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Abstract

The electric power industry in Europe and all over the world is undertaking ma-
jor regulatory and operational changes. The underlying rationale behind all these
changes is to move from a centralized operation approach to a competitive one.
That is, the understanding of power supply as a public service is being replaced by
the notion that a competitive market is a more appropriate framework to supply
reliable and cheap electric energy to consumers. In some cases, the aforementioned
transition process has included the privatization of power utilities. This new frame-
work requires new tools and procedures, and some of these procedures drastically
differ from traditional ones. Therefore, new challenging mathematical program-
ming and operations research problems naturally arise in this context. This paper
provides a review of some of these problems, particularly operational problems span-
ning a time horizon from one day to one year. The approach adopted emphasizes
mathematical programming issues, describing the structure and characteristics of
these problems and suggesting appropriate solution techniques.
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1 Introduction

The electric power industry in Europe and all over the world is under-
taking major regulatory and operational changes. The underlying rationale
behind all these changes is to move from a centralized operation approach
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to a competitive one. That is, the understanding of power supply as a pub-
lic service is being replaced by the notion that a competitive market is a
more appropriate framework to supply reliable and cheap electric energy to
consumers.

This new competitive paradigm is implemented via two market struc-
tures: (i) a power pool and (ii) a floor to facilitate bilateral contracts among
producers and consumers.

A pool is an e-commerce marketplace where producers and consumers
submit production and consumption bids, respectively. The market oper-
ator clears the market using market rules and produces a market-clearing
price and sets of accepted production and consumption bids. Typically, the
market operator clears the market once a day. Additional markets for minor
adjustments are possible on an hourly basis. Producers, consumers and the
regulatory authority agree upon any market rules before their implementa-
tion.

In a monthly or yearly framework, the structure to allow competitive
trade among producers and consumers is the floor for bilateral contracts.
A bilateral contract is an agreement between a producer and a consumer
so that the producer supplies electric energy to the consumer at a given
price. Physical bilateral contracts are medium-term decisions lasting from
one month to one year. Financial contracts to hedge price volatility are not
considered in this work.

The power pool is commonly denominated Power Exchange (PX). Usu-
ally, producers are referred to as GENerating COmpanies (GENCOs) and
consumers can be referred to as CONsumption COmpanies (CONCOs). En-
ergy Service COmpanies (ESCOs) buy energy from bilateral contracts and
from the power pool to sell it to different types of customers with the pur-
pose of maximizing their own benefits. The market-clearing entity is often
known as the Market Operator (MO). Power transactions are carried out
through the transmission and distribution networks. The TRANSmission
COmpanies (TRANSCOs) provide the wires to materialize the power trans-
actions. Transmission companies are highly regulated entities that provide
a non-discriminatory access to their wires for a regulated fee. Analogously,
DIStribution COmpanies (DISCOs) offer a non-discriminatory use of their
distribution wires for a regulated fee. The entity in charge of ensuring the
technical feasibility of the power transactions agreed upon at the Power Ex-
change is denominated the Independent System Operator (ISO). The ISO
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Figure 1: Electricity market agents and structure.

has usually the authority to modify power transactions already scheduled
if system security is at stake. These modifications should be minimal. The
above structure is illustrated in Figure 1. Confusingly, sometimes the name
ISO is applied to the MO in the technical literature and consumption and
energy service companies are referred to as DISCOs. See Sheblé (1999) for
additional details.

This paper addresses only energy markets. Although reserve and regu-
lation markets are also relevant for the power industry, the largest share of
market trade is within the energy market.

Relevant books addressing the new competitive framework include
Sheblé (1999), Meier and Hobbs (1998), Chao and Huntington (1998), Tlic
et al. (1998) and Hobbs et al. (2000). Dozens of conference papers on the
subject can be found in the proceedings of the IEEE Power Engineering
Society (http://www.ieee.org/) conferences, and the University of Califor-
nia Energy Institute symposia and workshops, in particular the Program
on Workable Energy Regulation, POWER, (http://www.ucei.berkeley.edu).
Relevant journal papers are mostly found in the issues of the “IEEE Trans-
actions on Power Systems” (during the last ten years) and “The Electricity
Journal”, Elsevier Science, The Netherlands (http://www.elsevier.nl).



