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Abstract

Time series modelling and forecasting is a persistent problem with extensive
implications in scientific, business, industrial, and economic areas. This thesis’s con-
tribution is twofold. Firstly, we propose a novel probabilistic time series forecasting
methodology that introduces the use of Fourier domain-based attention models,
merging classic signal processing spectral filtering techniques with machine learning
architectures. Secondly, we take advantage of the abundance of financial intraday
high-frequency data to develop deep learning-based solutions for modelling financial
time series. Machine learning methods can potentially enhance the performance
of traditional methodologies used by practitioners. Deep neural networks’ feature
extraction capabilities, which can benefit from the rising accessibility of high-
frequency data, and attention mechanisms, which help to model temporal patterns,
are mostly to blame for this.

Concerning our first major contribution, this thesis empirically demonstrates
that spectral domain-based machine learning models can learn the properties of time
series datasets and integrate this information to improve the forecasting accuracy.
Simultaneously, Fourier domain-based models alleviate some of the inconveniences
commonly associated with deep autoregressive models. These architectures, prone
to prioritising recent past data, often ignore critical global information not contained
in previous time steps. Additionally, they are susceptible to error accumulation
and propagation and may not yield illustrative results. The proposed model, the
Spectral Attention Autoregressive Model (SAAM), mitigates these problems by
combining deep autoregressive models with a Spectral Attention (SA) module. This
module uses two attention models operating over the Fourier domain representation
of the time series’ embedding. Through spectral filtering, SAAM differentiates
between the components of the frequency domain that should be considered noise
and subsequently filtered out, and the global patterns that are relevant and should
be incorporated into the predictions. Empirical evaluation proves how the proposed
Spectral Attention module can be integrated into various deep autoregressive
models, consistently improving the results of these base architectures and achieving
state-of-the-art performance.

Afterwards, this thesis shifts toward showcasing the benefits of machine learning
solutions in two different quantitative finance scenarios, proving how attention-based



deep learning approaches compare favourably to classic parametric-based models
and providing solutions for various algorithmic and high-frequency trading problems.

In the context of volatility forecasting, which plays a central role among equity
risk measures, we show that Dilated Causal Convolutional-based neural networks
offer significant performance gains compared to well-established volatility-oriented
parametric models. The proposed model, called DeepVol, showcases how data-
driven models can avoid the limitations of classical methods by taking advantage
of the abundance of high-frequency data. DeepVol outperforms baseline methods
while exhibiting robustness in the presence of volatility shocks, showing its ability
to extract universal features and transfer learning to out-of-distribution data.
Consequently, data-driven approaches should be carefully considered in the context
of volatility forecasting, as they can be instrumental in the valuation of financial
derivatives, risk management, and the formation of investment portfolios.

Finally, this thesis presents a survival analysis model for estimating the distri-
bution of fill times for limit orders posted in the Limit Order Book (LOB). The
proposed model, which does not make assumptions about the underlying stochastic
processes, employs a convolutional-Transformer encoder and a monotonic neural
network decoder to relate the time-varying features of the LOB to the distribution
of fill times. It grants practitioners the capability of making informed decisions
between market orders and limit orders, which in practice entails a trade-off between
immediate execution and price premium. We offer an exhaustive comparison of the
survival functions resulting from different order placement strategies, offering insight
into the fill probability of orders placed within the spread. Empirical evaluation
reveals the superior performance of the monotonic encoder-decoder convolutional-
Transformer compared to state-of-the-art benchmarks, leading to more accurate
predictions and improved economic value.



Resumen

El modelado y predicción de series temporales es un problema persistente con amplias
implicaciones en áreas científicas, comerciales, industriales y económicas. Esta tesis
propone una doble contribución en este ámbito. En primer lugar, formulamos una
novedosa metodología para la predicción probabilística de series temporales que
introduce el uso de modelos de atención basados en el dominio de la frecuencia,
con la transformada de Fourier desempeñando un papel fundamental. El modelo
propuesto fusiona técnicas clásicas de filtrado espectral, pertenecientes al campo
del procesado de señal, con modelos de aprendizaje automático. En segundo lugar,
desarrollamos varias soluciones basadas en aprendizaje profundo para el modelado
de datos financieros intradía, aprovechando la cada vez mayor disponibilidad de los
mismos. Los métodos de aprendizaje automático poseen el potencial para mejorar los
resultados obtenidos por las metodologías clásicas que los profesionales del ámbito
de las finanzas cuantitativas acostumbran a utilizar. La capacidad de extracción
de características de las redes neuronales, que pueden aprovechar la creciente
accesibilidad a los datos financieros de alta frecuencia, y el uso de los mecanismos
de atención para el modelado temporal, son los principales responsables de ésto.

En lo relativo a la primera de las contribuciones mencionadas anteriormente, es
decir, el uso de modelos de aprendizaje automático que operan sobre el dominio de la
frecuencia, esta tesis demuestra de manera empírica que los modelos de aprendizaje
profundo basados en el dominio espectral pueden aprender de forma más eficiente
las propiedades de las series temporales a predecir. De esta manera, logran mejorar
la precisión de las predicciones a la vez que solventan varios de los problemas
que lastran el rendimiento de los modelos autoregresivos. Estas arquitecturas son
propensas a sobreponderar los datos del pasado inmediato, ignorando a menudo
valiosa información global que no está contenida en estas observaciones recientes.
Además, son susceptibles a la acumulación y propagación de errores. Finalmente,
los resultados que producen son difícilmente interpretables. Proponemos un nuevo
modelo, llamado “Spectral Attention Autoregressive Model”(SAAM) (Modelo
Autorregresivo con Atención Espectral), que mitiga estos problemas combinando
modelos autorregresivos basados en aprendizaje profundo con un módulo de Atención
Espectral. Dicho módulo contiene dos modelos de atención que operan sobre la
representación en el dominio de Fourier del “embedding” obtenido a partir de la serie



temporal a predecir. Usando técnicas de filtrado espectral, SAAM diferencia entre
los componentes del espectro que deben ser considerados ruido, y por consiguiente
deben ser filtrados, y aquellos patrones globales que son relevantes y deben ser
incorporados en las predicciones. Mediante una exhaustiva evaluación empírica,
demostramos que nuestro modelo de Atención Espectral puede ser integrado en
diversos modelos autorregresivos que forman parte del estado del arte actual,
mejorando de forma consistente los resultados obtenidos.

En lo relativo a la segunda contribución principal de esta tesis doctoral, de-
mostramos los beneficios que las metodologías de aprendizaje automático basadas
en modelos de atención pueden aportar en dos problemas propios de las finanzas
cuantitativas. Diversos experimentos demuestran cómo este tipo de modelos pueden
mejorar los resultados obtenidos por los modelos clásicos empleados en este campo,
proporcionando soluciones innovadoras para diversos problemas recurrentes dentro
del trading algorítmico de alta frecuencia.

La predicción de volatilidad en mercados financieros es el primero de estos
problemas en ser abordado en la presente tesis. La estimación de volatilidad
desempeña un papel central entre las medidas de riesgo utilizadas en los mercados
de renta variable. En esta tesis demostramos que las redes neuronales basadas
en “Dilated Causal Convolutions” (Convolucionales Causales Dilatadas) ofrecen
ganancias significativas en comparación con los modelos paramétricos clásicos
desarrollados única y exclusivamente para predicción de volatilidad. El modelo
propuesto, llamado DeepVol, evidencia que el uso de modelos de aprendizaje
profundo puede evitar las numerosas limitaciones propias de los métodos clásicos,
logrando aprovechar la abundancia de datos de alta frecuencia para aprender las
funciones deseadas. DeepVol supera a todos los modelos de referencia usados
como comparativa, a la vez que exhibe robustez en períodos que contienen shocks
de volatilidad, demostrando su capacidad para extraer características universales
comunes a diferentes instrumentos financieros. Los resultados obtenidos en esta
parte de la tesis nos llevan a concluir que los modelos de aprendizaje automático
deben considerarse cuidadosamente en el contexto de predicción de volatilidad,
pudiendo ser especialmente relevantes en la valoración de derivados financieros,
gestión del riesgo, y creación de carteras de inversión.

Para terminar, esta tesis presenta un modelo de análisis de supervivencia para
estimar la distribución de probabilidad de ejecución subyacente a órdenes limitadas
publicadas en el conocido como “Limit Order Book” (Libro de Órdenes Limitadas).
El modelo propuesto, que no necesita partir de suposiciones sobre los procesos
estocásticos subyacentes, emplea una arquitectura codificador/decodificador que
utiliza un “Transformer” convolutional para codificar la información del libro de
órdenes y una red monotónica que decodifica la función de supervivencia a estimar.



Este modelo, basado en aprendizaje profundo, relaciona por tanto las características
del libro, variables en el tiempo, con la distribución de tiempos de ejecución. Nuestro
modelo otorga a los profesionales del trading cuantitativo la capacidad de tomar
decisiones informadas entre las órdenes de mercado y las órdenes limitadas, lo
que en la práctica implica encontrar el equilibro entre una ejecución inmediata y
una prima en el precio. Para evaluar el rendimiento de la metodología propuesta,
ofrecemos una comparación exhaustiva de las funciones de supervivencia resultantes
de diferentes estrategias de colocación de órdenes. Esta evaluación empírica revela
un rendimiento superior por parte de nuestra arquitectura en comparación con el
estado del arte actual. Por tanto, el empleo del modelo propuesto en esta tesis
conduce a predicciones más exactas con un valor económico añadido.
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Time series modelling and forecasting, which consists in analysing historical

signal patterns to predict future outcomes, is an important problem with scientific,

business, industrial, and economic applications, playing an essential role in daily life.

Several fields benefit from time series forecasting, such as climate prediction (H. Hu

et al., 2022), forecasting of energy consumption and demand (Pang et al., 2022),

product demand and supply (Merkuryeva et al., 2019), and finance applications

of these models (Moreno-Pino and Zohren, 2022), toward which we focus on

Chapters 4 and 5 of this thesis.

Early approaches to solving time series forecasting problems rely on statisti-

cal models, such as State Space Models (SSMs) (Durbin and Koopman, 2012),

exponential smoothing (R. Hyndman et al., 2008), matrix factorisation methods

(H.-F. Yu et al., 2016), or Auto Regressive Integrated Moving Average (ARIMA)

1



2 1. Introduction

(G. E. Box and Gwilym M Jenkins, 1970), which has become one of the most popular

solutions and produces its predictions as a weighted sum of past observations,

thus making the model vulnerable to error accumulation, a common problem to

most autoregressive architectures. We refer the readers to G. E. P. Box and

G. M. Jenkins (1968), Hamilton (1994), and Lütkepohl (2005) for additional

information regarding classic techniques.

Regardless, all these classic approaches share a number of weaknesses. They

make linear assumptions on the data, which, together with their limited scalability,

renders them unsuitable for modern large-scale forecasting tasks. Furthermore,

they incorporate prior knowledge about time series composition, like trends or

seasonality patterns present in the data, which requires manual feature engineering

and model design by domain experts in order to achieve good results (A. C. Harvey,

1990). Moreover, they do not usually share a global set of parameters among

the different time series, which implies bad generalisation and poor performance

aside from single-linear time series prediction.

As the amount of data available has grown rapidly, machine learning techniques

have become increasingly prevalent for the purpose of predicting time series in

various scenarios. As a result, Deep Neural Networks (DNN) (Sutskever et al.,

2014) have arisen as an alternative solution for time series forecasting. They are

able to model non-linear temporal patterns, easily identify complex structures

across time series, efficiently extract higher order features, and allow a data-driven

approach that requires little to no human feature engineering (Giuliari et al., 2021).

Among deep learning-based models, Recurrent Neural Networks (RNNs) (Funahashi

and Nakamura, 1993) and Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) have achieved good results in temporal modelling. More

recently, attention models (Bahdanau et al., 2015) have been used by these recurrent

architectures to selectively focus on some segments of the data while making

predictions, e.g., in machine translation, only certain words in the input sequence

may be relevant for predicting the next word. To do so, these models use an inductive

bias that connects each token in the input through a relevance-weighted basis of
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every other token. The idea behind recurrent attention leads to Transformers models

(Vaswani et al., 2017), which have become one of the most popular methods with

respect to the problem of time series forecasting. Initially introduced for Natural

Language Processing (NLP), Transformers proposed a completely new architecture

where a self-attention mechanism is used to process data sequences. In Chapter

2, an in-depth and thorough review of both classic and machine learning-based

methods within the context of time series modelling is presented.

Nevertheless, despite all these significant advancements in machine learning

architectures for time series modelling and forecasting, there has been a lack of

integration with the field of time series analysis, and there is potential for improved

forecasting accuracy by combining neural network architectures with classic signal

processing techniques. As we detail in Chapter 3, the ideas put forward in Moreno-

Pino (2021) demonstrate the potential for this approach through the alignment

of neural network architectures with traditional frequency domain-based filtering

techniques. This integration can lead to the development of more robust and

accurate models, capable of effectively handling non-stationary and highly complex

time series data. Furthermore, combining these techniques can also lead to a

better understanding of the underlying mechanisms that govern time series datasets,

enabling the development of more interpretable models.

Regarding the application of these machine learning-based models, the rapid

growth in data availability over time has made them part of the state-of-the-art in

different domains, as previously referenced. In the course of this Ph.D. studies, we

made research advances in the areas of human behaviour modelling (Ríos-Muñoz

et al., 2020; Moreno-Pino, Sükei, et al., 2022; Moreno-Pino, Martínez-García, et al.,

2022; Martínez-García et al., 2023) as well as within the quantitative finance field

(Moreno-Pino and Zohren, 2022). In this thesis, we focus on the latter.

The discipline of finance has undergone a substantial transformation in the last

decades, and it exhibits different challenges for the inclusion of machine learning

techniques. The transition from traditional, broker-based trading to online electronic

platforms greatly lowered transaction costs and enhanced market liquidity, leading
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to the rise of systematic trading. Among financial trading methods, algorithm

trading has been growing rapidly across all types of financial instruments in recent

years, accounting for a substantial proportion of trading volume in U.S equity

markets of approximately 73% (Treleaven et al., 2013).

While classic econometric methods have relied on the assumption that financial

time series can be modelled by parametric stochastic processes, the behaviour of

stock returns is characterised by a high degree of non-linearity and non-stationarity

(Sirignano and Cont, 2019), breaking these assumptions. In this highly complex

scenario, neural networks arise as a methodology able to model non-linear rela-

tionships in high-dimensional data, making them an excellent candidate to model

financial time series as they can approximate any continuous function, as stated by

the universal approximation theorems (Csáji et al., 2001; Y. Lu and J. Lu, 2020). In

Chapters 4 and 5, we study the use of machine learning architectures for modelling

high-frequency financial data in different quantitative finance scenarios.

1.1 Motivation

This thesis’s motivation is twofold. Firstly, we address the integration of classic

signal processing techniques into deep learning models to solve a variety of problems

associated with deep autoregressive models. Despite the numerous advantages of

using deep learning-based models for temporal modelling and forecasting, such as

scalability, improved accuracy, and feature learning, deep autoregressive models

are often hindered by various limitations that restrict their usability. Some of

these constraints are:

• Heavy reliance on recent past data for making predictions about the future of

the time series, potentially ignoring valuable global information that is not

captured in previous forecasts.

• Potential for error accumulation and propagation (Cheng et al., 2006), similar

to traditional time series forecasting methods, which can impact their accuracy.
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• Lack of interpretability, making it difficult to understand how the models

reach their predictions (X. Bai et al., 2021).

In Chapter 3, we show that these problems can be partially alleviated by incor-

porating signal processing filtering techniques into the autoregressive models that

perform the time series modelling and forecasting, using Fourier domain-based

deep learning models to this end.

Secondly, we aim to take advantage of the abundance of financial high-frequency

data to develop deep learning-based solutions for modelling and forecasting financial

time series. To this end, we propose different neural network architectures to

tackle two highly relevant problems in the field of quantitative finance: volatility

forecasting (Brailsford and Faff, 1996), and the estimation of fill probabilities in the

Limit Order Book (LOB) (Cho and Nelling, 2000). Conventional approaches to these

problems typically rely on classic parametric models, whose limitations have already

been mentioned. In contrast, machine learning-based approaches can leverage

the abundance of available intraday high-frequency data to construct data-driven

models. In Chapters 4 and 5, we propose two novel deep learning-based solutions

for the problems of volatility forecasting and limit order fill times estimation. We

demonstrate that these machine learning-based solutions can yield more accurate

predictions than traditional methodologies, leading to improved risk measures and

more accurate estimates of limit orders’ survival functions, respectively.

1.2 Contribution & Outline

In alignment with the research objectives outlined in the preceding section, the

methods presented in this thesis are organised into chapters based on their primary

area of contribution.

1.2.1 Spectral Domain-based Deep Learning

In Chapter 3, we propose a novel methodology for neural probabilistic time series

forecasting that marries signal processing filtering techniques with deep learning-

based autoregressive models. This is accomplished using an attention mechanism
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that operates over the frequency domain representation of the original time series,

denoted as the Spectral Attention module. Using a Fourier-based latent space allows

the integration of both local spectral filtering and global patterns incorporation

during the forecast process. Two attention models operate over the embedding’s

spectral domain representation to determine, at every time instant and for each

time series, which components of the frequency domain should be considered noise

and hence be filtered out, and which global patterns are relevant and should be

incorporated into the predictions.

1.2.2 Volatility Forecasting from High-Frequency Data

In Chapter 4, we take advantage of the automatic feature extraction inherent to

DNNs to address the problem of volatility forecasting from a purely data-driven

perspective. Volatility forecasts play a central role among equity risk measures.

Besides traditional statistical models, modern forecasting techniques based on

machine learning can be employed when treating volatility as a univariate, daily

time series. However, econometric studies have shown that increasing the number

of daily observations with high-frequency intraday data helps to improve volatility

predictions. To this end, we propose a deep learning model based on hierarchies

of Dilated Causal Convolutions (DCC) to forecast day-ahead realised volatility

from high-frequency data.

1.2.3 A Data-Driven Approach to Estimating Fill Proba-
bilities in the Limit Order Book

In Chapter 5, a deep learning method for estimating the fill probabilities of limit

orders posted in the LOB is presented. This novel model, which is tailored to

the problem of survival analysis from time series literature, presents an encoder-

decoder architecture that relates the time-varying features of the limit orders to the

distribution of the orders’ fill times. A Convolutional-Transformer encoder models

the complex dependencies and interactions within the LOB data, compressing useful

information into a lower-dimensional latent representation, which is then used by a
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monotonic decoder to predict a monotonic decreasing survival function.

Further, in Chapter 2 we provide a comprehensive overview of the historical

development of time series modelling and forecasting methods, with a particular

emphasis on those models that are most pertinent to the research objectives of this

thesis. Finally, Chapter 6 concludes with a succinct summary of the significant

discoveries made within this thesis and discusses potential future work.
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The field of time series modelling has long been a subject of academic study.

Historically, traditional methods have emphasised the use of parametric models that

are guided by domain-specific expertise. However, the advent of modern machine

learning techniques has enabled the development of data-driven approaches for

learning temporal dynamics. In the following subsections, we provide a detailed

explanation of some of the models mentioned in Chapter 1 in order to establish a

shared understanding of the background for the subsequent chapters.

9
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2.1 Classical Parametric Methods for Sequence
Modelling

Before exploring the application of deep learning techniques to time series forecasting-

related problems, we briefly introduce some classic methods that continue to be

used in this context nowadays. These methods serve as inspiration for many state-

of-the-art architectures and have a long history, dating back to the early 20th

century. Early approaches to time series forecasting relied on classical statistical

techniques, using parametric models informed by domain knowledge. We briefly

discuss some of the most relevant ones for this thesis.

2.1.1 Autoregressive Moving Average Models

AutoRegressive Moving Average (ARMA) models were first introduced by G. E. Box

and Gwilym M Jenkins (1970). These models are a combination of AutoRegressive

(AR) models, which model the current value of a time series as a linear function of

past values, and Moving Average (MA) models, which shape the current value as a

linear function of past errors. The ARMA model is given by the following equation:

X̂t = c+
p∑
i=1

ϕiX̂t−i +
q∑
i=1

θiϵt−i + ϵt, (2.1)

where X̂t is the prediction at time step t, c is a constant, ϕi and θi are the AR and

MA coefficients with orders "p" and "q", respectively, and ϵt is white noise, usually

an independent and identically distributed (i.i.d.) normal random variable with

zero mean and finite variance. This white noise is also denoted as the error term

or residual, and it represents the difference between the observed value, Xt, and

the predicted value, X̂t. ARMA models can be extended into multiple forms, and

the Autoregressive Integrated Moving average (ARIMA) model (G. E. Box and

Gwilym M Jenkins, 1970) is among the most well-known ones. ARIMA models

include an integration component responsible for making the time series stationary

through differentiation. Therefore, the ARIMA model can account for both trend

and seasonality in the time series data, where trend refers to a long-term increase
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or decrease in the data, while seasonality refers to patterns that repeat at regular

intervals within a time horizon, such as yearly, quarterly, or monthly.

2.1.2 Exponential Smoothing

Exponential smoothing (R. Hyndman et al., 2008) is another popular technique for

time series forecasting. It involves updating a forecast for the next time step based

on a weighted average of past observations, with the weights decaying exponentially

over time. The simplest form of exponential smoothing is given by:

X̂t = αXt−1 + (1− α)X̂t−1, (2.2)

where X̂t is the forecast for the next time step, Xt−1 is the observed value at time

t− 1, X̂t−1 is the predicted value at time t− 1, and α is the smoothing factor, which

makes exponential smoothing a weighted average of previous observations.

2.1.3 State Space Models

State Space Models (SSM) (Durbin and Koopman, 2012) are a class of statistical

models widely used for non-stationary time series forecasting. They represent a

time series as a combination of two components: a latent state and the observations

themselves, where the latent state is a set of variables that capture the underlying

dynamics of the time series.

To forecast a time series using an SSM, we first need to specify the form of

the latent state and the observation. This is typically done using a set of state

equations and observation equations, which define the relationships between the

latent state, the observations, and any exogenous variables, also called covariates

(variables that are not part of the latent state or the observations). The state

equations define the dynamics of the latent state zt at time t in terms of the latent

state at the previous time t − 1, and any exogenous variables Et:

Zt = FtZt−1 +GtEt +Wt, (2.3)

where Ft and Gt are matrices of model parameters, and wt is a zero-mean white noise

process with covariance matrix Qt. Once the state and observation equations are
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specified and their parameters are estimated, e.g., using statistical techniques such

as maximum likelihood estimation, we can use the SSM to forecast future values

of the time series. To forecast the latent state at time t, we can use the current

estimate of the latent state at time t− 1 and the exogenous variables at time t:

Ẑt = FtẐt−1 +GtEt. (2.4)

Finally, the observation equations can be used to transform the prediction of the

latent state into a prediction of the observations:

X̂t = HtẐt, (2.5)

being Ht a matrix of model parameters. One of the main advantages of SMMs with

regard to other classic techniques is their ability to incorporate exogenous variables

into the forecasting process, which can improve the accuracy of the forecasts. E.g.,

we might include weather data or time of the day as exogenous variables in an SSM

to forecast electricity demand.

The foundation for numerous early time series forecasting methods was estab-

lished through the adoption of these classical statistical methods, which continue to

be used in various applications today. However, with the advent of deep learning,

more advanced techniques that are able to model complex temporal patterns,

improving the performance of time series forecasting tasks, have been developed.

These techniques, which will be discussed in more detail in the following section,

offer a data-driven approach that requires little to no manual feature engineering

and have the potential to model large-scale forecasting tasks.

2.2 Deep Learning Models for Sequence Modelling

Deep learning models have been widely applied in the field of time series forecasting

due to their ability to automatically learn features and make predictions based

on data. In this section, we discuss the use of several specific types of deep

learning models for time series forecasting, including Convolutional Neural Networks
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(CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM)

networks. Notice that there are models in the literature that we do not cover, such

as the Gated Recurrent Units (GRU), as we focus on models relevant to this thesis’

following chapters. We will also discuss the use of the attention mechanism, which

has the potential to improve the accuracy and interpretability of deep learning

models for time series forecasting and led to the development of Transformer models.

To explain the use of deep learning techniques to forecast time series, we modify

the nomenclature employed in the previous section and adapt it to the standard

one in the machine learning literature. We refer to the one-step-ahead forecasting

at time t for the ith time series as:

ŷit = f
(
yit−T :t−1,x

i
t−T :t−1

)
, (2.6)

where ŷit is the model’s forecast, yit−T :t−1 =
{
yit−T , . . . , y

i
t

}
are the past T observations

of the time series being forecasted (lookback window) or previous predictions in

the context of autoregressive models, xi
t−T :t =

{
xi
t−T , . . . ,x

i
t

}
are the associated

covariates, and f(·) is the predictive function learnt.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (LeCun, Bengio, et al., 1995) are a type

of deep learning model particularly well-suited for processing data with spatial

structure. Originally designed for image analysis (LeCun, Boser, et al., 1989),

they were adapted to time series contexts through the use of causal convolutions

(Oord et al., 2016), which are convolutional filters that only use past information.

