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a b s t r a c t

This paper analyzes a situation in which the seller controls 
the accuracy of what potential buyers learn about their valu- 
ation of a go o d to b e sold. This setting is related to many real 
situations such as home sales, antique auctions, and digital 
platforms such as Google and Facebook selling online adver- 
tising slots. Two important questions arise: what is the op- 
timal selling mechanism, and what is the optimal disclosure 
policy of the seller. Under the assumption of private values, a 
simple auction with a reserve price is the optimal mechanism. 
What we show is that the amount of (costly) information pro- 
vided increases with the numb er of p otential bidders when 
using the optimal mechanism and is greater than when the 
object is always sold. Because information changes the distri- 
bution of a bidder’s expected valuations, the optimal reserve 
price also changes, so that the number of bidders (indirectly) 
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. Introduction

We analyze a situation in which the seller of an object controls the accuracy with
hich N risk-neutral bidders learn their private valuations. 3 The object is sold using an
ptimal mechanism, a standard auction with reserve price in this setting. A well-known
esult in auction theory is that the optimal reserve price depends on the distribution
f bidder valuations but not on the number of bidders. In our framework, where the
uctioneer chooses how much information to disclose, comp etition b etween bidders (cap-
ured by the number of bidders, N ) affects the incentives of the auctioneer to disclose
nformation, which in turn affects the distribution of bidder valuations, and hence, the
eserve price. What we find is that a greater number of bidders increases the optimal
mount of information disclosed, leading to a more restrictive reserve price.

Many situations exist in which the auctioneer can affect bidder information to some
xtent. Take the sale of go o ds on the Internet through auctions (e.g., eBay), for example.
n most of these auctions, sellers have most of the information about the goods for sale and
ecide how much information to reveal through electronic images and text descriptions.
imilarly, when selling a house, real estate agents control the information disclosed to
otential buyers, and when selling antiques at auction, sellers also manage how much
etail they provide. Governments soliciting bids for a public project or a company selling
 subsidiary have plenty of information about the go o ds and control how much will reach
idders.

In online advertising, platforms such as Google and Yahoo! sell advertising slots on
ebsites. Each of these advertising slots is sold to potential advertisers, usually via an
utomatic auction-type mechanism. 4 The platform selling the advertising slots has access
o a great deal of information from previous interactions about the person viewing the
age (obtained directly from the person or extracted from correlating information on
bserved browsing patterns). However, the potential advertisers are the ones who know
he use and benefit of this information (private values). In this interaction, the platform
3 For a review of real world examples where this is the case, such as in the Internet advertising business, 
ee Hummel and McAfee (2015) or Ganuza and Penalva (2010) . 
4 In this paper, we analyze a single unit auction setting. Such a setting is useful to analyze problems like 
he auction of a slot for a banner to be displayed in a webpage or streaming video. Thus, our analysis helps 
nderstand a subset of auction mechanisms used in the online advertising industry, though not all. We do 
ot address other types of auctions, such as those used to analyze auctions for the position of search results 
hich are used by search engines. 



 

 
 

 

must determine how much information to make accessible to potential buyers of the 
advertising slot and how to organize the selling mechanism. 5

The current paper looks at the interaction between access to information the seller 
gives to potential buyers and the selling mechanism, in particular the reserve price used in
the auction. The reserve price can be significant for seller revenue, as shown in Ostrovsky
and Schwarz (2016).  Their paper analyzes a large-scale field experiment on reserve prices
in “sponsored search” auctions conducted by Yahoo! to sell advertisements. In particular,
the authors show that when reserve prices are set according to the theory, revenues
increase substantially relative to a control group with fixed and suboptimal reserve prices.

The current paper contributes to two branches of the literature. Jullien and Mariotti
(2006) and Cai et al. (2007) show that in an affiliated value setting, the auctioneer uses
the reserve price to signal the valuation. In that setting, the number of bidders affects
the seller’s incentive to signal through the reserve price. In our private value setting, the 
seller’s valuation is not relevant for bidder decision problems, and the reserve price has no
informational content. We also contribute to the literature that analyzes the auctioneer’s
incentives to disclose information in private value settings where the assumption is that
the object is always sold (see, for example, Board, 2009; Ganuza, 2004; Ganuza and
Penalva, 2010;  and Hummel and McAfee, 2015 

6 ). 7 We show that the auctioneer provides
more information when using an optimal mechanism, an auction with reserve price.
Providing information to bidders has the positive effect of increasing the efficiency of 
the allocation (and bidders’ willingness to pay). It also, however, has a negative effect,
increasing bidders’ informational rents. As the reserve price reduces bidder informational
rents, the auctioneer’s incentive to disclose more information increases. 8 As the reserve
price reduces bidders’ informational rents, it increases the incentives of the auctioneer to
disclose more information.

This result sheds light on the targeting problem in the online advertising industry. 
Platforms that provide highly accurate information about consumers may end up with
little competition in the auction. The result would be large market power for firms whose 
products are a good match with the preferences of those particular consumers. For this
reason, platforms may prefer to increase competition by being less precise about consumer 
characteristics. We show that applying the optimal mechanism alleviates the trade-off
5 De Corniere and De Nijs (2016) study the auctioneer’s information revelation problem in the setting 
of platforms selling advertising slots on pages people visit. Their analysis focuses on how the auctioneer’s 
optimal decisions affect prices and competition in downstream markets. 

6 Hummel and McAfee (2015) also consider the provision of information in a setting with reserve prices. 
The key difference with the current paper is that the auctioneer’s information provision is costless and they 
only consider all-or-nothing information structures. 

7 All these papers, as well as the current one, assume that the auctioneer chooses from a given family of 
indexed information structures. Bergemann and Pesendorfer (2007) studied the joint problem of costlessly 
designing bidders’ private information and the corresponding optimal mechanism. While they consider op- 
timal mechanisms, in their setting it is very difficult to study the effects of competition on information 
provision as the resulting (optimal) information structures are not ordered in terms of informativeness. 

8 In an alternative setting, Eső and Szentes (2007) shows that if the auctioneer can commit to the in- 
formativeness of the signals provided and charge bidders for it, then the auctioneer can extract all the 
informational rents ex-ante, and the tradeoff between efficiency and bidders’ rents vanishes. 
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etween improving the consumer-advertiser match (and advertiser willingness to pay) and
ompetition among advertisers. Thus, the platform is willing to provide a more accurate
escription of consumer preferences. In addition, we show that for consumers looking for
roducts in niche markets, where less competition for their attention is expected, the
ptimal choice is to provide less information and use a less restrictive reserve price.

