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EDGEWORTH EXPANSIONS FOR
SPECTRAL DENSITY ESTIMATES
AND STUDENTIZED SAMPLE MEAN

CARLOS VELASCO
Universidad Carlos Ill de Madrid

PETER M. ROBINSON
London School of Economics and Political Science

We establish valid Edgeworth expansions for the distribution of smoothed non-
parametric spectral estimatesd of studentized versions of linear statistics such
as the sample meawhere the studentization employs such a nonparametric spec-
tral estimateParticular attention is paid to the spectral estimate at zero frequency
and correspondinglythe studentized sample meda reflect econometric inter-

est in autocorrelation-consistent or long-run variance estimafon main focus

is on stationary Gaussian seti¢isough we discuss relaxation of the Gaussianity
assumptionOnly smoothness conditions on the spectral density that are local to
the frequency of interest are impos&tle deduce empirical expansions from our
Edgeworth expansions designed to improve on the normal approximation in prac-
tice and also deduce a feasible rule of bandwidth choice

1. INTRODUCTION

In this paper we analyze higher-order asymptotic properties of smoothed non-
parametric estimates of the spectral density for a Gaussian stationary time se-
ries and of linear statistics studentized by such a nonparametric estirhate
is a large literature on the consistency and asymptotic normality of nonparamet-
ric spectral estimates and studentized linear statigtigsmuch less is known
about higher-order propertigacluding the Edgeworth expansions we consider
We focus principally on zero frequency and obtain Edgeworth expansions for
the joint distribution of the spectral estimate and sample mEagse can be used
to approximate the distribution and moments of smooth functions of these sta-
tistics and we go on to analyze the higher-order asymptotic properties of the
sample mean studentized by the spectral estinfdte studentization we em-
ploy is prompted by the fact that the variance of the sample mean is approxi-
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mately proportional to the spectral density at zero frequeBogh studentizatign
with autocorrelated observatiqrgoes back at least to Jowét954), whose work
was developed by Hanndt957 and Brillinger (1979 and extended to more
general circumstanceas recently reviewed by Robinson and Vela$t897).
In particular such ideas have been widely employed in econometric models
sometimes under the headings d@héteroskedasticity andautocorrelation-
consistent variance estimation” and “long-run variance estimétion

Spectral density estimatipand studentization of the sample meaan be
based on a parameterization of the spectral dersstyvhen an autoregressive
moving average model of given order is assuntédwevey if the parameter-
ization is incorrecte.g., if one or both of the autoregressive or moving average
orders is underspecifiedr unidentified(as when both orders are overspeci-
fied) inconsistent spectral estimates resattd inferences based on the sample
mean are invalidatedNonparametric spectral estimation seeks to avoid these
drawbacks However its implementation requires the user to specify a func-
tional form(a kernel in our cagein addition to a bandwidthwhich determines
the degree of smoothin§irst-order asymptotic theory holds across a wide range
of bandwidthsbut the detail of Edgeworth expansions is more sensitive to band-
width choice reflecting finite sample practical experiend&e use our Edge-
worth expansions to approximate the moments of stochastic approximations
whose distributions are very close to that of the origiedtio and propose
“optimal” choices of bandwidthwhich can be proxied by data-dependent quan-
tities. Also, we approximate our theoretical Edgeworth expansiertsch in-
volve population quantitiesby empirical expansions for practical ude is
anticipated that our proposed corrections could outperform the normal approx-
imation in highly autocorrelated processesiere nonparametric spectral esti-
mates can be particularly biased and thus severely influence the distribution of
the studentized mean

The process of spectral estimation and studentization at other frequencies is
not essentially different from that at zero frequerayd we discuss this exten-
sion explicitly One important feature of our work is that smoothnessl in-
deed boundednessf the spectral density is assumed only at the frequency of
interest This is natural because the variance of the sample mean is propor-
tional to the Césaro sum of the Fourier series of the spectral density at zero
frequencywhich, by Fejér’s theoremconverges if and only if this is a conti-
nuity point These mild conditions are also practically desirable because they
permit lack of smoothnesand even unboundedness remote frequencieas
can arise from long memarygyclic, or seasonal behavioReliance on only
local assumptions has recently been stressed in work by Robi{egpnl1994
on semiparametric analysis of long memaayd we employ similar truncation
techniques to achieve thiBy contrast the bulk of the literature on smoothed
nonparametric spectral estimation imposes assumptions that imply at least bound-
edness of the spectral density at all frequendiggarticular this is the case in
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the work of Bentkug1976, Bentkus and Rudzki€l982, and Rudzkig1985

