
The Value of the “Swap” Feature in Equity Default Swaps∗

Javier Gil-Bazo
Universidad Carlos III de Madrid

Abstract

When equity default swap (EDS) contracts were first included in a rated collateralized debt
obligation (CDO) deal, some critics doubted the originality of the product. In fact, EDSs are
equivalent to already existing binary barrier options on equity, except the premium is not paid
upfront, but over time, and conditional on the trigger event not having occurred. Therefore,
as opposed to existing options, the buyer of an EDS: (1) postpones payment for protection,
and (2) purchases not only protection against a sharp drop in the price of equity, but also
the right to cease payments in case the barrier is hit. This paper derives the closed-form
pricing formula for equity default swap spreads under the Black-Scholes assumptions, and then
quantifies the fraction of the EDS spread actually due to the “swap” feature of the contract for
plausible parameter values. It is found that the extra spread due to the swap nature of EDSs is
economically significant only for high volatility, high trigger levels, and long time-to-maturity.
The impact of interest rates on the value of the “swap” feature is almost exclusively due to the
postponment of payments.

1 Introduction

Equity default swap (EDS) contracts were included in December 2003 for the first time in a rated
collateralized debt obligation (CDO). With credit spreads falling steadily, this was viewed as an
attempt to boost credit investor returns, since typical EDS spreads are ten times those of credit
default swaps (CDSs). An EDS has the same structure as a CDS except the trigger is not a credit
event but a drop in the stock price of a reference entity below 30 percent of its value at the inception
of the trade. Given that such large drops in stock prices are frequently accompanied by a significant
increase in the company’s probability of default, it is not surprising that EDSs have been marketed
as a hedge against credit risk rather than as an equity instrument. Moreover, extant proposals to
price EDSs have been built on the credit risk literature. Medova and Smith (2004), for instance,
employ a structural credit model where the company’s asset value is the single risk factor driving
both the value of equity and the probability of default, whereas Albanese and Chen (2005) develop
a credit barrier model where the company’s credit quality variable is the driving force for debt and
equity value.

Despite their pick-up over credit spreads, the higher transparency with respect to CDSs, and
the advantage of knowing the recovery rate in advance (typically, 50 percent of the notional), the
innovativeness of EDSs has been doubted by some analysts in the industry (Moore, 2004; Wolcott,
2004). This criticism is understandable since EDSs offer the exact same protection as better known
American binary barrier options of the “down-and-in-cash-(at hit)-or-nothing” class. However, EDSs
possess two characteristics that differentiate them from existing equity derivatives. First, the trigger
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level is set much lower than in any other equity put or barrier option, which narrows the gap between
equity and credit instruments. Second, the “swap” feature implies that the buyer of the EDS makes
regular payments instead of paying a single premium upfront, and, also, that the EDS buyer will
cease payments if the “equity default” event occurs. It is this “swap” feature that makes EDSs
distinct from extant derivatives. Moreover, because this feature is valuable to the protection buyer–
due to the postponement of payments and to the option to cease agreed payments after the trigger
event has occurred–it enables the seller to increase the spread even further.

The purpose of this paper is two-fold. First, we provide a closed-form solution to the EDS pricing
problem under the Black and Scholes (1973) and Merton (1973) assumptions, which is missing in
the literature.1 In order to achieve this goal, we assume that the EDS can be hedged dynamically
with a default-free instantaneous bond and a position in the stock, and then use standard risk-
neutral valuation techniques to obtain the no-arbitrage EDS spread. Second, we wish to assess
quantitatively the innovativeness of EDSs, i.e., we wish to quantify by how much the “swap” feature
of EDSs actually increases EDS spreads relative to existing binary barrier options. We do so by
comparing the theoretical EDS spread, using our formula, to the theoretical (annualized) premium
of an otherwise identical binary barrier option. Additionally, we compare the EDS spread to the
spread of a hypothetical binary barrier option whose premium is not paid upfront but on the same
payment dates as those specified in the EDS contract. This comparison helps us determine how
much the EDS buyer’s option to stop paying for protection after the barrier has been hit, is really
worth, since that feature is the only difference between the EDS and the hypothetical option.