This paper is structured as follows: In the next section, we present the model and
nown results in the setting where reserve prices are not used. Section 3 solves the
odel when the seller can set the optimal reserve price, and describes the main results.
ection 4 considers alternative signal structures, and Section 5 is the conclusion.

. The model

An auctioneer wishes to sell a single object to one of N risk-neutral bidders using a
tandard auction, such as a second-price sealed-bid auction. 9 The auctioneer’s valuation
f the object is 0. Bidder valuations, v i , i ∈ { 1 , 2 , . . . , N } , are identically and indepen-
ently distributed with cumulative distribution F ( v) , support on [0,1], a strict positive
nd differentiable density, f ( v) , on [0,1] and mean v m 

. F ( v) satisfies the monotone hazard
ate assumption, which implies that the virtual valuation function, J( v) = v − 1 −F ( v) 

f( v) , is
ncreasing in v.

Bidders do not know their valuations. Before the auction, the auctioneer discloses in-
ormation that generates a private signal for each bidder, X i . The auctioneer chooses how
uch information to reveal by determining the precision of bidders’ signals, denoted by

, which is public. For the auctioneer obtaining and transmitting information is costly. In
articular, creating N signals with precision δ has a cost C ( δ), where C 

′ ( δ) > 0, C 

′ ′ ( δ) > 0,
nd C 

′ (0) = 0 . We assume that the information release is symmetric and that all private
ignals have the same precision. 10

Finally, after updating their expected valuations using their private signals, bidders
ubmit offers to the auctioneer, and the auction takes place.

In summary, the sequence is as follows:

1. The auctioneer, knowing the number of bidders, N , decides how much information to
disclose to the market by choosing δ at a cost C ( δ).

2. Given δ, each bidder receives a realization x i of the private random signal X i . Bidders
update their valuations of the object using δ and x i .

3. The auction takes place and the object is awarded.
We solve the model by backward induction.
9 The Revenue Equivalence Theorem applies in our setting. For concreteness, it may be useful to think 
f the auctioneer as using a second-price sealed-bid auction although all our results hold for any standard 
uction. 

10 In the working paper version of the current document (available upon request) we consider the case 
here the seller can discriminate among bidders regarding the information disclosed. In a setting with 

ostless information disclosure, we find that it is better to keep one bidder uninformed than to use a reserve 
rice. Furthermore, with a sufficiently large number of bidders it is optimal to release all information to all 
idders. 



s

, 

d 
)

 

2.1. Updating bidder valuations

We focus on a particular family of information structures ordered in terms of informa- 
tiveness by δ. In particular, following ( Lewis and Sappington, 1994 ), we concentrate on
truth-or-noise signals (the realization of the signal is either the underlying value or only 
noise). This information structure has the advantages of a conditional expectation that 
is linear in the signal realization, and a conditional probability of being truth or noise
that does not depend on the particular realization of the signal. 11

For given δ, agent i receives a realization, xi  , of the signal, Xi  , where this signal i
known to be equal to the bidder’s true private valuation, Xi  = vi  , with probability δ,
while with the complementary probability, Xi  is pure noise with distribution F ( · ). Thus
independently of signal accuracy, the marginal distribution of the signal will be the same
as the distribution of valuations, i.e. Pr { Xi  ≤ xi  } = F ( xi  ).  With this signal, the expecte
valuation of the object for a bidder i who receives a signal Xi  when precision is δ, v E

 

 ( xi  , δ
i

is equal to:

v E 

i ( x i , δ) = E [ v i | X i = x i , δ]
= x i δ + (1 − δ) v m (1)

The auctioneer, by choosing δ, determines the distribution of the expected valua- 
tions. 12 However, because the auctioneer does not observe signal realizations, the setup
is still one of standard private values.

Each bidder’s expected valuation v E 

i ( x i , δ) is a function of the bidder’s privately ob-
served signal realization x i . Because the private information of the bidder is the realization
of the signal, we can think of x i as the bidder’s type, and write the virtual valuation of
the bidder as follows: 

v E ( x, δ) −
(

∂v E ( x, δ)
∂x 

)
1 − F ( x )

f ( x )
which simplifies to

J δ( x ) = xδ + (1 − δ) v m 

− δ
1 − F ( x )

f ( x )
= δJ( x ) + (1 − δ) v m 

.

This new virtual valuation function J δ( x ) is a convex combination of (a) the standard
virtual valuation over the distribution of types (signals x ), J ( x ), which is the virtual valu-
11 The truth-or-noise information structure appears in Banerjee (1992) and it has been used exten- 
sively in the literature of information release and mechanism design with endogenous information struc- 
tures ( Bergemann and Valimaki, 2006; Johnson and Myatt, 2006; Ganuza and Penalva, 2010; Shi, 2012; 
De Corniere and De Nijs, 2016; Wang, 2017; Hagiu and Wright, 2018 among others). See also Ottaviani and 
Sø rensen (2006) for a more comprehensive discussion of linear information structures. 
12 In particular, it can be shown that a greater δ makes the distribution of expected valuations more spread 
out in the sense of the dispersive order (which is stronger than the convex order). Then, the signals are 
ordered in terms of informativeness in the sense of sup ermo dular precision as defined in Ganuza and Penalva 
(2010) . 
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tion with full information, and (b) the mean v m 

(the virtual valuation that would result
f no information was revealed at all). Note that J δ( x ) trivially preserves the monotonic-
ty of the virtual valuation function J ( x ) which allows us to focus our analysis without
oss of generality on standard auction mechanisms such as the second-price sealed-bid
uction.

