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We establish valid Edgeworth expansions for the distribution of smoothed non-
parametric spectral estimates, and of studentized versions of linear statistics such
as the sample mean, where the studentization employs such a nonparametric spec-
tral estimate+ Particular attention is paid to the spectral estimate at zero frequency
and, correspondingly, the studentized sample mean, to reflect econometric inter-
est in autocorrelation-consistent or long-run variance estimation+ Our main focus
is on stationary Gaussian series, though we discuss relaxation of the Gaussianity
assumption+ Only smoothness conditions on the spectral density that are local to
the frequency of interest are imposed+ We deduce empirical expansions from our
Edgeworth expansions designed to improve on the normal approximation in prac-
tice and also deduce a feasible rule of bandwidth choice+

1. INTRODUCTION

In this paper we analyze higher-order asymptotic properties of smoothed non-
parametric estimates of the spectral density for a Gaussian stationary time se-
ries and of linear statistics studentized by such a nonparametric estimate+ There
is a large literature on the consistency and asymptotic normality of nonparamet-
ric spectral estimates and studentized linear statistics, but much less is known
about higher-order properties, including the Edgeworth expansions we consider+

We focus principally on zero frequency and obtain Edgeworth expansions for
the joint distribution of the spectral estimate and sample mean+ These can be used
to approximate the distribution and moments of smooth functions of these sta-
tistics, and we go on to analyze the higher-order asymptotic properties of the
sample mean studentized by the spectral estimate+ The studentization we em-
ploy is prompted by the fact that the variance of the sample mean is approxi-
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mately proportional to the spectral density at zero frequency+ Such studentization,
with autocorrelated observations, goes back at least to Jowett~1954!, whose work
was developed by Hannan~1957! and Brillinger ~1979! and extended to more
general circumstances, as recently reviewed by Robinson and Velasco~1997!+
In particular such ideas have been widely employed in econometric models,
sometimes under the headings of “~heteroskedasticity and! autocorrelation-
consistent variance estimation” and “long-run variance estimation+”

Spectral density estimation, and studentization of the sample mean, can be
based on a parameterization of the spectral density, as when an autoregressive
moving average model of given order is assumed+ However, if the parameter-
ization is incorrect~e+g+, if one or both of the autoregressive or moving average
orders is underspecified! or unidentified~as when both orders are overspeci-
fied! inconsistent spectral estimates result, and inferences based on the sample
mean are invalidated+ Nonparametric spectral estimation seeks to avoid these
drawbacks+ However, its implementation requires the user to specify a func-
tional form~a kernel in our case!, in addition to a bandwidth, which determines
the degree of smoothing+ First-order asymptotic theory holds across a wide range
of bandwidths, but the detail of Edgeworth expansions is more sensitive to band-
width choice, reflecting finite sample practical experience+ We use our Edge-
worth expansions to approximate the moments of stochastic approximations
whose distributions are very close to that of the originalt-ratio and propose
“optimal” choices of bandwidth, which can be proxied by data-dependent quan-
tities+ Also, we approximate our theoretical Edgeworth expansions, which in-
volve population quantities, by empirical expansions for practical use+ It is
anticipated that our proposed corrections could outperform the normal approx-
imation in highly autocorrelated processes, where nonparametric spectral esti-
mates can be particularly biased and thus severely influence the distribution of
the studentized mean+

The process of spectral estimation and studentization at other frequencies is
not essentially different from that at zero frequency, and we discuss this exten-
sion explicitly+ One important feature of our work is that smoothness, and in-
deed boundedness, of the spectral density is assumed only at the frequency of
interest+ This is natural because the variance of the sample mean is propor-
tional to the Césaro sum of the Fourier series of the spectral density at zero
frequency, which, by Fejér’s theorem, converges if and only if this is a conti-
nuity point+ These mild conditions are also practically desirable because they
permit lack of smoothness, and even unboundedness, at remote frequencies, as
can arise from long memory, cyclic, or seasonal behavior+ Reliance on only
local assumptions has recently been stressed in work by Robinson~e+g+, 1994!
on semiparametric analysis of long memory, and we employ similar truncation
techniques to achieve this+ By contrast, the bulk of the literature on smoothed
nonparametric spectral estimation imposes assumptions that imply at least bound-
edness of the spectral density at all frequencies+ In particular, this is the case in
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the work of Bentkus~1976!, Bentkus and Rudzkis~1982!, and Rudzkis~1985!
on higher-order asymptotic theory for nonparametric spectral estimates, whose
approach we in other respects follow+ It is also the case in the econometric
work referred to previously on consistency of autocorrelation-consistent or long-
run variance estimates and on the first-order limiting distribution of studen-
tized statistics, which resorts to summability conditions on mixing numbers+
On the other hand, the econometric literature typically avoids the Gaussianity
assumption that we impose in the bulk of the paper, and the mixing conditions
employed can cover a degree of heterogeneity across time, in addition to deal-
ing with far more general statistics, such as implicitly defined extremum esti-
mates of vector-valued parameters+We suspect that in our higher-order treatment
the stationarity assumption could to some extent be relaxed at cost of signifi-
cantly more complicated conditions, whereas vector and other extensions should
be possible, albeit notationally complex+ Relaxation of our Gaussianity assump-
tion, which, as in much other work on higher-order expansions~see, e+g+, such
time series references as Phillips, 1977; Taniguchi, 1991!, plays a considerable
simplifying role, may lead to rather more complex expansions, which we in-
vestigate in Section 7+ Though much recent higher-order asymptotic theory for
non-Gaussian time series analysis has been based on the work of Götze and
Hipp ~1983! it is not known if their conditions allow a proof of the validity of
the Edgeworth expansions for smoothed spectral estimates~see Janas, 1994,
Remark 2+3! though some ideas on nonparametric studentization are in Götze
and Künsch~1996!+

Mean-correction in spectral estimation does not affect first-order asymptotic
distribution theory, but its effects may show up in terms of a smaller order of
magnitude for the distribution of both spectral estimates andt-ratios+We study
this correction in detail, and our analysis could also be extended to residual-
based nonparametric studentization of least squares estimates in a nonstochas-
tically trending linear regression, possibly involving cosinusoidal regressors,
whose variance may depend on the spectral density of the errors at various
frequencies+

The paper is organized as follows+ The following section provides the main
assumptions used throughout+ In Section 3 we establish a valid Edgeworth ex-
pansion for the distribution of the nonparametric estimate of the spectral den-
sity and analyze the joint distribution of the variance estimate and the sample
mean+ In Section 4 we establish a valid Edgeworth expansion for the studen-
tized sample mean and consider the effects of mean-correction+ Section 5 pro-
vides consistent estimates of higher-order correction terms and an empirical
Edgeworth expansion+We extend our results to obtain a third-order approxima-
tion in Section 6+ Finally in Sections 7 and 8, respectively, we analyze the ef-
fects on our approximations of higher-order cumulants for non-Gaussian series
and Edgeworth approximations for estimation at nonzero frequencies+ Proofs,
including some technical lemmas, appear in two Appendixes+
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2. NONPARAMETRIC STUDENTIZATION OF THE SAMPLE MEAN

Let $Xt % be a stationary Gaussian sequence with mean that is known~for the
time being! to be zero, autocovariance functiong~r !, and spectral densityf ~l!
defined byg~r ! 5 *P f ~l!eirldl, where P 5 ~2p,p# , and satisfying 0,
f ~0! , `+ Let PX 5 N21 (j51

N Xj and denote

VN 5
def

Var@!N PX # 5 (
j512N

N21 S12
6 j 6

N
Dg~ j !+

Then for allN such thatVN . 0,

u1 5
def !N PX

!VN

; N ~0,1!+

BecauseVN is the Césaro sum of the Fourier coefficients off ~l! at l 5 0,
if f ~l! is continuous atl 5 0 then limNr`VN 5 2pf ~0! by Fejér’s theorem+
If Zf ~0! is a consistent estimate, Zf ~0! rp f ~0!, then

YN 5
def !N PX

! ZV rd N ~0,1!,

where ZV 5 2p Zf ~0!+ Defining

[g~,! 5
1

N (
1#t, t1,#N

Xt Xt1, , , 5 0,61, + + + ,6~N 2 1!,

consider the weighted-autocovariance nonparametric estimate off ~0!

Zf ~0! 5
1

2p (
,512N

N21

vS ,

M
D [g~,! 5 X '

WM

2pN
X,

whereX 5 ~X1, + + + ,XN !' andWM is theN 3 N matrix with ~r,s!th element

@WM # r,s 5 vS r 2 s

M
D5E

P

KM ~l!ei ~r2s!ldl, (1)

such thatKM~l! is a kernel function with smoothing or lag numberM, which is
a sequence of positive integers growing withN but more slowly+ Then for an
even, integrable functionK that integrates to one, we set

KM ~l! 5 M (
j52`

`

K~M @l 1 2pj # !,

so KM~l! is periodic of period 2p, even, integrable, and *P KM~l!dl 5 1+
It follows that v~r ! 5 *2`

` eirxK~x!dx and v~0! 5 1 so we can write
Zf ~0! 5 *P KM~l! I ~l!dl, where I ~l! 5 ~2pN!21 3 6(t51

N Xt exp$ilt %62 is the
periodogram ofXt , t 5 1, + + + ,N+ We restrict our analysis to this kernel class
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because of its simplicity, though a variety of quadratic-form estimates could
be considered~see, e+g+, Song and Schmeiser, 1992!+

To analyze the joint distribution of the linear statisticPX and the nonparamet-
ric estimate of its variance, it is convenient to work with standardized statistics
with zero mean and unit variance+ Suppose now that the estimateZf ~0! is!N0M
consistent~cf+ Hannan, 1970, Ch+ 5!+ Write for u 5 ~u1,u2!',

YN 5 YN ~u! 5 u1S11 bN 1 sN u2! M

N
D2102

, u2 5 ! N

M
H ZV 2 E @ ZV #

VN sN
J ,

wheresN
2 5 Var@!N0M ZV0VN # andbN 5 E @ ZV #0VN 2 1 are the “relative” vari-

ance and bias ofZV and some of our notation suppresses the dependence onN+
Then u2 5 X 'QN X 2 E @X 'QN X# is a centered quadratic form in a Gaussian
vector, whereQN 5 WM ~!NMsN VN !21 is anN 3 N matrix+

The joint characteristic function ofu is

cN ~t1, t2! 5 6 I 2 2it2SQN 62102 expH2 1

2
t1

2jN
' ~I 2 2it2SQN !21SjN 2 it2 ENJ ,

whereEN 5 E @X 'QN X# 5 Trace@SQN # , S 5 E @XX '# , andjN 5 1YY!NVN , 1
being theN 3 1 vector ~1,1, + + + ,1!' + As a result of the normalizationsu has
identity covariance matrix and cumulant generating function

wN ~t1, t2! 5 log cN ~t1, t2! 5 (
r50

`

(
s50

`

kN @r,s#
~it1!r

r!

~it2!s

s!
,

where the only nonzero bivariate cumulants are

kN @0,s# 5 2s21~s2 1!! Trace@~SQN !s# , s . 1,

kN @2,s# 5 2ss! jN
' ~SQN !sSjN , s . 0+

Phillips ~1980! discusses these derivations and related literature for the analysis
of the distribution of linear and quadratic forms under the normality assumption+

Here the Gaussianity assumption provides simple explicit expressions for the
characteristic functions and cumulants of linear and quadratic forms, which other-
wise would be very difficult to estimate for general dependent sequences+ Fur-
thermore these depend only on second-order properties of the time series, through
S or f, which simplifies our setup+We introduce the following assumptions about
the Gaussian seriesXt and Zf ~0!+

Assumption 1+ 0 , f ~0! , ` andf ~l! hasd continuous derivatives~d $ 2!
in a neighborhood ofl 5 0, thedth derivative satisfying a Lipschitz condition
of order®, 0 , ® # 1+

Assumption 2+ The spectral densityf ~l! [ Lp, for somep . 1, that is,
7 f 7pp 5 *P f p~l!dl , `+
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Assumption 3+ K~x! is bounded, even, and integrable onP, and zero else-
where, and integrates to one+

Assumption 4+ K~x! satisfies a uniform Lipschitz condition~of order 1! in
@2p,p# +

Assumption 5+ For j 5 0,1, + + + ,d, d $ 2, andr 5 1,2, + + +

m j ~K
r ! 5

def E
P

x j @K~x!# rdx5 H5 0, j , d, r 5 1;

Þ 0, j 5 d, r 5 1+

Assumption 6+ M21 1 MN21 r 0, asN r `+

Assumption 7+ M 5 C{Nq, with 0 , q , 1 and 0, C , `+

Assumption 1, which concerns bias, is implied by(j52`
` 6 j 6d1® 6g~ j !6 , `,

but this extends the smoothness assumption to all frequencies, whereas only
local assumptions are natural for this problem+ In particular, as in Robinson
~1995a!, for example, we allow, using truncation arguments, for lack of smooth-
ness or even unboundedness~as arises from possibly cyclic long memory! at
remote frequencies+ The finite support requirement onK in Assumption 3 is
helpful here, though undoubtedly it could be relaxed to a mild tail restriction+
However,Assumption 2 imposes some restrictions onf beyond the origin, though
in fact anyp . 1 arbitrarily close to 1 will suffice for all our results+

From Assumption 3, the functionv~r ! defined by~1! is even and bounded+
Assumption 4 is needed to evaluate the cumulants ofZf ~0! and is satisfied for
most kernels used in practice satisfying Assumption 3 but rules out kernels
like the uniform+ A modification of the proofs could permit kernels that have
finitely many discontinuities+ The second condition in Assumption 5 is de-
signed for nonparametric bias reduction whend . 2 by means of higher-order
kernels+ Examples of kernels satisfying Assumptions 3–5 are ford 5 2, the
Bartlett–Priestley or Epanechnikov windowK~l! 5 ~304p!~1 2 l20p2! and
the triangular windowK~l! 5 ~10p!~1 2 6l 60p!; for d . 2, the following
optimal kernels are taken from Gasser, Muller, and Mammitzsch~1985!:

for d 5 4, K4~l! 5
15

32p
S7

l4

p4 2 10
l2

p2 1 3D,
for d 5 6, K6~l! 5

35

256p
S299

l6

p6 1 189
l4

p4 2 105
l2

p2 1 15D+
Assumption 6 on the bandwidth or lag numberM is necessary for the con-

sistency of Zf ~0!, whereas we will sometimes wish to strengthen it by Assump-
tion 7, possibly with restrictions onq+
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3. DISTRIBUTION OF THE NONPARAMETRIC SPECTRAL ESTIMATE

In this section we analyze the asymptotic distribution of the nonparametric spec-
tral estimate Zf ~0!+ Our results extend Bentkus and Rudzkis~1982! in that we do
not assume boundedness of the spectral density at frequencies away from the
origin+ We give two lemmas about the bias of the estimateZf ~0! for VN + The
first is standard in Fourier analysis~see Zygmund, 1977, p+ 91!, and the loga-
rithmic factor could be eliminated by assuming(6g~ j !6 , `+

LEMMA 1 + Under Assumption 1, with d5 1, ® 5 0, VN 2 2pf ~0! 5
O~N21 log N!, as Nr `.

