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The progress in the machine consciousness research ¯eld has to be assessed in terms of the

features demonstrated by the new models and implementations currently being designed. In this
paper, we focus on the functional aspects of consciousness and propose the application of a

revision of ConsScale a biologically inspired scale for measuring cognitive development in

arti¯cial agents in order to assess the cognitive capabilities of machine consciousness
implementations. We argue that the progress in the implementation of consciousness in arti¯cial

agents can be assessed by looking at how key cognitive abilities associated to consciousness are

integrated within arti¯cial systems. Speci¯cally, we characterize ConsScale as a partially

ordered set and propose a particular dependency hierarchy for cognitive skills. Associated to
that hierarchy a graphical representation of the cognitive pro¯le of an arti¯cial agent is pre-

sented as a helpful analytic tool. The proposed evaluation schema is discussed and applied to a

number of signi¯cant machine consciousness models and implementations. Finally, the possi-

bility of generating qualia and phenomenological states in machines is discussed in the context of
the proposed analysis.

Keywords: Cognitive development; machine consciousness; ConsScale; measures of

consciousness.

1. Introduction

Arti¯cial systems created as part of current machine consciousness research e®orts

are usually inspired by certain aspects of biological organisms. However, the speci¯c

inspiring models and the particular way in which they are implemented may di®er

greatly from one system to another. Consequently, it is not straightforward to

characterize the cognitive capabilities of an arti¯cial architecture in such a way that

it can be put in a general context, i.e., compared with other implementations based

on di®erent principles. The root of the problem lies in the fact that di®erent per

spectives and aspects are usually confusedly merged under the concept of con

sciousness [Block, 1995].

In this work, we focus on the problem of identifying the most important cognitive

functions associated with consciousness and the question of how these functions can

1

Cita bibliográfica
Published in: International Journal of Machine Consciousness, 2010, v. 2, n. 2, p. 213-225



be e®ectively integrated in order to build a human like agent. The de¯nition of a

generic framework for the evaluation and characterization of the cognitive develop

ment of an arti¯cial agent can be bene¯cial not only for the comparative analysis of

existing models, but also for the planning of a roadmap for future implementations

[Arrabales et al., 2009]. ConsScale is a proposal intended to de¯ne such a framework

using architectural and behavioral criteria [Arrabales et al., 2010]. While most of the

existing consciousness metrics proposals are based on low level information inte

gration measures [Tononi, 2004; 2008; Seth, 2005], ConsScale is in contrast based on

higher level functional aspects of the system. It is important to remark that we do not

disregard information integration as a key property of conscious systems; in fact, we

aim to characterize how e®ective information integration and inter function synergies

can contribute to the generation of conscious like behaviors. In short, while measures

like � look exclusively at the information integration capabilities of the system

[Tononi, 2008],ConsScale aims at specifying— at the functional level— how well this

integration translates into adaptive behavior. As argued elsewhere [Arrabales et al.,

2009], both information integration and behavioral measures should be combined in

order to provide a comprehensive evaluation method for potentially conscious

machines.

The main conceptual tool we use for the characterization of the cognitive devel

opment of arti¯cial creatures is the de¯nition of a partially ordered set of cognitive

skills. This taxonomy — based on the development of consciousness — is used to

analyze, classify, and compare the cognitive pro¯le of both unimplemented compu

tational models of consciousness and extant machine consciousness implementations.

In the following we brie°y describe the levels of consciousness de¯ned in ConsScale

and discuss a revised cognitive hierarchy based on dependency relations (Sec. 2);

then, we describe the main tools associated with the scale and describe the associated

rating methodologies (Sec. 3). After that, we introduce the new proposal for graphical

cognitive pro¯ling, using it to analyze some salient machine consciousness models and

implementations (Sec. 4). Finally, we draw some conclusions on the former analysis

and discuss the implications in terms of the generation of qualia and phenomenal

consciousness assessment for arti¯cial agents (Sec. 5).

2. Levels of Consciousness

ConsScale levels are de¯ned using both architectural and functional criteria. In this

paper, we will focus mainly on the cognitive (functional) capabilities for the discussion

on the assessment of the global level of cognitive development of an arti¯cial agent.