.2. Information disclosure when the object is always sold

Let the expected revenue of the auctioneer when the object is always sold be denoted
y π( δ, N ) where π is defined by the following equation:

π( δ, N ) =
∫ 1

0 

[
y δ + (1 − δ) v m 

− δ
1 − F ( y)

f ( y)

]
m ( y, N ) dy − C( δ) ,

here m ( y , N ) is the density function of X N : N 

which is the maximum of N indepen-
ent draws from F ( x ). Then, the auctioneer’s optimal information disclosure decision is
btained as the solution to the following problem:

δ∗ ∈ argmax δ π( δ, N) (2)

From existing results (see Board, 2009; Ganuza and Penalva, 2010 ) we obtain the
ollowing proposition.

roposition 1. There exists N 0 such that for N ≤ N 0 it is not optimal to reveal any infor-
ation, while for N > N 0 it is optimal to reveal some amount of information, δ∗( N ) > 0 .
he optimal amount of information (when the object is always sold) δ∗ is increasing with

he number of bidders, N. 13

In a setting where the auctioneer chooses whether or not to costlessly reveal a
iven level of information, Hummel and McAfee (2015) show that N 0 is 3 or 4. Board
2009) does not impose the monotone hazard rate assumption. Using an example based
n the power distribution F ( x ) = x 

β Board proves that N 0 may be unbounded even with
ostless information disclosure. 14

To illustrate Proposition 1 consider a special case with a uniform bidder valuation dis-
ribution on [0,1], and a cost of obtaining and transmitting information that is quadratic,
13 As δ∗ may not be a singleton, this statement as well as further comparative statics results below, should 
e interpreted in the sense of Veinott’s strong set order: δ∗

N+1 ≥ δ∗
N 

iff ∀ δ ∈ δ∗
N+1 , δ

′ ∈ δ∗
N 

, max { δ, δ′ } ∈ 

∗
N+1 and min { δ, δ′ } ∈ δ∗

N.
14 Another reason for optimally withholding information is the possibility of entry. Vagstad (2007) analyzes 

hether the auctioneer should provide information to bidders before they decide about paying an entry cost 
or participating in a second-price auction without a reserve price. Vagstad analyzes two extreme information 
tructures: (i) no information, bidders take the entry decision without knowing their valuations ( Levin and 
mith (1994) ), and (ii) full information, bidders learn perfectly their valuation before deciding whether to 
ay the entry cost ( Samuelson, 1985 ). Vagstad shows that early provision of information leads bidders to 
elf-select into the auction but also increases the informational rents of bidders in the auction. The total 
ffect of information is ambiguous in terms of the number of entrants, welfare and revenues. 



 

f N 

i.e. C( δ) = θδ2 . For a given δ, the distribution of expected valuations, v E is uniform over
the interval, [ (1 

2
−
 

δ) , (1+
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 δ) ].  The optimal amount of information is δ∗ = 2
1
 θ
 ( NN

−
+1

1
 

 − 1
2
 

 

) i
is larger than 3; otherwise it is 0. Note that the optimal amount of information, δ∗( N ),
is strictly increasing for N > 3.

3. Information disclosure in optimal auctions

We now study the same model but allow the auctioneer to use an optimal mechanism
to sell the object. After the release of information, we are still in a standard private value
setting, so the optimal mechanism can be implemented with a simple second-price sealed- 
bid auction with a reserve price. Then, the characterization of the optimal mechanism
reduces to identifying the optimal reserve price in the auction. The time sequence is as
follows:

1. The auctioneer, knowing the number of bidders, N , decides how much information to
disclose to the market by choosing δ at a cost C ( δ).

2. Given δ, each bidder receives a realization x i of the private random signal X i . Bidders
update their valuations of the object using δ and x i .

3. The auctioneer selects and announces a reserve price.
4. The auction (with the optimal reserve price) takes place and the object is awarded.

First, we analyze how the optimal reserve price depends on the information provided.
Then we analyze the optimal information provision decision.

3.1. The optimal reserve price

We take as given the level of information provided by the seller, δ. Because the new
virtual valuation J δ( x ) is monotone, we can derive the optimal reserve price through the
type x RP that makes this new virtual valuation function equal to zero (the opportunity
cost of the seller in our setting), i . e , J δ( x 

RP ) = 0 :

x 

RP δ + (1 − δ) v m 

− δ
1 − F ( x 

RP ) 
f ( x 

RP ) = 0 . (3)

It can also happen that J δ(0) > 0 and that the new virtual valuation is positive for all
values of x RP . Then the reserve price will be not binding b ecause the seller do es not want
to exclude any type from bidding. The next Lemma characterizes the optimal reserve
price, and when the solution is interior.

Lemma 1. The optimal reserve price is v RP = x 

RP δ + (1 − δ) v m 

where

x 

RP =

⎧⎨⎩ J 

−1
(

− (1 − δ)
δ

v m 

)
if J(0) < − (1 −δ) 

δ v m 

0 Otherwise
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Giving this characterization, we can proceed to study the relationship between a given
evel of precision, δ, and the optimal reserve price.

roposition 2. There exists a level of information δ = 

v m 

v m 

−J(0) ∈ [0 , 1] such that: (i) if
he auctioneer sets δ ≤ δ, the optimal selling strategy is to use a non-binding reserve
rice, F ( x 

RP ) = 0 and (ii) if the auctioneer sets δ > δ, x 

RP = J 

−1 ( − (1 −δ) 
δ v m 

) and x RP

s increasing in δ. (iii) The probability that an individual bidder has an expected valuation
ower than the optimal reserve price, F ( x RP ) is increasing in δ.

With no information, all bidders have the same expected valuation ( v m 

) so there are
o informational rents and the (non-binding) reserve price is equal to v m 

. Part (i) of
roposition 2 says that using a non-binding reserve price continues to be optimal if the
uctioneer provides only limited information.

The intuition behind parts (ii) and (iii) of Proposition 2 is based on the following two
acts: (a) the informational rents are increasing in the amount of information provided,
nd; (b) the reserve price is a seller’s tool to reduce informational rents. Putting these two
acts together, the greater the amount of information provided by the seller, the larger
he informational rents, which in turn leads to larger seller incentives to reduce such
ents by increasing the reserve price relative to the distribution of expected valuations.

.2. Information disclosure with an optimal reserve price

Having determined the auctioneer’s optimal selling strategy we now analyze the auc-
ioneer’s information disclosure problem. Let the auctioneer’s expected profit for disclos-
ng information δ while using the optimal reserve price be denoted by ˆ π( δ, N ) , where

ˆ π( δ, N ) =
∫ 1

x RP ( δ)

[
y δ + (1 − δ) v m 

− δ
1 − F ( y)

f ( y)

]
m ( y, N ) dy − C( δ) ,

hen, the optimal choice of precision when using an optimal mechanism, ̂ δ∗, is

̂ δ∗ ∈ argmax δ ˆ π( δ, N) . (4)

e now look at the effect of greater competition on the information disclosed, ̂ δ∗.

roposition 3.

