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Resumen

BitTorrent es la aplicación peer-to-peer para compartición de ficheros de mayor

éxito y responsable de una fracción importante del tráfico de Internet. Trabajos pre-

vios han estudiado BitTorrent usando técnicas de simulación, modelos analı́ticos y

medidas reales. Aunque las técnicas analı́ticas y de simulación son más sencillas de

aplicar, tı́picamente presentan versiones simplificadas de los problemas analizados

y en el caso concreto de BitTorrent pueden obviar aspectos o interacciones funda-

mentales que ocurren en los enjambres de BitTorrent. Por lo tanto, en esta tesis

utilizaremos como pilar de nuestra investigación técnicas de medidas reales. En

primer lugar presentaremos un resumen de las técnicas de medidas usadas hasta

el momento en el ámbito de BitTorrent que suponen la base teórica para el diseño

de nuestras propias herramientas de medida que nos permitirán analizar enjambres

reales de BitTorrent. Usando los datos obtenidos con estas herramientas estudi-

aremos aspectos diferentes de BitTorrent con un enfoque especial de los aspectos

socioeconómicos. En la primera parte de la tesis, realizaremos un estudio detallado

de la topologı́a de los enjambres reales de BitTorrent ası́ como de detalles acerca

de las interacciones entre peers. Nuestro análisis demuestra que la resistencia de

la topologı́a de los enjambres reales de BitTorrent es menor que la ofrecida por

grafos aleatorios equivalentes. Además, los resultados revelan que las polı́ticas de

los Provedores de Internet junto con la incipiente utilización de clientes de BitTor-

rent modificados y otros efectos en la red (p.ej. congestión) hacen que los enjambres

reales de BitTorrent presentan una composición de localidad. Es decir, un nodo tiene

un número de vecinos dentro de su mismo Proveedor de Internet mayor del que ob-

tendrı́a en una topologı́a puramente aleatoria. Estos resultados son de interés para

las empresas que utilizan BitTorrent en sus operaciones, ası́ como para los Prove-

dores de Internet responsables de transportar el tráfico de BitTorrent. En la segunda

parte de la tesis, analizamos los aspectos de publicación de contenido en los may-

ores portales de BitTorrent. En concreto, los resultados presentados muestran que

sólo un pequeño grupo de publicadores (alrededor de 100) es responsable de hacer
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disponible más de dos tercios del contenido publicado. Además estos publicadores

se pueden dividir en dos grupos: (i) aquellos con incentivos económicos y (ii) pub-

licadores de contenido falso. El primer grupo hace disponible contenido protegido

por derechos de autor (que es tı́picamente muy popular) en los principales portales

de BitTorrent con el objetivo de atraer a los consumidores de dicho contenido a sus

propios sitios web y obtener un beneficio económico. La eliminación de este grupo

puede tener un impacto importante en la popularidad de los principales portales de

BitTorrent ası́ como en el tráfico generado por BitTorrent en Internet. El segundo

grupo es responsable de la publicación de contenidos falsos. La mayor parte de

dichos contenidos están asociados a una actividad maliciosa (p.ej. la distribución

de software malicioso) y por tanto suponen una seria amenaza para el ecosistema

de BitTorrent, en particular, y para Internet en general. Para minimizar los efec-

tos de la amenaza que presentan estos publicadores, en la última parte de la tesis

presentaremos una nueva herramienta denominada TorrentGuard para la pronta de-

tección de contenidos falsos. Esta herramienta puede accederse a través de un portal

web y a través de un plugin del cliente de BitTorrent Vuze. Finalmente, presentamos

MYPROBE, un portal web que permite consultar una base de datos con información

actualizada sobre los publicadores de contenidos en BitTorrent.



Abstract

BitTorrent is the most successful Peer-to-Peer (P2P) application and is respon-

sible for a major portion of Internet traffic. It has been largely studied using sim-

ulations, models and real measurements. Although simulations and modelling are

easier to perform, they typically simplify analysed problems and in case of BitTor-

rent they are likely to miss some of the effects which occur in real swarms. Thus, in

this thesis we rely on real measurements. In the first part of the thesis we present the

summary of measurement techniques used so far and we use it as a base to design our

tools that allow us to perform different types of analysis at different resolution level.

Using these tools we collect several large-scale datasets to study different aspects

of BitTorrent with a special focus on socio-economic aspects. Using our datasets,

we first investigate the topology of real BitTorrent swarms and how the traffic is

actually exchanged among peers. Our analysis shows that the resilience of BitTor-

rent swarms is lower than corresponding random graphs. We also observe that ISP

policies, locality-aware clients and network events (e.g., network congestion) lead

to locality-biased composition of neighbourhood in the swarms. This means that

the peer contains more neighbours from local provider than expected from purely

random neighbours selection process. Those results are of interest to the companies

which use BitTorrent for daily operations as well as for ISPs which carry BitTorrent

traffic. In the next part of the thesis we look at the BitTorrent from the perspective

of the content and content publishers in a major BitTorrent portals. We focus on

the factors that seem to drive the popularity of the BitTorrent and, as a result, could

affect its associated traffic in the Internet. We show that a small fraction of pub-

lishers (around 100 users) is responsible for more than two-thirds of the published

content. Those publishers can be divided into two groups: (i) profit driven and (ii)

fake publishers. The former group leverages the published copyrighted content (typ-

ically very popular) on BitTorrent portals to attract content consumers to their web

sites for financial gain. Removing this group may have a significant impact on the

popularity of BitTorrent portals and, as a result, may affect a big portion of the Inter-
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net traffic associated to BitTorrent. The latter group is responsible for fake content,

which is mostly linked to malicious activity and creates a serious threat for the Bit-

Torrent ecosystem and for the Internet in general. To mitigate this threat, in the last

part of the thesis we present a new tool named TorrentGuard for the early detec-

tion of fake content that could help to significantly reduce the number of computer

infections and scams suffered by BitTorrent users. This tool is available through

web portal and as a plugin to Vuze, a popular BitTorrent client. Finally, we present

MYPROBE, the web portal that allows to query our database and to gather different

pieces of information regarding BitTorrent content publishers.
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Chapter 1

Introduction

BitTorrent standard [44] was first published by Brian Cohen in 2001. Since that

time, the protocol has become the most successful Peer-to-Peer (P2P) file-sharing

application. It is currently used by hundreds of millions of users and is responsible

for a large portion of Internet traffic [23]. BitTorrent is an alternative to traditional

server-client content distribution. It is indeed very effective in distributing large

files, e.g., movies, big updates or open-source software distributions, and is used

by some companies to perform important tasks such as software release or content

replication. This effectiveness has led to a big success of the protocol among the

users and has created a huge ecosystem that contains millions of BitTorrent peers,

several BitTorrent client implementations, different trackers and torrent-discovery

sites. It is estimated that nowadays the number of monthly active users can reach a

quarter of a billion [1].

Because of the popularity of BitTorrent and its wide presence in the Internet, it is

very important to obtain a full knowledge about technical aspects and implications

of the protocol as well as about all the mechanisms that drive BitTorrent popularity.

Nowadays, BitTorrent has wide commercial appliance. It is used to distribute the

software, both by the companies (for example by Blizzard to distribute their games)

as well as by many free software projects. BitTorrent can be also used by the com-

panies to share the content across their data centres, for example Facebook [2] and

Twitter [3] use BitTorrent for distributing updates to their servers. Thus, it is im-

portant to investigate such information as the efficiency of a swarm to disseminate

content, the resilience of a swarm to different events such as being partitioned or the

efficiency and overhead generated by swarming and neighbour selection algorithms.

Moreover, because of the fact that BitTorrent is responsible for a significant part of

the Internet traffic overall, it is of interest to Internet Service Providers which carry

1
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this traffic. Those providers are interested to understand how different events caused

by BitTorrent affects their business (for example locality in the neighbourhood of

BitTorrent clients). Furthermore, there are not only technical factors that are im-

portant to fully understand the BitTorrent mechanisms. The extreme popularity of

P2P applications (and especially BitTorrent) that generates their associated traffic

and thus their impact on the network, seems to be primarily affected by social and

economic factors. More specifically, the big popularity of BitTorrent is because it

is widely adopted to distribute the copyrighted files (e.g., recent release of Holly-

wood movies) at no cost to the downloaders. There are several torrent portals (e.g.,

the Pirate Bay) that index millions of content, which in majority violates copyright.

Publishing this content is not only unlawful and can have serious legal implications

but it also requires a significant amount of resources. Thus, it seems important to

analyse the socio-economic factors of content publishing phenomena in BitTorrent.

Especially, it is crucial to understand how the business that drives BitTorrent pop-

ularity looks like and to reveal who is responsible for publishing the content (and

committing copyright infringement) as well as what are their incentives and possi-

ble benefits.

The popularity of BitTorrent attracted an interest in the research community.

In recent years, a significant progress has been made in order to understand the

strengths and limitations of BitTorrent’s protocol and its tit-for-tat mechanism [45,

60,67,69,71,78,80,81,87,89,96,108]. The research community has also examined

various aspects of swarming mechanism in BitTorrent [39,62,73,80,91]. Moreover,

there are several works which analyse performance aspects and propose different

techniques that can improve BitTorrent functionality [34, 35, 43, 52, 57, 78, 92, 94,

96,100,110]. Furthermore, other aspects of BitTorrent such as demography of users

[67, 99, 118] along with incentives [31, 68, 82, 103] issues were investigated. There

are also some works on security [54–56], especially on analysis of the vulnerabilities

of BitTorrent protocol to free-riders [86, 89, 108] and on privacy issues [38, 42].

Schemes to enhance BitTorrent to support streaming applications [40, 53, 102, 112]

were also proposed.

However, despite its importance, the analysis of BitTorrent socio-economic as-

pects has received little attention. Note that these socio-economic components are

important factors, which in fact are the reasons of BitTorrent success and they are

crucial for understanding the popularity of BitTorrent. In the literature, we can find

just few previous works [41,50,115] that address some specific economic aspects of

BitTorrent such as techniques to reduce the impact of BitTorrent in the transit traffic

of ISPs, which lowers their operational costs. In this thesis we try to analyse several
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relevant socio-economic aspects of the BitTorrent ecosystem. In order to understand

them, we propose measurement techniques and perform extensive data collection

processes. There are several proposals on how to simulate and model the BitTor-

rent ecosystem [62, 100, 116]. However, simulating and modelling the BitTorrent

ecosystem have several limitations as they may miss some of the effects (like spe-

cific network events) that occur in real BitTorrent swarms. They also do not allow to

gather some specific data like downloaders’ demographic or publishers’ behaviour.

Thus, in order to get the most accurate and complete results, we use real data from

crawling BitTorrent in real conditions.

The first objective of this thesis is to present an extensive analysis of current Bit-

Torrent measurement techniques [75]. Based on it, we implemented a measurement

tool which is able to monitor the BitTorrent ecosystem and obtain various types of

data. The level of details of crawled data can be adjusted in function of scalabil-

ity we want to obtain. We performed several different crawlings between 2008 and

2012. The majority of our measurements are based on the Pirate Bay portal [21],

which is a publicly accessible portal, contrary to private portals called BitTorrent

darknets [88, 117]. According to the Alexa Rank [9] and based on earlier stud-

ies [118], the Pirate Bay is the most popular and representative BitTorrent portal.

Maximum number of their daily visits, as reported by Alexa, reveals that the Pirate

Bay is the most visited portal and it receives at least twice more visits than the sec-

ond largest portal, called Torrentz. In Appendix A we discuss the representativeness

of the obtained results beyond popular BitTorrent portals. Using the obtained dataset

we perform an exhaustive analysis of BitTorrent and we aim to provide a compre-

hensive picture of the BitTorrent ecosystem focusing on different socio-economic

aspects.

To understand socio-economic factors which affect BitTorrent, we use different

datasets collected with our measurement tools. We address socio-economic issues

by focusing on two main characteristics: (i) connectivity properties of BitTorrent

swarms and (ii) behaviour and incentives of content publishers. The analysis of

the connectivity properties in real BitTorrent swarms can reveal us important infor-

mation like locality-bias exhibited by current swarms, the resilience of a swarm to

different events or efficiency of a swarm to disseminate content. Unveiling who pub-

lishes content in major BitTorrent portals and why, allows us to investigate the main

incentives of major content publishers. Especially, we dedicate our effort to un-

derstand and mitigate fake publishers who perform a continuous content poisoning

attack against major BitTorrent portals that affects millions of downloaders.

We start with addressing the fundamental questions regarding the connectivity
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properties of real BitTorrent swarms [77]. For this purpose, we collected the evo-

lution of the graph topology of real torrents to carefully study the overlay topology

characteristics of real BitTorrent swarms as well as the connectivity properties of the

peers. We dedicate special effort to the locality effect. BitTorrent traffic creates a

high amount of transit traffic which goes to transit links. This consequently increases

the operational costs of the ISPs. Several papers proposed solutions to address this

problem. However, in this thesis we are the first to investigate whether or not local-

ity already takes place in the real world. Based on our results, we demonstrate that

current BitTorrent swarms are experiencing a marked locality phenomenon at the

overlay construction level (or connectivity graph). This locality effect is even more

pronounced when we consider the exchange traffic relationships between peers. This

suggests that an important portion of the BitTorrent traffic is currently confined

within the ISPs. We also focus on the structural characteristics of BitTorrent swarms.

This is an important problem as some critical functions of the content distribution

architecture of some companies depend on BitTorrent. For example, BitTorrent is

often used for the distribution of the content (e.g., Linux distributions) or by big

companies to share the content across their data centres. Our results demonstrate

that, contrary to the conclusion of previous studies, the overlay topologies of real

swarms cannot be modelled as random graphs. Furthermore, the main characteris-

tics of these swarms (clustering coefficient and characteristic path length) suggest

that they present a relatively efficient topology to disseminate information but they

are significantly less resilient to attacks than random graphs. The analysis of the

peer level connectivity properties reveals that peers continuously change more than

half of their neighbours, which may generate an unnecessary communication over-

head. Furthermore, a leecher typically keeps stable connections with a handful of

neighbours with which it exchanges most of its traffic, whereas seeders do not es-

tablish long-term connections with any peer in order to guarantee the homogeneous

distribution of pieces among the leechers.

To enhance the picture of the BitTorrent economic model, next we focus our

effort to understand the content publishing phenomena in BitTorrent [48, 49]. The

growing popularity of BitTorrent is primarily due to the availability of valuable con-

tent without any cost for consumers. However, besides the required resources, pub-

lishing valuable (and often copyrighted) content has serious legal implications for

the users who publish the material. This raises the question that whether (at least

major) content publishers behave in an altruistic fashion or have other motives such

as financial incentives. We conduct a systematic study on the major BitTorrent pub-

lishers and we discover that a small fraction of publishers (3%) is responsible for
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publishing a majority amount of the content (two-thirds) that serve three-quarters

of the downloads. Our investigation reveals several key insights. First, anti-piracy

agencies and malicious users publish a large amount of “fake” files to protect copy-

righted content and spread malware or scam downloaders, respectively. Fake content

represents an important portion of those files shared in BitTorrent and overwhelm-

ing majority of the analysed fake files is linked to either malware or scam websites.

This creates a serious threat for the BitTorrent ecosystem which should be mitigated.

Second, excluding the fake publishers, content publishing in major BitTorrent por-

tals appears to be largely driven by companies that try to attract consumers to their

own web sites for financial gain. Therefore, if these companies lose their interest or

are unable to publish content, the popularity of the BitTorrent portals and their asso-

ciated traffic may significantly decrease. We also demonstrate that profit-driven pub-

lishers attract more loyal consumers whereas top altruistic publishers have a larger

fraction of loyal consumers with a higher degree of loyalty.

Finally, we present our BitTorrent web portal [11]. We have implemented a

crawler that continuously monitors the BitTorrent ecosystem. The portal offers an

interface to the gathered data and it makes possible to query our database in order

to obtain information about content publishers. It allows to monitor the activity

of top publishers of BitTorrent and checks such details like number of published

torrents, their category or ISP used by the publishers. What is more important, it

also implements a module (called TorrentGuard [26, 76]) which monitors published

content and detects if the content is fake. The module continuously checks the IP

address of the initial seeders of each torrent and compares it with the addresses used

by fake publishers. TorrentGuard is also implemented in a form of a Vuze plugin.

The usage of TorrentGuard could possibly reduce the number of computer infections

and scams suffered by BitTorrent users.

In short the main contributions of this thesis are:

• an extensive analysis of different measurement techniques and development

of a crawling software which can gather data about the BitTorrent ecosystem

at different level of details

• understanding the connectivity properties of real BitTorrent swarms

• measurement and analysis of the BitTorrent locality effect and swarm re-

silience

• a comprehensive analysis of the publishing phenomena and a detailed descrip-

tion of different groups of publishers
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• a detailed analysis of the presence of fake content in the BitTorrent ecosystem

• a portal that monitors BitTorrent and offers detailed information about pub-

lishers

• a novel solution which allows the early detection of fake content in the Bit-

Torrent ecosystem

The rest of the thesis is structured as follows. In Section 2 we present the back-

ground of BitTorrent together with the work related to our research. Next, in Section

3 we discuss different methods of measuring BitTorrent. In Section 4 we focus on

topology of BitTorrent swarms and its implication in swarming efficiency, resilience

and locality, while in Section 5 we investigate the different profiles of BitTorrent

publishers. Finally, in Section 6 we are presenting our web application, before con-

cluding in Section 7.



Chapter 2

Background and Related Work

2.1 Background

BitTorrent [45] is the name used by Brian Cohen to define the peer-to-peer file

sharing protocol that he designed one decade ago. The great success of this protocol

led to a creation of a complex system around it. We adopt the terminology used by

Zhang et al. [118] to refer to this system as the BitTorrent Ecosystem. In this Section

we describe the main players of the ecosystem as well as its functionality. This is

summarised in Fig. 2.1.

2.1.1 Main Elements of the BitTorrent Ecosystem

The main elements of the BitTorrent ecosystem are as follows:

• BitTorrent Portals: these are web pages which index .torrent files, classify

them into different categories and provide basic information for each file.

These portals serve as rendezvous points between content publishers and Bit-

Torrent downloaders. The publishers upload their .torrent files to BitTorrent

portal and the clients download them. The Pirate Bay [21] and IsoHunt [16]

are the examples of BitTorrent portals.

• .torrent file: this is a meta-information file which includes relevant information

for the BitTorrent protocol such as: (i) the content infohash, this is a unique

identifier of the content in the BitTorrent ecosystem; (ii) the IP address(es) of

the BitTorrent tracker(s) managing the content distribution process; (iii) the

size of the content and the number of pieces forming the file.

7
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Figure 2.1: BitTorrent Ecosystem basic functionality: (i) The BitTorrent client con-

tacts a BitTorrent portal to download the .torrent file associated to the desired content

(the .torrent file includes the IP address of the tracker managing the swarm associ-

ated to the desired content); (ii) The BitTorrent client contacts the tracker that pro-

vides the IP addresses of a set of peers within the swarm; (iii) The BitTorrent client

connects to these peers for downloading the content.

• magnet link: this is an URI-like link that includes the infohash of a specific

content and optionally the address(es) of a tracker(s) [4]. A user can launch

a download process retrieving the magnet link instead of the .torrent file from

a BitTorrent portal. Then, using information from magnet link the user can

obtain the .torrent file from other peers in the swarm1. The magnet links have

recently become significantly important as the administrators of the largest

BitTorrent portal, the Pirate Bay, stopped serving .torrent file since March 1st

2012. Instead, they serve exclusively magnet links [5].

• BitTorrent trackers: these are servers that manage the BitTorrent download

process of a given content. The set of peers downloading a given file is named

swarm. The tracker maintains a list with the IP addresses and the download

progress of all the peers forming the swarm associated to a specific content.

Furthermore, when a new peer joins the swarm, it contacts the tracker in order

to obtain a list of IP addresses of other peers participating in the swarm. By

1The magnet link can be also used as index to retrieve the associated .torrent file from the different

DHTs implemented by BitTorrent clients [47].
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doing so, the new incomer is able to retrieve pieces of the content from these

peers.

• BitTorrent downloaders (peers): these are clients forming the swarm that

download and/or upload pieces of the content. We distinguish two types of

peers. A seeder is a peer that possesses a complete copy of the content, thus

only uploads pieces whereas a leecher does not have the complete file so it

uploads and downloads pieces.

• BitTorrent publishers: these are the clients that make available the first copy

of the content in the BitTorrent ecosystem. In this thesis we will also call them

as initial seeders.

2.1.2 Publishing Content in BitTorrent

The files, which are to be shared with BitTorrent protocol, are divided into k

pieces of equal size (typically 256 KB to 4 MB) named chunks that are further di-

vided into blocks (typically 16 KB). The block is the data unit to be exchanged

among the peers. In order to make available a content C in BitTorrent, the content

publisher creates a .torrent file associated to C. This .torrent file includes, along

with other information, the IP address(es) of the tracker(s) that manage the down-

load process of the content.

After creating the .torrent file, the publisher uploads it to one or more BitTorrent

portals. For this purpose, it typically uses an account (with a specific username)

created in these portals. Furthermore, the publisher distributes the first copy of the

content by acting as the initial seeder in the associated swarm. Therefore, the content

publisher can be identified by the IP address of the initial seeder distributing the

content and by the username utilised to upload the content to a BitTorrent portal.

There are a few BitTorrent portals such as the Pirate Bay2 indexing millions

of torrents and receiving millions of daily visits. These portals are critical for the

BitTorrent ecosystem as demonstrated by Zhang et al. [118]. They offer detailed

information regarding each indexed torrent. This information slightly varies from

one portal to another, but in general it includes: category of the content, number of

associated files, size of the whole content in the torrent, complete name of the file,

upload date, username who uploaded the torrent, number of seeders and leechers

participating in the torrent swarm (this data is updated every few minutes) and a

description text giving more detailed information regarding the content. Finally, it

2This is the current largest BitTorrent portal based on Alexa Ranking.
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is worth noting that some of these major portals offer an RSS feed to announce the

newly published torrents.

We use the Pirate Bay as the reference BitTorrent portal throughout the thesis.

Previous works [118] demonstrated that the Pirate Bay is a key element and the

most important portal in the BitTorrent ecosystem. The Pirate Bay relies on pub-

lishers who need to create a user account in order to upload .torrent files, whereas

other portals, such as IsoHunt, use crawling techniques to obtain the offered con-

tent from third portals such as the Pirate Bay. Hence, the Pirate Bay is the most

interesting portal to be considered in order to understand different characteristics of

the BitTorrent ecosystem including the content publishing phenomenon. Moreover,

maximum number of their daily visits, as reported by Alexa [9], reveals that the Pi-

rate Bay is the most visited portal and it receives at least twice more visits than the

second largest portal, called Torrentz. This confirms that the Pirate Bay is the most

representative BitTorrent portal. In Appendix A we discuss the representativeness

of our obtained results beyond popular BitTorrent portals. The Pirate Bay offers the

following relevant services to our study: (i) an RSS feed system [22] in which each

new published content is announced along with the username that uploaded the .tor-

rent file to the portal; (ii) each user registered within the Pirate Bay portal has an

individual web page in which its published torrents are listed and (iii) the Pirate Bay

removes the accounts, web pages and .torrent files of those users whose content is

detected as fake. Typically, this happens after a client, who downloaded the content,

reports its falseness to the Pirate Bay administrators.

2.1.3 Joining a BitTorrent Swarm and Discovering Peers

When a BitTorrent user wants to download a given content C, it looks for the

.torrent file (or magnet link) associated to C in a BitTorrent portal and downloads it.

The .torrent file (or magnet link) can be opened with any of the existing BitTorrent

clients [14]. Upon opening the .torrent file, the BitTorrent client connects to one of

the included trackers.

The tracker is a central entity that knows the IP addresses of all the peers shar-

ing a given content, e.g., C, as well as their download progress. In practice, the

BitTorrent ecosystem relies on few trackers that manage a large number (up to few

millions) of torrents in parallel. The OpenBitTorrent and PublicBitTorrent trackers3

are currently the most important ones.

The set of all the peers sharing a content is named swarm. In order to join a

3www.openbittorrent.org and www.publicbt.org
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swarm, a new peer first contacts the tracker using an announce started request that

is answered by the tracker with the number of seeders and leechers participating in

the swarm along with the IP addresses of N (between 40 and 200) randomly selected

peers. These N peers form the initial neighbourhood of the new node. Furthermore,

if a peer’s neighbourhood size falls below a given threshold (typically 20) it sends

again an announce started request to the tracker in order to get new neighbours.

Finally, when a peer leaves the swarm, it sends an announce stopped request to the

tracker that removes this peer from the list of participants in the swarm.

2.1.4 BitTorrent Delivery Procedure

There are two types of nodes within a BitTorrent swarm. On the one hand,

seeders are those nodes which have a full copy of the file and only upload chunks.

On the other hand, leechers are those nodes which do not have the complete file,

thus, they upload and download chunks.

In BitTorrent two peers communicate using the peer wire protocol. Every com-

munication starts with an initial handshake. Once the handshaking sequence is com-

pleted (and before any other messages are sent) the peers exchange the bitfields using

a BITFIELD message. The bitfield indicates which chunks of the file a peer has al-

ready downloaded. Furthermore, every time a peer gets a new chunk, it informs its

neighbours using a HAVE message. Hence, every peer is aware of the chunks that

each neighbour has at every moment.

BitTorrent uses the Tit-for-Tat as an incentive model for the delivery mecha-

nism. Basically, each leecher uploads chunks to those other leechers from whom it

is downloading more chunks. The Choking Algorithm is responsible for providing

this behaviour. It is a periodical operation where every 10 seconds leecher selects

(unchokes) n other leechers from its neighbourhood to upload chunks to. These n

(typically 4) unchoked leechers are those from whom the peer downloaded more

chunks during the last 30 seconds. The rest of the neighbours are blocked (choked).

In the case of seeders, they unchoke n (typically 4) leechers to whom more chunks

they uploaded in the last 30 seconds (i.e., those with higher download rate). In addi-

tion to the regular unchoke operation, BitTorrent implements the optimistic unchoke

operation. Every 30 seconds (this is, every 3 regular unchoke operations) both leech-

ers and seeders randomly select one choked neighbour to upload chunks to. Finally,

when a leecher is unchoked by a neighbour, it applies the Rarest First Policy in order

to choose which chunk to request to this neighbour. Since leechers have full knowl-

edge about the availability of every chunk in its neighbourhood, it always requests
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the rarest one.

2.1.5 BitTorrent Extension

Several extensions to BitTorrent have been proposed so far. Here we just mention

those relevant to our measurement studies:

• Distributed Hash Table (DHT): trackers are a single point of failure in the

BitTorrent ecosystem. Indeed, they are typically threatened by legal actions

[6, 7]. The BitTorrent developers reacted to this by designing a tracker-less

mechanism that allows a BitTorrent user learning the IP addresses of peers

without contacting the tracker. This mechanism is based on a DHT [109].

• Peer Exchange (PEX): This is a simple gossiping protocol that is used to get

IP addresses of peers participating in the swarm. In more detail, PEX works as

follows: a given peer P sends a PEX request to one of its neighbours, e.g., N .

If N supports PEX, it responds with the list of IP addresses of its neighbours.

Hence, by using few PEX queries a given peer can learn the IP addresses of

a large number of participants in the swarm without requesting them from the

tracker. A more detailed description of the functionality of PEX can be found

at [114].

2.2 Related Work

This Section covers the specific related work for the different contributions of

this thesis. They are presented in a separate manner so that, the reader can have a

detailed view of the overall research effort conducted in the different areas covered

by the thesis. First, we present related work in the area of BitTorrent measurement

techniques. Next, we focus on work related to BitTorrent connection properties, es-

pecially to locality technique, resilience of the swarm and topological characteristics

of the swarm. Finally, we present work about BitTorrent publishers and we discuss

the existence of fake content in the BitTorrent.

2.2.1 BitTorrent Measurement Techniques

Several authors used real data collection in order to understand different aspects

of the BitTorrent [50, 62, 96]. Different methods of measuring the BitTorrent are
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described in [75]. In this subsection we present the most representative literature in

BitTorrent measurement techniques sorted chronologically.