Although a total of 13 levels are de¯ned in ConsScale (from level −1 to level 11,

including level 0), only the most common 10 levels are considered here: 2— Reactive,

3 — Adaptive, 4 — Attentional, 5 — Executive, 6 — Emotional, 7 — Self Conscious,

8 — Empathic, 9 — Social, 10 — Human Like, and 11 — Super Conscious. Table 1

summarizes the cognitive skills required in these levels. Each level de¯nes a set of

generic cognitive skills ðCSi;jÞ that must be satis¯ed. Note that agents can only qualify
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Table 1. ConsScale levels 2 to 11.

Level ðLiÞ Cognitive skills

2 CS2;1: Fixed reactive responses (\re°exes").

3 CS3;1: Autonomous acquisition of new adaptive reactive responses.

CS3;2: Usage of proprioceptive sensing for embodied adaptive responses.

CS3;3�5
a: Selection of relevant sensory/motor/memory information.

CS3;6
a: Evaluation (positive or negative) of selected objects or events.

CS3;7
a: Selection of what needs to be stored in memory.

4 CS4;1: Trial and error learning. Re-evaluation of selected objects or events.

CS4;2: Directed behavior toward speci¯c targets like following or escape.

CS4;3: Evaluation of the performance in the achievement of a single goal.

CS4;4: Basic planning capability: calculation of next n sequential actions.

CS4;5: Ability to build depictive [Aleksander and Dunmall, 2003] representations of

percepts for each available sensory modality.

5 CS5;1: Ability to move back and forth between multiple tasks.

CS5;2: Seeking of multiple goals.

CS5;3: Evaluation of the performance in the achievement of multiple goals.

CS5;4: Autonomous reinforcement learning (emotional learning).

CS5;5: Advanced planning capability considering all active goals.

CS5;6
b: Ability to generate selected mental content with grounded meaning [Haikonen, 2007]

integrating di®erent modalities into di®erentiated explicit percepts [Tononi, 2008].

6 CS6;1: Self-status assessment (background emotions).

CS6;2: Background emotions cause e®ects in agent's body.

CS6;3: Representation of the e®ect of emotions in organism and planning (feelings)

[Damasio, 1999].

CS6;4: Ability to hold a precise and updated map of body schema.

CS6;5: Abstract learning (learned lessons generalization).

CS6;6
b: Ability to represent a °ow of integrated percepts including self-status.

7 CS7;1�3: Representation of the relation between self and perception/action/feelings.

CS7;4: Self-recognition capability.

CS7;5: Advance planning including the self as an actor in the plans.

CS7;6: Use of imaginational states in planning.

CS7;7: Learning of tool usage.

CS7;8
b: Ability to represent and self-report mental content (continuous inner °ow of

percepts inner imagery).

8 CS8;1: Ability to model others as subjective selves.

CS8;2: Learning by imitation of a counterpart.

CS8;3: Ability to collaborate with others in the pursuit of a common goal.

CS8;4: Social planning (planning with socially aware plans).

CS8;5: Ability to make new tools.

CS8;6
b: Inner imagery is enriched with mental content related to the model of others

and the relation between the self and other selves.

9 CS9;1: Ability to develop Machiavellian strategies like lying and cunning.

CS9;2: Social learning (learning of new Machiavellian strategies).

CS9;3: Advanced communication skills (accurate report of mental content as basic inner

speech).

CS9;4: Groups are able to develop a culture.

CS9;5
a: Ability to modify and adapt the environment to agent's needs.
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as a given level n if and only if all lower levels are also fully satis¯ed. In order to apply

the scale to a real world problem, these CS need to be grounded (or instantiated) to

actual behavioral tests, which could be evaluated via third person observations (see

[Arrabales et al., 2009] for a ConsScale instantiation in the domain of ¯rst person

shooter game synthetic characters or \bots").