LEMMA 2 + Under Assumptions 1, 3, 5, and 6, as Nr `,

E @ Zf ~0!# 2 f ~0! 2
f ~d ! ~0!

d!
md~K !M2d 5 O~N21 log N 1 M2d2® !,

where f~d!~0! is the dth derivative of f~l! evaluated atl 5 0.

From Lemmas 1 and 2 we estimate the relative biasbN asM r `

bN 5 b1 M2d 1 O~M2d2® 1 N21 log N!, b1 5
f ~d ! ~0!md~K !

d! f ~0!
+

We now study the cumulants of the normalized spectral estimateu2+

LEMMA 3 + Under Assumptions 1, 3, 4, eN ~s! 5
def

M2d2® 1 N21M 3
log2s21 N r 0 as Nr `, for s . 2,

SkN @0,s# 5
def

kN @0,s#S N

M
D~s22!02

5 (
j50

d

¹j @0,s#M2j 1 O~eN ~s!!,

where¹j @0,s# are bounded and depend on the moments of K and the deriva-
tives of f atl 5 0 and do not depend on N or M.

For example, ¹0@0,s# 5 ~4p!~s22!02~s2 1!!7K722s7K7ss, ¹1@0,s# 5 0, and the
¹ coefficients are scale free as expected but depend on the shape off+ If f is flat
at l 5 0 then¹j @0,s# 5 0, j $ 1+ The proof of Lemma 3 employs a multivariate
version of the Fejér kernel~see Appendix B! and uses the fact that, given the
compact support ofK, asymptotically we only smooth around zero frequency+
Depending on the asymptotic relationship betweenM andN, some of the ex-
pansion can be included in the error term, because we have only assumed that
eN~s! is o~1! asN r `, which in turn implies Assumption 6 fors $ 1+

Because of the normalizationkN @0,2# 5 1 and if eN~2! r 0 asN r `, we
obtain for the asymptotic variance of!N0M Zf ~0!, using the same techniques of
the proof of Lemma 3~see Appendix A!, that

N

M
Var@ Zf ~0!# 5 4pf 2~0!7K722 1 O~eN ~2! 1 M22!,
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and for some constantsQj ,

sN 5 !4p(
j50

d

Qj M
2j 1 O~eN ~2!! 5!4p7K72 1 O~M22 1 eN ~2!!,

as M r `, with Q0 5 7K72, Q1 5 0, andQ2 5 1
4
_7K7221 m2~K 2! f 22~0! \f 2~0!,

\f j ~0! 5 ~d0dl!2f j ~l!6l50+
Then we can justify an optimal choice ofM by minimizing the mean squared

error ~MSE! of Zf ~0!, E~ Zf ~0! 2 f ~0!!2 under Assumptions 1, 3, 4, and 5 and
eN~2! r 0 asN r ` ~cf+ Lemmas 2 and 3!, because if we are only interested
in estimatingf at the origin, it is natural to use local rules for bandwidth choice+
Then theM that minimizes asymptotically the MSE isMopt 5 copt 3 N10~2d11!,
0 , copt , `, where

copt 5 copt~ f,K ! 5 F 2d

4p S f ~d ! ~0!md~K !

d! f ~0!7K72
D2G10~2d11!

, (2)

which can be estimated by inserting consistent estimates off ~0! and f ~d!~0!+
We now prove the validity of a second-order Edgeworth expansion to ap-

proximate the distribution of the vectoru, with erroro~~N0M !2102!, and includ-
ing terms up to order~N0M !2102 to correct the asymptotic normal distribution,
which is the leading term of the expansion+ Of course this will imply the valid-
ity of that expansion for the distribution ofZf ~0!+ We first study the cross-
cumulants ofu+

LEMMA 4 + Under Assumptions 1, 3, 4, eN~s 1 2! r 0 as N r `, for
s . 0,

SkN @2,s# 5
def

kN @2,s#S N

M
Ds02

5 (
j50

d

¹j @2,s#M2j 1 O~eN ~s1 2!!,

where¹j @2,s# are bounded and depend on the moments of K and the deriva-
tives of f atl 5 0 and do not depend on N or M.

For example, we can obtain that¹0@2,s# 5 ~4p!s02s! K s~0!7K722s and
¹1@2,s# 5 0+

For B [ B2, where B2 is any class of Borel sets inR2, set QN
~2! $B% 5

*B f2~u!qN
~2!~u! du, wheref2~u! 5 ~2p!21 exp$2 1

2
_7u72% is the density of the

bivariate standard normal distribution,

qN
~2!~u! 5 11

1

3! SM

N
D2102

$¹0 @0,3#H3~u2! 1 ¹0 @2,1#H2~u1!H1~u2!%,

andHj ~{! are the univariate Hermite polynomials of orderj+ Now we show that
QN

~2! is indeed a valid second-order Edgeworth expansion for the probability
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measurePN of u+ For this we need Assumption 7, but we do not assume yet the
choiceq 5 10~11 2d! and0or C 5 copt ~see~2!! that would minimize the MSE
of Zf ~0!+ This implies a rate of growth forM in terms ofN, with Assumption 6
holding for this particularM+ Define by ~]B!a a neighborhood of radiusa of
the boundary of a setB+

THEOREM 1+ Under Assumptions 1, 2~ p . 1!, 3, 4, and 7~0 , q , 1!,
for aN 5 ~N0M !2r, 102 , r , 1, and every classB2 of Borel sets inR2, as
N r `,

sup
B[B2
6PN ~B! 2 QN

~2!~B!6 5 oSS N

M
D2102D1

4

3
sup
B[B2

QN
~2! $~]B!2aN %+

The method of proof is based on first approximating the true characteristic
function and then applying a smoothing lemma+ Note that the second term on
the right hand side is negligible ifB is convex becauseaN decreases as a power
of N, and that the higher-order correction terms inqN

~2! depend only onK but
not on f+ Naturally these terms only correct the marginal distribution of the
spectral estimate but not that of the Gaussian sample mean+ There is also a
cross-term to deal with in the joint distribution, but none of these correct for
the possible bias of the spectral estimate or for variance estimation because we
have only dealt with exactly standardized statistics+

Using the results of Bhattacharya and Ghosh~1978! we can justify Edge-
worth expansions for the distribution and moments of smooth functions of the
spectral estimate and sample mean+We concentrate in the following section on
the studentized meanYN +

4. ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION
OF THE STUDENTIZED MEAN

The distribution ofYN depends on such quantities assN , bN , kN @r,s# , and so
on, for which we have obtained expressions up to a certain degree of error in
powers ofN and M, the coefficients of the expansions depending on the un-
known f and its derivatives at the origin and on the user-chosen kernelK~l!+
The accuracy of these approximations depends mainly onM and determines
the error of the feasible Edgeworth expansion for the distribution ofYN + In this
section we impose Assumption 7 withq 5 10~1 1 2d! but do not necessarily
require thatC 5 copt+ Then 0, M2d0~N0M !2102 , ` asN r `, and the bias
of Zf ~0! is of the same magnitude as the correction term obtained inQN

~2! or as
the standard deviation ofZf ~0!+ However this might not be the optimal choice
for approximating the distribution or the MSE of the studentized statistic+

We first work out a linear stochastic approximation toYN~u! and prove that
its distribution is the same asYN up to ordero~~N0M !2102!+ Then the asymp-
totic approximation for the distribution of the linear approximation is valid also
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for YN with that error+ Expanding the biasbN and the standard deviationsN we
define

YN
L 5

def

u1F12
1

2
b1 M2d 2

1

2
!4p7K72u2~N0M !2102G +

LEMMA 5 + Under Assumptions 1, 2~ p . 1! , 3, 4, 5, and 7, q5 10
~1 1 2d!, YN has the same Edgeworth expansion as YN

L uniformly for convex
Borel sets up to the order~N0M !2102.

Note that under the conditions of the lemmaZf ~0! is !N0M consistent and
the approximation we obtained in Section 2 for the distribution ofYN is valid+
The next step is to justify a valid Edgeworth expansion for the distribution of
YN

L from that ofu+

THEOREM 2+ Under Assumptions 1, 2~ p . 1! , 3, 4, 5, and 7, q5
10~1 1 2d!, for convex Borel sets C, as Nr `,

sup
C

*Prob$YN [ C% 2E
C

f~x!@11 r2~x!M2d# dx* 5 o~~N0M !2102!, (3)

where r2~x! 5 2 1
2
_b1~x2 2 1!.

This expansion coincides with the formal Edgeworth expansion obtained by
estimating the first three cumulants of the linear approximationYN

L up to error
o~~N0M !2102! as was shown by Bhattacharya and Ghosh~1978! for functions
of sample moments of independent and identically distributed~i+i+d+! observa-
tions+ The restriction to convex measurable sets inR, that is, intervals, could
be avoided by proceeding as in that reference+

For the distribution function we setC 5 ~2`, y# , and integrating and Taylor
expanding the distribution function of the standard normal, F~ y!, we get, uni-
formly in y, under the conditions of Theorem 2:

Prob$YN # y% 5 F~ y! 1
1

2
b1 yf~ y! M2d 1 o~~N0M !2102!

5 FSyF11
1

2
b1 M2dGD1 o~~N0M !2102!

5 F~ y! 1 O~~N0M !2102!, (4)

which shows that the normal approximation is correct up to orderO~~N0M !2102!
if q 5 10~11 2d!+ On “optimally” choosingC 5 copt in Assumption 7 from~2!,
~4! becomes

Prob$YN # y% 5 F~ y@11 b1
' N2d0~112d ! # ! 1 o~N2d0~112d ! !,
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where

b1
' 5

b1

2 F 2d

4p S f ~d ! ~0!md~K !

d! f ~0!7K72
D2G2d0~2d11!

,

or equivalently, operating with the values ofb1 andcopt,

Prob$YN # y% 5 F~ y! 1 a1f~ y!~N0Mopt!
2102 1 o~~N0Mopt!

2102! (5)

5 F~ y@11 a1~N0Mopt!
2102# ! 1 o~~N0Mopt!

2102!, (6)

with a1 5 !p0~2d!7K72sign@ f ~d ! ~0!md~K !# + Whend 5 2

b1 5
1

2
f ~2! ~0!m2~K !, a1 5

!p

2
7K72 sign@ f ~2! ~0!m2~K !# ,

and the approximations~4! and~6! have an immediate interpretation+ Suppose
thatm2~K ! 5 *x2K~x!dx . 0 ~e+g+, if K~x! $ 0, for all x!+ If f ~l! has a peak at
l 5 0 such thatf ~2!~0! , 0 then, as is well known, the weighted-autocovariance
estimates Zf ~0! underestimatef ~0! and thus the variance ofPX; consequently
the confidence interval for!N0VN PX is too narrow forYN , and a corresponding
test rejects too often because the ratioYN tends to increase+ Our approxima-
tions tend to correct this problem, as in both cases they employF~ ykN ! where
kN # 0, so for the same confidence level, the critical valuey is larger~in abso-
lute value! than the normal approximation+ The same reasoning applies in the
reverse direction, when there is a trough inf ~l! at l 5 0+ For d . 2 the inter-
pretation is equivalent, but we have to take into account the sign ofKd

~1! , which
can be negative, as for K4~x! and d 5 4+ The approximations~5! and ~6! are
more attractive, because if we believeM is optimal, we need only estimate the
sign of f ~d!~0!, not its value, to achieve second-order correctness+

Taniguchi and Puri~1996! obtain an Edgeworth expansion for the same
t-statistic for possibly non-Gaussian AR~1! series when estimatingf ~0! with
the least squares estimate of the autoregressive coefficientu+ Their expansion
is correct up to ordero~N2102! and depends on the kurtosis of the innovations
but not onu or f, by contrast to our nonparametric studentization+

We have assumed thatEXt is known in the spectral estimation+ WhenEXt is
unknown, we can still takeEXt 5 0 but replace [g~,! by

Jg~,! 5
1

N (
1#t, t1,#N

~Xt 2 PX !~Xt1, 2 PX !, , 5 0,61, + + + ,6~N 2 1!

and Zf ~0! by

Df ~0! 5
1

2p (
,512N

N21

vS ,

M
D Jg~,! 5 ~X 2 PX1!'

WM

2pN
~X 2 PX1!+

The effect of mean-correction is analyzed in the following lemma+
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LEMMA 6 + Under the assumptions of Theorem 2, NM21~ Df ~0! 2 Zf ~0!! 5
DN, whereDN has bounded moments of all orders and E@DN # 5 22pK~0! f ~0! 1
O~MN21 log2 N!.

The distribution of!N0M Df ~0! is affected to a second order, ~M0N!102, by
the mean correction so the studentized mean might be affected to orderM0N+
The bias is the same as found by Hannan~1958! in spectral estimation after
trend removal+ Of course, the asymptotic relationship of this bias with the
smoothing bias studied in Lemma 2 depends on the degree of smoothing given
by M+ We substitute Df ~0! in all definitions involving Zf ~0! and denote the stu-
dentized mean usingDf ~0! by

YN
, 5 YN

,~u, ! 5 u1S11 bN
, 1 sN

, u2
,! M

N
D2102

,

whereu2
, , bN

, , sN
, , and all quantities with a, superscript are as previously, but

defined in terms of FV 5 2p Df ~0!+

LEMMA 7 + Under the assumptions of Theorem 2, YN
, has the same Edge-

worth expansion as YN
L for convex Borel sets, up to the order~N0M !2102.