The remainder of this paper is organized as follows. In Section 2 the
producer perspective is adopted. Both bilateral contract and pool bidding
issues are analyzed. Market power topics are also treated. In Section 3 the
viewpoint of the energy service company is studied, and its decision-making
problems are analyzed. In Section 4 the point of view of the consumer is
considered for both short-term decisions and long-term ones. Section 5
presents the problems to be solved by the market operator. Three differ-
ent market-clearing algorithms are reviewed: single-period auctions, multi-
period auctions and Walrasian auctions. Finally, Section 6 provides some
conclusions.

2 Producer viewpoint

The decisions faced by a GENCO are described in this section. The
decision making problems of a GENCO are mainly two: (i) how much
energy to allocate to bilateral contracts and (ii) how much energy to sell in
the pool. These problems are analyzed below.

2.1 Bilateral contract selection

In most electricity markets, producers and consumers are allowed to
establish physical supply contracts outside the pool. From the point of view
of a GENCO, it needs to determine if it would be more profitable to sell a
certain amount of energy directly through one of these contracts or through
the pool. As the main parameters in the contract (prices, quantities) are
fixed in advance, a GENCO may reduce its risk significantly by using these
contracts as an alternative to the pool. Consequently, any model that would
consider these decisions must also take into account some representation of
the risk associated with trading through the pool.

The decision problems associated with these bilateral contracts are of
two (related) kinds: i) how to design a contract in an optimal manner,
taking into account the peculiarities of the producer and the consumer, and
ii) to decide if a contract with a given structure is of interest to the GENCO,
as an alternative to the pool.

The details of a contract may vary significantly from one case to another.
These details affect the specific structure of the mathematical models result-



ing from the preceding decision problems. In what follows we will assume
that a contract is a sequence through time of values of (demanded) energy
satisfying certain constraints, and prices related to the energy amounts;
these constraints and price functions define the contract. For example, a
contract could be defined by a maximum amount of energy to be served
in a given time (a year), with bounds on the energy served in each period
within its time horizon, and prices depending on the total amount of energy
served.

The following discussion will concentrate on the second decision prob-
lem, that is, to determine if a given contract is acceptable for a GENCO.
The first problem (the design problem) could be solved in terms of this one,
once some information on the form of the contract is available.

2.1.1 Contract selection under uncertainty

One of the main difficulties when posing and solving contract selection
problems stems from the fact that the decisions that must be compared take
place on quite different time frames. The outcome of the energy market (a
daily process with hourly prices) must be compared to that of the bilateral
contract under consideration (a monthly or yearly arrangement). Modeling
these different time scales gives rise to problems of very large size.

One possible alternative is to summarize the expected behavior of the
energy market through weekly or monthly averages. This works reasonably
well if perfect competition is assumed, but it may not be appropriate if the
GENCO has significant market power.

The presence of uncertainty, mostly associated with the prices resulting
from the energy market, adds to the complexity of these models. Other
possible sources of uncertainty are those derived from the effective use that
will be made of the contract (that is, the specific amount of energy de-
manded), and the availability of renewable resources for energy generation.
The particular (but important) case of hydrogeneration will be considered
later on.

In summary, to decide if a contract would be acceptable for a GENCO,
it would have to solve two optimization problems to compare the profits
generated with the contract and those without it. If we assume the GENCO
to be a price taker, each problem would maximize the profits from the pool



and the contracts (with or without the one under consideration), subject to
technical constraints and those specific for the contracts. It would have the

form:
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where p;; is the total power output of generator i (owned by the GENCO)
in period ¢, s; is the total power output of the GENCO that is allocated to
the pool during period ¢, ¢;1(p;t) is the production cost for energy generation
pi of generator ¢ at period ¢ (data), A\¢(w) is the (average) value of energy
market prices under realization of uncertainty w for period ¢ (data), I;;(w) is
the requirement of energy from contract j during period ¢ under realization
of uncertainty w (data), TI; is the feasible operating region of generator i
(data), and F,{-} indicates expected value over w. It should be noted that
the above problem includes binary variables that do not appear explicitly
in its formulation.