M. Izal et al. [67] performed one of the first measurement studies of BitTorrent

in 2004. They study a single torrent corresponding to a Red Hat Linux distribution.

The authors collect two traces. The first one is the log of the tracker managing the

swarm whereas the second trace is collected using a modified BitTorrent client (i.e.,

a crawler) participating in this swarm. This study analyses some performance char-

acteristics such as the existence of an initial flash-crowd, session types and duration,

throughput distribution, etc. In addition, the authors use their traces to show some

demographics parameters (country of the peers) for the specific studied torrent.

In 2005 we can find two higher-scale studies that looks at multiple torrents in-

stead of just one. The first study was conducted by L. Guo et al. [62] and it uses

two type of traces. The first trace [33] was collected by parsing the web page of two

trackers which published the information regarding the managed torrents and the

peers participating in the associated swarms. The second trace was captured from

inside an ISP network and it collected the download of .torrent files from the users

(the authors approximate the timestamp of the .torrent file download as the peer ar-

rival instant to the BitTorrent ecosystem). The authors use these traces to model a

bunch of BitTorrent performance parameters distribution: torrent size, torrent popu-

larity, peer arrival rate, download, session duration, flash-crowd phenomenon, etc.

The second study was performed in the same year by J. Pouwelse et al. [99].

They perform a measurement study combining: (i) a crawling of the major BitTor-

rent portal at that time (Suprnova), (ii) a macroscopic tracker crawling to infer the

IP address of peers participating in hundred of torrents announced in Suprnova and

(iii) a microscopic crawling to infer the session time as well as the download speed

of thousand of peers. Moreover, the same authors made available a second dataset4

(different that the one used in [99]). This dataset is a combination of an active

measurement study of the top 2000 torrents from The Pirate Bay and a passive mea-

surement of the top 750 torrents from The Pirate Bay using a mix of macroscopic

and microscopic techniques.

In 2007, M. Piatek et al. [66] are the first using a microscopic technique to mea-

sure the BitTorrent peers’ upload capacity (not upload rate). This technique is ex-

plained in Chapter 3.2.

In 2009, G. Siganos et al. designed Apollo, a high performance BitTorrent

crawler [106, 107]. Apollo systematically monitors all the peers sharing the top

600 torrents of The Pirate Bay. The IP addresses of the peers are learnt by exploiting

4http://multiprobe.ewi.tudelft.nl/dataset.html
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PEX and DHT BitTorrent extensions. Furthermore, Apollo implements microscopic

techniques to measure both the instantaneous download rate and the number of up-

loaded IP packets of the peers.

Next, there are two different studies conducted in 2010: (i) LeBlond et al. [38]

perform a macroscopic measurement based on the crawling of the Pirate Bay tracker.

To the best of our knowledge, the authors use the most scalable technique described

so far that is able to crawl the participants of 750K torrents in around 30 min. from

a single computer. The objective of this study is to demonstrate that the privacy

offered by BitTorrent to the users is extremely weak. (ii) C. Zhang et al. [118] per-

form the most complete study of the BitTorrent ecosystem demographics so far by

combining BitTorrent portals and trackers macroscopic measurements. They use a

high-performance distributed architecture of crawlers to monitor multiple BitTorrent

portals and trackers in parallel5.

Finally, in [73], authors combine macroscopic tracker measurement with a mi-

croscopic study. As a difference to previous studies, authors monitor the complete

life cycle of thousand of torrents. In order to learn new torrents they use the RSS

feed tool offered by the studied BitTorrent portal (Mininova). The objective of this

work is to study the file unavailability (i.e., lack of seeders) problem in BitTorrent.

In Chapter 3 we discuss in details different measurement techniques, the main

challenges that needs to be faced, and possible solutions for them.

2.2.2 Locality in BitTorrent

One of the early works, which were treating the effect of locality, was the one

by Karagiannis et al. [72]. The authors demonstrated a substantial overlap in the

torrents downloaded by users located within a campus network. In [36] the authors

were using simulations to investigate the effect of limiting the number of inter-AS

connections on transit traffic load and end-user experience. The interest in locality is

not only limited to BitTorrent, as in [29] the authors investigate the locality biasing

in Gnutella. They introduce the notion of oracle that ISP supplies in order to offer a

list of local neighbours to the user.

Substantial efforts have been dedicated to understand and implement BitTorrent

locality solutions. Systems which implement locality solutions such as P4P [115]

or ONO [41] have been proposed. First system, P4P [115], is an architecture which

allows to control traffic between network providers and applications. It can be ap-

plied to different P2P applications like Pando or Liveswarms. On the other hand,

5Part of their dataset is available at http://cis.poly.edu/?chao/bt-ecosys.html
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ONO [41] is a java plugin for Azureus/Vuze clients, which uses network views

gathered, at low cost, from CDNs. The aim of the system is to reduce cross-ISP

traffic. Lin et al. [85] propose ELP that is designed to keep traffic local to ISPs.

Authors provide a model that gives bounds on the inter-ISP traffic and they model

the effectiveness of the system using PlanetLab. Ren et al. [101] propose AS-aware

peer-relay which can bring benefits for P2P VoIP systems. Locality biasing has also

been applied to P2P streaming systems [65, 98].

Furthermore, some studies have performed thorough studies of the expected per-

formance of these locality solutions [37,50,97]. Piatek et al. [97] discuss pitfalls for

an ISP-friendly locality policy and ISPs traffic engineering constraints. Cuevas et

al. [50] explore the impact of high locality. Similar work is done in [37] where the

authors perform extensive experiments in a controlled environment to evaluate the

impact of high locality on transit traffic and peers download completion time. Typ-

ically, these performance studies assume that current BitTorrent swarms correspond

to a random graph structure. However, our analysis reveal that current BitTorrent

swarms already show a locality-biased composition. Hence, the results of previous

performance studies could be revisited using our conclusions.

In addition, some works [50, 64] have shown that the demographics of a tor-

rent directly impact its inherent locality level and the theoretical capacity to localise

traffic. For instance, a torrent for a local Japanese movie is expected to confine

(even under a random overlay construction) most of the traffic within Japanese ISPs

whereas a blockbuster popular movie is expected to be consumed by a large num-

ber of users across the world leading to a poor traffic locality but offering a large

room for improvement using locality techniques. Furthermore, these works report

the presence of unlocalisable torrents for a peer, i.e., torrents in which there are no

other nodes from the same ISP, thus making locality impossible in practice for that

peer.

However, to the best of the authors’ knowledge, little effort has been dedicated

to characterise the level of locality exhibited by current BitTorrent swarms. Otto et

al. [95] addressed this issue by analysing the inter-country and inter-AS BitTorrent

traffic using a dataset including traces for 500K users. Instead in our study, in Chap-

ter 4, we analyse the locality-biased composition of 50K peers’ neighbourhoods as

well as their stable neighbours. Furthermore, we report those ISPs and countries in

which we observe a more significant locality effect. We believe that the results in

both studies are complementary.
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2.2.3 Resilience of BitTorrent Swarms

To the best of the authors’ knowledge the unique paper studying the resilience

of BitTorrent swarms to be partitioned is [30]. The authors analyse similar scenarios

to those considered in our study (Chapter 4), namely random nodes removal process

and highest-degree nodes removal process, in a controlled environment for a single

torrent. Rather, in our analysis we consider 400 swarms snapshots collected from

250 real BitTorrent swarms. In addition we compare the resilience of real BitTorrent

swarms to that shown by equivalent random graphs.

2.2.4 BitTorrent Swarms Characteristics

Some efforts have been done in order to understand the topology of BitTorrent

Swarms [30, 51, 80, 111]. Dale et al. [51] performed experimental study and anal-

ysed evolution of BitTorrent swarms in a controlled environment. Authors of [111]

simulated BitTorrent overlay and looked at the connection matrix of the peers. Sim-

ulation was also used in [30] where the authors were examining the topology of

the swarms and robustness of the overlay for churns. However, due to the difficul-

ties in gathering real data, the existing works are based on simulation or emulation

in controlled environment and a limited number of torrents. In contrary to this, in

this thesis we rely in real data collected from a large number of torrents in order to

understand the graph topology of live BitTorrent swarms.

To the best of the authors’ knowledge, the unique previous study using real data

is [61]. This work presents a similar measurement methodology to that described

in Chapter 4 to collect multiple swarm snapshots for 35 very popular torrents. The

authors use the collected data to analyse the clustering coefficient and the power-law

properties of the node degree distribution of real BitTorrent swarms. In our study,

we use a dataset including 250 torrents of different size and monitor the analysed

torrents from their birth. Furthermore, we study, in addition to the clustering co-

efficient and the power-law properties, the following aspects of BitTorrent swarms

topology: (i) we analyse the characteristic path length in real BitTorrent swarms,

(ii) we compare the real BitTorrent swarms with equivalent random graphs, (iii) we

study the influence of the swarm size in its topology, and (iv) we characterise the

stability of BitTorrent swarms topologies along time.
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2.2.5 Stable Relationship of BitTorrent Clients

Few works in the literature have analysed the existence of stable connections

among peers in BitTorrent swarms. First, Legout et al. [80] used a controlled envi-

ronment and few torrents to analyse the interaction between peers in a swarm. The

authors conclude that peers with similar speed tend to establish stable relationships

among them. This observation partially supports our result across hundreds of real

BitTorrent swarms in which we observe that peers tend to keep stable connections

(i.e., exchange traffic) with few of its neighbours. Second, Choffnes et al. [42] use

traces from 10K peers to identify the existence of communities of BitTorrent users

across torrents and time. Specifically, the authors reveal that BitTorrent users with

similar interests tend to interact along time in multiple torrents leading to the cre-

ation of identifiable communities.

2.2.6 BitTorrent Publishers

The most relevant work is a study that examined the weakness of BitTorrent

privacy [38]. The authors analysed the demography of BitTorrent content publishers

and presented a highly skewed distribution of published content among them as well

as the presence of a significant fraction of publishers located at hosting providers.

This indeed validates some of our initial observations. In another study, Zhang et

al. [118] presented the most extensive characterisation of the BitTorrent ecosystem.

This study briefly examined the demography of the content publishers and showed a

skewed distribution of the contributed content among them. The authors identify the

publishers by their usernames. In Chapter 5 we show that this assumption may miss

an important group of publishers who post fake content, i.e., fake publishers. In this

thesis we go beyond the simple examination of demographics of content publishers.

In Chapter 5 we identify, characterise and classify the major publishers and more

interestingly reveal their incentives and their motivating business model.

2.2.7 Fake Content in BitTorrent

There are several studies presenting the possible threats in the Internet. In [120]

authors state that 40% of all computers are infected by botnets and can be controlled

by attackers. Another study [93] reports high presence of malware and spyware

content in the Internet.

The research about security of BitTorrent protocol mainly focused on the weak-

ness of the protocol itself rather than the content. Shneidman et al. [105] was the first
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to demonstrate the vulnerabilities of BitTorrent protocol to free-riders which results

in gaining unfair benefits by the malicious peer. In [86] the authors designed three

different exploits which allow peers to achieve big download performance without

benefiting to the system. In addition, in [89] they extended that work showing that

free-riding can also be done without the presence of the seeder. Another exploit was

presented and evaluated in [108]. In [54–56] the authors presented possible attacks

which can be performed in BitTorrent. In [55, 56] authors describe leeching attacks

which can be classified as connection attacks or piece attacks. In [54] the seed at-

tacks (bandwidth and connection attacks) are presented. Moreover privacy issue of

the BitTorrent were analysed in [38, 42].

Few previous works have studied the malware propagation through P2P sys-

tems [70, 83, 104, 119]. Specifically, Kalafut et al. [70] analyse LimeWire whereas

Shin et al. [104] analysed Kazaa. These authors look at the problem from the con-

tent perspective instead of the fake publisher perspective used in this thesis. This

avoids that they discover more sophisticated strategies as those reported in our study

in which the content is not the malware itself but includes a link to the malware.

Similar content-based approach is applied in FakeDetector program [15] that looks

for fake hashes in DirectConnect hubs (central servers to which downloaders con-

nect) and reports found fake content to users and hub administrators. Finally, the

authors of [70] propose to filter those content with a specific size since most of the

malware content has specifically this size. Unfortunately, this solution is not valid

for BitTorrent. Instead, in this thesis we propose a more sophisticated solution in

Chapter 6 (TorrentGuard) that provides early detection of fake content.
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BitTorrent Measurement Techniques

3.1 Introduction

BitTorrent is responsible for a major portion of the Internet traffic share [23] and

is daily used by hundred of millions of users. This has attracted the interest of the

research community that has thoroughly evaluated the performance and the demo-

graphic aspects of BitTorrent. Due to the complexity of the system, the most relevant

studies have tried to understand different aspects by performing real measurements

of BitTorrent swarms in the wild, this is inferring information from real swarms in

real time.

Several techniques have been used in order to measure different aspects of Bit-

Torrent so far. In this Chapter we present a survey of different measurement tech-

niques that constitutes a first step in the designing the future measurement techniques

and tools for analysing large scale systems.

The rest of the Chapter is structured as follows. In Section 3.2 we present a

survey of the existing BitTorrent measurement techniques. Afterwards, we describe

the main challenges that these techniques face and the solution to some of them in

Section 3.3 before concluding in Section 3.4.

3.2 Measuring the BitTorrent Ecosystem

In this Section we describe the BitTorrent measurement techniques defined in

the literature so far. We classify them into two main categories macroscopic and mi-

croscopic depending on the retrieved information. The former obtains demographic

and high-level performance information whereas the latter gathers peer level perfor-

19
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Property Portal

Crawling

Tracker

Crawling

Peers

Crawler

Own

client/plugin

Category Macroscopic Macroscopic Microscopic Microscopic

Type of Information Torrents Demographics

and High

level perfor-

mance

Peer Level

Performance

Peer Level

Performance

Cost of Crawler

Preparation

Low Medium High High

Scalability Very High High Medium Medium-

Low

Obtained Details Basic Medium Advanced Very Ad-

vanced

Completeness of

Torrent Population

- High Very High Low

Table 3.1: Comparison of main BitTorrent measurement techniques

mance information. A summary of different techniques is presented in Tab. 3.1.

3.2.1 Macroscopic Techniques

The main objective of these techniques is to understand the demographics of the

BitTorrent ecosystem: the type of published content, the popularity of the content,

the distribution of BitTorrent users per country (or ISP), the relevance of the different

portals and trackers, etc. Furthermore, the macroscopic measurements allow to study

some performance aspects such as the ratio of seeders/leechers, the session time of

the BitTorrent users, the arrival rate of peers, the seedless state (period the torrent is

without seeder) duration, etc.

We classify the macroscopic techniques into two subcategories: BitTorrent por-

tals crawling and BitTorrent trackers crawling.

1) BitTorrent portals crawling:

The (major) BitTorrent portals index millions of torrents in a structured way.

Furthermore, they provide detailed information about each indexed torrent (typi-

cally) on a specific torrent web page. For instance, in the case of the Pirate Bay, the

torrent web page associated to a torrent with an assigned torrent-id equal to i can be

accessed through the url http://thepiratebay.org/torrent/i (see Fig.
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Figure 3.1: Example of the Pirate Bay torrent web page. HTML parsing techniques

can retrieve the following information: Content name (Predators 2010 R5), Content

category and subcategory (Video and Movies), Number of files (3), Size of the whole

content (1.36 GB), Language (English), Upload date (2010-09-24), username up-

loading the .torrent file (cgaurav007), current number of seeders and leechers (4535

and 6671) and a text-box with further information regarding the content.

3.1). Hence, once we know the id assigned to a given torrent in the Pirate Bay, we

just need to access its web page and parse it (using an html parser) to retrieve the

torrent information. However, in order to analyse the demographics of BitTorrent

we need to crawl a large number of torrents. Next we describe two types of crawling

techniques that can be used in order to systematically crawl up to millions of torrents

from a specific portal (we consider the Pirate Bay as an example):
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• Backwards Crawling: In this case we aim to retrieve the information as-

sociated to the alive torrents published in the Pirate Bay from a given

past date to the current instant. For this purpose our crawler sequentially

parses all the torrents’ web pages from the last published torrent (http://

thepiratebay.org/torrent/last_torrent_id/) decreasing up

to the first torrent published in the target date, for instance with torrent id

k (http://thepiratebay.org/torrent/k/). The last published

torrent-id can be identified either manually or using the RSS feed.

• Upwards Crawling: In this case we aim to retrieve the information associated

to every torrent published in the Pirate Bay from now during a given time (e.g.,

one month). In this case, each new torrent will be assigned a torrent-id that

can be learnt from RSS feed. We will use these learnt torrent-ids to crawl the

torrents web pages.

By post-processing the retrieved data from the BitTorrent portal crawling we can

characterise very relevant aspects of the BitTorrent ecosystem demographics. Next,

we describe few representative examples. We refer the reader to [118] for a detailed

analysis of the BitTorrent ecosystem demographics:

• Content Popularity Distribution: For this purpose we obtain the number of

leechers and seeders for each specific torrent from the html parsing. Note,

that if we want to study the evolution of popularity for a given torrent we

have to periodically parse its web page to retrieve the evolution of the torrent

population (i.e., number of leechers and seeders).

• Distribution of number of published content per category and subcategory:

For this purpose we obtain the category and subcategory for each specific

torrent from the html parsing.

• Torrents Publishing Rate per date: For this purpose we obtain the date when

each specific torrent was uploaded from the html parsing.

By applying the described measurement study to different portals, we can per-

form a comparative study of the relevance of these portals in the BitTorrent ecosys-

tem.

Finally, by tracking the evolution of the number of seeders and leechers for a

given torrent we can also infer some performance metrics such as the seeder-to-

leecher ratio and its evolution along the time.
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Figure 3.2: BitTorrent Tracker Crawler basic functionality: The BitTorrent crawler

retrieves the .torrent file from a BitTorrent portal and obtains the IP address of the

tracker managing the swarm from it. Afterwards, it sends as many announce started

request as needed until obtain the IP addresses of all the peers participating in the

swarm.

2) BitTorrent trackers crawling:

The crawling of a BitTorrent portal gives detailed information regarding the tor-

rents (type, publishers) and some aggregated numbers such as the number of seeders

and leechers. However, this does not suffice if we aim to study more detailed demo-

graphics parameters such as the distribution of BitTorrent users per country (or ISP)

or relevant performance aspects such as peers arrival rate and peers session time.

In order to study these issues we need to collect the IP addresses of the peers par-

ticipating in the swarms. This can be obtained from trackers (remind that a tracker

managing a given swarm knows the IP addresses of all the participants).

There are various ways of accessing the information of a tracker (i.e., IP ad-

dresses of participants in the swarms managed by the tracker):

• Getting access to the tracker logs [67]. This requires the tracker owner’s col-

laboration.

• Using a tracker where the information is publicly available [62]. Unfortu-

nately, only minor trackers offer this functionality.

• Using measurement techniques, i.e., crawling the tracker as depicted in Fig.
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3.2. In this case we need to use a BitTorrent crawler that implements the part

of the BitTorrent protocol to communicate with the tracker. More specifically,

this crawler works as follows: first, we define the list of torrents whose partici-

pants’ IP addresses we want to obtain. This list of torrents can be retrieved (for

instance) from a BitTorrent portal. For each torrent in the list our crawler per-

forms an initial announce started request to the correspondent tracker. From

this request the crawler retrieves the number of participants (seeders and leech-

ers) in the swarm and an initial list of IP addresses. Afterwards, the crawler

performs as many announce started requests as needed to obtain as many IP

addresses as the number of participants in the swarm.

Hence, by using any of the previous techniques we are able to collect the IP

addresses of the participants in a large number of torrents. This data allows to study

some relevant demographics and performance BitTorrent features. Next, we briefly

describe some of them:

• The Distribution of Clients per Country or ISP: Some studies have applied

the described crawling technique to a large number (even millions) of torrents

[118]. Afterwards, the IP address of each client is mapped to its country and

ISP (e.g., using the MaxMind database [18]). From this data we can compute

the distribution of BitTorrent users per country and/or ISP.

• Heavy Hitters: By doing a cross-torrent inspection we can find those users (IP

addresses) being present in a large number of torrents [38]. We name these

users as heavy hitters.

• BitTorrent Traffic: The authors of [50] performed the described crawling tech-

nique in a short period of time (90 min.) over the most recent 40K torrents.

This can be viewed as a snapshot of a portion of the BitTorrent ecosystem. By

computing the traffic flowing between the BitTorrent clients in the different

torrents, the authors estimate the Intra-ISP and Inter-ISP traffic generated by

BitTorrent in a large number of ISPs.

• Peers’ Arrival Rate and Session Time: If we apply any of the described tech-

niques periodically on a given torrent, we are able to continuously monitor the

peers participating in the torrent. Therefore, for each single user (i.e., IP ad-

dress) we can approximately determine the instant in which it joins and leaves

the torrent, thus being able to define the session time for each user. Further-

more by looking at the time between the subsequent arrivals of peers we can
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Figure 3.3: BitTorrent Peer Crawler basic functionality: The crawler retrieves the IP

addresses of peers participating in a given swarm as explained in the macroscopic

tracker crawling technique. Afterwards, the crawler contacts each individual peer,

performs the handshake procedure and exchange different messages (BITFIELD,

HAVE) to obtain different peer-level performance information.

infer the arrival rate. Authors of [62, 73] have performed this analysis in a

large number of torrents.

3.2.2 Microscopic Techniques

The described macroscopic techniques retrieve exclusively the peers’ IP ad-

dresses, thus only metrics associated to the presence/absence of the peer can be

studied. Unfortunately, IP address does not suffice to infer relevant performance

metrics at the peer level such as peers’ download and upload rate. For this purpose

we need to apply more sophisticated (but less scalable) techniques that we name

microscopic techniques.

To perform microscopic techniques we need to implement different parts of the

BitTorrent peer wire protocol. Any microscopic crawler has to implement the func-

tions to perform the handshaking procedure. This is essential to connect to other
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peers. The handshaking procedure can be done actively (the crawler initiates it) or

passively (the crawler waits until a peer starts the handshaking). Once the crawler

is connected to a peer, it exploits different messages of the peer wire protocol in

order to measure different parameters. This process is illustrated in Fig. 3.3. Next,

we describe the specific techniques proposed in the literature to measure the most

important peer level performance aspects of BitTorrent:

Peer Type:

A BitTorrent peer can be of two types: seeder (has a complete copy of the file)

or leecher (does not have a complete copy of the file). After the handshaking pro-

cedure succeeds with a peer, this one immediately sends a BITFIELD message to

the crawler. By analysing the bitfield, the crawler classifies the peer as seeder or

leecher [73, 107].

Furthermore, when using an active crawler there are some peers that do not re-

spond to the crawler’s handshake messages. These peers are typically located behind

a NAT or a firewall that prevents the establishment of incoming connections. Thus,

these peers are classified as NATed [73, 107]. In order to infer if a NATed peer is

a seeder or a leecher we need to apply passive techniques and wait until the peer

contacts our crawler.

Instantaneous Download Rate:

After the handshaking procedure is completed (either passively or actively) our

crawler waits until it receives two HAVE messages from a given peer. The size of the

chunk (e.g., 4 MB) used in a given torrent is well-known1. Furthermore, the crawler

measures the time between the receptions of these two consecutive HAVE messages

from a peer, that is approximately the time needed to download a chunk. Hence, by

dividing the size of the chunk by the time needed to download it we can infer the

instantaneous download rate of the peer. By repeating this operation periodically we

can obtain the evolution of the instantaneous download rate of a given peer [107].

Average Download Rate:

In this case our crawler connects to a peer, obtains its bitfield and disconnects.

After some time (e.g., 1 hour) the crawler repeats the same operation on the same

peer. Then, by comparing the two bitfields, we can compute the number of down-

loaded chunks between the two connections to the peer. Since we know the size of

each chunk (S), the number of downloaded chunks (D) and the time between the

1This information is available in the .torrent file.
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two connections to the peer (T ), we can easily compute the peer’s average download

rate as:

(S ∗D)/T. (3.1)

Upload Rate:

This is probably the hardest parameter to be measured. Indeed, to the best of

the authors knowledge there is no work that has properly measured the upload band-

width. Rather, some few works have measured some parameters related to the up-

load rate. On the one hand, Isdal et al. [66] measure the physical upload capacity

(≥ upload rate dedicated to BitTorrent). For this purpose, the authors implement a

passive crawler that measures the peers’ upload capacity using the chunks sent by

these peers to the crawler during optimistic unchokes. On the other hand, Siganos

et al. [107] measure the number of IP packets sent by a node. For this purpose, the

authors implement an active technique that uses a special type of ICMP message.

The peers’ answer to this ICMP packet includes the number of IP packets sent since

the last time the computer was switched on. Hence, this crawler sends two of these

ICMP packets separated a given time T . The answers to the first and second ICMP

messages indicate a number of packets equal to P1 and P2. Therefore, the rate of

IP packets sent by the peer is computed as:

(P2− P1)/T (3.2)

Note that this rate includes IP packets associated not only to BitTorrent but also to

other applications.

Chunk distribution (Rarest First performance):

An important aspect of BitTorrent delivery mechanism is the Rarest First Algo-

rithm. In order to study its performance we have to analyse how the distribution of

the number of available copies of each chunk in a swarm looks like. For this purpose

it is possible to implement a crawler that collects the bitfield of a large number of

peers in a swarm (ideally all) in a relative short period of time (few minutes). By

analysing the collected bitfields the objective is achieved, i.e., computing the number

of available copies of each chunk in the swarm and calculating its distribution. This

study was performed in [73] demonstrating that the Rarest First Algorithm guaran-

tees a uniform distribution of pieces.
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3.2.3 Complementary Techniques

Some researchers have used measurement techniques that can complement the

macroscopic and microscopic techniques described above. On the one hand, some

crawlers [73, 107] have implemented the DHT and/or PEX functionalities in order

to learn the IP addresses of the peers participating in a given swarm. This can com-

plement or even substitute the crawling of trackers explained as one of the macro-

scopic measurement techniques. On the other hand, some research groups have

implemented their own BitTorrent client [27] or a plugins for a popular BitTor-

rent client such as Vuze [41]. These clients (or plugins) report information to a

log server. This technique complements the microscopic measurements techniques

since it gives very accurate information regarding peer level performance parame-

ters, for instance it can precisely informs about the peer download and upload rate.

On the downside, the scalability of this technique is limited to the number of clients

running our BitTorrent client (or plugin). Moreover, the retrieved data is only rep-

resentative for a specific client with a specific implementation, thus the obtained

results may not be generalised.

3.3 Challenges

In this Section we enumerate the main challenges faced by the previously de-

scribed techniques as well as possible solutions for some of them:

Peer Identification:

In BitTorrent the peers do not have a permanent Peer-ID. Every time a BitTorrent

client is started a new random Peer-ID is generated. Then, it is not possible to follow

a peer across multiple sessions using its Peer-ID. Most of the studies performed

so far utilise the IP address or the IP address+port to identify a single user across

multiple sessions. This works for all those users having a static IP address. However,

most of the BitTorrent users are residential users with a dynamic IP address that is

frequently changed by their ISP. Hence, identifying these peers by their IP addresses

introduces inaccuracies in the obtained data.

One way of guaranteeing the correct identification of a peer across sessions is

using measurement techniques based on the implementation of your own BitTorrent

client/plugin. Each installed instance of the client has assigned a unique and per-

manent ID (different from the Peer-ID used in the swarms), which is used by the

client to report the logs to the log server. Other option is to get access to the log of
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private trackers. In most of the private trackers the users are required to register with

a username and password. Each time a user initiates a session in the tracker it has

to login, thus it can be uniquely identified across the sessions. Unfortunately, both

described techniques have scalability limitations.

Crawler’s IP address banned by the Tracker:

The described macroscopic tracker crawling technique may result in crawler’s

IP address being banned by the tracker. In some studies [38, 48, 118] the crawler

performs a large-scale crawling by continuously sending announce started requests

to a specific tracker for a large number (e.g., thousands) of torrents. Then, the rate

of announce started requests is very high what is detected by the tracker. The re-

action of the tracker is blocking the IP address showing this anomalous behaviour.