In the revised version of ConsScale presented here, the relations between the

di®erent CS have been formalized considering a ¯nite partially ordered set (poset)

[Stanley, 2000], and can be visualized through its Hasse diagram (Fig. 1). The CS

hierarchy is based on a strict partial order binary relation \<" that represents

\cognitive dependency". Therefore, the set of all CS in ConsScale (CCS) partially

ordered by the relation cognitive dependency can be regarded as a poset (CCS, <Þ.
For instance, CS6;4 < CS7;4 (represented in Fig. 1 by an upward arrow from vertex

CS6;4 to vertex CS7;4) means that CS7;4 covers CS6;4. In other words, self recognition

capability (CS7;4Þ requires the ability to hold a precise and updated map of body

schema (CS6;4Þ. Analogously, other dependency relations have been identi¯ed

between the rest of skills as illustrated in Fig. 1. The detailed explanation of each

dependency relation cannot be included in this paper due to space limitations and will

need to be addressed elsewhere.1 As a general rule, current CS de¯nition and

associated hierarchy satis¯es that no higher level skill is required to attain a lower

level skill.

CCS is not a totally ordered set because not all skills are comparable. In fact,

ConsScale levels are de¯ned as subsets of incomparable skills. The dependency

relations have been established considering human ontogeny and biological phylo

geny [Arrabales et al., 2010].

The poset ðCCS; <Þ is composed of a number of inter related subsets that rep

resent the development and composition of speci¯c cognitive functions. If we con

sider, for instance, Theory of Mind (ToM) [Lewis, 2003] the following partial order is

included in CCS:

CS6;1 6ðI knowÞ < CS7;1 5ðI know I knowÞ < CS8;1 4ðI know you knowÞ
< CS9;1 2ðI know you know I knowÞ

Table 1. (Continued )

Level ðLiÞ Cognitive skills

10 CS10;1: Accurate verbal report. Advanced linguistic capabilities. Human-like inner speech.

CS10;2: Ability to pass the Turing test.

CS10;3: Groups are able to develop a civilization and advance culture and technology.

11 CS11;1: Ability to manage several streams of consciousness.

aThis CS has been changed in this revised version of ConsScale.
bThis CS has been added in this revised version of ConsScale.

1See http://www.consscale.com for supporting data and additional information about the scale.
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The same principle applies for other cognitive functions like executive function, the

modulating function of emotions, and generation of inner speech and accurate verbal

report [Arrabales et al., 2010].

3. Evaluating Arti¯cial Agents Using ConsScale

As we have argued, a machine consciousness implementation can be studied and

evaluated with the aim to ¯nd out which CS from the former list (see Table 1) are

present. However, a comprehensive characterization of the degree of cognitive

development of the implementation calls for the combination of the results of all

levels. In other words, an integrative measure is required.

Two di®erent cognitive characterization tools are described in the following. The

¯rst one consists on the application of a quantitative score and has been already

discussed in detail elsewhere [Arrabales et al., 2009]. The second one is a proposal

intended to enhance the cognitive power characterization that ConsScale can o®er,

and is based on graphical cognitive pro¯le representations.

CS3,2CS3,1

CS2,1

CS3,3 CS3,4 CS3,5 CS3,6 CS3,7

CS4,1 CS4,2 CS4,3 CS4,4 CS4,5

CS5,1 CS5,2 CS5,3 CS5,4 CS5,5

CS6,1 CS6,2 CS6,3 CS6,4 CS6,5

CS7,1 CS7,2 CS7,3 CS7,4 CS7,5 CS7,6 CS7,7

CS8,1 CS8,2 CS8,3 CS8,4 CS8,5

CS9,1 CS9,2 CS9,3 CS9,4

CS10,1 CS10,2

CS9,5

CS10,3

CS11,1

CS8,6

CS7,8

CS6,6

CS5,6

Fig. 1. Hasse diagram of the poset (CCS, <) that represents dependency relations between cognitive skills.
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3.1. ConsScale quantitative score

The ConsScale Quantitative Score (CQS) is an assessment tool associated with the

scale. It is intended to provide a numerical value as an indication of the cognitive

power of the implementation being evaluated. The CQS is calculated in three steps:

(i) Li, or level i compliance, provides a measure (from 0.0 to 1.0) which follows an

exponential curve as a means to represent the synergy between di®erent skills

within the same level, i.e., the greater the number of CS ful¯lled, the greater will

be the contribution of additional skills to the overall behavior of the agent.