While a convolutional operation of a one-dimensional input sequence x with a

filter k, at time t, is defined as:

(x ∗ k)t =
∞∑

τ=−∞
xt−τkτ , x, k ∈ RZ, (2.7)

causal convolutions modify this operation, as they only aggregate information from

the past and present in order to forecast future values:

(x ∗c k)t =
S−1∑
τ=0

xt−τkτ , x ∈ RZ, k ∈ RN , (2.8)
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where k is a finite filter of length S. Finally, causal convolutions can be extended into

Dilated Causal Convolutions (DCC), where the inner product with the convolutional

filter is not based on consecutive entries of the time series but on entries that are

a fixed number of steps apart from each other. A DCC with dilation factor

d is defined as:

(x ∗c
d k)t =

S−1∑
τ=0

xt−dτkτ , x ∈ RZ, k ∈ RN . (2.9)

Figure 2.1 shows these three variations for one-dimensional convolutions. In Chapter

4, we explore in detail the use of DCCs for the quantitative-finance problem of

volatility forecasting.

z = x ∗ k

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
k−1 k1k0 k−1 k1k0

z4 = k−1x3 + k0x4 + k1x5 z9 = k−1x8 + k0x9 + k1x10

z = x ∗c k

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
h2 h1 h0 h2 h1 h0

z4 = k2x2 + k1x3 + k0x4 z9 = k2x7 + k1x8 + k0x9

z = x ∗cd=2 k

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
h2 h1 h0 h2 h1 h0

z4 = k2x0 + k1x2 + k0x4 z9 = k2x5 + k1x7 + k0x9

Figure 2.1: Three different types of one-dimensional convolution. (a) One-dimensional
convolution of a time series x with a filter k. (b) Causal convolution of a time series x
with a filter k. (c) Dilated causal convolution (d = 2) of a time series x with a filter k.
(Adapted from Reisenhofer et al. (2022)).

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) (Funahashi and Nakamura, 1993) are a type

of deep learning model that are specifically designed to handle sequential data.
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RNNs are able to capture dependencies between the past and present data by using

hidden state vectors that are updated at each time step. The memory/hidden

state of an RNN can be represented as:

ht = g(ht−1,xt) (2.10)

where ht ∈ RH is the RNN’s hidden state at time t, and g(·) is the memory update

function. Using Eq. (2.10) as basic building block, different varitions of RNN can

be found, where Elman (1990) propose one straightforward approach:

yt+1 = φy (Wyht + by) (2.11)

ht = φh (Wh1ht−1 + Wh2yt + Wh3xt + Wh4s + bh) , (2.12)

being φ the desired activation function, and W , b the linear weights and bi-

ases, respectively.

2.2.3 Long Short-Term Memory Networks

RNNs can suffer from limitations in learning long-range dependencies in the data due

to exploding and vanishing gradients. Long Short-Term Memory networks (LSTMs)

(Hochreiter and Schmidhuber, 1997) were developed to address these limitations by

improving gradient flow within the network. This is achieved through the use of a

cell state ct, which stores long-term information modulated through a series of gates:

Input gate: it = σ(Wi1ht−1 + Wi2yt + Wi3xt + Wi4s + bi), (2.13)

Output gate: ot = σ(Wo1ht−1 + Wo2yt + Wo3xt + Wo4s + bo), (2.14)

Forget gate: ft = σ(Wf1ht−1 + Wf2yt + Wf3xt + Wf4s + bf ), (2.15)

where σ is the activation function and ht−1 is the hidden state of the LSTM. The

LSTM’s hidden and cell states are updated as follows:

Hidden state: ht = ot ⊙ tanh(ct), (2.16)

Cell state: ct = ft ⊙ ct−1

+ it ⊙ tanh(Wc1ht−1 + Wc2yt + Wc3xt + Wc4s + bc), (2.17)
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where ⊙ is the element-wise product and tanh(·) is the hyperbolic tangent function.

LSTMs can be easily expanded into Bidirectional-LSTMs (Bi-LSTM), whose main

advantage lies in their capacity to process input sequences in two directions, both

forward and backwards, being able to capture both past and future context in

a sequence. To do so, while in a regular LSTM the hidden state at time t is

updated based on the previous hidden state and the current input, a Bi-LSTM

uses two separate LSTM networks, each processing the input sequence in forward

and backward directions, respectively. The output of the Bi-LSTM at time t is a

combination of the hidden states of the forward and backward LSTMs at that time,

that is ht =
[−→
ht ,
←−
ht
]
, where −→ht and ←−ht are obtained through Eq. (2.16). The ability

to capture both past and future context can be particularly useful for tasks that

involve understanding the meaning and relationships of words in a sentence. E.g.,

in NLP tasks such as language modelling and machine translation, the context in

which a word is used can be important for determining its meaning.

2.2.4 Attention Mechanisms

The attention mechanism, firstly proposed by Bahdanau et al. (2015), allows

recurrent architectures to focus selectively on some data segments while making

predictions. This technique, originally proposed to operate on an encoder-decoder

architecture, finds a context vector ct that is a weighted sum of a sequence of T

encoder’s hidden states. This context vector can be specified as follows:

ct =
T∑
t′=1

αt,t′ht′ , (2.18)

where the attention weights vector αt = [α(t,1), . . . , α(t,T )] relates current time step t

to each of the T encoder’s hidden states, obtained as ht′ = g(ht′−1,xt′). To ponder

this relation, the attention weights are computed through a softmax function:

αt,t′ = exp (et,t′)∑T
k=1 exp (et,k)

, (2.19)

where et,t′ are the alignment scores, which relate the inputs around position t′ with

the output at position t, based on the decoder’ previous output, st−1:

et,t′ = f(st−1, ht′), (2.20)
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where the function f(·) is usually implemented through a neural network.

2.2.5 Transformer Models

Transformer models (Vaswani et al., 2017) were recently proposed for NLP tasks.

They have become a popular choice due to their ability to handle long-range

dependencies and capture contextual information effectively. Furthermore, different

proposals have adapted them to the time series forecasting problem idiosyncrasies

(S. Li et al., 2019; Lim, Arik, et al., 2021).

At a high level, Transformer models are a type of neural network architecture

solely based on the self-attention mechanism, which arises from Bahdanau et al.

(2015)’s initial proposal. Therefore, Transformers process input sequences eschewing

recurrence and relying entirely on the attention mechanism to find dependencies

between input and output sequences, allowing for significantly more parallelization.

The self-attention mechanism in which the Transformer model bases its operation

is performed simultaneously by a different number of Transformer’s heads H ∈ Z,

comprising what is called a multi-head Transformer. Each of the multi-head self-

attention sublayers simultaneously transforms the input time series X into query,

key, and value matrices. For the ith head, these are obtained as: Qi = XWQ
i , Ki =

XWK
i , Vi = XW V

i , where WQ
i ∈ R(d+1)×dQ , WK

i ∈ R(d+1)×dK , W V
i ∈ R(d+1)×dV

are learnable parameters, d is the dimensionality of the original time series, and

dQ, dK , dV are the dimensions of the learned linear projections for query, keys, and

values, respectively. Finally, the Transformer output for the ith head is computed

through the use of the scaled dot-product attention:

hi = Attention (Qi, Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi, (2.21)

whose operative for a single Transformer head is illustrated in Figure 2.2. Finally, the

different heads, whose use allows the model to jointly attend to different temporal

subspaces of the original time series, are combined to obtain a joint representation:

MultiHead(Q,K,V) = Concat (h1, h2, . . . , hi, . . . hH) , (2.22)
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Key ValueQuery

Scale

Softmax

Figure 2.2: Scaled dot-product attention.

where hi represents ith head’s output, hi = Attention (Qi, Ki, Vi) , and Q,K,V

comprise the queries, keys, and values for all heads.

This review of Transformer models marks the conclusion of our literature survey

on time series modelling and forecasting. The deep learning models discussed

in this chapter are currently considered state-of-the-art and are widely utilised

due to their ability to extract features automatically and generate predictions

based on data. Nonetheless, there are still challenges that need to be addressed

in the development and implementation of these models. These issues will be

addressed in the following chapter.
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Time series forecasting is a fundamental problem across many domains, playing

a crucial role in multiple real-world applications. In this chapter, we propose a
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forecasting architecture that combines deep autoregressive models with a Spectral

Attention (SA) module, which merges global and local frequency domain information

in the model’s embedded space. By characterising in the spectral domain the

embedding of the time series as occurrences of a random process, our method can

identify global trends and seasonality patterns.

Two spectral attention models, global and local to the time series, integrate

this information within the forecast and perform spectral filtering to remove the

time series’s noise. The proposed architecture has several valuable properties: it

can be effectively incorporated into well-known forecast architectures, requiring

a low number of parameters, and producing explainable results that improve

forecasting accuracy.

This chapter, which presents the contents of Moreno-Pino, Olmos, et al. (2023),

is organised as follows. Section 3.1 motivates the need for our proposal and briefly

introduces it, also providing an overview of methods with similar scope. Section 3.2

states the time series forecasting problem, presents a base architecture to which we

append the proposed Spectral Attention module, and provides a characterization

of the time series in the spectral domain. Section 3.3 describes our model, and

Section 3.4 proves its effectiveness, both quantitative and qualitatively. To do so, we

perform extensive experiments on both synthetic and real-world time series datasets,

showing the effectiveness of the proposed Spectral Attention module, consistently

outperforming the base models and reaching state-of-the-art results. In addition,

ablation studies further prove the effectiveness of the designed architecture. We

conclude the chapter in Section 3.5 with a short discussion.

3.1 Problems and Limitations of Autoregressive
Models for Time Series Forecasting

As mentioned in Chapter 2, deep learning models have been widely applied in the

field of time series forecasting due to their ability to automatically learn features

and make predictions based on data, replacing the use of classic methodologies.

Architectures like DeepAR (Salinas et al., 2020) and ConvTrans (S. Li et al., 2019)
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set a milestone adapting state-of-the-art machine learning models to the problem of

probabilistic time series forecasting. The former employs an LSTM to perform an

embedding used by a probabilistic model to forecast in an encoder-decoder fashion,

while the latter adapts Transformer models to the time series modelling context.

Furthermore, various attempts to merge signal processing techniques with deep

neural networks can also be found in the literature. In Tamkin et al. (2020), a

framework that uses spectral filtering for the problem of NLP was proposed, while

Cao et al. (2020) uses the spectral domain to capture inter-series correlations and

temporal dependencies jointly. Nevertheless, most of the methods in the literature

that incorporate signal processing techniques into deep learning architectures solely

use signal decomposition techniques to identify trend and seasonality patterns.

Likewise, many models have tried to join classical approaches with deep learning

techniques, as Deep State Space Models for Time Series Forecasting (DSSM)

(Rangapuram et al., 2018), or Deep Factors for Forecasting (Yuyang Wang et al.,

2019). The former established an architecture that joins together State Space

Models (SSM) with an RNN. The latter generalises the approach of DSSM by

using global and local effects on the inference model.

Nevertheless, deep autoregressive models also present some inconveniences, as we

mentioned in Chapter 1. First, deep autoregressive models tend to focus on recent

past data to predict the future of the time series, frequently wasting important global

information not encapsulated in previous predictions. Second, as classical time

series forecasting methods, they suffer from error accumulation and propagation

(Cheng et al., 2006), a problem closely related to the previous one. Third, they do

not produce illustrative results, neither can we clearly explain how they reach them

(X. Bai et al., 2021). In this regard, progress regarding the improvement of forecasts’

representativeness has been made through the proposal of visualisation methods

(Kang, R. J. Hyndman, and Smith-Miles, 2017), together with the development

of evaluation tools that facilitate the benchmarking of forecasting architectures

(Kang, R. J. Hyndman, and F. Li, 2020).
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In the rest of this chapter, we show that the described problems can be

partially alleviated by incorporating signal processing filtering techniques into

the autoregressive models that perform the time series forecasting. Concerning

the inability of these models to focus on the global context, we can obtain time

series’ most important trends via frequency domain characterization. These trends

can be intelligently incorporated during the forecasting, hence making the local

context aware of the time series global patterns. Regarding error accumulation

and noisy local context, spectral filtering can be applied to decide at every time

instant which frequencies are useful and which can be suppressed, eliminating

unwanted components that do not help during the forecast. Finally, these signal

processing tools that operate in the spectral domain produce more illustrative

internal representations, as proved during the experiments section, making it

possible to extract the explainable frequency domain features that are driving

the predictions if necessary.

Thus, this chapter proposes a novel and general architecture, the Spectral

Attention Autoregressive Model (SAAM), which integrates all previous solutions,

representing a significant advancement in the field of temporal modelling and time

series forecasting. SAAM’s modularity allows it to be effectively incorporated into a

variety of deep autoregressive models. This architecture uses two spectral attention

models to determine, at every time instant, relevant global patterns as well as

removing local context’s noise while performing the forecasting. Both operations

are performed in the frequency domain of the embedded space.

To the best of our knowledge, SAAM is the first deep neural autoregressive

model that exploits attention mechanisms in the spectral domain. In this new fre-

quency domain attention framework, a global-local architecture marries deep neural

networks with classic signal processing techniques. This architecture, encapsulated

in the Spectral Attention module, modifies the embedded representation of the time

series, incorporating relevant global trends into the forecast and performing spectral

filtering to mitigate error accumulation. Further, the additional complexity due to

Spectral Attention is comparable to classic attention models in the temporal domain.
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We perform extensive experiments on both synthetic and real-world time series

datasets, showing the effectiveness of the proposed Spectral Attention module,

consistently outperforming the base models and reaching state-of-the-art results. In

addition, ablation studies further prove the effectiveness of the designed architecture.

3.2 Preliminaries

In this section, we formally state the problem of time series forecasting and

introduce a base architecture that represents the core of most deep learning-

based autoregressive models in the state-of-the-art. Also, a frequency domain

characterization of the time series is proposed.

3.2.1 Problem Definition

Given a set of N univariate time series {zi1:t0−1}Ni=1, where zi1:t0−1 = (zi1, zi2, . . . , zit0−1),

t0 ∈ N is the forecast horizon, τ ∈ N the forecast length, and T = t0 + τ ∈ N the

sequences’ total length, our goal is to model the conditional probability distribution

of future trajectories of each time series given the past, namely, to predict the

next τ time steps after the forecast horizon, assuming conditional independence

between different time instants:

p
(
zit0:t0+τ | zi1:t0−1,xi1:t0+τ , θ

)
=

t0+τ∏
t=t0

p
(
zit | zi1:t−1,xi1:t, θ

)
, (3.1)

where θ are the learnable parameters of the model and {xi1:t0+τ}Ni=1 ∈ RC the asso-

ciated covariates. These covariates are, together with time series’ past observations,

the input to our predictive model.

3.2.2 Base Architecture

Several deep autoregressive models in the state-of-the-art, including DeepAR (Salinas

et al., 2020) and ConvTrans (S. Li et al., 2019), can be characterised by means

of a high-level architecture, represented in Figure 3.1. This general framework

is composed of two parts:
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1. An embedding function eit = fϕ
(
eit−1, z

i
t−1,xit

)
∈ RD, with transit function

fϕ(·) and parameters ϕ. This embedding receives as input, at time t ∈ T , the

time series previous value zit−1, the covariates xit, and the past value of the

embedding eit−1. This embedding function can be implemented in different

ways, such as a RNN, a LSTM, a Temporal Convolutional Network (TCN)

(Lea et al., 2016), or a Transformer.

2. A probabilistic model p (zit | eit), with parameters ψ, which uses the embed-

ding eit to estimate time series’ next value, ẑit. This probabilistic model is

usually implemented as a function of a neural network that parameterizes

the required probability distribution. E.g., a Gaussian distribution can be

represented through its mean and standard deviation as: µ = gµ(wT
µeit + bµ),

σ = log
(
1 + exp

(
gσ(wT

σeit + bσ)
))

, where gµ and gσ are neural networks.

zit−1,x
i
t

e
i
t

ẑit

e
i
t−1 e

i
t+1

i = 1 : N

t = 1 : T
φ

ψ

Figure 3.1: Common base architecture of deep learning-based autoregressive models.
Gray represents observed variables.

The optimal model’s parameters θ = {ϕ, ψ} are obtained by maximizing the

log-likelihood function L(θ) for the observed data in the conditioning range, i.e.,
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from t = 1 to t0 − 1. All quantities required for computing the log-likelihood

function are deterministic, which means that no inference is required:

L(θ) =
N∑
i=1

log p
(
zi1:t0−1 | xi1:t0−1, θ

)
=

N∑
i=1

t0−1∑
t=1

log p
(
zit | xi1:t−1, θ(ϕ, ψ)

)
. (3.2)

During both training and testing, the conditioning range {1 : t0 − 1}, which is

analogous to the encoder of seq2seq models (Sutskever et al., 2014), transfers

information to the forecasting range {t0 : t0 + τ}, analogous to the decoder.

Therefore, this base framework can be interpreted as an encoder-decoder architecture,

with the consideration that both encoder and decoder are the same network, as

Figure 3.2 shows.

For forecasting, given the model’s parameters θ, we can directly obtain joint

samples from the model as ẑit0:t0+τ ∼ p
(
zit0:t0+τ | zi1:t0−1,xi1:t0+τ , θ

)
. Therefore,

during the forecasting range, the model consumes the previous time step prediction

ẑit−1 as input, unlike during the conditioning range, where zit−1 is observed. This

is illustrated in Figure 3.2.

ẑit

p(zit|θ
i
t)

e
i
t

p(zit+1|θ
i
t+1) p(zit0+1|θ

i
t0+1) p(ziT |θ

i
T )

e
i
t+1

e
i
t0+1 e

i
T

Forecast Horizon

φ

zit−1,x
i
t zit,x

i
t+1

zit0,x
i
t0+1 ziT−1,x

i
T

φ φ φ

ẑit+1 ẑit0+1 ẑiT

ψ ψ ψ ψ

Figure 3.2: Unrolled base architecture. On the left of the forecast horizon, the
conditioning range can be found {1 : t0 − 1}. On its right, the forecasting range
{t0 : t0 + τ}.

Notice that Transformers, unlike RNNs or LSTMs, do not compute the em-

bedding in a sequential manner. Accordingly, when obtaining the embedding
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through a Transformer model (Wu et al., 2020) and so to use the encoder-decoder

architecture previously described, we use the Transformer decoder-only mode,

introduced in P. J. Liu et al. (2018).

3.2.3 Characterizing the Time Series’ Embedding in the
Frequency Domain

Our approach in this chapter exploits information in the spectral domain. In this

regard, time series’ embedding space can be statistically characterized as instances

of a random process for which spectral information can be analyzed using the

expected autocorrelation and the Power Spectral Density (PSD) (Buttkus, 2012).

The power spectrum per embedding’s dimension can be calculated from an

averaged autocorrelation, estimated from a finite number M ∈ Z+ of time series

of duration T ∈ N each:

R̂d(κ) = 1
M

M∑
j=1

(
1
T

T∑
t=1

ejt(d) ejt+κ(d)
)
∈ RT , (3.3)

where R̂d(κ) ∈ RT is the expected autocorrelation for the dth dimension of the jth

embedded sequence, ej(d), and κ is the lag between observations.

The Blackman-Tukey method (Blackman and Tukey, 1958), which takes advan-

tage of the Discrete Fourier Transform (DFT) of a windowed autocorrelation, can

be used to estimate the PSD once the autocorrelation has been computed:

Ŝd(ω) =
T∑

−T
R̂d(κ)e−jωκ ∈ RNFT , (3.4)

where Ŝd(ω) ∈ RNFT decomposes a function into its constituent frequencies (NFT

is usually equal to the time series’ length T ), obtaining the estimated spectrum

Ŝd(ω) of the random process that generates the time series in the embedding space.

Notice that Ŝd(ω) is a spectral characterization of the d-dimension of the embedding

space, hence not global to the process. In Section 3.3, we propose an alternative

autocorrelation function that considers each embedding’s dimensions as independent

realizations of the same random process that generates the time series; therefore,

obtaining a global spectral representation of the process.
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3.3 Spectral Attention Autoregressive Model

In this section, we introduce the Spectral Attention Autoregressive Model (SAAM),

a general framework that incorporates a Spectral Attention (SA) module able to

exploit embedding function’s spectral information using attention mechanisms

to solve two main tasks:

1. Time series zit are governed by global trends and seasonality structures. SAAM

captures these global patterns and incorporates them into the forecast.

2. Time series exhibit noise around these primary trends that difficult the

forecasting process. SAAM filters this noise using spectral filtering, improving

the signal to noise ratio thus alleviating the error propagation problem

autoregressive models suffer from.

These two operations, incorporating global trends into the forecast and filtering

the time series’ local context, are encapsulated in the SA module, responsible

for all the frequency domain related operations. As such, it can be incorporated

in any deep autoregressive structure.

The resulting architecture, displayed in Figure 3.3, is therefore composed of

three main parts: embedding function, SA module, and probabilistic model. For

further details on the embedding and probabilistic model, common to the base

architecture of Figure 3.1, we refer the reader to Section 3.2.2. Concerning the

SA module, we now explain in detail how it integrates both global and local

information into the forecasting.

3.3.1 Global Spectral Information

To incorporate global patterns into the prediction, we perform a frequency do-

main characterization of the process, as explained in Section 3.2.3. We aim

to exploit spectral domain information associated with the neural embeddings{
ej1, ej2, . . . , ejt0−1

}M
j=1

of a number M ∈ N of time series.
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Figure 3.3: Spectral Attention Autoregressive Model general architecture. Gray
represents observed variables. Green indicates frequency domain representations.

Nevertheless, we are not interested in characterizing each embedding’s dimension

independently, Ŝd(ω) ∈ RNFT , as using Eq. (3.3) entails. This would require a

multidimensional PSD for characterizing the process over all embedding’s dimensions,

Ŝ(ω) ∈ RD×NFT . Instead, we consider each dimension of the embedding as

independent realizations of the same process we average over, resulting in the

following autocorrelation function:

R̂(κ) = 1
M

M∑
j=1

[
1
D

D∑
d=1

(
1
T

T∑
t=1

ejt(d) ejt+κ(d)
)]
∈ RT , (3.5)

where ejt(d) is the dth dimension of the jth embedded sequence and D ∈ Z+ is

the embedding’s number of dimensions. To apply the Blackman-Tukey method

from Eq. (3.4) over the previous autocorrelation function involves obtaining the

complete frequency-domain characterization of the process, incorporating all the
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global patterns across the different dimensions of the embedding into a single

spectral representation, Ŝ(ω) ∈ RNFT .

Therefore, Eqs. (3.4) and (3.5) allow us to calculate a Monte Carlo approximation

of the process’ PSD for a batch of M ∈ N training sequences {ZT ,XT}Mj=1, via

a Fourier Transform with NFT points: g = FT
{
R̂T (τ)

}
∈ RNFT . Consequently,

g ∈ RNFT is the global spectral representation of the process, shared among the

N ∈ N time series to forecast.

3.3.2 Local Spectral Information

To perform the spectral local filtering, we analyze the last TF ∈ N embedded

values of each individual sample: Ei
t =

{
eit−TF

, eit−TF +1, . . . , eit
}
∈ RD×TF , where Ei

t

encapsulates the previous TF embeddings, each of dimension RD. This embedded

buffered signal at time t, which characterizes the recent local past of the process, is

transformed to the frequency domain, Li
t = |FT {Ei

t} | ∈ RD×NFT , via a DFT with

NFT points. Note that we retain only the module of the Fourier Transform.

3.3.3 Merging Global and Local Contexts with Spectral
Attention

We combine both global and local spectral information to modify the embedded

representation of the time series eit. This is done through two spectral attention

models contained in the SA module, with parameters γ = {γg, γl}:

Global Spectral Attention

This frequency-domain attention model, with parameters γg, is responsible for

incorporating, at time t ∈ T and for each time series, the Global Spectral Information

into the forecast. To do so, it uses the time series’ local context, summarized via

the embedding function eit, as key to select the relevant frequency components on G

that should be included during the prediction, where G ∈ RD×NFT is a repetition of

g ∈ RNFT along the D dimensions of the embedding: αi
g,t = fγg(eit,G) ∈ RD×NFT .

The global filter’s coefficients, αi
g,t, take values ∈ [0, 1] and fγg(·) is a neural network.
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Figure 3.4: The unrolled architecture of the Spectral Attention Autoregressive Model.

Local Spectral Attention

As in the Global Spectral Attention model, the embedded representation eit is used

as a key to determine the relevant and not relevant local spectral components,

αi
l,t = fγl

(eit,Li
t) ∈ RD×NFT , where γl are the Local Spectral Attention’s parameters

and αi
l,t ∈ [0, 1] are the local filter’s coefficients for each embedding’s dimension.

Spectral Attention module: Global and Local features combination

We combine both spectral-domain attention models through multiplication and

addition operations in the frequency domain: Ai
t = Li

t⊙αi
l,t + Gi

t⊙αi
g,t ∈ RD×NT F .

The multiplication over the embedding’s local spectrum representation Li
t ⊙ αi

l,t

is performing the local spectral filtering, setting to zero not relevant frequency

components through the local attention model. Furthermore, the addition of

Gi
t ⊙αi

g,t includes significant global trends into the forecast via αi
g,t, which selects

relevant patterns from the process’ global spectrum representation Gi
t.
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Table 3.1: Summary of operations performed by SAAM to filter both local and global
contexts.