It follows that the distribution of the sample mean studentized by the “mean-
corrected” spectral estimateDf ~0! can be approximated by the same Edgeworth
approximation up to order~N0M !2102 as when Zf ~0!, based on a known mean, is
used+ However, the expansion for the distribution ofu, can differ from that for
the distribution ofu in terms of order~N0M !2102 as we investigate in Section 6+

5. EMPIRICAL APPROXIMATION

The preceding approximations to the distribution of the studentized mean, and
to optimal bandwidth choice, depend on the unknownf ~0! and derivativef ~d!~0!+
These may be estimated in standard plug-in fashion~using an initial choice of
bandwidth! to achieve an empirical Edgeworth approximation and approxi-
mately optimal bandwidth+ This section proposes nonparametric estimates of
the derivatives off and proves their consistency+ Of coursef has to be smoother
than is necessary in estimation off ~0! but again only around frequency zero+

We introduce the class of kernels~n, r ! n 5 0,1, + + + , r 2 1 to estimate thenth
derivative, following Gasser et al+ ~1985!+ Define the functionVn of order~n, r !
such that

E
P

Vn~x!x jdx 5 5
0, j 5 0, + + + ,n 2 1,n 1 1, + + + , r 2 1;

~21!nn!, j 5 n;

q Þ 0, j 5 r,

with support@2p,p# and satisfying a Lipschitz condition of order 1+ If n 5 0
then we estimate the function itself, and V0 has equivalent properties to the
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kernelK we used to estimatef ~compare this with Assumptions 3–5!+ Examples
of the class of kernels~n, r ! on @2p,p# are

for n 5 2, r 5 4, V2~x! 5
105

32p
S25

l4

p4 1 6
l2

p2 2 1D,
for n 5 2, r 5 6, V2~x! 5

315

64p
S77

l6

p6 2 135
l4

p4 1 63
l2

p2 2 5D+
We defineVmn

~x! 5 mnVn~mnx!, x [ @2p,p# , for a sequence of integersmn 5
mn~N!, satisfyingmn

21 1 mnN21 r 0 asN r `+ We estimatef ~n!~0! by

Zf ~n! ~0! 5 ~mn !nE
P

Vmn
~l! I ~l!dl+

LEMMA 8 + Under Assumption 1, d5 n 1 a, ® 5 0, and a kernel of order
~n,n 1 a!, for some integer a$ 2, and ~mn!21 1 N21~mn!n log N r 0 as
N r `, E@ Zf ~n!~0!# 2 f ~n!~0! 5 O~~mn!n @N21 log N 1 mn

2n2a# !.

LEMMA 9 + Under the assumptions of Lemma 8, with~mn!21 1
N21~mn!2n11 1 N21mn log3 N r 0 as N r `, Nmn

22n21Var@ Zf ~n! ~0!# 5
4pf 2~0!7Vn722 1 o~1!.

Then with the conditions of these two lemmas it is possible to obtain valid em-
pirical Edgeworth expansions because the correction terms are of order~M0N!102

and consistent estimates forf and f ~d ! introduce only anop~~M0N!102! error+
Using the same techniques as for the cumulants ofZf ~0! ~cf+ Lemma 3! we can
show that thes-order cumulant of Zf ~n!~0!, kN ~s!, is of order of magnitude
N12smn

s~n11!21 and its fourth moment is thereforeB 5 E @ Zf ~n! ~0! 2 f ~n! ~0!#

E~ Zf ~n! ~0! 2 f ~n! ~0!!4 # 9 Var@ Zf ~n! ~0!# 2 1 kN ~4! 1 4kN ~3!B 1 7B4

5 O~mn
4n12N22 1 mn

4n N24 log4 N 1 mn
24a!, (7)

from Lemmas 8 and 9+ Then Zf ~n!~0! r f ~n!~0! almost surely from the Borel–
Cantelli lemma and Markov’s inequality if~7! is O~N212e ! for somee . 0+
Given the MSE-optimalmn ; CN10~2n12a11! , this holds ifa . n 1 1

2
_ and valid

empirical Edgeworth expansions are thus available witho~~M0N!102! error, al-
most surely+

The same results hold ifZf ~n!~0! is replaced by Df ~n!~0!, which employs mean-
corrected quantities in the manner ofDf ~0!, whereas the distribution of deriva-
tive estimates can be studied in the same way as that ofZf+ These estimates can
also be used for plug-in rules of bandwidth choice, but estimates ofM can
affect higher-order properties ofZf and t-ratios though first order asymptotics
are likely to remain the same~cf+ Robinson, 1991!+
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6. THIRD-ORDER APPROXIMATION

In this section we concentrate on obtaining a third-order approximation~i+e+,
including terms of orderM0N! to the distribution of the studentized sample
mean+ The previous results are insufficient to prove the validity when there is
mean-correction in the nonparametric spectral estimate+ As seen in Section 4,
the mean-correction introduces a term of order~M0N!102 in the expansion for
!N0M Df ~0!, so it will have an effect of orderM0N in a third-order approxima-
tion for the studentized mean+ As before, we denote by a star superscript, , , all
quantities whenDf ~0! is used instead ofZf ~0!+ First we study the bias, the follow-
ing lemma simply extending Lemma 2 using Lemma 6+

LEMMA 10+ Under Assumptions 1, 3, 4, 5, 6 and M21 1 N21M log N r 0
as Nr `,

E @ Df ~0!# 2 f ~0! 5
f ~d ! ~0!

d!
md~K !M2d 2 2pf ~0!K~0!

M

N

1 OS log N

N
1 M2d2® 1 F M

N G2

log2 ND+
The second term on the right hand side is due to the mean correction+ To

analyze the cumulants ofu2
, we can write it compactly as a quadratic form, X,

u2
, 5 X 'QN

, X 2 E @X 'QN
, X# , whereQN

, 5 AN QN AN , AN 5 IN 2 11'0N is the
mean-correctedversion ofQN + We first analyze the cumulants of the joint dis-
tribution of u,+

LEMMA 11+ Under Assumptions 1, 3, 4, eN~s! r 0 as Nr `, for s . 2,

SkN
, @0,s# 5

def

kN
, @0,s#S N

M
D~s22!02

5 (
j50

d

¹j @0,s#M2j 1 O~eN ~s!!,

SkN
, @2,s2 2# 5

def

kN
, @2,s2 2#S N

M
D~s22!02

5 O~eN ~s!!,

where¹j @0,s# are defined as in Lemma 3.

The cumulantskN
, @0,s# of u2

, thus have the same asymptotic approximations
as thekN @0,s# , and all conclusions about the variance and optimal bandwidth
with known mean assumed still hold+ However the cross-cumulantskN

, @2,s#
are asymptoticallyo~1! after normalization+ Therefore on the basis of cross-
cumulants of any order, u1 and u2

, are asymptotically independent, and vari-
ance estimation is asymptotically independent of mean estimation as if the
sequenceXt were exactly independent+

We now fix the order needed for the expansions of the cumulants to obtain
a third-order Edgeworth expansion for the distribution ofu, when Assump-
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tion 7 holds+ We need to consider terms in the expansion ofkN
, @0,3# up to

orderM2d,

such that ifd, , d, thenM2d,21 5 o~~M0N!102!, and if d, 5 d,
then M2d2® 5 o~~M0N!102!, the errors being negligible ifq . 10~1 1 2d 1
2®!+ The following theorem establishes validity of the third-order Edgeworth
approximationQN

~3!, $B% 5 *B f2~u!qN
~3!,~u!du, for the distributionPN

, of u,,
where

qN
~3!,~u! 5 11

1

6SM

N
D102

(
j50

d,

M2j ¹j @0,3#H3~u2!

1
1

72

M

N
H¹0 @0,3# 2H6~u2! 1

1

4!
¹0 @0,4#H4~u2!J +

THEOREM 3+ Under Assumptions 1, 2~ p . 1!, 3, 4, 7~10~11 2d 1 2®! ,
q , 1!, for aN 5 ~N0M !2r, 1 , r , 302, and every class of Borel setsB2, as
N r `,

sup
B[B2
6PN

,~B! 2 QN
~3!,~B!6 5 oSS N

M
D21D1

4

3
sup
B[B2

QN
~3! $~]B!2aN %+

Next we consider the studentized sample meanYN
, using the nonparametric

estimate Df ~0!+ To obtain a linear approximation forYN
, , the main problem is the

bias

bN
, 5 b1 M2d 1 b2

M

N
1 OSN21 log N 1 M2d2® 1 F M

N G2

log2 ND,
with b2 5 22pK~0!+ To makebN

, negligible up to orderM0N we cannot em-
ploy the MSE@ Df ~0!# -optimal M but instead require that

lim
Nr`

M

N
M d . 0, (8)

which guarantees that the bias term of orderM2d is at most of orderM0N and
that the termO~M2d2®! does not affect the third-order approximation under
Assumption 7+ This of course implies a significant undersmoothing, asM needs
to increase much faster thanN10~112d! , at least likeN10~11d! + Then incorporat-
ing the bias of orderO~MN21!, the third-order linear approximation toYN

, is

YN
,L 5 u1F12

1

2
b1 M2d 2

1

2
b2

M

N
2

1

2
sN u2

,SM

N
D102

1
3

8
4p7K722~u2

,!2
M

N G,
(9)
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and we justify the validity of a third-order Edgeworth expansion for the distri-
bution of YN

, with

rN ~x! 5 @4p7K722 1 2pK~0! 2 b1 NM212d#
x2 2 1

2
1 12p7K722

x4 2 6x2 1 3

24
+

(10)

THEOREM 4+ Under Assumptions 1, 2~ p . 1!, 3, 4, 5, 7 and (8), for con-
vex Borel sets C, as Nr `,

sup
C

*Prob$YN
, [ C% 2E

C
f~x!F11 rN ~x!

M

N G dx* 5 oSM

N
D+

In particular, for the distribution function we obtain, uniformly in y,

Prob$YN
, # y% 5 F~ y! 2

1

2
f~ y!~ y3 2 3y!p7K722MN21

1
1

2
yf~ y!@b1 NM2d21 2 4p7K722 2 2pK~0!# MN21

1 o~M0N!+ (11)

The coefficients of the polynomialrN~x! depend only onK, except for the term
b1NM212d, which involvesf ~0! andf ~d!~0!+ This is due to the moments ofDf ~0!
being proportional tof ~0!, so the normalized distribution ofu, has constant
variance and higher-order cumulants~up to first order! with respect tof ~0!+
The term inb1 disappears with sufficient undersmoothing, that is, if in ~8! the
left hand side is infinite+ Of course, the largerM, the worse the approximation
from the point of view of theM0N corrections+ More informative expansions
for the bias can be obtained, using higher-order derivatives of the spectral den-
sity at the origin and appropriate conditions on the kernel+ Then ~8! could be
relaxed, allowing the term inb1 to be of larger order of magnitude thanM0N
and also permitting MSE-optimalMopt+

To obtain the Edgeworth expansion of Theorem 4 we can simply calculate
the formal expansion for the distribution ofYN

,L based on the moments ofu, or
we can proceed in an alternative way+ Because we found in Lemma 11 thatDf ~0!
is asymptotically independent ofPX, we can write

Pr~YN
, # y! 5 Pr~u1 # S102y! ' Eu1

@F~S102y!# ,

whereS5 1 1 bN
, 1 u2

, sN
,~M0N!102 and regardingu1 andu2

, as exactly inde-
pendent+ Then we can expandF~S102y! aroundF~ y!,

F~S102y! 5 F~ y! 1 f~ y!y~S102 2 1! 2
1

2
y3f~ y!~S102 2 1!2

1
1

6
~~ y' !2 2 1!y3f~ y' !~S102 2 1!3, (12)
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wherey' is in the line segment betweeny andS102y+ Now

S102 5 11
1

2
bN

, 1
1

2
u2

, sN ~M0N!102 2
1

8
u2

2sN
2

M

N
1 jN ,

where E6jN 6 5 O~~MN21!302 1 ~bN
,!2! and bN

, ; b1M2d 2 2pK~0!MN21,
obtaining

E~S102 2 1! 5
1

2
bN

, 2
1

8
sN

2
M

N
1 oSbN

, 1
M

N
D,

E~S102 2 1!2 5
1

4
sN

2
M

N
1 oS~bN

,!2 1
M

N
D+

Therefore, taking expectations in~12! and grouping terms in powers ofy, we
obtain the same approximation for Pr$YN

, # y% as in~11!,

Eu1
@F~S102y!# 5 F~ y! 1 yf~ y!S1

2
bN

, 2
1

8
sN

2
M

N
D

2
y3

8
f~ y!sN

2
M

N
1 oSbN

, 1
M

N
D,

with a truncating errorO~E6~S102 2 1!63!, proceeding as in the lemma of Rob-
inson~1995b!+

Following Hall ~1992, Sec+ 2+5! and using Theorem 4, we can also obtain
a Cornish–Fisher approximation for the quantiles of the distribution of the
studentized meanYN

, to construct, for example, confidence intervals with
improved asymptotic coverage by estimating the unknown terms inrN~x! as
proposed in Section 5+ Write wa 5 wa~N,M ! for the a-level quantile ofYN

, ,
determined bywa 5 inf $x :Prob$YN

, # x% $ a%, and letza be thea-level stan-
dard normal quantile, given by F~za! 5 a+ Then immediately we have the
following theorem+

THEOREM 5+ Under Assumptions 1, 2~ p . 1!, 3, 4, 5, 7 and (8), wa 5
za 2 rN~za!M0N 1 o~M0N!, uniformly ine , a , 12 e for eache . 0, where
rN is defined as before.