Numerical comparative statics for realistic parameter values suggests that the “swap” feature is
worth less than 20% of the total EDS spread. This fraction, however, becomes large as volatility
grows, the distance to equity default shrinks, or the time-to-maturity increases. Interestingly, al-
though high interest rates increase the value of the EDS relative to that of the option, our analysis
indicates that this effect is due almost exclusively to the opportunity cost of the premium and,
therefore, not attributable to the right to stop making payments after the “equity default” event has
occurred. Finally, the frequency of payments appears to have no effect on the value of the “swap”
feature.

The rest of the paper is organized as follows: Section 2 derives the pricing formula for EDS
spreads under the Black-Scholes assumptions; Section 3 presents comparative statics results; And,
finally, Section 4 concludes.

2 Pricing equity default swaps in the Black-Scholes world

Throughout this section, we will use the following notation

S(t) : stock price at time t;

α : the barrier or trigger level as a fraction of the stock’s initial price;

x : fixed recovery rate, as a fraction of the notional (N);

T : the EDS maturity date;

Φ(·) : the cumulative distribution function of the standard normal distribution;

sEDS : The annualized EDS spread as a fraction of the notional. The periodic payment is obtained
as sEDS∆N, where ∆ is the time-length between two consecutive equally-spaced payment
dates.

1Albanese and Chen (2005) also model the stock price dynamics directly as a pure diffusion process. Because they
assume a constant elasticity of variance processs, rather than a geometric Brownian motion, their pricing formula
must be implemented numerically. They find that this formula fits the empirically observed EDS to CDS spread ratios
more closely than a credit barrier model which incorporates credit jumps and jumps to default. They conclude that
jumps do not appear to be priced in the EDS market.
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We next derive the theoretical EDS spread in the Black-Scholes world, where the following
assumptions hold:

1. markets are perfect (continuous trading is possible and costless);

2. it is possible to invest in a default-free bond maturing instantaneously;

3. the dynamics of the underlying stock price is governed by a geometric Brownian motion under
the risk-neutral measure with drift equal to the instantaneous risk-less interest rate, r, minus
the dividend yield,2 q, and constant diffusion term σ :

dS(t)
S(t)

= (r − q)dt+ σdW (t) (1)

where dW (t) is a standard Wiener process and σ > 0.
Under these conditions, it is well known that absence of arbitrage implies that the market value

of any future contingent payoff must equal its expected value discounted at the risk-free rate, where
the expectation is taken with respect to the risk-neutral measure.

For our purposes, we first need to define the first passage time and its associated density. The
first passage time is the first time the stock price hits the barrier and is denoted by τ :

τ ≡ inf {t | S(t) ≤ B}

Its associated density is defined as:

h(t) =
∂H(t)
∂t

where H(t) is the probability of the stock price hitting the barrier before t, i.e., H(t) = Pr(τ < t).
Under the process (1) there is a closed form expression for h(t) (see, for instance, Reiner and
Rubinstein, 1991):

h(t) =
− ln(α)
σt
√

2πt
e
− 1

2

(
− ln(α)+µt

σ
√
t

)2

(2)

where µ ≡ r − q − σ2

2 .
The floating leg in the EDS is the payoff that the protection buyer obtains in case the stock

price falls below the barrier before maturity. It is exactly the payoff of a binary barrier option of
the “down-and-in-cash-(at hit)-or-nothing” class. Denoting by Ṽ (0, T, xN) the market value of the
floating leg at the time of initiating the contract, we have:

Ṽ (0, T, xN) = xNṼ (0, T, 1) = xN

∫ T

0

e−rsh(s)ds (3)

Substituting (2) in (3) gives (Reiner and Rubinstein, 1991):

Ṽ (0, T, xN) = xN
[
αa+bΦ(z(T )) + αa−bΦ(z(T )− 2bσ

√
T )
]

(4)

where z(t) ≡ ln(α)+bσ2t

σ
√
t

, a ≡ µ
σ2 , and b ≡

√
2rσ2+µ2

σ2 .