on higher-order asymptotic theory for nonparametric spectral estimatese
approach we in other respects folloW is also the case in the econometric
work referred to previously on consistency of autocorrelation-consistent or long-
run variance estimates and on the first-order limiting distribution of studen-
tized statisticswhich resorts to summability conditions on mixing numbers
On the other handhe econometric literature typically avoids the Gaussianity
assumption that we impose in the bulk of the paped the mixing conditions
employed can cover a degree of heterogeneity across imagldition to deal-

ing with far more general statisticsuch as implicitly defined extremum esti-
mates of vector-valued parametaife suspect that in our higher-order treatment
the stationarity assumption could to some extent be relaxed at cost of signifi-
cantly more complicated conditionshereas vector and other extensions should
be possiblgalbeit notationally complexRelaxation of our Gaussianity assump-
tion, which, as in much other work on higher-order expansitses e.g., such

time series references as Phillig®77 Taniguchj 1991), plays a considerable
simplifying role, may lead to rather more complex expansionkich we in-
vestigate in Section.7Though much recent higher-order asymptotic theory for
non-Gaussian time series analysis has been based on the work of Gétze and
Hipp (1983 it is not known if their conditions allow a proof of the validity of
the Edgeworth expansions for smoothed spectral estinfates Janasl994
Remark 23) though some ideas on nonparametric studentization are in Gétze
and Kiinsch(1996.

Mean-correction in spectral estimation does not affect first-order asymptotic
distribution theorybut its effects may show up in terms of a smaller order of
magnitude for the distribution of both spectral estimatestaraiios We study
this correction in detajland our analysis could also be extended to residual-
based nonparametric studentization of least squares estimates in a honstochas-
tically trending linear regressiompossibly involving cosinusoidal regressors
whose variance may depend on the spectral density of the errors at various
frequencies

The paper is organized as followEhe following section provides the main
assumptions used througholrit Section 3 we establish a valid Edgeworth ex-
pansion for the distribution of the nonparametric estimate of the spectral den-
sity and analyze the joint distribution of the variance estimate and the sample
mean In Section 4 we establish a valid Edgeworth expansion for the studen-
tized sample mean and consider the effects of mean-corre&ation 5 pro-
vides consistent estimates of higher-order correction terms and an empirical
Edgeworth expansiomVe extend our results to obtain a third-order approxima-
tion in Section 6 Finally in Sections 7 and,8espectivelywe analyze the ef-
fects on our approximations of higher-order cumulants for non-Gaussian series
and Edgeworth approximations for estimation at nonzero frequereiesfs
including some technical lemmaappear in two Appendixes



500 CARLOS VELASCO AND PETER M. ROBINSON

2. NONPARAMETRIC STUDENTIZATION OF THE SAMPLE MEAN

Let {X;} be a stationary Gaussian sequence with mean that is kitfownhe
time being to be zergautocovariance functiop(r), and spectral densiti(A)
defined byy(r) = [ f(A)e"dA, wherell = (—z, 7], and satisfying 0<
f(0) < co. Let X = N"* 3L, X; and denote

R —_—_ N_l( |J|>
v = Var[VNX]= > (1- = ]v(j).
i=1-N

Then for allN such thatvy > 0,

def \/_X
Ul \/V_N

BecauseVy is the Césaro sum of the Fourier coefficientsfoh) at A = 0,
if fA()\) is continuous ath = 0 tpen lIMse Vi = 27F(0) by Fejér’s theorem
If £(0) is a consistent estimate(0) —, f(0), then

YN def \[_X
W
whereV = 27f(0). Defining
1
30 == S XX €=0+L..t(N-1),

1=t,t+€=N

~ N(0,1).