(ii) CLS, or Cumulative Level Score, combines all Li into one single aggregated value

(from 0.0 to �1:55). This score follows a logarithmic progression which prevents

the ¯nal score to be distorted by the combined e®ect of large Li scores in higher

levels and poor Li scores in lower levels (e.g., implementations good at levels 5 and

6 but showing poor results in lower levels should not be awarded high scores).

(iii) CQS provides a single value (from 0.0 to 1000) that indicates the cumulative

synergy produced by the integration of cognitive skills across all levels. CQS is

designed as an exponential curve priming those implementations which follow the

developmental path implicitly de¯ned in ConsScale level ordering (see Fig. 2).

The mathematical procedure and details about the calculation of CQS can be

found in [Arrabales et al., 2009]. Additionally, a CQS calculator is available online at

the ConsScale website.

3.2. ConsScale rating approaches

ConsScale is based on the hypothesis that e®ective integration of the cognitive

abilities listed in Table 1 (and associated architectural components) is required in
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Fig. 2. Possible CQS values as a function of CLS.
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order to develop behaviors associated with conscious beings. In order to assess the

overall cognitive development of an agent, two approaches can be applied:

. The ConsScale Standard Evaluation Process (SEP) is oriented to existing

implemented agents and provides an accurate and compelling measure of the level

of cognitive development (see Fig. 3).

. The ConsScale Simpli¯ed Rating Process (SRP) provides a quick approximation of

the potential level of cognitive development of either an existing agent or even a

computational model not yet implemented (see Fig. 4).

Performing a SEP requires the actual agent and a particular problem domain

de¯nition for testing. As mentioned above, rating is based on architectural com

ponents and cognitive skills. Architectural components of the agent are identi¯ed

through internal inspection of the implementation. Cognitive skills present in the

agent are assessed thanks to the de¯nition and execution of speci¯c cognitive tests

adapted to the established problem domain. Once the list of architectural com

ponents and cognitive skills has been determined for the particular agent, the

ConsScale metrics can be applied in order to obtain the nominal level of functional

consciousness, the cognitive graphical pro¯le, and the CQS score.

Note that comprehensive cognitive tests have to be devised for each cognitive skill.

These tests have to be designed in such a way that they validate the integrative and

developmental inspiration of the scale. In other words, higher level cognitive tests will

require the presence and e®ective integration of all of lower cognitive abilities

(according to the \<" relation de¯ned) in order to be passed. See [Arrabales et al., 2009]

for an example of SEP in the domain of ¯rst person shooter computer game bots.

The SRP assumes the presence of architectural components and cognitive skills

just by looking at the design blueprints of the system. Therefore, there is no need to

perform any test or to use any domain speci¯c instantiation of the scale. Of course,

the rating obtained following this procedure is not accurate and can be considered as

Architectural
Components 

Agent
Cognitive Skills

Agent

Problem 
Domain

Definition 

Architecture 
Analysis

Domain-specific
Cognitive Tests 

Conceptual Level: “3-Adaptive”

Cognitive Profile:

Quantitative Score: “CQS =3.22”

ConsScale
Assessment

Fig. 3. ConsScale Standard Evaluation Process (SEP).
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Fig. 4. ConsScale Simpli¯ed Rating Process (SRP).
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just a vast approximation (and probably too optimistic). However, SRP could be also

used as a way to assess the potential of a machine consciousness model early during

its initial design phase.

In the case of implemented agents, SEP should be performed in order to obtain an

accurate and realistic measure. Nevertheless, the SRP provides a conceptual tool to

evaluate the potential ConsScale level of a cognitive architecture even at design time,

before any implementation of the model exists (see Table 2 for a comparison between

SEP and SRP).