In return for the insurance against the stock price hitting the barrier, the protection buyer must
meet a series of periodic payments of sEDS∆N on fixed dates (ti, i = 1, · · ·, n with t0 = 0 and
tn = T ) until the “equity default” event occurs. On that date, if it ever takes place, the protection

2See Merton (1973) for an extension of Black and Scholes (1973) to the case of options on dividend paying stock
with constant continuously compounded dividend yield.
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buyer will also make an accrual payment of the proportional fraction of sEDS∆N that corresponds
to the length of time since last periodic payment. Such payments constitute the fixed leg in the
EDS. The no-arbitrage value of the fixed leg is then obtained as:

V̄ (0, T, sEDS∆N) =
n∑
i=1

e−rtisEDS∆N(1−H(ti)) +
n−1∑
i=0

(∫ ti+1

ti

e−rs
s− ti

∆
sEDS∆Nh(s)ds

)

= sEDS∆N

[
n∑
i=1

e−rti(1−H(ti)) +
1
∆

n−1∑
i=0

(∫ ti+1

ti

e−rs(s− ti)h(s)ds
)]

(5)

The periodic payment term in (5) requires knowledge of H(t) which is given by the following
expression:

H(t) =
∫ t

0

h(s)ds

= α2aΦ(w(t)) + Φ
(
w(t)− 2aσ

√
t
)

with w(t) ≡ ln(α)+µt

σ
√
t

.
The accrual payment term, on the other hand, requires solving:∫ ti+1

ti

e−rs(s− ti)h(s)ds =
∫ ti+1

ti

e−rssh(s)ds− ti
∫ ti+1

ti

e−rsh(s)ds

for i = 0, · · ·, n− 1. After some algebra,

∫ ti+1

ti

e−rs(s− ti)h(s)ds =
− ln(α)
bσ2

(W (0, ti+1)−W (0, ti))

−ti
(
Ṽ (0, ti+1, 1)− Ṽ (0, ti, 1)

)
(6)

where:

W (0, t) ≡ αa+bΦ(z(t))− αa−bΦ(z(t)− 2bσ
√
t)

The accrual payment then follows from (6):

1
∆

n−1∑
i=0

(∫ ti+1

ti

e−rs(s− ti)h(s)ds
)

=
− ln(α)
∆bσ2

n−1∑
i=0

(W (0, ti+1)−W (0, ti))

− 1
∆

n−1∑
i=0

ti

(
Ṽ (0, ti+1, 1)− Ṽ (0, ti, 1)

)
=
− ln(α)
∆bσ2

W (0, T )

− 1
∆

(
(tn−1)Ṽ (0, T, 1)−∆

n−1∑
i=1

Ṽ (0, ti, 1)

)

Finally, for the EDS to have zero value at the beginning of the contract, sEDS∆N must be set
such that the market value of the floating leg equals the market value of the fixed leg:
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xNṼ (0, T, 1) = sEDS∆NV̄ (0, T, 1) (7)

So,

sEDS =
x

∆
Ṽ (0, T, 1)
V̄ (0, T, 1)

Noting that the stock’s initial value enters the formula only through the trigger level as a fraction
of the stock’s initial price, i.e., α, it is evident that EDS spreads are independent of the stock price
for fixed α. For other diffusions, however, S(0) may affect the stock’s local volatility, and hence, the
density h(s) of the first hitting time.

The buyer of an otherwise identical binary barrier option would have to pay the premium upfront,
which should equal xNṼ (0, T, 1). In order for this premium to be comparable to the EDS spread,
it must be expressed as a fraction of the notional value and divided by the length of the contract.
Denoting by sOPT this theoretical option spread, we have:

sOPT = x
Ṽ (0, T, 1)

T

The difference between sEDS and sOPT therefore captures the value of the “swap” feature in
EDS contracts, which has two components. The first component is due to the time-value of money:
in the option contract, the premium must be paid upfront so the opportunity cost of the premium
is lost, whereas in an EDS, payment for protection is split in periodic installments until maturity
or until the barrier has been hit. This distinction increases EDS spreads relative to the option
premium. The second component corresponds to the second property of the “swap” feature, i.e.,
the protection buyer’s option to stop paying after the barrier has been hit. In order to extract the
value of the second component, let us assume the existence of an otherwise identical binary barrier
option contract where the buyer splits the premium in periodic payments due on the same dates as
in the EDS. The only difference between the EDS and such hypothetical option would therefore be
the obligation of the option buyer to meet all remaining payments while the buyer of the EDS only
makes the accrual payment.