Operation Implementation

Embedding function eit = fϕ
(
eit−1, z

i
t−1,xit

)
,∈ RD

Buffered embedding Ei
t = eit−TF :t,∈ RD×TF

Local spectrum Lit = |FT {Ei
t

} |,∈ RD×NFT

Global spectrum g = FT
{
R̂T (τ)

}
,∈ RNFT

Local filtering αi
l,t = fγl

(eit,Lit),∈ RD×NFT

Global filtering αi
g,t = fγg (eit,G),∈ RD×NFT

Spectral attention Ai
t = Lit ⊙αi

l,t + Gi
t ⊙αi

g,t,∈ RD×NFT

Filtered embedding Fi
t = FT −1 {Ai

t

}
,∈ RD×TF

Time step filtered embedding f it = Fi
t(t),∈ RD

Emission ẑit ∼ p
(
zit | f it , θ

)
,∈ R

Finally, this spectral representation is transformed back to the time domain

Fi
t = FT −1 {Ai

t} ∈ RD×TF and the last value of Fi
t, f it ∈ RD, is feed to the

probabilistic model to forecast the next time step, ẑit ∼ p (zit | f it , θ).
Figure 3.4 shows the unrolled architecture of the proposed model and Table 3.1

contains a summary of the operations performed by the SA module. If we remove

this module, the base framework displayed in Figure 3.2 remains. Notice that both

the computation of the expected autocorrelation and the Fourier Transform are

differentiable with respect to the model parameters.

3.3.4 Training

The log-likelihood of the model, which is maximised to match the statistical

properties of the data, now includes SA’s parameters, γ:

L(θ) =
N∑
i=1

t0−1∑
t=1

log p
(
zit | xi1:t−1, θ(ϕ, γ, ψ)

)
. (3.6)

Once the parameters θ have been learned during the conditioning range, forecasts

can be produced as mentioned in Section 3.2.2: ẑit0:t0+τ ∼ p
(
zit0:t0+τ | zi1:t0−1,xi1:t0+τ , θ

)
,

computing the joint distribution over the forecasting range for each time series.
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Notice that, during both training and testing, global spectral information is

obtained using a mini-batch of time series different to the one being forecasted.

3.4 Experiments

We conduct experiments with both synthetic and real-world datasets in order to

provide evidence of the superior ability of SAAM regarding the multi-step forecasting

problem. Moreover, ablation studies are conducted. The code for our proposed

model is publicly available on GitHub 1 (Moreno-Pino, 2021).

3.4.1 Applying the Spectral Attention Module to State-
of-the-Art Models

Many well-known deep autoregressive models that are part of the state-of-the-art

can take advantage of the Spectral Attention module proposed in Section 3.3. This

allows them to filter not relevant spectral components and to recognise global trends

that can be incorporated into the forecast.

We integrate the SA module into two forecasting models: DeepAR (Salinas

et al., 2020), a widely-known and largely used model with several industrial

applications (Böse et al., 2017), which employs a LSTM to perform the embedding;

and ConvTrans (S. Li et al., 2019), a more recent Transformer-based proposal,

which constitutes one of the most efficient approaches for using Transformers for

the problem of time series forecasting.

Notice that the proposed architecture, encapsulated in the SA module, can

be applied to models that do not operate in an autoregressive manner, such as

ConvTrans itself. To do so, the embedding is obtained using the decoder-only

mode, as mentioned in Section 3.2.2.

We want to remark that the added complexity by the Spectral Attention module

is equivalent to classic attention models in the time domain as Bahdanau et al.

(2015). In these models, for a sequence of length L, computing scores between every

pair causes O(L2) memory usage. The complexity of Spectral Attention leans on
1https://github.com/fmorenopino/SAAM

https://github.com/fmorenopino/SAAM
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the embedding’s dimension D ∈ Z+ and the number of points used to compute the

Fourier Transform NFT ∈ Z+. The complexity, therefore, depends on O(D ·NFT ),

analogous to time-domain attention mechanisms.

Anyhow, it should be noticed that the SA module allows the use of the Fourier

Transform’s number of points, NFT , as a hyper-parameter: to decrease its value

would imply a down-sampling and hence, a reduction of the algorithm’s time

complexity as well as the model’s number of parameters.

3.4.2 Metrics

The normalised ρ−quantile loss, QLρ, with ρ ∈ (0, 1), which quantifies the accuracy

of a quantile ρ of the predictive distribution, is the main metric used to report

the results of the experiments, as in many other works (Salinas et al., 2020; S. Li

et al., 2019; Rangapuram et al., 2018):

QLρ(z, ẑ) = 2

∑
i,t

[
ρ
(
z

(i)
t − ẑ(i)

t

)
I
z

(i)
t >ẑ

(i)
t

+ (1− ρ)
(
ẑ

(i)
t − z(i)

t

)
I
ẑ

(i)
t ≥z(i)

t

]
∑
i,t

∣∣∣z(i)
t

∣∣∣ . (3.7)

Rolling window predictions after the last point seen in the conditioning range are

used to obtain the results. To compute this metric, we use 200 samples from the

decoder to estimate ẑit along time. Also, the normalised sum of the quantile losses

is considered, as can be observed in the previous equation.

The Normalised Deviation (ND) (H.-F. Yu et al., 2016) and Root Mean Square

Error (RMSE) are also used to evaluate the probabilistic forecasts, especially on

the synthetic dataset experiments:

ND =
∑
i,t |zi,t − ẑi,t|∑

i,t |zi,t|
,

RMSE =

√
1

N(T−t0)
∑
i,t (zi,t − ẑi,t)2

1
N(T−t0)

∑
i,t |zi,t|

.

(3.8)

3.4.3 Synthetic Dataset

In order to demonstrate SAAM’s capabilities, we conduct experiments on synthetic

data composed of sinusoidal signals with no covariates and a duration of 200
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samples. Each of these signals is divided into two halves, randomly selecting the

components for each of them as:

f(t) =



{
f ∼ f1(t), if x1 = 0
f ∼ f2(t), if x1 = 1 , t ∈ [0, 100),

{
f ∼ f1(t), if x2 = 0
f ∼ f2(t), if x2 = 1 , t ∈ [100, 200],

(3.9)

where x1 and x2 are independently and randomly generated from a Bernoulli

distribution, X ∼ Ber(θ) with probability θ = 1/2. This implies that each half

of the time series can take the form of one over two signals, f1(t) or f2(t), both

of them composed by the addition of two sines of different frequencies plus a

noise component, ν:{
f1(t) = A11 sin(2πf11t) + A12 sin(2πf12t) + ν
f2(t) = A21 sin(2πf21t) + A22 sin(2πf22t) + ν,

(3.10)

where ν ∼ N (0, σ2
ν) and σ2

ν vary during the experiments, the amplitudes have fixed

values A11, A12, A21, A22 = 2, and each of the frequencies used are chosen from

a different interval as: f11 ∼ [1, 5], f12 ∼ [15, 20], f21 ∼ [5, 10], f22 ∼ [20, 25]. An

example sampled time series is shown in Figure 3.5.

Figure 3.5: Synthetic dataset example signal, generated with f11 = 2, f12 = 15, f21 = 6,
f22 = 20 Hz. For each signal, each half randomly varies according to the Bernoulli
distribution. Noise’s standard deviation is increased from top to bottom.
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To evaluate Spectral Attention advantages, we train two models on this dataset:

1) DeepAR as base model, and 2) SAAM (integrating the SA module into the

DeepAR baseline). Both of them use the exact same architecture for the common

parts: the embedding function is performed by an LSTM of 3 layers and 10 hidden

units per layer and the probabilistic model is composed of a fully connected network.

Empirical Analysis

Both models, DeepAR and SAAM, are trained using 500 signals from the synthetic

dataset with a noise component N ∼ N (0, σ2
ν = 0.5). We then evaluate the

trained models in two different scenarios. First, in absence of a noise component,

N ∼ N (0, σ2
ν = 0); second, in the same conditions they were trained, N ∼

N (0, σ2
ν = 0.5). Moreover, for each of the previous cases, we evaluate the models

using different forecast horizons, starting with {t0 = 175, τ = 25}, and up to

{t0 = 105, τ = 95}. In this last case, the final 95 time steps are forecasted after

observing just the five first samples from the time series’ second half. Setting

t0 ≤ 100 would be senseless, as t ∈ [0, 100) contains no evidence about the time

series configuration during t ∈ [100, 200].

Table 3.2 shows the results reported by DeepAR and SAAM. After training

the models, 10 evaluations per scenario are conducted during testing. On average,

SAAM improves the ND by a 28.4%, RMSE by a 27.7%, QLρ=0.5 by a 28.2%,

and QLρ=0.9 by a 28.4%, proving that Spectral Attention inclusion enhances the

model’s performance.

Furthermore, note that the Global Spectral Attention model contained in the

SA module helps accelerate global trends detection: the earlier the forecast window

starts (smaller t0), the better the results of SAAM with respect to the DeepAR

base model are. Specifically, for N ∼ N (0, 0) and t0 = 175 (the most favourable

setting as there is no noise and just 25 data points to forecast), SAAM and DeepAR

report very similar results while, with an increased forecast window of t0 = 105,

SAAM architecture thoroughly enhances base model’s results: ND is improved by

a 54.3%, RMSE by a 40.9%, QLρ=0.5 by a 54%, and QLρ=0.9 by a 56.9%.
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Table 3.2: Comparative of DeepAR vs SAAM on the synthetic dataset for different noise
component’s variance and forecast lengths.

DeepAR/SAAM
σ2

ν Model t0 τ ND RMSE QLρ=0.5 QLρ=0.9

σ2
ν = 0

DeepAR

175 25 0.25494 ± 0.000 0.35004 ± 0.000 0.26250 ± 0.000 0.21830 ± 0.000
150 50 0.27403 ± 0.000 0.37677 ± 0.000 0.27882 ± 0.000 0.26836± 0.000
120 80 0.37867 ± 0.000 0.47434 ± 0.000 0.38511 ± 0.000 0.38712± 0.000
110 90 0.75234 ± 0.000 1.06398 ± 0.000 0.75810 ± 0.001 0.73909 ± 0.001
105 95 0.82233 ± 0.000 1.13000 ± 0.000 0.82801 ± 0.001 0.80492 ± 0.001

SAAM

175 25 0.24101± 0.003 0.28680± 0.003 0.24872± 0.004 0.221701± 0.003
150 50 0.20145± 0.002 0.24868± 0.004 0.20594± 0.002 0.26325± 0.004
120 80 0.17323± 0.004 0.21293± 0.006 0.17811± 0.005 0.13148± 0.001
110 90 0.20326± 0.001 0.28207± 0.001 0.20828± 0.001 0.14980± 0.003
105 95 0.37575± 0.003 0.66817± 0.001 0.38062± 0.004 0.34665± 0.002

σ2
ν = 0.5

DeepAR

175 25 0.58778 ± 0.000 0.75065 ± 0.000 0.59492 ± 0.001 0.59893 ± 0.001
150 50 0.60786 ± 0.000 0.76756 ± 0.000 0.61322 ± 0.000 0.61094 ± 0.000
120 80 0.63071 ± 0.000 0.79379 ± 0.000 0.63531 ± 0.001 0.62907 ± 0.001
110 90 0.78535 ± 0.000 1.03135 ± 0.000 0.79090 ± 0.001 0.79474 ± 0.001
105 95 0.86135 ± 0.000 1.12157 ± 0.000 0.86594 ± 0.001 0.85522 ± 0.001

SAAM

175 25 0.56469± 0.002 0.71553± 0.002 0.57267± 0.002 0.61914± 0.005
150 50 0.55649± 0.001 0.70871± 0.002 0.56057± 0.001 0.60490± 0.003
120 80 0.57218± 0.002 0.73353± 0.002 0.57674± 0.002 0.52398± 0.002
110 90 0.67392± 0.001 0.89065± 0.001 0.67823± 0.001 0.61661± 0.001
105 95 0.70326± 0.009 0.93480± 0.012 0.70809± 0.009 0.65422± 0.012

SAAM’s ability to detect and incorporate relevant trends into the forecast

has direct implications for the reported results. Table 3.3 shows a comparison

for different noise levels of the reported metrics’ degradation while increasing

the forecast window from {t0 = 175, τ = 25} to {t0 = 105, τ = 95}: SAAM’s

deterioration is much smaller than DeepAR’s.

Further, Figure 3.6 shows the evolution of the training loss and validation

ND error. In this figure, it can be seen that a faster training convergence is

Table 3.3: DeepAR & SAAM accuracy deprecation comparative between t0 = 175/τ = 25
and t0 = 105/τ = 95.

σ2
ν = 0 σ2

ν = 0.5
ND -222,56 % -46,55 %

RMSE -222,82 % -49,41 %
QLρ=0.5 -215,43 % -45,56 %DeepAR

QLρ=0.9 -268,72 % -42,79 %
ND -55,91 % -24,54 %

RMSE -132,97 % -30,64 %
QLρ=0.5 -53,03 % -38,34%SAAM

QLρ=0.9 -56,36 % -5,67 %
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Figure 3.6: Training loss (left) and validation ND (right). The latter is for a forecast
window τ = 50.

achieved while using the SA module. Furthermore, SAAM reaches the minimum

validation error long before DeepAR.

Explainability Analysis

We now visualise how Spectral Attention affects the model’s latent space during the

forecasting. To do so, we study SAAM’s internal behaviour through the embedding

representation while using an LSTM with 1 layer and 5 hidden units per layer as

embedding. In Figure 3.7, we show the hidden representations produced by SAAM

during the forecasting of a time series ziT . Each row in this figure represents one of

those 5 hidden dimensions at time t = 200 (predicting the time series’ final time

step). SAAM’s hidden variables are displayed as:

• Blue lines represent the hidden representation of the LSTM before SA. This

is, the representation that DeepAR would use to forecast.

• Red lines represent SA module’s output, Fi
t=200 with dimension (D × TF ),

being D = 5 and TF = 100. This is the representation that DeepAR-based

SAAM uses in order to perform the forecast.

• We also represent the true signal ziT in the first row of Figure 3.7, the noise

component is removed for clarity. This specific sequence ziT can be described

as:
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f(t) =
{

2 sin(2πt) + 2 sin(40πt) + ν, t ∈ [0, 100)
2 sin(10πt) + 2 sin(40πt) + ν, t ∈ [100, 200] (3.11)

Thus, Figure 3.7 shows how the SA module modifies the latent space of the

model in order to incorporate global trends into the LSTM’s hidden representation,

making the model immediately aware of trend changes: in Dim. 0 and 2, Fi
TF

exhibits a trend associated with f3 = 5Hz as soon as time t ≈ 100, while this

component does not appear in Ei
T until t ≈ 160. Furthermore, Fi

TF
incorporates in

both Dim. 3 and 4 a 20Hz component that ziT exhibits for both f1(t) and f2(t).

Figure 3.7: Hidden representations of SAAM model while forecasting at time t = 200
(marked by red dotted lines). A filtering window of size TF = 100 is used.

These examples show the ability of the proposed architecture to incorporate

patterns that the time series exhibit into the forecast. Therefore, in this context,

explainability refers to the ability to illustrate which are the main global frequencies

that are driving the forecast and how they are incorporated into the embedded

representations of SAAM, as Figure 3.7 shows.

Finally, Figure 3.8 displays some forecast examples by DeepAR and SAAM.

DeepAR frequently fails to detect trend changes at t = 100 and to incorporate

certain frequency variations into the mean and standard deviation of the forecast,

while SAAM correctly manages these situations, as Figure 3.8 shows.
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Figure 3.8: Synthetic dataset’s forecasts examples by DeepAR (top rows) and SAAM
(bottom rows) on the same two time series, N ∼ N (0, σ2

ν = 0.5), {t0 = 110, τ = 90}.
Green dotted vertical lines mark the forecast starts. Predictions’ mean and variation
appear in red, and ground-truth in blue.

3.4.4 Real World Datasets

Utilising several real-world datasets, we compare the performance of SAAM with

other state-of-the-art models: two classic forecasting techniques, ARIMA (G. E. Box

and Gwilym M Jenkins, 1970) and ETS (R. J. Hyndman and Athanasopoulos,

2018); Facebook’s open-source library for univariate time series forecasting based on

additive models, Prophet (Taylor and Letham, 2018), a recent matrix factorization

method, TRMF (H.-F. Yu et al., 2016); an RNN-based State Space Model, DSSM

(Rangapuram et al., 2018); N-BEATS (Oreshkin et al., 2019), one of the best

performing models in forecast challenges as the M4 forecast competition (Makridakis,

Spiliotis, and Assimakopoulos, 2018); DeepAR (Salinas et al., 2020); and ConvTrans

(S. Li et al., 2019).

Two different configurations are proposed for SAAM: the first one uses DeepAR

as base model, the second combines ConvTrans with SA, and both comply with the

architecture of Figure 3.3. A basic framework for the common parts is maintained

during all the experiments: for the DeepAR base model, the embedding consists of 3

LSTM layers with 40 hidden units per layer while, for the ConvTrans base proposal,
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a Transformer with 8 heads and 3 layers is used. Both sets of parameters appear in

the original articles (Salinas et al., 2020; S. Li et al., 2019) as optimal choices.

The electricity2 and traffic datasets 3 (Dua and Graff, 2017) are evaluated using

two different forecast windows, of one and seven days. The electricity dataset

contains hourly time series of energy consumption of 370 customers. Similarly, the

traffic dataset contains the hourly occupancy rates, with values between zero and

one, of 963 car lanes in San Francisco area freeways.

Three more datasets, with different forecast windows each, are also used. The

solar dataset 4 (Measurement and Group, 2006) contains the solar power production

records from January to August 2006 from 137 plants in Alabama and exhibits

hourly measurements. Forecast windows of 1 day are predicted during the evalua-

tion. The wind dataset 5 (Dane, 2015) contains daily estimates of 28 countries’

wind energy potential in a period from 1986 to 2015, expressed as a percent of a

power plant’s maximum output. Finally, the M4-Hourly dataset 6 (Makridakis,

Spiliotis, and Assimakopoulos, 2018), contains 414 hourly time series from the M4

competition (Makridakis and Spiliotis, 2020). Table 3.4 summarizes each dataset

and the models’ architecture used.

All datasets use covariates {xit}Ni=1 ∈ RC , composed by the hour of the day, day

of the week, week of the year and month of the year, for daily, weekly, monthly,

and yearly data, respectively. Also, covariates that measure the distance to the

first observation of the time series, as well as an item index identification for

each time series, are used.

Table 3.5 shows the results obtained for both electricity and traffic datasets,

with forecast windows of 1 and 7 days. Table 3.6 shows the results for solar,

M4, and wind datasets.

Some conclusions can be drawn from these results. The classic methods evaluated,

ARIMA and ETS, perform the worst, probably due to the incapacity of detecting
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://archive.ics.uci.edu/ml/datasets/PEMS-SF
4https://www.nrel.gov/grid/solar-power-data.html
5https://www.kaggle.com/sohier/30-years-of-european-wind-generation
6https://www.kaggle.com/yogesh94/m4-forecasting-competition-dataset

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://www.nrel.gov/grid/solar-power-data.html
https://www.kaggle.com/sohier/30-years-of-european-wind-generation
https://www.kaggle.com/yogesh94/m4-forecasting-competition-dataset
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Table 3.4: Datasets evaluated’s details.

Electricity Traffic Solar Wind M4
Length 32304 129120 5832 10957 748

# time series 370 963 137 28 414
Granularity Hourly Hourly Hourly Daily Hourly

Domain R [0,1] R R R
Batch Size 128 128 128 64 128

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3
# LSTM Layers 3 3 3 3 3

# Hidden Units/Layer 40 40 40 40 40
# Heads 8 8 8 8 8
# Layers 3 3 3 3 3

Forecast Window 1 Day / 7 Days 1 Day / 7 Days 1 Day 210 Days 2 Days
Encoder Length 168 / 24 168 / 24 168 162 128
Decoder Length 24 / 168 24 / 168 24 210 48

Table 3.5: Evaluations summary, using QLρ=0.5/QLρ=0.9 metrics, on Electricity and
Traffic datasets with forecast windows of 1 and 7 days, where △ are extracted from (S. Li
et al., 2019).

Method
Dataset

elect-1d elect-7d traffic-1d traffic-7d
ARIMA △ 0.154/ 0.102 0.283 / 0.109 0.223 / 0.137 0.492 / 0.280

Prophet 0.108/ 0.099 0.160 / 0.154 0.256 / 0.197 0.333 / 0.296
ETS △ 0.101 / 0.077 0.121 / 0.101 0.236 / 0.148 0.509 / 0.529

TRMF △ 0.084 / - 0.087 / - 0.186 / - 0.202 / -
DSSM △ 0.083 / 0.056 0.085 / 0.052 0.167 / 0.113 0.168 / 0.114

N-BEATS 0.069/ 0.052 0.115 / 0.097 0.125 / 0.101 0.119 / 0.099
DeepAR 0.075 / 0.040 0.082 / 0.053 0.159 / 0.106 0.251 / 0.169
ConvTras 0.059 / 0.034 0.079 / 0.051 0.152 / 0.102 0.172 / 0.110

SAAM(DeepAR) 0.064 / 0.032 0.076 / 0.037 0.123 / 0.099 0.246 / 0.167
SAAM(ConvTrans) 0.056 / 0.029 0.073 /0.046 0.120 / 0.083 0.155 / 0.098

shared patterns across the different time series. Prophet reports comparable results

to classic models in the electricity and traffic datasets. Nevertheless, its performance

in relation to deep-learning approaches improved with the solar, M4, and wind

datasets, demonstrating its usefulness in smaller data regimes. The results reported

for TRMF are slightly better than previous approaches but, for most configurations,

it is not capable of beating Deep Neural Networks-based approaches, where DeepAR

and ConvTrans solidly exceed DSSM. The two proposed variations of SAAM

always improve the base architectures’ performance and, with the exception of the
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Table 3.6: Evaluations summary, using QLρ=0.5/QLρ=0.9 metrics, on Solar, M4, and
Wind datasets with different forecast windows, where △ are extracted from (S. Li et al.,
2019).

Method
Dataset

Solar M4 Wind
Prophet 0.256 / 0.175 0.116 / 0.111 0.305 / 0.275
TRMF△ 0.241 / - - / - 0.311 / -

N-BEATS 0.227 / 0.168 0.023 / 0.018 0.302 / 0.283
DeepAR 0.222 / 0.093 0.085 / 0.044 0.286 / 0.116
ConvTras 0.210 / 0.082 0.067 / 0.049 0.287 / 0.111

SAAM(DeepAR) 0.191 / 0.066 0.048 / 0.029 0.282 / 0.105
SAAM(ConvTrans) 0.197 / 0.069 0.061 / 0.044 0.278 / 0.108

Table 3.7: Improvement percentage on QLρ=0.5/QLρ=0.9 metrics for each base model.

Dataset
Base Model

DeepAR ConvTrans
elect-1d 15.33% / 20.75% 5.08% / 14.71%
elect-7d 7.32% / 30.19% 7.59% / 9.80%

traffic-1d 22.64% / 6.60% 21.1% / 18.6%
traffic-7d 1.99% / 1.18% 9.8% / 10.91 %

Solar 13.96% / 29.03% 6.19% / 15.85%
M4 43.53% / 34.09% 8.96% / 10.20%

Wind 1.05% / 9.48% 3.14% / 2.70%

traffic-7d dataset’s QLρ=0.5 metric and the M4 dataset, it outperforms all other

models. It should be noticed that the original performance difference between

N-BEATS and DeepAR/ConvTrans in these two scenarios was sufficiently large to

prevent SAAM from overperforming N-BEATS after including the SA module

in the base architectures.

Finally, Table 3.7 shows a comparison between the base models, DeepAR and

ConvTrans, and their SAAM version, which consistently improves base models’

forecast accuracy. For DeepAR, QLρ=0.5 is improved by a 15.1%, and QLρ=0.9 by a

18.8% after including the SA module on SAAM. For ConvTrans, QLρ=0.5 is improved

by a 8.8%, and QLρ=0.9 by a 11.8% when using our proposed SAAM architecture.

We should remark that ConvTrans, a Transformer-based architecture, operates

using self-attention (Vaswani et al., 2017) in the time-domain. Therefore, measuring
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the performance of the base ConvTrans model versus the enhanced version, which

includes the SA module, entails a comparison between time-domain and spectral-

domain attention. From this comparability, it can be observed how the incorporation

of the proposed spectral-domain attention mechanism entangles an improvement

in the reported results.

These experiments prove how different deep autoregressive models, with sig-

nificant differences between them, can be improved by correctly incorporating

frequency domain information into the forecasting, with analogous complexity to

time-domain attention mechanism but featuring the possibility of using the global

and local Fourier Transforms’ number of points as hyper-parameters that allow

reducing the model’s complexity.

3.4.5 Ablation Study

Finally, to quantify the real effect of the SA module and understand the effectiveness

of its components, an ablation study is conducted. SA’s basic blocks: the Local

Spectral Attention model and the Global Spectral Attention model, described in

Section 3.3, are separately evaluated.

To assess the behaviour of both frequency-domain attention models, two ablation

studies with two different datasets are conducted to secure the robustness of the con-

clusions. For both studies, SAAM is trained using an LSTM as embedding function.

Considering that SA’s output obeys to: Ai
t = Li

t ⊙αi
l,t + Gi

t ⊙αi
g,t,∈ RD×NFT ,

as stated in Table 3.1, three different configurations of the model are tested: 1)

SAAM; 2) SAAM without using Local Spectral Attention, αi
l,t = 1; 3) SAAM

without using Global Spectral Attention, αi
g,t = 0.