4. Machine Consciousness Implementation Evaluation Examples

Although having a single quantitative measure like CQS is useful for a quick charac

terization and evaluation, it lacks rich representation capabilities. For that reason, we

have proposed the complementary use of graphical representations of cognitive pro¯les

[Arrabales et al., 2009]. In order to represent the cognitive pro¯le of an agent in terms of

ConsScale the particular Li scores have to be considered. Note that both CLS and CQS

are one dimensional parameters, calculated as a function of the multidimensional Li;

therefore, Liði 2 f2� 11gÞ are the parameters to be used for a graphical representation

that preserves themultidimensional richness ofConsScale levels de¯nition (for the sake

of clarity, ConsScale levels �1; 0; and 1 have been excluded).

Although in former work we have used radar charts [Arrabales et al., 2009], in this

paper we have decided to use horizontal bar charts as a compact and meaningful

layout for the representation of the Li values. The hierarchical nature of the scale is

well represented using this arrangement, where lower levels are placed in the bottom

and higher levels on top. Each bar represents the degree of accomplishment in the

corresponding ConsScale level. Table 3 illustrates the use of the graphical cognitive

pro¯les applied to the comparative analysis of several systems. In order to provide an

approximate but illustrative view of current state of the art, the following machine

consciousness models or implementations have been analyzed using the SRP:

. Eliza: one of the ¯rst chatterbots [Weizenbaum, 1966].

Table 2. Comparison between ConsScale simpli¯ed and standard rating processes.

Standard Rating (SEP) Simpli¯ed Rating (SRP)

Applicability Only extant implementations. Models, designs, implementations.
Accuracy High (realistic metric). Low (potential, optimistic metric).

Cost High (internal inspection of the

implementation, cognitive test
design and execution).

Low (features are inferred directly).

Problem Domain Domain-dependent. Domain-independent.

Required Resources Suitable testing environment, test

procedures and tools, data col-
lect ion and inspection tools.

Detailed description of the system.

Output ConsScale level, cognitive pro¯le,

CQS.

ConsScale level, cognitive pro¯le, CQS.
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. UT2004 Adaptive Bot: an Unreal Tournament 2004 autonomous bot implemented

using the CERA CRANIUM cognitive architecture [Arrabales et al., 2009].

. Functional Imagination on CRONOS/SIMNOS: implementation of a functional

imagination mechanism that allows an embodied agent to simulate its own actions

and their sensory consequences internally, and to extract behavioral bene¯ts from

doing so [Marques and Holland, 2009].

. LIDA model: LIDA is a (not yet fully implemented) comprehensive computational

model of cognition primarily based on the Global Workspace Theory [Franklin

et al., 2007; Baars and Franklin, 2009].

. Haikonen's Cognitive Architecture: cognitive architecture based on distributed

signal representations and Haikonen Associative Neurons [Haikonen, 2007].

Table 3. Summary of SRP results. From top to bottom: name of system, satis¯ed cognitive skills, overall

quantitative score, graphical cognitive pro¯le, and ConsScale conceptual level. ELIZA is basically a

reactive agent designed to detect and select keywords in the input and, using a script and pattern matching

technique, provide a response in the form of accurate verbal report ðCS9;3Þ. Although this agent presents
one of the highest level of cognitive skills, the ¯nal CQS is low because ConsScale primes a developmental

integration of cognitive abilities. In this particular case, it does not matter how good the agent is at

producing well-formed linguistic reports: if the \mental" content reported is not created by a suitable

combination of lower-level cognitive abilities, the scale cannot consider the agent as cognitively advanced.
UT Bot complied with some features of levels 3, 4, and 5, however it is rated as level 2 because ConsScale

requires the complete ful¯llment of lower levels in order to qualify as a given level i. The CQS for a pure

reactive agent is 0.18. However, the UT Bot score (0.51) indicates that some additional cognitive features

are in place (as can be noticed in its associated cognitive pro¯le). Nevertheless, UT Bot is far from a level 4
agent who would score 12.21 or more. The CRONOS minimal architecture for functional imagination

(MAFI) is rated as level 4. However, being a minimal architecture implementation, the proposal is

promising in terms of achieving higher scores. Actually, the multiple step architecture with memory
[Marques, 2009] enhance this model including CS5;1. Both LIDA and Haikonen's architecture are roughly

equivalent in terms of ConsScale. Nevertheless, a comprehensive testing of full implementations would be

required in order to see if such machine consciousness implementations could be promoted to ConsScale

level 7 (self-conscious).