—q N(0,1),

consider the weighted-autocovariance nonparametric estimat®)of

1 N1y W,
f(0 — )9(6) = X' ==X
©=5r 2.9 (M)Y() 27N "

whereX = (X,..., Xy) andW, is theN X N matrix with (r,s)th element

Wles= o 5 ) = | Kutweran @

such thaky, () is a kernel function with smoothing or lag numbdr which is
a sequence of positive integers growing wWiNhbut more slowly Then for an
even integrable functiorK that integrates to oneve set

Ku(A) =M 2> K(M[A +27j]),

j=—o0
so Ky (A) is periodic of period 2z, even integrable and [; Ky (A)dA = 1.
It follows that w(r) = [* e™K(x)dx and w(0) = 1 so we can write
f(0) = [uKm(M)1(A)dA, wherel (1) = 2aN)1 X [N, X, expfiAt}|? is the
periodogram ofX;, t = 1,...,N. We restrict our analysis to this kernel class
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because of its simplicifythough a variety of quadratic-form estimates could
be consideredseg e.g., Song and Schmeiset992.

To analyze the joint distribution of the linear statisi@nd the nonparamet-
ric estimate of its varianget is convenient to work with standardized statistics
with zero mean and unit variancBuppose now that the estimdi@®) is VN/M
consisteni{cf. Hannan 197Q Ch. 5). Write for u = (uy,u,)’,

M\ Y2 N [V-E[V]
YN=YN(U)=U1 1+ by +onu, N N u, = M m S

whereod = Var[\VN/MV/V, ] andby = E[V]/Vy — 1 are the “relative” vari-
ance and bias of and some of our notation suppresses the dependenbk on
Thenu, = X'QuyX — E[X'QuX] is a centered quadratic form in a Gaussian
vector whereQy = Wy (VNMa Vi)t is anN X N matrix

The joint characteristic function af is

. 1 . _ .
Py (ty, 1) = |1 = 2it,3Qy |72 exp{—étff,’q(l — 2it,2Qy) 12y — ity EN}»

whereEy = E[X'QuX] = TracdSQy], S = E[XX'], and&y = 1/\NVq, 1
being theN X 1 vector(1,1,...,1)’. As a result of the normalizations has
identity covariance matrix and cumulant generating function

oo 0 t r t s
enltito) = logyn(tt) = 3 2, wy[r.s] (Irll) : 21)
r=0s=0 ! sl

’

where the only nonzero bivariate cumulants are
kn[0,8] = 257 1(s—1)! Tracd(2Qy)%], s> 1,
KN [2, S] = 255! é“,,\](EQN)Ssz, S> 0.

Phillips (1980 discusses these derivations and related literature for the analysis

of the distribution of linear and quadratic forms under the normality assumption
Here the Gaussianity assumption provides simple explicit expressions for the

characteristic functions and cumulants of linear and quadratic favitish other-

wise would be very difficult to estimate for general dependent sequeRoes

thermore these depend only on second-order properties of the time genegh

>, or f, which simplifies our setupMVe introduce the following assumptions about

the Gaussian serie§ andf/(0).

Assumption 1 0 < f(0) < oo andf(A) hasd continuous derivative&d = 2)
in a neighborhood ok = 0, thedth derivative satisfying a Lipschitz condition
of orderp, 0 < p = 1.

Assumption 2 The spectral density(A) € Ly, for somep > 1, that is
I8 = Juf P(A)dA < o,
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Assumption 3 K(x) is boundedeven and integrable onl, and zero else-
where and integrates to one

Assumption 4 K(x) satisfies a uniform Lipschitz conditiofof order 1 in
[=m,m].

Assumption 5 Forj =0,1,...,d,d = 2, andr =1,2,...

K deff itk d =0, j<dr=1
w(KOZ | sdikoarax=1 T

Assumption 6 Mt + MN™? — 0, asN — oo.
Assumption 7 M = C-N9 with0 < g< 1 and 0< C < co.

Assumption 1which concerns bigss implied by >~ [j[%2]y(j)| < oo,
but this extends the smoothness assumption to all frequenefeeas only
local assumptions are natural for this probldm particular as in Robinson
(19954, for example we allow using truncation argument®r lack of smooth-
ness or even unboundedndss arises from possibly cyclic long memort
remote frequenciesThe finite support requirement af in Assumption 3 is
helpful here though undoubtedly it could be relaxed to a mild tail restriction
However Assumption 2 imposes some restrictionsf @eyond the originthough
in fact anyp > 1 arbitrarily close to 1 will suffice for all our results