Notice that fixing αi
l,t = 1 makes no change in the local context, which implies

that no filtering is performed. Besides, αi
l,t = 0 disables models’ abilities to

incorporate global trends into the local context.

The first ablation study uses the synthetic dataset explained in Section 3.4.3

with a noise component of σ2
ν = 0, no covariates, and a forecast window of {t0 =

120, τ = 80}. Table 3.8 shows the obtained results. The degradation produced by
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Table 3.8: Ablation study on the synthetic dataset.

ND RMSE QLρ=0.5 QLρ=0.9

σ2
ν = 0

Full SAAM 0.028 ± 0.000 0.044 ± 0.000 0.029 ± 0.000 0.025 ± 0.000
No global SA 0.886 ± 0.003 1.064 ± 0.004 0.893 ± 0.003 1.077 ± 0.009
No local SA 2.084± 0.000 2.352 ± 0.000 2.100 ± 0.000 2.416 ± 0.001

σ2
ν = 0.5

Full SAAM 0.816 ± 0.000 1.084 ± 0.000 0.823 ± 0.001 0.859 ± 0.001
No global SA 0.949 ± 0.007 1.167± 0.009 0.956 ± 0.007 1.136 ± 0.007
No local SA 1.936 ± 0.000 2.263 ± 0.000 1.962 ± 0.000 1.936 ± 0.001

σ2
ν = 1

Full SAAM 0.911 ± 0.000 1.145 ± 0.000 0.915 ± 0.000 0.891 ± 0.001
No global SA 0.990 ± 0.006 1.231 ± 0.005 0.995 ± 0.006 1.126 ± 0.008
No local SA 1.567 ± 0.000 1.890 ± 0.000 1.591 ± 0.001 1.493 ± 0.002

Table 3.9: Ablation study on the electricity dataset with 7 days forecast windows.

ND RMSE QLρ=0.5 QLρ=0.9

Full SAAM 0.076 ± 0.000 0.496 ± 0.001 0.076 ± 0.000 0.03759 ± 0.000
No global SA 0.236 ± 0.001 2.283 ± 0.029 0.237 ± 0.001 0.078 ± 0.001
No local SA 0.263 ± 0.000 2.665 ± 0.001 0.264 ± 0.000 0.092 ± 0.000

the ablation when σ2
ν = 0 is bigger than other considered cases, which is normal

considering that the model was trained on those conditions. Also, to disable the

local attention αi
l,t = 1, produces worse results than αi

g,t = 0, when the global

attention is not used. The latter causes a bigger deterioration in predictions’

variance, which could be a sign of the model’s inability to follow the trend after

removing the global attention model.

A second ablation study is performed on the electricity dataset using a 7 days

forecasting window. Again, the Local and Global Spectral Attention models are

separately evaluated. For this dataset, the degradation of the results is similar

for both ablations, as Table 3.9 shows. As in the synthetic dataset ablation

study, not using the Global Spectral Attention model translates into a higher

standard deviation on the results.

3.5 Discussion

In this chapter, we have proposed a novel methodology for neural probabilistic time

series forecasting that marries signal processing techniques with deep learning-based
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autoregressive models, developing an attention mechanism that operates over the

frequency domain. Thanks to this combination, which is enclosed in the Spectral

Attention module, local spectrum filtering and global patterns incorporation meet

during the forecast. To do so, two attention models operate over the embedding’s

spectral domain representation to determine, at every time instant and for each

time series, which components of the frequency domain should be considered noise

and hence be filtered out, and which global patterns are relevant and should be

incorporated into the predictions. The Spectral Attention module modifies the

model’s latent space in order to incorporate this information.

Experiments on synthetic and real-world datasets confirm these statements

and unveil how our suggested modular architecture can be incorporated into a

variety of base deep autoregressive models, consistently improving the results of

these base models and achieving state-of-the-art performance. Especially, in noisy

environments or short conditioning ranges, our method stands out by explicitly

filtering the noise and rapidly recognizing relevant trends.

Besides the baselines used during the experiments, several forecasting architec-

tures can be characterized by employing an embedding function and a probabilistic

model, making them suitable for integrating the SA module. For instance, NBeats

(Oreshkin et al., 2019) uses a sequence of stacks, each of which combines multiple

blocks, to perform an embedding over the input data. NBeats’ final forecast is

produced through the sum of forecasts of all blocks, allowing the integration of the SA

module to modify these embedded representations. Further, the recently proposed

Informer model (Zhou et al., 2021) uses a encoder-decoder Transformer architecture

to perform the time series embedding and probabilistic forecasting. As done with

ConvTrans, the SA module could modify the original embedded representation,

performing local spectral filtering and global patterns integration into the forecast.

Note that the SA module comes with some additional training parameters,

as discussed in Section 3.4. Our experiments demonstrate that SA consistently

enhances the baselines’ performance.
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Future work should explore new approaches to integrate signal processing

techniques into Deep Neural Networks based approaches; such as analyzing the

feasibility of alternative spectral representations, as Wavelets and the Discrete

Cosine Transform (DCT), among others, and the integration of Spectral Attention

in Transformer’s self-attention mechanism.
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In the previous chapters of this thesis, we conducted a review of state-of-the-art

methods in the context of time series modelling, highlighting some of the challenges

associated with deep learning-based techniques. Furthermore, in Chapter 3, we
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proposed using models operating in the Fourier domain as a potential solution to

alleviate these problems. Building on these foundations, Chapters 4 and 5 shift

towards a more applied focus, showcasing the use of machine learning techniques

in the context of quantitative finance.

Quantitative finance involves the use of mathematical and statistical methods

to analyse and model financial markets and instruments, comprising a rich domain

for the application of machine learning techniques. We propose novel and improved

temporal models to address two highly relevant quantitative finance-related problems:

the forecasting of realised volatility, and the estimation of fill times for limit orders

posted in the Limit Order Book (LOB). Overall, Chapter 4 provides a concrete

illustration of the utility and potential impact of machine learning models on

the former, whereas Chapter 5 focuses on the latter. By doing so, we aim to

demonstrate the versatility and effectiveness of our proposed machine learning-

based techniques in real-world applications.

Regarding the specific problem of volatility forecasting, addressed in this chapter,

it plays a central role among equity risk measures. Besides traditional statistical

models, modern forecasting techniques based on machine learning can be employed

when treating volatility as a univariate, daily time series. However, econometric

studies have shown that increasing the number of daily observations with high-

frequency intraday data helps to improve volatility predictions. In this chapter, we

propose DeepVol, a model based on Dilated Causal Convolutions (DCC) that

uses high-frequency data to forecast day-ahead volatility. We show that the

dilated convolutional filters are ideally suited to extract relevant information

from intraday financial data, thereby mimicking (via a data-driven approach)

the econometric models which incorporate realised measures of volatility into the

forecast. Simultaneously, dilated convolutional filters trained with intraday high-

frequency data help us avoid the limitations of models that use daily data, such

as model misspecification or manually designed handcrafted features, whose devise

involves optimising the trade-off between accuracy and computational efficiency

and makes models prone to lack of adaptation into changing circumstances. In
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our analysis, we use two years of intraday data from NASDAQ-100 to evaluate

the performance of DeepVol. Our empirical results suggest that the proposed

deep learning-based approach learns global features from high-frequency data,

achieving more accurate predictions than traditional methodologies and producing

more appropriate risk measures.

This chapter, which presents the contents of Moreno-Pino and Zohren (2022),

is organised as follows. Section 4.1 provides a brief overview of the volatility

forecasting literature, motivating the need for our proposal. Section 4.2 details

the dataset used, while Section 4.3 contains a brief overview of classic techniques

for volatility forecasting, describing the baselines used for benchmarking purposes

and the metrics that will be utilised for model comparison. Section 4.4 presents

the proposed model, which is empirically evaluated in Section 4.5. Finally, Section

4.6 summarises the findings and concludes this chapter.

4.1 Introduction to Volatility Forecasting

In recent years, measures of volatility to assess the risk of portfolios have received

considerable attention (Brownlees and Gallo, 2010), which has given rise to an

increase in the use of volatility conditional portfolios (C. R. Harvey et al., 2018).

Different studies have reported an overall gain in their Sharpe ratio (Moreira and

Muir, 2017), as well as a reduction of the likelihood of observing extreme heavy-

tailed returns when using them (C. R. Harvey et al., 2018). Consequently, the

development of volatility forecasting models has attracted broad research efforts.

In this paper, we propose a data-driven model, DeepVol, to forecast realised

volatility from high-frequency data.

In this context, most of the models practitioners use for volatility forecasting

are based on classic methodologies. Among them, the GARCH model (Bollerslev,

1986), which uses past volatility and daily squared returns as the driving variables

for predicting day-ahead volatility, is particularly popular.

Recent articles use realised measures as predictors for realised volatility, improv-

ing the volatility prediction accuracy of classic models (Peter Reinhard Hansen
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et al., 2012). These realised measures, which are non-parametric estimators of

the variation of an asset’s price during a time gap, are a tool that extracts and

summarises information contained in high-frequency data (Torben G Andersen,

Bollerslev, and Diebold, 2010).

However, methodologies that take advantage of realised measures require pre-

processing steps to use them, as they cannot directly model the complex relations

exhibited by intraday financial data. One concrete example of this pre-processing is

the procedure followed to obtain the realised measures themselves, which summarises

the vector of daily intraday high-frequency data into single scalars in order to avoid

having to manage the microstructure noise associated with the former. In contrast,

our work uses raw high-frequency data as input to the model, which requires

no pre-processing of data and avoids its associated consequences, such as data

dismissing while summarising intraday data into daily realised measures. Our

proposed model is able to deal directly with the microstructure noise linked to

higher intraday data sampling frequencies.

Among the methodologies employing realised measures, the HEAVY model

(Shephard and Sheppard, 2010) is of special appeal among industry practitioners

(Karanasos et al., 2022; Papantonis et al., 2022; Yuan et al., 2022). HEAVY is

based on insights from the ARCH architecture, with superior performance over

other classical benchmarks, as shown in Section 4.5.

Nevertheless, the inability of realised measures-based models, such as HEAVY

and Realized GARCH (Peter Reinhard Hansen et al., 2012), to use unprocessed raw

high-frequency data as input exposes them to several disadvantages. Firstly, the

dependence on the realised measures for day-ahead volatility forecasting artificially

limits the amount of information these architectures use, which is not the case when

using raw intraday data. Furthermore, some of the most used realised measures of

volatility lack robustness to microstructure noise (Baars, 2014), implying that the

trained models may be based on biased data. Finally, methodologies based on re-

alised measures often rely on manually designed handcrafted features, as the realised

measures design itself, formulated to optimise the trade-off between accuracy and
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increasing computational costs, which, together with common model misspecification

of classical model-based approaches, undermine reported performances.

Here, we use Deep-Neural-Networks (DNN) to take advantage of the abundance

of high-frequency data without prejudice, preventing the constraints of models based

on realised measures in the context of day-ahead volatility forecasting. Despite the

success of these DNN architectures in different areas, such as healthcare, image

recognition, and text analytics, they have not been widely adopted for the problem of

volatility forecasting, leading to a large gap between modern machine learning models

and those applied in the volatility framework. Among DNN-based models, Recurrent

Neural Networks (RNN) (Rumelhart et al., 1985) and Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) are the most popular approaches with

regard to time series forecasting (Lim and Zohren, 2021). Furthermore, the addition

of the attention mechanism (Bahdanau et al., 2015) into these base architectures

allowed them to focus on the most relevant input data while producing predictions,

making them especially prominent in fields such as Natural Language Processing

(NLP). These advances also led to the appearance of Transformer models (Vaswani

et al., 2017), which were initially introduced for NLP, and later used for the problem

of time series forecasting (Moreno-Pino, Olmos, et al., 2023).

These models are applied in the context of financial time series through different

variations (Lin et al., 2022; Su, 2021). More specifically, regarding volatility

forecasting, a number of deep learning architectures are used, such as LSTMs (S. Yu

and Z. Li, 2018), CNNs (Borovykh et al., 2017; Vidal and Kristjanpoller, 2020),

Graph Neural Networks (GNN) (Chen and Robert, 2022), Transformer models

(Ramos-Pérez et al., 2021), and NLP-based word embedding techniques (Rahimikia

and Poon, 2020; Rahimikia, Zohren, et al., 2021). Furthermore, models combining

traditional volatility forecasting methods with deep learning techniques can be

found in the literature (Kim and Won, 2018; Mademlis and Dritsakis, 2021), as

well as other approaches using DNN as calibration methods for implying volatility

surfaces (Horvath et al., 2019), proving how neural network-based approaches work

as complex pricing function approximators.
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We capitalise on the increased availability of high-frequency data. In this work,

we employ a Dilated Causal Convolutions (DCC)-based model. This architecture,

initially proposed as a fully probabilistic model for audio generation (Oord et al.,

2016), with equivalents for image-related problems (Van Oord et al., 2016), possesses

a large receptive field that allows it to process large sequences of data without

triggering an unrestrained increase in the model’s complexity.

In the literature, other works use DCC in the context of realised volatility fore-

casting. More specifically, Reisenhofer et al. (2022) propose a model based on dilated

convolutions, strongly inspired by the well-known Heterogeneous Autoregressive

(HAR) model (Corsi, 2009). However, their approach does not use unprocessed raw

intraday high-frequency data as input. Conversely, it still bases its predictions on

the pre-computed daily realised variance, therefore requiring pre-processing steps

to obtain the indispensable realised measures for forecasting the one-step-ahead

volatility. This, in our judgement, does not fully explore the capabilities of DCC-

based methodologies of exploiting a more dynamic representation of the intraday

data. Hence, models adopting DCC-based approaches that operate from daily data

still succumb to previously enumerated limitations.

Motivated by the improved performance of classical methods that employ

realised measures (Peter Reinhard Hansen et al., 2012; Shephard and Sheppard,

2010), we propose using DCCs to bypass the estimation of these non-parametric

estimators of assets’ variance, aiming to tackle the volatility forecasting problem

from a data-driven perspective. The proposed model, DeepVol, entails several

advantages while performing volatility forecasting. Primarily, it does not require

any pre-processing steps, as the model directly uses raw high-frequency data as

input. Furthermore, DeepVol is not bounded to static realised measures whose

use may be counter-productive, i.e., the optimal realised measure to use may

vary depending on the traded assets’ liquidity. Instead, through the attention

mechanism and internal non-linearities, DeepVol intelligently performs the required

transformations over the input data to maximise the accuracy of the predictions,

combining relevant intraday datapoints and merging them for each day’s volatility
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forecast, dynamically adapting to different scenarios. Moreover, through the use of

dilated convolutions, DeepVol’s large receptive field easily processes long sequences

of high-frequency data, enabling the model to exponentially increase its input

window while performing the predictions. This approach constitutes a purely data-

driven method that mimics how handcrafted realised measures condense intraday

information, allowing DeepVol to hierarchically integrate the most relevant high-

frequency data into the predictions. We perform extensive experiments to show

the effectiveness of the proposed architecture, which consistently outperforms the

base models used by practitioners.

This chapter provides three main contributions. Firstly, we empirically demon-

strate the advantages offered by DCCs when employed to forecast realised volatility

based on high-frequency data, providing a data-driven solution which consistently

outperforms classical methodologies. The proposed model avoids the limitations of

classical methods, such as model misspecification or their inability to use intraday

data to perform the forecast directly. Secondly, we provide an analysis showing how

the proposed deep learning model maximises the trade-off between extracting signals

from high-frequency data while minimising the microstructure noise implicit to

higher sampling frequencies. Reported results agree with studies validating this same

trade-off for the construction of realised measures. Thirdly, the proposed volatility

forecasting model generates appropriate risk measures through its predictions in an

out-of-sample forecasting task, both in low and high volatility regimes. Moreover,

we evaluate the proposed model’s generalisation capabilities on out-of-distribution

stocks, demonstrating DeepVol’s capabilities to transfer learning as it performs

accurate predictions into data distributions not observed during the training phase.

4.2 Data and Model Inputs

4.2.1 Data

We use intraday high-frequency data as a starting point for fitting the proposed

model. DeepVol and the baseline architectures are trained and tested using two
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years of NASDAQ-100 data, from September 30, 2019 to September 30, 2021.

High-frequency data of different sampling frequencies (granularities), i.e., 1, 5, 15,

30, and 60 minutes, is used in our analysis. DeepVol will directly perform its

prediction from raw high-frequency data, unlike the baseline models, which prior

to training, require the estimation of daily statistics. The analyses conducted in

this work are based on financial returns, which allow us to transform the original

assets’ price trend into a quasi-stationary process:

ri,t = log
(
pi,t
pi−1,t

)
, (4.1)

where pi,t is the last price of an asset in the ith interval on day t, and ri,t is the return

over this interval, at the specified sampling frequency, i.e., 1, 5, 15, 30 or 60 minutes.

4.2.2 Baselines: Data Preparation

The benchmark models used in this work are divided into two categories. Firstly,

we consider methods that solely use daily returns to perform day-ahead volatility

forecasts. Secondly, we examine methods that take advantage of realised measures

in the forecasts.

Regarding models depending exclusively on daily returns, these are obtained

through an analogous procedure to the one followed to retrieve intraday returns

through Eq. (4.1), but using daily returns instead of intraday data. Figure 4.1

shows the effect of this transformation for Apple’s stock price over a two year

period, converting the daily price trend into daily returns, as well as the associated

volatility evolution obtained through the use of a five days rolling window. Moreover,

concerning methods utilising realised measures, and in consonance with other studies

(C. R. Harvey et al., 2018; Peter Reinhard Hansen et al., 2012; Shephard and

Sheppard, 2010), we focus on the realised variance for the scope of this work. The

realised variance is a proxy measure of the volatility and is obtained as follows:

RVt =
I∑
i=1

r2
i,t, (4.2)

where ri,t is the ith intraday return for day t, see Eq. (4.1).
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Figure 4.1: Apple’s daily data. The top row shows the price trend, the second row the
associated daily returns, and the bottom row shows a volatility estimation calculated
from a 5-days moving window over the daily returns.

Various works (Torben G Andersen, Bollerslev, Diebold, and Ebens, 2001; Ait-

Sahalia et al., 2005) study the use of different sampling frequencies to compute the

realised variance through Eq. (4.2). Selecting a specific intraday data sampling

frequency to compute the realised volatility (e.g., 5 or 30 minutes) involves the

optimisation of a trade-off: while we aim to maximise the number of datapoints used,

higher sampling frequencies entail an increase of the microstructure noise, which

we want to minimise. We use 5-minutes intraday returns to compute the realised

variance through Eq. (4.2), as this sampling frequency is usually accepted as

the optimal value (Torben G Andersen, Bollerslev, Diebold, and Ebens, 2001;

Bandi and Russell, 2006).

4.2.3 DeepVol: Data Preparation

As previously mentioned, and contrary to classical methods, DeepVol is directly

fed with raw high-frequency data, with no pre-processing required. A rolling

window approach is used to fit the model, meaning that DeepVol will use a

window of intraday data from previous days as the model’s input for predicting
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the day-ahead realised volatility. Experiments conducted in Section 4.5 explore

the optimal window size, hereinafter called receptive field (number of past days

used for predicting the day-ahead volatility), and the best intraday data’s sampling

frequency. The use of this receptive field contrasts with most state-of-the-art

methodologies, which operate recursively using all available time series’ history.

Instead, DeepVol is confined to use a specific receptive field, e.g., the previous day’s

high-frequency data. This non-recursive architecture reduces the input data length

required by the model, which translates into faster training in comparison to purely

autoregressive architectures. Finally, we should mention that DeepVol produces

a forecast for the day-ahead volatility, σ2
t , while using intraday high-frequency

returns, ri,t, as input data. This contrast with most state-of-the-art forecasting

architectures, which produce predictions whose granularity (sampling frequency) is

the same as the model’s input data. Therefore, DeepVol is responsible for learning

the necessary relations between the high-frequency data and the daily volatility,

implicitly performing this time-domain transformation

4.3 Baseline Models and Metrics

4.3.1 Baseline Models

Most of the models commonly used for volatility forecasting can be traced back to

Autoregressive Conditional Heteroscedastic (ARCH) models (Engle, 1982). This

family of models assume volatility clustering (Cont, 2007), i.e., large shocks

in prices tend to cluster together. ARCH-based models evolved into the well-

known Generalized Autoregressive Conditional Heteroscedastic (GARCH) model

(Bollerslev, 1986), which is still widely utilised among industry participants. A

GARCH(p, q) process is given by:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j, (4.3)

where ω is the model’s bias, q is the number of lags (order) of the observed volatility,

σ2
t ; and p is the number of lags of the innovations, εt. In turn, the returns of
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prices are related to the innovations by:

rt = µ+ εt, (4.4)

where µ is the expected return (usually set to zero), and the volatility is related

to these innovations by means of the residuals, et:

εt = σtet, et ∼ N (0, 1). (4.5)

The model’s parameters {µ, ω, α, β} can be estimated by performing maximum-

likelihood estimation of the joint distribution f (ε1, . . . , εT ; {µ, ω, α, β}). The

simplest GARCH model consists on a GARCH(1, 1) process where σt = 1 and

µ = 0. Several variations leading to new architectures to address the volatility

forecasting problem have been developed from the GARCH model. Here, we select

some of them for benchmarking purposes. The integrated GARCH (IGARCH)

model (Engle and Bollerslev, 1986) modifies the design of the previous model to

grant a longer memory in the autocorrelation of the squared returns, allowing the

model to react in a more persistent way to the impact of past squared shocks. Also,

IGARCH imposes the following restriction on the model’s parameters:
p∑
i=1

αi +
q∑
j=1

βj = 1, (4.6)

which makes the resulting process a weakly stationary one, since the mean, variance,

and autocovariance are finite and constant over time. The idea behind the

IGARCH model motivated the development of the Fractionally Integrated GARCH

(FIGARCH) process (Baillie et al., 1996), which is able to capture long-term

volatility persistence and clustering features. To do so, it integrates a fractional

difference operator (lag operator) L into the conditional variance:

σ2
t = ω +

[
1− βL− ϕL(1− L)d

]
ε2
t + βσ2

t , (4.7)

where 0 < d < 1 is known as the fractional differencing parameters. The FIGARCH

model has been widely used thanks to its ability to capture the volatility’s persistence

and integrate it into its predictions (Cochran et al., 2012; Biage, 2019). Threshold
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ARCH (TARCH) models (Rabemananjara and Zakoian, 1993) are also used for

benchmarking purposes. The main difference with respect to previous methodologies

is that TARCH models divide the distribution of the innovations into disjoint

intervals, which are later approximated by a linear function on the conditional

standard deviation (Zakoian, 1994). TARCH models are therefore capable of

separately considering the influence of positive and negative innovations:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjε
2
t−jIεt−j<0, (4.8)

where I(·) is the indicator function. The main characteristic of TARCH and other

threshold-based approaches, such as TGARCH (Park et al., 2009), is their ability to

detect abrupt disruptions in the time series through the indicator function, which

may be replaced with a continuous function if a smoother transition is desired.

Volatility usually exhibits asymmetric characteristics. This property has led

to the development of different asymmetric ARCH-type models. For example,

the Asymmetric Power ARCH (APARCH) model (Ding et al., 1993) assumes a

parametric form for the conditional heteroskedasticity’s powers. It defines the

variance dynamics as follows:

σδt = ω +
q∑
i=1

αi (|εt−i| − γiεt−i)δ +
p∑
j=1

βjσ
δ
t−j, (4.9)

where we now also have to estimate δ > 0, and γ. APARCH models nest many

other volatility frameworks that can be obtained by imposing restrictions on the

APARCH model’s parameters. A similar idea leads to the Asymmetric GARCH

model (AGARCH) (Engle and Ng, 1993), which captures the asymmetry in the

volatility by using an impact curve associated with the αi parameter:

σ2
t = ω +

p∑
i=1

αi (εt−i − γi)2 +
q∑
j=1

βjσ
2
t−j. (4.10)

Most of the mentioned models, like IGARCH or APARCH, impose restrictions on

the parameters in practice, as Eq. (4.6) states. These restrictions are lifted in the

Exponential GARCH (EGARCH) model (Nelson, 1991), which is defined as:

ln σ2
t = ω +

p∑
i=1

αi (|ϵt−i|+ γiϵt−i) +
q∑
j=1

βj ln σ2
t−j. (4.11)
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As evidenced by the definition above, the EGARCH model integrates one

powerful volatility clustering assumption into its architecture: negative shocks at

time t− 1 produce a stronger impact on the value of the volatility at time t than

positive shocks do, allowing for asymmetric effects between positive and negative

asset returns. This asymmetry is known in the volatility forecasting literature

as leverage effect (Bouchaud et al., 2001).

All the methods described previously operate through the use of daily returns.

However, more recent proposals have included the use of realised measures obtained

from high-frequency data as additional input features for daily volatility forecast-

ing. Among these methodologies, the High-Frequency-Based Volatility (HEAVY)

model (Shephard and Sheppard, 2010), has shown superior forecasting capabilities

(Shephard and Sheppard, 2010; Noureldin et al., 2012; Sheppard and W. Xu, 2019).

