
Evolutionary Cellular Configurations for Designing
Feed-Forward Neural Networks Architectures

G. Gutiérrez1, P. Isasi2, J.M. Molina2, A. Sanchís3, and I. M. Galván3

Departamento de Informática, Universidad Carlos III de Madrid,
 Avenida de la Universidad 30, 28911, Leganés, Madrid.

1ggutierr@inf.uc3m.es,2{isasi,molina}@ia.uc3m.es,
3{masm,igalvan}@inf.uc3m.es

Abstract. In the recent years, the interest to develop automatic methods to
determine appropriate architectures of feed-forward neural networks has
increased. Most of the methods are based on evolutionary computation
paradigms. Some of the designed methods are based on direct representations of
the parameters of the network. These representations do not allow scalability,
so to represent large architectures, very large structures are required. An
alternative more interesting are the indirect schemes. They codify a compact
representation of the neural network. In this work, an indirect constructive
encoding scheme is presented. This scheme is based on cellular automata
representations in order to increase the scalability of the method.

1 Introduction

The design of Neural Network (NN) architectures is crucial in the successful
application of the NN because the architecture may strongly drive the neural
network's information processing abilities. In most of the cases exist a large number
of architectures of feed-forward neural networks set suitable to solve an
approximation problem. The design of the NN architecture can be seen as a search
problem within the space of architectures, where each point represents an architecture.
Evidently, this search space is huge and the task of finding the simplest network that
solves a given problem is a tedious and long task.
In the last years, many works have been centred toward the automatic resolution of
the design of neural network architecture [1, 2, 3, 4, 5, 6]. Two main representation
approaches exist to find the optimum net architecture using Genetic Algorithms (GA):
one based on the complete representation of all possible connections and other based
on an indirect representation of the architecture. The first one is called Direct
Encoding Method, and is based on the codification of the complete network
(connections matrix) into the chromosome of the GA [7, 8, 9, 10, 11]. The direct
representation is relatively simple and straightforward to implement but requires
much larger chromosomes. This could end in a too huge space search that could make
the method impossible in practice.
In order to reduce the length of the genotype, indirect encoding scheme has been
proposed in the last years. These methods consists on codifying, not the complete
network, but a compact representation of it [1], avoiding the scalability problem. One

1

Referencia bibliográfica
Published in:
Connectionist models of neurons, learning processes, and Artificial Intelligence. Berlin: Springer, 2001. p. 514-521 (Lecture Notes in Computer Science; 2084)

of those previous works was from Kitano [12], introducing a constructive scheme
based on grammars. The solution proposed by Kitano was to encode networks as
grammars. An extension of the of Kitano's method can be found in [13]. Other works
have considered fractal representations [14], arguing that this kind of representation is
more related with biological ideas than constructive algorithms.
In this work, an indirect constructive encoding scheme, based on Cellular Automata
(CA) [15], is proposed to find automatically an appropriate feed-forward NN
architecture. In this scheme, positions of several seeds in a two-dimensional grid are
represented (codified) in the chromosome. The seeds are defined through two co-
ordinates that indicate their positions in the grid and they are used as the initial
configuration of a cellular automaton. That initial configuration is evolved using some
cellular automata rules. The rules allow the convergence of the automata toward a
final configuration depending on the initial configuration and it is translated into a
feed-forward NN. The automata rules have been chosen such that a wide variety of
feed-forward NN architecture can be obtained, from full-connected NNs to
architectures with few connections.
The main interest of this paper is to show, experimentally, that cellular configurations
allow obtaining appropriate architectures, as in domains relatively simple as in
domains in which big architectures are required. The motivation of this approach is
based on the idea that few seeds can produce big architectures. Thus, the chromosome
length is reduced and the scalability of the method is increased.

2 Cellular Approach

Three different modules compose the global system proposed in this paper: the
Genetic Algorithm, the Cellular Automaton and the module responsible of NN
training, as is shown in Figure 1.

G e n e t ic
A lg o r it h m

C e l lu la r
A u to m a t a

N N
tr a in in g

/ in t e r p r e t a t io n

Fig.1. System's architecture and modules relationship

The GA module takes charge of generating initial configurations of the cellular
automata, i.e. seed positions and to optimise these configurations from the
information obtained from the training module. The cellular automaton takes the
initial configuration and generates a final configuration corresponding to a particular
NN architecture. Finally, the generated architecture has to be trained and evaluated
for a particular problem and relevant information about the NN (error, size, etc.) is
used as the fitness value for the GA. The GA carries out the architecture optimisation.
However, the cellular automaton is used as a constructive way of generating the
architectures. In the next subsections, the description of the different modules is
presented in detail.