Therefore the crawler has to limit the announce started requests rate to avoid being

banned by the Tracker.

LeBlond et al. [38] describe a technique to avoid being banned while keeping a

very high rate of announce started requests. The technique consists on sending an

announce stopped just after the announce started request. Then, the tracker removes

the IP address of the crawler from its log just after answering the announce started

request. By using this simple technique, LeBlond et al. report that they are able to

crawl up to 750K torrents in around 30 min.

A second option is using an anonymisation service such as TOR [25]. By using

this service, the messages sent by the crawler pass through an overlay of proxies be-

fore reaching the tracker. Then, the IP address seen by the tracker is that of the egress

node from the proxies overlay, thus the tracker cannot block the actual crawler’s IP

address.

Finally, we can increase the rate of requests to the tracker using several instances

of the crawler distributed among different machines with different IP addresses.

Crawler’s IP address blacklisted by the client:

In the case of microscopic measurements the crawler always performs the hand-

shaking procedure with the target peer. Afterwards, it retrieves the needed infor-

mation (e.g., the bitfield) and then it can either keep connected or disconnect and

reconnect after a while. In the first case, since our crawler does not provide any

chunk to the peer, due to the BitTorrent functionality, the peer is likely to substitute

the crawler by other peer in its neighbourhood. Once the crawler has been removed

from the peer’s neighbourhood, it is typically hard to reconnect since the peer recog-

nise the crawler as a useless peer who does not provide any data. In the second case
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after the crawler connects and disconnects from a given peer few times (2 or 3), this

peer also blacklists the crawler’s IP address. The IP addresses in the blacklist have

an associated timer and after this timer expires the IP address is removed from the

blacklist. This means that the crawler can contact a given peer in the intervals ≥

blacklist timer2. However, sometimes we want to monitor the peers with a higher

resolution than that imposed by the timer. In this case, we can use several instances

of our crawler, each one with a different IP address and contact a given peer follow-

ing a round robin schedule [73]. We could also use TOR, if two connections to the

same destination are at least 10 min. apart, TOR establishes a new overlay path with

a new egress node. Thus, TOR guarantees a 10 min. resolution.

Completeness of a torrent population

If we want to retrieve the complete population downloading a given torrent, we

need to crawl all the trackers included in the .torrent file. Furthermore we have

to retrieve the list of the peers that use the DHT instead of using a tracker. This

crawling can be quite costly since some torrents can use tens of trackers.

Upload Rate Estimation:

We have discussed above the difficulties for measuring the upload rate and what

other parameters have been measured as an approximation of the upload rate so far.

In order to properly measure the upload rate of a peer we need to use a measurement

technique based in our own BitTorrent client implementation.

3.4 Conclusion

In this Chapter we have presented and classified the main measurement tech-

niques applied in order to understand different aspects of one of the largest-scale

systems in the current Internet, i.e., BitTorrent. We believe that the described tech-

niques can constitute the basis for the design of measurement tools for the analysis

of current and future large-scale systems in the Internet, but also other environments.

In the next Chapters we will use some of the above-mentioned techniques to make

a detailed study about BitTorrent ecosystem with the emphasis on socio-economic

factors.

2This timer value varies among the different clients. A conservative estimation based in our

studies is 2 hours.



Chapter 4

Characteristics of BitTorrent Swarms

4.1 Introduction

BitTorrent is one of the most used application in the current Internet and is re-

sponsible for an important portion of the upstream and downstream traffic as re-

vealed by recent reports [23]. The significant footprint of BitTorrent in the Internet

has motivated researchers and practitioners to dedicate an important amount of ef-

fort to understanding and improving BitTorrent. However, despite this effort, we

still have little knowledge regarding the connectivity properties exhibited by real

BitTorrent swarms at both swarm and peer level. Due to the difficulty in collecting

the required information from real swarms, most of the existing works that analyse

connectivity properties are based on simulations [111] or experiments in controlled

environments [30,51]. As a result, they are likely to miss some of the effects affect-

ing BitTorrent swarms in the wild. To the best of the authors’ knowledge, there are

just a few previous studies that evaluates few properties of the overlay topology (i.e.,

swarm level connectivity) of real BitTorrent swarms [61].

The analysis of the connectivity properties at the swarm level (i.e., overlay topol-

ogy) and at the peer level (i.e., peers’ neighbourhood composition) in real BitTorrent

swarms can reveal important information such as: (i) the efficiency of a swarm to

disseminate content [111], (ii) the resilience of a swarm to different events such as

being partitioned [30], (iii) the efficiency and overhead generated by swarming and

neighbour selection algorithms and (iv) the locality-bias exhibited by current Bit-

Torrent swarms. Furthermore, the characterisation of these properties is of interest

to: (i) researchers and practitioners designing (improving) new (existing) BitTorrent

clients or related algorithms; (ii) companies using BitTorrent for critical functions

such as software release, backups distribution or content replication [2,3,10,17] and

31
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(iii) Internet Service Providers (ISPs) carrying BitTorrent traffic.

In this Chapter, we first present a methodology to collect the connectivity infor-

mation at both the swarm and the peer level for the entire lifespan of a real torrent.

Specifically, we discover new torrents just after their birth by using the RSS service

of the most important BitTorrent portal, namely the Pirate Bay. Afterwards, we ex-

ploit the Peer Exchange (PEX) extension of the BitTorrent protocol to gather the set

of neighbours for each peer. PEX is a gossiping technique which main goal is to

allow peers to exchange their list of neighbours so that they can learn about other

participants in the swarm without contacting the tracker. Note, that PEX has been

implemented by most of the existing BitTorrent clients and in particular by the most

popular ones such as uTorrent or Vuze [14]. The information collected from PEX

(i.e., a peer’s neighbourhood) is the connectivity information at the peer level. Fur-

thermore, by aggregating the neighbourhood information collected from every peer

in a swarm we are able to build the overlay topology of that swarm (i.e., swarm level

connectivity). We retrieve the information from each active peer every 10 minutes

and then study the dynamic evolution of both: the overlay topology of the swarm

and the composition of each peer’s neighbourhood.

We have applied the described methodology to collect the connectivity informa-

tion of 250 real torrents, including more than 150K peers, since their birth during

a period of 15 days. This dataset constitutes the basis for our analysis, which is

divided into two parts.

In the first part we analyse the connectivity properties at the swarm level. First,

we perform a traditional graph theory analysis to understand the basic characteristics

of the overlay topology of real BitTorrent swarms, namely clustering coefficient,

characteristic path length and node degree distribution. We also analyse how the

swarm size affects them. Furthermore, we compare these observed properties with

those associated with well-known graph models such as random graphs, small-world

or scale-free networks. Second, one of the most important features of a graph is its

resilience. Specifically, in our study we evaluate the resilience of real BitTorrent

swarms to be partitioned. To this end we consider two types of events: churn and a

possible attack represented by a random node removal and a selective node removal

processes, respectively.

In the second part of the analysis, we focus on the connectivity properties at

the peer level. First, we study the variability in the composition of peers’ neigh-

bourhoods along time, paying special attention to the presence of stable neighbours.

Second, we perform a thorough study in order to understand whether the level of lo-

cality observed in the composition of the peers’ neighbourhood is higher/lower than
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the expected from the random neighbour selection process implemented by default

in BitTorrent. Furthermore, we group those peers presenting a significant positive

deviation in the exhibited locality by their neighbourhoods into ISPs and countries.

This simple technique allows us to discover ISPs and countries that are likely to be

enforcing locality (e.g., using throttling techniques [58]).

Our main contributions and findings in this Chapter can be summarised as fol-

lows:

• We present a novel measurement technique to monitor the connectivity infor-

mation of a real BitTorrent swarm during its complete lifespan.

• Our results demonstrate that, contrary to what previous studies claim [51,61],

real BitTorrent swarms are not random graphs. Furthermore, they are not

small-world and thus they are not scale-free networks.

• Real BitTorrent swarms are fully resilient to be partitioned under a random re-

moval process (e.g., churn). However, they are significantly less resilient than

random graphs to a highest-degree node removal process (e.g., an attack). This

result is of interest to researchers and practitioners that work on the enhance-

ment of the different aspects (including resilience) of BitTorrent. Furthermore,

our observation is also useful for those companies using BitTorrent for critical

functions such as software release or content replication.

• Both leechers and seeders change a significant portion of their neighbours

continuously. This is a consequence of the combination of the different neigh-

bour selection algorithms implemented by current BitTorrent clients. This

finding suggests that current BitTorrent clients incur a relatively high commu-

nication overhead that might not be necessary. Again, this result is useful for

researchers and practitioners working on the improvement of BitTorrent.

• Leechers keep stable connections with a handful of other peers with which

they exchange most of the traffic. This number of users is typically larger than

the commonly used number of unchoke slots (4). Therefore, leechers tend to

multiplex their resources (i.e., unchoke slots) to optimise their download per-

formance. Furthermore, seeders typically do not keep stable connections with

any peer so that they homogeneously distribute pieces among the participants

in the swarm. Again, this result is useful for the design and validation of im-

provements on existing BitTorrent algorithms or the design of new algorithms.
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• 45% of the analysed peers present at least 30% more local neighbours than

expected from a pure random neighbour selection process. Furthermore, we

observe an even more pronounced locality deviation in the set of stable neigh-

bours (remember that the stable neighbours are those with which a peer ex-

change most of its traffic). This suggests that ISP locality enforcement policies

(e.g., throttling), the proliferation of successful locality-aware P2P clients or

plugins such as ONO [41] and other networking effects such as congestion are

leading BitTorrent peers to exhibit a higher locality-bias in the composition of

their neighbourhoods. This result is of interest to ISPs and to those researchers

and practitioners working in the definition of locality-aware BitTorrent clients.

• Indian, large American and European ISPs present the largest proportion of

high locality peers. Therefore, it is likely that these ISPs are enforcing locality

(e.g., through throttling) among their BitTorrent clients.

The rest of the Chapter is organised as follows. Section 4.2 describes our mea-

surement infrastructure and methodology as well as the dataset used along the Chap-

ter. Section 4.3 presents our findings regarding the overlay topology of real BitTor-

rent swarms, whereas Section 4.4 evaluates the resilience of BitTorrent swarms and

compares it with that observed for random graphs. Afterwards, Section 4.5 analyses

the stability in both the overlay topology and the peer’s neighbourhood composition

along time. Section 4.6 studies the locality-biased composition of peers’ neighbour-

hoods. Finally, Section 4.7 concludes the Chapter.

4.2 Measurement Methodology

The aim of our measurement study is to retrieve the graph topology of real Bit-

Torrent swarms. For this purpose, we collect the neighbours list (or neighbourhood)1

of each peer in the swarm by using the Peer Exchange (PEX) extension of the Bit-

Torrent protocol. In the rest of the Section we provide a detailed description of both

the measurement infrastructure and the methodology. For a full description of the

BitTorrent ecosystem we refer the reader to [75] and [118].

1Note that in the rest of the Chapter we will use routing table, neighbours list, neighbours set and

neighbourhood undistinguishable.
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4.2.1 Measurement Infrastructure

Our measurement infrastructure is formed by 12 virtual machines, with a sin-

gle public IP address each, installed in 3 different physical machines. One of the

VMs acts as Master whereas the other 11 are Slaves. One the one hand, the Mas-

ter is responsible for learning new torrents from a BitTorrent portal and contacting

the tracker that manages the swarm associated with each torrent. Furthermore, the

Master coordinates to which IP addresses (i.e., peers) each Slave has to connect at

any moment. On the other hand, each Slave has a list of IP addresses (i.e., peers)

to monitor. The Slave tries to connect to each one of these peers and to retrieve the

peer’s neighbours list among other information.

4.2.2 Measurement Methodology

The methodology of our measurements is based on the one presented in [48] and

has several similarities with the methodology used in [61]. In order to learn new tor-

rents we decided to use the Pirate Bay portal. This is the most important BitTorrent

portal according to Alexa ranking2 and some research studies [118]. The Pirate Bay

offers an RSS service where each new torrent is announced as soon as it is uploaded

to the portal. Our Master is subscribed to this RSS service, so that, it can discover

new torrents after their birth. This guarantees that we will be able to crawl the full

lifespan of a given torrent. The RSS service provides the Master with the .torrent file

that includes the IP address of the tracker managing the swarm associated with the

torrent along with other information not relevant to this Chapter. The Master, then,

periodically queries the tracker with the maximum frequency allowed by this one

(around 10 to 15 minutes) to avoid being blacklisted. Each reply from the tracker

includes: the number of seeders (i.e., peers with a complete copy of the file), the

number of leechers (i.e., peers with an incomplete copy of the file) and a random set

(typically 200) of IP addresses of peers participating in the swarm. Furthermore, the

Master is responsible for coordinating the Slaves’ activity. The Master learns the IP

addresses of peers within a swarm from the tracker and also from the Slaves as we

will see later. The Master has to schedule the connection of the different Slaves to a

given peer. The Slaves contribute no chunks to other peers, thus, if a Slave connects

a few consecutive times to a given peer, the latter blocks the former. In order to avoid

this, the Master schedules the connection to each individual learnt peer in a round

robin fashion so that a given Slave only connects to the same peer once every 11

2http://www.alexa.com/topsites
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connections (around 2 hours). This prevents any peer from blacklisting our Slaves.

Each Slave receives a list of IP addresses (i.e., peers) to connect to. The Slave

connects to each of them that is not behind a NAT, and gathers the neighbours list

for those peers supporting the Peer Exchange extension (PEX). PEX is an exten-

sion to the BitTorrent protocol that allows peers to exchange their neighbours lists.

This reduces the load at the tracker since peers are able to learn about other peers

without asking the tracker. In particular, Slave retrieves the list of connected and

disconnected neighbours from the PEX messages. Note that the list of connected

neighbours includes those nodes with which the peer has currently an established

connection3, i.e., the peer’s current neighbours. Hence, in our analysis we use ex-

clusively the list of connected peers and refer to them as peer’s neighbours list (or

neighbourhood). It is worth noting that most of the BitTorrent clients and particu-

larly the most popular ones such as uTorrent and Vuze support PEX [14], thus we

are able to retrieve the neighbourhood for almost every reachable peer. Furthermore,

each Slave informs the Master regarding the IP addresses obtained through PEX. If

any of these IP addresses is new, the Master adds it to the list of IP addresses to be

crawled.

As mentioned earlier, there are peers that are behind a NAT and are not reachable,

therefore if we fail to connect to a given IP address 5 times we declare this peer as

unreachable. Furthermore, due to the churn phenomenon some nodes join and leave

the swarm dynamically, so a reachable node may become unreachable, thus after 5

times failing to connect to a previously reachable node we consider that it left the

swarm.

4.2.3 Dataset Description

We have applied the described measurement methodology to 250 consecutively

published torrents, learnt from the Pirate Bay’s RSS service from December 20th

2010 until January 4th 2011. From this set of torrents we were able to learn the

neighbours list for more than 150K peers. Specifically, we are able to derive the

evolution of the neighbourhood composition for each peer since, as explained above,

we periodically retrieve every peer’s neighbours list. Furthermore we map the peers’

IP addresses to their country and ISP using the MaxMind Database [18]. Finally, it

is worth mentioning that roughly 70% of peers are unreachable (i.e., are located

behind a NAT) and thus, we cannot directly collect their neighbourhoods snapshots.

3Disconnected neighbours are nodes that the peer knew in the past but with which it does not have

currently an established connection.
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However, these unreachable peers appear as neighbours in other peers’ neighbours

lists. Hence, by post-processing the collected data we are able to reproduce (at least

partially) the list of neighbours of those unreachable peers.

4.3 Overlay Topology of BitTorrent Real Swarms

The structure of a BitTorrent swarm directly impacts its efficiency to distribute

pieces [111] as well as its resilience against different events such as churn or possi-

ble attacks [30]. Random graphs, small-world and scale-free networks are reference

graph models with well-known properties. For instance, random graphs are known

to be robust to possible partitions and churn (this is why the original design of Bit-

Torrent aims to create random graphs), scale free-networks are vulnerable to attacks

against the highly connected nodes (or hubs) and small-world networks have been

demonstrated to be very efficient to disseminate information [46, 79].

In this Section we analyse the basic topology characteristics of the connectivity

graph of real BitTorrent swarms and compare them with the characteristics of the

aforementioned well-known graph models in order to get a better sense of essential

aspects (e.g., resilience or dissemination efficiency) associated with real BitTorrent

swarms.

4.3.1 Methodology

We represent a swarm as a collection of vertices (V ) and edges (E). Each peer

within the swarm is represented as a vertex, thus peer i is represented by vi. There-

fore V = [v1, v2, ..., vn], where n is the torrent population. Furthermore, eij = 1

if peer i and j are connected and 0 otherwise. Hence, the connectivity graph (or

matrix) is the representation of E in the form of a matrix. Note, that in BitTorrent

the connections are bidirectional, thus the connectivity matrix is symmetric. For

each torrent in our dataset we have collected the neighbourhood of each reachable

peer every 10 minutes; therefore, we are able to present a swarm’s connectivity ma-

trix evolution over time in 10 minutes intervals. Thus, we analyse both static and

dynamic properties of the connectivity matrix.

For each snapshot of the connectivity matrix we calculate the following standard

parameters used in graph theory studies:

• Clustering coefficient (C) is the average of local clustering coefficients for all
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the vertices:

C =
1

n

n
∑

i=1

Ci (4.1)

The local clustering coefficient of given vertex shows how close the neigh-

bours of the vertex are to form a complete graph [113]. It can be expressed

as:

Ci =
2|ejk|

ni(ni − 1)
(4.2)

where ejk represents the total number of edges between two neighbours of

peer i and ni is the total number of neighbours of peer i.

• Characteristic path length (L) is the average length of the shortest path be-

tween each pair of vertices in the graph and is defined as:

L =

n
∑

i=1

n
∑

j=1

d(vi, vj)

n(n− 1)
(4.3)

where n is the number of vertices in graph and d(vi, vj) denotes the shortest

distance between vertices vi and vj .

• Diameter (DI) is the greatest length from the set of all the shortest paths

between each pair of vertices:

DI = max{d(vi, vj)} (4.4)

where i, j ∈ [1, n].

• Node Degree (Di) shows the number of edges that a vertex, vi, has to other

vertices. It can be expressed as:

Di =

n
∑

j=1

eij (4.5)

In our analysis this is calculated as the size of the peer’s neighbourhood.

In the rest of this Chapter we use these parameters to analyse the static and

dynamic characteristics of the overlay topology of real BitTorrent swarms. It is

worth noting that since the results obtained from the analysis of L and DI lead to the

same conclusions, in this Chapter we only discuss L.
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4.3.2 Comparison to Small-World and Random Graphs

In this subsection, we study what type of graph model, small-world or random

graph, fits better the overlay topology of real BitTorrent swarms. For this purpose,

we apply a simple graph theory analysis. For each torrent in our dataset we calculate

the clustering coefficient (Ck) and the characteristic path length (Lk) for all collected

snapshots along the torrent lifespan. We also calculate the clustering coefficient

(Cr) and the characteristic path length (Lr) for an equivalent random graph with

the same number of edges and vertices as each analysed snapshot. These random

graphs are created following an Erdos-Reni model [59] so that every possible edge

in the graph exists with the same probability. Moreover, for each snapshot we also

calculate Rc = Ck/Cr and Rl = Lk/Lr. These two ratios indicate how similar a

real swarm topology is to either a random graph or a small-world network. Those

torrents having both Rc and Rl close to 1 would be random graphs whereas those

torrents having Rl close to 1 and Rc >> 1 would present a small-world topology.

Figure 4.1(a) summarises the evolution of Ck for all the torrents in the dataset.

In particular, it shows Ck for the first 8 hours of the torrent lifespan with a 2 hours

difference interval and with a step of 24 hours after this point. For each of these

instances of the torrent lifespan we present a box plot that indicates the 25, 50 and 75

percentiles of Ck considering all the torrents in the dataset. Figure 4.1(b) shows the

same for Lk. These results help us to understand how the clustering coefficient and

the characteristic path length evolve along time in real BitTorrent swarms. First, the

clustering coefficient is higher in the birth phase of the torrent with values around

0.6 and continuously decreases to reach a stable state at the 56-80 hours after the

torrent birth when the clustering coefficient is typically around 0.1 for most of the

torrents. The explanation of this behaviour is the following: at the birth of the torrent

the swarm size is small and most nodes are connected among them, thus leading

to a high clustering coefficient. As time passes, the torrent population grows and

then nodes are connected to just a portion of other nodes learnt from the tracker or

through PEX. This produces a reduction on the clustering coefficient. The observed

behaviour of the evolution of the clustering coefficient is consistent with previous

emulation-based results [51], although the absolute values differ.

Second, the characteristic path length is smaller in the birth of the torrent with a

median value of 1.6 and experiences a slight increment to reach a stable phase after

few (4 to 6) hours where the median of the characteristic path length varies between

1.8 and 1.9. Again, in the birth phase we find a lower number of nodes that are

well connected, which leads to a lower characteristic path length. However, even in
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Figure 4.1: Distribution of Ck, Lk, Rc and Rl after x hours from the torrent birth for

the 250 torrents from our dataset

the stable phase the characteristic path length is small, which guarantees that pieces

of the file can easily reach any part of the swarm in less than 3 hops for the vast

majority of torrents at any moment. This trend in the characteristic path length is

also consistent with previous emulation studies [51].

In order to better understand whether the overlay topology of real BitTorrent

swarms present similarities to random graphs or small-world topologies we present

in Figure 4.1(c) and Figure 4.1(d) the evolution of the medians of the defined Rc and

Rl ratios along time for all torrents in our dataset. We use the same box plot charts

as for the clustering coefficient and the characteristic path length evolution. Note,

that to obtain robust results, for each torrent snapshot in our dataset we generate 100

equivalent Erdos-Reni [59] random graphs of same size, and calculate the corre-
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spondent 100 Rc and Rl values. In the figure we report for each snapshot the median

Rc and Rl across the 100 samples. We observe that 1 < Rc < 2 for most cases. This

confirms that the clustering coefficient of the actual BitTorrent swarms is typically

higher, although not significantly, than the one expected for an equivalent random

graph of the same size. On the other hand, the median Rl is lower than 1 at every

instance of the torrent lifespan for all the torrents in our dataset. Therefore, in real

BitTorrent swarms we expect to have shorter paths between nodes than in equivalent

random graphs of the same size. These results suggest that real BitTorrent swarms

can be neither modelled as random graphs nor as small-world. These observations

are contradictory to previous studies [51, 61], where the authors state that torrent

swarms are random and close to random graphs, respectively.

4.3.3 Node Degree Distribution

In this subsection, we investigate the node degree distribution of real BitTorrent

swarms. For this purpose, we study the distribution of our metric D for every snap-

shot in our dataset. Previous studies [51, 61] have analysed whether real BitTorrent

swarms are scale-free networks. Note, that a graph is considered a scale-free net-

work if the node degree distribution fits a power law distribution P = ck−γ where

2 < γ < 3 [32]. Moreover, a scale-free network is by definition a small-world.

Therefore, since in Section 4.3.2 we have proven that real BitTorrent swarms are not

small-world we can safely conclude that they are neither scale-free networks. This

result is aligned to those obtained by previous studies [51, 61].

However, it is still interesting to understand whether the node degree distribution

of real BitTorrent swarms follows a power-law distribution, since this information

reveal how unbalanced the connectivity among peers within a swarm is. To this

end, first we have calculated the coefficients of a power-law function that better

approximates the degree distribution of each analysed snapshot. Second, we perform

a Kolmogorov-Smirnov (KS) test [90] to validate whether the power-law function

obtained in the first step accurately approximates the real degree distribution of the

snapshot4. Note, that we can only guarantee the power-law parameters estimation to

be unbiased for those snapshots where the number of nodes n ≥ 50. Therefore, to

assure obtaining unbiased results, our analysis only considers those snapshots having

at least 50 peers. The KS tests reveal that 80% of the considered snapshots present a

degree distribution that can be accurately model by a power-law. All these snapshots

4The Kolmogorov-Smirnov test provides a positive result if the difference between the values of

the two distributions at any given point is < 5%.
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Figure 4.2: Median value of the different graph metrics (Ck,Lk,Rc,Rl) per torrent

vs. the total population of the torrent along its entire lifespan

present a value of γ < 2, confirming that none of the snapshots can be considered a

scale-free network. Furthermore, the median and maximum values for γ across all

these snapshots are 0.9 and 1.3, respectively. Therefore, there is a significant portion

of real BitTorrent swarms that show a power-law distribution for node degree. We

further explore this insight in the next subsection.

4.3.4 Impact of Torrent Popularity in the Overlay Topology

In this subsection we study whether the torrent popularity (i.e., the size of the

swarm) affects the overlay topology of BitTorrent swarms. First, Figures 4.2(a) and

4.2(b) show the median of the clustering coefficient and the median of the charac-

teristic path length as a function of the total number of peers that join the swarm
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Figure 4.3: CDF of the size of snapshots presenting a power-law degree distribution

(80%) vs. torrents not presenting it (20%). Note, that only snapshots with at least

50 peers are considered

along the whole measurement period for every torrent in our dataset, respectively.

Moreover, each figure presents the polynomial curve fitting for the specific metric

that visually shows the correlation between the metric and the torrent popularity. We

observe a clear trend in which larger swarms typically present a lower clustering co-

efficient and a higher path length. This is an expected result since, as demonstrated

by Figures 4.1(a) and 4.1(b), the clustering coefficient drops and the characteristic

path length raises as the torrent population grows. This result is consistent with

previous studies [61] in which the authors report that the clustering coefficient of

popular torrents is small. However, the study of the absolute values of these metrics

may lead to potentially wrong conclusions, e.g., the larger the swarm is the more

random it is. Therefore, we have also studied the correlation between Rc and Rl

and the size of the torrent. These results are shown in Figures 4.2(c) and 4.2(d)

along with the corresponding polynomial fitting curves. Surprisingly, we observe

a significant increase of Rc and a slight decrease of Rl with the size of the swarm.

Therefore, relative and absolute metrics present opposite trends. Specifically, the

reported trends for Rc and Rl show that the larger a swarm is the less random it

(typically) is. It is worth mentioning that the analysis of these relative metrics al-

lows us to correct previously reported results [51,61] based on absolute metrics that

concluded that popular torrents present a close-to-random graph topologies.

Furthermore, we have seen that 80% of torrent snapshots in our dataset present
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a node degree distribution that follows a power-law distribution whereas the other

20% do not. It is also interesting to understand if the size of the swarm has any

influence in the observed degree distribution. Toward this end, Figure 4.3 shows the

CDF of the size of those snapshots presenting a power-law degree distribution along

with the CDF of the size of those snapshots not presenting it. Remember that to

guarantee unbiased results we consider only snapshots with at least 50 peers. The

obtained results show that snapshots that have a power-law degree distribution are

primarily small graphs (≤150 peers), whereas large snapshots typically do not show

power-law distributions. This suggests that large swarms tend to equalise the node

degree among the participant peers.

4.3.5 Summary and Discussion

In this Section we have analysed the basic graph characteristics of real BitTorrent

swarms, namely clustering coefficient, characteristic path length and node degree

distribution. Our comprehensive study presents new results but also helps to shed

light into controversial issues such as: (i) the random structure of BitTorrent swarms.

Authors of [51] and [61] conclude that BitTorrent swarms are (close to) random

graphs whereas [30] states that they are not; (ii) impact of the swarm size to its

topology. The authors of [30] conclude that the size of the swarm does not impact

its topology in their controlled experiments. Our results demonstrate that, contrary to

conclusions of previous studies [51,61], real BitTorrent swarms cannot be modelled

as random graphs. Furthermore, they are not small-world and thus they are neither

scale-free networks. In addition, our results show that the popularity of a torrent

(i.e., the swarm size) has a clear impact on the topological structure of BitTorrent

swarms.