7. NON-GAUSSIAN TIME SERIES

Though our development depends heavily on the Gaussianity assumption we
here analyze informally the consequences up to third order of the Gaussianity
relaxation+ This may be achieved by considering distributions with Gram–
Charlier representations incorporating corrections for skewness and kurtosis~for
related references, see Phillips, 1980!+

The lack of Gaussianity affects in the first instance the joint characteristic
function ofu, for which we would require some regularity conditions~cf+ Lem-
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mas 14 and 15 in Appendix B!+ This regularity involves the distribution ofXt

and would also require summability conditions on higher-order cumulants or
mixing type conditions as in Götze and Hipp~1983!+ Then the lack of Gauss-
ianity shows up in the asymptotic approximations to the distributions in terms
of the higher-order cumulants of the sequenceXt + It is well known ~e+g+, Han-
nan, 1970, p+ 280! that fourth-order cumulants do not affect~at first order! the
asymptotic variance of smoothed estimatesZf ~0!, and the same can be shown
for higher-order cumulants of the normalized statisticsu1 andu2+

Thus if we assume higher-order stationarity ofXt and that the higher-order
spectral densities

fk~l1, + + + ,lk21! 5 ~2p!12k (
j152`

`

{{{ (
jk2152`

`

cum~Xo,Xj1, + + + ,Xjk21
!,

f2~l! 5 f ~l!, are smooth enough at the origin in all their arguments, then
simple results can be obtained+ This condition on the higher-order spectral
densities holds if, for example, Xt is a linear process, Xt 5 (j50

` aj et2j , where
the et are i+i +d+ with enough moments and the transfer functiona~l! 5

(j50
` aj exp~ilj ! is sufficiently smooth atl 5 0; sufficiently strong summa-

bility conditions onaj provide uniform smoothness+ Then we can show that
the normalized cumulants ofu, SkN @a,b# , are of the same magnitude as under
Gaussianity, with identical leading terms, because higher-order cumulant spec-
tra only appear in higher-order, o~1!, terms in their asymptotic expansions+
Thus, up to errors of orderO~M22 1 eN~a 1 b!!, we obtain

SkN @3,0# 5 !2p Nf3~0!M2102,

SkN @4,0# 5 2p Nf4~0!M21

~see, e+g+, Götze and Hipp, 1983!, where Nfk~0! 5 fk~0! f 2k02~0!+ For the spectral
density estimate we obtain thatsN

2 5 4p7K722 1 2p Nf4~0!M21, using the tech-
niques of Bentkus~1976!, and with similar arguments the first cross-cumulants
of u are

SkN @1,1# 5
1

!2
7K7221 Nf3~0!M2102,

SkN @2,1# 5 !4pK~0!7K7221 1 O~M21!,

and SkN @1,2# 5 O~M2102!, so higher-order spectra affectSkN @a,b# at most to
orderM2102+ Then lack of Gaussianity affects neither the term in~MN21!102 of
the Edgeworth approximation for the distribution ofu ~cf+ qN

~3!,! nor the term
in MN21 for the distribution ofYN ~cf+ rN !, as in this last case the approxima-
tion only depends on the leading terms ofSkN @2,1# and SkN @1,1# ~which remain
the same!, apart from the bias ofZf ~0!, which does not depend on higher-order
cumulants ofXt + In the case of mean-corrected estimates some contributions
cancel out, as the leading term ofSkN @2,1# ~cf+ Lemma 11!+
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We can also estimate the MSE of stochastic approximations toYN and ana-
lyze the higher-order effects of the bandwidth choice when Gaussianity is not
assumed+ From the third-order linear approximation toYN under condition~8!,

YN
L 5 u1F12

1

2
b1 M2d 2

1

2
sN u2SM

N
D102

1
3

8
4p7K722u2

2
M

N G ,
wheresN ; !4p7K72 can be expanded up to erroro~~MN21!102!, and we ob-
tain for non-Gaussian series that

E @YN
L# 5 2

1

2
sN kN @1,1#SM

N
D102

1
3

2
p7K722kN @1,2#

M

N

5 2!p

2
Nf3~0!N2102 1 o~N2102!,

so Bias@YN
L# 2 5 ~p02! Nf32~0!N21 1 o~N21!, and

Var@YN
L# 5 12 b1 M2d 2 sN kN @2,1#SM

N
D102

1 4p7K722~11 kN @2,2# !
M

N
1 O~N21!

5 12 b1 M2d 1 4p~7K722 2 K~0!!
M

N
1 oSM2d 1

M

N
D+

Similar conclusions can be obtained for mean-corrected spectral estimation,
incorporating in the third-order stochastic approximationYN

,L ~see ~9!! the
mean-correction bias of orderMN21, b2 5 22pK~0!, which remains the same
up to that order+ Thus bias Bias@YN

,L# 2 has the same expression as without
mean-correction, becausekN

, @1,1# 5 kN @1,1# ~1 1 O~MN21!!, but the term in
K~0! in the variance is now different, becauseSkN

, @2,1# 5 o~1! from Lemma 11,
and hence

Var@YN
,L# 5 12 b1 M2d 1 4pS7K722 1

1

2
K~0!D M

N
1 oSM2d 1

M

N
D+

Note that whereas the leading terms in the expansions for the variances de-
pend on the properties off ~l! at l 5 0 and onK, the bias only depends on
Nf3~0!, the relative skewness at zero frequency+ From an MSE~of YN or YN

,!
point of view, the main focus is then on the variance contribution, and to make
the two leading terms of its asymptotic expansion of the same order of magni-
tude we can setM ; CN10~11d! for some positive constantC ~so M satisfies
condition~8!!+ This implies a clear undersmoothing, to reduce the bias ofZf ~0!,
and that the normal approximation for the distributions ofYN or YN

, is asymp-
totically correct up to errorO~MN21!, apart from the skewness correction by
SkN @3,0# , which is of orderO~N2102! as for non-Gaussian standardizedPX and

does not depend on spectral estimation~i+e+, on M or K !+

EDGEWORTH EXPANSIONS FOR SPECTRAL ESTIMATES 515



8. SPECTRAL ESTIMATION AND STUDENTIZATION
AT NONZERO FREQUENCIES

We consider in this section nonparametric spectral estimates at a frequency of
interestlo [ ~0,p!, because the caselo 5 p is similar to estimation at the
origin and we need not consider negative frequencies by symmetry+ We sup-
pose in this section that Assumption 1 holds in a neighborhood oflo+ Now all
the arguments we have used for the analysis ofZf ~0! can be carried over toZf ~lo!,

Zf ~lo! 5
1

2p (
,512N

N21

vS ,

M
D [g~,!cos,lo 5 X '

WM ~lo!

2pN
X,

@WM~lo!# r,s 5 @WM # r,scos~r 2 s!lo, if we keep the symmetry of the estimate
Zf ~0! by writing Zf ~lo! 5 *P KM ~a 2 lo! I ~a!da 5 *P HM ~a! I ~a!da, where

HM~a! 5 HM~a;lo! 5 1
2
_~KM~a 2 lo! 1 KM~a 1 lo!!+ Now HM~a! is even

and periodic likeKM~a!, and higher-order cumulants ofZf ~lo! are determined
by the fact that forN large enough the kernelsKM~a 2 lo! andKM~a 1 lo! do
not overlap forlo . 0+ However we cannot expectf ~l! to be symmetric around
nonzerolo as it automatically is around the origin, so existing odd derivatives
of f ~l! at lo are not zero in general and the expansion for moments ofZf ~lo!
might contain additional terms+ Furthermore, there is less reason in general to
expect a spectral peak at an arbitrarily chosen nonzero frequencylo than at the
origin, so interpretation of correction terms may be less immediate+

Define the discrete Fourier transform atl asw~l! 5 N21 (t51
N Xt exp~ilt !,

so PX 5 w~0!, and denotew~l! 5 wR~l! 1 iw I ~l! for the real and complex
components ofw~l!+ Then forlo . 0

VN
R~lo! 5

def

Var@!N wR~lo!# 5
1

2
VN ~lo! 1 O~N21 log N!,

whereVN~lo! 5
def

(j512N
N21 ~1 2 6 j 60N!g~ j !cosjlo 5 2pf ~lo! 1 O~N21 log N!,

using Assumption 1 as in Lemma 1+ Then for any lo and N such that
VN

R~lo! . 0, we set

u1
R~lo! 5

def !N wR~lo!

!VN
R~lo!

; N ~0,1!,

and we can defineVN
I ~lo! 5

def

Var@!N wI ~lo!# 5 1
2
_VN~lo! 1 O~N21 log N! and

u1
I ~lo! similarly for wI ~lo!+ The studentized statistic at frequencylo is

YN
R~lo! 5

def !N wR~lo!

! ZV~lo!

5 u1
R~lo!S11 bN

R~lo! 1
pf ~lo!

VN
R~lo!

sN ~lo!u2~lo!! M

N D2102

+
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Here ZV~lo! 5 p Zf ~lo! and

u2~lo! 5
def ! N

M

ZV~lo! 2 E @ ZV~lo!#

pf ~lo!sN ~lo!

are common for studentization of bothwR~lo! andwI ~lo!, wheresN
2~lo! and

bN
R~lo! are now the “relative” variance~with respect topf ~lo!! and bias

of ZV~lo!, respectively+ The bias estimation follows as forlo 5 0 with
bN

R~lo!,bN
I ~lo! 5 b1~lo!M2d 1 O~M2d2® 1 N21 log N!, and

b1~lo! 5
f ~d ! ~lo!md~K !

f ~lo!d!
+

We can analyze the joint distribution ofu~lo! 5 ~u1
R~lo!,u1

I ~lo!,u2~lo!!'

under Gaussianity using the same definitions as forlo 5 0 but in terms
of the matrix QN ~lo! 5 ~MN!2102~sN ~lo!pf ~lo!!21WM ~lo! and the
vectors jN

R~lo! 5 ~coslo, + + + ,cosNlo!'YY!NVN
R~lo! and jN

I ~lo! 5
~sinlo, + + + ,sinNlo!'YY!NVN

I ~lo!+ The characteristic function ofu~lo! is

cN
lo~t1

R, t1I , t2! 5 6 I 2 2it2SQN ~lo!62102

3 expH2
1

2
jN

lo~t!'~I 2 2it2SQN ~lo!!21SjN
lo~t! 2 it2 EN ~lo!J ,

jN
lo~t! 5 t1

RjN
R~lo! 1 t1

I jN
I ~lo!, and the only cumulants differing from zero are

kN
lo@a,b,s# for a 1 b 5 0,2, s $ 0+ Thus, for example, kN

lo@1,1,s# 5
2ss!~jN

R~lo!!'~SQN ~lo!!sSjN
I ~lo!, s $ 0, and setting SkN

lo@a,b,s# 5
def

kN
lo@a,b,s# ~NM21!~s1a1b22!02 we obtain the following lemma+

LEMMA 12+ Under Assumptions 1, 3, 4, eN~s! r 0 as Nr `, for s . 2,

SkN
lo@0,0,s# 5 (

j50

d

¹j
lo@0,s#M2j 1 O~eN ~s!!,

SkN
lo@2,0,s2 2# , SkN

lo@0,2,s2 2# 5 (
j50

d

¹j
lo@2,s2 2#M2j 1 O~eN ~s!!,

and SkN
lo@1,1,s 2 2# 5 O~eN~s!!, s $ 2, where¹j

lo@0,s# and ¹j
lo@2,s 2 2# are

bounded and depend on K and the derivatives of f atlo, but not on N or M.

Now ¹0
lo@0,s# 5 ~2p!~s22!02~s 2 1!!7K722s7K7ss, sN~lo! ; !2p7K72, and

¹0
lo@2,s# 5 ~2p!s02s! K s~0!7K722s becauseHM~lo! 5 1

2
_KM~0! for N large

enough andlo . 0+
WhenEXt is unknown we can use the sample mean-corrected statisticDf ~lo!,

and definingDN~lo! 5 NM21~ Df ~lo! 2 Zf ~lo!! we can follow the arguments
of Lemma 6 to find that iff ~l! is also smooth atl 5 0, E @DN ~lo!# 5
O~MN21 log2 N!, so b2~lo! 5 0, and Var@DN~lo!# 5 O~MN21 log2 N!, be-
causeHM~0! 5 KM~lo! 5 0 for N large enough andlo . 0+ Therefore, mean-
correction does not affect spectral estimation or studentization atlo Þ 0 at third-
order MN21+ However, a similar result to Lemma 6 holds if residuals from

EDGEWORTH EXPANSIONS FOR SPECTRAL ESTIMATES 517



a least squares cosinusoidal regression at the same frequencylo are used+
Also the expansions of Lemma 12 are still valid for the mean-corrected cumu-
lants SkN

,lo@0,0,s# , whereas the cross-cumulantsSkN
,lo@2,0,s# and SkN

,lo@0,2,s#
are o~1! as for lo 5 0, leading again to asymptotic independence ofu1

I ~lo!,
u1

R~lo!, andu2
,~lo!+

Using Lemma 12 we can construct a valid Edgeworth expansion for the dis-
tribution of u,~lo! under the assumptions of Theorem 3, and justify the valid-
ity of an Edgeworth approximation for the distribution ofYN

R,~lo! in terms of
that for u,~lo! under the conditions of Theorem 4 with

rN
lo~x! 5 @2p7K722 2 b1~lo!NM212d#

x2 2 1

2
1 6p7K722

x4 2 6x2 1 3

24

~cf+ ~10!!, coinciding again with the formal Edgeworth expansion deduced from
a linear approximation toYN

R,~lo!+ This approximation differs from estimation
at lo 5 0 with respect to the asymptotic variance and negligible bias effect of
mean-correction for spectral estimation at nonzero frequencies+
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APPENDIX A: PROOFS

We postpone the proofs of Lemmas 1 and 2 to Appendix B+

Proof of Lemma 3. We obtain fors . 0, kN @0, s# 5 2s21~s 2 1!!~sNVN !2s 3
~MN!2s02 Trace@~SNWM !s# + Then, using Proposition 1 in Appendix B we have that

SkN @0,s# 5
2s21~s2 1!!~2p!2s21

~sN VN !s (
j50

d

Lj ~s!M2j 1 O~eN ~s!!+ (A.1)

Applying Proposition 1 to evaluatesN
2 under the same set of assumptions~s 5 2!,

sN
2

VN
2

4p2 5
N

M

2

~2pN!2 Trace@~SN WM !2# 5 4p (
j50

d

Lj ~2!M2j 1 O~eN ~2!!,

where, for example, L0~2! 5 f 2~0!m0~K 2! 5 f 2~0!7K722, L1~2! 5 0, and L2~2! 5
1
2
_m2~K 2! \f 2~0!+ Now as 0, L0~2! , ` and allLj ~2! are fixed constants independent
of N or M, we can write for some constantsJj ~s!
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SsN

VN

2p
D2s

5 ~4p!2s02 (
j50

d

Jj ~s!M2j 1 O~eN ~2!!, (A.2)

where J0~s! 5 L0~2!2s02, and so on+ Denoting C~0, s! 5 ~4p!~s22!02~s 2 1!! we
can obtain from~A+1! and ~A+2! the following expansion in powers ofM21 for the
normalized cumulants, SkN @0,s# 5 C~0,s!(j50

d Gj ~s!M2j 1 O~eN~s!!, where Gj ~s! 5

(t50
j Jt ~s!Lj2t ~s! are constants not depending onN or M, and depending only onf and

K, with G1~s! 5 0, G2~s! 5 J0~s!L2~s! 1 J2~s!L0~s!, and so on+ Then the lemma fol-
lows, setting¹j @0,s# 5 C~0,s!Gj ~s!+ n

Proof of Lemma 4. We have kN @2,s# 5 2ss!~MN!2s02N21VN
2s21sN

2s 3
1'~SN WM !sSN 1+ Then, using Proposition 2 in Appendix B the normalized cumulants
are

SkN @2,s# 5 F 2p

VN sN
Gs 2pf ~0!