From Assumption 3the functionw(r) defined by(1) is even and bounded
Assumption 4 is needed to evaluate the cumulant(@f and is satisfied for
most kernels used in practice satisfying Assumption 3 but rules out kernels
like the uniform A modification of the proofs could permit kernels that have
finitely many discontinuitiesThe second condition in Assumption 5 is de-
signed for nonparametric bias reduction whitr 2 by means of higher-order
kernels Examples of kernels satisfying Assumptions 3-5 aredor 2, the
Bartlett—Priestley or Epanechnikov windo(\) = (3/47)(1 — A%/x?) and
the triangular windowK (A) = (1/7)(1 — |A|/7); for d > 2, the following
optimal kernels are taken from Gassktuller, and MammitzscH1985:

ford=4, K,(X) 15 (7 X 10 - + 3)
r = = — —_— —_—
© ’ 4 327 \ 7w 2 ’

ford =6, Kg(A) 3 ( 99A6+189 : 105/\2+15>
ord=6, =——(-99— Z_ -z )
6 2567 ® T 2
Assumpt[on 6 on the bandwidth or lag numidris necessary for the con-
sistency off (0), whereas we will sometimes wish to strengthen it by Assump-
tion 7, possibly with restrictions oq.
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3. DISTRIBUTION OF THE NONPARAMETRIC SPECTRAL ESTIMATE

In this section we analyze the asymptotic distribution of the nonparametric spec-
tral estimatef (0). Our results extend Bentkus and Rudzki®82 in that we do

not assume boundedness of the spectral density at frequencies away from the
origin. We give two lemmas about the bias of the estim@® for Vy. The

first is standard in Fourier analysfsee Zygmungd1977, p. 91), and the loga-
rithmic factor could be eliminated by assumipgy(j)| < oo.

LEMMA 1. Under Assumption 1, with & 1, p = 0, Vy — 2#f(0) =
O(NtlogN), as N— co.

LEMMA 2. Under Assumptions 1, 3, 5, and 6, as-®oo,

f(d)(o)
ol
where f9(0) is the dth derivative of(fA) evaluated at» = 0.

E[f(0)]—f(0) -

wa(K)M~@ = O(N~LlogN + M —¢-2),

From Lemmas 1 and 2 we estimate the relative bigaisM — oo

f(D(0) y(K)
=b,M 9+0O(M 92 +N1logN = —"
by = by O( ogN), b, 4t (0)

We now study the cumulants of the normalized spectral estimate

def

LEMMA 3. Under Assumptions 1, 3, 4565) = M 972 + N7IM X
0g?>"*N — 0 as N— oo, for s> 2,

N ><s2>/2
M

d
&n[0,5] = [0, s]( > V;[0,5]M T + O(ey(9)),

j=0
whereV;[0,s] are bounded and depend on the moments of K and the deriva-
tives of f atA = 0 and do not depend on N or M.

For exampleVy[0,s] = (47) S 2/2(s — D!|K|35|K|S, V,[0,s] = 0, and the
V coefficients are scale free as expected but depend on the shapefas flat
atA = 0 thenV;[0,s] = 0, j = 1. The proof of Lemma 3 employs a multivariate
version of the Fejér kernésee Appendix Band uses the fact thagiven the
compact support oK, asymptotically we only smooth around zero frequency
Depending on the asymptotic relationship betw&trand N, some of the ex-
pansion can be included in the error tefdmecause we have only assumed that
ey(s) iso(1) asN — oo, which in turn implies Assumption 6 fas = 1.

Because of the normalizationy[0,2] = 1 and ifey(2) — 0 asN — oo, we
obtain for the asymptotic variance ofN/M(0), using the same techniques of
the proof of Lemma 3see Appendix A that

N N
N vl 101 = 4rf2(0)[K[Z + O(en(2) + M72),
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and for some constants;,
d
on = N4m X, 0;M 7T + O(ey(2) = Var [K[, + O(M 2 + ey(2)),
j=0

asM — oo, with @, = |K|,, ©; = 0, and @, = | K| u,(K?)f ~2(0){?(0),
f1(0) = (d/dA)?f 1(A)],—o.

Then we can justify an optimal choice Bf by minimizing the mean squared
error (MSE) of f(0), E(f(0) — f(0))2 under Assumptions,13, 4, and 5 and
en(2) — 0 asN — oo (cf. Lemmas 2 and 3 because if we are only interested
in estimatingf at the origin it is natural to use local rules for bandwidth chaice
Then theM that minimizes asymptotically the MSE M = Copr X N4+,

0 < Copt < o0, Where
2d f(d) 0 K 271/(2d+1)
Copt:Copt(f,K):|:4_<%> :| , 2
m \  dif(0)[K];,

which can be estimated by inserting consistent estimatégopfandf ((0).

