtrees as well
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Properties of Uniform

‘L Crossover

= Search becomes more global (offspring
less similar to parents than the 1-point
crossover)

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



i Smooth Operators

= Goal: to make small changes to
programs

= Instead of exchanging two functions,
they are sort of “averaged”

s GPSUX, GPPM: Smooth crossover and
point mutation
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Smooth Operators for Boolean

* Functions

P Q" PAY PVQ pq peq
rE N : F v v

F V|V V ¥ |
Y F| ¥ ¥y |

v VI v ¥V ¥ ¥
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Smooth Crossover and

i Mutation

= AND(A,B) = ffft

= OR(A,B) = 0111

s Smooth xover AND/OR = Of1t
= Smooth mutation AND = f1ft

s Not clear how this could be extended to
non-binary problems

= (Note =0, t=1)
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Results on even-parity-5

Operators  |Population size|Fitness evaluations|Complexity[Success Rate
Standard GP 50 11,250 428 12%
Standard GP 200 568 68%

GPUX, GPPM a0 4,200 84 88%
GPUX, GPPM 200 19 98%
GPPM only 30 4,200 68 80%
GPPM only 200 49 98%
GPSUX, GPSPM ol 2,200 82 92%
GPSUX, GPSPM| 200 56 100%
GPSPM only 50 2,250 76 98Y%
GPSPM only 200 8,400 49 98%
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‘__L Results on even-parity-6

Operators  |Population size|Fitness evaluations|Complexity[Success Rate
Standard GP 50 No solution found| N/A 0%
Standard GP 200 No solution found| N/A 0%

GPUX, GPPM ol 34,850 38 36%
GPUX, GPPM 200 40 60%
GPPM only 50 35,550 43 44%
GPPM only 200 51 82%
GPSUX, GPSPM ol 17,000 49 62%
GPSUX, GPSPM[ 200 53 80%
GPSPM only a0 16,200 59 67%
GPSPM only 200 42 82%
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i Smooth operators

= They seem to work better than non-
smooth

= Not clear that xover is required In this
problem
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i Bloat

= After several generations, individual size
tends to grow, with no increase In fithess

= Fast growth, nearly quadratic [Langdon,
00]

= Caused by “introns”: a+ (a-a+a-a),
0*(a*b+c*d), if(F) then {...}
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Average population fitness

Ividual size

# Generations
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i Bloat Problems

= Individuals take longer to run and take more
memory

= Search stagnates (genetic operators change
unused regions)

= Although it is reported that in some
occasions, introns protect sensitive parts of

the code
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i Bloat. Why?

= It is expected it will happen when evolving variable-size
structures, with a fixed fitness function

s Accuracy theory. Defence against crossover, specially
at the end of the run, when it is difficult to improve
fitness

= After a particular size, fitness is independent of fitness.
There are more large programs than small ones, so there
IS a tendency to grow

s Removal bias theory:. It is easier to add small subtrees
(inside the introns) than to remove large subtrees
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i Bloat Control

= Parsimony: fitness penalty for large
iIndividuals (k?):
= F'(X) = F(X) + k*size(x)

= Limit maximum size (which one?):
= Problem: you get bloat!

= Assign a bad fithess to large individuals so
that they are not selected in the next
generation
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i Bloat Control

= Tournament selection. If two individual
draw In fitness, then select the small
ONnes

= Avoid destructive crossover:
= brood recombination
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Bloat Control. Tarpeian

‘L Method

IF size(program) > average_pop_size AND random_int MOD n = 0
THEN

return( very_low_fitness );
ELSE

return( fitness(program) );

Removes a percentage of larger-than-average programs

n >= 2 (n=2, half of big programs die)
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Bloat Control. Tarpeian

i Method

= Larger-than-average individuals are more likely
to die

= If it survives and it is a better than average
individual, it will reproduce and the average size
will increase

= But there will still be opposition to growth
= Saves time on large individuals (not evaluated)
= Justification based on schema theorem
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Tarpelan: Fitness Hole for
i Large Individuals

VWhy “Tarpeian ?
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‘_L Tarpelan Balloon I\/Ietaphor
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Fithess = hot air
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i Tarpelan Properties

= Valid with point-mutation (no subtree
mutation)

= Beware of premature convergence
because of:

= Small populations
= Large pressure selection

= T0O0 large bias against large individuals
(with n2small)
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i Adding Syntactical Restrictions

= Standard GP requires “closure” (i.e. Protected
functions)

= 3/0=1
= “dog” +4 =4
= Search space larger than necessary

= Very unnatural solutions (some believe this is
an advantage):

« If (3+”dog”) then {10/0}
= Solution: Use grammars or types
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i Main Grammar Works

= F. Gruau. 1996. “On using syntactic
constraints with genetic programming”.
Advances in Genetic Programming 111.