The optimal expected profit should be modified by the term
Ew{z Z Ajt(w)ljt(w)}, where Aji(w) denotes the unit payment to be re-
t g

ceived from contract j during period ¢. This value does not depend on the
decision variables and can be taken into account after problem (2.1) has
been solved.

Problem (2.1) maximizes the profits under the optimal allocation of
generation between the energy market and bilateral contracts. The con-
straints are the operational restrictions on the units and the satisfaction of
the contracts. The existence of contracts implies that the problem cannot
be separated by generator or time unit, unless additional assumptions are
made in advance.

The uncertainty is modeled through the energy market prices and the
actual requirements of the contracts. Given the potential size of the prob-
lem, the periods usually considered are either weeks or months, and the
energy market prices used in the model are averages over these time pe-
riods. The uncertainty is usually discretized by introducing scenarios for
the parameters A(w) and lj(w). The objective function could be modified



to take into account the risk exposure of the GENCO, by adding terms
penalizing this risk, for example.

In practice, this problem can be simplified by ignoring the uncertainty
in the satisfaction of the contracts, and by making a priori assumptions on
the allocation of generation from units to contracts.

Problem (2.1) is a large MINLP that can be approximated either as a
MILP or as a continuous (and nonconvex) NLP. Its solution requires the
use of either a sophisticated branch and cut solver (Brooke et al. (1998),
GAMS (2000)) or a large scale NLP solver (Gill et al. (1997)).

2.1.2 Renewable energies and water value functions

The preceding model assumed a GENCO whose generating plants in-
cluded only thermal units. Energy generated from hydroelectric units, if
they are available, has very low production costs and it is a very valuable
generation resource for the GENCO. The preceding model (2.1) must be
modified to take into account that the availability of water in the reservoirs
for the time horizon under consideration (several months to a few years)
may introduce significant additional uncertainties, and that these reservoirs
are typically interconnected within river basins.

Using model (2.1) as a reference, the modifications associated with the
management of the hydro generation are: i) Hydro generation is a nonlinear
function of water released and height in the reservoir, which may change
significantly in the time horizon considered for these problems; this requires
keeping track of both water released and water stored in the reservoirs. ii)
The availability of water depends not only on the actions of the GENCO,
but also on other stochastic parameters related to the climate, alternative
uses for the water and the actions of the owners of other reservoirs in the
basin. iii) The amount of water stored at the end of the planning period
is an important decision variable, and should be treated explicitly in the
model.

Regarding this last item, the storage of water in a given period, as
opposed to its usage for hydro generation, allows to delay generation to other
periods with larger expected unit profit. The water left in the reservoirs at
the end of the planning horizon should be treated in this same manner, that
is, it is a resource that should be stored if the expectation of future profits



(beyond the planning horizon) is sufficiently large. As a consequence, an
informed decision will require an estimation of these expected future profits.
An efficient manner to do this is to introduce water value functions that
quantify the expected future income for each amount of water stored at the
end of the period in each reservoir.

The resulting model would have the form:

p{t,wg’;igﬁ,(\ﬁmyEw{ (ZGZH vi(yir) + Et:()\t(w)st — Z Cit(pgg))) }
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where p;; is the total power output of generator ¢ (owned by the GENCO)
in period ¢, s; is the total output of the GENCO that is allocated to the
pool during period #, x; is the amount of water released through hydro
unit ¢ (units in set H) in period ¢ (x is the vector of all z), y; is some
average measure of the water stored in reservoir ¢ through period ¢ (y is
the vector of all y;;), v;(ysr) is the water value function (in monetary units)
at reservoir 4, evaluated at y;r (data), the water stored at the end of the
planning horizon T' (data), c;(ps) is the production cost of generator i
at period ¢ for the thermal generators (units in set G) (data), gi{zit, yit)
provides the power generation at hydro unit ¢ corresponding to a water flow
z;; and a storage level y;; (data), \(w) is the (average) value of energy
market price under realization of uncertainty w for period ¢ (data), [ (w) is
the requirement of energy from contract j during period ¢ under realization
of uncertainty w (data), and II; is the feasible operating region of generator ¢
(data). A and B are node-arc incidence matrices that represent the topology
of the river basins where the reservoirs are located (if they are linked),
as well as the dependence between time periods for the water stored in
the reservoirs (data), and b(w) is a vector of external inflows and outflows
to the reservoirs (rain, evaporation and regulated flows) in the basins for
uncertainty realization w (data). It should be noted that the above problem
includes binary variables that do not appear explicitly in its formulation.