ELIZA CERA UT Bot CRONOS MAFI LIDA Haikonen
cs2 1; cs3 3; cs3 4; cs3 5; 
cs9,3.

cs2 1; cs3 1; cs3 2; cs3 3; 
cs3,4; cs3,5; cs3,6; cs4,1; 
cs4,5; cs5,2; cs5,4.

cs2 1; cs3 1; cs3 2; cs3 3; 
cs3,4; cs3,5; cs3,6; cs3,7; 
cs4 1; cs4 2; cs4 3; cs4 4; 
cs4,5; cs5,4; cs6,4; cs7,1; 
cs7,2; cs7,5; cs7,6.

cs2 1; cs3 1; cs3 2; cs3 3; 
cs3,4; cs3,5; cs3,6; cs3,7; 
cs4 1; cs4 2; cs4 3; cs4 4; 
cs4,5; cs5,1; cs5,2; cs5,3; 
cs5 4; cs5 5; cs5 6; cs6 1; 
cs6,2; cs6,3; cs6,4; cs6,5; 
cs6 6; cs7 1; cs7 2; cs7 3;
cs7,6; cs8,1.

cs2 1; cs3 1; cs3 2; cs3 3; 
cs3,4; cs3,5; cs3,6; cs3,7; 
cs4 1; cs4 2; cs4 3; cs4 4; 
cs4,5; cs5,1 ;cs5,2; cs5,3; 
cs5 4; cs5 5; cs5 6; cs6 1; 
cs6,2; cs6,3; cs6,4; cs6,5; 
cs6 6; cs7 1; cs7 2; cs7 3; 
cs7,4; cs7,8; cs9,3.

CQS: 0.19 CQS: 0.51 CQS: 12.37 CQS: 102.27 CQS: 114.39

2 (reactive) 2 (reactive) 4 (attentional) 6 (emotional) 6 (emotional)
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Table 3 summarizes the preliminary evaluation results after applying SRP. Note

that simpli¯ed rating provides just an approximation of what could be the real

ConsScale level of an implementation. The rating obtained for models which have not

yet been fully implemented will have to be con¯rmed in the future by the application

of the SEP to the corresponding implementations. For implementations or models

which consider a developmental period, the rating considers the potential ¯nal

ConsScale level that they would achieve at the end of their developmental period. See

Table 3 for a comparative analysis of the ¯ve machine consciousness systems being

discussed.

Looking at the cognitive pro¯les in Table 3 it can be easily noticed that all the

analyzed machine consciousness models essentially follow the developmental path

outlined by ConsScale hierarchical levels. This is indeed the expected result due to the

existing dependencies between the skills arranged at di®erent levels. Nevertheless,

machine consciousness models (as well as biological organisms) might exist that

present \atypical" cognitive pro¯les, e.g., an autistic person or an arti¯cial agent

speci¯cally pre programed to recognize its own specular image (without ful¯lling

lower level skills). Usually, these atypical cognitive pro¯les appear in nature due to

brain injury or genetic diseases. However, in the case of arti¯cial systems it might

indicate either a task oriented design or even the presence of pre programed behaviors

conceived to fool classical cognitive tests. ConsScale CQS represents the cognitive

hierarchical dependency and applies a synergistic weighting function in order to

account for such systems providing a fair measure of their overall cognitive power.

5. Conclusions

The analysis of the selected machine consciousness models indicates that ConsScale

pro¯les associated to the corresponding implementations — after applying the

SEP — would have good scores only in the lower section of the chart. Looking at the

preliminary results obtained using the SRP, the following conclusions can be drawn:

. Although the detailed CS dependency relations between adjacent levels (illus

trated in Fig. 1) can be a subject of controversy and might require further

re¯nement, it is clear that functions located in highest levels do require the e®ective

realization and integration of lowest level functions. Hence, at least from a coarse

grained perspective, the cognitive hierarchy proposed in ConsScale is supported by

the engineering constraints found in machine consciousness implementations

(as well as the equivalent dependencies observed in biological phylogeny).