= P. A. Whigham. 1995. “Grammatically-
based Genetic Programming”. Workshop
on GP: From Theory to Real-World
Applications.
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<axicom> ::=

<DNF>[0..¢] ::

ntext Free Grammars

<DNF>

= or (<term>) (<DNE>) <terr

= and (<literal>) (<term | <literal
= <letter:> T (<letter>)

Example of individual:

DNF -> (OR (<TERM>) (<DNF>)) ->

(OR (AND (<LETTER> <LETTER> <LETTER>) <DNF>) ->
(OR (AND (A B C) <DNF>) -> (OR (AND (A B C) <TERM>) -> ... ->
(OR (AND (ABC)) D)

(<DNF> (<TERM=> (<LETTER> gLE I IERRTIEALERERE Muthve blogRmming Tutoria

[Gruau, 96]



i Using Grammars

= T0O generate the initial propulation
(production rules used randomly)

= T0 generate syntactically correct
iIndividuals by crossover: choose two
Xover points generated by the same
production rule (ex: ‘A’ can be exchanged
by another <letter>, like C)
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Example of Grammar Guided

‘L Crossover

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



Grammars in [Whigham, 96]

° viduals are derivation trees

eMakes crossover easier

|t is necessary to build the program for fithess computation

S — Exp © | Individual depth 0
Exp — Exp Op Exp | (1) / ‘ \
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* Working with Derivation Trees

Context-Free
Grammar

Declarative

Bias and Structure

N

3\ 4 3\

= Dernvation Trees ——== Proerams

/ \ J/

VAV
l\.__ ___./" "\._ _,/r ]\,_ /

Genetic Operators Fitness Evaluation
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Derivation Trees Crossover

\ AN R
or _  (B\ and /) B CYOSsSover Y B
B 'I ,! 1r 5 ,l ] > B o
| e \
\ | | | z
| X "' 4
\./ \/
(or v v) (and x z) (or v x)
S ::= notB | andBR | orBR
B:i=xXx |y | z
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i Grammar Adaptation

= P. A. Whigham. 1995. “Inductive Bias and
Genetic Programming”.

= Grammars can be changed as evolution
progresses, so that they generate good
iIndividuals more likely
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i Other Grammar/Types Work

= M. L. Wong, K. S. Leung. 1995.
Genetic Logic Programming and
Applications. IEEE Expert, 10(5).

= D. Montana. 1995. Strongly Typed
Genetic Programming. Evolutionary
Computation
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i Reuse In GP

= Of computations: store them in a variable or
data structure (arrays, lifo, fifo, ...)

= Of parameterized code: subroutines (ADF:
Automatic Defined Functions)

= Of repetitive code: iterations, loops,
recursivity

= Only with loops or recursivity, GP is Turing-
complete
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i Use of Variables

= Add functions to read and write on variables or
arrays:
= Ex: (write-m 3.0) (read-m)
= EX: Indexed memory (arrays):
= (write-array-m 5 3.0)
= (read-array-m 5)
= Other data structures can be used (queues,
stacks, ...)

= Problems with (global) variables: secondary
effects, no functional programming anymore
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Example: variable m

Int write-m (value) {
m = value;
return(m);

}

Int read-m () {
return(m);

¥
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i Evolving Subroutines

= Human programmers write subroutines for:

= Creating new primitives, more amenable to the
problem at hand

= Generalize similar pieces of code found In
differents parts of the main program

= By allowing subroutines, it is easier to write
code, and the final program is simpler

s Can GP use subroutines?
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ADFs (Automatically Defined
Functions: subrutinas)

ch individual evolves its own subroutines in different
branches of the tree

ADFC
Main program

Homologous crossover
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i Effort and size for even-parity

Even- Effort w/o Effort with | Size w/o | Sjze with
parity ADF ADFs ADF ADE

3 96.000 64.000 44,6 48,2
(x1.,5)

4 384.000| 176.000 112,6 60,1
(x2,18)

5 6.528.000| 464.000 299,9 156,38
(x14.,07)

6 70.176.000| 1.344.000 900,8 450,3
(x52,2)
/all NO YES
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i Other Subroutine Works

= Angeline PJ and Pollack JB. 1992. “The
Evolutionary Induction of Subroutines”, The
Proceedings of the 14th Annual Conference of the
Cognitive Science Society.