The optimal expected profit should again be modified by



Ew{zz;\ﬁljt(w)}, the expected income from the bilateral contracts,
t g
where Aj; is the resulting price from contract j during time period .

To simplify the formulation we have assumed that each reservoir is as-
sociated with a single hydro unit. The main differences between this model
and (2.1) are the water value functions v;(-) and the balances on flows and
stored water in the reservoirs. If water levels in the reservoirs are assumed
to be (approximately) constant, the variables representing the hydro units
(water released and stored) can be replaced by the energy generated at these
units, resulting in a model similar to that of a thermal unit, except that the
hydro units have uncertain levels of availability.

Problem (2.2) requires an estimate of the water value functions v;(-).
This estimate can be obtained from data external to the model, or it can be
generated within the model itself. An interesting and efficient proposal to
compute an approximation for these functions within the model is given in
Pereira and Pinto (1991). In it, model (2.2) is extended beyond the planning
horizon, to cover for example several years. This extension must also incor-
porate the corresponding uncertain information for the additional periods.
The resulting model is very large, but it is not solved directly; instead it
is decomposed into the time periods corresponding to the original planning
horizon and those beyond it. A Benders decomposition approach (Benders
(1962)) is used to generate cuts from the subproblems corresponding to the
periods beyond the planning horizon. These cuts provide piecewise linear
approximations to the water value functions. The approximations are gen-
erated at the optimal values of the decision variables for a previous approx-
imation, and the procedure is repeated until the error in the approximation
of the water value function is below a certain tolerance. This procedure is
closely related to the standard procedure in dynamic programming, where
a so-called value function is approximated from its values at certain points,
but in this case it is applied to the dual of the auxiliary problems; it is often
referred to as dual dynamic programming.

The resulting model is a very large MINLP. It can be approximated by
either MILP models (by introducing piecewise linear approximations to the
functions in the model) or by large scale NLP models (by removing the
zero-one variables).



2.2 Pool response

A GENCO with no capability to alter market-clearing prices will sched-
ule its production to maximize its profit given a forecasted price profile.
Conversely, a GENCO with capability to alter market-clearing prices ad-
justs both (i) its productions and (ii) the resulting market-clearing prices
to maximize its profit. The determination of an optimal adjustment re-
quires a precise knowledge of how it can influence prices. This knowledge is
embodied in the so-called price-quota (or residual demand) curve that pro-
vides the market-clearing price as a function of the GENCO market quota.
Forecasting these price-quota curves is a challenging research topic.

Once the GENCO best production schedule is known, a bidding strategy
to achieve this production schedule should be devised. This section will
focus only on the determination of the GENCO best production schedule,
which can be formulated as a mathematical programming problem.

For the sake of clarity, hydro units are not considered in the following.
The models presented below can be extended to consider hydro units in an
analogous fashion to the preceding description.

2.2.1 Price taker

A GENCO with no capability to alter market-clearing prices can be
modeled as a number of generators that maximize their profits indepen-
dently. In this case, given the market prices, the profit maximization prob-
lem for the GENCO as a whole decomposes directly by generator. There-
fore, a single generator is considered in the following model. The objective
of this generator is to maximize its profits subject to its operational con-
straints. Therefore, its profit maximization problem is formulated as:

max Zt: (At Pt — Ct(pc)) 23

subject to p, €II, Vi

where p; is the energy produced by the generator at hour #, ¢;(p;) is the
production cost at hour ¢ (data), A; is the forecasted market-clearing price at
hour ¢ (data), and IT is the feasible operating region of the generator (data).
It should be noted that the above problem includes binary variables that
do not appear explicitly in its formulation.
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The objective function of problem (2.3) includes two terms: revenues
and costs. Their difference provides the profits for the GENCO. The con-
straints state that the generator should work within its feasible operating
region. A detailed description of the operating region of a generator using
MILP is provided in Arroyo and Conejo (2000).