The higher clustering coefficient than equivalent random graphs along with the

small characteristic path length shown by real BitTorrent swarms suggest that they

present an efficient topology for disseminating chunks. However, there is some room

for improvement; for instance making the structure of a real BitTorrent swarm more

similar to a small-world topology may increase the efficiency in the information

distribution as suggested by [51]. Another important aspect directly impacted by

the overlay topology is the resilience of real BitTorrent swarms. Random graphs are

by definition resilient topologies against different events such as churn. Following

this principle, the default definition of the BitTorrent random neighbours selection

procedure aims to generate random graphs in order to guarantee the resilience of

the overlay topology. However, we have seen that the actual topology of BitTorrent
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swarms cannot be modelled as a random graph. In the next Section we devote our

effort to characterise and quantify the resilience of real BitTorrent swarms.

4.4 Resilience of Real BitTorrent Swarms

In the previous Section we have revealed the basic properties of the overlay

topologies of real BitTorrent swarms and compared them to well-known graph mod-

els to get an intuition of relevant performance aspects (e.g., resilience, information

dissemination efficiency) associated with real BitTorrent swarms. In this Section we

deepen our investigation in one of the most relevant performance aspects, namely

the resilience of real BitTorrent swarms. Resilience can be measured in different

manners, in this Section we specifically analyse the resilience of real BitTorrent

swarms to be partitioned and compare it to the resilience shown by equivalent ran-

dom graphs, that are known to be resilient topologies.

4.4.1 Methodology

We analyse the resilience of a real BitTorrent swarm snapshot and an equivalent

(same number of vertices and edges) Erdos-Reni [59] random graph to two type

of events: (i) a random removal process in which we sequentially remove nodes

selected at random until the graph is partitioned into (at least) two separated compo-

nents; and (ii) a selective removal process in which we sequentially remove the node

having the highest degree until the graph is partitioned into (at least) two separated

components. The first event can represent, for instance, a scenario in which several

(random) peers fail or leave the system (i.e., churn) whereas the second event can

represent an attack against the swarm.

In order to quantify the resilience of a given graph to be partitioned we use two

different metrics:

• K, represents the total number of peers that need to be removed in order to

partition the graph.

• k, represents the percentage of peers that need to be removed to partition the

graph. Therefore k = 100K
N

where N is the number of peers forming the

swarm snapshot.

Note that we will refer to Kreal (kreal) and Krand (krand) as the values of K (k)

associated with a real swarm snapshot and its equivalent random graph, respectively.
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Due to the computational cost of these experiments we perform our study con-

sidering a random set of 400 snapshots in a stable phase (i.e., after the initial flash-

crowd phase) from the 250 torrents forming our dataset. In addition to minimise the

impact of abnormal peers (e.g., new incomers or nodes behind a NAT) we consider

only those peers having a degree ≥ d. We have perform the experiments with d = 2,

5, 10 and 15. Although the obtained results present some quantitative differences for

different values of d, they are qualitatively consistent. Therefore, to make it simple,

in this Section we present results for d = 5.

4.4.2 Random Node Removal

Given the random nature of this removal process we perform 10 simulation runs

for each real swarm snapshot. Furthermore, for each snapshot we generate 10 Erdos-

Reni random graphs with the same number of vertices and edges and for each of

them we simulate 10 runs of the random removal process. Hence, for each snapshot

and its equivalent random graphs we can calculate the average values of K and k as

well as their standard deviations.

Figure 4.4(a) shows in a scatter plot the average value of krand vs. the average

value of kreal for all the analysed swarm snapshots. We observe that the value of

k for most of the analysed snapshots is located in the point (100,100). This means

that both real snapshot and equivalent random graphs are fully resilient to a random

removal process. There are only a few (2%) real snapshots that are not fully resilient,

but even in these ones more than 85% of the nodes must be removed to partition the

graph. Finally, it is worth to note that the standard deviation for both kreal and krand
is negligible for all the studied snapshots.

Hence, the obtained results suggest that real BitTorrent swarms are in most of the

cases fully resilient to a random removal process of peers that could be produced by

different factors such as churn, peers’ failures or an attack. This result is consistent

with previous results obtained in a controlled environment [30].

4.4.3 Highest Degree Node Removal

In this case, the removal process for a given real snapshot is deterministic, there-

fore we perform a single run for each real snapshot. Again, we generate 10 different

equivalent random graphs for each analysed snapshot. For each one of these random

graphs we perform a single run of the removal process since as said before it is a

deterministic process. Therefore, in this case we calculate the standard deviation
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Figure 4.4: The metrics relation for the analysed swarm snapshots and their equiv-

alent random graphs under a highest degree node removal process: Avg. krand vs.

Avg. kreal, Avg. krand vs. kreal, Kreal vs. snapshot size and kreal vs. snapshot size

only for Krand and krand.

Figure 4.4(b) shows in a scatter plot the average value of krand vs. the value

of kreal for all the analysed swarm snapshots. We observe that random graphs are

significantly more resilient to the considered removal process than real snapshots. In

particular, krand ranges roughly between 40% and 80% whereas kreal ranges between

1% and 50%.

Moreover, we analyse whether the size of the torrent has any impact in its re-

silience. Towards this end, Figure 4.4(c) and Figure 4.4(d) present scatter plots of

the value of Kreal and kreal vs. the snapshot size for every analysed real swarm snap-

shot, respectively. On the one hand, there is a surprisingly small correlation between
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Kreal and the size of the swarm that suggests that for large swarms the number of

nodes to be removed to partition the graph is in the same order of magnitude than in

the case of small swarms. This low correlation lead to the results observed in Figure

4.4(d) in which we see that the relative number of peers to be removed decreases

significantly with the size of the swarm. Therefore, if we consider that the selective

node removal process introduced in this Section represents an attack to a BitTor-

rent swarm, we conclude that the attacker would need roughly the same resources

to perform an attack independently of the size of the swarm under attack. This ob-

servation is consistent with the fact that larger BitTorrent swarms are typically less

random than small ones. Since random graphs are by definition resilient, the less

similar the swarm structure is to a random graph the less resilient we expect it to be.

4.4.4 Summary and Discussion

The results for the random node removal process are similar to the one obtained

by means of emulation in [30], however, they significantly differ for the high-degree

node removal process. The emulation results from [30] conclude that more than

80% of nodes must be removed in order to partition a BitTorrent swarm whereas

our experiments reveal that the number of peers to be removed is < 50% for any

of the real BitTorrent swarms snapshots analysed. Therefore, results in controlled

environment seem to overestimate the resilience of BitTorrent swarms.

Our results suggest that BitTorrent swarms are fully resilient to a removal pro-

cess of random nodes, however, their resilience to a selective removal process is

significantly smaller than the one shown by random graphs. This result is of high

interests to those companies that leverage the BitTorrent protocol to perform critical

tasks such as software release or content replication since they can evaluate whether

the resilience of BitTorrent to different events fulfil their requirements. Furthermore,

researchers and practitioners working on the improvement of BitTorrent clients and

protocol may find this result useful for the validation of their proposed solutions.

4.5 Stability of BitTorrent Swarms

In this Section we analyse the stability of BitTorrent swarms at following two

different levels:

• overlay topology stability - we quantify the variability of the graph character-

istics (clustering coefficient and characteristic path length) of a given torrent
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Figure 4.5: Mean an standard deviation of the clustering coefficient (Ck) and char-

acteristic path length (Lk) for each torrent

over time.

• peer’s neighbourhood stability - we quantify how stable the neighbourhood of

a given peer is over time and carefully analyse the subset of stable neighbours.

4.5.1 Overlay Topology Stability of Real Swarms

We study the stability of the main topological parameters (i.e., clustering coef-

ficient and characteristic path length) along the time. For this purpose, Figure 4.5

presents the mean and the standard deviation of the clustering coefficient (character-

istic path length) for each torrent within our dataset sorted by the mean of Ck (Lk)

in ascending order. We observe that for the major portion of the torrents the stan-

dard deviation is relatively small compared to the mean value for both the clustering

coefficient and the characteristic path length. This suggests that overlay topologies

of real BitTorrent swarms present a high stability.

4.5.2 Peer’s Neighbourhood Stability

As explained in Section 4.2 we have collected the neighbourhood (i.e., list of

neighbours) for each peer every 10 minutes approximately. Then, to quantify the

peer’s neighbourhood stability we have computed the percentage of neighbours that
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Figure 4.6: CDF of the percentage of neighbours that appear in two consecutive

snapshots (10 minutes apart) of a given peer

appear in two consecutive neighbourhood snapshots for every peer in our dataset.

In addition, we considered separately those periods in which a peer is a leecher and

a seeder. Figure 4.6 presents the CDF for the defined metric. The results show

that around half of leechers change 50% of their neighbours between two consec-

utive snapshots (i.e., every 10 minutes). This percentage dramatically increases up

to 80% for seeders. Hence, BitTorrent peers are continuously changing a signifi-

cant portion of their neighbours. This high variability is due to two causes: (i) the

churn effect (i.e., peers leaving and joining the swarm) and (ii) the combination of

different neighbour selection algorithms implemented in BitTorrent clients such as

the unchoke algorithm, the optimistic connect algorithm (used in the leecher phase)

and the optimistic disconnect algorithm (used in the seeder phase). Next, we briefly

describe these algorithms:

4.5.2.1 Leecher Phase Algorithms

The unchoking algorithm makes a leecher select N (typically 4) neighbours to

upload chunks to every 10 seconds. These neighbours are then unchoked whereas

the rest of the node’s neighbours are choked and will not receive data from the peer.

The BitTorrent peer unchokes the N neighbours from whom it received the most

data in the last 20 seconds. Therefore, the unchoking algorithm tries to keep good

neighbours for exchanging traffic with. Furthermore, every 30 seconds the BitTor-

rent peer performs an optimistic unchoke. That is, it chooses a random neighbour
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and uploads data to it. The optimistic unchoke allows nodes to discover better peers

to exchange traffic with. Moreover, the most important BitTorrent clients such as

Vuze or uTorrent utilise the optimistic connect [54] during the leecher phase. This

algorithm drops the connection to those neighbours that have uploaded few or no

data to the leecher during some time. These neighbours are substituted by new ones.

The combination of the three described algorithms leads a leecher to identify and

drop those peers from which the leecher is not obtaining enough performance, thus

contributing to the reported high dynamism in the composition of peers’ neighbour-

hoods.

4.5.2.2 Seeder Phase Algorithms

BitTorrent seeders apply different unchoke strategies depending on the imple-

mentation. The most extended strategies are: (i) proportional in which the seeder

unchokes every 10 seconds the N leechers that have downloaded more data from it

in the last 20 seconds and (ii) balanced in which the seeder unchokes peers follow-

ing a round robin policy. Furthermore, seeders use the optimistic disconnect algo-

rithm [54]. Based on this algorithm a seeder closes the connection to those peers to

which it has not sent data for a long period of time (around 5 minutes). The com-

bination of these algorithms (especially the balanced unchoking and the optimistic

disconnect) aim to make the seeder communicating with as many peers as possible,

rather than looking for good neighbours as occurs in the leecher state. As a result

seeders show an extremely low stability in the composition of their neighbourhoods.

4.5.3 Stable Neighbours

In the previous subsection we have shown that both seeders and leechers are con-

stantly changing a significant number of their neighbours. This leads to the reported

high dynamism in the composition of peers’ neighbourhoods. In this subsection, we

change our focus and aim to analyse peers’ stable neighbours. We define a stable

neighbour as a neighbour that appears in all the neighbourhood snapshots of a given

peer. Note that similar to the previous subsection we consider separately the leecher

and seeder phases for a peer. As we have seen, the main algorithms applied by a

BitTorrent leecher are: unchoke, optimistic unchoke and optimistic connect. The

objective of these algorithms is to find a set of good neighbours that provides the

highest possible download rate to the leecher and keep the interaction with them.

Our hypothesis is that these algorithms converge to a set of stable neighbours with
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Figure 4.7: CDF of time in the torrent

which the peer systematically exchange traffic with. In addition, seeders apply dif-

ferent algorithms: proportional or balanced unchoke and optimistic disconnect. The

final objective of the combination of these algorithms (especially, in the case of com-

bining balanced unchoke and optimistic disconnect) is letting the seeder to distribute

pieces of the content homogeneously among leechers. Therefore, our hypothesis is

that during the seeder phase a peer tends to have a few (or none) stable neighbours.

In order to validate our hypothesis, we have collected all the neighbourhood

snapshots for 50K peers within our dataset and analysed separately the leecher and

seeder phases for each peer5. Figure 4.7 shows the CDF of the time that the analysed

peers spend in their leecher and seeder phases, respectively. We observe that in

median leechers stay in the system 70 min. whereas seeders stay 100 min. On the

one hand, the leecher phase time roughly represents the download time, although

in some cases the leecher leaves the torrent before finishing the download. On the

other hand, we observe that seeders typically stay in the system longer than leechers.

This result is supported by previous works that shown that users dedicated to do

professional seeding (thus presenting long seeding sessions) are responsible for a

major portion of the content published in the Pirate Bay [48].

Moreover, for each peer (and phase) we have calculated two metrics: (i) the

number of stable neighbours and (ii) the percentage of stable neighbours as the

ratio between the number of stable neighbours and the median size of the peer’s

neighbourhood in the considered phase. Figures 4.8(a) and 4.8(b) depict the CDF

5Note that some peers can present only one of the two phases.
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Figure 4.8: CDF of the absolute number and percentage of stable neighbours in a

peer’s routing table

for these two metrics for the 50K analysed peers, respectively. The results validate

our hypothesis.

Figure 4.8(b) shows that leechers keep an important percentage (30% in me-

dian) of stable neighbours. These are neighbours with which the peer systematically

exchanges traffic. Furthermore, seeders have a much lower percentage of stable

neighbours, in fact half of the seeders do not have any stable neighbour.

If we analyse now the number of stable peers (Figure 4.8(a)), we observe that

leechers have in median 10 stable neighbours. This value is higher than the typical

number of unchoke slots used by the leecher (4). This observation suggests that

current BitTorrent implementations lead leechers to multiplex their resources (i.e.,

unchoke slots) in time so that they are able to attract a larger number of peers to

obtain pieces from. Moreover, 60% of seeders presents a number of stable peers

≤ 1. This finding suggests that current implementations of seeding algorithms lead

seeders to communicate with as many peers as possible. By doing so, seeders aim

to obtain a homogeneous dissemination of pieces among participants in the swarm

(avoiding selfish behaviours by which a peer tries to retrieve all the pieces from the

seeder without contributing pieces to other peers).

4.5.4 Summary and Discussion

First, we have shown that both leechers and seeders continuously change a sig-

nificant portion (more than half) of their neighbours. This results in a communi-
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cation overhead that may be unnecessary, especially if BitTorrent is used in low

resources devices. Surprisingly, our results reveal that the overlay topology prop-

erties (i.e., clustering coefficient and characteristic path length) of real BitTorrent

swarms remain stable, despite the high dynamicity reported at the peer’s neighbour-

hood level.

Second, our analysis of the set of stable neighbours leads to the following con-

clusions: (i) leechers tend to interact (i.e., exchange data) with a reduced number

of neighbours, that is typically larger than the number of unchoke slots, in order to

optimise their download rate, (ii) seeders present a very reduced number of stable

neighbours, thus they interact with a large number of peers in order to guarantee the

proper dissemination of pieces within the swarm.

The results reported in this Section reveal some interesting properties regard-

ing the swarming efficiency driven by current BitTorrent client implementations and

constitute a solid basis to design future BitTorrent implementations and compare

their performance with the existing ones. Specifically, future developments can con-

sider aspects such as: (i) reducing the dynamism in the formation of peer’s neigh-

bourhood thus reducing the associated communication overhead, and (ii) exploring

the effects of reducing/increasing the number of stable neighbours for seeders and/or

leechers.

4.6 Analysing Locality in Real BitTorrent Swarms

The random bootstrapping used in P2P applications, and more specifically in

BitTorrent, is unnecessarily pushing a lot of traffic to the transit links of ISPs in-

creasing their operational costs [36, 72]. Some ISPs have started to implement dif-

ferent policies (e.g., throttling) in order to minimise the impact of BitTorrent traffic

in their networks [58]. Moreover, the research community has proposed promising

solutions such as ONO [41] or P4P [115] to make a BitTorrent node select (when

available) neighbours within its own ISP, thus confining as much BitTorrent traffic

as possible within the ISP. In addition, other aspects such as network congestion

can also affect the amount of BitTorrent traffic localised within an ISP. Note, that

all these factors (e.g., ISP policies, research solutions or congestion) are likely to

affect just a subset of peers in a swarm rather than the whole swarm. Therefore, in

this Section we study the locality phenomenon at the peer level. Specifically, we

investigate whether the locality level exhibited by a peer’s neighbourhood and/or set

of stable neighbours is higher/lower than the expected from the random neighbours
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selection process implemented by default in BitTorrent.

4.6.1 Methodology

In this Section we consider the same 50K peers used for our analysis in Section

4.5.3. We first study whether the neighbourhoods of BitTorrent peers present an

ISP- or a country-biased composition. That is, whether the number of neighbours

from the same ISP (or country) as the peer is higher than the expected compared

to a purely random process. Then, we repeat the analysis considering exclusively

the peers’ stable neighbours (i.e., neighbours with which the peer systematically

exchange traffic with). Note, that we use the MaxMind database [18] to map each

peer to its ISP and country. Next we describe our methodology, which is based on

the methodology presented in [50]:

Let us consider a peer p belonging to a torrent swarm T . We denote V(T) as all

peers participating in T . We also define V(I,T) as a subset of V(T) which includes

all peers belonging to p’s ISP (I) and V(C,T) as a subset of V(T) which contains all

peers belonging to the same country (C) as p.

On the one hand, we consider a random neighbours selection hypothesis that

represent the expected functionality of the BitTorrent protocol. We refer to this

hypothesis as H0 in the rest of the section. In particular, we calculate the expected

(i.e., average) number of local neighbours that p should have from its ISP (Ei) and

its country (Ec) in each of its neighbourhood snapshots under H0. This is given by

the mean of the Hyper-Geometric distribution6.

On the other hand, we calculate the actual number of local nodes from the same

ISP (In) and from the same country (Cn) that appears in p’s neighbourhood.

Finally, we define a simple metric named the Locality Ratio (LR) that captures

whether the neighbourhood of a given peer is biased towards having more local

nodes than expected from a random selection process. More specifically, we define

LRI (ISP Locality Ratio) as In/Ei and, LRC (Country Locality Ratio) as Cn/Ec.

Hence, a peer with an LRI > 1 and LRC > 1 has a higher number of neighbours

from its ISP and country than expected under H0, respectively.

Prior to presenting our results, we apply a filtering technique to avoid a bias in

the obtained results. Previous works [50, 64] reported that a given peer p can be

6The probability of getting x “successes” (i.e., local nodes) when drawing randomly W samples

from a pool of N items, out of which M are “successes” is given by the HyperGeo(x, N, M, W).

In our case, for a given peer N is represented by the swarm size - 1 (itself), M is represented by

the number of local nodes (from the ISP or Country) -1 (itself) and W is represented by the peer’s

neighbourhood size.
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Figure 4.9: Number of local available nodes for peers in unlocalised torrents: (a)

absolute and (b) relative [%]

located in an unlocalisable torrent7 (i.e., swarm snapshot). Locality is, by definition,

(almost) impossible for this peer since the number of local nodes in the considered

swarm snapshot is 0 or very low. Therefore, we have removed from our dataset all

those peers located in unlocalisable swarm snapshots. Specifically, we consider that

a swarm snapshot is unlocalisable for a peer p if: (i) there are no other local peers or

(ii) p’s Ei (Ec) < 1 (i.e., the expected number of local nodes in p’s neighbourhood is

very low). To validate our filtering technique we have measured the absolute and rel-

ative (as a percentage of whole population) number of local nodes for those filtered

peers. The results are shown in Fig 4.9. For the case of ISP locality we observe

that (in median) there are just 1.5 local nodes for the filtered peers. Furthermore,

these local nodes represent less than 2% of their torrents population. The results for

country locality are similar. Therefore, we can conclude that our filtering technique

successfully removes peers located in unlocalisable torrents.

4.6.2 Locality-biased Peer’s Neighbourhood

In this subsection we apply the previously described methodology to every

neighbourhood snapshot of the 50K analysed peers. Figure 4.10 shows Ei vs. In
and Ec vs. Cn for every considered neighbourhood snapshot. We observe that

most peers have a locality-ISP biased neighbourhood (In > Ei) whereas this bias is

7Note that the notion of unlocalisability applies to a peer. Therefore we can have peers for which

the torrent is unlocalisable and others for which it is not, within the same swarm.
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Figure 4.10: Expected number of local neighbours vs. actual number of local neigh-

bours: (a) ISP and (b) Country locality

slightly lower when we consider the country criteria. Therefore, we can conclude

that a significant portion of BitTorrent peers presents a locality-bias neighbourhood

composition. To gain more insight into this phenomenon we next quantify the re-

ported bias. To this end, Figure 4.11 presents the distribution of the median LRI

and the median LRC of each peer across all its neighbourhood snapshots. We can

observe that an important portion of peers (45%) have a surprisingly high LRI >

1.3. This means that they have 30% more local neighbours from its own ISP than

expected under H0. This percentage gets reduced when looking at the locality at the

country level where only 27% of peers shows LRC > 1.3.

Furthermore, it is interesting to analyse the demographics of the observed lo-

cality phenomenon in order to discover whether there are ISPs presenting a large

number of peers with a high level of locality. Towards this end, for each ISP in our

dataset we collect the absolute and relative number of peers having a high LRI . We

refer to these peers as high locality peers. Specifically, we consider a peer as a high

locality peer if it has a LRI > 1.3. Table 4.1 shows the 10 ISPs with the largest

number of high locality peers. In addition, the table reports the percentage of high

locality peers and the median LRI of the high locality peers for each one of these 10

ISPs. Interestingly, we observe the presence of major US and European ISP, such as

Comcast (US) or Virgin Media (UK), in the list. This suggests that some major ISPs

are implementing policies to reduce the transit traffic generated by BitTorrent that

have a clear impact in the neighbourhood composition of their peers. Furthermore,

it is worth mentioning the presence of 4 different Indian ISPs in the list. Therefore,

the usage of techniques to reduce the transit traffic generated by BitTorrent seems to
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Figure 4.11: CDF of locality ratio

be common among major Indian ISPs as well.

We repeat the same analysis at the country level for peers with LRC > 1.3.

The results are shown in Table 4.2. India is the country with the highest number

of high locality peers at the country level. The US occupies the second position

in the ranking and we also observe the presence of some European countries. It is

also worth noting that more than 60% of users from Taiwan are high locality peers.

These results are consistent with the conclusion obtained at ISP level.
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ISP Median %

Bharti Broadband 2.22 79.75

NIB (National Internet Backbone) 1.77 42.40

Comcast Cable 1.65 36.80

PTCL Triple Play Project 1.89 55.44

CHTD, Chunghwa Telecom Co., Ltd. 1.89 72.19

Road Runner 1.63 36.27

Mahanagar Telephone Nigam Ltd. 1.97 42.86

RELIANCE COMMUNICATIONS 1.71 38.06

Virgin Media 1.72 38.16

SBC Internet Services 1.74 41.34

Table 4.1: ISPs with the highest number of high-locality peers at the overlay con-

struction level

Country Median %

IN 1.89 25.38

US 1.58 29.51

GB 1.66 32.71

RU 1.80 23.15

PK 1.85 47.40

CA 1.60 31.95

TW 1.85 60.96

PL 1.71 36.94

FR 1.63 37.71

SE 1.58 15.83

Table 4.2: Countries with the highest number of high-locality peers at the overlay

construction level

4.6.3 Locality-biased Peer’s Stable Neighbours Set

The ultimate objective of the different policies implemented by ISPs [58] as

well as researchers’ proposals [41, 115] is reducing the amount of traffic crossing

ISPs’ transit links. Therefore, it is interesting to examine whether we observe any

locality effect at the traffic-exchange level. For this purpose, we apply the described

methodology to the stable neighbours of the 50K analysed peers. Remind that the

stable neighbours are those nodes with which a peer systematically exchanges traffic

with.

Figure 4.12 shows box plots with the distribution of LRI and LRC at both the

neighbourhood and the stable neighbours (i.e., exchange traffic) levels. Specifically,

the boxes represent the 25, 50 and 75 percentiles of the different LR distributions.

First, we observe that the set of stable neighbours shows a slightly higher locality-

bias than the neighbourhood at both ISP and country levels. Second, the figure

confirms that the locality effect is more marked at the ISP level than at the country

level.

Finally, we have repeated the demographic analysis considering in this case the

set of stable neighbours. The results are presented in Tables 4.3 and 4.4 for ISP level

and country level locality, respectively. We conclude that the observations done at

the neighbourhood level are also valid at the stable neighbours level: the presence
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ISP Median %

NIB (National Internet Backbone) 1.93 51.84

Bharti Broadband 2.53 76.52

CHTD, Chunghwa Telecom Co., Ltd. 1.69 61.11

Comcast Cable 1.63 31.34

Telecom Italia 1.65 30.91

Bredbandsbolaget AB 1.55 45.83

Telefonica de España 1.57 25.64

Road Runner 1.77 36.00

PTCL Triple Play Project 2.28 41.18

Mahanagar Telephone Nigam Ltd. 2.47 66.67

Table 4.3: ISPs with the highest number of high-locality peers at the traffic exchange

level

Country Median %

IN 1.93 50.83

US 1.70 30.15

PL 1.83 59.32

RU 1.76 20.43

GB 1.83 36.44

SE 1.55 13.00

TW 1.71 48.00

DE 1.56 21.65

ES 1.58 9.94

CN 1.68 30.91

Table 4.4: Countries with the highest number of high-locality peers at the traffic

exchange level

of several major ISPs from India and several major US (Comcast) and European

(Telecom Italia, Telefonica España) providers among the top 10 ISPs with a larger

number of high locality peers.

4.6.4 Summary and Discussion

In this Section, we have demonstrated that a significant fraction of the studied

peers (45%) present at least 30% more local neighbours than those expected from

a purely random neighbour selection process. Furthermore, this biased composi-

tion is even more marked when we consider the set of stable neighbours, which

are those with which a peer exchange most of its traffic. The enforcement poli-

cies implemented by ISPs (e.g., throttling) along with the proliferation of successful

locality-aware BitTorrent clients such as ONO [41] and other network effects such

as congestion seem to be the cause for the observed results. Furthermore, our results

reveal that Indian ISPs along with large American and European ISPs are those host-

ing a larger number of users presenting a higher locality-biased in their neighbour-

hood composition. Finally, our results show a higher locality-biased at the ISP than

at the country level. This can be explained since it is likely that in a specific country

just some ISPs implement locality-enforcing techniques, therefore when analysing
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the locality-biased at the individual ISPs we observe a larger bias than in the case of

considering aggregately all the peers within the country.

The obtained results are useful for ISPs as well as for the evaluation of novel

locality-aware BitTorrent implementations under development by researchers and

practitioners.

4.7 Conclusions

In this Chapter we present a comprehensive study of the overlay topology struc-

ture and the connectivity properties at peer level of real BitTorrent swarms. For

this purpose we leverage information collected from 250 real torrents and more than

150K peers. Our results demonstrate that real BitTorrent swarms present a relatively

efficient topology for the dissemination of information and are resilient to churn (i.e.,

random node removal process). However, real swarms are significantly less resilient

to possible attacks (i.e., highest-degree node removal process) than equivalent ran-

dom graphs. Furthermore, our analysis of the composition of peers’ neighbourhoods

reveal that current BitTorrent implementations make both leechers and seeders mod-

ify a significant portion of their neighbourhoods in short periods of time. This leads

to a communications overhead that might not be needed. In addition, a leecher (typ-

ically) keeps stable connections with just a handful of its neighbours with which it

exchange most of its traffic. In contrast, seeders do not keep long-term connections

with other peers in order to guarantee the homogeneous distribution of pieces among

the participants in the swarm. Finally, our results reveal that a significant fraction of

peers present a clear locality-biased composition of both their neighbourhoods and

their set of stable neighbours. This suggests that locality-enforcing policies of some

ISPs, the proliferation of locality-aware BitTorrent clients and some other network

effects such as congestion are localising an important part of BitTorrent traffic within

some ISPs. In particular, our results show that the ISPs hosting a larger portion of

peers with an important locality-biased neighbourhood composition are large US,

European and Indian ISPs.