Formally, the model is defined as follows:

var
(
rt | FHF

t−1

)
= σ2

t = ω + αRMt−1 + βσ2
t−1,

E
(
RMt | FHF

t−1

)
= µt = ωR + αRRMt−1 + βRµt−1,

(4.12)

where rt denotes daily returns, RMt denotes daily realised measures, and FHF
t−1

denotes the high-frequency data utilised to obtain these realised measures. In

the previous equation, the restrictions {ω, α ≥ 0, β ∈ [0, 1)} are imposed on the

variation of the returns, and {ωR, αR, βR ≥ 0, αR + βR ∈ [0, 1)} on the realised

measures’ evolution, while observing the following variables:

rt =
√
σ2
t zt,

xt = µtz
2
RV,t,

(4.13)

with: (
zt
zRV,t

)
∼ N (0, I). (4.14)

Eq. (4.12) shows that HEAVY consists of two parts. While σ2
t explains the

development of the unobserved conditional variance, µt is responsible for explaining

the development of the realised measures. The HEAVY model is clearly motivated

by GARCH methodologies, which makes it simple to understand while reporting

additional gains in the performance. For further details about it, like parameters

inference, we refer the readers to (Shephard and Sheppard, 2010).
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4.3.2 Evaluation Metrics

In this section, we define a series of metrics that will be used to assess the day-

ahead volatility forecast of our proposed architecture against previously defined

baseline models. The Mean Absolute Error (MAE) and the Root Mean Squared

Error (RMSE) constitute two of the most common error functions to evaluate the

performance of volatility forecasting architectures. While a number of articles focus

entirely on those two metrics to report performance (Shen et al., 2021; Izzeldin

et al., 2019), we complement them with the use of the Symmetric Mean Absolute

Percentage Error (SMAPE). This relative error measure has both a lower and

upper bound, contrary to the Mean Absolute Percentage Error (MAPE), and it

is scale independent. Also, the Maximum Error (ME) is used to illustrate which

models produce the more significant inaccuracies: poor performance adapting to

new regimes, as volatility shocks, leads certain models to substantial momentary

discrepancies between the forecast and the actual volatility, which leads to an increase

in the ME. We complement the ME with the Median Absolute Error (MedAE), an

outliers-robust metric. Lastly, we include the Quasi Log-Likelihood (QLIKE), which

has proven to be a noise-robust loss function in the volatility proxy (Patton, 2011).

Both the QLIKE and the RMSE will be used as loss functions to optimise the

model’s parameters during Section 4.5, while the rest of the metrics will be used to

assess the models’ performance. Eq. (4.15) summarises the definition of all metrics:

ℓMAE(σ2
t , σ̂

2
t ) = 1

T

T∑
t=1

∣∣∣σ2
t − σ̂2

t

∣∣∣ ,
ℓrmse(σ2

t , σ̂
2
t ) =

√√√√ 1
T

T∑
t=1

(σ2
t − σ̂2

t )
2
,

ℓSMAPE(σ2
t , σ̂

2
t ) = 1

T

T∑
t=1

|σ2
t − σ̂2

t |
(σ2

t − σ̂2
t )/2

,

ℓME(σ2
t , σ̂

2
t ) = max

(∣∣∣σ2
t − σ̂2

t

∣∣∣) ,
ℓMedAE(σ2

t , σ̂
2
t ) = median(

∣∣∣σ2
1 − σ̂2

1

∣∣∣ , · · · , ∣∣∣σ2
T − σ̂2

T

∣∣∣),
ℓQLIKE(σ2

t , σ̂
2
t ) = 1

T

T∑
t=1

log
(
σ̂2
t

)
+ σ2

t

σ̂2
t

,

(4.15)
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where σ̂2
t and σ2

t represent the volatility forecast and the volatility proxy measure,

respectively, with T the total amount of rolling forecasts.

4.4 Model

4.4.1 Problem Definition

Considering a set of assets, ∆ ∈ Rd, where d ∈ N denotes the dimension of the

input vector, with T ∈ N days’ intraday high-frequency data associated to them,

{r1:J
t }Tt=1, where r1:J

t = (r1
t , r

2
t , . . . , r

J
t ) are the intraday returns of the tth day, with

T being referred to as receptive field, and with J ∈ N the length of each day’s

intraday data, our goal is to forecast the day-ahead realised volatility:

σ̂2
T+1 = fθ

(
r1
t=1, r

2
t=1, . . . , r

J
t=1, r

1
t=2, . . . , r

1
t=T , . . . , r

J
t=T

)
, (4.16)

where fθ : Rd → Rm,m ∈ N, is a function implemented through a DCC-based

neural network, with θ ∈ Θ being the learnable parameters of the model from

a set Θ ∈ Rn, for some n ∈ N.

These parameters fully specify the corresponding volatility forecast. Therefore,

we aim to obtain the set of optimal parameters θ̂ ∈ Θ that minimises the difference

between the forecasted volatility, σ̂2
t , and the volatility’s proxy measure σ2

t for

the considered assets:

θ̂ = argmin
θ∈Θ

L
(
fθ(∆), σ2

t (∆)
)
, (4.17)

where L(·) is the selected metric for evaluating the forecast accuracy.

4.4.2 Dilated Causal Convolutions

Our volatility forecasting proposal, DeepVol, uses DCCs as a technique to integrate

high-frequency information into the realised volatility prediction. The deployment of

such an architecture allows the use of a large receptive field, permitting an increase

in the size of the input sequences while preserving the number of parameters of the

network, yielding improved computational efficiency. The proposed architecture
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consists of L convolutional layers. The convolution operation performed by the first

layer, between the input sequences x and the kernel k, can be defined as follows:

F (l=1)(t) =
(
x ∗d k(l=1)

)
(t) =

s−1∑
τ=0

k(l=1)
τ · xt−dτ , (4.18)

being d the dilation factor and k the filter, with size s ∈ Z. For each of the rest

lth layers, we can define the convolution operation as:

F (l)(t) =
(
F (l−1) ∗d k(l)

)
(t) =

s−1∑
τ=0

k(l)
τ · F l−1

t−dτ (t). (4.19)

As previous equations state, the inner product performed by the dilated causal

convolutions is based on entries that are a fixed number of steps apart from each

other, contrary to CNN and Causal-CNN, which operate with consecutive entries.

Furthermore, each of the layers in this hierarchical structure defines the kernel

operation as an affine function acting between layers:

k(l) : RNl −→ RNl+1 , 1 ≤ l ≤ L. (4.20)

As previous equations show, through the use of residual connections, firstly proposed

in He et al., 2016, the model connects lth layer’s output to (l + 1)th layer’s input,

enabling the use of deeper models with larger receptive fields. The complete

operation of the proposed model can be defined as follows:

σ2
T+1({r1:J

t }Tt=1) = α0 +
L∑
l=1

αl σReLu(F (l)({r1:J
t }Tt=1)), (4.21)

where σReLu : R 7→ R is the selected non-linearity and {α0, · · · , αl, · · · , αL} is a

set of weights applied to the convolutional operations. Figure 4.2 presents an

overview of the utilised architecture, where a receptive field with previous T days’

intraday data is processed through a hierarchy of dilated convolutions to forecast

the day-ahead realised volatility.

DeepVol, like any deep-feed-forward neural network, approximates the volatility’s

unknown function through sample pairs of input and output data (x, y). Formally

speaking, DeepVol is approximating some function fθ(·) which is not available in

closed form by finding the optimal model’s parameters θ̂ derived from the best

function approximation f ∗
θ (·).
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Figure 4.2: DeepVol intrinsic architecture. The dilation factor grows exponentially,
allowing an increase in the receptive field without increasing the model’s complexity.

4.5 Experiments

In this section, DeepVol’s volatility forecasts will be evaluated and compared with

the baseline models described in Section 4.3.1. For benchmarking purposes, we

will utilise the metrics described in Section 4.3.2. Besides classic out-of-sample

forecast comparisons, we perform different experiments to present some additional

insights into the inner workings of DeepVol. We analyse the model’s behaviour

while varying the intraday data sampling frequency, studying the discrepancies in

model behaviour when trained on different granularity regimes. In close relation to

this, we also explore the use of different receptive field sizes and how this affects

the model performance. Finally, we analyse the inclusion of realised measures as

an extra input to the model, studying if its addition can improve the forecasting

accuracy. Besides the models presented in Section 4.3.1, we also include a martingale

process for comparison purposes.

4.5.1 Experiments Setup

We apply the same architecture to all the experiments in this section, using the

Quasi Log-Likelihood as a loss function to train the model parameters. We choose

Adaptive Moment Estimation Algorithm (ADAM) (Kingma and Ba, 2014) as

optimiser, even though different experiments were conducted exploring the use
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Table 4.1: Out-of-sample forecast: experiments results for the NASDAQ-100 dataset.

Method MAE RMSE SMAPE QLIKE ME MedAE
martingale 5.180 11.410 0.324 747.480 96.654 1.614

TARCH 4.849 10.320 0.301 351.310 71.659 2.804
IGARCH 5.008 10.534 0.302 351.702 72.048 2.797

FIGARCH 4.631 10.356 0.294 349.245 71.050 2.460
APARCH 4.730 10.096 0.299 349.974 70.088 2.859
AGARCH 4.833 10.304 0.324 351.217 71.215 2.819
EGARCH 4.793 10.180 0.300 348.614 70.615 2.917
HEAVY 4.565 10.239 0.292 343.490 72.404 2.545
DeepVol 3.903 8.457 0.279 340.779 71.779 2.008

of Averaged Stochastic Gradient Descent (ASGD) (Kingma and Ba, 2014) and

Limited Memory BFGS (L-BFGS) (D. Liu and Nocedal, 1989). While the use of

these optimisers usually entails smoother predictions, the reported performance

declined with respect to ADAM. Hence, they were not further considered. Early

stopping is used during the training process. DeepVol is implemented in Pytorch-

Lightning (Falcon and The PyTorch Lightning team, 2019), and the experiments

are conducted using an NVIDIA Titan Xp GPU.

4.5.2 Out-of-sample Forecast

This section aims to provide an out-of-sample performance comparison between

the proposed model and some classical methodologies widely used in the finance

industry. For this purpose, we use the NASDAQ-100 dataset described in Section

4.2.1, which is split into two folds. The first of them contains the intraday data from

September 30, 2019, to December 31, 2020. The second fold includes data from

January 1, 2021, to September 30, 2021. The 15 months of data of the first fold are

used for training purposes, while the remaining nine months are used to evaluate

the out-of-sample performance of the models. For this specific study, a sampling

frequency of 5 minutes for the intraday data and a receptive field of one day (using

t-day intraday’s data to predict the realised volatility for day t+ 1) are utilised.

Table 4.1 summarises the out-of-sample forecast performance of the different

models we evaluate. It can be seen that the proposed architecture, DeepVol,
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improves the baseline results for most metrics, with the exception of ME and

MedAE. Peculiarly, for the latter, the martingale process proves to provide the

best results. Considering that the MedAE is an outlier-robust error function, this

behaviour is not surprising, as the martingale process is the most conservative

among the evaluated strategies. For this particular error metric, DeepVol is the

second-best in performance terms.

As mentioned before, the evaluated baseline methodologies operate in a recurrent

manner, utilising all available past data, while DeepVol uses just the previous

day’s intraday information for the day-ahead prediction. Considering these facts,

DeepVol’s good performance with respect to the MedAE is especially surprising, as

noisier behaviour could be expected due to the lack of recurrence. Furthermore,

some of the baseline models evaluated, such as the HEAVY model, integrate

momentum indicators into their architecture, something that we do not explicitly

model in DeepVol. Consequently, DeepVol’s accurate predictions in terms of MAE

and RMSE are particularly interesting, considering how the model maintains a

low MedAE. In conclusion, the proposed architecture shows robustness in the

presence of volatility shocks and avoids an escalation on the ME and MedAE

as unstable methods would report.

Table 4.2 extends the results of Table 4.1, displaying the improvement/degradation

for each evaluated method relative to a basic martingale process and the HEAVY

model. For the former, we aim to report how much improvement each model

provides over the most basic modelling of the problem. For the latter, considering

that the HEAVY model is the best performer among the baseline architectures, a

direct comparison with it is especially useful for analysing DeepVol’s performance.

DeepVol thoroughly overperforms HEAVY concerning the MAE, RMSE, SMAPE,

and MedAE errors, while the differences in QLIKE and ME are tighter. As previously

mentioned, we consider particularly interesting DeepVol’s ability to overperform the

rest of the models while proving a robust noise behaviour, avoiding an escalation

in the ME and MedAE while performing more accurate predictions.
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Table 4.2: Out-of-sample forecast: percentage of improvement/degradation over the
martingale process and the HEAVY model, for each of the evaluated models.

Method MAE RMSE SMAPE QLIKE ME MedAE
Improvement over martingale (%)

martingale - - - - - -
TARCH 6.398 9.553 7.099 53.001 25.860 -73.730

IGARCH 3.320 7.677 6.790 52.948 25.458 -73.296
FIGARCH 10.598 9.238 9.259 53.277 26.490 -52.410
APARCH 8.687 11.516 7.716 53.179 27.486 -77.138
AGARCH 6.699 9.693 0.000 53.013 26.319 -74.659
EGARCH 7.471 10.780 7.407 53.361 26.940 -80.731
HEAVY 11.873 10.263 9.877 54.047 25.089 -57.677
DeepVol 24.653 25.881 13.889 54.410 25.736 -24.411

Improvement over HEAVY (%)
martingale -13.472 -11.437 -10.959 -117.613 -33.492 36.579

TARCH -6.212 -0.791 -3.082 -2.277 1.029 -10.181
IGARCH -9.704 -2.881 -3.425 -2.391 0.492 -9.906

FIGARCH -1.446 -1.143 -0.685 -1.675 1.870 3.340
APARCH -3.614 1.397 -2.397 -1.888 3.120 -12.342
AGARCH -5.871 -0.635 -10.959 -2.250 1.642 -10.771
EGARCH -4.995 0.576 -2.740 -1.492 2.471 -14.621
HEAVY - - - - - -
DeepVol 14.502 17.404 4.452 0.789 0.863 21.097

4.5.3 Receptive Field and Sampling Frequency Analysis

The receptive field size and the intraday sampling frequency are two model pa-

rameters that shed light on the inner workings of DeepVol when analysed further.

Therefore, its analysis is particularly interesting in order to understand the model’s

behaviour. As mentioned in Section 4.2.2, a number of studies have validated

the optimal intraday data sampling frequency for the computation of the realised

measures from high-frequency data (T. Andersen et al., 2006; Peter R Hansen

and Lunde, 2006; Corradi and Distaso, 2006), commonly concluding that using

a granularity of 5 or 10 minutes minimises the microstructure noise effect while

maximising the use of high-frequency information. In this section, we study this

same trade-off in the proposed deep learning architecture, analysing the effect that

using different sampling frequencies has on model performance.

Furthermore, increasing the receptive field size is a practical way of extending the

network’s capabilities without modifying its architecture or increasing its complexity.
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Table 4.3: Receptive field and sampling frequency study.

Sampling
Frequency

Receptive
Field

MAE RMSE SMAPE QLIKE ME MedAE

1 min 1 4.096 8.462 0.287 342.313 71.749 2.396

5 min
1 3.903 8.457 0.279 340.779 71.779 2.008
2 4.429 9.495 0.308 367.209 70.036 1.756
3 4.054 8.379 0.285 343.359 70.457 2.334

15 min

1 3.993 8.436 0.283 343.412 70.915 2.185
2 4.651 10.437 0.312 365.893 70.926 1.836
3 5.817 9.520 0.323 362.235 72.338 4.577
5 6.736 10.217 0.336 366.192 72.240 5.594

30 min

1 4.259 9.699 0.318 689.633 75.793 1.632
2 4.503 10.140 0.327 789.326 79.345 1.724
3 4.473 9.931 0.324 784.843 75.059 1.705
5 4.705 10.802 0.326 833.966 83.416 1.676

10 4.732 11.084 0.327 853.981 85.656 1.591

60 min

1 4.988 10.516 0.297 366.509 82.207 2.402
2 5.616 12.596 0.324 709.082 99.828 2.178
3 5.441 12.615 0.319 688.996 99.612 2.017
5 5.520 12.456 0.326 714.871 95.763 2.071

10 4.997 11.186 0.322 706.917 87.096 1.927

For example, while DeepVol could be easily modified to integrate a momentum

indicator, increasing its receptive field should entail a similar effect, providing

DeepVol with the possibility of incorporating past data if it is informative enough

for the realised volatility forecasting.

Table 4.3 collects the results of an analysis whose main objective is to evaluate

if DeepVol’s performance is robust to increasing the receptive field or modifying

the sampling frequency. It is interesting to note that using intraday data from one

day with a sampling frequency of 5-minutes proves to be optimal. This scenario

reports the best results with regard to all the considered metrics but the MedAE.

Secondly, the increment of the receptive field leads to a degradation of performance.

This indicates that, for the proposed architecture, all the relevant information

for forecasting the day-ahead volatility can be obtained from previous day’s high-

frequency data. Otherwise, the model yields more conservative predictions that

degrade its performance. Thirdly, the best performance in terms of MedAE is
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obtained when using a 30 minutes sampling frequency, together with a receptive

field of ten days. This result can be directly related to the hypothesis previously

mentioned: a longer receptive field leads to a more conservative forecast, resulting in

a lower Median Absolute Error. In this scenario, the model is less prone to forecast

volatility jumps, a behaviour commonly associated with integrating momentum

indicators. However, this specific setup leads to a deterioration in all the other

metrics. The growth in the receptive field size prevents the model from forecasting

more drastic changes in the presence of volatility shocks, leading to more conservative

predictions than the ones reported when using just the previous day’s intraday data.

4.5.4 Linearity Study

The analyses conducted in the previous sections have shown that the use of a

receptive field of one day and a sampling frequency of 5-minutes reports the most

accurate results for forecasting the day-ahead realised volatility. In addition, we want

to study the possible gains of including realised measures in our methodology. The

intuition behind this idea is that integrating previous days’ realised measures as an

extra input would allow DeepVol to observe a bigger window of past data, allowing

the model to complement high-frequency data with extra historical information

about the time series.

To integrate the realised measures into DeepVol, we slightly modify its architec-

ture, adding a linear output as a final layer. This last layer merged the results of

the dilated convolutions performed over the high-frequency data with the realised

measures, each weighted by its corresponding terms. Different receptive fields

were validated while integrating the realised measures. The reported results are

shown in Table 4.4, where it can be noted that our DNNs-based proposal does not

benefit from the inclusion of realised measures as an extra input feature. Adding

the past realised measures results in an analogous behaviour to increasing the

receptive field, highlighting again that DeepVol is especially efficient in utilising

recent high-frequency data for volatility forecasting, not requiring a more extended

lookback window to do so.
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Table 4.4: Linearity Study. DeepVol + RV merges DeepVol’s predictions with the
realised variance through a linear layer and additional non-linearities.

Receptive
Field

MAE RMSE SMAPE QLIKE ME MedAE

DeepVol
+

RV

1 4.130 8.720 0.286 345.150 72.292 2.193
2 6.804 10.036 0.335 369.529 69.309 5.728
3 6.899 10.008 0.340 371.762 69.903 6.577

DeepVol
1 3.903 8.457 0.279 340.779 71.779 2.008
2 4.429 9.495 0.308 592.600 78.690 1.756
3 4.054 8.379 0.285 343.359 70.457 2.334

4.5.5 Generalisation and Transfer Learning Analysis

Previous experiments used all NASDAQ-100 tickers during training and testing,

preserving a portion of the dataset’s dates for the out-of-sample forecast. In this

section, we split the dataset into two folds. During training, just half of the tickers are

used, while the other half is utilised for testing. For training purposes, we use the first

four months of data corresponding to the first half of tickers, that is, from September

30, 2019, through January 30, 2020. The model is later tested on the remainder

tickers, using data from February 01, 2020, through September 30, 2021. This

setup allows us to evaluate the quality of the models’ forecasts during the volatility

shocks provoked by the COVID-19 crisis, which started in February 2020. Further,

it provides an evaluation of our model’s generalisation capabilities, predicting the

day-ahead volatility for tickers that were not previously available. As done in Section

4.5.5, a 5-minutes sampling frequency and a receptive field of one day are used. The

results of this out-of-sample-stocks forecast study are collected in Table 4.5. In these

conditions, DeepVol still reports the best MAE, RMSE, and SMAPE results, while

the HEAVY model reports a better QLIKE than the rest of the evaluated methods.

Concerning the MeadAE, DeepVol reports the best results, immediately followed

by the martingale process, which still outperforms the rest of the baseline models.

These results, which are similar to the obtained in the out-of-sample forecast study

of Section 4.5.5, confirm that DeepVol still shows a conservative behaviour in this

new forecast scenario, proving its generalisation capabilities to transfer learning
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Table 4.5: Out-of-sample-stocks forecast. Generalisation Study: experiments results for
the NASDAQ-100 dataset.

Method MAE RMSE SMAPE QLIKE ME MedAE
martingale 9.673 35.235 0.324 2142.795 341.457 2.169

TARCH 8.525 28.178 0.295 893.795 282.096 3.236
IGARCH 9.208 27.753 0.312 947.409 279.080 3.982

FIGARCH 7.805 26.752 0.299 899.955 267.533 3.581
APARCH 8.179 26.749 0.297 896.063 265.910 3.557
AGARCH 7.928 26.486 0.294 893.682 269.577 3.191
EGARCH 8.180 26.767 0.297 897.432 277.022 3.530
HEAVY 8.315 26.322 0.294 874.409 277.780 2.158
DeepVol 7.288 23.396 0.292 894.283 275.255 1.927

from training to test, learning global features of the data that allow the model to

perform well on out-of-distribution data. As in Section 4.5.5, Table 4.6 reports

the improvement/degradation for each evaluated method with respect to a basic

martingale process and the HEAVY model on the test set tickers.

Table 4.6: Out-of-sample-stocks forecast: percentage of improvement/degradation over
the martingale process and the HEAVY model. for each of the evaluated models.

Method MAE RMSE SMAPE QLIKE ME MedAE
Improvement over martingale (%)

martingale - - - - - -
TARCH 11.863 20.030 9.068 58.288 17.385 -49.161

IGARCH 4.804 21.235 3.671 55.786 18.268 -83.565
FIGARCH 19.315 24.075 7.711 58.001 21.650 -65.089
APARCH 15.440 24.083 8.267 58.183 22.125 -63.973
AGARCH 18.043 24.829 9.251 58.294 21.051 -47.105
EGARCH 15.443 24.032 8.452 58.119 18.871 -62.737
HEAVY 14.037 25.295 9.200 59.193 18.649 0.534
DeepVol 24.660 33.599 9.932 58.266 19.388 11.165

Improvement over HEAVY (%)
martingale -16.330 -33.859 -10.132 -145.056 -22.924 -0.537

TARCH -2.529 -7.048 -0.145 -2.217 -1.554 -49.962
IGARCH -10.741 -5.434 -6.090 -8.349 -0.468 -84.551

FIGARCH 6.140 -1.632 -1.640 -2.921 3.689 -65.975
APARCH 1.632 -1.622 -1.028 -2.476 4.273 -64.854
AGARCH 4.660 -0.623 0.056 -2.204 2.953 -47.895
EGARCH 1.624 -1.691 -0.824 -2.633 0.273 -63.611
HEAVY - - - - - -
DeepVol 12.357 11.116 0.806 -2.273 0.909 10.688

Finally, Figures 4.3 to 4.6 show different examples of how the evaluated models
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Figure 4.3: Out-of-sample-stocks: HEAVY’s and DeepVol’s forecast on PYPL. Green
dotted vertical lines mark the forecast’s start.

generalise and transfer learning from the tickers used during training to the test

distribution. Model forecasts are shown together with the daily squared returns,

allowing a direct comparison between forecasts from DeepVol and the baselines. Note

that classical methodologies return smoother predictions, a phenomenon especially

visible in the HEAVY model as it integrates a momentum indicator. This behaviour,

associated with more conservative predictions, clearly poses a disadvantage in terms

of slower adaptation to volatility shocks. Several of these volatility shocks, provoked

by the COVID-19 crisis in 2020 and 2021, are easily recognisable in the associated

figures. All the evaluated models reacted to the bigger of these shocks, the 2020 stock

market crash, starting in February 2020, in one way or another. Otherwise, during

the minor shocks that followed that year, baseline predictions are almost negligible

with the exception of IGARCH in Figure 4.6. HEAVY and EGARCH exhibit an

invariable behaviour in this turbulent environment, showing a lack of adaptability

to changing conditions. We should remark that DeepVol requires just one day of

intraday data to perform the out-of-sample volatility forecasting, unlike classical

methodologies, which operate recursively, forcing them to use a sufficiently long

window of past data. This places DeepVol in an advantaged position in situations

of low data availability, such as the inclusion of new tickers in the stock market, as

it does not require a long horizon of historical data to perform the forecasting.
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Figure 4.4: Out-of-sample-stocks: HEAVY’s and DeepVol’s forecast on QCOM. Green
dotted vertical lines mark the forecast’s start.

Figure 4.5: Out-of-sample-stocks: EGARCH’s and DeepVol’s forecast on MSFT. Green
dotted vertical lines mark the forecast’s start.