(i) There exists ̂ N 0 such that for N ≤ ̂ N 0 it is not optimal to reveal any information,
while for N > 

̂ N 0 it is optimal to reveal some amount of information, ̂ δ∗( N ) > 0 .
The optimal amount of information 

̂ δ∗ is non-decreasing in the number of bidders,
N.

(ii) When the auctioneer uses an optimal reserve price, the auctioneer discloses somê 
information with less competition than when the object is always sold, N 0 ≤ N 0 .



 

 

 
 
 
 

 
 

 

Part (i) extends the insights of Proposition 1 to optimal mechanisms. The intuition is 
the same: Comp etition b etween bidders ( N ) reduces informational rents and increases the
incentives of the auctioneer to provide information. Despite the similarity in the results, 
the proof of part (i) of Proposition 3 is much more involved as the auctioneer’s objec-
tive function with an optimal mechanism, π̂ ( δ, N ),  does not satisfy the single-crossing
condition globally. This implies that we cannot appeal to the usual comparative statics
results. Part (ii) follows directly from the fact that for all N,  it is more profitable to
give information when using a reserve price than when not using one. Then, if the auc-
tioneer wants to give some information when not using a reserve price, the auctioneer 
will necessarily also want to give information when using one. This result is in line with
that of Hummel and McAfee (2015).  In a setting of all-or-nothing costless information
disclosure, they show that the minimum number of bidders required for the optimality 
of full information provision is lower with a reserve price than without one.

Propositions 2 and 3 jointly imply that a higher number of bidders leads the auctioneer 
to optimally set a more restrictive reserve price, in the sense that for any bidder, the
probability of having a valuation higher than the reserve price is lower.

Corollary 4. The probability that any individual bidder’s valuation is below the optimal 
reserve price is weakly increasing in N.

This relationship between the number of bidders and the reserve price is indirect. It 
arises through the effect of competition on the auctioneer’s incentives to provide infor- 
mation. By changing the amount of information disclosed the auctioneer changes the 
distribution of bidder valuations and hence the optimal reserve price. By Proposition 3, 
more competition leads to more information disclosure. By Proposition 2,  more informa- 
tion disclosure generates more informational rents and consequently, greater incentives 
to use a more restrictive reserve price.

Finally, the next proposition compares δ̂∗
 with the optimal one chosen when the object 

is always sold, δ∗.

Proposition 5. When the auctioneer uses an optimal reserve price, the auctioneer pro- 
vides more information than when the object is always sold, δ̂∗

 ≥ δ∗.

Because the reserve price reduces bidder rents, having a reserve price weakens the 
trade-off between efficiency and bidder rents, increasing the auctioneer’s incentives to 
provide more information.

3.3. Example

We continue with the previous example: uniformly distributed valuations and 
quadratic costs. The virtual valuation function of the prior distribution is, J( x ) = 2 x − 1
and δ = v m 

v m 

−J(0) = 

1 
3 . Therefore, (i) if δ < 

1 
3 , the optimal selling strategy is to use a
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on-binding reserve price. (ii) If δ > 

1 
3 , J( x 

RP ) = − (1 −δ) 
2 δ =⇒ x 

RP = 

3
4 − 1 

4 δ , so that only
idders with signals greater than 

3 
4 −

1 
4 δ will participate in the auction. Then, x RP , the op-

imal reserve price in terms of the signal, is increasing in the amount of information. The
ptimal reserve price in terms of expected valuations is v RP = x 

RP δ + (1 − δ) 1 2 = 

1+ δ
4 .

ote that in this example, v RP is increasing in the amount of information. However,
his increase may not necessarily be the case because ∂v RP 

∂δ = ( x 

RP − v m 

) + 

∂x RP 

∂δ . If
 

RP < v m 

, the first term is negative and the formal reserve price v RP may decrease in
. The optimal amount of information is implicitly defined by the following expression:

∫ 1

3 
4 − 1 

4 ̂ δ∗

(
2 y − 3

2

)
N y 

N−1 dy = 2 θ̂ δ∗,

here we are using m ( y, N ) = N y 

N−1 . Numerical computations show that ̂ δ∗ > δ∗ is
ncreasing in N . This effect then makes x RP (and in this case also v RP ) increase in N .
or example, when θ = 

1 
6 .

N 4 5 6 7 8 9 10 

δ∗ 0.3000 0.5000 0.6429 0.7500 0.8333 0.9000 0.9545 ̂ δ∗ 0.3000 0.5034 0.6490 0.7552 0.8369 0.9023 0.9560 
x RP 0 0.2534 0.3648 0.4190 0.4513 0.4729 0.4885 
v RP 0 0.3758 0.4123 0.4388 0.4592 0.4756 0.4890 

. General information structures

In the main model, we have focused on the seller’s problem where the information pro-
ided comes from a special family of information structures, and we found that disclosing
ore information (induced by higher bidder competition) leads to a more restrictive op-

imal reserve price. In this section we want to identify conditions for this core result to
e true for a larger set of information structures.

In the general case, the seller chooses to give bidders access to one of two possi-
le arbitrary signals X δ and X δ′ . Let E δ[ V | x ] denote the conditional expectation of V
iven { X δ = x } . This expectation defines the random variable E [ V | X δ], with distribu-
ion G ( v E , δ) = Pr { x : E δ[V | x ] ≤ v E } , and marginal distribution G δ( x ). Similarly, define
[V | X δ′ ] , with distributions G ( v E , δ′ ) and G δ′ ( x ) in the same way. We assume that
 ( v E , δ) and G ( v E , δ′ ) have the monotone likeliho o d ratio property.
We are interested in the relationship between the information disclosed and the optimal

eserve price. Once the auctioneer discloses information and the distribution of bidders’
osterior conditional expectations is fixed, the choice of the optimal reserve price co-

ncides with the seller’s optimal take-it-or-leave-it offer to a single potential buyer. We
hus focus on the latter problem and how it relates to the information ordering between
 δ and X δ′ . The expected profit received by a seller who makes a take-it-or-leave-it of-

er, v RP , to a potential buyer whose valuation is randomly drawn from the distribution



 

 

G ( v E , δ) is given by:
U ( v RP , δ) = 

(
1 − G ( v RP , δ) 

)
v RP .