These insights seem to be of interest and usefulness to: researchers and prac-

titioners working on the improvement of BitTorrent related algorithms, companies

that use BitTorrent to perform critical tasks such as software release or content repli-

cation and ISPs carrying BitTorrent traffic.





Chapter 5

Publishing Content in BitTorrent

5.1 Introduction

Peer-to-Peer (P2P) file-sharing applications, and more specifically BitTorrent,

are clear examples of killer Internet applications of the last decade. However, the

socio-economic aspects of other P2P file sharing systems in general and BitTorrent

in particular have received little attention. More specifically, a key factor in the

popularity of BitTorrent is the availability of popular and often copyrighted content

(e.g., recent TV shows and Hollywood movies) to millions of interested users at no

cost. This raises an important question about the incentive of publishers who make

these files available through BitTorrent portals. To our knowledge, prior studies on

BitTorrent have not addressed this critical question.

In this Chapter, we study content publishing in BitTorrent from a socio-economic

point of view by unravelling who publishes content in major BitTorrent portals, and

why. Toward this end, we conduct a large-scale measurement over two major Bit-

Torrent portals, namely Mininova [19] and the Pirate Bay [21], to capture more than

55K published content objects that involve more than 35M IP addresses. Using this

dataset, we first examine the contribution of the individual content publishers and il-

lustrate that a small fraction of publishers (3%) are responsible of uploading 67% of

the published files that serve 75% of the unique peer downloads in our major dataset.

Furthermore, most of these major publishers dedicate their resources for publishing

content while consuming little to none content published by others, i.e., their level

of content publication and consumption is very imbalanced. In addition to allocating

a significant amount of resources for publishing content, these users often publish

copyrighted material, which has legal implications for them [6] [7]. These observa-

tions raise the following question: what are the main incentives of (major) content

63
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publishers in large BitTorrent portals?

To answer this important question, we conduct a systematic study on the major

BitTorrent publishers. We show that these publishers can be broadly divided into

two different groups: top publishers who publish a large number of often copy-

righted content and fake publishers who publish a large number of fake content. We

also identify the main characteristics (i.e., signature) of publishers in each group

such as their seeding behaviour and the popularity of their published content. We in-

vestigate the main incentives of major (non-fake) publishers and classify them into

the following three categories (or profiles): (i) Private BitTorrent Portals that of-

fer certain services and receive financial gain through ads, donations and fees, (ii)

Promoting Web Sites that leverage published content at BitTorrent portals to attract

users to their own web site for financial gain, and (iii) Altruistic Top Publishers. We

characterise these three groups of publishers and estimate the value (and income)

of the associated web sites to support our claims about their incentives. Moreover,

we are performing a detailed analysis of fake publishing phenomena. We conduct

a separate large scale measurement study in order to analyse the presence of fake

content in the BitTorrent ecosystem and to characterise fake publishers. We show

that fake publishers can be divided into three groups: (i) Malware Propagators who

spread the malware software (ii) Scammers who try to obtain financial benefits from

BitTorrent users in a dishonest way and (iii) Anti-piracy Agencies who protect copy-

righted content. Our results reveal that fake content represents an important portion

(35%) of those files shared in BitTorrent and just a few tens of users are responsi-

ble for 90% of this content. Furthermore, more than 99% of the analysed fake files

are linked to either malware or scam websites. This creates a serious threat for the

BitTorrent ecosystem.

Finally, we define the notion of consumer loyalty towards a particular publisher

and examine loyalty among BitTorrent consumers. We demonstrate that loyal con-

sumers are mostly associated with top publishers. Furthermore, the fraction of loyal

consumers and their level of loyalty towards a top publisher appear to be related to

the publisher’s profile as well as the type and the amount of published content.

The main contributions of this Chapter can be summarised as follows:

• We present a simple measurement methodology to monitor the content pub-

lishing activity in major BitTorrent portals. This methodology has been im-

plemented in a system that continuously monitors and reports the content pub-

lishing activity in the Pirate Bay portal. The collected data by our system is

made publicly available through our project web site [12].
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• The distribution of the number of published content by each publisher is very

skewed, i.e., a very small fraction of publishers (3%) is responsible for a sig-

nificant fraction of the published content (67%) and for an even more signif-

icant fraction of download sessions (75%). These major publishers can be

further divided into three groups based on their incentives as follows: profit-

driven publishers, altruistic top publishers and fake publishers.

• Profit-driven top publishers own fairly profitable web sites. They use major

BitTorrent portals such as the Pirate Bay as a platform to attract millions of

users to their web site by showing the associated URL to a user at different

steps of file download. The publishers that pursue this approach are respon-

sible for roughly 30% of the content and 40% of the downloads in major Bit-

Torrent portals.

• Fake publishers are either anti-piracy agencies or malicious users who are

responsible for 30% up to 35% of the content and 25% of the downloads.

These publishers sustain a continuous content poisoning attack [84] against

major BitTorrent portals that affects millions of downloaders.

• We show that only the top publishers attract a significant number of loyal con-

sumers. More interestingly, we observe that profit-driven publishers attract a

larger absolute number of loyal consumers than altruistic top publishers (55K

versus 6K) whereas altruistic publishers have a larger fraction of loyal con-

sumers with a higher level of loyalty. This distinction appears to be directly

related to their publishing strategy.

The rest of the Chapter is organised as follows. Section 5.2 describes our mea-

surement methodology. Sections 5.3 and 5.4 are dedicated to the identification of

major publishers and their main characteristics (i.e., signature) respectively. In Sec-

tion 5.5, we study the key incentives for major content publishers. More detailed

analysis of fake publishers can be found in Section 5.6. We examine consumer loy-

alty and its relationship with publisher profiles in Section 5.7. Section 5.8 presents

other players that also benefit from content publishing. Finally Section 5.9 concludes

the Chapter.

5.2 Measurement Methodology

The objective of our measurement study is to determine the identity of the ini-

tial publishers of a large number of torrents and to assess the popularity of each
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Portal Start End #Torrents #IP

(username/IP) addresses

mn08 Mininova 09-Dec-08 16-Jan-09 - /20.8K 8.2M

pb09 Pirate Bay 28-Nov-09 18-Dec-09 23.2K/10.4K 52.9K

pb10 Pirate Bay 06-Apr-10 05-May-10 38.4K/14.6K 27.3M

Table 5.1: Datasets Description: portal name, start and end dates, number of col-

lected torrents for which we identify the username and the IP address of the initial

seeder, and number of collected consumers IP addresses

published file (i.e., the number and identity of peers who download the file).

Toward this end, we leverage the RSS feed to detect the availability of a new file

on major BitTorrent portals and retrieve the publisher’s username. In order to obtain

the publisher’s IP address, we immediately download the .torrent file and connect

to the associated tracker. This implies that we often contact the tracker shortly after

the birth of the associated swarm when the number of participating peers is likely to

be small and includes the initial publisher (i.e., seeder). We retrieve the IP address

of all participating peers as well as the current number of seeders in the swarm. If

there is only one seeder in the swarm and the number of participating peers is not

too large (i.e., < 20), we obtain the bitfield of available pieces at individual peers

to identify the seeder. Otherwise, reliably identifying the initial seeder is difficult

because either there is more than one seeder or the number of participating peers is

large1. Furthermore, we cannot directly contact the initial seeder that is behind a

NAT box and thus we are unable to identify the initial publisher’s IP address in such

cases. Using the above techniques we were able to reliably identify the publisher’s

username for all the torrents and the publisher’s IP address in at least 40% of the

torrents.

Once we identify a publisher, we periodically query the tracker in order to ob-

tain the IP addresses of the participants in the associated swarm and always solicit

the maximum number of IP addresses (i.e., 200) from the tracker. To avoid being

blacklisted by the tracker, we issue our queries at the maximum rate allowed by the

tracker (i.e., 1 query every 10 to 15 minutes depending on the tracker load). Given

this constraint, we query the tracker from 8 geographically distributed machines2

1Our investigation revealed two interesting scenarios for which we could not identify the initial

publisher’s IP address: (i) swarms that have a large number of peers shortly after they are added to

the portal. We discovered that these swarms have already been published in other portals. (ii) swarms

for which the tracker did not report any seeder for a while or did not report a seeder at all.
21 located in Oslo (Norway), 1 in Barcelona (Spain), 1 in Albacete (Spain) and 5 in different
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so that all these machines collectively provide an adequately large probing rate to

quickly discover most (and often all) of the participating peers and their evolution

over time. We continue to monitor a target swarm until we receive 10 consecutive

empty replies from the tracker. We use the MaxMind Database [18] to map all the

IP addresses (for both publishers and downloaders) to their corresponding ISPs and

geographical locations.

5.2.1 Dataset

Using the described methodology, we identify a large number of BitTorrent

swarms at two major BitTorrent portals, namely Mininova and the Pirate Bay. Each

one of these portals was the most popular BitTorrent portal at the time of the corre-

sponding measurement according to Alexa ranking [9]. It is worth noting that the

Pirate Bay is particularly interesting for our study since it is the only main BitTorrent

portal where all the published content is contributed by users [118] (as opposed to

being retrieved from other portals). Table 5.1 shows the main features of our three

datasets (1 from Mininova and 2 from the Pirate Bay) including the start and end

dates of our measurement, the number of torrents for which we identified the initial

publisher (username/IP address), and the total number of discovered IP addresses

associated for all the monitored swarms. We refer to these datasets as mn08, pb09

and pb10 throughout this Chapter. We note that dataset mn08 does not contain the

username of initial publishers and for dataset pb09 we use a single query to iden-

tify initial publishers after detecting a new swarm through the RSS feed, but do not

probe the tracker to capture all the consumers.

In Appendix B the potential biases of the measurement methodology are quanti-

fied.

5.3 Identifying Major Publishers

A publisher can be identified by its username and/or IP address. In our analysis,

we identify individual publishers primarily by their username since the username

is expected to remain consistent across different torrents. However, we require the

identification of an individual publisher’s IP address for network-level analyses such

as determining the ISP where a publisher is located, the duration of time that a

publisher remains in a swarm, or its participation across multiple swarms either

locations in Madrid (Spain).
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Figure 5.1: Percentage of content published by the top x% publishers.

as a publisher or a consumer. For these network-level analyses, we only consider

those torrents in out dataset for which we are able to identify the IP address of the

publisher (i.e., the initial seeder). Furthermore, we can identify publishers in mn08

dataset only by their IP addresses since this dataset does not include the username

of individual publishers. Finally, fake publishers are better identified by their IP

addresses as we describe in the next Sections.

5.3.1 Skewness of Contribution

First, we examine the level of contribution (i.e., the number of published files) by

the identified content publishers in each dataset. Figure 5.1 depicts the percentage

of files that are published by the top x% of the publishers in our three datasets. We

observe that the top 3% of the BitTorrent publishers contribute roughly 40% of the

published content. Moreover, a more careful examination of IP addresses for the

top-100 (i.e., 3%) publishers in our pb10 dataset reveals that a significant fraction of

them either do not download any content (40%) or download less than 5 files (80%).

This large contribution of resources (bandwidth and content) by major publishers

coupled with the significant imbalance between their publishing and consumption

rates appears non-altruistic and rather difficult to justify for two simple reasons:

- Required Resources/Cost: publishing a large number of content requires a signif-

icant amount of resource (e.g., bandwidth). For example, a major content publisher

named eztv recommends in its private BitTorrent portal web page (www.eztv.it)

to allocate at least 10 Mbps in order to sustain the seeding of few (around 5) files in
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mn08 pb09 pb10

ISP Type % ISP Type % ISP Type %

OVH Hosting Provider 13.31 OVH Hosting Provider 24.76 OVH Hosting Provider 15.16

Comcast Commercial ISP 4.69 Comcast Commercial ISP 3.67 SoftLayer Tech. Hosting Provider 4.52

Keyweb Hosting Provider 3.18 Road Runner Commercial ISP 2.3 FDCservers Hosting Provider 3.64

Road Runner Commercial ISP 3.03 Romania DS Commercial ISP 2.27 Open Computer Network Commercial ISP 3.59

NetDirect Hosting Provider 2.44 MTT Network Commercial ISP 1.95 tzulo Hosting Provider 3.36

Virgin Media Commercial ISP 2.42 Verizon Commercial ISP 1.64 Comcast Commercial ISP 2.86

NetWork Operations Center Hosting Provider 2.39 Virgin Media Commercial ISP 1.49 Cosema Commercial ISP 2.25

SBC Commercial ISP 2.38 SBC Commercial ISP 1.41 Telefonica Commercial ISP 2.22

Comcor-TV Commercial ISP 2.33 NIB Commercial ISP 1.26 Jazz Telecom. Commercial ISP 2.07

Telecom Italia Commercial ISP 2.02 tzulo Hosting Provider 1.14 4RWEB Hosting Provider 2.06

Table 5.2: Content Publishers Distribution per ISP.

parallel.

- Legal Implications: As other studies have reported [38] and we confirm in our

datasets, a large fraction of content published by major publishers is copyrighted

material (recent movies or TV series). Thus, publishing these files is likely to have

serious legal consequences for these publishers [6] [7].

This raises the question: why do small fraction of publishers allocate a great

deal of (costly) resources to contribute many files into BitTorrent swarms despite

potential legal implications? We answer this central question in Section 5.5.

5.3.2 Publishers’ ISPs

To help identify content publishers in our dataset, we determine the ISP that

hosts each major publisher and use that information to assess the type of service

(and available resources) that a publisher is likely to have. Toward this end, we

map the IP address for a publisher in each dataset to its corresponding ISP using

the MaxMind database [18]. We then examine the publicly available information

about each ISP (e.g., its web page) to determine whether it is a commercial ISP

or a hosting provider. We perform this analysis only for the top-100 (roughly 3%)

publishers since these publishers are mostly of interest and collecting the required

information for all publishers is a tedious task. Since we do not have publishers’

username for mn08, we examine the top-100 publishers based on their IP addresses

in this dataset. For these publishers, we cannot assess the aggregated contribution of

a publisher through different IP addresses (i.e., under-estimating the contribution of

each publisher).

We observe that 42% of the top-100 publishers in pb10, 35% of the top-100 in

pb09 and 77% of the top-100 publishers in mn08 are located at hosting services.

Moreover 22%, 20% and 45% of these top-100 publishers are located at a particular

hosting services, namely OVH, in pb10, pb09 and mn08 respectively.
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Published # IP # /16 IP # Geographical

torrents addresses Prefixes Locations

OVH (mn08) 2766 164 5 2

Comcast (mn08) 976 675 269 400

OVH (pb09) 2577 78 5 2

Comcast (pb09) 382 198 143 129

OVH (pb10) 2213 92 7 4

Comcast (pb10) 408 185 139 147

Table 5.3: Characteristics of all OVH and Comcast publishers in mn08, pb09 and

pb10.

In short, our analysis reveals that a significant fraction of major publishers are

located at a few hosting services and a large percentage of them at OVH.

We also examine the contribution of BitTorrent publishers at the ISP-level by

mapping all the publishers to their ISPs and identify the top-10 ISPs based on their

aggregate published content for each dataset as shown in Table 5.2. This table con-

firms that content publishers who are located at a particular hosting provider, namely

OVH, have consistently contributed to a significant fraction of published content at

major BitTorrent portals. There are also several commercial ISPs (e.g., Comcast) in

Table 5.2 with a much smaller contribution.

To assess the difference between users from hosting providers and commercial

ISPs, we compare and contrast the characteristics of all publishers that are located at

OVH and Comcast as representative ISPs for each class of publishers in Table 5.3.

This table demonstrates the following two important differences: first, the aggregate

contribution of each publisher at OVH is on average a few times larger than Com-

cast publishers. Second, Comcast publishers are sparsely scattered across many /16

IP prefixes and many geographical locations in the US whereas OVH publishers are

concentrated in a few /16 IP prefixes and a handful of different locations in Europe

(i.e., the location of OVH’s data centres). In essence, the published content by Com-

cast publishers comes from a large number of typical altruistic users where each one

publishes a small number of files likely from their home or work. In contrast, OVH

publishers appear to be paying for a well-provisioned service to be able to publish a

much larger number of files. We have also examined consuming peers (i.e., leech-

ers) in captured torrents and did not observe the presence of OVH users among these

consuming peers.

In summary, the examination of ISPs that host major BitTorrent publishers sug-

gests that major publishers are located either at a few hosting providers (with a
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large concentration at OVH) or at commercial ISPs. These publishers contribute a

significantly larger number of files than average publishers. Furthermore, publish-

ers who are located at hosting providers do not consume published content by other

publishers.

5.3.3 A Closer Look at Major Publishers

We now examine the mapping between username and IP address of the top-100

content publishers in the pb10 dataset to gain some insight about major publishers

behaviour. Our examination reveals the following interesting points.

First, if we focus on the top-100 IP addresses that have published the largest

number of files, only 55% of them are used by a unique username. The remain-

ing 45% of the IP addresses of major publishers are mapped to a large number of

usernames. We have carefully investigated this set of IP addresses and discovered

that they use either hacked or manually created accounts (with a random username)

to inject ”fake” content. These publishers appear to be associated with anti-piracy

agencies or malicious users. The former group tries to avoid the distribution of

copyrighted content whereas the latter attempts to disseminate malware. We refer to

these publishers as fake publishers. Surprisingly, fake publishers are responsible for

around 25% of the usernames, 30% of the published content and 25% of the down-

loads in our pb10 dataset. This suggests that major BitTorrent portals are suffering

from a systematic poisoning index attack [84] that affects 30% of the published con-

tent. The portals fight this phenomenon by removing the fake content as well as the

user accounts used to publish them. However, contrary to what has been reported in

previous studies [99], this technique does not seem to be sufficiently effective since

millions of users initiate the download of fake content. Finally, it is worth noting

that most of the fake publishers perform their activity from three specific hosting

providers named tzulo, FDC Servers and 4RWEB. Due to the relevant activity of

these fake publishers, we study them as a separate group in the rest of the Chapter.

We also perform separate measurements and detailed analysis of fake publishers,

which is presented in Section 5.6.

Second, the inspection of the top-100 usernames who publish the largest number

of files shows that only 25% of them operate from a single IP. The remaining 75% of

top usernames utilises multiple IPs and can be classified into the following common

cases: (i) 34% of the usernames with multiple IP addresses (5.7 IP addresses on

average) at a hosting provider in order to obtain the required resources for seeding a

large number of files. (ii) 24% of the usernames with multiple IP addresses (13.8 IP
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addresses on average) located at a single commercial ISP. Their mapping to multiple

IP addresses could be due to the periodical change of their assigned IP addresses

by their ISPs. (iii) The other 17% of these usernames are mapped to multiple IP

addresses (7.7 IP addresses on average) at different commercial ISPs. These are

users who inject content from various locations (for example, a user may publish

from both home and work computer). To properly characterise different types of

publishers, we exclude the 16 usernames who publish fake content from the top-100

usernames. We refer to the remaining top-100 usernames (non-fake publishers) as

Top publishers who are responsible of 37% of the published content and 50% of the

total downloads in our pb10 dataset.

In summary, the major portion of the content comes from two reduced group of

publishers: Top publishers and Fake publishers that collectively are responsible of

67% of the published content and 75% of the downloads. In the rest of the Chapter

we devote our effort to characterise these two groups.

5.4 Signature of Major Publishers

Before we investigate the incentives of major BitTorrent publishers, we examine

whether they exhibit any other distinguishing features, i.e., whether major publishers

have a distinguishing signature. Any such distinguishing features could shed some

light on the underlying incentives of these publishers. Toward this end, in the next

few subsections, we examine the following characteristics of major publishers in our

datasets: (i) the type of published content, (ii) the popularity of published content,

and (iii) the availability and seeding behaviour of a publisher.

To identify distinguishing features, we examine the above characteristics across

the following three target groups in each dataset: all publishers (labelled as “All”),

all fake publishers (labelled as “Fake”) and all top-100 (non-fake) publishers re-

gardless of their ISPs (labelled as “Top”). We also examine the break down of Top

publishers based on their ISPs into hosting providers and commercial ISPs, labelled

as “Top-HP” and “Top-CI”, respectively.

5.4.1 Content Type

We leverage the reported content type by each publisher to classify the published

content across different target groups. Figure 5.2 depicts the breakdown of published

content across different content type for all publishers in each target group for our
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(a) mn08 (b) pb10

Figure 5.2: Type of published content distribution for the different classes of pub-

lishers: All, Fake, Top, Top-HP and Top-CI.

Mininova and our major Pirate Bay datasets. We recall that without username in-

formation for each publisher in mn08 dataset, we cannot identify fake publishers.

Figure 5.2 reveals a few interesting trends.

First, Video files (which mainly include movies, TV-shows and porn content)

constitute a significant fraction of published files across most groups with some

important differences. The percentage of published Video across all publishers is

around 37%-51% but it is slightly larger among top publishers. However, Video is

clearly a larger fraction of published content by the top publishers located at hosting

providers in our pb10 dataset. Fake publishers primarily focus on Videos (recent

movies and TV shows) and Software content. This supports our earlier observation

that these publishers consist of anti-piracy agencies and malicious users because the

former group publishes a fake version of recent movies while the latter provides

software that contains malware.

5.4.2 Content Popularity

The number of published files by a publisher shows only one dimension of its

contribution to BitTorrent. The other equally important issue is the popularity of

each published content (i.e., the number of downloaders regardless of their download

progress) by individual publishers. Figure 5.3 shows the box plot of the distribution

of average number of downloaders per torrent per publisher across all publishers

in each target group where each box presents the 25th, 50th and 75th percentiles.

All the box plots presented in the rest of the Chapter follow the same format. On

the one hand, the median popularity of top publishers’ torrents is 7 times higher

than a typical user (represented by All). A closer examination of the Top publishers
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Figure 5.3: Avg. Num of Downloaders per torrent per publisher for the different

classes of publishers: All, Fake, Top, Top-HP, Top-CI.

shows that the content published by users at hosting providers is on average 1.5

times more popular than those published by users at commercial ISPs. On the other

hand, fake publishers’ content is the most unpopular among the target groups. This is

because the portals actively monitor the torrents and immediately remove the content

identified as fake to avoid users from downloading it. Furthermore, users quickly

realise the fake nature of these content and report this info on forums that inform

others and limit their popularity.

In summary, top publishers are responsible for a larger fraction of popular tor-

rents. This in turn magnifies the contribution of the 37% of the injected files by the

top publishers to be responsible for 50% of all the downloads. The low popularity

of fake publishers’ content has the opposite effect and limits their contribution to the

number of downloads to 25%.

5.4.3 Seeding Behaviour

We characterise the seeding behaviour of individual publishers in our target

groups using the following metrics: (i) average seeding time of a publisher for its

published content, (ii) average number of parallel seeded torrents, and (iii) ag-

gregated session time of a publisher across all its torrents. Since calculating these

properties requires detailed and computationally expensive analysis, we are unable

to derive these values for all publishers. We use 400 randomly selected publishers

to represent the normal behaviour of all publishers and refer to this group as “All”
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(c) Average Aggregated Ses-

sion Time Per Publisher

Figure 5.4: Seeding Behaviour for the different classes of publishers: All, Fake, Top,

Top-HP and Top-CI.

in our analysis.

In order to compute these metrics we need to estimate the time that a specific

publisher has been connected to a torrent (in one or multiple sessions). Since each

query to the tracker just reports (at most) a random subset of 200 IPs, in big torrents

(>200 peers), we need to perform multiple queries in order to assess the presence of

the publisher in the torrent. In Appendix C, we detail the technique used to estimate

the session time of a specific user in each torrent.

Average Seeding Time: We measure the duration of time that a publisher stays in

a torrent since its birth to seed the content. In general, a publisher can leave the

torrent once there is an adequate fraction of other seeds. Figure 5.4(a) depicts the

summary distribution of average seeding time across all publishers in each target

group. This figure demonstrates the following points: first, the seeding time for

fake publishers is significantly longer than publishers in other groups. Since these

publishers do not provide the actual content, the initial fake publisher remains as the

only seed in the session (i.e., other users do not help in seeding fake content) to keep

the torrent alive. Second, Figure 5.4(a) shows that top publishers typically seed a

content for a few hours. However, the seeding time for top publishers from hosting

providers is clearly longer than top publishers from commercial ISPs. This suggests

that publishers at hosting providers are more concerned about the availability of their

published content.

Average Number of Parallel Torrents: Figure 5.4(b) depicts the summary distri-

bution of the average number of torrents that a publisher seeds in parallel across

publishers in each target group. This figure indicates that fake publishers seed many

torrents in parallel. We have seen that fake publishers typically publish a large num-
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ber of torrents and other users do not help them for seeding. Therefore, fake pub-

lishers need to seed all of their seeded torrents in parallel in order to keep them alive.

The results for top publishers show that their typical number of seeded torrents in

parallel is the same (around 3 torrents) regardless of their location. However, we

expect that a regular publisher seed only 1 file at a time.

Aggregated Session Time: We have also quantified the availability of individual

publishers by estimating the aggregated session time that each publisher is present

in the system across all published torrents. Figure 5.4(c) shows the distribution of

this availability measure across publishers in each target group. As expected fake

publishers present the longest aggregated session time due to their obligation to con-

tinuously seed their content to keep them alive. If we focus on top publishers, they

exhibit a typical aggregated session 10 times longer than standard users. Further-

more, top publishers at hosting services are clearly more available than those from

commercial ISPs.

5.4.4 Summary

BitTorrent content publishers can be broadly divided into three groups as fol-

lows: (i) Altruistic users who publish content while consuming content that is pub-

lished by other users. (ii) Fake publishers publish a significant number of files that

are often Video and Software content from a few hosting providers. Due to the fake

nature of their content, their torrents are unpopular and they need to seed all tor-

rents to keep them alive. These publishers appear to be associated with anti-piracy

agencies or malicious users. We validate this hypothesis in Section 5.6. (iii) Top

publishers publish a large number of popular files (often copyrighted video) and

remain for a long time in the associated torrents to ensure proper seeding of their

published content. These publishers are located at hosting facilities or commercial

ISPs. Their behaviour suggests that these publishers are interested in the visibility

of the published content possibly to attract a large number of users. The (cost of)

allocated resources by these publishers along with legal implications of publishing

copyrighted material cannot be considered as altruistic. Therefore, the most con-

ceivable incentive for these publishers appears to be financial profit. We examine

this hypothesis in the rest of the Chapter.
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5.5 Incentives of Major Publishers

In this Section, we examine the incentives of different groups of publishers of

non-fake content in more detail. Because of the relevance of the fake group of pub-

lishers, we conduct a separate measurement study and present the detailed analysis

of those publishers in Section 5.6.

We are focusing on a group of major publishers who allocate significant amount

of resources to publish non-fake an often copyrighted content. We believe that the

behaviour of these users is not altruistic. More specifically, our hypothesis is that

these publishers leverage major BitTorrent portals as a venue to freely attract con-

sumers to their web sites. To verify this hypothesis, we conduct an investigation to

gather the following information about each one of the top (i.e., top-100 non-fake)

publishers:

• Promoting URL: the URL that downloaders of a published content may en-

counter,

• Publisher’s Username: any publicly available information about the username

that a major publisher uses in the Pirate Bay portal, and

• Business Profile: offered services (and choices) at the promoting URL.

Next, we describe our approach for collecting this information.

Promoting URL: We emulate the experience of a user by downloading a few ran-

domly selected files published by each top publisher to determine whether and

where they may encounter a promoting URL. We identified three places where

publishers may embed a promoting URL: (i) the name of the downloaded file

(e.g., user mois20 names his files as filename-divxatope.com, thus advertising the

URL www.divxatope.com), (ii) the text-box in the web page associated with

each published content, (iii) name of a text file that is distributed with the actual

content and is displayed by the BitTorrent software when opening the .torrent file.