The solution of this problem provides the optimal production of the
generator every hour. The generator should bid in the market so that its
optimal production plan is scheduled by the MO.

Model (2.3) is a MILP problem. Its size is small and it can be solved
using a simple branch and bound solver.

2.2.2 Price maker

A GENCO with market power usually owns a significant number of
generators. Its objective is to maximize its profit subject to the operation
constraints of the generator. To that end, the GENCO modifies its hourly
productions with the purpose of altering market-clearing prices to achieve
the highest possible profits. This requires a coordinated action from all
generators of the GENCO.

The above problem is formulated as:

max Z()\t((h) qt — Z cit(pit))
¢ i
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subject to p; € II; Vi, ¢ (2.4)
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where py; is the power output of generator ¢ (owned by the GENCO) at hour
t, g+ is the GENCO market quota at hour £, ¢;1(p;) is the production cost
of generator 7 at hour ¢ {data), M\(q;) is the GENCO price-quota function
at hour ¢ (data) (Sheblé (1999)), and II; is the feasible operating region
of generator ¢ (data). It should be noted that the above problem includes
binary variables that do not appear explicitly in its formulation.

The objective function of problem (2.4) represents the profits for the
GENCO. The first block of constraints expresses the GENCO market quota
as a function of the production of its generators. The second block of
constraints enforces the operating restrictions of the generators belonging

1"



to the GENCO.

The solution of problem (2.4) provides the optimal production of every
generator of the GENCO. The GENCO should bid in the market in such a
way that its generators are allocated their optimal productions.

Problem (2.4) is a medium-size MINLP problem. Through the use of
additional binary variables it can be converted into a MILP problem. Its
solution requires the use of a sophisticated branch and cut solver.

3 Energy service company viewpoint

An energy service company obtains energy from bilateral contracts, from
the pool and from its own production plants and sells it to different cus-
tomers. The ESCO target is to maximize its own profit.

An ESCO must decide which are the most favorable bilateral contracts
to sign in the medium term. In the short term, it buys in the pool any ad-
ditional energy needed to supply its contractual obligations with its clients.
If the ESCO has self-production capability, it can use it to protect itself
against high prices in the pool. The contract selection and the pool opera-
tion problems are analyzed below.

3.1 Bilateral contract selection

For an ESCO, the choice of a portfolio of contracts is a similar problem
to that of a GENCO, analyzed in Section 2.1. An important difference is
that the ESCO must select both energy purchase and energy sales contracts.

The decisions on purchase and sales contracts involve both the design of
the contracts and their evaluation versus alternatives (purchases {rom the
pool). The remainder of the section will consider only the evaluation of al-
ternatives. A model for this evaluation would estimate the profits associated
with the optimal operation of the system under each of the alternative sit-
uations on a time horizon defined by the duration of the contract (typically

12



one year). The model would have the following form:

pnax EW{Z(/\t(W)(St =by) — Z cir(pit) = Y Akt@’ka)%t)}
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(3.1)
where py is the total energy output of generator ¢ (owned by the ESCO)
during period ¢, s; is the total energy output of the ESCO that is sold
through the pool during period ¢, b; is the total amount of energy that the
ESCO purchases through the pool during period ¢, ry; is the amount of
energy that the ESCO purchases from contract k in period ¢, c;z(p;t) is the
production cost of generator 7 at period ¢ (data), A¢(w) is the (average) value
of energy market price under realization of uncertainty w for period ¢ (data),
l;+ is the amount of energy that the ESCO sells to contract j in period ¢
(data), Ag¢(rge) is the unit price associated with a purchase r from contract
k during period ¢ (data), II; is the feasible operating region of generator
i (data), and Ty is the set of constraints associated with the specification
of purchase contract k (data). It should be noted that the above problem
includes binary variables that do not appear explicitly in its formulation.