4.5.6 Discussion of Results

Several findings from the experiments are worth highlighting with regard to the use of

Dilated Causal Convolutions for the day-ahead realised volatility forecasting. Firstly,

DeepVol generally outperforms traditional autoregressive architectures, showing

a quicker adaptation to volatility shocks while maintaining some conservatism in

its predictions, as the reported MedAE and ME in previous experiments show.

Specifically, DeepVol’s reported accuracy seems particularly interesting, specially

considering that the experiments were conducted in high-volatility regimes. The

reported results resemble extensive literature indicating that deep learning-based

volatility forecasting architectures (Ramos-Pérez et al., 2021) and hybrid models

(Baek and Kim, 2018; Kim and Won, 2018) consistently outperform classical
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Figure 4.6: Out-of-sample-stocks: IGARCH’s and DeepVol’s forecast on AAPL. Green
dotted vertical lines mark the forecast’s start.

methodologies.

Experiments in Section 4.5.3 have highlighted that, for the proposed method,

data from the previous trading day contains enough information for predicting

the day-ahead realised volatility with high accuracy. Furthermore, a sampling

frequency of 5-minutes has been shown to maximise the trade-off between noise

and intraday information, echoing studies analysing this same trade-off in the

context of estimating realised measures from high-frequency data. Finally, DeepVol

consistently outperforms baseline methods while reporting good results in outlier-

robust metrics such as MedAE, proving that the model quickly adapts to volatility

shocks while exhibiting noise robustness.

4.6 Discussion

In this chapter, we have proposed a deep learning model based on hierarchies of

Dilated Causal Convolutions – termed DeepVol – to forecast day-ahead realised

volatility from high-frequency data. Our model takes advantage of the automatic

feature extraction inherent to Deep Neural Networks to bypass the estimation of the

realised measures, tackling the problem of volatility forecasting from a pure data-

driven perspective. At the same time, the use of dilated convolutions enables DeepVol

to exponentially increase its input window, performing a similar operation to how

handcrafted realised measures condense high-frequency information. Reported
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results show how DeepVol’s predictions significantly improve the baseline models

performance, proving that the proposed data-driven approach avoids the limitations

of classical methods, such as model misspecification or the use of hand-crafted noisy

realised measures, by taking advantage of the abundance of high-frequency data.

The proposed architecture outperforms baseline methods while exhibiting ro-

bustness in the presence of volatility shocks, avoiding an increase in Maximum and

Median Absolute Errors, as reported by other unstable methods. Those results are

especially relevant considering that experiments were conducted in high volatility

regimes, such as the 2020 stock crisis caused by the COVID-19 pandemic. In

the context of the generalisation study, where out-of-sample-stocks forecasts are

conducted, DeepVol shows its ability to extract universal features and transfer

learning to out-of-distribution data. Additionally, we observe that for DeepVol, the

previous day’s intraday data makes the most significant contribution to predicting

the day-ahead volatility. Therefore, increasing the receptive field of DeepVol does

not generally lead to better performance. Moreover, we show that using a 5-minutes

sampling frequency optimises the trade-off between maximising the use of high-

frequency data information while minimising the microstructure noise implicit

to higher sampling frequencies. This result is particularly interesting as it is

reminiscent of earlier studies validating this same trade-off for the construction

of realised measures. The empirical results collected in this chapter suggest that

models based on Dilated Causal Convolutions should be carefully considered in the

context of volatility forecasting and, as a result, can play a key role in the valuation

of financial derivatives, risk management, and portfolio construction.



5
Deep Survival Analysis in the LOB: A

Convolutional-Transformer Approach to
Estimating Fill Probabilities

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Limit Order Books . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Empirical and Statistical Evidence of Fill Rate Execu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.1 Generation of Synthetically Tracked Orders . . . . . . . 83
5.5.2 Fill Statistics of LOs placed inside the Spread . . . . . . 84

5.6 Monotonic Encoder-Decoder Convolutional-Transformer 87
5.6.1 General Architecture . . . . . . . . . . . . . . . . . . . . 87
5.6.2 Convolutional-Transformer Encoder . . . . . . . . . . . 87
5.6.3 Monotonic Decoder . . . . . . . . . . . . . . . . . . . . . 92

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7.1 Predictive Features . . . . . . . . . . . . . . . . . . . . . 94
5.7.2 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7.3 Model Interpretability . . . . . . . . . . . . . . . . . . . 102

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

This chapter shifts the focus towards another relevant problem in the quantitative

finance literature, specifically, the estimation of fill times for limit orders posted in

75
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the Limit Order Book (LOB). Choosing between a limit order and a market order

to execute a trade is an important problem in optimal execution strategies. Key

to this choice is the fill probability of a limit order placed at different levels of the

book. In this chapter, we propose a deep learning-based method to estimate the fill

times of limit orders posted in the LOB. In particular, we present a novel survival

analysis model, based on a convolutional-Transformer encoder and a monotonic

decoder, which relates the time-varying features of the LOB to the distribution of

fill times. We provide an exhaustive comparison between survival functions resulting

from different order placement strategies and offer insight into the fill probability of

orders placed inside the spread. Finally, we compare our method with competing

benchmarks from the survival analysis literature in terms of proper scoring rules

and perform an interpretability analysis to shed light on the informativeness of

features when estimating fill probabilities.

The remainder of this chapter is organised as follows. Section 5.1 provides a

brief introduction to the problem of limit orders’ fill times estimation, as well as

an overview of the main contributions of our work. Section 5.2 presents a succinct

summary of the survival analysis literature, while Section 5.3 provides an overview

of LOBs. In Section 5.4, we formalise the survival analysis framework used in the

rest of the chapter, as well as the concept of proper scoring rules. Further, Section

5.5 performs a statistical analysis on the fill probabilities observed in LOBs for assets

with different characteristics. Section 5.6 presents the proposed model, and Section

5.7 provides an empirical evaluation of its performance and an interpretability

analysis. Finally, Section 5.8 summarises the findings and concludes this chapter.

5.1 Introduction

Electronic financial exchanges typically use LOBs to organise and clear the demand

and supply of liquidity in various asset classes. LOBs offer several types of orders,

where limit orders (LOs) and market orders (MOs) are the most common types.

There is a trade-off between the selection of each order type: market orders cross

the bid-ask spread and obtain immediate execution, while limit orders can be placed
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at various levels of the order book, which, if executed, obtain a better price than

that of a market order. However, there is no guarantee that a limit order will be

executed, as the limit order rests in the LOB until it is filled by a market order that

crosses the spread, or it is cancelled. The amount of time a limit order takes to get

filled is known as the time-to-fill and it can be estimated using different methods.

In this chapter, we use survival analysis to estimate the fill probabilities of

limit orders. We present a novel deep learning-based method to estimate the

survival functions of orders placed at different levels of the order book, where the

matching of orders is determined by price-time priority. To this end, we introduce

an encoder-decoder neural network architecture based on the Transformer model

(Vaswani et al., 2017) and partially monotonic neural networks (Chilinski and Silva,

2020). The proposed model allows us to estimate the fill probability of different

assets with minimal assumptions, conditioning on the most recent events in the

LOB. Our methodology is general and suitable for other application areas that

perform survival analysis from longitudinal data, representing a novel improvement

to the existing literature in this area.

Along with this novel predictive methodology, we provide additional financial

insights into the value of orders positioned at different levels of the book and inside

the spread. To evaluate the performance of the estimated fill probabilities, we use

proper scoring rules (Gneiting and Ranjan, 2011; Avati et al., 2020; Rindt et al.,

2022), which ensures that we maximise the fit with respect to the true survival

function instead of an incorrect proxy, hence producing more robust results. In

this regard, we provide a novel contribution to the literature by generalising the

proof of Rindt et al. (2022) to the multi-event case.

Finally, we show through empirical evaluation that the proposed method is able

to summarise LOB information prior to the order submission. This entails significant

performance improvements compared to baseline off-the-shelf architectures and

standard benchmarks from the survival analysis literature. Further, the Shapley

value analysis conducted in Section 5.7 shows that the model heavily relies on
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high-frequency information to perform the prediction, paying less attention to

slow-moving features such as time of day.

5.2 Literature Review

Time-to-event analysis, also known as survival analysis, is widely used in different

fields, including the estimation of patients’ time-to-recovery (Laurie et al., 1989),

clinical trials (Singh and Mukhopadhyay, 2011), churn prediction (Larivière and

Van den Poel, 2004), and others (Ziehm and Thornton, 2013; Susto et al., 2014;

Dirick et al., 2017). A fundamental issue in most applications is how to relate

the distribution of event times to the features (covariates) describing the system.

Simple parametric models, such as the Cox Proportional Hazards Model (Cox, 1972)

or the Accelerated Failure Time (AFT) model (Wei, 1992) are commonly used to

make these connections. Nevertheless, the use of deep learning-based models for

survival analysis has become increasingly prevalent in recent times, particularly in

the medical field. Early examples of this are Faraggi and Simon (1995), which uses

a feed-forward neural network to extend the Cox Proportional Hazards Model, and

Katzman et al. (2018) and Kvamme et al. (2019), which incorporate deep learning

techniques, such as dropout, into the survival analysis literature. Subsequent work

has aimed to improve upon these models (Z. Wang and Sun, 2022; Zhong et al.,

2021; S. Hu et al., 2021), with Rindt et al. (2022) highlighting the importance of

using proper scoring rules in survival analysis and illustrating the shortcomings

of previous models in this regard. Other notable approaches include the use of

Gaussian processes (Fernández et al., 2016; Alaa and van der Schaar, 2017), random

forests (Ishwaran et al., 2008), and adversarial approaches (Chapfuwa et al., 2018).

In the quantitative finance field, Cho and Nelling (2000) employs a survival

analysis approach to calculate limit orders’ fill probabilities, assuming that the

shape of the survival function follows a Weibull distribution. To determine the fill

probability, the authors track limit orders throughout the trading day, considering

cancellations as right-censoring. If a limit order is matched against multiple market

orders, the total time-to-fill is the weighted average of the individual time-to-fills,
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with the size of each execution serving as its weight. Further, Lo et al. (2002)

utilises the generalised gamma distribution to model the baseline distribution and

incorporate market features through the use of the AFT model. The authors

establish separate models for time-to-completion, time-to-first fill, and time-to-

cancellation, also introducing an in-depth discussion on hypothetical limit orders.

Finally, Cartea, Jaimungal, et al. (2015) derives optimal trading strategies under

the assumption of a fill probability that is static in time and decreases exponentially

between levels of the order book.

More recently, several studies have employed deep learning for modelling market

microstructure (Z. Zhang, Zohren, and Roberts, 2019; Z. Zhang and Zohren, 2021;

Kolm et al., 2021; Z. Zhang, Lim, et al., 2021), mainly focusing on short-term price

prediction. Further, Maglaras et al. (2021) uses deep learning to predict limit orders’

fill probability, employing Recurrent Neural Networks (RNNs) (Funahashi and

Nakamura, 1993) to do so. In contrast, our work improves this setup by introducing

a novel Transformer-based architecture, proposing and analysing new ways to

generate fill time data. We compare our method to multiple benchmark models from

the survival analysis literature, evaluating the reported performances using proper

scoring rules and showing how the proposed model outperforms the state-of-the-art.

5.3 Limit Order Books

The two most important order types are market and limit orders. A market order is

used to buy or sell a given quantity at the best available price. A limit order, on the

other hand, is an instruction to buy or sell a given quantity at a given price. Market

orders guarantee immediate execution, given sufficient liquidity, while limit orders

remain in the order book until they are filled or cancelled. Other types of orders also

exist, such as hidden orders, which do not reveal their quantity, fill-or-kill orders,

which are to be executed immediately (entirely or partially) at a predetermined price

range, and immediate-or-cancel orders, which are to be executed immediately in their

entirety (within a predetermined price range) or the entire order is cancelled. The

list of pending limit orders is stored in the LOB until they are matched or cancelled.
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Table 5.1: Example message data from the LOB. First five trades on 01/10/2012 for
AAPL ticker.

Time Event Type Order ID Size Price Direction
34200.395473 1 4141926 45 6713500 1
34200.395473 1 1972838 30 6715100 -1
34200.395473 1 4485151 1 6713400 1
34200.395473 1 6037010 10 6715500 -1
34200.395473 1 4719061 20 6712500 1

The matching engine of most exchanges follows a price-time priority rule where

orders are first ranked according to their price and then according to the time

they arrived at the exchange, with earlier orders given priority at the top of the

price-level queue. The LOB consists of two sides: the ask side containing all the

sell orders, and the bid side containing all the buy orders. A snapshot of the

LOB at time t is described by the vector:

st =
{
pla(t), vla(t), plb(t), vlb(t)

}L
l=1

, (5.1)

where pla(t), vla(t), plb(t), vlb(t) denote the ask price, ask volume, bid price, and bid

volume for price level l ∈ {1, ..., L} at time t, which is typically measured in

microseconds after midnight. Multiple snapshots assemble a matrix xt ∈ RT×4L,

which contains the discrete-time dynamics of the LOB from time t to t − T .

Concerning the empirical evaluation of our model, we consider Lobster message

data (R. Huang and Polak, 2011) containing information on events that update the

state of the order book in the NASDAQ stock exchange. These include messages

to post or cancel orders, the direction (buy or sell) and volume of the orders,

etc. Table 5.1 shows the first five messages observed for AAPL’s LOB on a

trading day randomly chosen.

5.4 Survival Analysis

We consider an event time, Tl ∈ R≥0, which represents a positive valued random

variable describing the time-to-fill of a limit order placed at level l of the order

book. We are interested in predicting the set of event times by conditioning on a
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Figure 5.1: Events which can occur after the submission of a limit order.

set of market features x ∈ Rp. All events are subject to right-censoring, meaning

the final event is not observed. When a limit order is cancelled or reaches the

end of the trading day without being filled, it is considered a censored event 1, as

Figure 5.1 shows. We consider a set of N observations of the triplet (xi, zi, di),

where di = I{zi = ti} is an indicator function equal to zero if the event is censored,

zi is the observed event time, and xi are the observed market features up to

the instant of the order submission. We use this data to estimate the survival

function, STl
(t|x) = P{Tl > t|x}2.

The survival function returns the probability that a limit order posted at level l

will not be filled before time t. The link between the survival function, STl
(t|x), and

the Cumulative Density Function (CDF), FTl
(t|x), is given by STl

(t|x) = 1−FTl
(t|x).

Therefore, the density function can be defined as follows: fTl
(t|x) = − d

dt
STl

(t|x).

Further, the hazard rate, which indicates the propensity that an order will be

filled after time t, is given by:

hTl
(t|x) = fTl

(t|x)
1− FTl

(t|x) . (5.2)

It suffices to obtain one of the previous functions to derive the remaining three, be-

cause

STl
(t|x) = P{Tl > t|x} = 1− FTl

(t|x) = exp
(
−
∫ t

0
hTl

(s)ds
)
. (5.3)

1Orders that reach the end of the trading day without being filled are treated as censored in this
work, even though all orders are removed from the book at the end of the trading day. However,
this is consistent with the literature, where this event is treated as “end-of-study” censoring.

2This is an instance of survival regression, which is equivalent to survival analysis but
conditioning on a set of features x.
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Survival functions are parameterized by a vector of parameters θ ∈ R that describes

its shape. One may assume that the survival function is determined by a tractable

distribution (e.g., a Weibull distribution) and estimate the relevant parameters with

standard methods. However, there is a trade-off between mathematical tractability

and the goodness of the model’s fit. Using neural networks to estimate the survival

function is a possible alternative; it increases the number of parameters substantially,

but also improves the fit to the data. Here, we use this approach to model the survival

function of limit orders, as its shape is expected to have a non-linear relationship

with the market features. To find the parameters that best explain the observed data,

we perform maximum likelihood estimation. Specifically, we train our deep learning

model to maximize the Right Censored Log-Likelihood (RCLL) function, defined as:

L(θ) = log(LN(θ)) =
N∑
k=1

dk log(f̂(zk|xk,θ)) + (1− dk) log(Ŝ(zk|xk,θ)), (5.4)

where Ŝ and f̂ are the neural network estimates for the survival and density

functions, respectively. See Appendix B for a derivation of Eq. (5.4).

Training on the RCLL requires the model to output Ŝ(zk|xk,θ) at the exact

time-instant zk. This is challenging for deep learning models that use the softmax

activation function to discretise the survival function, as they require an interpolation

scheme to tractably train using Eq. (5.4). Our model avoids this problem by

introducing the observed time zk mid-way through the network, together with the

generated latent representation from the LOB time series, as Section 5.6 shows.

To evaluate the quality of our model fit, we introduce the concept of scoring

rule, see Rindt et al., 2022. A scoring rule S takes as input a distribution S over a

set Y , with an observed sample y ∈ Y , and returns a score S(S, y). With positive

scoring rules, higher scores indicate an improvement in model fit. In survival

regression, a scoring rule S is proper if

Et,c,x[S(S(t|x), (z, d))] ≥ Et,c,x[S(Ŝ(t|x), (z, d))] (5.5)

for all survival function estimates Ŝ(t|x) (Rindt et al., 2022). The most commonly

used scoring rules in the literature are improper, see Appendix D. On the other hand,
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the RCLL is shown to be a proper scoring rule in Rindt et al. (2022). Therefore,

throughout our analysis, we employ the RCLL as a proper scoring rule to evaluate

the precision with which the evaluated models fit the true survival function.

5.5 Empirical and Statistical Evidence of Fill
Rate Executions

To generate the data for the network to train on, we must infer whether an order

was filled or not purely from observational LOB data. In this scenario, providing

a good estimate of the fill probability does not only involve the design of a good

survival analysis model, but it also requires a realistic data collection setup. In this

section, we provide an empirical analysis of the effect of different data generation

strategies on the resulting survival function. Additionally, we provide a statistical

analysis of the survival functions and fill probabilities of orders placed at different

levels of the LOB, as well as those placed within the spread.

5.5.1 Generation of Synthetically Tracked Orders

We explore two different ways to generate our dataset of triples. The first method

consists of directly analysing messages data from the LOB. Specifically, we track

all the messages associated to a particular order after its submission. If the final

message associated to that order is a cancellation, we treat the order as censored, and

filled otherwise. The time-to-fill is calculated as the time between order submission

and the time the final message is observed.

This first approach does not allow for gauging the difference in the fill probability

when performing a change to the original characteristics of the limit order, such

as cancellation and repositioning when there is an adverse price move, commonly

employed strategies. For these reasons, we consider “hypothetical” limit orders,

which are orders of one share in volume, placed at the top of the queue of a price

level l in the LOB. Such an approach relies on “fill conditions” to determine if an

order has been filled. Furthermore, hypothetical limit orders are assumed not to

cause any market impact. These assumptions are consistent with previous works
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Figure 5.2: Left: Kaplan-Meier estimates of orders placed at different levels of the
AAPL LOB. Right: Repositioning on the first level of AAPL LOB.

(Handa et al., 2003; Maglaras et al., 2021). All these considerations are explained

in more detail in Appendices A and D.

We generate this hypothetical limit order data by randomly selecting times

throughout the trading day, and placing the hypothetical one-share limit order at the

best ask or best bid. The limit order is automatically re-positioned to the new best

price whenever there is a price change at that level. This order repositioning results

in a significant amount of censoring, as a small proportion of orders go beyond

the first level. For this reason, we focus on estimating the fill probability of orders

repositioned on the best bid and best ask (level one) of the LOB. Figure 5.2 shows the

Kaplan-Meier estimates of the survival functions associated to LOB data tracking.

5.5.2 Fill Statistics of LOs placed inside the Spread

Here, we compute the fill probabilities of orders placed within the spread of the

order book. To do so, we isolate orders posted n ticks into the spread, measured

from the best bid or best ask. We consider a small set of assets comprised of small

and large tick stocks3, which also vary in the average arrival rate of LOs. The assets

considered, along with their average spread, average volume on the best bid and

best ask, and average events per minute, are shown in Table 5.2.

3We consider assets with a tick size of 0.01 US dollars, but differentiate between large tick and
small tick assets. Large tick stocks are such that the bid-ask spread is approximately one tick in
size, while for small tick stocks, the spread is several times larger than that. There is a significant
difference in the dynamics between the two types, see Eisler et al. (2012) for more details.
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Table 5.2: Statistics of small and large tick stocks on 1st of October 2022.

Av. Spread Av. Vol. Av. Vol. Av.
(ticks) Best Ask Best Bid event/min

AAPL 1.30 494.65 488.86 412.23
AMZN 1.76 289.45 278.53 218.67
BIDU 9.37 88.54 97.24 20.86
COST 26.22 61.36 46.46 44.27
DELL 1.58 287.12 283.92 20.93
MSFT 2.74 146.15 159.14 204.86
GOOG 1.64 295.76 232.08 120.84
CSCO 1.10 2401.47 2314.83 68.58
INTC 1.12 5676.63 5533.79 110.88

0 20 40 60 80 100
t (sec.)

0.0

0.2

0.4

0.6

0.8

1.0

Ŝ
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Figure 5.3: Survival functions when placing orders at different depths of the bid-ask
spread. Top left: CSCO, Top left: INTC, Bottom left: AAPL, Bottom left: AMZN.
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Table 5.3: Fill statistics for all assets considered, between 1 October 2022 and 27
December 2022.

AAPL AMZN BIDU COST CSCO DELL GOOG INTC MSFT

Best
Level

Number
of LOs

17491885 18891270 2406523 5193897 14242140 4461087 2261258 17894682 18921692

P{T < 60,

d = 1}
5.39% 9.23% 9.48% 4.58% 5.73% 3.92% 6.18% 5.70% 6.79%

E{T |T < 60,

d = 1}
1.32 s. 1.07 s. 4.40 s. 5.18 s. 6.26 s. 6.87 s. 1.82 s. 7.33 s. 0.99 s.

1
Tick

Number
of LOs

51096 6215869 1250831 2594091 466645 753603 1548080 317834 9654578

P{T < 60,

d = 1}
13.17% 13.12% 5.28% 1.22% 17.53% 6.2% 10.88% 29.62% 7.34%

E{T |T < 60,

d = 1}
0.64 s. 0.70 s. 3.82 s. 4.85 s. 1.71 s. 4.46 s. 0.85 s. 1.95 s. 0.70 s.

2
Ticks

Number
of LOs

17862 169024 163567 113709 2817 15584 52565 992 492218

P{T < 60,

d = 1}
36.01% 33.60% 15.33% 8.26% 35.49% 22.63% 31.99% 32.15% 26.32%

E{T |T < 60,

d = 1}
0.19 s. 0.38 s. 3.93 s. 6.03 s. 0.47 s. 3.39 s. 0.84 s. 0.27 s. 0.45 s.

3
Ticks

Number
of LOs

11692 24456 100719 87820 841 2548 8344 276 107990

P{T < 60,

d = 1}
41.65% 41.39% 16.92% 8.98% 35.79% 27.62% 39.69% 24.63% 36.90%

E{T |T < 60,

d = 1}
0.11 s. 0.25 s. 3.59 s. 5.33 s. 0.51 s. 2.07 s. 0.13 s. 0.29 s. 0.24 s.

4
Ticks

Number
of LOs

4059 6469 63407 69689 318 937 2274 97 33885

P{T < 60,

d = 1}
43.82% 43.43% 18.68% 10.61% 24.84% 29.02% 44.50% 24.74% 42.92%

E{T |T < 60,

d = 1}
0.14 s. 0.11 s. 3.26 s. 4.69 s. 0.25 s. 2.34 s. 0.15 s. 0.8 s. 0.17 s.

5
Ticks

Number
of LOs

2004 2470 41017 61457 136 454 782 103 13710

P{T < 60,

d = 1}
44.31% 44.85% 21.40% 11.35% 45.58% 29.95% 50.12% 11.65% 44.66%

E{T |T < 60,

d = 1}
0.08 s. 0.21 s. 3.07 s. 4.53 s. 0.36 s. 1.5 s. 0.07 s. 0.71 s. 0.12 s.

Intuitively, agents trading large tick stocks are incentivised to place their orders

inside the bid-ask spread not to have to place their LOs at the end of the queue.

The cost of executing this trade is almost as much as crossing the spread, and there

is no guarantee of immediate execution. However, it makes it approximately 3-6

times more likely for an order to get filled, while reducing the time to fill by a
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similar proportion, as shown in Figure 5.3 and Table 5.3. Small tick stocks have a

larger trading activity occuring inside the spread, even beyond one level in depth.

Obtaining similar improvements in the fill probabilities for these assets requires

placing LOs deeper in the book. It should be noticed that stocks with reduced

trading activity, such as BIDU, COST or DELL, have a significantly lower fill

probability at the best level and all depths inside the spread. Finally, notice that

the markedly different dynamics of all assets considered further motivates using a

model-free approach for modelling the survival functions in the LOB.

5.6 Monotonic Encoder-Decoder Convolutional-
Transformer

5.6.1 General Architecture

In this work, we present an encoder-decoder architecture to learn the distribution of

limit order survival times directly from the LOB. In contrast to previous approaches

in the literature, our model does not rely on strong parametric assumptions to

understand the relationship between the fill rates distribution and the predictors

used. Figure 5.4 illustrates the two components of our framework. The encoder,

parameterized by ϕ, processes the LOB data and obtains a latent representation

from it, which is used by the decoder, parameterized by ψ, to predict the survival

function of the limit orders. This decoder comprises a fixed monotonic neural

network that guarantees a monotonic decreasing survival function. Further, a

convolutional-Transformer encoder is used to model the complex dependencies

and interactions within the LOB data and to compress useful information into

a lower-dimensional representation, subsequently used by the monotonic-decoder.