Denoting by sHOPT the theoretical spread of the hypothetical option, we have a condition equiv-
alent to (7):

xNṼ (0, T, 1) = sHOPT∆N
1− e−rT

er∆ − 1
It thus follows:

sHOPT =
x

∆
Ṽ (0, T, 1)

er∆ − 1
1− e−rT

3 Comparative statics

For the purpose of quantifying the difference sEDS − sOPT , we consider a benchmark case where
the constant local volatility term is set at 30 percent, the equity default event takes place when
the stock price drops by 70 percent of its initial price, time-to-maturity is five years, the constant
riskless interest rate is 3 percent, the EDS buyer is assumed to make semiannual payments, and
the continuously compounded dividend yield equals 1 percent. For this benchmark case, we obtain
sEDS = 100.58 basis points (bp), and sOPT = 90.16 bp, so the “swap” feature’s contribution to the
total EDS spread is 10.36 percent of the total spread. The spread of the hypothetical option with
periodic payments, sHOPT , equals 97.82, which implies that only 2.74 percent of the EDS spread
is attributable to the buyer’s option to stop paying after the barrier has been hit, while the rest of
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the swap’s value, 7.62 percent of the EDS spread, is explained by the opportunity cost of the option
premium.

The top panels in Figures 1 to 5 plot sEDS , sOPT , and sHOPT in basis points as functions of one
of the model parameters, holding the rest of the variables fixed. The bottom panels show the fraction
of the EDS spread explained by the “swap” feature, i.e., sEDS−sOPT

sEDS
, as well as the fraction of the

EDS spread attributable to the option to avoid payments after the default event, i.e, sEDS−sHOPT
sEDS

.
Figure 1 shows the effect of changes in the constant local volatility parameter. Although the

swap’s contribution is below 26 percent of the total EDS spread, an increase in σ, which impacts
the likelihood of the stock price hitting the barrier early, not only increases the EDS spread, but
also the value of the “swap” feature. For example, when σ increases from 30 percent to 40 percent,
the difference between the EDS spread and the option “spread” increases from 10 bp to 50 bp, or
from 10 to 17 percent of the total EDS spread. The Figure also shows that for volatilities below 40
percent, most of this contribution is attributable to the opportunity cost of the premium, and only
for high volatilities does the option to cease periodic payments become relatively valuable, with a
maximum contribution of about 35 bp of the EDS spread or less than 20 percent in relative terms.

Very similar effects are found when increasing the trigger level, i.e., decreasing the distance to
equity default (Figure 2), since a higher trigger level also contributes to increasing the risk of “equity
default”. The consequences are especially dramatic for trigger levels above 70 percent of the stock’s
initial prices (less than 30 percent decline). In that case, the EDS spread is about 1,200 bp, with
500 bp due to the swap. As the trigger level increases, sOPT and sHOPT converge, which indicates
that the option to cease payments after default accounts for almost all of the swap’s contribution.

Increasing the EDS time-to-maturity (Figure 3) has a smaller impact: doubling the number of
years to maturity from the usual 5 to 10, makes the value of the “swap” feature increase from 10
bp to more than 30 bp, or from 10 percent to more than 20 percent of the total EDS spread. In
contrast to Figures 1 and 2, however, time-to-maturity has a stronger relative effect on the time-
value component of the “swap” feature than on the value of the option to cease payments, with most
of the swap’s value being due to the first component for all parameter values considered.

Figure 4 shows that increases in the riskless interest rate reduce all spreads. The bottom panel
suggests, however, that the relative value of the swap increases sharply as the riskless interest rate
grows. This increase is exclusively the consequence of an increase in the opportunity cost of the
option premium which makes the EDS relatively more attractive, but hardly affects the value of the
option to cease payments (below 5 percent of the EDS spread).

Finally, Figure 5 displays spreads as a function of the number of periodic payments per year. It
is clear from the Figure that the frequency of payments does not affect the EDS spread, the relative
contribution of the “swap” feature or its composition.