VN

~4p!ss! f ~0!sK~0!s 1 O~eN ~s1 2!!,

asKM~0! 5 MK~0! given the compact support ofK+ Substituting the expansion for the
value ofVN sN and using Lemma 1, we obtain

SkN @2,s# 5 FVN sN

2p
G2s

@11 O~N21 log N!# ~4p!ss! f ~0!sK~0!s 1 O~eN ~s1 2!!

5 ~4p!2s02~4p!ss! f ~0!sK~0!s (
j50

d

Jj ~s!M2j 1 O~eN ~s1 2!!,

where theJs~ j ! are as before+ The lemma follows with¹j @2, s# 5 ~4p!2s02 3
~4p!ss! f ~0!sK~0!sJj ~s!+ n

Proof of Theorem 1. To prove the validity of an Edgeworth expansion for the dis-
tribution of u we check that the characteristic function of the expansion approximates
well the true one+ We first construct the approximation forcN~t!+ We discuss the gen-
eral case, because the same arguments will be used later for the proof of Theorem 4+ As
in Taniguchi ~1987, pp+ 11–14!, using the fact that only the cumulantskN @0, s# and
kN @2,s# are nonzero, the cumulant generating function is

log cN ~t! 5
1

2
7 i t72 1 (

s53

t11 ~N0M !~22s!02

s! (
6r 65s

s!

r1! r2!
SkN @r1, r2# ~it1!r1~it2!r2 1 RN ~t!,

(A.3)

wherer 5 ~r1, r2!' , with r1 [ $0,2% and 6r 6 5 r1 1 r2, and

RN ~t! 5 S N

M
D2t02

@R0,t12~it2!t12 1 R2,t~it1!2~it2!t # , t even,

RN ~t! 5 S N

M
D2t02 1

~t 1 2!! F SkN @0,t 1 2# ~it2!t12 1
~t 1 2!~t 1 1!

2
Sk@2,t# ~it1!2~it2!tG

1 S N

M
D2~t11!02

@R0,t13~it2!t13 1 R2,t11~it1!2~it2!t11# , t odd,
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where theR0, j andR2, j are bounded+ Thus, from Lemmas 3 and 4, log cN~t! is

1

2
7 i t72 1 (

s53

t11 ~N0M !~22s!02

s! F SkN @0,s# ~it2!s 1
s~s2 1!

2
SkN @0,s2 2# ~it1!2~it2!s22G1 RN ~t!

5
1

2
7 i t72 1 (

s53

t11S N

M
D~22s!02

@BN ~s, t! 1 $~it1!s 1 ~it1!2~it2!s22%O~eN ~s!!# 1 RN ~t!,

where we have grouped terms in powers ofM21 in BN~s, t!,

BN ~s, t! 5
1

s! (
j50

d

M2j H¹j @0,s# ~it2!s 1
s~s2 1!

2
¹j @2,s2 2# ~it1!2~it2!s22J +

The approximation of the characteristic function ofu using its cumulant generating
function, AN~t,t!, has leading term exp$ 1

2
_7 it72% , multiplied by a polynomial int, de-

pending on the cumulants ofu, andN andM,

AN ~t,t! 5 expH 1

2
7 i t72JF11 (

j53

t11S N

M D~22j !02

(
r

)
n53

t11

@BN ~n, t!# rn
1

r3! + + + rt11!
G ,

where r 5 ~r3, + + + , rt11!' , rn [ $0,1, + + + % , and the summation is over allr satisfying
(n53

t11~n 2 2!rn 5 j 2 2+ We need only keep terms up to a certain power of~N0M !2102,
so some terms in high powers ofM21 in BN~n, t! may be included in the general error
term, without increasing its magnitude+

To obtain a second-order Edgeworth expansion we sett 5 2, including in AN~t,2!
terms up to order~N0M !2102,

AN ~t,2! 5 expH 1

2
7 i t72JF11 OBN ~3, t!S N

M
D2102G , (A.4)

where in OBN~3, t! only the leading term~in M 0! is kept in the expansion for the cumu-
lants of order 3+

To measure the distance between the true distribution and its Edgeworth approxima-
tion, we apply the smoothing Lemma 13 due to Bhattacharya and Rao~1975, pp+ 97–
98, 113!, with kernel C+ Lemma 14 studies the Edgeworth approximation for the
characteristic function for7t7 # d1!N0M ~note that the characteristic function of the
measureQN

~2! ${% is AN~t,2!!, whereas Lemma 15 analyzes its tail behavior+ First,

7~PN 2 QN
~2! ! , CaN

7 # 2 sup
B,B~0, rN !c

6~PN 2 QN
~2! ! , CaN

61 2 sup
B,B~0, rN !

6~PN 2 QN
~2! ! , CaN

6,

where rN 5 ~N0M !b , ~b . 0 to be chosen later!, and here7{7 denotes the variation
norm of a measure, , means convolution, and Bc is the complementary set ofB+ For
B , B~0, rN !c we have uniformly

6~PN 2 QN
~2!! , CaN

6 # 6PN , CaN
61 6QN

~2!
, CaN

6

# Prob$7u7$ rN 02% 1 2CaN
$B~0, rN 02!c% 1 2Q~2!$B~0, rN 02!c%+
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Now QN
~2! $B~0, rN 02!c% 5 o~~N0M !2102! as this is the measure of a polynomial in

Gaussian variables+ Also Prob$7u7 $ rN 02% 5 o~~N0M !2102!, becauseu has finite mo-
ments of all orders+ Finally, from ~B+19!

CaN
$B~0, rN 02!c% 5 O~ @aN 0rN # 3! 5 O~~N0M !23~ r1b! ! 5 o~~N0M !2102!,

becauser 1 b . 1
6
_ + For B , B~0, rN ! we have by Fourier inversion

6~PN 2 QN
~2!! , CaN

6 # ~2p!221prN
2E6~ ZPN 2 ZQN

~2!!~t! ZCaN
~t!6dt, (A.5)

where ZP denotes the characteristic function of a probability measureP, so ZPN 5 wN~t!
and ZQN

~2! 5 AN~t,2!+ Using Lemma 14, ~A+5! is bounded by

OSS N

M
D2b2102

@M22 1 eN ~3!#DE
7t7#d1!N0M

6e2d17t7
2
F~7t7!6 6 ZCaN

~t!6dt (A.6)

1 O~~N0M !2b !E
d1!N0M ,7t7#a'~N0M !r

6~ ZPN 2 ZQN
~2!!~t! ZCaN

~t!6dt, (A.7)

because from~B+20! ZC is zero for7t7 . a'~N0M !r anda' 5 8 3 2403p2103+ Then for
~A+6! to beo~~N0M !2102! it is necessary to chooseb # 1

4
_ ~because of the definition of

eN~3! andb , q0~1 2 q!!+
Finally, from Lemma 15, and ford1mN , 7t7 and also ford1!N0M , 7t7, because

mN # !N0M for N large enough~from the first element in the minimum of the defini-
tion of mN !, we have that~A+7! is

O~~N0M !2b !E
d1!N0M ,7t7#a'~N0M !r

e2d2mN
2
dt 1 o~~N0M !2102!,

and thus ~A+7! is dominated by O~~N0M !2b12r !e2d2mN
2

1 o~~N0M !2102! 5
o~~N0M !2102!, because with Assumption 7, 0 , q , 1, we have that, for some« . 0
depending onq andp, mN $ «N«+ Applying Lemma 13 the proof is complete+ n

Proof of Lemma 5. Set the neighborhood of the originVN 5 $u : 6ui 6 , ci N m,
0 , m , d0~3~11 2d!!, i 5 1,2% , whereci are some fixed constants, and expandYN~u!
around0 in VN , with 6u6 # 1:

YN 5 dN u1 2 2
1
2dN

3 sN u1u2~N0M !2102 1 ZN ~1!~N0M !21, (A.8)

where ZN~1! 5 3
8
_~1 1 bN 1 sN uu2~N0M !2102!2502sN

2u1u2
2 and dN 5 ~1 1 bN !2102+

Substituting forsN and dN and their powers, we can writeYN 5 YN
L 1 ZN~N0M !21,

where ZN 5 (j51
3 ZN ~ j !, ZN~2! 5 u1O~M log N 1 NM212d2®!, and ZN~3! 5

u1u2O~~N0M !102@M22 1 eN ~2!# !+ Now we use Theorem 2 of Chibisov~1972! to
prove that the error in the previous linear approximation can be neglected with error
o~~M0N!!102 if

Prob$6ZN 6 . rN!N0M % # (
j51

3

ProbH6ZN ~ j !6 .
1

3
rN!N0M J 5 o~~N0M !2102! (A.9)
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for some positive sequencerN r 0 and rN!N0M r `+ ChoosingrN 5 10 log N,
writing

~N0M !2102ZN ~2! 5 u1O~~N0M !102 @N21 log N 1 M2d2® # !, (A.10)

~N0M !2102ZN ~3! 5 u1u2O~M22 1 eN ~2!!, (A.11)

and applying Chebyshev’s inequality, asu1 andu2 have finite moments of all orders we
see that for~A+9! to hold it is sufficient that the error terms in the right hand sides of
~A+10! and ~A+11! be O~~N0M !2m!, for somem . 0, which is true as a result of As-
sumption 7, q 5 10~1 1 2d!+

To check Chibisov condition~A+9! for ZN~1! we bound Prob$ZN~1! . rN~M0N!2102%
by

Prob$6RN ~1!6~M0N!104 . rN
102% 1 Prob$6RN ~2!6~M0N!104 . rN

102% 5 P1 1 P2,

say, where RN~2! 5 3
8
_sN

2u1u2
2 has bounded moments of all orders+ Now P2 5

o~~M0N!102! applying Chebyshev’s inequality+ BecausebN 5 O~M2d 1 N21 log N!
and ~M0N!1010rN

2105 r 0 as N r `, P1 5 Prob$61 1 bN 1 sN uu2~N0M !21026 ,
rN

2105~M0N!1010%, and applying again Chebyshev’s inequality this is less than
C Prob$6u2~M0N!1026 . c% 5 o~~M0N!102!, for some positive constantsC andc+ n

Proof of Theorem 2. We follow Taniguchi~1987!+ Consider the transformations 5
~s1,s2!' 5 ~YN

L~u1,u2!,u2!' 5 YN~u!, say, and its inverseu 5 YN
21~s! 5 ~u1

†~s1,s2!,s2!'+
Then we write, using~1 1 x!21 5 1 2 x 1 x2 2 x3 1 {{{ for 6x6 , 1, uniformly in the
setVN , defined as in the proof of Lemma 5,

u1
†~s! 5 s1F11

1

2
b1 M2d 1

1

2
!4p7K72s2~N0M !2102G1 o~~N0M !2102!,

where the truncation of the term ins1s2
2O~~N0M !21! with error o~~N0M !2102! is

allowed because of the definition of the setVN + Writing for convex setsC,
Prob$YN [ C% 5 Prob$u [ YN

21~C 3 R!%, it follows from Lemma 1 that~as YN is a
C` mapping onVN !,

sup
C
6Prob$u [ YN

21~C 3 R!% 2 QN
~2! $YN

21~C 3 R!%6

5 o~~N0M !2102! 1 const sup
C

QN
~2! $~]YN

21~C 3 R!!2aN %, (A.12)

whereaN 5 ~N0M !2r , 1
2
_ , r , 1+ Also, from the continuity ofYN , we can obtain, for

somec . 0,

QN
~2! $~]YN

21~C 3 R!!2aN % # QN
~2! $~YN

21~~]C!caN 3 R!!% (A.13)

and

QN
~2! $~YN

21~C 3 R!!% 5E
VNùYN

21~C3R!

f2~x!qN
~2!~x!dx 1 o~~N0M !2102!

5E
VN

,ù$C3R%

f2~Y21~s!!qN
~2!~YN

21~s!!6J6ds1 o~~N0M !2102!,
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where f2~{! is the bivariate standard normal density, VN
, 5 YN~VN !, and 6J6 is

the Jacobian of the transformation+ We can obtain, neglecting terms that contribute
o~~N0M !2102! to the integrals, that

f2~YN
21~s!! 5 f~s1!f~s2!S12

1

2
s1

2Fb1 M2d 1!4p7K72s2SM

N
D102GD,

qN
~2!~YN

21~s!! 5 11 SM

N
D102 1

3!
$¹0 @0,3#H3~s2! 1 ¹0 @2,1#H2~s1!H1~s2!%,

and 6J65 1 1 1
2
_b1M2d 1 1

2
_!4p7K72s2~M0N!102+ Thus if pj ~s! denote polynomials not

depending onN or M,

QN
~2! $YN

21~C 3 R!% 5E
VN

,ù$C3R%

f2~s!@11 p1~s!~N0M !2102 1 p2~s!M2d#ds

1 o~~N0M !2102!

5E
C

f~s1! HE
R

@11 p1~s!~N0M !2102 1 p2~s!M2d#f~s2!ds2J ds1

1 o~~N0M !2102!