We denote θ = {ϕ, ψ} to the full set of parameters.

5.6.2 Convolutional-Transformer Encoder

We propose a convolutional-Transformer encoder to identify patterns in the LOB,

which allows for a better estimate of the fill probabilities of limit orders. The

architecture of the encoder, illustrated in Figure 5.5, processes the LOB time series
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x

Encoder
convolutional-Transformer

Monotonic Decoder

q(x;ϕ) t

S(t|x;ψ, ϕ)

Figure 5.4: Encoder-decoder architecture for predictive tasks. The first block, an encoder
with parameter ϕ ∈ R, uses an attention-based mechanism to project the irregularly
sampled LOB observations to a latent representation that comprises critical information.
The second block, a monotonic decoder, takes as input both this latent representation
of the time series and the time input t. This decoder has positive parameters ψ ∈ R+,
enforcing monotonicity on the survival function.

data and captures its non-Markovian dynamics through a latent representation of

the time series. This representation encapsulates the most relevant information

and is later used by the decoder to predict the fill probabilities.

Our encoder uses data to learn an optimal pattern extraction function, rather

than relying on traditional model-based approaches, which are prone to model

misspecification. This encoder consists of two main components: a locally-aware

convolutional network and a Transformer model. The locally-aware convolutional

network comprises three different Dilated Causal Convolutional (DCC) neural

networks (Oord et al., 2016) that process the LOB data and generate the cor-

responding queries, keys, and values (Niu et al., 2021) that serve as input to

the Transformer model. These DCCs, which are based on Convolutional Neural

Networks (CNNs) (LeCun, Boser, et al., 1989), operate through an inner product

based on entries that are a fixed number of steps apart from each other, contrary

to CNNs and Causal-CNNs, which operate with consecutive entries, as Eq. (5.6)

manifests. Further, using causal convolutions ensure that the current position does
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Figure5.5: Convolutional-Transformer’sencoderarchitecture. Aconvolutionalkernel
ofsizes=3 withdilationfactor d=1 isusedinthisdiagram. Thelocally-aware
hiddenrepresentationobtainedbytheCNNisusedtofeedtheTransformer,whichuses
self-attentionoverthesehiddenvariablestoobtainthelatentrepresentationq(x;ϕ).

notusefutureinformation. DCCshavebeensuccessfullyappliedintimeseries

forecasting(Borovykhetal.,2017)andquantitativeinance(Moreno-Pinoand

Zohren,2022), motivatingourarchitecturalchoice.

Thequeries,keys,andvaluescreatedbytheDCCsarethreediferentrepre-

sentationsoftheinputdataandarecollectivelyusedbytheTransformer model

toperformself-attentionandcapturedependenciesbetweendiferentpartsofthe

originaltimeseries. UsingconvolutionalnetworkstogeneratetheseTransformer’s

inputfeaturesallowsourencodertobemoreawareoflocalcontext,grantingthe

Transformertheabilitytodiscernifobservedvaluesareanomalies,partofpatterns,
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etc. This constitutes a clear advantage over using a Multi-Layer Perceptron (MLP)

to obtain the queries, keys, and values, which is the most common approach in

the literature. Therefore, the operation of the DCCs can be understood as a set

of data-driven local filters. The projection they perform from the original time

series to a hidden representation enhances the depiction of the LOB dynamics. This

operation enables the Transformer’s self-attention mechanism to capture complex

local dependencies between datapoints, as it now operates on a locally aware hidden

representation, rather than point-wise values that lack local context. Additionally,

the convolutional-Transformer optimizes the parameters of each of the three DCCs

to extract different relevant features from the LOB data. For example, some

filters may be optimized to detect trends, while others may identify anomalies or

changepoints. Each of the three convolutional neural networks used to obtain the

corresponding query, key, and values consist of only one layer performing a causal

convolutional operation between the input sequence, x ∈ R, and the corresponding

convolutional kernel k of size s ∈ Z:

Q(t) =
(
x ∗d kQ

)
(t) =

s−1∑
τ=0

kQτ · xt−dτ ,

K(t) =
(
x ∗d kK

)
(t) =

s−1∑
τ=0

kKτ · xt−dτ ,

V (t) =
(
x ∗d kV

)
(t) =

s−1∑
τ=0

kVτ · xt−dτ ,

(5.6)

where d is the dilation factor and d = 1 results in a Causal-CNN. Notice that

we use the convolutional network solely as a feature extractor that incorporates

local context into the Transformer’s self-attention mechanism because, in our

model, the Transformer model is responsible for extracting the patterns within

the data. Therefore, we restrict the encoder’s convolutional network to a single

layer, but its complexity can be easily extended to L convolutional layers, as

detailed in Appendix E. In Section 5.7, we test the model’s performance for different

convolutional kernel’ sizes; the reported results are shown in Table 5.8. It is worth

noting that a convolutional operation with kernel size s = 1 is equivalent to

canonical self-attention.
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After the CNNs extract the relevant features from the LOB data, producing

the queries, keys, and values, they are fed to the Transformer model. Transformer

models were initially introduced for Natural Language Processing (NLP), but they

have been widely applied in time series-related problems (Moreno-Pino, Olmos,

et al., 2023). These models propose a completely new architecture that leverages

the attention mechanism (Bahdanau et al., 2015) to process sequences of data.

Transformers offer significant advantages over more classical approaches, as their

ability to maintain lookback windows with large horizons, which makes them able

to detect long-term dependencies in the data. Nevertheless, they also suffer from

different weaknesses. Among those, canonical Transformers’ point-wise dot-product

attention makes them prone to anomalies and optimization issues due to the fact

that these models’ space complexity grows quadratically with the input length.

Furthermore, canonical Transformers are locally-agnostic, as dot-product attention

does not allow the model to be aware of the local context while operating with

time series data. The convolutional-Transformer alleviates these problems: the

integration of convolutional networks makes the model locally-aware and a sparse self-

attention mechanism mitigate its space complexity, reducing the cost of computing

the attention scores from O(L2) to O(L(log(L))2), where L is the input length.

The Transformer-based encoder model grounds its operation on the well-known

self-attention mechanism, performed simultaneously by a different number of

Transformer’s heads H ∈ Z, comprising what is called a multi-head Transformer, as

shown in Figure 5.5. Each multi-head self-attention sublayer simultaneously applies

the scaled dot-product attention over the convolutional network’s output. For the

ith head, this scaled dot-product attention is computed as follows:

hi = Attention (Qi, Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi. (5.7)

Each Transformer’s head is therefore responsible for learning and modelling attention

functions able to handle the complex dependencies within the LOB data. The use of

different heads allows the model to jointly attend to different temporal subspaces of



92 5.6. Monotonic Encoder-Decoder Convolutional-Transformer

the original time series, they are finally combined to obtain a joint representation:

MultiHead(Q,K,V) = Concat (h1, h2, . . . , hi, . . . hH) , (5.8)

where hi represents head ith’s output, hi = Attention (Qi, Ki, Vi). Merging every

head’s output through a linear function produces the latent representation q(x;ϕ),

which encodes the most relevant information from the selected features of the LOB.

This latent representation is used by the decoder to predict the orders’ conditional

density of survival times in a monotonically-decreasing manner.

It is worth mentioning that, despite the proposed use of the convolutional-

Transformer, this paper presents a model-agnostic encoder because different archi-

tectures can perform the encoder’s tasks. Thus, Section 5.7 shows the performance’s

variation for a number of stocks when different machine learning models act as

encoders: a Multi-Layer Perceptron (MLP), a Long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997), and a CNN are employed to this end, where

modelling recurrence in the data is expected to be critical to obtain satisfactory

results. In this regard, it should be noted that very liquid markets may not need

complex models performing the encoder’s functions, as relevant data for predicting

the survival function is already encoded on the very recent time windows.

5.6.3 Monotonic Decoder

In the context of survival analysis, the survival function needs to be decreasing with

respect to time. This inductive bias is something we would like to encode into our

architecture to avoid the well-known crossing problem (Tagasovska and Lopez-Paz,

2019). To this end, we implement a monotonic decoder employing monotonically

restricted neural networks (Chilinski and Silva, 2020; Rindt et al., 2022), see Figure

5.6. This type of neural network allows us to estimate a Cumulative Density

Function (CDF), F (t|x), with response variable t and conditioned on input features

x, which in our case is the latent representation obtained from the LOB time series

through the encoder. The output of the decoder’s network fψ(·) is consistent with

the properties of a CDF because it satisfies:
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(i) lim
t→−∞

fψ(t,x) = 0,

(ii) lim
t→∞

fψ(t,x) = 1,

(iii) ∂fψ(t,x)
∂t

≥ 0,

where the third condition is the most difficult to guarantee because neural networks

are a composition of nonlinear functions, which makes them difficult to interpret or

control. To clarify how this condition is satisfied, we consider a set-up where all the

intermediate layers h of the network, with 1 < h < H (not to be confused with the

use of hi in Section 5.6.2 to accredit the Transformer model’s head hi ∈ H), have

the following input-output relationship for each node j and input xh ∈ RMh :

hlj = tanh
(
Mh∑
i=1

whijxi + bhij

)
, (5.9)

where the final output is given by:

fψ(t,x) = P (T ≤ t|X = x) = σ

(
MH∑
i=1

wHi1xi + bHi1

)
, (5.10)

being wij and bij the individual weight and bias terms associated to node j, and

tanh(·) and σ(·) the hyperbolic tangent and sigmoid functions, respectively. To

enforce monotonicity of the output with respect to the response variable t, we

impose whij ≥ 0 ∀h ∈ {1, . . . , H}, as the derivative of the output of the node

associated to the response variable in the first layer of the decoder is given by:

∂h1
j

∂t
= tanh′

(
w1

1M1t+ b1
1M1

)
w1

1M1 , (5.11)

which requires positivity of the weight to guarantee the monotonic condition. A

similar argument holds for all nodes in subsequent layers of the network following

from the chain rule. Finally, the remaining two conditions are satisfied empirically

given the chosen likelihood-based training method. We stress that placing this

monotonic restriction on the decoder does not hinder other beneficial properties

of deep neural networks such as universal function approximation (Cybenko,

1989; Kidger and Lyons, 2020) or convexity (Littwin and Wolf, 2020) in the

over-parameterized case. This stem from the fact that the applied restriction is
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Figure 5.6: Monotonic decoder’s architecture. The last node represents the operation of
differentiating the conditional survival distribution with respect to time, which results in
the conditional density function of the survival time. This model guarantees a decreasing
survival curve. [Adapted from Figure 1 of Chilinski and Silva (2020)].

only enforced to the decoder, which can be made arbitrarily small (in terms of

parameters) compared to the time series encoder, where no restriction is placed

on the network parameters.

5.7 Experiments

5.7.1 Predictive Features

We now describe the set of features we use as input signals to the model, summarised

in Table 5.4. While many machine learning models in the context of LOB modelling

aim to extract information directly from the observed order book (Z. Zhang, Zohren,

and Roberts, 2019), we also introduce additional indicators. In particular, we split

Table 5.4: Features used to estimate the fill probability.

Slow Moving Features

Feature
Volatility

Fast Moving Features

Time of Day
Prices and Volumes

Midprice
Spread

Imbalance
Microprice
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Figure 5.7: Left: Number of traded volume per minute. Right: Realized volatility
for a given trading day.

our dataset into slow moving and fast moving signals, which extract information

at different timescales.

Slow Moving Features

Slow moving features, such as time of day or volatility, provide a global view of the

trading day. Regarding the time of day, it is informative because there are a larger

number of trades happening at the beginning and at the end of the trading day,

which increases the chance of a limit order being filled, see Figure 5.7. Regarding

the volatility, different studies have validated its predictive capabilities in different

settings (Heston, 1993). We employ the realised volatility estimator (Gould et al.,

2013) as the volatility proxy measure, which is defined as:

Vt = std({rmi,i+1, i = t, . . . , t− k}), (5.12)

where the log-returns of the midprice time series rmt,t+1 for a lookback window of

k trades is considered, being std(·) the standard deviation operator.

Fast Moving Features

Fast moving features are expected to yield more granular information about the

order book, providing information based on the high-frequency signals observed

in the market. Other works have performed short-term price looking at raw limit
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Figure 5.8: Left: Evolution of microprice (where St denotes the midprice) Right:
Queue imbalance over the first 500 seconds of a trading day.

order book data (Z. Zhang, Zohren, and Roberts, 2019) and, despite the proven

success of these approaches, we also consider some extra indicators such as the

volume imbalance signal, given by:

Υt = v1
b (t)− v1

a(t)
v1
b (t) + v1

a(t)
∈ [−1, 1]. (5.13)

Volume imbalance captures the difference between the buy and sell pressures in

the order book at time t, and it is a predictor of short-term price moves, see

Cartea, Donnelly, et al. (2018). When Υt is close to 1/ − 1, there is buy/sell

pressure. If volume imbalance is a predictor of future price moves, this should be

a strong indicator of whether an order (at different depths in the book) is going

to fill or not. An alternative indicator of future price moves is the microprice,

which follows the definition:

Mt = v1
b (t)

v1
b (t) + v1

a(t)
p1
a(t) + v1

a(t)
v1
b (t) + v1

a(t)
p1
b(t). (5.14)

As detailed in Cartea, Jaimungal, et al. (2015), the microprice can be used as a proxy

for an asset’s transaction cost-free price, which measures the proneness of a price of

moving towards the bid/ask side depending on the sell/buy pressure, see Figure 5.8.

5.7.2 Model Fit

We train our model using Lobster data (R. Huang and Polak, 2011) from 1st

September 2022 to 26th December 2022. One hundred time points are chosen
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randomly at each available trading day to position the “synthetic” orders, see

Section 5.5.1. The side of the book the order is placed in is chosen randomly as

well. Furthermore, at the time of submission of the synthetic order, we store the

top five levels of the book as well as our handcrafted indicators with lookback

windows of T = 50/500/1000. These elements compose the features used to perform

our predictions. Figures 5.7 and 5.8 show examples of some of these features’

evolution for a window of T = 500.

In the rest of this section, we provide an overview of the usefulness of the proposed

survival model. To do so, we use the monotonic encoder-decoder convolutional-

Transformer (MN-Conv-Trans) to estimate the fill times of limit orders posted in the

LOB for nine different tickers. We compare the results of our model with DeepSurv

(Katzman et al., 2018) and DeepHit (C. Lee, Zame, et al., 2018a), two highly popular

deep learning-based models for survival analysis. Additionally, in order to assess

the benefits of utilising the convolutional-Transformer model as encoder, see Section

5.6.2, we define a collection of monotonic baseline models based on the encoder-

decoder architecture outlined in Section 5.6 and summarised in Figure 5.4. Each of

these encoder-decoder architectures substitutes the convolutional-Transformer with

a well-known machine learning model that performs the encoder’s tasks. Firstly, the

monotonic-MLP (MN-MLP) follows the approach presented in Rindt et al. (2022),

where a MLP is used to predict the fill times probabilities, therefore not using any

kind of recurrence. Secondly, the monotonic-CNN (MN-CNN) employs a CNN to

extract the most important features from the dataset. Finally, the monotonic-LSTM

(MN-LSTM) employs an LSTM network as encoder model. Notice that both the

MN-CNN and the MN-LSTM are able to model recurrence in the dataset, as the

convolutional-Transformer does. These recurrent models use a lookback window

of past observations that allows them to integrate the temporal dynamics of the

dataset into the prediction. To assess the effect of varying this lookback window’s

length, different experiments using T = {50, 500, 1000} are conducted.

Table 5.5 provides a summary of the predictive performance of these models using

the negative RCLL, a proper scoring rule as detailed in Section 5.4, for different
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Table 5.5: Models evaluated using the negative right-censored log-likelihood, at different levels
of the order book, for lookback windows of T = {50, 500, 1000}.

Mean ± STD Negative RCLL
AAPL AMZN BIDU COST CSCO DELL GOOG INTC MSFT

No recurrence

DeepSurv
8.109 8.557 7.915 7.982 9.978 8.885 9.131 8.462 8.564
± ± ± ± ± ± ± ± ±

0.065 0.034 0.103 0.066 0.067 0.064 0.024 0.096 0.008

DeepHit
10.098 10.119 9.716 9.731 9.978 9.816 10.046 9.874 10.074
± ± ± ± ± ± ± ± ±

0.065 0.028 0.146 0.165 0.021 0.081 0.065 0.022 0.055

MN-MLP
10.554 10.709 13.300 13.603 12.364 13.151 11.330 12.110 10.784
± ± ± ± ± ± ± ± ±

0.364 0.351 0.171 0.470 0.422 0.445 0.398 0.415 0.354
T = 50

MN-CNN
5.075 4.795 13.743 9.474 6.569 8.778 5.535 6.588 5.351
± ± ± ± ± ± ± ± ±

0.366 0.288 0.158 0.139 0.126 0.553 0.246 0.206 0.045

MN-LSTM
3.896 3.302 6.452 9.539 6.065 7.056 4.385 6.954 4.077
± ± ± ± ± ± ± ± ±

0.497 0.067 0.181 1.958 0.221 0.114 0.215 0.169 0.255

MN-Conv-Trans
3.201 2.997 5.930 5.957 5.019 5.522 3.730 5.002 3.533
± ± ± ± ± ± ± ± ±

0.827 0.675 0.863 0.808 1.149 0.860 0.901 1.167 1.090
T = 500

MN-CNN
5.056 5.401 10.801 8.910 6.699 7.422 5.536 6.768 5.284
± ± ± ± ± ± ± ± ±

0.165 0.077 0.221 0.253 0.130 0.135 0.157 0.307 0.165

MN-LSTM
3.701 4.135 7.658 7.681 5.636 7.479 4.338 6.545 4.369
± ± ± ± ± ± ± ± ±

0.202 0.270 0.303 0.272 0.224 0.385 0.169 0.232 0.189

MN-Conv-Trans
3.171 3.111 6.428 5.822 4.997 5.814 3.729 5.077 3.326

± ± ± ± ± ± ± ± ±
0.157 0.249 1.231 0.290 0.255 0.424 0.925 0.352 0.309

T = 1000

MN-CNN
5.925 4.796 7.485 8.052 6.581 7.171 5.536 7.676 5.347
± ± ± ± ± ± ± ± ±

0.010 0.142 0.271 0.022 0.290 0.174 0.157 0.540 0.093

MN-LSTM
5.404 3.932 6.945 7.199 6.043 7.202 4.338 5.52 3.904
± ± ± ± ± ± ± ± ±

0.023 0.154 0.06 0.030 0.219 0.583 0.169 .241 0.141

MN-Conv-Trans
3.724 2.980 5.887 6.089 4.974 5.625 3.453 4.951 3.560
± ± ± ± ± ± ± ± ±

1.226 0.713 0.918 1.073 0.834 0.919 0.498 1.053 1.122
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lookback window’s sizes. Further, the best result for each ticker is remarked.

Clearly, the proposed monotonic encoder-decoder convolutional-Transformer, whose

predictions for AAPL and AMZN are shown in Figure 5.9, outperforms all other

models in all the considered set-ups. We observe that using recursion significantly

enhances the predictive capabilities of the models. Specifically, as seen in Table 5.6,

which shows the improvement percentages of DeepSurv/DeepHit/MN-CNN/MN-

LSTM/MN-Conv-Trans over the more simplistic MN-MLP, employing the MN-CNN

with a loopaback window of T = 50 improves MN-MLP’s predictions by more than

40%, on average. This aligns with financial intuition, as considering information

from the recent past is expected to improve short-term forecasts. Additionally,

we find that the MN-LSTM generally improves the performance of the MN-CNN,

while the Transformer-based model exhibits the best performance overall, improving

MN-MLP’s prediction by 62%. Notice that, as mentioned in Section 5.6.2, the

convolutional network employed by the MN-CNN is far more complex than the one

employed by the convolutional-Transformer. The former employs several layers of

CNNs to boost its capabilities, while the later employs a single layer performing

a dilated causal convolution. Finally, we should remark that the performance of

both the MN-LSTM and the MN-Conv-Trans models does not strongly change for

different lookback window’s sizes, while the MN-CNN perform better with larger
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Figure 5.9: Example of survival functions predicted by the monotonic encoder-decoder
monotonic convolutional-Transformer model for different limit orders. Left: AAPL,
Right: AMZN.
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Table 5.6: Percentage improvement, over the MN-MLP, for each of the evaluated recurrent
models for lookback windows of T = {50, 500, 1000}.

Improvement over MN-MLP (%)
AAPL AMZN BIDU COST CSCO DELL GOOG INTC MSFT Average

No Recurrence
DeepSurv 23.17 20.10 40.49 41.32 19.30 32.44 19.41 30.12 20.59 27.44
DeepHit 4.32 5.51 26.95 28.46 19.30 25.36 11.33 18.46 6.58 16.25

T = 50
MN-CNN 51.91 55.22 -3.33 30.35 46.87 33.25 51.15 45.60 50.38 40.16

MN-LSTM 63.09 69.17 51.49 29.88 50.95 46.35 61.30 42.58 62.19 53.00
MN-Conv-Trans 69.67 72.01 55.41 56.21 59.41 58.01 67.08 58.70 67.24 62.64

T = 500
MN-CNN 52.09 49.57 18.79 34.50 45.82 43.56 51.14 44.11 51.00 43.40

MN-LSTM 64.93 61.39 42.42 43.53 54.42 43.13 61.71 45.95 59.49 53.00
MN-Conv-Trans 69.95 70.95 51.67 57.20 59.58 55.79 67.09 58.08 69.16 62.16

T = 1000
MN-CNN 54.56 55.22 43.72 40.81 46.77 45.47 51.15 36.61 50.42 47.19

MN-LSTM 48.80 63.28 47.78 47.08 51.12 45.24 61.30 54.42 63.80 53.65
MN-Conv-Trans 64.71 78.09 55.74 55.24 59.77 57.23 67.08 59.12 66.99 62.66

horizons, suggesting that most relevant information for estimating the fill times

of limit orders dwell within the most recent observations.

In Table 5.7, we repeat this same analysis but considering an order flow

representation of the order book, as recommended by Kolm et al. (2021) and

Lucchese et al. (2022). In these works, the authors suggest that employing order

flow or volume representations of the order book increases predictive performance for

step-ahead forecasts, making unnecessary the use of more complex models. Anyhow,

contrary to the case of midprice forecasting, we find no consistent improvement

when using this type of data representation.

Finally, Table 5.8 sheds light on the convolutional operation performed by the

monotonic convolutional-Transformer. This table explores different kernel sizes,

s ∈ {1, 2, 3, 5, 10, 25, 50}, for the MN-Conv-Tran’s convolutional operation while

predicting AAPL’s survival function using a lookback window of T = 500. Recall

that a convolutional network with kernel size s = 1 results on canonical self-attention.

In that case, there is an evident decline in the negative RCLL compared to larger

kernel sizes. No substantial variations in the performance are observed among the
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other kernel sizes examined. Therefore, a value of s = 3 seems reasonable to avoid

an unnecessary increase in parametric complexity.

Table 5.7: Models evaluated using the negative right-censored log-likelihood for a lookback
window of T = 500 on the order flow data, and percentage improvement, over the MN-MLP, for
each of the evaluated models.

Mean ± STD Negative RCLL
AAPL AMZN BIDU COST CSCO DELL GOOG INTC MSFT

DeepSurv
8.053 8.346 7.236 9.712 8.441 8.441 8.242 6.211 9.117
± ± ± ± ± ± ± ± ±

0.019 0.011 0.051 0.047 0.022 0.022 0.004 0.057 0.043

DeepHit
10.015 10.102 9.627 10.036 9.843 9.843 10.142 9.795 10.112
± ± ± ± ± ± ± ± ±

0.091 0.024 0.064 0.043 0.083 0.083 0.042 0.157 0.062

MN-MLP
10.535 10.801 13.518 12.502 13.158 12.160 10.800 12.938 10.963
± ± ± ± ± ± ± ± ±

0.339 0.347 0.497 0.431 0.495 0.451 0.311 0.422 0.326

MN-CNN
5.176 5.427 7.921 6.741 7.434 6.754 5.469 7.331 5.646
± ± ± ± ± ± ± ± ±

0.343 0.173 0.162 0.224 0.212 0.291 0.621 0.317 0.163

MN-LSTM
3.746 4.838 7.320 5.941 7.193 6.487 4.890 8.583 4.352
± ± ± ± ± ± ± ± ±

0.136 0.248 .613 0.195 0.129 0.198 0.538 0.387 0.231

MN-Conv-Trans
3.158 3.546 6.107 5.220 6.211 5.245 3.595 5.997 3.772

± ± ± ± ± ± ± ± ±
1.138 1.002 1.008 1.013 1.103 1.162 1.001 1.173 0.918

Improvement over MN-MLP (%)
AAPL AMZN BIDU COST CSCO DELL GOOG INTC MSFT

DeepSurv 23.56 22.73 46.47 22.32 35.85 30.58 23.69 51.99 16.84
DeepHit 4.94 6.47 28.78 19.72 25.19 19.05 6.09 24.29 7.76

MN-MLP - - - - - - - - -
MN-CNN 50.87 49.75 41.40 46.08 43.50 44.46 49.36 43.34 48.50

MN-LSTM 64.44 55.21 45.85 52.48 45.33 46.65 54.72 33.66 60.30
MN-Conv-Trans 70.02 67.17 54.82 58.25 52.80 56.87 66.71 53.65 65.59

Table 5.8: Performance variation while using different kernel’s sizes for the MN-Conv-Trans’s
DCC network, for AAPL and a lookback window of T = 500.