2

2.1 Genetic Algorithm Module

This module works with a population of chromosomes that codifies the seeds
positions in a two-dimension grid. The GA module operates to maximise a fitness
function provided by the NN module, which evaluates the efficiency of the NN to
solve the considered problem.
The size of chromosomes in the GA corresponds with the number of seeds, and it
codifies all the possible locations of seeds in the grid.
Chromosomes have been codified in base b, where b is the number of rows in the grid
and is given through the number of inputs plus the number of outputs. Each seed is
determined by a co-ordinate (x,y). A unique gene, indicating the row in which the
seed is located, represents the first co-ordinate x. The second co-ordinate y will
require more than one gene, if, as usual, the maximal number of hidden neurones is
bigger than b. In this particular case, two genes have been used to codify the y co-
ordinate, what allows a maximum of b*b hidden neurones. For instance, if there are 3
inputs and 2 outputs, the maximum size of the hidden layer is 25 (4x5+5 = 25). This
could be a good estimation of the maximum number of neurones in the hidden layer,
but any other consideration could be taken into account without modifying the
proposed method. Hence, the chromosome will have 3 genes for each seed to be
placed in the grid.

2.2 Cellular Automata Module

For generating neural networks architectures, a two-dimension CA has been used. The
size of the two-dimension grid, Dimx∗Dimy, is defined as follows: Dimx (rows) is
equal to the number of input neurones plus the number of output neurones; Dimy
(columns) corresponds with the maximum number of hidden neurones to be
considered.
Each cell in the grid could be in three different states: active (occupied by a seed) or
inactive. Two different kinds of seeds have been introduced: growing seeds and
decreasing seeds. The first kind allows making connections and the second one
removing connections. Each seed type corresponds with a different type of automata
rule, so there are two rules called growing rule and decreasing rule respectively. The
rules determine the evolution of the grid configuration and they have been designed
allowing the reproduction of growing and decreasing seeds. In the description of the
rules s is a specific growing seed, d is a decreasing seed, i is an inactive state for the
cell and a means that the cell could be in any state or contains any type of seed (even
a decreasing seed).
Growing rules: They reproduce a particular growing seed when there are at least
three identical growing seeds in its neighbourhood. There are different configurations,
growing seeds located in: rows, columns, or in a corner of the neighbourhood. In table
1(a) some of those rules are shown (the others are symmetrical). The growing rules
allow obtaining feed-forward NN with a large number of connections.
Decreasing rules: They remove connections in the network deactivating a cell in the
grid when the cell has a seed and a cell of its neighbourhood contains also a
decreasing seed. One situation in which the decreasing rules can be applied is shown
in table 1(b); the others can be obtained symmetrically.

3

 (a) (b)
s s s s s s
a i a ⇒ a s a
a a a a a a s d a s d a
 s s a ⇒ s d a
s s a s s a a a a a a a
s i a ⇒ s s a
a a a a a a

Table 1. Some Automata Rules some configuration of seeds in the neighbourhood of a
particular cell. (a) Growing rules. (b) Decreasing Rules

The mechanism of expanding the CA is as follows:

1) The growing seeds are located in the grid.

2) An expansion of the growing seeds takes place. This expansion consists on
replicating each seed in turns, over its quadratic neighbourhood, in such a
way that if a new seed has to be placed in a position previously occupied by
another seed, the first one is replaced.

3) The growing rules are applied until no more rules could be fired.

4) The decreasing seeds are placed in the grid. If there are some other seeds in
those places, they are replaced.

5) The decreasing rules are applied until the final configuration is reached.

6) The final configuration of the CA is obtained replacing the growing seeds by
a 1 and the decreasing seeds or inactive cells by a 0.

2.3 Neural Network Module

To relate the final configuration of the CA with an architecture of a NN, the following
meaning for a cell in the (x,y) grid is defined: if x(n, with n the number of input
neurons, (x,y) represents a connection between the x-th input neuron and the y-th
hidden neuron; if x>n, (x,y) represents a connection between the y-th hidden neuron
and the (x-n)-th output neuron.
In the final configuration a 1 is interpreted as a connection, and a 0 as the absence of
connection. Thus, the rows and columns in the matrix with values 0 are removed. A
new and shorter binary matrix (M) is obtained. If Mij =1 then a connection between
the i-th input neuron and the j-th hidden neuron is created, or between the j-th hidden
neuron and the (i-n)-th output neuron, as is previously described. If Mij=0, there do
not exist connection between that neurons.
The neural network obtained is trained to solve the particular problem considered.
Weights of the NN are randomly initialised, and learned using the back propagation
learning method. A value measuring the efficiency of the architecture is computed
after the learning phase of the network. This value is used as the fitness function of
the chromosome.