For simplicity, the preceding model has been formulated ignoring hydro
generation. When comparing different alternatives, the optimal objective
function should be modified by adding the term E,{>>,>>; Aje(w)lje(w)},
that is, the expected income from the bilateral contracts, independent of
the variables. Note that Aj; is the resulting price of contract j during time
i.

This model is a large scale MINLP that can be transformed into an
large MILP (by adding binary variables for example). It can be solved
using efficient branch and cut algorithms.

3.2 Pool response and self-operation

For simplicity, the energy allocated to bilateral contracts is not ac-
counted for below. In this case, the ESCO target is to maximize its profits
from the sale of energy to its consumers. This energy is either self-produced

13



or bought in the pool. This profit maximization problem is formulated as:

max — Z(Ct(pt) + A by)
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where p; is the energy self-produced at hour ¢, b; is the energy bought from
the pool at hour ¢, d; is the forecasted total customer demand at hour
t (data), ci(p;) is the production cost of energy self-produced at hour ¢
(data), and A; is the forecasted price of the energy bought in the pool at
hour ¢ (data). It should be noted that the above problem includes binary
variables that do not appear explicitly in its formulation.

The objective function of problem (3.2) includes two terms: costs from
self-producing energy and costs from buying energy from the pool. After
solving the problem, the objective function should be modified by adding
a term that represents the revenues from selling energy to the customers,
> audy, where oy is the customer selling price of the energy during hour .
This term does not depend on the optimization variables. The first block
of constraints establishes that the customer demand should be supplied in
every period. The last constraint requires that the generators belonging to
the ESCO should work within its feasible operating region.

The solution of this problem provides the amount of power to buy from
the pool and to self-produce in every period of the production horizon.

Problem (3.2) is a medium size MILP problem that can be easily solved
using an efficient branch and cut solver.

4 Consumer viewpoint

The general case of a consumer with self-production capability is ana-
lyzed below. If the consumer has no self-production capability, the formu-
lation below can be simplified in a straightforward manner. Two decision
making problems faced by the consumer are addressed: (i) how much en-
ergy to buy from bilateral contracts and (ii) how much energy to buy from
the pool.

14



4.1 Bilateral contract selection

The objective of the CONCO in the medium-term horizon is to select
the best bilateral contracts to sign among an array of available alternatives.
If the bilateral agreements are adequate, the CONCO may decide not to buy
from the pool. Conversely, if the portfolio of contracts is not competitive,
the CONCO may decide to buy all its required energy from the pool.

The problem of a CONCO is similar to that of an ESCO, (3.1), except
that the corresponding model would not include energy sales to other parties
or to the pool.

The resulting model is:

pm\gggi’w; EM{Z(ut(dt) — At(w)by — Z cit(pit) — Z )\kt(Tkt)Tkt)}
be Ve,V b i i k

subject to d; = sz‘t + Z ree + b Vi
i k
pir € II; Vi,t

et € T VEk, i

(4.1)
where p;; is the self-produced energy from generator ¢ (owned by the
CONCO) during period ¢, d; is the total energy consumption of the CONCO
during period ¢, by is the total amount of energy that the CONCO pur-
chases through the pool during period ¢, rg; is the amount of energy that
the CONCO purchases from contract & in period ¢, ¢;:(pi¢) is the production
cost of generator 4 at period ¢ (data), us(d;) is the CONCO utility function
(in monetary units) at period ¢ (data), A¢(w) is the (average) value of energy
market price under realization of uncertainty w for period ¢ (data), Age(re)
is the unit price associated with a purchase r from contract & during period
t (data), TI; is the feasible operating region of generator 7 (data), and Ty
is the set of constraints associated with the specification of purchase con-
tract k& (data). It should be noted that the above problem includes binary
variables that do not appear explicitly in its formulation.

The resulting model is again a large scale MINLP that can be solved
by transforming it into a large MILP and using an efficient branch and cut
algorithm.
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4.2 Pool response

From the pool perspective, the target of a CONCO is to maximize its
consumer utility minus its self-production costs, subject to satisfying its
own demand. For the sake of clarity, and without loss of generality, it is
assumed that there is no bilateral contracts.