4 Conclusions

As opposed to already existing binary barrier options, equity default swaps not only provide the
buyer with protection against large declines in the value of equity, but also with a distinct “swap”
characteristic. This characteristic, familiar to credit default swap investors, enables the protection
buyer to make regular payments rather than a single upfront payment. Moreover, the buyer can
cease agreed payments upon the stock price hitting the barrier. In this paper, we have used a closed-
form Black-Scholes pricing formula to investigate how valuable this feature can be in terms of its
contribution to total EDS spreads, and therefore, how different EDSs are–in quantitative terms–from
already existing derivatives.

The main conclusion of the paper is that the “swap” feature has the potential to contribute to
less than 20 percent of EDS spreads for plausible parameter values. However, its relative value is
higher the higher the volatility of the stock price process, the shorter the distance from the stock’s
initial price to the trigger level, and the higher the contract’s time-to-maturity. Higher interest
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rates also increase the relative value of the “swap” embedded in the EDS, even though they do so
by increasing the opportunity cost of the option and not the value of the option to cease periodic
payments. Finally, both EDS spreads and the swap’s value are almost insensitive to changes in the
frequency of swap payments.

Two interesting questions are left for future work. The first one is whether the conclusions in
this paper hold for more realistic diffusions, such as jump-diffusions, constant elasticity of variance,
or stochastic volatility processes. The second question is concerned with the empirical validity of
theoretical predictions.
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Figure 1. Effect of changes in volatility. The top panel shows (in basis points) the EDS theoretical

spread (black line), the theoretical spread (annualized premium as a fraction of the notional as a fraction

of the notional) of an otherwise identical binary barrier option (red line), and the theoretical spread of a

hypothetical binary barrier option with periodic payments instead of an upfront premium, as functions of

the constant local volatility parameter. The bottom panel displays the difference between the EDS spread

and the option spread as a fraction of the total EDS spread (red line) and the difference between the EDS

spread and the hypothetical option spread as a fraction of the total EDS spread (blue line).
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Figure 2. Effect of changes in the trigger level. The top panel shows (in basis points) the EDS

theoretical spread (black line), the theoretical spread (annualized premium as a fraction of the notional) of

an otherwise identical binary barrier option (red line), and the theoretical spread of a hypothetical binary

barrier option with periodic payments instead of an upfront premium, as functions of the trigger level as a

fraction of the stock’s initial price. The bottom panel displays the difference between the EDS spread and

the option spread as a fraction of the total EDS spread (red line) and the difference between the EDS spread

and the hypothetical option spread as a fraction of the total EDS spread (blue line).
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Figure 3. Effect of changes in term-to-maturity. The top panel shows (in basis points) the EDS

theoretical spread (black line), the theoretical spread (annualized premium as a fraction of the notional) of

an otherwise identical binary barrier option (red line), and the theoretical spread of a hypothetical binary

barrier option with periodic payments instead of an upfront premium, as functions of the contract’s term-

to-maturity in years. The bottom panel displays the difference between the EDS spread and the option

spread as a fraction of the total EDS spread (red line) and the difference between the EDS spread and the

hypothetical option spread as a fraction of the total EDS spread (blue line).
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Figure 4. Effect of changes in the riskless interest rate. The top panel shows (in basis points) the

EDS theoretical spread (black line), the theoretical spread (annualized premium as a fraction of the notional)

of an otherwise identical binary barrier option (red line), and the theoretical spread of a hypothetical binary

barrier option with periodic payments instead of an upfront premium, as functions of the riskless interest

rate. The bottom panel displays the difference between the EDS spread and the option spread as a fraction

of the total EDS spread (red line) and the difference between the EDS spread and the hypothetical option

spread as a fraction of the total EDS spread (blue line).
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Figure 5. Effect of changes in the frequency of payments. The top panel shows (in basis points) the

EDS theoretical spread (black line), the theoretical spread (annualized premium as a fraction of the notional)

of an otherwise identical binary barrier option (red line), and the theoretical spread of a hypothetical binary

barrier option with periodic payments instead of an upfront premium, as functions of the number of payments

per year. The bottom panel displays the difference between the EDS spread and the option spread as a

fraction of the total EDS spread (red line) and the difference between the EDS spread and the hypothetical

option spread as a fraction of the total EDS spread (blue line).
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