Let v RP ∗( δ) denote the optimal solution to this problem. Our question is whether there is
an informational ordering that will imply that v RP ∗( δ) is monotone in δ. Or alternatively,
whether there is an information ordering that ensures that U ( v RP , δ) satisfies the single-
crossing condition in v and δ.

Answering this question seems best approached by rewriting the problem in terms of
the quantiles, π = G ( v RP , δ) − the probability that the offer is rejected. The probability,
π, can also be interpreted as the realization of a signal, Πδ = G δ( X δ) , where this new
signal is informationally equivalent to the original one, as it is only a relabeling obtained
by applying a monotone transformation (the probability integral transformation). We can
define W δ( π) = E [V | X δ = G 

−1 
δ ( π)] as the expected valuation of the buyer who receives

signal π. Given the monotonicity of posterior conditional expectations, W δ( π), in π, we
refer to the reserve price as πRP or v RP = W δ( πRP ) interchangeably.

We can now rewrite the seller’s objective function which is to maximize V , where

V ( π, δ) = ( 1 − π) G ( π, δ) −1 = ( 1 − π) W δ( π) .

Let πRP ∗( δ) denote the optimal solution to this problem, which, by the monotonicity
of W δ( π), identifies a solution v RP ∗ = G 

−1 ( πRP ∗, δ) of the original optimal reserve price
problem. Having reframed the problem in this way, a natural approach to order informa- 
tion structures is to consider how more information affects the sensitivity of the expected
valuation function W δ( π) to realizations of the normalized signal, π. Ganuza and Penalva
(2010) also follow this approach: more information makes conditional expectations more
sensitive to the realization of the signal and thus generates greater dispersion of the dis-
tribution of posterior conditional expectations. Ganuza and Penalva (2010) provide three
nested definitions of informativeness (sup ermo dular precision, SC precision, and integral
precision) based on different notions of dispersion that can be used to describe when the
random variable W δ( Πδ) is more “spread out” than W δ′ (Πδ′ ) . Of these, the strongest
is sup ermo dular precision, which is useful in determining a sufficient condition for the
reserve price to be increasing in informativeness.

Definition 6. X δ is more sup ermo dular precise than X δ′ if for all q , p ∈ (0, 1), q > p

W δ( q) − W δ( p ) ≥ W δ′ ( q) − W δ′ ( p ) .

To establish our sufficient condition, we define the point, π, at which the posterior
conditional expectation functions for δ and δ′ cross. If W δ( q) − W δ′ ( q) is continuous, π
is defined as the solution to W δ( π) − W δ′ ( π) = 0 . 15
15 More formally, π̄ is defined as a crossing point of W δ( π) − W δ′ ( π) . A crossing point for this function 
is a point c such that for π ≤ c W δ( π) − W δ′ ( π) ≤ 0 and for π ≥ c W δ( π) − W δ′ ( π) ≥ 0 . If X δ is more 
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roposition 7. Let X δ be more supermodular precise than X δ′ , πRP ∗( δ) ≤ π, and
RP ∗( δ′ ) ≤ π. Then, πRP ∗( δ) ≥ πRP ∗( δ′ ) .

Therefore, Proposition 7 provides a sufficient condition for greater informativeness to
ranslate to a more restrictive optimal reserve price. This sufficient condition relies on
up ermo dular precision which is a demanding informativeness criterion. 16 However, it is
atisfied by many commonly used information structures.

. Entry fees

In the main text, we focus on optimal mechanisms that take the form of a standard
uction with a reserve price. An alternative way to implement the optimal mechanism
s to use an entry fee. We first consider the case in which bidders, after learning their
aluations, decide whether or not to pay the entry fee the auctioneer sets and then bid in
n auction without a reserve price. As we discuss below, we can implement the optimal
echanism using entry fees. If the auctioneer sets the entry fee optimally, the outcome is

quivalent to that obtained with the optimal reserve price in the standard setting (see,
or example, Krishna, 2009 ), and all our results hold.

For fixed δ, let M ( y, N − 1) be the distribution function of the maximum of N − 1
ndependent draws from F ( x ). The optimal reserve price v RP = x 

RP δ + (1 − δ) v m 

is the
xpected valuation of the marginal type x RP . We know that when the reserve price is
et at v RP , only bidders with type x RP and higher participate in the auction. Suppose
he entry fee is set in this way with this effect. In that case, apart from the entry fee,
he expected profit of the marginal type when the bidder participates in a second-price
uction without a reserve price is v RP M ( x 

RP , N − 1) , the probability that the bidder
s the only person in the auction and gets the object for free. If the auctioneer sets the
ntry fee, e RP , equal to this expected profit, then the marginal type ( x RP ) is exactly
ndifferent between entering the auction and not entering. Then, the sets of bidders who
articipate in the auction with an entry fee equal to e RP and no reserve price, and who
articipate in an auction with no entry fee and an optimal reserve price are the same.

Because the assumptions of the revenue equivalence theorem are satisfied in our set-
ing, the outcome of both auction environments will be the same. Hence, the results of
he continuation game after setting δ are the same with an optimal entry fee with no re-
erve price or an optimal reserve price with no entry fee. Our results regarding incentives
o provide information therefore hold equally in both settings.
upermodular precise than X δ′ then the existence of such a crossing point is obtained directly from the 
efinition, where π is a point that satisfies the following condition: for all π ∈ [0 , π) , W δ( π) − W δ′ ( π) ≤ 0 , 
nd for all π ∈ ( π, 1] , W δ( π) − W δ′ ( π) ≥ 0 . The existence of π follows from iterated expectations and the 
onotonicity of W δ( π) in π. 

16 Although this is a very demanding order, there are commonly used set of signals that are ordered in 
erms of sup ermo dular precision. For example, linear lo cation exp eriments such as the true-noise information 
tructures used in this paper or the normal location experiments. See Ganuza and Penalva (2010) . 
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Consider now that the auctioneer can charge an entry fee before providing information 
in a context where the auctioneer can commit to the quality of the information to be
disclosed. The possibility of this commitment to signal quality allows the auctioneer to 
extract ex-ante all future expected informational rents the provided information gener- 
ates. The auctioneer then can extract all the surplus and has incentives to provide the 
“efficient” level of information and not use a reserve price. Es ̋o and Szentes (2007) follow
this approach.