4

3 Experimental Results

The proposed approach is tested with two different domains, a simple one: the
minimum coding problem [16], and a more complex domain: a medical classification
problem, Ann-Thyroid-Database [17].
The goal is to get networks that, given an error to reach (as well as needed), its
training means a lower computational effort. The meaning of computational effort is
the number of weights changed along the training process. Then, neural nets with a
minimal number of hidden nodes, and reaching an error as soon as possible along
training, are looked for.
In the Neural Network Module, when the final matrix connection is obtained from the
final configuration of CA there are some special cases take into account, following
this steps:

- If there is a node in hidden layer without any connection to output, this node is
eliminated from the net.

- When a hidden node has no connection from input, but it's connected to output
layer, two chances have been considerate: penalizes the net and don't train it, or
eliminate that node and is training.

- If an output node has no connection from hidden layer, the net is penalized and is
not trained.

As it was previously mentioned, the aim is to find NN architectures requiring the least
computational cost to reach an appropriate level of error. Therefore, the fitness
function used in this work is defined as follows: a maximum number of learning
cycles and a level of error are defined. If the network reaches that error, the training is
stopped and the fitness function is evaluated as:

() cycles training tc weights,ofnumber c;
1

Fitness
tcc ∗

= (1)

where c∗tc measures the computational cost of network. When NN architectures
obtained by the CA is penalized or the training of the NN end without reaching the
level of error defined, maximum computational cost is assigned. Using this fitness
function, the indirect encoding approach presented in this paper has been tested. The
performance of this approach has been compared with direct encoding methods.

3.1 Minimum Encoding Problem

In this domain there are four inputs and two outputs. The first two inputs are just
noise, and the relation between the other two inputs and the outputs is the Gray
coding for integer represented by this two relevant inputs.
In this case, the direct codification is implemented as follows: the matrix of
connections, previously indicated in NN Module, is codified in the chromosome. As
every possible connection of a network, with 36 hidden nodes, is indicated in the
chromosome, then the size of chromosome is 216. Using that codification 400
generations have been carried out and a NN with five hidden nodes is obtained (see
figure 2(a)) .
In the proposed method, the position of growing and decreasing seeds in the grid of
CA are codified into the genotype. The length of chromosome is 30, 3 genes for each
growing or decreasing seed. Again, 400 generations are realized and the NN obtained

5

is shown in figure 2(b). For both approaches, the evolutions of average fitness along
400 generations are shown in figure 3. As it is possible to observe in figures 2 and 3,
the indirect cellular encoding is able to provide more optimal architectures than direct
encoding. 100 generations are required by the indirect encoding to find each.

Fig. 2. Architectures obtained by direct encoding (a) and indirect encoding (b)

Average Fitness

0

0,05

0,1

0,15

0,2

0,25

1 51 101 151 201 251 301 351

Generation

Direct Encoding
Indirect Encoding

Fig. 3. Average fitness for minimum encoding problem.

3.2 Ann-Thyroid-Database

The thyroid data are measurements of the thyroid gland. Each pattern has 21
attributes, and can be assigned to any of three classes, hyper-, hypo-, and normal
function of thyroid gland. This classification problem is hardly to solve for neural
nets.
Experiments with a direct encoding have been done in [18]. The authors have
obtained architectures with different number of hidden nodes and the connectivity
percentage is calculated. One of the best architecture has 10 hidden nodes with 86 %
of connectivy.

Several experiments have been developed with indirect encoding. Initially with 30
genes in the chromosome, 5 growing and 5 decreasing seeds. After, the number of
seeds has been reduced to 5-3 and 3-3.Thus the length of chromosome is reduced. In
all of them similar architectures have been found. Networks with 10 hidden nodes and
about 72 % of connectivity are obtained. The indirect cellular encoding find smaller
architectures than direct encoding. The evolution of average fitness is shown in figure
4. As it is observed in that figure few generations have been needed. With the direct
encoding a large number of generation has been realized (around 1000) [18].