We now prove the validity of a second-order Edgeworth expansion to ap-
proximate the distribution of the vectar with erroro((N/M)~%2), and includ-
ing terms up to ordefN/M)~Y2 to correct the asymptotic normal distribution
which is the leading term of the expansi@if course this will imply the valid-
ity of that expansion for the distribution df(0). We first study the cross-
cumulants ofu.

LEMMA 4. Under Assumptions 1, 3, 46 + 2) — 0 as N— oo, for
s> 0,

def N s/2 d f
inl2,51 % ey [z,s](ﬁ) = 371257 + Oley(s+ 2),
i=

whereV;[2,s] are bounded and depend on the moments of K and the deriva-
tives of f atA = 0 and do not depend on N or M.

For example we can obtain thatVy[2,s] = (47)¥2sIKS(0)|K|;S and
Vi[2,s] = 0.

For B € B2, where B2 is any class of Borel sets i2 set QZ{B} =
fa #,(1)g2 (u) du, whereg,(u) = (27) texp{—2|u|?} is the density of the
bivariate standard normal distribution

1
o'W =1+

M\-1/2
= <_> {Vo[0,3]H3(uy) + Vo[2,1]H,(u;) Hy(u,)},

N

andH;(-) are the univariate Hermite polynomials of ordeNow we show that

ﬁ,z) is indeed a valid second-order Edgeworth expansion for the probability
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measurdy of u. For this we need Assumption But we do not assume yet the
ch0|ceq 1/(1 + 2d) and/or C = ¢, (s€€(2)) that would minimize the MSE
of f(0). This implies a rate of growth foM in terms ofN, with Assumption 6
holding for this particulaM. Define by (dB)* a neighborhood of radiug of
the boundary of a se.

THEOREM 1 Under Assumptions 1, @p > 1), 3, 4, and 7(0 < g < 1),
for ay = (N/M)77, 1/2 < p < 1, and every clas#? of Borel sets inR?, as
N — oo,

N\-72\ 4
sup| Py (B) — Q\'(B)] = o(( ) ) + 3 Sup Q{(9B)* .
BEB? M 3 Ben?

The method of proof is based on first approximating the true characteristic
function and then applying a smoothing lemnNote that the second term on
the right hand side is negligible B is convex becausey decreases as a power
of N, and that the higher-order correction termsqf\,ﬁ) depend only orK but
not onf. Naturally these terms only correct the marginal distribution of the
spectral estimate but not that of the Gaussian sample .nTdaare is also a
cross-term to deal with in the joint distributipbut none of these correct for
the possible bias of the spectral estimate or for variance estimation because we
have only dealt with exactly standardized statistics

Using the results of Bhattacharya and Gh¢$B78 we can justify Edge-
worth expansions for the distribution and moments of smooth functions of the
spectral estimate and sample me@fe concentrate in the following section on
the studentized meav,.

4. ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION
OF THE STUDENTIZED MEAN

The distribution ofYy depends on such quantities @g, by, xkn[T,s], and so
on, for which we have obtained expressions up to a certain degree of error in
powers ofN and M, the coefficients of the expansions depending on the un-
known f and its derivatives at the origin and on the user-chosen kéttel.
The accuracy of these approximations depends mainlivoand determines
the error of the feasible Edgeworth expansion for the distributiovjoin this
section we impose Assumption 7 with= 1/(1 + 2d) but do not necessarily
require thatC = C,p. Then 0< M™% (N/M) %2 < o0 asN — oo, and the bias
of f(0) is of the same magnitude as the correction term obtainég(ﬁ)nor as
the standard deviation df(0). However this might not be the optimal choice
for approximating the distribution or the MSE of the studentized statistic

We first work out a linear stochastic approximationYig(u) and prove that
its distribution is the same a4, up to ordero((N/M)~%¥2). Then the asymp-
totic approximation for the distribution of the linear approximation is valid also



506 CARLOS VELASCO AND PETER M. ROBINSON

for Yy with that error Expanding the biaby and the standard deviatien, we
define

def

1 1
YL = ul[l— S = E\/477||K||2u2(N/M)1/2].