We illustrate this idea in our setting as follows. Consider the following sequence of 
events: the auctioneer announces a level of information disclosure, δ, and sets a fee equal
to eI

 

 . Bidders pay eI
 

 sequentially and receive a private random signal with accuracy δ

Then, they participate in a second-price auction without a reserve price. Consider that 
only n of the potential N bidders decide to pay the entry fee. Apart from eI

 

 , the expected
profit for the winner of the second-price auction without a reserve price is v 1E 

 ( x 1 , δ) −
v 2

E
 

 ( x 2 , δ) = ( x 1 ( n ) − x 2 ( n )) δ, where x 1 ( n ) and x 2 ( n ) are respectively the expected values
of the first and second order statistics of the distribution of the signal, F.  By setting an
entry fee eI

 

 ∗( n ) equal to 

( x 1 ( n)  −x
 

 2 ( n )) δ , the auctioneer can extract all the bidder surplu
of the n participants. 17 Because bidders are homogeneous before paying the entry fee and
receiving their private information, they have ex-ante the same probability of winning
and would be indifferent between not participating or paying e I ∗ and participating in the
auction. 18 Note that e I ∗ is decreasing in n (more competition/entry leads to lower profits,
and lower entry fees naturally will encourage more competition/entry) and increasing in
δ (more information leads to higher bidder rents).

By setting e I ∗( n ) the expected ex-ante profits of the auctioneer are

πI ( δ, n ) = n 

( x 1 ( n ) − x 2 ( n )) δ
n 

+ v E 

2 ( x 2 ( n ) , δ) − C( δ) .

The first term is the revenue from entry fees, the second is the expected price in the
auction, and the third term captures the cost of providing information. The expected
profits expression simplifies to

πI ( δ, n ) = v E 

1 ( x 1 ( n ) , δ) − C( δ) .

Note that the auctioneer can extract all bidder rents and that the profits coincide
with total surplus. This outcome has two implications: First, because profits/total sur- 
plus are increasing with the number of firms participating in the auction, restricting
entry offers no gains. Then, e I should be set so as to encourage all N potential bidders
to participate, i.e., at e I∗ = e I∗( N ) = 

( x 1 ( N) −x 2 ( N)) δ
N 

. Second, the auctioneer’s optimal

information disclosure decision is the efficient level of information that maximizes total

17 By setting e I = e I∗(4) then exactly four bidders will pay the fee, get a signal, and participate in the 
auction. 
18 For simplicity we have assumed sequential entry so that the first n − 1 bidders will strictly prefer to 
enter and the n th will be indifferent. 
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urplus:

δE∗ ∈ argmax δ v E 

1 ( x 1 ( N ) , δ) − C( δ) . (5)

In our opening numerical example, with uniformly distributed valuations and
uadratic costs, the efficient amount of information is δE∗ = 

1 
2 θ ( N 

N+1 −
1 
2 ) , and the auc-

ioneer wants to provide more information than in the optimal cases we considered previ-
usly. Increasing information does not increase profits (they are extracted through entry
ees), so the auctioneer is willing to provide information even when the number of sellers
s only 2.

. Conclusions

Using a highly tractable model of information disclosure, we have found that when
he seller chooses how much (costly) information to provide and uses an optimal selling
echanism, the seller provides more information than when the object is always sold.
he reserve price is no longer independent of the number of bidders. In particular, with
ore bidders, the auctioneer will optimally increase the amount of information provided

nd impose a more restrictive reserve price. We also find that the minimum number
f bidders needed before disclosing information is profitable is lower when an optimal
uction mechanism is used. This paper also extends existing results establishing that
ore competition leads the auctioneer to provide more information to the market in

ettings involving optimal mechanisms. The model is standard in all dimensions but not
n the choice of the set of signals available to the auctioneer. We consider intermediate
evels of information disclosure whereas most of the literature focuses on all-or-nothing
ecisions, but we constrain our analysis to the particular class of linear information
tructures. Our strategy of proof uses the linearity of our chosen information struc-
ures and cannot be applied directly to a fully general set of signals. We have developed
n extension of our model to general information structures and characterized a suffi-
ient condition for greater informativeness to lead to a more restrictive optimal reserve
rice.

ppendix A

roof of Lemma 1 and Proposition 2. As we discuss in the main text, the optimal reserve
rice can be characterized by x RP , where x RP is obtained from the expression:

J δ( x 

RP ) = 0

x 

RP δ + (1 − δ) v m 

− δ
1 − F ( x 

RP ) 
f ( x 

RP ) = 0 .



 

which, gives us the following solution:

x 

RP − 1 − F ( x 

RP ) 
f ( x 

RP ) = − (1 − δ)
δ

v m 

i.e. J
(
x 

RP 

)
= − (1 − δ)

δ
v m 

As J ( x ) is monotonone, it is possible to invert it, then x 

RP = J 

−1
(

− (1 −δ) 
δ v m 

)
. The

reserve price, v RP , is just the expected valuation given x RP :

v RP = x 

RP δ + (1 − δ) v m 

,

As J ( x ) is an increasing function of x and − (1 −δ) 
δ v m 

is increasing in δ, a larger δ

implies a larger x RP ( Proposition 2 (iii)). Notice that x RP will not be well defined when
J(0) = − 1 

f(0) > − (1 −δ) 
δ v m 

, since then x − 1 −F ( x ) 
f( x ) is always larger than − (1 −δ) 

δ v m 

. In that
case, x 

RP = 0 , will be optimal and the auctioneer does not restrict the participation by
any type. Summarizing, we have:

x 

RP =
{

J 

−1 ( − (1 −δ) 
δ v m 

) if J(0) < − (1 −δ) 
δ v m 

0 Otherwise

Finally, we can rewrite the condition J(0) > − (1 −δ) 
δ v m 

as a condition on δ to define δ̄
and prove parts (i) and (ii) of Proposition 2 :

J(0) ≶ − (1 − δ) 
δ

v m 

⇐⇒ δ ≶ δ, where δ = 

v m 

v m 

+ J(0) .

�

Proof of Proposition 3.