6

A v arage Fitnes s

6,0E-07
6,5E-07
7,0E-07
7,5E-07
8,0E-07
8,5E-07
9,0E-07

1 6 11 16 21 26 31 36
Generations

Fig. 4. Average fitness for Ann-Thyroid-Database

4 Conclusions and Future Works

The election of good neural network architectures is an important step in many
problems where there is few knowledge about the problem itself. Evolutionary
computation techniques are good approaches for automatically generate those good
architectures. However the codification of the network is a crucial point in the success
of the method. Direct codification's become inefficient from a practical point of view,
making bigger and redundant the search space. To solve this problem an indirect
encoding has to be used.
Indirect encoding is driven to reduce the search space in such a way that similar
solutions are eliminated and represented by the only one representative. In these
cases, the codification makes the method able to find better architectures.
CA are good candidates for non-direct codification's. The constructive representation
introduced in this work solves some of the problems for non-direct codification's. The
final representation has a reduced size and could be controlled by the number of seeds
used.
The results shown that the indirect encoding approach presented in this paper is able
to find appropriate NN architectures as a simple domain, as a large one. In additions
the number of generations over the population is less when the indirect encoding
approach is used.
Since the final configuration of the two-dimensional grid will represent a feed-
forward NN connection matrix, the rules of the automata used in this first approach
have been design such that a wide variety of architectures may be obtained. However,
the influence of the rules in the CA evolution and the capability of the rules to
generate a complete space of NN architectures must be still studied. Besides, some
issues about Neural Network Module and fitness function used, i.e. how punish the
nets to increase the search, will be studied in future works.

References

[1] S. Harp, Samad T. and Guha A. Towards the Genetic Synthesis of Neural Networks.
Proceedings of the Third International Conference on Genetic Algorithms and their
applications, pp 360-369, San Mateo, CA, USA, 1989.

7

 [2] G.F. Miller, P.M. Todd and S.U. Hegde. Designing neural networks using genetic
algorithms. In Proc. of the third international conference on genetic algorithms and their
applications, pp 379-384, San Mateo, CA, USA, 1989.

[3] S. Harp, Samad T. and Guha A. Designing Application-Specific Neural Networks using the
Genetic Algorithm, Advances in Neural Information Processing Systems, vol2, 447-454,
1990.

[4] F. Gruau. Genetic Synthesis of Boolean Neural Networks with a Cell Rewriting
Developmental Process. Proc. of COGANN-92 International Workshop on Combinations
of Genetic Algorithms and Neural Networks, pp. 55-74, IEEE Computer Society Press,
1990.

[5] F. Gruau. Automatic Definition of Modular Neural Networks. Adaptive Behaviour, vol. 2,
3, 151-183, 1995.

[6] P.A. Castillo, J. González, J.J. Merelo, V. Rivas, G. Romero and A. Prieto. Optimization of
Multilayer Perceptron Parameters using Simulated Anneling. Lectures Notes in Computer
Science, Vol 1606, pp 661-670, Springer-Verlang, 1998.

[7] T. Ash. Dynamic Node Creation in Backpropagation Networks ICS Report 8901, The
Institute for Cognitive Science, University of California, San Diego (Saiensu-sh, 1988),
1988.

[8] D.B. Fogel, Fogel L.J. and Porto V.W. Evolving Neural Network, Biological Cybernetics,
63, 487-493, 1990.

[9] T.P. Caudell and Dolan C.P. Parametric Connectivity: Training of Constrained Networks
using Genetic Algorithms, Proc. of the third International Conference on Genetic
Algorithms and their Applications, 370-374. Morgan Kaufman, 1989.

[10] J.D. Schaffer, R.A. Caruana and L.J. Eshelman. Using genetic search to exploit the
emergent behaviour of neural networks. Physica D, 42, pp 244-248, 1990.

[11] E. Alba, J.F. Aldana and J.M. Troya. Fully automatic ANN design: A genetic approach. In
Proc. of International workshop on artificial neural networks, pp 179-184, 1993.

[12] H. Kitano. Designing Neural Networks using Genetic Algorithms with Graph Generation
System, Complex Systems, 4, 461-476, 1990.

[13] Molina, J. M., Torresano, A., Galván, I., Isasi, P., Sanchis, A. (2000) Evolution of
Context-free Grammars for Designing Optimal Neural Networks Architectures , GECCO
2000, Workshop on Evolutionary Computation in the Development of ANN. USA.

[14] J.W.L. Merril and R.F. Port. Fractally configured Neural Networks. Neural Networks, 4,
53-60, 1991.

[15] S. Wolfram. Theory and applications of cellular automata. World Scientific, Singapore,
1988.

[16] D.H. Ackley, G.E. Hinton and T.J. Sejnowski. A learning algorithm for Boltzmann
machines. Cognitive Science, 9, 147-169, 1985

[17] Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California,
Department of Information and Computer Science.

[18] W. Schiffmann, M. Joost, and R. Werner. Synthesis and performance analysis of
multilayer neural network architectures. Technical Report 16, University of Koblenz,
Institute of Physics, 1992.

8