Our investigation indicates that the second approach (using the text-box) is the most

common technique among the publishers.

Publisher’s Username: We browsed the Internet to learn more information about

the username associated with each top publisher. First, the username is in some

cases directly related to the URL (e.g., user UltraTorrents whose URL is www.

ultratorrents.com). This exercise also reveals whether this username pub-

lishes on other major BitTorrent portals in addition to the Pirate Bay. Finally, posted
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information in various forums could reveal (among other things) the promoting web

site.

Business Services: We characterise the type of services offered at the promoting

URL and ways that the web site may generate income (e.g., posting ads). We also

capture the exchanged HTTP headers between a web browser and the promoting

URL to identify any established connection to third-party web sites (e.g., redirection

to ads web sites or some third party aggregator) using the technique described in

[74].

5.5.1 Classifying Publishers

Using the above methodology, we examined a few published torrents for each

one of the top publishers as well as sample torrents for 100 randomly selected pub-

lishers that are not in the top-100, called regular publishers. On the one hand, we

did not discover any interesting or unusual behaviour in torrents published by reg-

ular publishers and thus conclude that they behave in an altruistic manner. On the

other hand, a large fraction of seeded torrents by the top publishers systematically

promotes one or more web sites with financial incentives. Our examination revealed

that these publishers often include a promotional URL in the text-box of the content

web page. We classify these top publishers into the following three groups based on

their type of business (using the content of their promoting web sites) and describe

how they leverage BitTorrent portals to intercept and redirect users to their web sites.

Private BitTorrent Trackers: A subset of major publishers (25% of top) owns their

BitTorrent portals that are in some cases associated with private trackers [63]. These

private trackers offer a better user experience in terms of download rate (compared

to major open BitTorrent portals) but require clients to maintain a certain seeding

ratio. More specifically, each participating BitTorrent client is required to seed con-

tent proportionally to the amount of data it downloads across multiple torrents. To

achieve this goal, users are required to register in the web site and login before down-

loading the torrent files. The publishers in this class publish 18% of all the content

while they are responsible for 29% of the downloads. 2/3 of these publishers adver-

tise the URL in the text-box at the content web page. Furthermore, they appear to

gain financial profit in three different ways: (i) posting advertisement in their web

sites, (ii) seeking donations from visitors to continue their basic service, and (iii)

collecting a fee for VIP access that allows the client to download any content without

requiring any kind of seeding ratio. These publishers typically inject video, audio

and software content into BitTorrent portals. Interestingly, a significant fraction of
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publishers in this class (40%) publish content in a specific language (Italian, Dutch,

Spanish or Swedish) and specifically a 66% of this group are dedicated to publish-

ing Spanish content. This finding is consistent with prior reports on the high level of

copyright infringement in Spain [28].

Promoting Web Sites: Another class of top publishers (23% of top) appears to be

promoting some URLs that are associated with hosting images web sites (e.g., www.

pixsor.com), forums or even religious groups (e.g., lightmiddleway.com).

These publishers inject 8% of the content and are responsible of 11% of the down-

loads. Most publishers in this class advertise their URL using the text-box in the

content web page. Furthermore, most of these publishers (70%), specifically those

that are running a hosting image web site, publish only porn content. Inspection

of the associated hosting image web sites revealed that they store adult pictures.

Therefore, by publishing porn content in major BitTorrent portals, they are targeting

a particular demography of users who are likely to be interested in their web sites.

The income of the portals within this class is based on advertisement.

Altruistic Publisher: The remaining top publishers (52% of top) appear to be al-

truistic users since they do not seem to directly promote any URL. These publishers

are responsible of 11.5% of the content and roughly the same fraction of down-

loads. Many of these users publish small music and e-book files that require smaller

amount of seeding resources. Furthermore, they typically include a very extensive

description of the content and often ask other users to help with seeding the content.

These evidences suggest that these publishers may have limited resources and thus

they need the help of others to sustain the distribution of their content.

In summary, roughly half of the top publishers advertise a web portal in their

published torrents. It appears that their intention is to attract a large number of

users to their web sites. The income of these portals comes from ads and in the spe-

cific case of private BitTorrent portals also from donations and VIP fees. Overall,

these profit-driven publishers generate 26% of the content and 40% of the down-

loads. Therefore, the removal of this small fraction of publishers may have a sig-

nificant impact on the popularity of major BitTorrent portals. Finally, a fraction of

publishers appears to be altruistic and responsible for a notable fraction of pub-

lished content and downloads (11.5%). This suggests that there are some seemingly

ordinary users who dedicate their resources to share content with a large number of

peers in spite of the potential legal implications of such activity.
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Lifetime Avg. Publishing Rate

(days) (torrents per day)

Private Portals 63/466/1816 0.57/11.43/79.91

Promoting Web sites 50/459/1989 0.38/4.31/18.98

Altruistic 10/376/1899 0.10/3.80/23.67

Table 5.4: Lifetime and Avg. Publishing Rate for the different classes of content

publishers: BitTorrent Portals, Promoting Web Sites and Altruistic Publishers. The

represented values are min/avg/max per class.

5.5.2 Longitudinal View of Major Publishers

So far, we focused on the contribution of major publishers only during our mea-

surement intervals. Having identified the top publishers in our pb10 dataset, we

examine the longitudinal view of the contribution by major publishers since they

appeared on the Pirate Bay portal. Toward this end, for each top publisher, we ob-

tain the username page on the Pirate Bay portal that maintains the information about

all the published content and its published time by the corresponding user till our

measurement date (June 4, 2010)3. Using this information for all top publishers, we

capture their publishing pattern over time with the following parameters: (i) Pub-

lisher Lifetime which represents the number of days between the first and the last

appearance of the publisher in the Pirate Bay portal, (ii) Average Publishing Rate

that indicates the average number of published content per day during their lifetime.

Table 5.4 shows the min/avg/max value of these metrics for the different classes

of publishers: Private Portals, Promoting Web Sites and Altruistic publishers. The

profit-driven publishers (i.e., private portals and promoting web sites) have been

publishing content for 15 months on average (at the time of the measurement) while

the most longed-lived ones have been feeding content for more than 5 years. Further-

more, some of these publishers exhibit a surprisingly high average rate of publishing

content (80 files per day). The altruistic publishers present a shorter lifetime and a

lower publishing rate that seems to be due to their weaker incentives and their lower

availability of resources.

In summary, the lifetime of major publishers suggests that content publishing in

BitTorrent seems to have been a profitable business for (at least) a couple of years.

Furthermore, the high seeding activity by profit-driven publishers (e.g., private por-

tals) over a long period of time implies a high and continuous investment for re-

3Note that we cannot collect information about fake publishers since the web pages of their asso-

ciated usernames are removed by the Pirate Bay as soon as they are identified.
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Web site Web site Web site

Value ($) Daily Income ($) Daily visits

Private

Portals 1K/33K/313K/2.8M 1/55/440/3.7K 74/21K/174K/1.4M

Promoting

Web Sites 24/22K/142K/1.8M 1/51/205/1.9K 7/22K/73.5K/772K

Table 5.5: Publisher’s web site value ($), daily income ($) and num of daily visits

for the different classes of profit-driven content publishers: BitTorrent Portals and

Promoting Web Sites. The represented values are min/median/avg/max per class.

quired resources that should be compensated by different types of income (e.g., ads)

for these portals. We examine the income of the profit-driven publishers in the next

subsection.

5.5.3 Estimating Publishers’ Income

The evidences we presented in previous subsections suggest that the goal of half

of the top publishers is to attract users to their own web sites. We also showed that

most of these publishers promote conditions to generate income by posting ads in

their web sites. In essence, these publishers have a clear financial incentive to pub-

lish content. In order to validate this key point, we assess their ability to generate

income by estimating three important but related properties of their promoting web

sites: (i) average value of the web site, (ii) average daily income of the web site,

and (iii) average daily visits to the web site. In the absence of a reliable source to

obtain this sensitive information, we rely on several companies4 that monitor and re-

port these statistics for different web sites. Since these companies do not reveal the

details of their monitoring strategy, we cannot assess the accuracy of their reported

statistics. To reduce any potential error in the provided statistics by individual com-

panies, we collect this information from six independent companies and use the

average value of these statistics among them. We emphasise that the obtained statis-

tics from these companies are treated as ballpark estimates for the three properties

of the promoting web sites to enable our validation.

Table 5.5 presents the min/median/avg/max value of the described metrics for

4sitelogr.com, cwire.com, websiteoutlook.com,

sitevaluecalculator.com, mywebsiteworth.com, yourwebsitevalue.

com
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each class of profit-driven publisher classes (i.e., private portals and promoting web

sites). The median values suggest that the promoted web sites are fairly profitable

since they value tens of thousand dollars with daily income of a few hundred dollars

and tens of thousand visits per day. Furthermore, few publishers (<10) are asso-

ciated to very profitable web sites, valued in hundreds of thousand to millions of

dollars, which receive daily income of thousands of dollars and hundreds of thou-

sand visits per day.

In summary, these statistics suggest that these web sites are valuable and visible,

and generate a substantial level of income.

5.6 Fake Content in BitTorrent Ecosystem

In this Section, we thoroughly analyse the fake publishing phenomenon in Bit-

Torrent in order to understand its real impact on the system performance as well as

the potential risks of fake content for BitTorrent users. We base our study on ad-

ditional dataset which we collected from torrents published in the Pirate Bay portal

during a period of 14 days from 30-04-2011 to 13-05-2011. The 35% of almost 30K

analysed torrents are associated to fake content. This depicts a 5% increment in the

presence of fake content within the BitTorrent ecosystem comparing to the previous

measurements (pb10 dataset) in a period of one year. This justifies (even more) the

necessity of the research conducted in this Section.

In order to fight the fake publishing phenomenon, the first step is to properly

characterise the fake publishers and their behaviour. The current BitTorrent portals

solutions identify fake publishers through the user account that they use to upload

fake torrents to the portal. We show that this technique is inefficient since the fake

publisher can generate as many user accounts as needed in those portals. Instead, the

parameter that uniquely identifies the fake publisher is the IP address it uses to per-

form its activity. Surprisingly, our data reveals that just 20 fake publishers (whose IP

we identify) are responsible for injecting 90% of fake content in a major BitTorrent

portal. Moreover, most of these IP addresses belong to Hosting Providers where the

fake publishers rent dedicated high-resource servers to perform their activity.

Therefore, the fake publishing activity is time consuming since a fake publisher

needs to manually create the user accounts used in the different portals (in some

cases up to 4 accounts per day). Furthermore, this activity requires dedicated re-

sources (e.g., rented servers). This investment in time and resources can be only

justified by a strong motivation behind the distribution of fake content. We have
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downloaded and manually inspected a large number of fake content published dur-

ing our measurement period and found 3 different profiles among the fake publish-

ers: (i) a first group of fake publishers aims to spread malware using the popular

BitTorrent system; (ii) a second set of users tries to attract BitTorrent users to scam

websites in order to get economical benefit from the victims by using different scam

techniques; (iii) the last group is formed by anti-piracy agencies that upload fake

versions of those content that they want to protect.

Our data shows that more than 99% of the published fake content is associated

with the two first profiles. This supposes a very serious threat for the BitTorrent

ecosystem since the activity of these publishers may lead to thousands of undesirable

episodes of scammed users and computer infections. These findings suggest that

new solutions need to be proposed in order to eliminate or at least reduce the number

of fake content available in the BitTorrent ecosystem. Towards this end, we have

designed and implemented TorrentGuard. This is a novel detection tool that allows

to identify the IP address of the fake publisher, thus being able to report as fake each

content published from this IP address at the moment of its publication. Based on the

performed evaluation, TorrentGuard would be able to avoid more than 35 millions

fake content downloads every year. This means, preventing hundreds of thousands of

users to suffer from computer infections or scam incidents every year. The detailed

description and evaluation of TorrentGuard solution is presented in Section 6.3

Next, in Section 5.6.1 we describe our measurement methodology and present

our dataset. Section 5.6.2 characterises fake publishers, while Section 5.6.3 classifies

them depending on the goal they pursuit with their activity. Section 5.6.4 shortly

characterises the downloaders of the fake content.

5.6.1 Measurement of Fake Publishers

In this Section we specifically address the fake content publishing phenomenon

in BitTorrent. A fake publisher is a user that exploits the BitTorrent ecosystem to

publish fake content, this is, content that is different from what is expected from

the content name. A fake publisher makes available the fake content from a single

IP address (or limited number of IP addresses) that corresponds to the initial seeder

of all its published content. Furthermore, a fake publisher typically creates a user

account in a BitTorrent portal from which it uploads .torrent files associated with

its fake content. Some portals, such as the Pirate Bay, removes this user account

after some client reports that it is being used to publish fake content. Then, the

fake publisher reacts by creating a new account to publish new .torrent files and this
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loop keeps repeating. Hence, contrary to the case of regular publishers (that can

be identified by its associated username in the BitTorrent portal), fake publishers

can exclusively be identified by its IP address. Finally, it must be noted that, to the

best of the authors’ knowledge, the previously described technique based on users’

reports is the only one used nowadays for detecting and deleting fake content.

5.6.1.1 Measurement Methodology

The main objective of this measurement study is to identify fake publishers. This

subsection aims to describe the methodology we followed to achieve the main goals

of this Section: identify the IP addresses of the fake publishers, capture the time

the Pirate Bay portal takes before removing fake publishers accounts from its site

and estimate the number of the downloads of fake contents that take place until (and

after) the fake user account is deleted. In order to understand such methodology we

first describe how BitTorrent system operates and we present the definition of a fake

publishers and their behaviour in the system.

Towards this end, our measurement tool has three independent modules. The

first one is responsible for finding the IP address and username of the publisher

associated with each announced content in the Pirate Bay. This method is the same

as described in Section 5.2. Therefore, using the described methodology we are able

to characterise the content publisher by both its username and IP address in many

cases.

The second module of our tool is responsible for identifying those publishers

that are in fact fake ones. For this purpose our tool connects periodically (every 5

minutes) to the Pirate Bay web page of each known publisher. If at some point the

Pirate Bay web page has been removed we consider that the IP address associated

with the removed account belongs to a fake publisher. Furthermore, we also collect

the time that the Pirate Bay requires to detect and eliminate each fake publisher

account.

Finally, our tool has a third module that counts the number of peers that connect

to the swarm of each fake content in order to download it. Specifically, our tool

systematically queries the tracker(s) managing the download of each fake content

to obtain those IP addresses participating in the swarm. In order to accelerate this

process we perform this task from four independent machines.
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Figure 5.5: Percentage of fake content published by the top x% fake publishers

5.6.1.2 Dataset Description

We have applied the described methodology between 30-04-2011 and 13-05-

2011, in addition to 5 days of warm-up phase dedicated to identify the initial fake

publishers’ IP addresses. During the measurement period we have collected 29330

torrents, from which 10206 (35%) were identified as fake ones. Furthermore, we

have collected the IP addresses of those peer participating in swarms associated

with fake content until two instants: (i) the moment the content is removed from the

Pirate Bay and (ii) the end of our measurement study.

5.6.2 Fake Publishers Characterisation

Our results reveal that more than 1/3 of the content published in the Pirate Bay

is fake. This shows an increasing trend in the number of fake content comparing

to pb10 dataset when the fake content represented 30%. Therefore, it is critical to

eliminate or at least reduce this huge number of fake content in BitTorrent ecosys-

tem. The first step towards this end is identifying who is responsible for publishing

this fake content and characterising their behaviour. In this Section, we address this

issue using the collected data. More specifically, we aim to answer questions such

as: How many fake publishers (i.e., IP addresses) are uploading fake content to the

BitTorrent Ecosystem? From where (i.e., which ISP) they perform their activity?

How frequently they upload fake content?



86 Chapter 5. Publishing Content in BitTorrent

5.6.2.1 Number and Contribution of Fake Publishers

Unexpectedly, we observe that only 71 IP addresses are responsible for those

4779 fake content for which we identified the initial seeder. This implies almost 70

fake content published from each of these IPs in average. However, it is interest-

ing to investigate the level of the contribution of each one of these fake publishers.

Towards this end, Figure 5.5 depicts the percentage of fake content published by

the top x% of these fake publishers. The graph shows a skewed distribution where

10 IPs (14%) are responsible for publishing almost 75% of all the fake contents.

Moreover, this number increases to 90% if we consider the top 20 IP addresses.

Therefore, we can conclude that a reduced number of just 20 fake publishers are

responsible for poisoning the BitTorrent ecosystem. In the rest of the Section we

focus on thoroughly studying this group of 20 fake publishers that we refer to as Top

Fake Publishers.

5.6.2.2 Location of Fake Publishers

We have mapped the IP address of each one of the Top Fake Publishers to its cor-

respondent ISP using the MaxMind database [18]. Surprisingly, 17 out of the Top

20 fake publishers operate from Hosting Providers. These are companies dedicated

to rent high-resources (CPU, memory and bandwidth) provisioned servers. More-

over, 70% of the fake content is seeded from just two Hosting Providers named OVH

Systems and Obtrix located at France and New Zealand respectively.

Fake publishers need on the one side resources in order to sustain the distribution

of a large number of fake files [48] and on the other side anonymity due to the ille-

gitimate activity being performed. The usage of rented servers in Hosting Providers

covers both requirements.

Hence, the use of dedicated servers in Hosting Providers reveals that most of the

fake publishers perform their activity from a stable IP since those servers typically

have a static IP address configured. This makes them easily identifiable. In this

sense, the usage of anonymity services such as TOR [25] or proxy services seems to

be useful for fake publishers in order to difficult their identification. However, we

have not found that the fake publishers identified in our dataset use such services.

This suggests that the severe performance degradation associated to these anonymity

services prevent the fake publishers from using them.
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Figure 5.6: CDF of the number of the Pirate Bay accounts per fake publisher

5.6.2.3 Pirate Bay Accounts Utilisation

The Pirate Bay solicits to solve a CAPTCHA [13] in order to create an account

to avoid the automatic generation of accounts. Hence, fake publishers are obeyed to

create their accounts manually. Figure 5.6 shows the CDF of the number of the Pirate

Bay accounts used by each one of the 71 identified fake publishers. A fake publisher

uses (in median) 6 accounts in a period of 14 days. However, a 5% of the fake

publishers inject content using more than 58 different accounts in the same period.

This represents an average number of 4 accounts per day. This result suggests that

fake publishers need to dedicate time to track the availability of their accounts in

order to manually generate new ones if needed.

Interestingly, we also observe a second strategy that although marginal is worth

to report. In these cases, fake publishers hijack the accounts with a legitimate pub-

lishing history. This provides a trust reputation among the downloaders. Therefore,

this could extend the time that fake user could be injecting fake torrents before being

reported. However, due to the required technical skills for applying this technique,

this case represents less than 1% of all fake accounts.

5.6.2.4 Publishing Strategies

Fake users follow two different strategies to upload fake contents into the Pirate

Bay portal. On the one hand, we found users that publish a large number of fake

content in a row (typically around 10) in just few seconds after creating a user ac-
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Figure 5.7: The example of Pirate Bay web page of malicious user: (i) the publisher

creates the impression to be a trusted user (eztv) (ii) the publisher uses a popular

content title (iii) the publisher falsifies statistics about number of seeders and leech-

ers

count. Once the account is deleted, they repeat the same process from a new account.

Around 70% of Top Fake Publishers use this technique. On the other hand, 30% of

the Top Fake Publishers upload just one or two fake contents with a username. This

is a more conservative technique that extends the time that those fake accounts are

active before being eliminated when compared to the previous case. Specifically, the

accounts of those publishers using the first strategy are detected and then deleted in

92 minutes (in average) whereas the accounts of those using the second strategy are

deleted in 253 minutes, thus being their content available 2.75 times more time in

the Pirate Bay. Unexpectedly, although the second strategy offers longer accounts’

lifetime, it attracts only 47 downloaders per torrent (in average) in front of the 84

attracted by fake publishers using the first strategy. This happens because the fake

publishers using the first strategy typically use popular names associated to their

content whereas publishers using the second more conservative strategy do not use

such popular names.

5.6.2.5 Strategies to Attract Downloaders

The main goal of fake publishers in BitTorrent is to produce as many downloads

of their content as possible. Therefore, they need to offer torrents that sound very
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attractive for the downloaders. Towards this end, we have observed that fake pub-

lishers use three different strategies: (i) they assign to the content a very popular

name such as the title of the last released Hollywood movies; (ii) creating the false

impression that the content has been published by a well-known and trusted user.

For this purpose, the fake publisher names its content in the same way as the trusted

one. For instance, eztv one of the most popular publisher in the Pirate Bay adds

the signature [eztv] at the end of the title of its published files. Then, some fake

publishers also add this signature to the title of their fake content; (iii) presenting

attractive performance statistics (i.e., a high number of seeders and leechers) for the

fake torrent. In this way, the fake torrent is perceived as a very popular torrent by

the downloaders, which assume they will obtain a high download rate in case of se-

lecting that torrent. In order to generate these fake statistics the publisher connects

to the Tracker many times using a single IP but different ports. Then the tracker

considers each one of these IP+port pairs as a single peer and reports a high number

of seeders and leechers. The Pirate Bay retrieves and presents these statistics from

the Tracker. All of those strategies are summarised in Figure 5.7.

In summary, the fake content publishing activity is performed from Hosting

Providers facilities by just few dozens of users. Furthermore, fake publishers are

aware of how the BitTorrent ecosystem works, thus they use sophisticated strategies

in order to improve the success of their activity.

5.6.3 Fake Publishers Profiles

After characterising the fake publishers behaviour, we still need to answer an

important question: What incentives a user has to publish fake content? To answer

this question we have downloaded up to 10 files published by each fake publishers in

our dataset and manually inspected them. Our analysis reveals the presence of three

different profiles: malware propagators, scammers and anti-piracy agencies. Next,

we describe in detail each one of these profiles.

5.6.3.1 Malware Propagators

These users exploit the popularity of BitTorrent system in order to rapidly prop-

agate malware among thousands of users. On the one hand, for some of the users

in this group the published content is the malware itself. In this case, the content

including the malware pretends to be typically a patch for a popular game, a key

generator, etc. On the other hand, a second set of users use a more sophisticated
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technique. They publish a movie with a catchy title. The content has the standard

size of a DivX movie (i.e., between 700 MB and 1 GB), and even sometimes in-

cludes a second small file with a real sample of the movie. Hence, the file has the

appearance of a non-fake legitimate content. However, when a user downloads the

content and tries to play the movie, it is requested to reproduce it using Windows

Media Player (WMP) in case a different player is run instead. When the movie is fi-

nally reproduced with the WMP a pop-up window appears requesting to install new

codecs along with a url link from where these codecs can be downloaded. Of course,

the file including those pretended codecs is reported as a malware by security and

anti-virus software.

5.6.3.2 Scammers

In this case, the fake publisher uses a similar technique to the sophisticated one

described above. However, when the user plays the movie with WMP, it is automati-

cally redirected to a website in the Internet. A second variant used by scammers is to

provide a file protected with a password (typically .rar), and offer the user a website

in which the password can be obtained. Once the user gets into one of these web-

sites, a credit card payment is requested in order to obtain some privilege to watch

the downloaded movie (e.g., the password of the .rar file). In some other situations

the user is informed that in order to check he is not a bot, a survey must be filled

previously to watch the movie. This survey results to be a contest in which you

are obeyed to subscribe to a paid premium SMS service. These websites are often

reported as scam on different forums, one example of them is http://movieyt.com.

We have performed a more detailed analysis of these websites. On the one hand,

when a user wants to abandon the web page several pop-up windows appear trying

to change user mind and making leaving the web page at least bothersome. On

the other hand, when a user enters some of these web pages, a pop-up window

advertising a Facebook group of the web page shows up. This pop-up does not react

to the explorer close button, rather, just by clicking on the “I like it” Facebook button

the window closes. This method aims to increase the trust of the web page so that

users interpret it is a legitimate website. More importantly, this finding suggests that

these scammers do not limit their activity to BitTorrent but they also try to capture

victims from other popular applications such as online social networks.
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Country Percentage of Bit-

Torrent users down-

loading fake content

Percentage of Bit-

Torrent users

The ratio

United States 12.40% 10.42% 1.19

China 6.27% 4.20% 1.49

Great Britain 4.60% 6.26% 0.73

Brazil 4.26% 2.68% 1.59

Italy 3.88% 4.13% 0.94

India 3.78% 5.71% 0.66

Canada 3.29% 3.85% 0.85

Spain 2.79% 5.95% 0.47

Austria 2.73% 2.83% 0.96

Poland 2.66% 2.86% 0.93

Table 5.6: Demographics of BitTorrent users vs. fake content downloaders per coun-

try (the third column represent the ratio column 1/column 2)

5.6.3.3 Anti-piracy Agencies

The two previous profiles have dishonest purposes. Anti-piracy agencies instead,

publish fake version of the copyrighted content that they want to protect. This con-

tent however, is not what downloader is expecting from the title (e.g., copyrighted

movie). Sometimes this content includes anti-piracy adverts. The action performed

by anti-piracy agencies is limited in the number of contents (under request from a

company) and time (in the weeks before and after the content, e.g., movie, is re-

leased).

In summary, we distinguish three different profiles among fake publishers that

motivates them to perform their activity. On the one hand, 65% of the Top Fake

Publishers in our dataset are malware propagators and are responsible for around a

30% of the published fake content. On the other hand, a 35% of the Top Publishers

are scammers and they published a 70% of the fake content during our measure-

ment period. Finally, anti-piracy agencies represent a very small fraction of the fake

content published due to the specificity of their actions.

In conclusion, it is worth to mention that the content published by malware prop-

agators and scammers is potentially harmful, especially for not technically skilled

downloaders. Hence, they represent a serious risk for the BitTorrent ecosystem that

should be erased or at least mitigated. We address this issue in Section 6.3.
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Figure 5.8: CDF of the number of fake content downloaded by one user

5.6.4 Characterising the Downloaders of Fake Content

In this Section we look at the studied phenomenon from the victims side. First,

we analyse the demographics of the victims and group them per country in order

to understand which countries suffer more from the reported problem. In order to

provide full meaningful results we have compared the demographic distribution of

the victims of fake content with the demographic of distribution of BitTorrent clients

obtained from the pb10 dataset.

Table 5.6 offers the obtained results. It shows the percentage of victim down-

loaders of fake content, the percentage of BitTorrent users and the ratio between

these two percentages for the 10 countries with a larger number of victims. If the

victims were randomly selected, this ratio would be close to 1. However, this is not

the case. On the one hand, we observe that some countries such as US, China and

Brazil shows a ratio > 1. For instance, Brazil has a ratio equal to 1.59. This means

that Brazil has 59% more victims than expected from a random process. On the

other hand, countries such as UK, India or Spain shows a value < 1. For instance

Spain has a ratio equal to 0.47. This means that Spain only has 47% of the victims

it should have from a random process.

Next, we study the number of fake content downloads performed by a single

user. This help to understand whether there are users that are highly vulnerable

to the described threats. Figure 5.8 shows the CDF of the number of fake content

downloaded by each victim. We can see that 70% of the victims downloaded just

1 fake content. However, it is worth to note the presence of users who downloaded
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multiple fake torrents during the measurement period.

The obtained results suggest that users from some specific countries (those hav-

ing a ratio less than 1) are more skilled to identify fake content so being more pro-

tected against possible infections and/or scam episodes.

5.7 Examining Consumer Loyalty

In this Section, we examine the behaviour of consumers towards individual top

publishers and their relationship with publishers’ profile. More specifically, our goal

is to answer two basic questions:

• Can individual top publishers attract loyal consumers that primarily download

content from that top publisher?

• Is there any correlation between a publisher’s profile and the level of loyalty

among its consumers?

In essence, answering these questions reveals whether top publishers adopt busi-

ness practices that affect their ability to form a loyal consumer-base within the Bit-

Torrent ecosystem in order to achieve their goals. The notation used in this Section

is shown in Table 5.7.