(i) We first establish that providing some information is optimal if N is sufficiently
large. Consider the limit as N → ∞ of ̂ π( δ, N ) . As N goes to infinity, the distribution
m ( x , N ) converges to a mass point at x = 1 so that lim N→∞ ̂

 π( δ, N ) = δ + (1 −
δ) v m 

− C( δ) . As C 

′ (0) = 0 , and v m 

< 1 , the optimal ̂ δ∗ will be strictly positive.
Let ̂ N 0 be the smallest N such that it is optimal to provide information. Then, for
N > 

̂ N 0 it is also optimal to provide information as ̂ π( δ, N ) is increasing in N for all
δ, and hence providing no information cannot be optimal: ̂  π( ̂  δ∗, ̂ N 0 ) > ̂ π(0 , N ) = v m
⇒ ̂ π( ̂  δ∗, N ) > v m 

for N ≥ ̂ N 0 .

(ii) We show the monotonicity of ̂ δ∗( N ) by proving that ˆ π( δ, N ) satisfies a single cross-
ing condition. Let ˆ π( δ, N ) denote the auctioneer’s expected profit for disclosing
information δ while using the optimal reserve price:

ˆ π( δ, N ) =
∫ 1

x RP ( δ)

[
y δ + (1 − δ) v m 

− δ
1 − F ( y)

f ( y)

]
m ( y, N ) dy − C( δ) .



T

s

l
f

(  

t

π

L
f
x

i  

t
(
T
K
K

x

o reduce the length of the expressions, let

Φ( x, δ) =
[
xδ + (1 − δ) v m 

− δ
1 − F ( x )

f ( x )

]
= δJ( x ) + (1 − δ) v m 

,

o we can write the auctioneer’s profits more concisely as:

ˆ π( δ, N ) =
∫ 1

x RP ( δ)
Φ( y , δ) m ( y , N ) dy − C( δ) .

Properties of Φ( x , δ): Φ is increasing in x and has increasing differences. To see this,
et δ > δ′ , Φ( x, δ) − Φ( x, δ′ ) = ( δ − δ′ )( J( x ) − v m 

) so that increasing differences follows
rom the monotonicity of J ( x ).

Using this, together with the fact that the reserve price is increasing with δ

 Proposition 2 ), we analyze the incremental return of information over profits at op-
imal reserve prices:

ˆ ( δ, N ) − ˆ π( δ′ , N ) =
∫ 1

x RP ( δ)
Φ( y , δ) m ( y , N ) dy − C( δ)

−
∫ 1

x RP ( δ′ )
Φ( y , δ′ ) m ( y , N ) dy + C( δ′ ) ,

=
∫ 1

x RP ( δ′ )

(
1 { y≥x RP ( δ) } Φ( y, δ) − Φ( y, δ′ ) 

)
m ( y, N ) dy − ( C( δ) − C( δ′ ) )

et K( x ) = 1 { x ≥x RP ( δ) } Φ( x, δ) − Φ( x, δ′ ) where 1 { x ≥x RP ( δ) } is the indicator function
or the set { x ≥ x RP ( δ)}, i.e. 1 { x ≥x RP ( δ) } = 0 for x < x RP ( δ) and 1 { x ≥x RP ( δ) } = 1 for
 ≥ x RP ( δ).

ˆ π( δ, N ) − ˆ π( δ′ , N ) =
∫ 1

x RP ( δ′ )
K( y ) m ( y , N ) dy − ( C( δ) − C( δ′ ) )

=
∫ 1

x RP ( δ′ )

(
K ( y) − ( C ( δ) − C ( δ′ ) )

1 − M ( x 

RP ( δ′ ) , N )

)
m ( y, N ) dy

It is important to notice that K ( x ) is single-crossing. To see this, notice that K ( x )
s negative and decreasing in the interval ( x RP ( δ′ ), x RP ( δ)) since Φ( x , δ′ ) is posi-
ive and increasing and 1 { x ≥x RP ( δ) } = 0 . For x ≥ x RP ( δ), K( x ) = Φ( x, δ) − Φ( x, δ′ ) =
 δ − δ′ )( J( x ) − v m 

) which is negative at x = x 

RP ( δ) and increasing on [ x RP ( δ), 1].
hus, it is single-crossing. Furthermore, K ( x ) is eventually positive, as J(1) > v m 

. As
 ( x ) is increasing, let x be the point such that for x < x , K( x ) < 0 , and for x ≥ x ,

 ( x ) ≥ 0. Similarly, define ˜ x such that for x < ˜ x , K( x ) − ( C ( δ) −C ( δ′ ) ) 
1 −M ( x RP ( δ′ ) ,N ) < 0 , and for

 ≥ ˜ x , K( x ) − ( C ( δ) −C ( δ′ ) )
1 −M ( x RP ( δ′ ) ,N ) ≥ 0 . If K(1) − ( C ( δ) −C ( δ′ ) ) 

1 −M ( x RP ( δ′ ) ,N ) < 0 , then let ˜ x = 1 .



We define l( x ) = 

m ( x,N+1) 
m ( x,N) . This ratio is increasing as F 

N is dominated by F 

N+1 in
the likeliho o d-ratio order.

Then

ˆ π( δ, N + 1) − ˆ π( δ′ , N + 1)

=
∫ 1

x RP ( δ′ ) 
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N + 1) ) m ( y, N + 1) dy

=
∫ 1

x RP ( δ′ )
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N + 1) ) l( y ) m ( y , N ) dy

=
∫ x̃

x RP ( δ′ )
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N + 1) ) l( y ) m ( y , N ) dy

+
∫ 1

˜ x 

( K ( y) − ( C ( δ) − C ( δ′ ) ) 
1 − M ( x 

RP ( δ′ ) , N + 1) ) l( y ) m ( y , N ) dy

≥ l( ̃  x )
∫ ˜ x 

x RP ( δ′ ) 
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N + 1) ) m ( y, N ) dy

+ l( ̃  x )
∫ 1

˜ x 

( K ( y) − ( C ( δ) − C ( δ′ ) ) 
1 − M ( x 

RP ( δ′ ) , N + 1) ) m ( y, N ) dy

= l( ̃  x )
∫ 1

x RP ( δ′ )
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N + 1) ) m ( y, N ) dy

≥ l( ̃  x )
∫ 1

x RP ( δ′ )
( K ( y) − ( C ( δ) − C ( δ′ ) ) 