5E
C

f~s1!@11 r1~s1!~N0M !2102 1 r2~s1!M2d# ds1 1 o~~N0M !2102!,

where rj ~s1! are polynomials ins1, with bounded coefficients inN+ Integrating with
respect tos2 in R we obtain thatr1~x! 5 0 and r2~x! 5 2 1

2
_b1~x2 2 1!+ The proof

is completed by recalling~A +12!, ~A +13!, and Lemma 5+ As in Bhattacharya and
Ghosh~1978! this expansion coincides with the formal Edgeworth expansion obtained
calculating the first three cumulants of the linear approximationYN

L 5 s1 to YN up to
erroro~~N0M !2102! becauseE @s1# , E @s3# 5 o~~N0M !2102!, andE @s1

2# 5 1 2 b1M2d 1
o~~N0M !2102!+ n

Proof of Lemma 6. We obtain Df ~0! 2 Zf ~0! 5 22ZN 1 RN , whereRN 5 ~2pN!21 3
PX21'WM 1 andZN 5 ~2pN!21X 'WM 1 PX 5 ~2pN2!21X 'WM 11'X 5 X 'LN X, with LN 5

~2pN2!21WM 11' an N 3 N matrix+ The lemma follows directly from Lemmas 17 and
18, because

Cums@ZN # 5 cs Trace@~SN LN !s# 5 csSM

N
Ds

@2pf ~0!K~0!# s 1 OSSM

N
Ds11

log2 ND,
wherecs 5 2s21~s 2 1!! ~so ~N0M !ZN has bounded moments of all orders!+ Then, as
PXN ; N ~0,VN 0N! and from Lemma 1, under Assumption 1, VN 5 2pf ~0! 1

O~N21 log N!, it follows that ~N0M !RN has bounded moments of all orders too+ n

Proof of Lemma 7. We can writeu2
, 5 u2 1 ~N0M !2102DN

' , where the random vari-
ableDN

' has moments of all orders asDN + Now YN
, 5 YN

L 1 @ZN 1 DN
'' # ~N0M !21, where

DN
'' depends onDN , u1, and u2 and has moments of all orders, so it can be neglected

when we approximateYN
, with YN

L+ n

The proofs of Lemmas 8 and 9 are postponed to Appendix B+
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Proof of Lemma 11. The proof of Lemma 11 follows as for Lemmas 3 and 4 using
Propositions 3 and 4+ n

Proof of Theorem 3. The proof of Lemma 3 follows as for Theorem 1+ First, we
approximate the joint characteristic function ofu, 5 ~u1,u2

,!+ Define

AN
, ~t,3! 5 expH 1

2
7 i t72JF11 BN

,~3, t!SM

N
D102

1 H OBN
,~4, t! 1

1

2
OBN
,~3, t!2J M

N G ,
where we include inBN

, the expansions for the corresponding cumulants up to the
order M2d,

, but in OBN
, only the leading terms are kept, so BN

,~3, t! 5 ~103!! 3

(j50
d,

M2j ¹j @0,3# ~it2!s, OBN
,~3, t! 5 ~103!!¹0@0,3# ~it2!3, and OBN

,~4, t! 5 ~104!! 3
¹0@0,4# ~it2!4+ Now the theorem follows as Theorem 1 using Lemmas 19–21 instead of
Lemmas 14–16+ n

Proof of Theorem 4. We getdN
, 5 ~1 2 bN

,!2102,

dN
, 5 12

1

2
b1 M2d 2

1

2
b2

M

N
1 OSN21 log N 1 M2d2® 1 F M

N G2

log2 ND,
andsN

, 5 sN 1 eN 5!4p7K72 1 eN , whereeN 5 O~M22 1 eN~2!!+ Therefore we can
write YN

, 5 YN
,L 1 ZN~N0M !2302, whereYN

,L is defined in~9! andZN~N0M !2302 can be
neglected in an approximation to the distribution ofYN

, up to orderM0N+ Now we can
use the same arguments as before to justify the Edgeworth approximation forYN

, in
terms of that foru, , because, under condition~8!, E @s1# , E @s1

3# 5 o~M0N!, and ne-
glecting termso~M0N!,

E @s1
2# 5 12 b1 M2d 1

M

N
@2b2 1 4p7K722# ,

E @s1
4# 5 3 2 6b1 M2d 1

M

N
@26b2 1 36p7K722# ,

so the theorem follows with the definition ofrN~x!+ n

APPENDIX B: TECHNICAL LEMMAS

We first introduce the multiple Fejér kernel as in Bentkus~1972! or Dahlhaus~1983! for
tapered series,

FN
~n!~x1, + + + , xn! 5

1

~2p!n21N

sinNx102

sinx102
{{{

sinNxn02

sinxn02

5
1

~2p!n21N (
t1, + + + , tn51

N

expHi (
j51

n

tj xjJ ,
with xn [ 2(j51

n21 xj + For n 5 2 this is Fejér’s kernel+ We have followed the same con-
vention as in Keenan~1986, p+ 137!: although the functionsFN

~n! depend here on only
n 2 1 arguments, we refer ton variables, with the restriction(1

n xj [ 0~mod2p!+ Then
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FN
~n!~x1, + + + , xn! is integrable inPn21, integrates to one for allN, and has the following

properties+
For d . 0, N $ 1

E
Dc
6FN

~n!~x1, + + + , xn!6 dx1 + + +dxn21 5 OS logn21 N

N sind02D, (B.1)

where D c is the complement inPn21 of the set D 5 $x [ Pn21 : 6xj 6 # d,
j 5 1, + + + , n 2 1% +

For j 5 1, + + + , n 2 1,

E
P

{{{E
P

6xj 6 6FN
~n!~x1, + + + , xn!6 dx1 + + +dxn21 5 O~N21 logn21 N!+ (B.2)

These properties follow as a result of

6FN
~n!~x1, + + + , xn!6 #

1

~2p!n21N
6wN ~x1!6 6wN ~x2!6 + + + 6wN ~xn!6, (B.3)

wherewN~x! 5 (t51
N exp$itx% is the Dirichlet kernel, which satisfies

6wN ~x!6 # min$N,26x621%; E
P

6wN ~x!6 dx5 O~ log N!+ (B.4)

Proof of Lemma 1. Applying the mean value theorem~MVT ! for f ~l! in an interval
@2e, e# , e . 0, for some6u6 # 1 depending onl, becauseVN 5 2p *P f ~l!FN

~2!~l!dl
and*P FN

~2!~l!dl 5 1,

6VN 2 2pf ~0!6 # 2pFE
6l 6#e

1E
6l 6.e

GE
P

6 f ~l! 2 f ~0!6 6FN
~2!~l!6 dl

5 OSE
6l 6#e

6l 6 6 f '~lu!6 6FN
~2!~l!6dl 1 @7 f 71 1 f ~0!#N21D,

which isO~N21 log N! using the integrability off ~implied by stationarity!, its differen-
tiability around the origin, and 6FN

~2!~l!6 5 O~N21!, if 6l 6 $ e . 0, from ~B+3! and
~B+4!+ n

Proof of Lemma 2. Writing the spectral estimate asZf ~0! 5 *P KM ~l! I ~l!dl
where I ~l! has expectationE @I ~l!# 5 *P FN

~2!~l 2 a! f ~a!da we obtainE @ Zf ~0!# 5
*P KM ~l!*P FN

~2!~a! f ~l 1 a!dadl+ Then

E @ Zf ~0!# 2 f ~0! 2
f ~d ! ~0!

d!

md~K !

M d

5E
P

KM ~l!E
P

FN
~2!~a!@ f ~l 1 a! 2 f ~l!# dadl

1 E
P

KM ~l!Ff ~l! 2 f ~0! 2
f ~d ! ~0!

d!
md~K !M2dGdl

5 b1 1 b2,
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say, where we have used the fact thatK integrates to one+ Introduce the setsD 5
$6a6,6l 6 # e02% , andDc, its complement inP2+ Let b11 andb12 be the contributions to
b1 corresponding toD andDc, respectively+ Then, for 6u6 # 1, depending ona, b11 5
*D KM ~l!FN

~2!~a!@ f '~l 1 ua!a# dadl and

6b116 # sup
6l 6#e

6 f '~l!6E
6l 6#e02

6KM ~l!6dlE
6a6#e02

6a6 6FN
~2!~a!6da 5 O~N21 log N!+

To studyb12 note first thatDc , A1 ø A2 whereA1 5 $6a6 . e02% andA2 5 $6l 6 .
e02, 6a6 # e02%+ Then the contribution tob12 from A1 is

*E
6a6.e02

E
P

KM ~l!@ f ~l 1 a! 2 f ~l!# dlFN
~2!~a!da*

5 OSN21E
P2
6KM ~l!@ f ~l 1 a! 2 f ~l!#6 dldaD

5 OSN21F11E
6l 6#e

6KM ~l! f ~l!6 dlGD, (B.5)

which isO~N21*P6KM~l!6dl! 5 O~N21!, as the integral over6l 6 . e vanishes in~B+5!
asM r `+ On the other hand, reasoning in a similar way, for M sufficiently large the
contribution tob12 from A2 is

*E
6l 6.e02

E
6a6#e02

KM ~l!FN
~2!~a!@ f ~l 1 a! 2 f ~l!# dadl* 5 0, (B.6)

because of the compact support ofK+ Thusb12 5 O~N21!+
Now for b2, splitting the integral in two parts for6l 6 # e and6l 6 . e, denoted asb21

andb22, respectively, we have, constructing a Taylor expansion~with 6u6 # 1, depend-
ing on l!,

b21 5E
6l 6#e

KM ~l!F (
j51

d21

f ~ j ! ~0!
l j

j!
1 f ~d ! ~ul!

ld

d!
2

f ~d ! ~0!

d!
md~K !M2dG dl

5 (
j51

d21

f ~ j ! ~0!
1

j!
E

P

l jKM ~l!dl 1E
6l 6#p0M

KM ~l!@ f ~d ! ~ul! 2 f ~d ! ~0!#lddl

5 OSE
P

6KM ~l!6 6l 6d1®dlD5 O~M2d2® !,

as all the integration is within@2e, e# becauseM r ` and using the Lipschitz property
of f ~d! + As b22 is zero as a result of compact support ofK, the lemma is proved+ n

PROPOSITION 1+ Under Assumptions 1, 3, 4, eN~2s! r 0, for s $ 2,

Trace@~SN WM !s# 5 N~2p!2s21 (
j50

d

Lj ~s!M s212j 1 O~NMs21eN ~2s!!,

where eN~s! 5 N21M log 2s21N and Lj ~s! 5 ~10j!!m j ~K s! \f j ~0! with 6Lj ~s!6 , ` and,
as m j ~K s!, the constants Lj ~s! only differ from zero for j even~ j 5 0, + + + ,d!.
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Proof of Proposition 1. The proof is in two steps+
First step+ We boundA 5 6Trace@~SNWM !s# 2 N~2p!2s21*P f s~l!KM

s ~l!dl 6+ First
write, r2s11 [ r1,

Trace@~SN WM !s# 5 (
1#r1, + + + , r2s#N

)
j51

s

g~r2j21 2 r2j !vS r2j 2 r2j11

M
D

5 (
r
E

P2s
)
j51

s

$ f ~l2j21!KM ~l2j !%expHi (
j51

2s

l j ~rj 2 rj11!J dl

5 N~2p!2s21E
P2s

GM ~l,m!KM ~l!FN
~2s!~m!dldm,

whereFN
~2s!~m! 5 FN

~2s!~m1, + + + ,m2s!, GM~l,m! 5 f ~l 2 m2 2 {{{ 2 m2s!KM~l 2 m3 2
{{{ 2 m2s! + + + f ~l 2 m2s!, dm 5 dm2 + + + dm2s, dl 5 dl1 + + + l2s and we have made the
change of variables

5
m1 5 l1 2 l2s

m2 5 l2 2 l1

J

m2s 5 l2s 2 l2s21,
5

l2s21 5 l 2 m2s

l2s22 5 l 2 m2s 2 m2s21

J

l1 5 l 2 m2s 2 {{{ 2 m2 5 l 2 m1

~(j51
2s m j 5 0!, setting l 5 l2s, and expressing all thel j in terms of l and m j ,

j 5 2, + + + ,2s+ Then

A # N~2p!2s21E
P2s
6GM ~l,m! 2 f s~l!KM

s21~l!6 6KM ~l!FN
~2s!~m!6 dldm+ (B.7)

We split the preceding integral into two sets, for small and for largem j + Define the set
D 5 $m [ P2s21 : supj 6m j 6 # 10~2sM!%+ Taking into account that6l 6 # p0M because of
the compact support ofK, in the setD all functionsf are boundedly differentiable+ Then
we can use the inequality

6A1 + + +Ar 2 B1 + + +Br 6 # (
q50

r21

6B1 + + +Bq6 6Bq11 2 Aq116 6Aq12 + + +Ar 6 (B.8)

and supl6KM~l!6 5 O~M ! to bound the integral of~B+7! over D by

O~NMs21! (
q50

s21 E
P
E

D
6 f ~l 2 m212q + + + 2 m2s! 2 f ~l!6 6KM ~l!FN

~2s!~m!6 dldm (B.9)

1O~NMs21! (
q50

s22 E
P
E

D
6KM ~l 2 m312q + + + 2 m2s! 2 KM ~l!6 6FN

~2s!~m!6 dldm+ (B.10)
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Then, applying the MVT and using~B+2! we obtain that~B+9! is

O~NMs21!E
P

6KM ~l!*dl (
q52

2s21 E
P2s21

6mq6 6FN
~2s!~m!* dm 5 O~M s21 log2s21 N!+

On the other hand, ~B+10! is of orderO~M s log2s21 N!, using the Lipschitz property of
K+ Denote byDc the complement ofD in P2s21+ The contribution toA corresponding to
the setDc is bounded by

N~2p!2s21E
P
E

Dc
6GM ~l,m!KM ~l!6 6FN

~2s!~m!6dld (B.11)

1N~2p!2s21E
P

6 f s~l!KM
s ~l!6dlE

Dc
6FN

~2s!~m!6dm+ (B.12)

The expression in~B+12! is O~M s log2s21N!, by ~B+1! and *6 f s~l!KM
s ~l!6dl 5

O~M s21!, which follows from compact support ofK+ Now ~B+11! is not larger than

E
D,

)
j51

s

6 f ~l2j21!KM ~l2j !wN ~l2j 2 l2j21!wN ~l2j11 2 l2j !6 dl2j dl2j21, (B.13)

whereD, is the corresponding set toDc with the former variablesl j , j 5 1, + + + ,2s,
defined byD, 5 $6l2 2 l16 . dN % ø $6l3 2 l26 . dN % ø{{{ø $6l2s 2 l2s216 . dN %,
with dN 5 10~2sM!, and a subindex 2s 1 1 is to be interpreted as 1+ Note that the last
integral only differs from zero if6l26,6l46, + + + ,6l2s6 # p0M+ We consider only the case
where just one of the events inD, is satisfied, 6l2j 2 l2j216 . dN ~1 # j # s!, say, the
situation with an odd index or with more than one event being dealt with in a similar or
simpler way+

First, if 6l2j 2 l2j216 . dN , then6wN~l2j 2 l2j21!65 O~M !+ Second, we can bound
the integrals inl2j and l2j21, with *P6wN~l2j11 2 l2j !KM~l2j !6dl2j 5 O~M log N!,
using~B+4!, and

E
P

6wN ~l2j21 2 l2j22! f ~l2j21!6 dl2j21 5E
6l2j216#e

1E
6l2j216.e

+ (B.14)

If 6l2j216 # e then f ~l2j21! is bounded, and the corresponding integral is of order
O~ log N!+ If 6l2j216 . e, as6l2j226 , p0M, we obtain that6l2j21 2 l2j226 . e02, say,
asM r `, and then6wN~l2j21 2 l2j22!6 5 O~1!+ Thus the second integral is finite as
a result of the integrability off+ Hence~B+14! is O~ log N!+ There ares 2 1 integrals of
each type, which can be handled in the same way+ Third, the remaining integral is of the
general form

E
P
E

P

6KM ~l2s! f ~l1!wN ~l1 2 l2s!6 dl1dl2s 5 O~ log N!,

because, as in ~B+14!, the integral inl1 is O~ log N! for all l2, and*6KM~l2s!6dl2s is
O~1!+ Summarizing, the integral overD, is O~M s log 2s21N!, and compiling results we
obtain thatA 5 O~M s21 log2s21 N 1 M s log 2s21N! 5 O~NMs21eN~s!!+
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Second step.Defining CM~s! 5 (j50
d Lj ~s!M s212j, we obtain, asM r `,

*E
P

KM
s ~l! f s~l!dl 2 CM ~s!*

# E
P

6KM ~l!6s21* f s~l! 2 (
j50

d 1

j! S d

dl
Dj

f s~0!l j*6KM ~l!6dl

5 OSsup
l

6KM ~l!6s21E
P

6l 6d1® 6KM ~l!6dlD5 O~M s212d2® !,

using the Lipschitz property off ~d!~l! in the same way as in the proof of Lemma 2+
n

PROPOSITION 2+ Under Assumptions 1, 3, 4, eN ~2s 1 2! r 0, for s $ 1,
1'~SNWM !sSN 1 5 N~2p!2s11@ f ~0!# s11@KM~0!# s 1 O~M s11 log2s11 N!.