= Rosca & Ballard. 1996. “Discovery of Subroutines

In Genetic Programming”. Advances in Genetic
Programming |l.

= Ricardo Aler, David Camacho, Alfredo Moscardini.
2004. "The Effects of Transfer of Global
Improvements in Genetic Programming".
Computing and Informatics
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How Many ADFs and how
i many parameters?

= Try and test, starting with small values

= Use many ADFs and parameters and let
GP discover how many are needed

s Add automatic structure alteration
operators:

= Duplicate ADF or arguments
= Remove 1 ADFs or 1 argument
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i Conclusions ADFs

= GP can evolve a main program and
several subroutines

= If the problem is complex enough,
computational effort and final size
decrease a lot

s Good 1dea, use them!
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i Iteration in GP

= [heoric result:

» Teller. 1994. “Turing Completeness In
the Language of Genetic
Programming with Indexed Memory
”. 1994 IEEE World Congress on
Computational Intelligence

= GP+IM (Genetic Programming +
Indexed Memory (arrays))
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‘L Iteration In GP [Teller, 1994]

= Available primitives:

= (IF X THEN Y ELSE 2)
s (= XY)

= (AND XY)

= (ADD X Y), (SUB X Y)

= Indexed memory (array):
» (Read X), (Write Y X)
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i Iteration In GP [Teller, 1994]

= Then, any algorithm can be expressed
as:

REPEAT <GP+IM function>

UNTIL <some state happens in memory
(for instance a flag Is raised)>
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i Iteration In GP [Teller, 1994]

= No loops are needed for Turing-
completeness! (not completely
unexpected)

= Just evolve a GP+IM program

= In practice, it may be easier to evolve
programs with explicit loops
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i Use of Loops

s Add to the function set a function that
Implements the loop:

= (loop times loop-body)
= (loop 10 (write-m (* (read-m) 1))
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‘_hlee of Iterations and Loops

Int loop (times; body) {
Int I; Int times, result;
for (1=0; i<times; i1++) {
result=evaluate_tree(body);

}

return(result);}
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Limitations of Loops (and

‘L Recursion)

= Not used often

= Not well studied in GP

= Increase a lot fithess computation time
= |terative programs are fragile
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Solutions for Loops and
i Recursivity

s Limit;
= Fitness computation time
= Number of loops
= Number of iterations or recursive calls
= Loop nesting

= Coroutine model [Maxwell, 94]: Run
programs in parallel and cancel the bad ones

= Implicit recursion by means of high-level
funcions: map, foldr, ... [Yu, 01]

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



Turing-complete Program

i Space

= W. B. Langdon and R. Poli. “The
Halting Probability in von-
Neumann Architectures”. EuroGP’ 06

= Space made of machine code random
programs
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* Machine Code

Table 1. T7 Turing Complete Instruction Set

I[nstruction #operands operation vset Kvery ADD operation either sets or
ADD 3 A 4+ B=C v clears the overflow bit v.

BVS | #addr—pc if v=1 L.Di and STi, treat one of their argu-
COPY 2 A—B ments as the address of the data. They
LDi 2 aA—B allow array manipulation without the
STi 2 A—aB need for self modifying code. (LDi and
COPY_PC | pc—A STi data addresses are 8 bits.)

JUMP | addr—pe To ensure JUMP addresses are legal,

they are reduced modulo the program
length.
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‘L Programs that Terminate

Log 10 Count

1e+09 g T T - T T -
I Programs which stop + ]
1e+08 F =
! + ]
1e+07 F + -
: _F';{_ ]
1e+06 F _/++/ _
100000 [ e 3

I 4
10000 [ T 2

4+
! » ]
1000 F -
.//+/++ ;
100 | ] ] ] ] L
100 1000 1e+4 1e+5 1e+6 1e+7/
Program length
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i Number of Programs that End

= The number of programs that end grow
exponentially with length

= But the total number of programs grows much
faster

= The proportion is:

L/\/length.