Kernel Size Mean ± STD Negative RCLL
s = 1 3.245 ± 0.207
s = 2 3.184 ± 0.343
s = 3 3.171 ± 0.157
s = 5 3.189 ± 0.433
s = 10 3.179 ± 0.367
s = 25 3.196 ± 0.383
s = 50 3.170 ± 0.370
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5.7.3 Model Interpretability

In this section, we interpret the convolutional-Transformer’s predictions to shed

light on how it produces them. To do so, we analyse both the time and feature

domain of the model’s operation. Firstly, through attention heatmaps, we visualise

which parts of the input signals’ past values are more important to the model while

predicting the survival function. Secondly, we use Shapley values (Hart, 1989) to

quantify the importance of each input feature, which allows us to determine the most

relevant of these input signals and how their value affects the model’s predictions.

Attention Heatmaps

The convolutional-Transformer employs Eq. (5.6) to obtain, through the convolu-

tional network, the self-attention input features: query, key, and value. Once these

are obtained, the Transformer model, through Eq. (5.7), performs the dot-product

computation between the attention’s queries and keys, applying a scaling factor
√
dk that guarantees a variance equal to one: QiK

T
i /
√
dk. This operation results

on a matrix of dimensions RT×T , where T ∈ Z is the lookback window’s length.

Finally, after a softmax function is applied to this matrix, see Eq. (5.7), the output

is used to multiply the previously obtained self-attention’s values. Through this

last operation, each Transformer’s head selects the most relevant time instants.

Therefore, the matrix resulting from the dot-product operation, QiK
T
i /
√
dk, allows

us to visualise which regions of the lookback window (more specifically, of its non-

linear projection), the model pays more attention to while predicting the survival

function. This process is illustrated through Figures 5.10 and 5.11. More precisely,

Figure 5.10 represents the evolution of the input features when a lookback window

of T = 500 is used. These are the signals the model uses to perform its prediction.

On the other hand, Figure 5.11 shows four different attention heatmaps, one per

each head of the Transformer model. These attention heatmaps, which shows

the self-attention weights, comprise information regarding the importance of each

time-step, encoded in the intensity of each colour. Thus, Figure 5.11 shows which

parts of the input sequence each Transformer’s head is paying more attention to.
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Figure 5.10: Features used to predict the survival function for a specific limit order,
using T = 500.

Figure 5.11: Attention heatmaps obtained for the order represented in Figure 5.10.

While head-1 shows quite a sparse attention pattern, it is clearly visible that head-0

focuses on samples after time instant T = 400, where a volatility shock is clearly

visible, see Figure 5.10. Heads 2 and 3 also focus on the last samples when, as clearly

noticeable in Figure 5.10, a large deprecation in the ask and bid prices occurred,

certainly comprising relevant information for the prediction of the fill probability.
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Shapley Values

Shapley values, on the other hand, provide a method to attribute model’s predictions

to the individual features of the input. This can help us understand which of the

order’s features are most important and how they contribute to the model’s overall

prediction. To calculate these Shapley values, we follow the DeepSHAP approach in

Lundberg and S.-I. Lee (2017), where it is shown that the per node attribution rules

used by DeepLIFT (Shrikumar et al., 2017) can be chosen to approximate them.

To measure the importance per feature, we define S ⊆ F as all possible feature

subsets, where F is the set of all features. We firstly integrate over many background

samples to obtain the expected model output E[f̂S(t|x)], where f̂S(t|x) denotes the

model’s prediction while using all the available features. Next, we approximate

Shapley values such that they sum up to the difference between this expected

model’s output and the predicted values: f̂S(t|x) − E[f̂(t|x)]. The contribution

of feature ith, that is, its importance, can be measured as:

Ci = f̂S(t|x)− f̂S\{i}(t|x), (5.15)

where f̂S\{i}(x) is the model’s prediction without using the ith feature, whose

Shapley value is given by:

ϕi = 1
n!

n∑
p=0

p!(n− p)!Ci, (5.16)

where n is the total number of features and p the number of features present

in the input sample, which can be any subset over the total number of features

depending on the specific input being evaluated.

Overall, the study of Shapley values provides a powerful tool to interpret the

behaviour of our deep learning model. Figure 5.12 shows a Beeswarm plot, a complex

and information-rich display of Shapley values, which reveals the relative importance

of each feature and their relationships with the predicted outcome. Each of the

datapoints is represented with a single dot in Figure 5.12, where colours ranging

from blue to red indicate lower to higher values per feature. The vertical axis’

order represents the importance of each feature for the convolutional-Transformer
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Figure 5.12: Shapley values for 100 limit orders.

on average, while the horizontal axis comprises the associated Shapley value. One

can appreciate how certain input features, e.g., the bid price in Level 5, or the

time of day itself (which probably is already integrated into the other features),

are not critical. Further, features such as the microprice and the bid size on Level

1 are driving the model’s predictions. Finally, it should be mentioned that the

distribution of the points itself is also informative, e.g., Figure 5.12 clearly reflects

how certain extreme observations (sparse red dots) have a significant effect on the

model’s output: extreme values in Level 4’s bid price may entail a large order which

already consumed the previous levels. On the other hand, dense clusters of averaged
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values are usually associated with small Shapley values.

To conclude this section, we should remark that by visualising attention heatmaps

along with Shapley values, we provide a more interpretable view of the monotonic

encoder-decoder convolutional-Transformer’s performance, gaining valuable insights

into how it interacts with the model’s inputs. The attention heatmaps visualisation

allows us to observe the regions of the input sequence that the model focuses on

at every time step of the prediction process. The Shapley values, on the other

hand, provide a clear view of which features are most important to the model

and how they contribute to its overall prediction. This allows us to gain a better

understanding of the model’s decision-making process and to identify potential

areas for improvement, such as ensuring that the model considers the most relevant

features when making its predictions.

5.8 Discussion

This paper presents a novel approach to estimating the fill probabilities of limit orders

posted in the LOB. Our data-driven approach integrates a novel convolutional-

Transformer model to raise local-awareness from LOB data, and a monotonic

neural network which guarantees the theoretical correctness of the survival function

estimation. To train and evaluate the proposed model, we use the right censored

log-likelihood, which is a proper scoring rule, unlike other scoring rules that

are commonly used in the literature. To demonstrate the effectiveness of our

method, we conduct a set of experiments on real LOB data. These experiments

show that the monotonic encoder-decoder convolutional-Transformer significantly

outperforms state-of-the-art benchmarks, providing a novel general framework to

perform survival analysis from time-series observations. Finally, we provide an

interpretability analysis based on Shapley values, providing insight into which

features are the most influential.
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The preceding chapters have conducted a detailed analysis of three main areas of

study. Chapter 3 presented key technical contributions to improve the performance

of deep learning models for time series modelling and forecasting, while Chapters 4

and 5 introduced new approaches for solving common quantitative-finance problems

with machine learning-based techniques. In the final chapter of this dissertation,

we briefly recapitulate our primary contributions, including a succinct summary

of the key findings and a thorough examination of potential avenues for future

research development.

6.1 Methods and Contributions

Chapter 3 proposed a novel probabilistic time series forecasting methodology that

introduces the use of spectral domain-based deep learning models, merging classic

signal processing filtering techniques with machine learning architectures. The

proposed solution can alleviate some of the inconveniences commonly associated

107
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with deep autoregressive models. These architectures are often prone to prioritising

recent past data, hence ignoring critical global information not contained in

previous time steps. Additionally, they are susceptible to error accumulation

and propagation and may not yield illustrative results. The proposed model, the

Spectral Attention Autoregressive Model (SAAM), mitigates these problems by

combining deep autoregressive models with a Spectral Attention (SA) module. This

module uses two attention models operating over the Fourier domain representation

of the time series’ embedding. Through spectral filtering, Spectral Attention

differentiates between the components of the frequency domain that should be

considered noise and subsequently filtered out, and the global patterns that are

relevant and should be incorporated into the predictions. The Spectral Attention

module modifies the model’s latent representation of the time series and incorporates

this information within the forecast. Further, experiments on synthetic and real-

world datasets empirically proved these statements and unveiled how our suggested

modular architecture can be incorporated into a variety of base deep autoregressive

models, consistently improving the results of these base models and achieving

state-of-the-art performance.

Chapters 4 and 5 shifted toward showcasing the benefits of machine learning-

based solutions for different problems in the field of quantitative finance, proving

how data-driven approaches compare favourably to classic parametric-based models

and providing solutions for various algorithmic and high-frequency trading scenarios.

Specifically, Chapter 4 addressed the problem of volatility forecasting, which

plays a central role among equity risk measures. In this chapter, an empirical

analysis was conducted to evaluate the performance of Dilated Causal Convolutional-

based neural networks in the context of volatility forecasting. A set of robust loss

functions was used during this performance assessment, conducted in a large dataset

comprising two years of high-frequency intraday financial data. The results showed

that the proposed model, DeepVol, obtained significant performance gains compared

to well-established volatility-oriented parametric models such as GARCH and its

variants, e.g., EGARCH and the HEAVY model. Further, this empirical evaluation
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is especially relevant considering that the experiments were conducted in high

volatility regimes, such as the 2020 stock crisis caused by the COVID-19 pandemic.

Out-of-sample forecasts revealed how, in this tumultuous scenario, our machine

learning-based solution outperformed baseline methods while exhibiting robustness

in the presence of volatility shocks, showing its ability to extract universal features

and transfer learning to out-of-distribution data. Thus, Chapter 4 demonstrated

how models based on Dilated Causal Convolutions can avoid the limitations of

classical methods, such as model misspecification or the use of hand-crafted noisy

realised measures, by taking advantage of the abundance of high-frequency data.

Consequently, we concluded that these data-driven approaches should be carefully

considered in the context of volatility forecasting, as they can be instrumental

in the valuation of financial derivatives, risk management, and the formation

of investment portfolios.

Finally, Chapter 5 presented a novel methodology for estimating the distribution

of fill times for limit orders posted in the Limit Order Book (LOB). The proposed

data-driven approach does not make assumptions about the underlying stochastic

processes. It employs state-of-the-art deep learning methodologies to grant practi-

tioners the capability of making informed decisions between market orders and limit

orders, a tradeoff between immediate execution and price premium. The survival

analysis model introduced in this chapter examines the relationship between the time-

varying features of the LOB and the distribution of fill times. The proposed model

is based on a convolutional-Transformer encoder and a monotonic decoder. We offer

an exhaustive comparison of the survival functions resulting from different order

placement strategies, offering insight into the fill probability of orders placed within

the spread. Further, the effectiveness of the presented methodology was assessed

through an empirical evaluation based on the right-censored log-likelihood, a proper

scoring rule. The experiments conducted revealed the superior performance of the

monotonic encoder-decoder convolutional-Transformer compared to state-of-the-art

benchmarks, leading to more accurate predictions and improved economic value.
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6.2 Future Work

We conclude this thesis with a brief discussion of future research directions in light

of the problems addressed in this doctoral project. In this regard, we separately

consider the two primary themes covered: the use of spectral domain-based machine

learning models and the development of data-driven solutions in the context of

quantitative finance.

Concerning Fourier domain-based deep learning models, future work should

explore new approaches to take advantage of signal processing techniques in

the machine learning context, as we do when combining attention models with

spectral filtering. Different alternatives for the statistical characterisation of

the process should be studied. E.g., the Discrete Cosine Transform (DCT), a

real-to-real function, would simplify the process of modifying the phase of the

time series embedded representation in comparison with the Discrete Fourier

transform (DFT), a real-to-complex transformation, employed in Chapter 3. Further,

using Spectral Attention as a replacement for Transformer models’ self-attention

mechanism would allow Transformer-based architectures to function with frequency-

domain representations of the data, bringing opportunities to enhance self-attention

explainability in conjunction with models’ complexity reduction.

When it comes to the use of data-driven models in the field of algorithmic high-

frequency trading, state-of-the-art machine learning methods have the potential to

enhance the performance of traditional methodologies used by practitioners. Deep

neural networks’ feature extraction capabilities, which can benefit from the rising

accessibility of high-frequency data, are mostly to blame for this. Additionally,

since the availability of large financial datasets would endorse research efforts in

the field of quantitative finance, it is important to prioritise the development of a

shared set of standardised high-frequency financial time series datasets to facilitate

the evaluation and comparison of various models. Finally, the field of algorithmic

high-frequency trading requires the adoption of robust loss functions for accurate

benchmarking. Otherwise, model comparisons lack systematic rigour. Patton
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(2011) analytically proves that the presence of noise in the volatility proxy can

lead to the selection of an imperfect volatility forecast over the true conditional

variance for certain choices of the loss function. Additionally, Rindt et al. (2022)

reaches similar conclusions in the context of survival analysis, a field in which the

literature frequently makes use of improper scoring rules. Consequently, it is crucial

to establish necessary and sufficient conditions for loss functions to yield rankings

of both volatility forecasts and fill times of limit orders that are robust to noise,

thereby leading to the development of proper benchmarking loss functions.
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A
Conditions for an Order Fill

Figure A.1 shows a depiction of a Limit Order Book (LOB). To check if an order is

filled or not, a hypothetical order is placed in the book at a certain level or tick

distance from the midprice. This is illustrated in Figure A.2.

A limit order is considered filled if certain fill conditions are satisfied. However,

if the fill conditions are not met by the time the market closes, the limit order is

cancelled and is considered unfilled and right censored by end-of-study censoring.

Fill conditions are checked by monitoring the price of new incoming limit orders

and market orders after submitting the hypothetical limit order. We proceed to

detail these analogously to Maglaras et al. (2021):

1. A new limit/market order:

• If a new buy/sell order comes at a higher/lower price than our synthetic

sell/buy order, then the order is filled.

• If an order in front of our synthetic order is filled/partially filled, we

consider the synthetic order to be filled as well.

2. A new market order comes in at the same price than our synthetic order:

• If the market order crossed against any of the orders being tracked, then

our synthetic order has been filled.
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pt

Ask Side

︸ ︷︷ ︸
Bid-Ask Spread

Midprice

Bid Side

Figure A.1: Example diagram of the top five levels on the ask and on the bid side of a
limit order book.

pt

Ask Side
Orders Tracked

Hypothetical LO

Bid Side

Figure A.2: Example diagram of a hypothetical limit order placed in the first level of
the bid side of the order book. To check for an order fill, we track execution messages
order for order in front of the in the queue, as well as levels deeper in the book.
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Figure A.3: Kaplan-Meier estimates of orders repositioned at the best level and orders

with no repositionwith .

From an implementation perspective, we do not require maintaining a full log

of all the orders in the queue using a linked list. It suffices to track the messages

associated with orders in front of the hypothetical limit order in the queue and

market orders arriving above/below the hypothetical order, depending on the side

it had been placed. Figure A.3 shows the difference between the estimates resulting

from using or not order re-positioning. Both survival functions show a similar

form of decay, and their shapes are consistent with the well-known decrease in

fill probability at deeper levels of the order book.
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B
Derivation of the Right Censored

Log-Likelihood

In consistency with the notation used in previous sections, we assume we have

a dataset of observations, D = {(xk, zk, dk)}Nk=1, where zk = min{T kl , Ck
l },with

random variables Tl and Cl denoting the random fill and cancellation (censoring)

times, respectively. The likelihood function is given by:

L = f(z1, d1, . . . , zN , dN) =
N∏
k=1

f(zk, dk). (B.1)

To re-write this equation with respect to the values of the indicator variable d,

we first consider the case in which the order is filled, and the event is therefore
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observed (d = 1). In that case, we have that:

f(zk, dk) = P{Z = zk, dk = 1} =

= P{T = zk, T ≤ C} =

= P{T = zk, zi ≤ C} =

= P{T = zk}P{zi ≤ C} = (assuming T ⊥⊥ C)

= fT (zk)SC(zk).

(B.2)

Moreover, if the order is cancelled or is not filled before the end of the trading day

(and is therefore censored), we have that di = 0, which implies:

f(zk, dk) = P{Z = zk, dk = 0} =

= P{C = zk, T > C} =

= P{C = zk, zk > C} =

= P{C = zk}P{zk ≤ C} = (assuming T ⊥⊥ C)

= fC(zk)ST (zk),

(B.3)

which means that Eq. (B.1) can be rewritten as:

L =
N∏
k=1

[
fT (zk)SC(zk)

]δk
[
fC(zk)ST (zk)

](1−δk)
=

=
N∏
k=1

[
fT (zk)δkST (zk)(1−δk)

][
fC(zk)(1−δk)SC(zk)δk

]
.

(B.4)

In most cases, we are concerned with the estimation of ST (t) and not SC(t), since

SC(t) contains information related to the censoring mechanism. Only ST (t) contains

the information about the filltime, which is the variable of interest. So, the terms

that do not involve T are considered constant, and the likelihood is proportional to:

L =
N∏
k=1

fT (zk)δkST (zk)(1−δk). (B.5)

Finally, taking the log we obtain:

L = log(L) =
N∑
k=1

dk log(f̂(zk|xk)) + (1− dk) log(Ŝ(zk|xk)). (B.6)

This proof empirically validates the independence assumption between the censoring

mechanism and the random filltime, used to derive the expression for the right-

censored log-likelihood in Eq. (B.5). This was done for all the tested levels of
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the order book, calculating the Pearson correlation coefficient between T and C.

The results are reported in Table B.1.

Table B.1: Pearson correlation coefficient between filltime, T , and censoring time, C,

for all levels of the order book.

L1 L2 L3 L4 L5

ρT,C -0.003 -0.012 -0.015 -0.016 -0.017
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C
Validating Assumptions of Survival

Analysis in the LOB

In this section, we scrutinise the reliability of some of the implicit assumptions

of this work. The first of those assumptions concerns censored events. Censored

data helps in the estimation of a survival function because the fact that an order

has not been filled before being censored also provides information (Lawless, 2011).

However, censoring in survival analysis should be “non-informative”, which means

that censoring distribution is independent of the time-to-event distribution (Leung

et al., 1997), as “informative” censoring has been shown to yield biased results

(Ranganathan, Pramesh, et al., 2012).

It is important to validate the independence assumption mentioned above due

to the high proportion of cancellations present in LOBs. Figure C.1 reports the

number of fills and cancellations (as well as their proportion) per level for data

collected from AAPL LOB between September 2012 and September 2014. As

expected, due to the rules of matching (price-time priority), the largest proportion
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Figure C.1: Number (left) and proportion (right) of orders executed and cancelled at

different levels of the AAPL LOB between 2012 and 2014.

of filled orders occurs in the first level. As we go deeper into the book, most orders

are cancelled. This is well known in the literature, see Cartea, Jaimungal, et al.

(2015). It entails that survival functions estimated at deeper levels of the LOB

will be subject to a large censoring proportion.

As previously mentioned, this study is restricted to analysing “terminal” events.

However, larger-size LOs in the book might be “partially filled” or “partially

cancelled” before reaching the final terminal state. Modelling these intermediate

events in survival analysis is not trivial. Recent work (Groha et al., 2020) suggests

using intermediate state representations modelled with a Markov process to account

for non-terminal events, such as partial fills. However, the difficulty of describing

the transition probabilities of such a model while allowing a flexible use of the

covariates is challenging. This, together with the computational expense associated

1 2 3 4 50.0

0.2
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0.6

0.8

Partial Fills for Level

Figure C.2: Number of partial fills required for full order execution when considering

fills at different levels.
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with the method proposed in Groha et al. (2020), discourages its use in this initial

study of survival analysis in the order book and it is left for future work. However,

Figure C.2 shows the proportion of partial fills needed before the complete execution

of an order. Since more than 98% of orders are filled against a single market order,

we consider this assumption to be satisfactory.
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D
Typical Survival Models and Scoring Rules

An initial approach to estimate the survival function is to use a Kaplan-Meier

estimate (Kaplan and Meier, 1958), which is given by:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
, (D.1)

where ti is the time when at least one event occurred, di is the number of events

that occurred at time ti, and ni denotes the limit orders known to have survived

up to time ti. We present a series of methods that approximate survival functions.

A follow-up model which conditions on a feature vector is the Cox Proportional-

Hazards model (Cox, 1972), where the hazard rate follows:

h(t|x) = h0(t)exp(βTx), (D.2)

where β are the coefficients for the feature vector x, and h0(t) is a baseline hazard

directly estimated from the data. Given N observations, the regression coefficients

are chosen to maximise

L(β) =
∏
di=1

exp(βTx)∑
j:tj≥ti exp(βTx) . (D.3)
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Another popular model used in survival analysis is the Accelerated Failure Time

model (Wei, 1992), in which the hazard rates are determined by:

h(t|x) = ϕ(x)h0(ϕ(x)t), (D.4)

where ϕ(x) models the effect of the covariates, usually through the relationship

ϕ(x) = exp(βTx). In practice, the assumption of linear interaction between features

and the proportional hazards is often violated. This has recently motivated the

extension of the Cox model using deep learning in order to capture non-linearities

between features of interest (Katzman et al., 2018; Kvamme et al., 2019) while

maintaining the structure of the Cox model:

h(t|x) = h0(t)exp(fθ(x, t)). (D.5)

More recent work (C. Lee, Zame, et al., 2018b; C. Lee, Yoon, et al., 2019; Rindt

et al., 2022) focuses on directly learning the survival function conditioning on

input features:

S(t|x) = fθ(x, t), (D.6)

which is also the approach we take.

Commonly used scores for survival functions include time-dependent concordance

(Antolini et al., 2005), which is defined as:

Ctd = P[Ŝ(zi|xi) < Ŝ(zi|xj)|zi < zj, di = 1] ≈

≈
∑N
i=1

∑N
j=1;i̸=j I[Ŝ(zi|xi) < Ŝ(zj|xj)]πij∑N

i=1
∑N
j=1;i̸=j πij

,
(D.7)

where πij is an indicator of the pair (i, j) being amenable for comparison, i.e., if

the pair is “concordan”. The intuition behind time-varying concordance (Harrell

et al., 1982) is based on the idea that the predicted survival probability for an

order i evaluated at time zi and conditioned on market features xi should be lower

than that of an order j evaluated at the same time and conditioned on market

features xj if order i was filled faster than order j. In addition to time-varying

concordance, another frequently used scoring is the Brier score for right-censored
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data (Graf et al., 1999), defined as:

β = Ŝ(t|x)2I{z ≤ t, d = 1}
Ĝ(z)

+ (1− Ŝ(t|x))2I{z > t}
Ĝ(z)

, (D.8)

where Ĝ is the Kaplan-Meier estimate of the censoring distribution.

Time-varying concordance and Brier score are the two most common scores to

evaluate models in the survival analysis literature (C. Lee, Zame, et al., 2018b;

C. Lee, Yoon, et al., 2019; Zhong et al., 2021). However, recent work (Rindt et al.,

2022) shows that the previously presented scoring rules (as well as a number of

others) are actually improper, meaning that they can potentially give higher scores

to wrongly fitted distributions 1. Right-censored log-likelihood is a proper scoring

rule, with the key result in (Rindt et al., 2022) showing that:

E[S(S, (z, d))− S(Ŝ, (z, d))) | C] =

F (C)KL(f(t)/F (C)∥f̂(t)/F̂ (C)) + KL(Ber(S(C))∥Ber(Ŝ(C))) ≥ 0,
(D.9)

where KL(·) denotes the Kullback-Leibler divergence, Ber(·) is the Bernoulli

distribution, C is the random censoring time, and F denotes the probability

mass function.

1Brier score is a proper scoring rule under the assumption of independence between censoring

and covariates, as well as a perfect estimate of the censoring distribution. These assumptions do

not hold in the context of limit order executions, given that orders of larger size are prone to

cancellations (which are interpreted as censoring in this work) and there is not a tractable way of

obtaining a perfect estimate of the distribution of cancelled orders.
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E
Extending the Encoder’s Dilated Causal

Convolutional Neural Network to L layers

If we desire to extend the original encoder’s DCC in charge of obtaining the

corresponding queries, keys, and keys in the proposed convolutional-Transformer,

the causal convolutional network would be modified as follows. The first layer

would perform the same operation, convoluting the input sequences x and the

kernel k, which can be defined as follows:

F (l=1)(t) =
(
x ∗d k(l=1)

)
(t) =

s−1∑
τ=0

k(l=1)
τ · xt−dτ , (E.1)

being d the dilation factor and k the filter, with size s ∈ Z. For each of the rest

l-th layers, we could define the convolution operation as:

F (l)(t) =
(
F (l−1) ∗d k(l)

)
(t) =

s−1∑
τ=0

k(l)
τ · F l−1

t−dτ (t). (E.2)

Each of the layers in this hierarchical structure defines the kernel operation as

an affine function acting between layers:

k(l) : RNl −→ RNl+1 , 1 ≤ l ≤ L. (E.3)

141



142
E. Extending the Encoder’s Dilated Causal Convolutional Neural Network to L

layers

The previous equation shows how, through the usage of residual connections,

firstly proposed in He et al. (2016), the encoder’s convolutional network could

connect l-th layer’s output to (l + 1)-th layer’s input, enabling the usage of deeper

models with larger receptive fields to generate the hidden representation that is

used by the Transformer model.
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