5.7.1 Quantifying Consumer Loyalty

To study the loyalty of consumers, we need to define a meaningful metric to

quantify this attribute of a consumer towards a particular publisher. Suppose that

consumer c downloads dl(c) files from pub(c) different publishers where the largest

number of downloaded files by c from a publisher is C(c) (C(c)≤dl(c)). Consumer

Metric Definition

pub(c) Num. of publishers from which consumer c downloads files

dl(c) Num. of files downloaded by consumer c

C(c) Num. of files downloaded by consumer c from its preferred publisher

L(c) Normalised loyalty of consumer c to its preferred publisher

NLC(p) Absolute number of loyal consumers for publisher p

FLC(p) Fraction of loyal consumers for publisher p

Table 5.7: Notation used in Section 5.7 (Examining Consumer Loyalty)
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Figure 5.9: Max and Min value for C(c) for different pub(c) and dl(c) values.

c is considered loyal to publisher p if it downloads most of its files from p. We refer

to p as the preferred publisher for consumer c.

On the one hand, if the downloaded files by consumer c are evenly divided

among pub(c) publishers, c is not loyal to any publisher since it shows the mini-

mum consumption level (Cmin(c)) towards any publisher that is simply:

Cmin(c) =
dl(c)

pub(c)
(5.1)

On the other hand, for a given consumer c, the consumption from its preferred

publisher is maximised when c downloads only one file from each non-preferred

publisher and all remaining files from its preferred publisher. Thus Cmax(c) can be

easily expressed as:

Cmax(c) = dl(c)− pub(c) + 1 (5.2)

Given a particular scenario defined by dl(c) and pub(c), the above simple equa-

tions for Cmin(c) and Cmax(c) determine the possible range for the number of files

that a user c can download from a publisher. Figure 5.9 shows the variation of

Cmax(c) and Cmin(c) as a function of pub(c) for different dl(c). This figure reveals

that both Cmax(c) and Cmin(c) can significantly change across different scenarios

as dl(c) and pub(c) vary. To allow comparison of the loyalty of users across differ-

ent scenarios, we define the loyalty of user c towards his preferred publisher as his

normalised consumption as follows:
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Figure 5.10: Distribution of L(c), dl(c) and pub(c) across all consumers with

dl(c) ≥5

L(c) =
C(c)− Cmin(c)

Cmax(c)− Cmin(c)
so that 0 ≤ L(c) ≤ 1 (5.3)

We use our pb10 dataset for this analysis. This dataset contains 27.3M con-

sumers, however, we only focus on 2.6M consumers that are moderately active

(i.e., have downloaded at least five files, dl(c)≥5) and exhibit a positive loyalty

(L(c)>0). Figure 5.10 shows the distribution of pub(c), dl(c) and L(c) among these

consumers. On the one hand, we observe that a majority (85%) of these consumers

download less than 19 files and from less than 8 different publishers during our

one-month measurement period. This figure shows that a roughly 45% of these con-

sumers exhibit L(c) value very close to 1 and the median L(c) value is 0.73. This

suggests that half of these consumers exhibit a rather high level of loyalty towards a

particular publisher. For the rest of analysis in this section, we focus on all moder-

ately active consumers with positive loyalty and their corresponding publishers. We

also filter consumers based on their dl(c) values to examine more active consumers.

5.7.2 Consumer Loyalty Among Publishers

We first examine the level of loyalty among consumers of two group of publish-

ers (as our target groups) as follow:

• (i) top-100: the non-fake top-100 publishers that we identified in Section 5.3.

We recall that only 84 of the top-100 publishers were non-fake.
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Figure 5.11: CDF of NLC(p) and FLC(p) for non-fake top-100 publishers

• (ii) Random: 100 non-fake randomly selected publishers (excluding the top-

100) to represent the rest of publishers in our dataset.

We define loyalty for individual consumers. We need to introduce two metrics to

assess different aspects of loyalty of consumers towards a particular publisher p as

follows:

• NLC(p): The absolute number of loyal consumers for p,

• FLC(p): The fraction of p’s consumers that are loyal.

For publisher p, FLC(p) indicates what fraction of p’s consumers is loyal to p

while NLC(p) measures how many loyal consumers p has. To clarify the relation

between these two metrics, let’s consider the following simple example: publisher

p1 with 1000 consumers and NLC(p1) = 100 has FLC(p1) = 0.1 whereas publisher

p2 with 200 consumers and NLC(p2) = 100 has FLC(p2) = 0.5. Both p1 and p2 are

able to attract the same number of loyal consumers, however the strategy used by p2
seems to be more effective since a higher percentage of all its consumers is loyal.

Figure 5.11(a) and 5.11(b) depict the distribution of NLC and FLC across all

publishers in each one of the target groups, respectively. Furthermore, each figure

also plots the specified distribution by considering only a subset of consumers whose

dl(c) is larger than 5, 10 and 20.

These figures demonstrate that the top-100 publishers not only have a signif-

icantly larger number of loyal consumers but also have a larger fraction of loyal

consumers. Note that as we focus on more active consumers (with larger dl(c)), the
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Figure 5.12: NLC(p) and FLC(p) for non-fake top-100 publishers. x axis indicates

the publisher’s rank based on the target metric among publishers.

distribution of NLC and FLC maintain the same shape but shift towards lower values

for both groups of publishers. This suggests that the observed trends among target

group of publishers do not significantly change by considering consumers with dif-

ferent level of activities.

For the rest of this Section, we focus on the top-100 publishers since a majority

of all loyal consumers are associated with these publishers. In particular, 72%, 64%

and 48% of consumers are associated with these publishers for dl(c) larger or equal

to 5, 10 and 20, respectively. In our analysis, we will also leverage the business

profile of these publishers that we determined in Section 5.5.

5.7.3 Loyalty Towards top-100 Publishers

Focusing our analysis on the top-100 publishers, Figure 5.12(a) and 5.12(b) show

the value of NLC(p) and FLC(p) across these publishers, respectively. In these

figures publishers across the x-axis are ranked by their NLC(p) (or FLC(p)) value

and each line shows the result using a different minimum dl(c) value for filtering

active consumers. Note that the y-axis in Figure 5.12(a) has log scale.

These figures reveal that the value of NLC and FLC across the top 100 publishers

varies dramatically. In particular, the top-10 publishers with the largest NLC values

collectively attract around 84% of all loyal consumers associated with all top-100

publishers (independent of the minimum level of activity among consumers). We

call this group top-NLC. Furthermore, only top-10 publishers based on FLC have a

significant fraction of loyal consumers (at least 14% to 28% for different dl(c)). We
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Figure 5.13: CDF of L(c) across consumers of top-NLC and top-FLC publishers

using different minimum dl(c) to filter consumers

call this group top-FLC. Focusing on more active consumers obviously reduces the

number of loyal consumers and thus the value of NLC and FLC for each publisher.

However, increasing dl(c) does not seem to generally change the overall trends of

these results. This suggests that only top-NLC and top-FLC publishers appear to

have a significant base of loyal consumers and thus we focus on these two groups5.

Examinations of the identity of top-NLC and top-FLC publishers for different

dl(c) values revealed the following key points: First, there is only two overlapping

publishers, namely eztv and exmnova, between two groups for dl(c) ≥ 5. Second,

as we focus on more active consumers (dl(c)≥10, 20), we observe only two other

overlapping publishers, namely Rabiner and artpepper, in top-NLC and top-FLC

groups but they are ranked at the end of these groups.

In summary, our results show that consumer loyalty towards publishers (mea-

sured by NLC or FLC) is very skewed regardless of the minimum expected level

of activity among consumers. Only a small number of top-NLC and top-FLC pub-

lishers appear to have a significant base of loyal consumers. However, most of the

publishers in these two groups are unique. This suggests that top-NLC and top-FLC

publishers are likely to exhibit different characteristics. Therefore, we investigate

our two motivating questions for non-overlapping top-NLC and top-FLC publishers

and their consumers.

5We have also identified and examined the top-10 publishers based on FLC across all publishers

(not just top-100). While two of these publishers are in our top-FLC, the other eight publish a

very small number of files and attract an insignificant number of consumers. Since their impact is

negligible, we only focus on top-FLC.
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dl(c) Avg(L(c)) Top-NLC Avg(L(c)) Top-FLC Norm Diff

≥ 5 0.72 0.74 2.74%

≥ 10 0.54 0.61 12.17%

≥ 20 0.40 0.56 33.33%

Table 5.8: Average loyalty for consumers of top-FLC and top-NLC publishers

Fine-Grain Loyalty Towards top Publishers: So far we only considered NLC(p)

and FLC(p) as two coarse measures of consumer loyalty towards publisher p. We

now take a closer look at the level of loyalty by individual consumers (or L(c))

towards top-NLC and top-FLC publishers. Figure 5.13(a) and 5.13(b) depict the

distribution of L(c) among all loyal consumers of non-overlapping top-NLC and

top-FLC publishers, respectively. Each figure shows the distribution for different

minimum level of activity (dl(c)) among consumers as well. Comparing lines for

similar dl(c) values in these figures demonstrates that the top-FLC publishers not

only attract a higher fraction of loyal consumers but the level of loyalty among their

consumers is relatively higher than top-NLC publishers.

To better demonstrate this point, we use the average value of L(c) across con-

sumers of publishers in each group (Avg(L(c)). Since the value of L(c) is always

between 0 and 1, average L(c) provides a useful indicator to compare two groups.

Table 5.8 summarises the average value of L(c) across consumers for top-NLC and

top-FLC publishers using different dl(c) values for filtering. The last column of Ta-

ble 5.8 presents the normalised difference in average L(c) between two groups. This

table clearly shows the following points: (i) the average loyalty among consumers of

top-FLC consumers is higher than consumers of top-NLC for any minimum level of

activity among consumers. (ii) the value of NormDiff reveals that the gap between

loyalty of consumers grows as we focus on more active consumers.
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LISHED CONTENT

REPUTATION

AT PIRATE-

BAY

NUMBER

OF PUB-

LISHED

CONTENT

NUMBER

OF CON-

SUMERS

NLC(p) FLC(p) AVG(L(c))

eztv PP VIDEO (Tv Shows) VIP 313 1,151,633 730,558 63.44 0.7532

exmnova PP PORN (Movies) Trusted 1,780 633,995 241,003 38.01 0.6677

TvTeam PP VIDEO (Tv Shows) VIP 2,332 799,035 166,497 20.84 0.7664

Rabiner PROMO PORN (Movies) Trusted 662 559,526 152,342 27.23 0.7187

raymondhome PROMO VIDEO (Movies) VIP 125 494,343 69,451 14.05 0.7816

VTV A VIDEO (Tv Shows) VIP 119 632,672 59,029 9.33 0.7144

extremezone PP VIDEO (Movies) VIP 47 221,430 51,832 23.41 0.8435

Housezz A AUDIO, APPS,

VIDEO

Deleted 225 332,959 33,609 10.09 0.7054

pizstol PROMO PORN (Movies) Deleted 461 292,708 33,191 11.34 0.6669

1.No.1 PROMO PORN (Movies) VIP 223 200,857 18,812 9.37 0.5563

Table 5.9: Main characteristics of Top-NLC publishers for dl(c)≥5; PP: Private (BitTorrent) Portal, Promo: Promoting Web Site,

A: Altruistic
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USERNAME BUSINESS TYPE OF PUB-

LISHED CONTENT

REPUTATION

AT PIRATE-

BAY

NUMBER

OF PUB-

LISHED

CONTENT

NUMBER

OF CON-

SUMERS

NLC(p) FLC(p) AVG(L(c))

ClaudiaZ A VIDEO (Tv Shows) VIP 162 7,730 4,994 64.61 0.7882

eztv PP VIDEO (Tv Shows) VIP 313 1,151,633 730,558 63.44 0.7532

Mois20 PP VIDEO (Tv Shows) VIP 250 38,919 17,099 43.94 0.6677

CanadaJoe A AUDIO VIP 401 14,458 5,768 39.90 0.7853

exmnova PP PORN (Movies) Trusted 1,780 633,995 241,003 38.01 0.6677

mikexxxryan A PORN (Movies) Deleted 61 17,796 5,952 33.45 0.8645

starburst3 A PORN (Pictures) Deleted 133 7,315 2,436 33.30 0.6568

0oEdito0 A COMICS Deleted 73 18,616 6,153 33.05 0.5780

SkullManWoopt A PORN (Picture) Trusted 69 12,502 3,702 29.61 0.7527

ESPALPSP A GAMES Deleted 90 31,728 8,829 27.83 0.8081

Table 5.10: Main characteristics of Top-FLC publishers for dl(c)≥5; PP: Private (BitTorrent) Portal, Promo: Promoting Web Site,

A: Altruistic
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Attribute top-FLC top-NLC

FLC(p) 27-65% (33%) 9-27% (13%)

NLC(p) 3k-17k (6k) 18k-166k (55k)

# Pub. Files 61-401 (111) 47-2332 (224)

# Consumers 7k-39k (16k) 200k-799k (413k)

Profile Type Altruistic Private Tracker

Content Type Foreign, Comic Movie/TV Show

Table 5.11: Main characteristics of top-FLC and top-NLC publishers

5.7.4 Top-NLC vs. Top-FLC Publishers

Our hypothesis is that top-FLC and top-NLC publishers exhibit different busi-

ness profiles which in turn results in their high FLC or NLC values. To explore this

hypothesis, we examined the following key attributes of these two groups of pub-

lishers: their username, business profile (as we determined in Section 5.5), type of

posted content, assessed reputation by the Pirate Bay portal, number of published

content, and total number of their consumers. In particular, the level of reputation

for each publisher is assigned by the Pirate Bay based on the past history of the

publisher on this portal. These levels from high to low are: VIP, Trusted, Helper

and Unknown (i.e., no reputation is assigned). Since the information about individ-

ual publishers was collected a few months after our main data collection, some of

the publishers have left the Pirate Bay. The reputation of these departed publishers

was set to Deleted. Table 5.9 and 5.10 provide detailed characteristics of top-NLC

and top-FLC publishers. For easier comparison, Table 5.11 summarises the range

of these characteristics (with the median value in parentheses) for non-overlapping

publishers in both groups.

Interestingly, uncommon publishers in each group exhibit rather distinct charac-

teristics. Non-overlapping top-NLC publishers are mostly profit driven publishers

that publish 47-2332 popular content (e.g., recent episodes of popular TV shows,

recent Hollywood movies or porn videos). In addition, the ranges of FLC(p) and

NLC(p) value for these publishers are 9-27% and 18-166K, respectively. In contrast,

non-overlapping top-FLC publishers are mostly altruistic publishers who upload a

small to moderate number (61-401) of rather specialised content (e.g., movies in a

non-English language, comics or porn pictures). Their published content is not as

popular as top-NLC publishers, thus they attract a smaller number of consumers and

therefore a smaller number of loyal consumers (3-17K). However, a larger fraction
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Figure 5.14: Business Model of Content Publishing in BitTorrent.

(FLC(p)) of their consumers are loyal and exhibit a rather larger level of loyalty than

consumers of NLC(p). The overlapping publishers appear to exhibit a combination

of these characteristics, which results in their appearance in both groups. In sum-

mary, top-FLC and top-NLC publishers exhibit a different characteristics in terms of

the number, type and popularity of published content that lead to a different loyalty

pattern among their consumers.

5.8 Other Beneficiaries in BitTorrent Marketplace

In previous Sections we analysed the main characteristics of major content pub-

lishers in BitTorrent, demonstrating that content publishing is a profitable business

for an important fraction of the top publishers. While we have focused primarily

on content publishers, there are other players around the BitTorrent ecosystem [118]

that have financial interest and may promote this marketplace around BitTorrent.

These other beneficiaries include: Major BitTorrent Portals, Hosting Providers and

Ad companies. Figure 5.14 shows the interactions between different players in the

BitTorrent marketplace where the arrows indicate the flow of money between them.

In this Section, we briefly describe the role of main players and their interactions

with others

Major Public BitTorrent Portals such as the Pirate Bay are dedicated to indexing

torrent files. They basically serve as rendezvous points for content publishers and

consumers. The main advantage of these major portals is the reliable access (e.g., by

rapidly removing fake or infected content) to popular content. This motivates mil-

lions of BitTorrent users to visit these portals every day, which in turn makes these
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web sites very valuable. For instance, the Pirate Bay is one of the most popular sites

across Internet (ranked the 77th in the Alexa Ranking as of November 15th 2011)

and is valued around $10M.

Hosting Providers are companies dedicated to renting servers. Heavy seeding ac-

tivity performed by some publishers requires significant resources (e.g., bandwidth

and storage). Thus, a large fraction of major publishers rent servers from hosting

providers that generates income for hosting providers proportional to the level of ac-

tivity by the publisher. For example our measurement revealed that around 78 to 164

servers (i.e., unique IP addresses) associated with major publishers are hosted at a

single ISP in France, called OVH. Considering the cost of an average server at OVH

(around 300 e/month from OVH web site), we estimate that its average monthly

income from BitTorrent publishers is between 23K to 43K e/month. It is worth not-

ing that some hosting providers (e.g., Server Intellect) have adopted strict policies

against P2P applications using their servers to distribute copyrighted material due

to possible legal implications [24]. However, our exchange with OVH revealed that

they do not monitor the activities performed by their customers and may react only

when a violation is reported by a third party and if the related activity is not ceased

by the customer [20]. This reactive and rather soft policy appears to have attracted

publishers of copyrighted content to OVH.

Ad Companies pair customers who wish to post ads on the Internet with popular

web sites where ads can be placed. These companies dynamically determine to

which, typically popular, web site and when each ad is placed. The ad company and

the web site both receive portion of this income. By attracting users through major

BitTorrent portals, content publishers can increase the number of visits to their web

sites and thus become a more desirable target for posting ads. We have examined

the header of exchanged http messages between the browser and the publishers’ web

sites and verified that these web sites indeed host ads. Unfortunately, we are unable

to estimate the level of income that publishers have from hosting ads.

5.9 Conclusions

In this Chapter we presented a measurement study on the largest BitTorrent por-

tal to investigate socio-economic incentives among content publishers. Our results

revealed that a small fraction of publishers are responsible for two-thirds of the pub-

lished content and three quarters of the downloads. Our careful investigation on

the incentives of major publishers in the largest BitTorrent portal led to the follow-
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ing important findings. First, anti-piracy agencies and malicious users perform a

systematic poisoning index attack over major BitTorrent portals by publishing fake

content in order to obstruct download of copyrighted content and to spread malware

or scam the users, respectively. Roughly, one-third of the published content and a

quarter of all downloads are associated with fake content. This finding indicates

that BitTorrent portals can be leveraged by malicious users to easily perform their

malicious activity to a large number of users, which could be a major security con-

cern. Moreover, just a few tens of users are responsible for most of the published

fake content. Furthermore, more than 99% of the fake torrents are associated with

either malware or scam websites. This represents a serious threat for the BitTorrent

ecosystem that must be eliminated or at least mitigated. We address this issue in

next Chapter. Second, excluding the fake publishers, the remaining top publishers

are responsible for one-third of all published content and half of all the downloads.

Our evidences suggest that half of these top publishers leverage the published copy-

righted content on BitTorrent portals to attract content consumers to their web sites

for financial gain. We also demonstrate that these profit-driven publishers exhibit

clearly distinct characteristics (i.e., a signature) compared to altruistic publishers.

Third, we examined consumer loyalty toward top publishers and showed that the

altruistic publishers attract a larger fraction of loyal consumers with a higher level

of loyalty compare to profit-driven publishers. Overall, our study sheds an insightful

light on socio-economic factors that seem to drive the popularity of BitTorrent and

thus could affect the significant impact of its associated traffic on the Internet.





Chapter 6

Web Application for BitTorrent

6.1 Introduction

This Chapter describes the publicly accessible web portal [11] which we cre-

ated as an outcome of this thesis. We have designed a system which continuously

monitors the BitTorrent ecosystem and which provide interface to display gathered

information through the web page. The portal provides information on two main

areas of our research (i) BitTorrent content publishers and (ii) fake content in Bit-

Torrent ecosystem. The first part, called MYPROBE, allows the user to learn about

top publishers in BitTorrent. It is possible to check who published the most content

in last 30 days and to get more details about the publisher like from which country

he came or which ISP he uses. In the second part, we provide access to our system

called TorrentGuard, which allows BitTorrent downloaders to check if the given tor-

rent is linked with a fake content. Detailed information about each of those parts can

be find in next Sections.

6.2 Software for Content Publishing Monitoring

In order to make our measurement techniques and our findings more accessi-

ble to other researchers and BitTorrent users, we have integrated our measurement

tools into a system called Monitoring, identifYing & PROfiling BitTorrent publish-

Ers (MYPROBE). MYPROBE continuously monitors the publishing activity in the

Pirate Bay portal by implementing the measurement methodology that we described

in Section 5.2. In particular, it leverages the RSS feed to quickly detect a newly pub-

lished content and then retrieves the following information for a detected torrent:

107
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filename, content category and subcategory (based on the Pirate Bay categories),

publisher’s username, and (in those cases that we can) the publisher’s IP address as

well as the ISP, City and Country associated to this IP address. The main charac-

teristics of any identified torrent and its publisher are stored in a database with a

web-based portal [12] that allows users to query and obtain information. Our appli-

cation has two goals. On the one hand, we want to share this data with the research

community to permit further analysis of different aspects of the BitTorrent content

publishing activity. On the other hand, we believe that this application can be use-

ful for regular BitTorrent clients. First, a BitTorrent client can easily identify those

publishers that publish content aligned with her interest (e.g., an e-books consumer

could find publishers responsible for publishing large numbers of e-books). Further-

more, we have designed and implemented a mechanism to identify and filter fake

publishers [26], allowing BitTorrent users of our application to avoid downloading

fake content. This application would be described in next Section.

6.3 Software for Detecting Fake Content

In the previous Sections we have demonstrated that a large number of fake con-

tent (up to 35%) is currently being published in the BitTorrent ecosystem, and what

is worse, most of these fake contents are potentially harmful for those users that

download them. We have also seen that the techniques used to remove these con-

tents are inefficient and requires human intervention to: first, detect and report the

falseness of a given content, and second, to remove it from the BitTorrent portals

(this is done by the portal administrator). Furthermore, the scope of the user reports

is limited to a single BitTorrent portal, thus the content is removed exclusively from

this portal instead of the whole BitTorrent ecosystem.

In this Section we present our tool, named TorrentGuard [76], which aims to

automatise and accelerate the process of detecting fake publishers. For this purpose,

TorrentGuard identifies a fake publisher by its IP address instead of its username as

it is done by BitTorrent portals, such as the Pirate Bay, nowadays. By doing so, a

fake content can be identified just after its birth since we can identify that the IP

address of the initial seeder belongs to a fake publisher. This allows to accelerate the

detection process.

Furthermore, contrary to current techniques used by BitTorrent portals, Torrent-

Guard removes the fake content from the whole BitTorrent ecosystem because it

reports the content infohash. Since the infohash uniquely identifies a content in the
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Figure 6.1: The schema of TorrentGuard

BitTorrent ecosystem, a user of TorrentGuard can identify the content as fake inde-

pendently of the portal from which the content was retrieved (or even if it comes

from the BitTorrent DHT service).

In the rest of the Section we present the details of the TorrentGuard implemen-

tation as well as the performance results obtained over a testing period of 14 days.

6.3.1 TorrentGuard Implementation

Figure 6.1 depicts a complete schema of TorrentGuard. It is composed by the

following modules:

• RSS Parser: this module continuously monitors the RSS feed of The Pirate

Bay portal. For each new published torrent the RSS Parser gathers the content

infohash, from either the .torrent file or the magnet link1, and also the pub-

lisher’s username. Furthermore, the RSS Parser sends requests to the Tracker

Connector.

• Tracker Connector: this module is responsible for connecting to the tracker for

every torrent obtained by the RSS Parser. The main objective of the Tracker

Connector is to obtain the IP address of the initial seeder. In those swarms

where the list of IP addresses returned by the tracker contains more peers

than just one seeder, this module connects to all the peers and retrieves their

1From 1st of March 2012, our tool uses exclusively magnet links for this purpose, as the Pirate

Bay stopped serving .torrent files from that date.
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bitfield in order to identify which one is the initial seeder. If the IP address of

the initial seeder matches with one of those included in the blacklist of fake IP

addresses, this torrent is marked as fake.

• The Pirate Bay Parser: this module periodically connects to the Pirate Bay

web page associated to the different discovered publishers. Eventually, when

a publisher’s web page (i.e., account) is removed from the Pirate Bay, The

Pirate Bay Parser marks this username as fake.

• Database: It stores all the relevant information for the detection and evaluation

of TorrentGuard. For each inspected torrent it stores detailed information such

as the publisher’s username and the initial seeder IP address (in case this is

possible to obtain). More importantly, it includes two blacklists. The first one

contains the infohashes of all the discovered fake torrents whereas the second

one includes the IP addresses of fake publishers found so far.

• Website Interface and Vuze plugin: The TorrentGuard functionality is publicly

available throughout two different interfaces: a website [26] and a Vuze plu-

gin. These interfaces provide access to the blacklist of fake torrents allowing

a user to verify if a torrent file is associated to a fake content before starting

the download process.

Next, we describe the functionality of TorrentGuard. It uses the Pirate Bay por-

tal in order to identify new fake publishers and the IP addresses from where they

operate. Towards this end, the RSS Parser continuously monitors the RSS feed of

the Pirate Bay portal to learn about new torrents and identify for each torrent the

publisher’s username. Furthermore, it sends a query to the Tracker Connector that

retrieves the IP address of the initial seeder (if it is possible). Both, the publisher’s

username and IP address (i.e., IP address of the initial seeder) are stored in database.

In parallel, The Pirate Bay Parser periodically connects to the web page of the differ-

ent discovered publishers within the Pirate Bay. If we find that a publisher’s account

is removed, this user and all its torrents are marked as fake. In addition, we annotate

this publisher’s IP address as potential fake IP address. If three different accounts

associated to a given publisher’s IP address are removed from the Pirate Bay, we

consider that IP as a fake IP address. From this moment on, any content published

from that IP address is identified just after its birth and reported as fake. Therefore,

in the worst case, i.e., for new fake publishers, TorrentGuard employs the same time

as the Pirate Bay to identify fake contents. However, once the fake publisher’s IP

address has been identified, TorrentGuard is able to report fake content immediately
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after its publication what provides a significant improvement compared to standard

detection mechanisms. Moreover, with TorrentGuard it is not necessary to manually

report each fake content. Besides, three reports can be enough to mark the mali-

cious user as a fake and in consequence all its future torrents will be automatically

classified as fake.

Furthermore, the current existing solutions are limited to the portal where they

operate. For instance, in the case of the Pirate Bay, once a content is identified as

fake it is removed from the portal but not from the BitTorrent Ecosystem. Rather,

TorrentGuard is a cross-portal solution, that is able to identify the infohash of the

fake content preventing its download independently of the source from where the

user obtained the .torrent file: any BitTorrent portal or the DHT service.

In short, TorrentGuard is a novel tool that: (i) reduces fake content detection

time since it uses IP-based detection instead of username-based detection and (ii)

allows to identify a fake content in the whole BitTorrent ecosystem rather than in

a single portal because it identifies the fake content using the infohash (a unique

identifier of the content in the whole BitTorrent ecosystem).

6.3.2 TorrentGuard Performance

We have evaluated the performance of TorrentGuard and compared it with the

fake content detection mechanism used by the Pirate Bay during a testing period of

14 days. First, we count how many fake content published in the Pirate Bay are

identified by the TorrentGuard just after its birth. Furthermore, we measure how

long the Pirate Bay takes to identify these fake content. The obtained results show

that TorrentGuard is able to early detect around 50% of the fake content uploaded

to the Pirate Bay. Moreover, Figure 6.2 represents the CDF of the time difference

between the detection instant of TorrentGuard and the Pirate Bay for these content.

We observe, that TorrentGuard reduces the detection time 60 minutes in median.

However, this reduction is higher than 2 hours for 20% of the fake contents, and for

some cases it goes up to several days.