= Execution time of programs that end Is
proportional to:

\1;1 1igth.
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Proportion of programs that

‘L end

H
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i Coroutine model [Maxwell, 94]

= Maxwell. 1994. “Experiments with a
Coroutine Execution Model for
Genetic Programming”. /EEE World
Congress on Computational
Intelligence. 413-417
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iCoroutine Model [Maxwell, 94]

= Problem of limiting time:
= Threshold may be too small or too large

= Coroutine model:
= Allows “parallel” run of programs
= Do not limit execution time

= Steady-state model: good/fast individuals
replace bad/slow individuals
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i Coroutine Model

= Fair comparison: compare individuals
with the same age (running time)

= Requires programs return partial fithess

= Not that difficult if there are many
fithess cases (fithess accumulated so
far)

= Or in problems similar to the Pacman
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Coroutine Model

= Create Initial population and run them for a
seconds. Compute partial fitness

A

Individuals Dndivaa ] o3
L Indiv.2 ] 08 ~Fitness

fime
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Coroutine Model

= Create N new individuals by means of
tournament and genetic operators

A

Individuals Dndivaa ] o3
| Indiv. 5
| Indiv. 6
| Indiv. 7
3 > time
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* Coroutine Model

s Run the N Individuals for the same time than
the rest of individuals in the population

A

Individuals 0.3

0.8
0.7
0.1
0.8

0.2

0.1

>

fime
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* Coroutine Model

= Remove the worse individuals by tournament

A

Individuals

IhdE7 o
< >

a time
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Coroutine Model

= Run individuals for another time 4. And so on

A

Individuals

<

%3 > time
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i Coroutine Model

= It works well when an individual appears,
that solves all fithess cases In a finite time

= EXperiments show that it generates more
efficient individuals

= But there Is no guarantee that a better
iIndividual at a particular time £ will be the
best one Iin the long run. It is just a
heuristic
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i Other Possibilities

= Coroutines difficult to implement
s Use different threads?

= For every generation, store the best
fithess obtained so far

= Cancel all programs that at that time,
get a worse fitness than the best
obtained so far

= Or downward adjust its priority
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‘L Experiments with loops

= Not too many! Hard for GP, room for
research
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i Evolving a Sorting Algorithm

= Kinnear. 1993. “Generality and Difficulty
IN Genetic Programming: Evolving a
Sort”. Fifth International Conference on
Genetic Algorithms

= Several general sorting algorithms were
evolved. O(N?)

= Fitness function: complex, but basically, it
counts the number of swaps (how far a
number is from its right position)
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Evolving a Sorting Algorithm.
i [Kinnear, 93]

= Population size: 1000
= Generations: 50
= Maximum initial depth: 6

= Fitness cases: 15 (5 fixed and 10 random).
Maximum list length: 30

= Probability of success: from 40% (low-level
primitives) to 100% (high-level primitives) of
runs generated a correct individual
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Evolving a Sorting Algorithm.
‘L [Kinnear, 93]

= Primitives (quite low-level):
=« If(test) {body}
n X<y
= Swap(x,y)
= for(start, end, body), index
s X+1, X-1, x-y
= *leng™: length of the list of integers
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Evolving a Sorting Algorithm.
i [Ciesielski, Li, 04]

= Clesielski, Li. 2004. “Experiments
with Explicit For-loops in Genetic
Programming”. CEC'O4.

= Sorting problem:

= It Is more likely to evolve good sorting
programs by using loops. They are also simpler

= But no general sorting algorithm was evolved!
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Evolving a Sorting Algorithm.
i |Spector, Klein, Keijzer, 05]

= Spector, Klein, Keljzer. 2005. “The
Push3 Execution Stack and the
Evolution of Control”. GECCO’2005

s Stack-based GP

= Evolved general programs for reversing
a list, factorial, Fibonacci, N-even-
parity, and list sorting
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Evolving a Sorting Algorithm.
‘L |Spector, Klein, Keijzer, 05]

s Complexity: O(N?%): N*(N-1)/2
= Fitness cases: lists of 4 to 8 integer
elements
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Evolving a Sorting Algorithm.
‘L |Spector, Klein, Keijzer, 05]

= Primitives (quite low-level):
= List[i] (accesses position i of the list)
« Length (of the list to be sorted)
= Swap(l,]) =
« List[i] = List[j], List[j] = List[i]
= Max(i,)) = Max(List[i],List[j])
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‘L Evolving a Sorting Algorithm

= No O(N*In(N)) algorithm has been
evolved by GP (as far as | know!)
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i Experiments in Recursivity

= Wong. 2005. “Evolving Recursive

Programs by Using Adaptive Grammar
Based Genetic Programming.”