Proof of Proposition 2. We can write1'~SNWM !sSN 1 as

(
0#r1, + + + , r2s12#N

g~r2s11 2 r2s12! )
j51

s Hg~r2j21 2 r2j !vS r2j 2 r2j11

M
DJ

5 (
r
E

P2s11
f ~l2s11! )

j51

s

$ f ~l2j21!KM ~l2j !%expHi (
j51

2s11

l j ~rj 2 rj11!J dl

5 ~2p!2s11NE
P2s11

SM ~m!FN
~2s12!~m!dm, (B.15)

by change of variable, where FN
~2s12!~m! 5 FN

~2s12!~m1, + + + ,m2s11,2(j51
2s11 m j !,

SM~m! 5 f ~m1!KM~m1 1 m2! + + +KM~m1 1 {{{ 1 m2s! f ~m1 1 {{{ 1 m2s11! anddm 5
dm1+ + +dm2s11, dl 5 dl1+ + +dl2s11+ To study the difference between the integral in~B+15!
and f s11~0!KM

s ~0! we divide the range of integration, P2s11, into two sets, D and its
complementDc, whereD is now defined by the conditionD 5 $6m j 6 # p0@M~2s 1
2!# , j 5 1, + + + ,2s 1 1%+ In this case we only need the smoothness properties ofK at the
origin ~inside D!+ For the difference in the setD, we can use inequality~B+8!, the
Lipschitz property ofK, and the differentiability off :

*E
D

SM ~m!FN
~2s12!~m!dm 2E

D
f s11~0!KM

s ~0!FN
~2s12!~m!dm*

5 O~M s11!E
P2s11

(
j52

2s

6m j 6 6FN
~2s12!~m!6dm 5 O~M s11N21 log2s11 N!, (B.16)

using ~B+2!+ Focusing on the integral over the setDc of ~B+15! and using~B+1!, this is
bounded by

E
Dc
6SM ~m!6 6FN

~2s12!~m!6 dm 1 O~M s11N21 log2s11 N!+ (B.17)
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As in the proof of the previous proposition, the integral in~B+17! is less than or equal to

N21

~2p!2s11 *E
D,

)
j51

s

f ~l2j21!KM ~l2j !wN ~l2j 2 l2j21!wN ~l2j11 2 l2j !

3 f ~l2s11!wN ~l1!wN ~2l2s11!dl*, (B.18)

where D, 5 $6l16 . p0@M~2s 1 2!#% ø $6l2 2 l16 . p0@M~2s 1 2!#% ø + + + ø
$6l2s21 1 l2s6 . p0@M~2s 1 2!#%+ Also, the integral in~B+18! is nonzero only if
6l26,6l46, + + + ,6l2s6 # p0M+

If 6l j11 2 l j 6 . p0@M~2s 1 2!# for at least one indexj [ $1, + + + ,2s% we can repeat
the procedure of Proposition 1 to obtain a bound of orderO~N21M s11 log2s11 N! for
this contribution in~B+18!+

We now study the case in which6l16. p0@M~2s1 2!# + First, 6wN~l1!65 O~M !+ Trun-
cating the integral at6l16 5 e, *P f ~l1!6wN~l2 2 l1!6dl1 5 O~ log N!, as 6l2 2 l16 .
e02 if 6l16 . e and 6l26 # e0@M~2s 1 2!# , becauseM r `+ Now *P 6KM ~l2! 3
wN~l3 2 l2!6dl2 5 O~M log N!, and the integrals with respect to the remaining vari-
ables can be bounded in the same way, ~B+18! being of orderO~N21M s11 log2s11 N!
again+

Therefore, from ~B+16!, ~B+17! and the previous discussion for~B+18!, the proposi-
tion follows+ n

LEMMA 13 ~Bhattacharya and Rao, 1975, pp+ 97–98, 113!+ Let P andG be proba-
bility measures onR2 andB2 the class of all Borel subsets ofR2. Let a be a positive
number. Then there exists a kernel probability measureCa such thatsupB[B2 6P~B! 2

G~B!6 # 2
3
_7~P 2 G! , Ca7 1 4

3
_supB[B2 G$~]B!2a %, whereCa satisfies

Ca~B~0, r !c! 5 OSSa

r
D3D (B.19)

and its Fourier transform ZCa satisfies

ZCa 5 0 for 7t7$ 8 3 24030p103a+ (B.20)

Here ~]B!2a is a neighborhood of radius2a of the boundary of B,7 7 is the variation
norm of a measure in this case, and, means convolution. n

LEMMA 14+ Under Assumptions 1, 3, 4, M21 1 N21M log5 N r 0, there exists
d1 . 0 such that, for7t7 # d1!N0M and a number d1 . 0,

6cN ~t! 2 AN ~t,2!6 # exp$2d17t72%F~7t7!OSS N

M
D2102

@M22 1 eN ~3!# 1
M

N
D,

where F is a polynomial int with bounded coefficients and AN~t,2! is defined as in
(A.4).

Proof of Lemma 14. Similarly to Feller~1971, p+ 535! we have for complexa and
b that 6ea 2 1 2 b 6 # eg$6a 2 b 6 1 6b 6202%, whereg 5 max$6a6,6b 6% + We take~with
t 5 2 in ~A+3!!:
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a 5 log w~t! 2
1

2
7 i t72 5 SM

N
D102

(
6r 653

1

r1! r2!
SkN @r1, r2# ~it1!r1~it2!r2 1 RN ~2!

andb 5 ~MN21!102 OBN~3, t!+ Then we have, using Lemmas 3 and 4 fors 5 3,

6a 2 b 6 # *S N

M
D2102

O~M22 1 eN ~3!!@~it2!3 1 ~it1!2~it2!#

1
M

N
@R04~it2!4 1 R22~it1!2~it2!2#*

# F1~7t7!OSS N

M
D2102

@M22 1 eN ~3!# 1
M

N
D,

whereF1 is a polynomial of degree 4+ Now 1
2
_6b 62 # F2~7t7!O~M0N!, whereF2 is a

polynomial of degree 6+ Then

6a 2 b 61
6b 62

2
# F~7t7!OSS N

M
D2102

@M22 1 eN ~3!# 1
M

N
D (B.21)

for some polynomialF+ Now to studyg, we first bound6b 6 for 7t7# db!N0M , db . 0:

6b 6 # 7t72H 1

3! S N

M
D2102

@6¹0 @0,3#61 36¹0 @2,1#6#7t7J
# 7t72H db

3!
@6¹0 @0,3#61 36¹0 @2,1#6#J # 7t72Tb , (B.22)

with 0 , Tb , 1
4
_ on choosingdb sufficiently small+ Now for a we can choose ada . 0

so small that, for 7t7 # da!N0M ,

6a6 # 7t72H 1

3! S N

M
D2102

@6¹0 @0,3#61 36¹1 @2,1#61 O~M22 1 eN ~3!!#7t7

1
M

N
@6R0461 6R226#7t72J

# 7t72H da

3!
@6¹0 @0,3#61 36¹0 @2,1#61 O~M22 1 eN ~3!!# 1 da

2@6R0461 6R226#J
# 7t72H 1

4
1 O~M22 1 eN ~3!!J + (B.23)

From ~B+22! and~B+23! we have thateg # exp$7t72@ 1
4
_ 1 O~M22 1 eN~3!!#% for 7t7 #

d1!N0M whered1 5 min$da,db% + Then,

expH2
1

2
7t72 1 gJ # expH7t72F2

1

4
1 O~M22 1 eN ~3!!GJ # exp$2d17t72% (B.24)

for oned1 . 0, 7t7 # d1!N0M + Because our approximation tow~t! 5 exp$ 1
2
_7 i t72 1 a%

is AN~t,2! 5 exp$ 1
2
_7 i t72%@1 1 b# , using~B+21! and~B+24! the lemma is proved+ n
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LEMMA 15+ Under Assumptions 1, 2 (some p. 1), 3, 4, M21 1 N21M log3N r 0
as Nr `, there exists d2 . 0 such that for7t7 . d1mN, 6c~t1, t2!6 # exp$2d2mN

2 %,
where mN 5

def

min$~MN21!102 log N, N ~ p21!0p% r ` as Nr `.

Proof of Lemma 15. First, following Bentkus and Rudzkis~1982! we study the char-
acteristic function of the spectral density estimate, which itself appears in the joint char-
acteristic function+ Define t~t2! 5 E @exp$it2u2%# 5 t '~t2!exp$2it2E%, where

t '~t2! 5 * I 2
2it2

!NMsN VN

SN WM*
2102

5 )
j51

N S12 2it2

m j

!NMsN VN
D2102

and m j are now the eigenvalues of the matrixSNWM + Obviously 6t~t2!6 5 6t '~t2!6+
Now as

1 5 Var@u2# 5
1

MN

1

sN
2VN

2 2 Trace@~SN WM !2# 5
1

MN

2

sN
2VN

2 (
j51

N

m j
2,

we obtain (j51
N m j

2 5 1
2
_sN

2VN
2MN 5 O~MN!+ Also we have that maxj 6m j 6 5

sup7z7516~SNWM z, z!6 5 7SNWM7+ From Lemma 16, for a finite positive constantc1

depending onf andK

max
j
6m j 6 # c1qN , qN 5 max$M log N,N ~22p!02pM 102% r `, as Nr `+

Introduce now the notationgj 5 m j @c1qN #21 where 6gj 6 # 1+ We have(j51
N gj

2 5
sN

2VN
2MN~2c1

2qN
2 !21, and~noting thatNM0qN

2 r `, for all p . 1!

6t~t2!6 5 )
j51

N S11 4t2
2

c1
2gj

2qN
2

MNsN
2VN

2D2104

# )
j51

N S11 t2
2

4c1
2

MN

qN
2

sN
2VN

2D2~104!gj
2

5 S11 t2
2

qN
2

NM

4c1
2

sN
2VN

2D2~108!c1
22sN

2VN
2NMqN

22

5 S11 t2
2

qN
2

NM
@c2 1 O~M22 1 eN ~2!!#D2~102!@c2

211O~M221eN ~2!!#NMqN
22

,

wherec2 5 c1
20~p24pf 2~0!7K722! is a constant from the expansion ofsN

2VN
2 in powers

of M21 and we have applied~1 1 at! $ ~1 1 t !a, valid for t $ 0, 0 # a # 1+ So for all
h . 0, asN,M r ` we have that

6t~t2!6 # ~11 h1
2!2h2~NM0qN

2 ! (B.25)

for 6 t26 . h!NM0qN and forh1 . 0 andh2 . 0 depending onh+
Then returning to the bivariate characteristic function, its modulus is equal to

6wN ~t1, t2!6 5 6t~t2!6expH2
1

2
t1

2jN
' R~I 2 2it2SN QN !21SN jNJ , (B.26)

whereR stands for real part+ From Anderson~1958, p+ 161! R~SN
21 2 2it2QN !21 5

R~I 2 2it2SN QN !21SN is positive definite ast2QN is real ~for every N!+ Then
jN
' R~I 2 2it2SN QN !21SN jN . 0 for all t2 [ R+ Thus for 6 t26 # d!NM0qN , for all
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d . 0, jN
' R~I 2 2it2SN QN !21SN jN . e for somee . 0 fixed depending ond, be-

cause we have that7SN QN7 5 O~~MN!21027SNWM7! 5 O~~MN!2102qN !, and 7jN7 5
10VN , with VN r 2pf ~0!, 0 , f ~0! , `, asN r `+ Then,

expH2
1

2
t1

2jN
' R~I 2 2it2SN QN !21SN jNJ

# expH2
1

2
t1

2e1J # expH2
1

4
e1d1

2
NM

qN
2 J (B.27)

for 6 t16!2 . d1!NM0qN and 6 t26!2 # d1!NM0qN and somee1 . 0 depending
on d1+

Thus from ~B+25! and ~B+27!, there exists ad2 . 0 such that6w~t1, t2!6 #
exp$2d2~NM0qN

2 !% inside $t : 7t7 . d1!NM0qN % , B1 ø B2 where B1 5 $t [
R2 : 6 t26 . ~d1YY!2!!NM0qN % and B2 5 $t [ R2 : 6 t26 # ~d1YY!2!!NM0qN and
6 t16 . ~d1YY!2!!NM0qN %, and the lemma follows because

NM

qN
2 5 MN minH 1

M 2 log2 N
,N ~ p22!0pM21J 5 mN

2 r `,

asN r `+ Note thatp . 2 in 2 provides no further improvement in any bound, because
the best rate in Lemma 16, which follows, is already attained whenf is in L2+ n

LEMMA 16+ Under the assumptions of Theorem 1,7SNWM7 # c1qN, where0 ,
c1 , ` is a constant depending on f and K andqN 5

def

max$M log N,N ~22p!02pM 102% r
` as Nr `.