1 − M ( x 

RP ( δ′ ) , N ) ) m ( y, N ) dy

= l( ̃  x )( ̂  π( δ, N ) − ˆ π( δ′ , N )) ,

where the first inequality holds since ( K( x ) − ( C ( δ) −C ( δ′ ) ) 
1 −M ( x RP ( δ′ ) ,N +1) ) is single crossing

and the second inequality from stochastic dominance: 1 − M ( x 

RP ( δ′ ) , N + 1) > 1 −
M ( x 

RP ( δ′ ) , N ) .
Then, ˆ π( δ, N + 1) − ˆ π( δ′ , N + 1) ≥ l( ̃  x )( ̂  π( δ, N ) − ˆ π( δ′ , N )) , which implies that

ˆ π( δ, N ) satisfies the single-crossing condition, namely:

∀ δ > δ′ , ˆ π( δ, N ) − ˆ π( δ′ , N ) ≥ 0 ⇒ ˆ π( δ, N + 1) − ˆ π( δ′ , N + 1) ≥ 0
and ̂  π( δ, N) − ˆ π( δ′ , N) > 0 ⇒ ˆ π( δ, N + 1) − ˆ π( δ′ , N + 1) > 0 .

We can then apply the results of Milgrom and Shannon (1994) to conclude that ̂  δ∗( N +
1) ≥ ̂ δ∗( N ) .

(ii) Follows from ̂ π(0 , N ) = π(0 , N ) = v m 

and ̂ π( ̂  δ∗, N ) ≥ π( δ∗, N ) . Then,

π( δ∗, N 0 ) > v m 

⇒ ̂ π( ̂  δ∗, N 0 ) > v m 

.



F

i

P
(

P
δ

“

a

U

F

x

i

urthermore, there may exist N such that

π( δ∗, N ) < v m 

< ̂ π( ̂  δ∗, N ) ,

n which case ̂ N 0 ≤ N 0 . �

roof of Collorary 4. Inmediate from the result (i) in Proposition 3 and results (ii) and
iii) in Proposition 2 . �

roof of Proposition 5. To prove that ̂ δ∗( N ) ≥ δ∗( N ) , it is enough to show that ̂ δ∗( N ) <
∗( N ) is not possible. In order to do so, we first state state that if δ > δ′ then, the following
increasing differences” condition holds:

ˆ π( δ, N ) − ˆ π( δ′ , N ) > π( δ, N ) − π( δ′ , N ) .

In words, that the impact of increasing information over profits is higher when we use
n optimal reserve price. This is equivalent to

ˆ π( δ, N ) − π( δ, N ) > ˆ π( δ′ , N ) − π( δ′ , N ) .

sing the definition of π and ˆ π this is equivalent to

−
∫ x RP ( δ) 

0 

[
y δ + (1 − δ) v m 

− δ
1 − F ( y)

f ( y)

]
m ( y, N ) dy

> −
∫ x RP ( δ′ ) 

0 

[
yδ′ + (1 − δ′ ) v m 

− δ′ 1 − F ( y)
f ( y)

]
m ( y, N ) dy

rom Proposition 2 we know that x RP ( δ) > x RP ( δ′ ) so we can rewrite the inequality as:

−
∫ x RP ( δ) 

x RP ( δ′ ) 

[
yδ + (1 − δ) v m 

− δ
1 − F ( y)

f ( y)

]
m ( y, N ) dy

> ( δ − δ′ )
∫ x RP ( δ′ ) 

0 

[
y − v m 

− 1 − F ( y)
f ( y)

]
m ( y, N ) dy

This inequality is satisfied since the LHS is positive (given the definition of x RP ( δ),
δ + (1 − δ) v m 

− δ 1 −F ( x ) 
f( x ) < 0 for all x < x RP ( δ)) and the RHS is negative (since ( δ − δ′ )

s positive, x − v m 

− 1 −F ( x ) 
f( x ) is increasing, and it is negative at x RP ( δ′ )). This is because

x 

RP ( δ′ ) δ′ + (1 − δ′ ) v m 

− δ′ 1 − F ( x 

RP ( δ′ )) 
f ( x 

RP ( δ′ )) = 0

x 

RP ( δ′ ) − v m 

− 1 − F ( x 

RP ( δ′ )) 
f ( x 

RP ( δ′ )) = −v m
δ′ < 0



 
 

 

 

 

 

 

 

 

 

 

 

Hence, π̂ ( δ, N ) − π̂ ( δ′ , N ) > π( δ, N ) − π( δ′ , N ).  Consider the contrary to the statement
of the proposition that, δ∗( N ) = δ >  δ′ = δ̂∗

 ( N ).  This would imply that π( δ, N ) −
π( δ′ , N ) > 0 and π̂ ( δ, N ) − π̂ ( δ′ , N ) < 0 which contradicts the “increasing differences”
condition stated above.

Let X δ be more supermodular precise than X δ′ , πRP ∗( δ) ≤ π, and πRP ∗( δ′ ) ≤ π. Then,
πRP ∗( δ) ≥ πRP ∗( δ′ ). �

Proof of Proposition 7. As we show in the main text, the optimal reserve price is the
solution of the following auctioneer’s decision problem

πRP ∗( δ) ∈ arg max Ψ( π, δ) = (1 − π) W δ( π). 

A sufficient condition for the monotonicity of πRP ∗( δ) would be that Ψ( π, δ) has
increasing differences for π′ < π <  π. This is equivalent to show that, if π >  π′ :

( 1 − π) W δ( π) − ( 1 − π′ ) W δ( π′ ) ≥ ( 1 − π) W δ′ ( π) − ( 1 − π′ ) W δ′ ( π′ )
( 1 − π) ( W δ( π) − W δ( π′ )) − ( π − π′ ) W δ( π′ )

≥ ( 1 − π) ( W δ′ ( π) − W δ′ ( π′ )) − ( π − π′ ) W δ′ ( π′ )

This condition is satisfied since

( 1 − π) ( W δ( π) − W δ( π′ )) ≥ ( 1 − π) ( W δ′ ( π) − W δ′ ( π′ ))

and
( π − π′ ) W δ( π′ ) ≤ ( π − π′ ) W δ′ ( π′ )

Where the first inequality comes from the definition of sup ermo dular precision and
the second one from the fact that as π′ < π < π, then W δ( π′ ) ≤ W δ′ ( π′ ) . �
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