= Yu. 2001. “Hierachical Processing for
Evolving Recursive and Modular

Programs Using Higher Order Functions
and Lambda Abstractions”

s In: Genetic Programming and Evolvable
Machines
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i Implicit Recursion [Yu, 01]

= No explicity recursive calls

= High level functions:

= Map. Ex: map 3+x (12 3) = (4 5 6)

« Foldr. Ex: foldr + 0 (1 2 3) = 1+2+3+0 =6
= They are guaranteed to terminate
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Results Implicit Recursion

Resulte Im}_)licit Recu;‘sio_n Generic Gel_letic GP with ADE<
+ 7. Abstractions Programming
Programs general even-parity general even-parity even-7-parity
Runs/Success 60/57 60/17 29/10
Minimum I(M.1.2) 14000 220.000 1.440.000
Number of Fitness Cases 12 8 128
Fitness Cases Processed 168.000 1,760,000 184.320.00

Solution: 101 (foldr 16 (head L)(tail L)) False

Equivalent  (not (foldr xor (head L) (tail L)))

to:
(xor también ha sido evolucionada)
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i Limits to Explicit Recursion

= Only for lists?

= It does not work for evolving Fibonacci
equation f(n) = f(n-1)+f(n-2)
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i GP Variants

= Evolving Data Structures [Langdon, 98]

= Machine Code Evolution (linear
representation) [keller, 96], [friedrich, 97]

= Immune Programing [Musilek, 06]:

= Stack-based GP (lineal) [Perkins, 94]
[Spector et al. 2005]

= Cartesian Genetic Programming [Miller et al,
03]
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Criteria for “human-
competitive”

(A) The result was patented as an invention in the past, is
an improvement over a patented invention, or would qualify
today as a patentable new invention.

(B) The result is equal to or better than a result that was
accepted as a new scientific result at the time when it was
published in a peer-reviewed scientific journal.

(C) The result is equal to or better than a result that was
placed into a database or archive of results maintained by an
Internationally recognized panel of scientific experts.

(D) The result is publishable in its own right as a new
scientific result — /ndependent of the fact that the result was
mechanically created.
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Criteria for “human-
competitive”

(E) The result is equal to or better than the most recent
human-created solution to a long-standing problem for
which there has been a succession of increasingly better
human-created solutions.

(F) The result is equal to or better than a result that was
considered an achievement In its field at the time it was
first discovered.

(G) The result solves a problem of indisputable difficulty
In its field.

(H) The result holds its own or wins a regulated
competition involving human contestants (in the form of
either live human players or human-written computer
programs).
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i GP successes

= http://www.genetic-programming.com/
humancompetitive.html

= Quantum algorithms better than existing ones
s Aplication to Robosoccer
s Aplications to Bioinformatics

= Aplication to analogical circuit design and
antennae design (developmental GP)

= Paralelization of computer programs

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



Antenna designed by
‘_Hievelomental GP

= GP evolves programs that build the antenna

s Launched Iin ST5 satellite, launched in March
2006

-
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* GP in Quantum Computing

Creation of a better-than-classical guantum algorithm for the Deutsch-
Jozsa “early promise” problem (B, F)

m Creation of a better-than-classical guantum algorithm for Grover’s
database search problem (B, F)

s Creation of a quantum algorithm for the depth-two AND/OR query
problem that is better than any previously published result (D)

m Creation of a gquantum algorithm for the depth-one OR query problem
that is better than any previously published result (D)

m Creation of a protocol for communicating information through a
quantum gate that was previously thought not to permit such
communication (D)

= Creation of a novel variant of quantum dense coding (D)
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i GP In Robosoccer

s Creation of a team that won the first
two matches at RoboCup 1997, [Luke
1998]

= Creation of a whole team that ranked In
the middle of 34 human programmed
teams at RoboCup 1998, [Andre and
Teller 1999]
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* Results at Robocup 1998

1 2 £ 2
1. PaSo Team (Ttaly) N e
1) L] M =1 11 [
2. Tn-Sparrow (Germany) N - U3 0:1
n A niea
3. Miva 2 (Japan) 10 | 30 | - 0:0
Y g | | [ 21
4. Darwin Tluted (TTZ480 05 1:0 -0 -
Cualfied:
1. Miva

2. Pazo Teatn
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esults at Robocup 1998

= Grupo E:
= (1) Miya2 (0-0)
= (2) PasoTeam (0-5)
= (3) Darwin United
= (4) Ulm-Sparrow (1-0)
= Darwin United obtained 4 points.
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i GP In bioinformatics

= Creation of four different algorithms for
protein transmembrane identification

Ricardo Aler. ICML'06 Automatic Inductive Programming Tutorial



i Conclusions GP

s Evolution of trees with functions and
memory

s Good i1dea: ADFs

= Not many results with loops and
recursivity, so far

= Success in some real problems
= Genetic operators, too low level
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