Proof of Lemma 16. Write

7SN WM7 5 sup
7z751

*(
j,h

zj zhE
P2

f ~l!KM ~v!wN ~l 2 v!ei ~hv2jl!dldv*
5 sup
7z751

*E
P2

FN ~l,v!dldv*, (B.28)

say, whereFN~l,v! 5 f ~l!KM~v!wN~l 2 v!ZN~2l!ZN~v! and ZN~l! 5 (j51
N zj e

ijl

for any vectorz with 7z75 1+ In the integral in~B+28! we need consider only the inter-
val w [ @2p0M,p0M # , with p0M # e by M r `+ Denote the supremun off ~l! when
l [ @2e, e# as7 fe7`+ Then the contribution from6l 6 # e to ~B+28! is bounded by

sup
7z751

M7K7`7 fe7`E
P
E

P

6wN ~l 2 v!ZN ~2l!ZN ~v!6 dldv

# sup
7z751

M7K7`7 fe7`E
P

6wN ~a!6FE
P

6ZN ~2a 2 v!62dvE
P

6ZN ~v!62dvG102

da

# 2pM7K7`7 fe7`E
P

6wN ~a!6 da # c~ f,K !M log N, (B.29)

where c~ f,K ! is a constant depending onf and K and we have made the change of
variablea 5 l 2 v and used the fact that*P6ZN~v!62dv 5 2p+ For otherl, we see that
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6l 6 . e and6v6 # p0M imply 6l 2 v6 . e02, say, asM r `, so 6wN~l 2 v!6 # const+
Then, for 1 , p # 2 and using supz,l6ZN~l!6 # !N and Hölder inequality for 1,
p # 2, the contribution from6l 6 . e to ~B+28! is bounded by

const sup
7z751

E
P
E

P

f ~l!6KM ~v!ZN ~v!ZN ~2l!6 dldv

# const sup
7z751

FE
P

6KM ~v!62dvE
P

6ZN ~v!62dvG102

3 FE
P

f p~l!dlG10pFE
P

6ZN ~l!6 p0~ p21!dlG~p21!0p

# const7K7`1027K717 f 7p N ~22p!02pM 102 5 c'~ f,K !N ~22p!02pM 102, (B.30)

using supz,l6ZN~l!6 # !N and *P6ZN~l!62dl 5 2p+ Then the lemma follows from
~B+29! and~B+30!+ n

LEMMA 17+ Under Assumptions 1, 3, 4, M21 1 N21M log2 N r 0, s5 1,2, + + +

Trace@~SN WM 11' !s# 5 ~MN!s@~2p!2f ~0!K~0!# s 1 O~~NM!s21M 2 log2 N!+

Proof of Lemma 17. First we observe that Trace@~SNWM 11'!s# 5 ~1'SNWM 1!s and

1'SN WM 1 5 ~2p!2NE
P2

f ~m1!KM ~m1 1 m2!FN
~3!~m1,m2!dm1dm2+ (B.31)

Introduce the setD 5 $6m j 6 # p0@2M # , j 5 1,2%+ Then, using Assumptions 1 and 4, for
d 5 1,

*~2p!2NE
D

f ~m1!KM ~m1 1 m2!FN
~3!~m1,m2!dm1dm2 2 N~2p!2f ~0!KM ~0!

3 E
D

FN
~3!~m1,m2!dm1dm2*

5 O~N!E
D
6 f ~m1!KM ~m1 1 m2! 2 f ~0!KM ~0!6 6FN

~3!~m1,m2!6dm1dm2

5 O~NM! (
j51,2

E
P

6m j FN
~3!~m1,m2!6 dm1dm2 1 O~NM2!

3 (
j51,2

E
P

6m j FN
~3!~m1,m2!6 dm1dm2,

which isO~M 2 log2 N!+ The contribution to~B+31! of the integral for the complement to
the setD can be seen to be of order of magnitudeO~M 2 log2 N!, proceeding in the same
way as in the proof of Proposition 1+ n

LEMMA 18+ Under Assumptions 3, 4, M21 1 N21M log N r 0, ~2pN!211'WM 1 5
MK~0! 1 O~M 2N21 log N!.
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Proof of Lemma 18. The proof of Lemma 18 follows writing~2pN!211'WM 1 5
*P KM ~l!FN

~2!~l!dl and using the Lipschitz property ofK and the properties of the
Fejér’s kernel+ n

Proof of Lemma 8. Following the proof of Lemma 2, we can write the bias
E @ Zf ~n!~0!# 2 f ~n!~0! as

~mn!nE
P

Vmn
~l!E

P

FN
~2!~u!@ f ~l 2 u! 2 f ~l!#dudl

1 ~mn!nE
P

Vmn
~l!Ff ~l! 2

ln

~21!nn!
f ~n! ~0!G dl+

Then employing the same methods of Lemma 2 with the properties of the kernelVn,
this is O~~mn!nN21 log N 1 ~mn!2a!, and the lemma follows+ n

Proof of Lemma 9. Likewise for the discussion of the cumulants of the spectral es-
timate contained in Proposition 1 we can write

N

~mn!2n11 Var@ Zf ~n! ~0!#

5
4p

mn

E
P4

fSl 2 (
j52

4

m jDVmn
~l 2 m3 2 m4! f ~l 2 m4!Vmn

~l!FN
~4!~m!dmdl+

(B.32)

As in Proposition 1 we have to take care of possible unboundedness off away from the
origin+We thus consider the set of integrationD 5 $m [ @2p,p# 3 : 6m j 6 # 10~4M !, j 5
2, + + + ,4%+ Then, the integral in~B+32! over the setD is

4p

mn

E
P

f 2~l!Vmn

2 ~l!dl 1 O~N21mn log3 N!

5
4p

mn

f 2~0!E
P

Vmn

2 ~l!dl 1 O~N21mn log3 N 1 mn
21!,

which is 4pf 2~0!7Vn722 1 o~1!, using evenness off and its differentiability around
f ~0!+ The integral in~B+32! over the complement to the setD can be seen to be
O~N21mn log3 N!, using the finite support ofVn and the properties ofFN

~4! , as in the
proof of Proposition 1+ n

PROPOSITION 3+ Under the assumptions of Proposition 1,Trace@~SN WM
,!s# 5

Trace@~SNWM !s# 1 O~M s!, WM
, 5 ANWM AN.

Proof of Proposition 3. The proof of Proposition 3 follows as the proof of Proposi-
tion 1+ The Fourier transform corresponding to the matrixAN is

AN ~l! 5
1

2p
S12

DN ~l!

N
D, DN ~l! 5 (

j512N

N21

eijl,

whereDN~l! is a version of the Dirichlet kernel+ DenoteaN~ j ! 5 d~ j 5 0! 2 N21+We
first rewrite Trace@~SN WM

,!s# asr2s11 [ r1,

536 CARLOS VELASCO AND PETER M. ROBINSON



(
1#r1, r1

' , + + + , r2s#N
)
j51

s

g~r2j21 2 r2j21
' !aN ~r2j21

' 2 r2j !vS r2j 2 r2j
'

M
DaN ~r2j

' 2 r2j11!

5 NE
P4s

f ~l 2 m1
' 2 m2 + + +2 m2s

' !AN ~l 2 m2 + + +2 m2s
' !KM ~l 2 m2

' + + +2 m2s
' !

+ + + f ~l 2 m2s21
' + + +2 m2s

' !AN ~l 2 m2s 2 m2s
' !KM ~l 2 m2s

' !AN ~l!~2p!4s21

3 FN
~4s!~m1,m1

' , + + + ,m2s!dldm,

using a change of variable as in the proof of Proposition 1 anddm 5
dm1
' dm2dm2

' + + +dm2s+
Now we deal with the cross products implicit in the functionsaN~ j ! or AN~l!+ The

product containing noDN~l! equals the integral in the case without mean-correction
~cf+ Proposition 1!+ Then all the remaining terms have 1, 2, + + + ,2s functionsDN~l!+ We
consider just one and bound its contribution to the trace+ From the proof it should be
evident that similar bounds hold for the other terms+ The typical term is

2 (
1#r1, r1

' , + + + , r2s#N

g~r1 2 r1
' !

1

N
vS r2 2 r3

M
D + + +g~r2s21 2 r2s!vS r2s 2 r1

M
D

5 2
1

N (
1#r2, + + + , r2s, r1, r1

'#N

vS r2 2 r3

M
D + + +g~r2s21 2 r2s!vS r2s 2 r1

M
Dg~r1 2 r1

' !,

which is O~N21NMs! 5 O~M s!, from Proposition 2, and there is no additional term of
higher magnitude+ n

PROPOSITION 4+ Under the assumptions of Proposition 2,1'~SN WM
,!sSN 1 5

O~M s11 log4s11 N!.

Proof of Proposition 4. We can write1'~SN WM
,!sSN 1 as

(
0#r1, r1

' , + + + , r2s12#N

g~r1 2 r1
'!aN ~r1

'2 r2! + + +vS r2s 2 r2s
'

M
DaN ~r2s

' 2 r2s11!g~r2s11 2 r2s12!

5 ~2p!4s11NE
P4s11

f ~l2s11! )
j51

s

$ f ~l2j21!AN ~l2j21
' !KM ~l2j !AN ~l2j

' !%

3 FN
~4s12!~l1,l1

' 2 l1,l2 2 l1
' , + + + ,l2s11 2 l2s

' ,2l2s11!dl1 + + +dl2s11

5 ~2p!4s11NE
P4s11

HN ~m!AN
~2s!~m!FN

~4s12!~m!dm, (B.33)

say, where we have changed variables as in Proposition 2, HN~m! 5 f ~m1!KM~m1 1
m1
' ! + + +KM ~m1 1 {{{ 1 m2s

' ! f ~m1 1 {{{ 1 m2s11!, AN
~2s!~m! 5 AN~m1 1 m1

' ! + + +AN ~m1 1
{{{ 1 m2s 1 m2s

' ! grouping all the functionsAN , anddm 5 dm1dm1
' + + +dm2s11+

To study the difference between the integral in~B+33! and f s11~0!KM
s ~0! 3

*AN
~2s!~m!FN

~4s12!~m!dm we divide the range of integration, P4s11, into two sets, V and
its complementVc, whereV is defined by the conditionV 5 $6m j 6 # p0@M~2s 1 2!# ,
j 5 1, + + + ,2s 1 1%+

In this case we only need the smoothness properties ofK at the origin~insideD!+ For
the difference in the setV, we can use inequality~B+8!, the Lipschitz property ofK, and
the differentiability off :
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*E
V

HN ~m!AN
~2s!~m!FN

~4s12!~m!dm 2E
V

f s11~0!KM
s ~0!AN

~2s!~m!FN
~4s12!~m!dm*

5 OSM s11 sup
m
6AN

~2s!~m!6DE
P2s11

(
j52

2s

6m j 6 6FN
~4s12!~m!6dm 5 O~M s11N21 log4s11N!,

(B.34)

using the fact that supm 6AN
~2s!~m!6 5 O~1!+ Now, the integral over the setVc can be

bounded by

E
Vc
6HN ~m!6 6AN

~2s!~m!FN
~4s12!~m!6 dm 1 O~M s11M21 log4s11N!+ (B.35)

As in the proof of Proposition 1, the integral overVc in ~B+35! is again of order
O~N21M s11 log4s11 N!, using boundedness ofAN

~2s!+ Therefore, from ~B+33! to ~B+35!
we have that

1'~SN WM
,!sSN 1 5 ~2p!2s11N @ f ~0!# s11 @KM ~0!# sEAN

~2s!~m!FN
~4s12!~m!dm

1 O~M s11 log4s11N!,

which is just O~M s11 log4s11 N! because 1'~AN !2s1 5 1'AN 1 5 0 because
*P4s11 AN

~2s!~m!FN
~4s12!~m!dm 5 ~~2p!4s11N!211'~AN !2s1 5 0+ n

LEMMA 19+ Under Assumptions 1, 3, 4, M21 1 N21M log7 N r 0 asN r `, there
exists a positive numberd1 . 0 such that, for7t7 # d1!N0M and a constant d1 . 0,

6c,~t! 2 AN
, ~t,3!6 # exp$2d17t72%F~7t7!

3 OSS N

M
D2302

1 S N

M
D21

@M2d,21 1 M2d2® 1 eN ~4!#D,
where F is a polynomial int with bounded coefficients.

Proof of Lemma 19. Follows as Lemma 14+ n

LEMMA 20+ Under Assumptions 1, 2~ p . 1!, 3, 4, M21 1 N21M log3 N r 0 as
N r `, there exists a positive constant d2 . 0 such that for7t7 . d1mN

, , 6c,~t1, t2!6 #
exp$2d2~mN

, !2% with mN
, 5 mN log22 N r ` as Nr `.

Proof of Lemma 20. The proof of Lemma 20 follows as for Lemma 15 using the
fact that the asymptotic variance of the spectral estimate is unaffected by mean-correction,
and using Lemma 21+ n

LEMMA 21+ Under the assumptions of Theorem 3,7SN WM
,7 # c1qN

, , where0 ,
c1 , ` is a constant depending on f and K andqN

, 5 qN log2 N.

Proof of Lemma 21. Write as in the proof of Lemma 16, 7SN WM
,7 5

sup7z7516*P4 FN ~l!dl 6, where

FN ~l! 5 ZN ~2l1! f ~l1!AN ~l2!KM ~l3!AN ~l4!ZN ~l4!wN ~l2 2 l1!

3 wN ~l3 2 l2!wN ~l4 2 l3!+
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Then changing variables and using the periodicity of all functions,

sup
7z751

E
6l16#e

E
P3
6FN ~l!6 dl

# sup
7z751

M7K7`7 fe7`

3 E
P4
6ZN ~2l1!ZN ~l4!wN ~l2 2 l1!wN ~l3 2 l2!wN ~l4 2 l3!6 dl

# sup
7z751

M7K7`7 fe7`E
P3
6wN ~m1!wN ~m2!wN ~m3!6

3 FE
P

6ZN ~l!62dlE
P
*ZNSl 2 (

i51

3

m iD*2

dlG102

dm

# 2pM7K7`7 fe7`SE
P

6wN ~a!6 daD3

# c~ f,K !M log3 N,

with *P6ZN~l!62dl 5 2p and ~B+4!+ For other values ofl1, arguing as in the proof of
Lemma 16 and because6l36 # p0M, we obtain that

sup
7z751

E
6l16.e

HE
6l26.e02

1E
6l26#e02

JE
P2
6FN ~l!6 dl

# const sup
7z751

E
P

6ZN ~2l1!6 f ~l1!SE
P

6wN ~l2 2 l1!6 dl2D dl1

3 E
P2
6KM ~l3!ZN ~l4!wN ~l4 2 l3!6 dl

1 const sup
7z751

E
P

6ZN ~2l1! f ~l1!6 dl1

3 E
P2
SE

P

6wN ~l3 2 l2!6 dl2D6KM ~l3!ZN ~l4!wN ~l4 2 l3!6 dl+

Now the lemma follows using Hölder inequality, periodicity,

sup
7z751

E
P2
6KM ~l3!ZN ~l4!wN ~l4 2 l3!6 dl

# sup
7z751
7KM727ZN727wN71 5 O~M 102 log N!,

sup7z751 *P6ZN~2l1! f ~l1!6dl1 5 O~N ~22p!02p!, supz6ZN 6 # N , and 7ZN722 5 2p+
n
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