Although previous results already demonstrate the significant improvement pro-

vided by our tool compared to the state of the art solution, the final objective of Tor-

rentGuard is reducing the number of download events associated with fake content,

thus preventing BitTorrent users facing malware and scam. Then, if TorrentGuard

was widely used, it would have prevented almost 390K fake content downloads just

during the 14 days of the evaluation period compared to the Pirate Bay. By extending

this value to a complete year, we can state that TorrentGuard would be able to elimi-
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Figure 6.2: CDF of the saved time in fake content detection when using Torrent-

Guard in front of the Pirate Bay

nate more than 10 millions fake content downloads per year compared to the existing

the Pirate Bay solution. However, as stated before the Pirate Bay solution is specific

for this portal but it is not applicable to the whole BitTorrent ecosystem. Specifically,

in our dataset we identify around 950K fake content downloads occurring after the

Pirate Bay identifies these content as fake. Rather, our proposed solution would be

able to avoid also these downloads. Overall, TorrentGuard could avoid more than

1.35 millions fake content downloads in a period of two weeks. This means more

than 35 millions in the course of a year. Finally, it is worth to mention that even this

impressive number is only a lower bound since in our evaluation we only consider

download events associated to few of the most important BitTorrent Trackers2 but

we do not consider download events coming from minor BitTorrent Trackers or the

BitTorrent-associated DHT systems.

In a nutshell, our initial evaluation suggests that TorrentGuard could avoid up to

tens of millions fake downloads per year. More importantly, this supposes (depend-

ing on the success of the fake publishers’ strategies) up to hundreds of thousands of

computer infections and scam episodes. Hence, our evaluation shows very promis-

ing results to incentive the BitTorrent community to use the TorrentGuard.

2For instance, http://openbittorrent.com/, http://publicbt.com/ that are the

two major Trackers in the BitTorrent ecosystem
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6.3.3 TorrentGuard Efficiency

A detection system is typically characterised by the number of false negative and

false positive occurrences. On the one hand, the former is represented by those fake

torrents escaping our detection tool. On the other hand, false positives refer to those

content classified as fake, which actually are non-fake ones. Unfortunately, it is

not feasible to properly measure such parameter since it would require to manually

inspect a huge amount (thousands) of contents classified as legacy (i.e., non-fake)

ones. Instead, we have performed an affordable evaluation by downloading few

dozens of torrents classified as legacy by TorrentGuard and we did not find any fake

torrent among them. We can state, however, that our tool discovers all fake contents

which are also detected by the Pirate Bay.

In order to evaluate the false positives rate of TorrentGuard, we focus on those

Pirate Bay usernames whose account has not been deleted from the Pirate Bay but

their content have been classified by TorrentGuard as fake. The first intuition is that

TorrentGuard may be mistaken for some of these usernames. We have downloaded

content from each of these referred Pirate Bay accounts and we did not find any

non-fake content among them, thus these content belong to fake publishers that have

still not been detected by the Pirate Bay.

Hence, the performed evaluation suggests that TorrentGuard suffers from a neg-

ligible rate of both false positive and false negatives.

6.3.4 Low impact of TorrentGuard External Dependencies

In this Section we discuss the external dependencies of TorrentGuard and

demonstrate that they represent a minor limitation for the system.

6.3.4.1 Dependency in The Pirate Bay

We have explained above that TorrentGuard bases its operation in the Pirate Bay

portal. We selected the Pirate Bay because it is the most important portal and one of

the key elements of the BitTorrent ecosystem [118]. Fake publishers could use other

portals in order to not be detected by TorrentGuard, but then their visibility would

be significantly affected. As future work, we plan to extend TorrentGuard to other

portals. The requirements for these portals are: (i) having a service to announce

new published torrents (e.g., RSS or a web page) and (ii) having a system to report

fake publishers (e.g., removing their accounts as in the Pirate Bay or marking fake

content with special flags). It is worth to mention, that these two requirements are
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pretty standard and widely offered by the most significant BitTorrent portals such as

Mininova [19] or IsoHunt [16].

6.3.4.2 Dependency on Users’ Reports

To the best of the authors’ knowledge none existing software has the capacity of

identifying a fake content under this context, i.e., the software should discern if the

content is fake or not using as input the title of the content. For this purpose, we

require the intervention of a human being. Hence, in practice we need at least one

user’s report to identify a fake content and its associated fake publisher. As discussed

earlier, TorrentGuard can be configured to mark a fake publisher’s IP address after

the first user report (i.e., removed fake username account). However as stated before

we prefer be more conservative and mark the IP as fake after 3 reports to minimise

the false negatives.

In summary, the previous discussion demonstrates that the external dependen-

cies of TorrentGuard do not affect seriously its performance. On the one hand, the

dependency of TorrentGuard in a single portal can be overcome by extending the

operation of TorrentGuard to multiple portals. It is worth to mention that the effec-

tiveness of TorrentGuard will be directly related to the significance of the associated

portals. On the other hand, the dependency on users’ reports is inherent to any

fake content detection system and cannot be removed until new semantic-enhanced

software is implemented. Hence, the best we can do is minimise the dependency in

users’ reports and TorrentGuard achieves this objective.

6.3.5 Limitations of Potential Countermeasures to Torrent-

Guard

If TorrentGuard becomes widely used, it is likely that the fake publishers will

react by defining new strategies (i.e., countermeasures) that allow them to escape

the control of TorrentGuard. Our tool identifies the fake publisher based on the

IP address that it uses to publish the fake content. Hence, the fake publishers can

use two reactive strategies. First, they can try to hide their IP address and second,

they can try to perform their activity from a large number of IP addresses. In this

subsection, we will discuss these strategies and their potential effectiveness.
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6.3.5.1 Hiding the Fake Publisher’s IP address

The most straightforward way to hide an IP address is the utilisation of a proxy.

In this case TorrentGuard will interpret that the fake activity is being performed from

the proxy IP address and will banned this one. Hence this technique is not efficient

against TorrentGuard.

The next option would be to consider a network of proxies such that the fake

Publisher can use different proxies for publishing different fake content. This type

of anonymisation services exist in the current Internet and are commonly used by

regular BitTorrent users to hide its IP address during the process of illegal content

downloads and TOR is an example [25]. In TOR, traffic from a source (a fake pub-

lisher in our case) is bounced through several relays until it reaches the destination.

Hence, for the destination that packets are coming from the IP address of the last (or

egress) proxy and the IP address of the source cannot be identified. Furthermore, the

egress proxy changes from one communication to another. Fake publishers could

exploit the functionality of TOR to avoid its IP address being detected by Torrent-

Guard. TorrentGuard would then mark the IP addresses of TOR egress proxies as

fake. Hence, if some non-fake publishers would use TOR, TorrentGuard would also

mark their content as fake, thus increasing the false positives rate.

However, it is important to highlight that these anonymity services were not

designed for supporting heavy traffic applications such as BitTorrent so that the per-

formance offered to these services is typically poor. Indeed, TOR developers specif-

ically state that TOR does not perform well with BitTorrent and is not designed for

handling that type of traffic [8]. To evaluate the performance degradation that a fake

publisher would experiment using TOR we have run a very simple test that compare

the performance of a regular BitTorrent download vs. a download done with usage

of TOR. For this purpose we have chosen a mid-popular torrent from the Pirate Bay

(around 200 seeders and 300 lechers, 350,5 MB) and downloaded it 10 times with

and without TOR usage. We have run the experiment in premises of our University

(with a symmetric connection of 100 Mbps) and using a home ADSL (with a down-

load and upload bandwidth of 6 Mbps and 320 kbps respectively). The results are

presented in Tab. 6.1. They suggest that operating BitTorrent over TOR reduces the

performance around 3 times independently of the speed of the access link. There-

fore, the utilisation of anonymisation networks by fake publishers would severely

impact the performance (i.e., content download time) of the swarms associated to

fake content. This would result in attracting a lower number of victims that would

prefer faster downloads. In addition, we have revealed in Section 5.6.2 that the Top
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Type of connection Average

Time

Average

speed

University 6m 46s 6.9 Mbit/s

Home ADSL 9m 59s 4.68 Mbit/s

University (with TOR) 20m 31s 2.27 Mbit/s

Home ADSL (with TOR) 31m 15s 1.49 Mbit/s

Table 6.1: Average speed and download time of the file using BitTorrent with and

without TOR

Fake Publishers perform their activity from high-speed services. This suggests that

performance is a key aspect for their activity, thus anonymisation services seem to

be a not appropriate option for them.

In summary, current solutions that could be used by a fake publisher in order

to hide its IP address are either not efficient (e.g., single proxy) or incur an impor-

tant performance degradation that seems to not be adequate for the fake publishers’

activity.

6.3.5.2 Using Multiple IP Addresses

The second countermeasure that a fake publisher could opt for is using a large

number of IP addresses such that it always have undetected IP addresses to use

for publishing fake content. Next, we estimate the number of IP addresses that a

fake publisher would need to perform its activity in the presence of our tool. Tor-

rentGuard identifies an IP address as fake after detecting 3 fake user accounts in

the Pirate Bay. Thus, TorrentGuard marks a content as fake starting from the 4th

account used by the publisher. We demonstrated in Section 5.6.2 that top 5% of

fake publishers use in average 4 user accounts per day. Hence, a Top Fake Publisher

would need roughly 1 IP address per day in order to perform its activity and avoiding

being blocked by TorrentGuard. In addition, we have seen that the activity of these

publisher is performed from high-speed servers located in data centres. Hence, these

users would need to have access to around 30 IP addresses associated to high-speed

access links per month.

In short, this strategy represents a double serious challenge: first, the fake pub-

lisher should be able to get continuously 30 new IP addresses per month and second,

these IP addresses needs to be associated to high-speed access links. This is rather

difficult for regular Internet users and companies.
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We can conclude that the studied countermeasures against TorrentGuard are

either inefficient or unrealistic. Hence, the wide usage of TorrentGuard may lead to

discourage fake publishers to perform their activity.

6.3.6 Torrent Guard Future Deployment

In the previous Sections we have demonstrated the enormous potential of our

TorrentGuard prototype. However, we believe that there is still a room for im-

provement if BitTorrent portals and trackers get involved in a next stage for the

development of TorrentGuard. In this case, TorrentGuard could be extended to be

a distributed platform in which trackers would identify the IP address of the initial

seeder for every content and BitTorrent portals would identify the infohash of fake

torrents. BitTorrent portals would provide the infohash of fake torrents to trackers so

that these would be able to blacklist the IP address associated to fake publishers and

eliminate their associated swarms. Furthermore, trackers would report back to por-

tals the infohash of every new fake torrent published from a blacklisted IP address

so that portals can immediately remove the associated .torrent file. The described

system could store the information in a central server that interacts with both portals

and trackers and maintain a central repository that can be accessed by users as well.

Another option is running a complete distributed system in which trackers and por-

tals exchange the information without the necessity of any central server. We believe

that the involvement of major BitTorrent portals and trackers in this project would

lead to reduce the presence of fake content to negligible levels3.

Currently TorrentGuard is accessible through web portal [15] where user can

upload torrent file (or provide the infohash) to check if it is associated with fake

content or not. Moreover, we have implemented plugin to Vuze (the most popular

BitTorrent client), which automatically checks each torrent added by the user.

6.4 Conclusions

In this Section we have presented our tool which allows to monitor publishing

phenomena in BitTorrent. Our web portal allows to find the heaviest publishers in

BitTorrent and check their characteristics like number of published files or ISP from

which they perform their activity.

3The authors have started a process to contact different Trackers and Portals to sense their interest

in participating in the deployment of the described project.
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Furthermore, previous Chapter presented that fake content represents a serious

threat for the BitTorrent ecosystem that must be eliminated or at least mitigated.

Towards this end, we have also implemented TorrentGuard, a novel tool for early

detection of fake content. Based on our initial evaluation the widely usage of this

tool may prevent the download of millions of fake content every year, thus con-

tributing to reduce the number of computer infections and scam episodes faced by

BitTorrent users.



Chapter 7

Summary and Future Work

7.1 Summary

In this thesis we have leveraged extensive measurement techniques to address

different issues of BitTorrent with special focus on socio-economic aspects. First, we

have made a classification of main measurement techniques which were applied in

the past to analyse BitTorrent. Based on those techniques, we designed measurement

tools that monitor BitTorrent and obtain various types of the data. We use different

obtained dataset in order to make a study about BitTorrent. We put a special attention

on three main characteristics: (i) connectivity properties of BitTorrent swarms (ii)

behaviour and incentives of content publishers and (iii) mitigating the issue of fake

content in the BitTorrent ecosystem.

First, we performed a detailed analysis about the topology structure and con-

nectivity properties of live BitTorrent swarms. Our results demonstrate, that real

BitTorrent swarms present a relatively efficient topology for the dissemination of in-

formation and are resilient to churn (i.e., random node removal process). However,

real swarms are significantly less resilient to possible attacks (i.e., highest-degree

node removal process) than equivalent random graphs. This is an important obser-

vation for those companies that use BitTorrent for critical/important functions (e.g.,

big software releases or content replications), since they can evaluate whether the

resilience of BitTorrent to different events fulfil their security requirements. We also

demonstrated that a significant fraction of peers presents more local neighbourhoods

than expected from purely random neighbour selection process. This locality effect

is marked even stronger at the exchange traffic level. Our results reveal that In-

dian ISPs along with large American and European ISPs are those hosting a larger

number of users presenting a higher locality-biased in their neighbourhood compo-
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sition. This suggests that locality-enforcing policies of some ISPs, the proliferation

of locality-aware BitTorrent clients and some other network effects, such as conges-

tion, are localising an important part of BitTorrent traffic within some ISPs. Those

are important results for ISPs because they are usually interested in localising Bit-

Torrent traffic in order to reduce the traffic in transit links what leads to reducing

their operational cost. Finally, we performed an analysis of the composition of the

neighbourhood of the peers and the results reveal that current BitTorrent implemen-

tations make both, leechers and seeders, modifying a significant portion of their

neighbourhoods in short periods of time. This leads to a communication overhead

that might not be needed. This might be especially important to consider in those

cases where BitTorrent is used in low capacity devices, e.g., smartphones.

In the second part of the thesis we studied the content publishing activity in Bit-

Torrent. We revealed that a small fraction of publishers are responsible for majority

(67%) of the published content and, more importantly, for 75% of the downloads.

First discovered group of the publishers publish legitimate files and have strong fi-

nancial incentives for posting this content on BitTorrent portals. This presence of

profit-driven publishers suggests that BitTorrent ecosystem relies on a handful of

publishers. Because this group is responsible for more than a half published (non-

fake) files, the removal of these financial-driven publishers (e.g., by anti-piracy ac-

tions) may significantly affect the popularity of these portals as well as the whole

BitTorrent ecosystem. It may result in BitTorrent suffering from a high reduction in

popularity. Second discovered group focuses on publishing fake files. On the one

hand, there are malicious users which leverage BitTorrent to spread malware and

this malware reaches millions of users. On the other hand, there are publishers who

try to attract BitTorrent users to scam websites in order to get economical benefit

from the victims by using different scam techniques. Finally, anti-piracy agencies

publish fake content to protect copyrighted files. All of these fake publishers com-

bined contribute 30% up to 35% of the content and attract 25% (several millions) of

downloads. Moreover, more than 99% of the analysed fake files are linked to either

malware or scam websites. This suggests that publishing fake content is a serious

issue which should be eliminated or at least mitigated.

Finally, we have implemented a tool which continuously monitors BitTorrent

ecosystem and gives access to obtained data through created web portal. The tool

(called MYPROBE) presents a detailed information about top publishers from the

Pirate Bay portal and about their activity. More importantly, as a part of this tool, we

have implemented a software named TorrentGuard, which allows for early detection

of fake content in BitTorrent. TorrentGuard may be accessed through web portal
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or as a plugin to Vuze, the popular BitTorrent client. Our evaluation shows, that if

extensively used, TorrentGuard can prevent the download of millions of fake content

linked to malware or scam thus improve user experience.

7.2 Future Work

For future research we plan to extend our work keeping our focus on socio-

economic aspects of BitTorrent. In particular, we plan to explore the three following

areas: (i) effect of anti-piracy actions on the popularity of P2P (ii) recommendation

system and (iii) popularity prediction.

First, the popularity of major P2P applications (including BitTorrent) is primarily

due to the availability of copyright-infringing content. This, in turn, results in legal

actions by copyright holders against P2P applications as well as new legislations and

enforcement of anti-piracy laws. We want to characterise the trends in the popula-

tion of publishers and consumers along with their level of activity in the BitTorrent

ecosystem and investigate the effect of anti-piracy laws and their enforcement on the

observed trends.

Secondly, recommendation system for BitTorrent would help to recommend

which files are of interest to the users thus improving their experience. Our crawler

gives us information about which user (identified by its IP) downloads which con-

tent. Based on it, we plan to define an algorithm that will be able to retrieve groups

of BitTorrent users that are interested in the same content. The designed recommen-

dation tool will be integrated together with TorrentGuard.

Finally, we want to focus our research on evolution of popularity of BitTorrent

swarms. We want to analyse how the popularity of different torrents evolves over

time. This could allow us to find different patterns of how the population of torrents

changes during the time and, by linking this observations with other available infor-

mation (like title or category of the torrent), to create a different groups of torrents.

As a result, we want to build a tool that would analyse the first moments of torrent

life and could classify it into one of those groups, thus being able to predict how the

popularity of the torrent will change in the next part of torrent life.

7.3 Contribution

The contribution of this thesis in the area of BitTorrent measurements is a survey

which present different measurement techniques:
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• M. Kryczka, R. Cuevas, A. Cuevas, C. Guerrero, A. Azcorra: “Measuring

BitTorrent Ecosystem: Techniques, Tips and Tricks”, IEEE Communications

Magazine, Vol. 49, Issue 9, pp. 144-152, September 2011

The main contributions in the area of BitTorrent connectivity, locality and re-

silience are:

• M. Kryczka, R. Cuevas, C. Guerrero, A. Azcorra: “Unrevealing the structure

of live BitTorrent Swarms: methodology and analysis”, IEEE International

Conference on Peer-to-Peer Computing P2P 2011, Kyoto, Japan, 2011

• M. Kryczka, R. Cuevas, A. Cuevas, C. Guerrero, A. Azcorra: “Understanding

the connectivity properties of real BitTorrent swarms and their implications in

swarming efficiency, resilience and locality”, under submission.

The contributions in the area of BitTorrent content publishers are following pa-

pers. First two of them focus on content publishers in general, while the third one

describes fake content in BitTorrent:

• R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, R. Rejaie: “Is

Content Publishing in BitTorrent Altruistic or Profit Driven?”, The 6th Inter-

national Conference on emerging Networking EXperiments and Technologies

(CoNEXT), Philadelphia, USA, 2010

This article had more than 170 references in media being referred in major

Spanish TV, radio and newspapers.

• R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, R. Rejaie: “Un-

veiling the incentives for content publishing in popular BitTorrent portals”,

accepted to IEEE Transactions on Networking, this article was chosen to fast

track from CONEXT conference.

• M. Kryczka, R. Cuevas, R. Gonzalez, A. Cuevas, A. Azcorra: “TorrentGuard:

stopping scam and malware distribution in the BitTorrent ecosystem”, under

submission.

Finally we have created a portal (described in Section 6) which can be accessed at

http://bittorrent.netcom.uc3m.eswith MYPROBE and TorrentGuard

modules (accessible through web portal and as a plugin to BitTorrent client Vuze).
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The Representativeness of the Results

The BitTorrent ecosystem is large, complex and dynamic. Therefore, we cannot

claim that the obtained results are valid for every portal in the BitTorrent ecosystem.

However we state this is true for major BitTorrent portal.

Our study focused on the largest and thus most important BitTorrent portal in the

BitTorrent ecosystem, namely the Pirate Bay. We have examined this claim and its

implications to ensure that they are correct as follows.

First, we have identified the top 10 BitTorrent portals with the highest Alexa

Ranking and obtained the maximum number of their daily visits as reported by

Alexa. This information revealed that the Pirate Bay is the most visited portal and

it receives at least twice more visits than the second largest portal, called Torrentz.

Furthermore, Torrentz is a meta-search site that forwards the user to the portal that

is actually storing the torrent such as the Pirate Bay. Therefore, if we consider the

number of daily visits as an indicator for the size (and thus importance) of a por-

tal, the Pirate Bay is by far the most popular portal in the BitTorrent ecosystem and

properly represents large BitTorrent portals.

Second, a study by Zhang et al. [117] analysed private BitTorrent portals, called

darknets, which are typically small. They estimate that the aggregate number of

registered users across hundreds of the most important darknets is around 20M.

Our pb10 dataset alone contains a comparable number of users (around 27M IP

addresses). This is another evidence that demonstrates the importance of the Pirate

Bay portal in the BitTorrent ecosystem.

Third, another study by Zhang et al. [118] showed that major BitTorrent portals

have a large fraction of overlap in their indexed torrents. For instance, they show that

71% of Mininova’s and 75% of BTmonster’s torrents (with more than 100 peers)

were also indexed by the Pirate Bay at the time of their study. This observation
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suggests that our findings are, at least, relevant to other major portals.



Appendix B

Potential Biases of the Measurement

Methodologies

We can think of three possible sources of bias in our measurement: (i) ex-

cluding torrents whose publisher’s IP address cannot be identified, (ii) captur-

ing all downloaders in large torrents, (iii) impact of NAT on the identified con-

sumers/downloaders. Next, we discuss these issues and show that the associated

bias is insignificant and more importantly it does not affect the presented findings in

the thesis.

1) Excluding Torrent Whose Publisher’s IP Address Cannot Be Identified

One potential bias in the analyses is the fact of using publishers’ IP address since

the corresponding dataset only includes 40% of torrents. As described in the first

paragraph of Section 5.3, a publisher can be identified by either its username or its

IP address (of the initial seeder). Username is a better identifier since it remains

consistent across different torrents while IP address may change (e.g., a publisher

using multiple servers to upload content). Therefore, we use the username as a

user identifier in all of our analyses related to publishers except in Section 5.3.B

and Section 5.4 where we must use the IP address of publishers. Since we are able

to reliably determine the IP address of the initial seeder only for 40% of all the

captured torrents, this could potentially introduce a bias in our results. To assess the

level of this bias, we compare the following characteristics of this 40% of torrents

(labelled as Identified-IP) with all torrents in the pb10 dataset (labelled as All): (i)

the distribution of the number of contributed files by the top x publishers (Figure

B.1(a)), (ii) the breakdown of content type across contributed files in Figure B.1(b),

and (iii) the distribution of torrent popularity in Figure B.1(c).
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Figure B.1: Comparison of main characteristics of All and Identified-IP torrents

These figures collectively show that these characteristics exhibit a very similar

pattern with a very small difference for the two analysed groups. For example, the

difference in the median value of both distributions in Figure B.1(a) is around 1.5%.

The fraction of published video content is 10% more in All than in Identified-IP.

Finally, the median popularity of torrents in Figure B.1(c) is 356 and 302, which

represents a difference of 15%. It is important to note that our presented findings

from the corresponding results in the thesis rely on the median value and overall

shape of these distributions rather than their specific details.

In summary, our dataset for IP-based publishers analysis does not seem to ex-

hibit a significant bias and the observed variations have minor effect on the pre-

sented figures and the associated findings.

2) Capturing All Downloaders In Large Torrents

Another possible source of bias is related to the ability of our measurement tech-

nique to capture all downloaders in a torrent. The typical allowed reconnection time

by trackers is 10-15 minutes. Therefore, we used 8 distributed monitors where each

one contacts the tracker for a target torrent (at least) every 15 minutes. In each

contact, a monitor obtains the IP addresses of r random downloaders in the torrent

where r = min{N, 200} and N denotes the total number of peers within the torrent.

To estimate the fraction of peers in a torrent that is captured by our approach, we

conduct simulations considering a torrent with N peers where each query obtains r

= min{N, 200} random peers. Note that for each torrent in our dataset we consider

N equals to the maximum reported size of the torrent what implies an unfavourable

scenario. Furthermore, for our simulations we assume a simple churn model where

each peer stays in the torrent for τ minutes (session time). We use our simulations
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τ / φ 90% 95% 99% 100%

15 min. 92.7% 91.4% 89.1% 87.6%

1 h 96.0% 95.6% 94.9% 93.6%

2 h 98.8% 97.2% 96.0% 95.2%

Table B.1: Percentage of torrents for which our tool would be able to capture φ

percent of the nodes considering different session times (τ ) within our pb10 dataset.

to determine the percentage of all users in a torrent that our approach is able to catch

(φ) as function of the session time (τ ) given the rate of our queries (32 query/hour).

Our results in Table B.1 show the percentage of torrents within our pb10 dataset for

which our crawler would be able to crawl φ = 90%, 95%, 99% and 100% nodes con-

sidering different values of session time. These results suggest that even with a very

short session time of 15 min., our tool would be able to collect all the nodes for more

than 87% of the torrents in our dataset. If we consider a more realistic session time

of 1 hour1 this percentage increases to almost 94%. Again, we emphasise that the

presented analyses that are affected by this issue (popularity of content in Section

5.4.B and Fig 5.2), only consider the average popularity across all torrents for each

publisher. Therefore, the extremely popular torrents for which our tool may not be

able to collect all the downloaders, have a very little impact in the presented results.

3) Impact of NATs in Downloaders Collection

Another factor that could affect our results are those users that are located behind

NAT boxes. The presence of multiple users behind a NAT box would be revealed

in our dataset by multiple peers with the same IP address but different ports. We

examined the number of ports associated with each IP address in pb10 dataset. We

observed that more than 80% of the IP addresses appear with a single port whereas

95% of the IP addresses appear with one or two ports. We are unable to accurately

determine the situation with those IP addresses that appear with multiple port num-

bers because they may indicate any of the following scenarios: (i) two (or more)

users behind a NAT downloading the same content, (ii) two separate sessions asso-

ciated with the same downloader. In case (ii), considering both IP addresses (with

different ports) as a single user does not lead to error. Overall, these statistics shows

the effect of NAT box on the estimation of consumers is not significant.

11 hour is the time needed to download a 450 MB file with an average download rate of 1 Mbps





Appendix C

Estimation of Session Duration

In this Appendix we explain the procedure utilised to calculate the duration of

the session time of a given peer in a given torrent. We explain the procedure using

the mn08 dataset. Note, that it would be similar for other datasets.

Our mn08 crawler connects to the tracker periodically and obtains a random

subset of all the IP addresses participating in the torrent. Then, we cannot guarantee

to obtain the IP address of the target peer in a resolution of seconds or even few

minutes. This imposes some restrictions to compute the content publisher’s seeding

time in a given torrent.

Therefore, we firstly define a model to estimate the number of queries to the

tracker (m) needed to obtain the IP address of the content publisher with a given

probability P . Let’s assume that: (i) we have a torrent with N peers and (ii) for

each query the tracker gives us a random set of W IP addresses. Then, if the target

peer is in the torrent, the probability (P) of obtaining its IP address in m consecutive

queries to the tracker is given by:

P = 1−

(

1−
W

N

)m

(C.1)

We have computed the maximum instantaneous population of the torrents in

our mn08 and found that 90% of torrents have typically less than 165 concurrent

peers. Then, we assume that the torrents have always a population N = 165. This

is an upper bound that allows us to remove the noise introduced by the churn. We

make a second conservative assumption: the tracker gives us W = 50 random IPs

in each response (although in most of the cases we obtain 200 IP addresses). With

these numbers and the proposed model we can assure that, if a peer (e.g., a content

publisher) is in the torrent, we will discover it in m = 13 queries to the tracker with

a probability higher than 0.99.
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Next, we have calculated the time between 2 consecutive queries to the tracker

in our dataset, and have checked that 90% of them are less than 18 minutes apart.

Then, we again make a conservative assumption and consider that the time between

two consecutive queries is 18 minutes.

Hence, multiplying the number of needed queries by the time between two con-

secutive queries we conclude that if a peer (e.g., content publisher) is in the torrent,

we are able to get its IP address in a period of 4 hours with a probability equal to

0.99. Therefore, we consider that a given content publisher is off-line (i.e., its ses-

sion has finished) if its IP address is not gathered in the torrent during 4 hours. We

have repeated the experiments with 2h and 6h thresholds obtaining similar results.
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