This model is formulated as:

ds) —
5 290 )

subject to by +pr=d; Vi (4.2)
Pt € I1

where by is the energy bought in the pool by the consumer at hour ¢, p; is
the energy self-produced by the consumer at hour ¢, d; is the CONCO own
demand at hour ¢ (data) , ug(d;) is the consumer utility function at hour #
(data), and c¢(ps) is the consumer production cost at hour ¢ (data).

The objective function of problem (4.2) is the difference between the
utility of the consumer and its self-production costs. The first block of
constraints states that the demand of the consumer should be satisfied at
every period. The last constraints establish that the generators owned by
the consumer should work within their feasible operating region.

The solution of problem (4.2) provides the amounts of energy the con-
sumer should buy from the pool or self-produce in each time period.

Problem (4.2) is a small-size MILP problem that is easy to solve.

5 Pool operation viewpoint

The market operator should clear the market using an appropriate pro-
cedure, agreed in advance by all market participants. Three market-clearing
procedures are considered in this section:

1. Single-period auctions.

2. Multi-period auctions.

3. Walrasian auctions.
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5.1 Single-period auctions

The objective of a single-period auction is to maximize, for a single
time period, the net social welfare subject to meeting the demand and the
operating constraints of the producers. Therefore, periods are considered
one at a time and inter-temporal constraints are neglected. As a result
of ignoring these constraints, heuristics are needed to modify the auction
solution in each time period, in order to ensure that it is technically feasible.
To clear the market, 24 hourly auctions are carried out successively. This
procedure is performed usually one day in advance. GENCOs, ESCOs and
CONCOs submit their respective bids and the MO solves for every time

period the problem below:
max d; di — i D
di Visp ¥ ZZ: o EJ: b

subject to 0 <p; <p; Vj

0<d; <d; Vi

> pj€ll, V¥m (5.1)
jem

Y dien, vn

€N

Zdi = ij
i J

where d; is the demand bid 4, p; is the production bid j, d; is the size of
demand bid 4 (data), P; is the size of production bid j (data), d; is the
price of demand bid i (data), 7; is the price of production bid j (data),
A, is the feasible operating region of demand n (data), I, is the feasible
operating region of producer m (data), ¢ € n indicates the set of demand
blocks belonging to consumer n (data), and § € m indicates the set of
generation blocks belonging to producer m (data). It should be noted that
the above problem includes binary variables that do not appear explicitly
in its formulation.

The objective function of problem (5.1) is the consumer surplus plus the
producer surplus, i.e. the net social welfare. It is computed as the difference
of two terms: the first term is the sum of accepted demand bids times
their corresponding bidding prices; the second term is the sum of accepted
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production bids times their corresponding bidding prices. It should be noted
that if the producers do not bid at their respective marginal costs, the second
term of the objective function is not actually the producer surplus but the
“declared” producer surplus. However, in this paper it will be considered,
without loss of generality, that producers do bid at their actual marginal
costs. The first block of constraints limits the sizes of the production bids.
The second block of constraints specifies the sizes of the demand bids. The
third block of constraints ensures that the set of bids from every producer
should meet its production constraints. The fourth block of constraints
enforces that the set of bids of every consumer should meet its consumption
constraints. The fifth constraint states that the production should be equal
to the demand, so that the market clears.

The solution of problem (5.1) provides the accepted production and
demand bids and the market-clearing price, usually defined as the most
expensive accepted production bid. Other definitions are also possible.

The above problem is a medium size MILP problem that can be easily
solved.

5.2 Multi-period auctions

The objective of a multi-period auction is to maximize the net social
welfare over the auction horizon subject to meeting, in every hour, the
demand and the operation constraints of the producers. The same consid-
erations on the net social welfare made for single-period auctions are also
valid for multi-period ones. Inter-temporal constraints are explicitly taken
into account (Arroyo and Conejo (2000)). GENCOs submit productions
bids, ESCOs and CONCOs submit consumption bids and the MO solves
the problem below:

max Z(E dit dz‘t*Z??'tP‘t)
die Vistip, oVt et —

subject to 0 <pjt <Py Vit

0<dy<dy Vit

ijt €y Vm,i (5.2)
jem
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where d;; is the demand bid 7 at time #, pj; is the production bid j at
time ¢, d; is the price of demand bid i at time ¢ (data), 7;; is the price of
production bid j at time ¢ (data), d is the size of the demand bid 7 at time
t (data), pj; is the size of production bid j at time ¢ (data), d; is the price
of demand bid ¢ at time ¢ (data), mj; is the price of production bid j at time
t (data), A, is the feasible operating region of demand n (data), and I, is
the feasible operating region of producer m (data). It should be noted that
the above problem includes binary variables that do not appear explicitly
in its formulation.