. Similarly, the analysis of the selected systems con¯rms that higher level skills are

not required to attain lower level skills, thus supporting the upward ordering

relations de¯ned in ConsScale.

. Although a lot of work still needs to be done in order to build real implementations

able to successfully cope with ConsScale lower levels, the actual challenge in the

¯eld of machine consciousness is to create new arti¯cial creatures whose cognitive
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pro¯les tend to ¯ll the upper half of the chart (while keeping high scores in the

lower half).

As shown in this paper, the proposed evaluation methods (SEP and SRP) are

valid for very dissimilar implementations, thus allowing comparative analysis across

all possible models that might arise in the domain of machine consciousness. How

ever, these methods have some drawbacks: while SEP permits an accurate analysis of

a given implementation, it is of necessity domain dependent, therefore an accurate

comparative analysis can only be performed between systems designed to work in

the same context. In order to compare systems intended to be used in di®erent

domains— as in the case of this paper— the SRP has to be applied. Regrettably, this

method provides just an approximated evaluation, which might be too sensible to CS

arbitrary interpretations in the context of each particular system. For instance, an

agent is said to comply with CS3;4 if it is able to \adaptively select relevant motor

information". This could mean di®erent things in di®erent contexts, and involve

much more engineering e®ort in some domains than in others. For the agent UT Bot

CS3;4 it is translated into \the ability of the bot to discard actions that are not suitable

for the current situation", like ¯ring against walls while running away from an enemy

[Arrabales et al., 2009]. For the functional imagination architecture, CS3;4 could be

translated into the \ability to pre select motor actions directed towards the goal "

[Marques and Holland, 2009], like moving the arms in the direction of the object that

has to be knocked down. Whereas implementing and testing these two di®erent

behaviors might imply quite di®erent designs and techniques, their cognitive sig

ni¯cance is equivalent from the point of view of ConsScale. In other words, ConsScale

SRP does not take into account the complexity of the application domain; therefore

the metrics obtained in this work are not sensitive to robustness versus brittleness in

agents. As mentioned above, the ConsScale SEP has to be used (instead of SRP) in

order to obtain a fair and accurate comparative metric — at the cost of constraining

the evaluation to a speci¯c problem domain.

Another problem is related to the particular evaluation of each CS. While the

ful¯llment of a given skill is now considered as a binary property, real implemen

tations generally present a blurred boundary between behaviors that could be con

sidered as satisfying or not certain CS. For instance, in the case of CS7;4, the mirror

test could be used to evaluate the agent. A typical outcome of the test could be that

the agent is able to pass the mirror test with an accuracy of 70% [Takeno et al.,

2005]. Arbitrarily translating this sort of results into a binary property obviously

induces noise and ambiguity in the metric. This e®ect could be diminished by con

sidering partial ful¯llment of CS and/or fuzzy logic in the calculation of Li

parameters.

Although the proposed scale does not explicitly address the problem of phenom

enal consciousness assessment, it could be argued that some correlation might exist

between the assessed functional synergy and the probability of having phenomen

ological states. While the functional synergy might not be required for the generation
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of phenomenological states, it seems to be a requirement for the formation of qualia,

the integrated content of subjective experience.

As pointed out by Haikonen [Haikonen, 2009], qualia is the way in which sensory

information manifest itself in mind, therefore the production of \arti¯cial qualia" in

machines has to be considered when assessing the degree of consciousness of amachine.

In this regard, we are currently investigating the correlations between cognitive

processes de¯ned in ConsScale and the generation and development of qualia.

Speci¯cally, the partial order: CS4;5 < CS5;6 < CS6;6 < CS7;8 < CS8;6 < CS9;3 <

CS10;1. Taking into account this CCS partial order and the models being analyzed we

have found that current machine consciousness designs are also following the Cons

Scale path for the creation of arti¯cial qualia. For instance, in the case of the LIDA

model, the contents of the conscious broadcast are said to constitute the arti¯cial

qualia of the agent. In Haikonen's architecture, the mechanism for direct and trans

parent perception is considered essential for the potential creation of arti¯cial qualia.
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