The objective function of problem (5.2) is the net social welfare over the
whole planning horizon (consumer surplus plus producer surplus). The first
block of constraints provides limits for production bids, while the second
block limits demand bids. The third block of constraints establishes that
the set of bids belonging to every producer should meet its production
constraints. Analogously, the fourth block of constraints states that the
set of bids of every consumer throughout the time horizon should meet
its consumption constraints. The third and fourth blocks of constraints
allow enforcing all types of inter-temporal constraints. The fifth block of
constraints enforces the balance of production and demand in every period.

The solution of problem (5.2) provides the accepted production and de-
mand bids and the market-clearing price in every time period. The market-
clearing price in each hour is defined as the price of the most expensive
accepted production bid that hour. Note that other definitions of market-
clearing prices are possible.

The above problem is a large-scale MILP problem. A state-of-the-art
branch and cut solver is required to solve it in a reasonable amount of time.

5.3 Walrasian auctions

A Walrasian auction ({dtonnement) is a multi-round auction based on
price modifications (Walras (1954), Galiana et al. (2000)). Note that pre-
vious auctions are not multi-round but just single-round.
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This auction is described in the steps below:

Step 1. The MO broadcasts hourly trial prices, A, Vi.

Step 2. Producers determine their productions to maximize their prof-
its subject to their respective operation constraints. Therefore, each
GENCO solves problem (2.3) or problem (2.4) and communicates to
the MO the production schedule it is willing to carry out.

Step 3. ESCOs determine the energy to buy from the pool to maximize
their respective profits. Thus, each ESCO solves problem (3.2) and
informs the MO of its desirable consumption schedule.

Step 4. Consumers determine the amounts of energy that maximize their
respective utilities. Therefore, each CONCO solves problem (4.2) and
sends to the MO the consumption schedule it is willing to accept.

Step 5. The MO calculates hourly load imbalances.

Step 6. If hourly prices are unchanged in two consecutive rounds, they
produce the market-clearing prices, and the auction stops; else the
MO modifies prices aiming at balancing the load, broadcasts new
hourly prices, and the auction continues in Step 2.

It should be noted that the above algorithm guarantees that each par-
ticipant maximizes its individual profits. In fact, it corresponds to the La-
grangian relaxation solution of the dual problem of a centralized minimum
cost operation problem (with perfect information). If this primal problem
has a duality gap, the Walrasian auction may get trapped into an oscilla-
tory behavior. If there is no duality gap, the Walrasian auction converges to
the optimal solution of both the primal and dual problems. The oscillatory
behavior is not so relevant in terms of the attained primal solution because
it affects typically only a few units. However, changes in market-clearing
price may be relevant. A challenging research problem is how to modify
the original primal (cost minimization) problem so that its optimal solution
does not change significantly but the duality gap is removed (Galiana et al.
(2000)), and therefore it can be solved using a Walrasian auction.
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6 Conclusions

This paper reviews relevant mathematical programming problems that
arise in a competitive electric energy framework, such as the ones arising in
Europe and in many other places all over the world. The different perspec-
tives of the producer, the consumer, the energy service company, and the
pool operator are analyzed, and the associated mathematical programming
problems are formulated and characterized. Many of the resulting models
are large-scale MILPs. Improvements in the computation of solutions for
these problems are of clear interest for the power industry. Other significant
research challenges are related to:

¢ modeling decision making problems using stochastic programming,
MILP and MINLP techniques,

¢ finding appropriate solution procedures, including decomposition tech-
niques, and

e shortening required solution times.
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