LEMMA 5. Under Assumptions 1, 2p > 1), 3, 4, 5, and 7, g= 1/
(14 2d), Yy has the same Edgeworth expansion gsuviformly for convex
Borel sets up to the ordéiN/M)~Y2,

Note that under the conditions of the lemfi®) is VYN/M consistent and
the approximation we obtained in Section 2 for the distributiory,pfs valid.
The next step is to justify a valid Edgeworth expansion for the distribution of
Y\ from that ofu.

THEOREM 2 Under Assumptions 1, 2p > 1), 3, 4, 5, and 7, =
1/(1 + 2d), for convex Borel sets C, as N oo,

sup| Prob{Y, € C} —f d(X)[1+ r(x)M 9] dx| = o((N/M)Y2), (3)
C C

where p(x) = —1b,(x? — 1).

This expansion coincides with the formal Edgeworth expansion obtained by
estimating the first three cumulants of the linear approxima¥mp to error
o((N/M)~12) as was shown by Bhattacharya and Gh¢s®i78 for functions
of sample moments of independent and identically distribyitéd.) observa-
tions The restriction to convex measurable setRinthat is intervals could
be avoided by proceeding as in that reference

For the distribution function we s& = (—oo, y], and integrating and Taylor
expanding the distribution function of the standard norriddly), we get uni-
formly in y, under the conditions of Theorem 2

1
Prob{Yy =y} = @(y) + > b,y (y) M~ + o((N/M)~2)

= q)(y[1+ % blMdD +0o((N/M)~¥2)

= ®(y) + O((N/M)™2), (4)

which shows that the normal approximation is correct up to o@¢N/M)~/2)
if g=1/(1+ 2d). On “optimally” choosingC = Cp; in Assumption 7 from(2),
(4) becomes

Prob{Yy =y} = ®(y[1+ bj N~¥1+2d)]) 4 o(N-¥A+2d))
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where
- g[ 2 < f<d><omd<K>>2]d/<2d+l>
o2 ax U dif(O)K], ’
or equivalently operating with the values df; andcey,
Prob{Yy =y} = ®(y) + a;$(y) (N/Mgp) ™2 + 0((N/Mgp)~?) (5)
= ®(y[1+ a;(N/Mgp)2]) + 0((N/Mop)2), (6)

with a; = \V7r/(2d) | K| ,sign f @ (0) uq(K)]. Whend = 2

1 N
b, = 5 f@(0) o (K), aQ = Tﬂ- IK | sign[ f @ (0) uo(K)I,

and the approximation@}) and(6) have an immediate interpretatioBuppose
thatu,(K) = [x2K(x)dx > 0 (e.g., if K(x) = 0, for all x). If f(A) has a peak at
A = 0 such thaf ®(0) < 0 then as is well knownthe weighted-autocovariance
estimatesf (0) underestimatd (0) and thus the variance of; consequently
the confidence interval fo‘t;/ N/Vy X is too narrow forYy, and a corresponding
test rejects too often because the ratjptends to increaseOur approxima-
tions tend to correct this probleras in both cases they empldy yky) where
kn = 0, so for the same confidence leyéie critical valuey is larger(in abso-
lute value than the normal approximatiofhe same reasoning applies in the
reverse directionwhen there is a trough ifi(A) at A = 0. Ford > 2 the inter-
pretation is equivalenbut we have to take into account the sigrkgt, which
can be negativeas forK,(x) andd = 4. The approximation$5) and (6) are
more attractivebecause if we believl! is optimal we need only estimate the
sign of f (9(0), not its value to achieve second-order correctness

Taniguchi and Puri(1996 obtain an Edgeworth expansion for the same
t-statistic for possibly non-Gaussian AR series when estimatinf(0) with
the least squares estimate of the autoregressive coeffigidrteir expansion
is correct up to ordeo(N~%2) and depends on the kurtosis of the innovations
but not ond or f, by contrast to our nonparametric studentization

We have assumed thkiX; is known in the spectral estimatiowhenEX; is
unknown we can still takeEX; = 0 but replacey(£) by

1 _ _

70 =y > (X = X)X —X),  €=0,%+1...,£(N—-1)
1=t,t+¢=N

andf(0) by

3 1 N2 ¢ _ Wy _

f(0) = — — ) 5(£) = (X — X1’ X — X1).

(0) o e%w(,\ﬂ)v( )= ( ) 27TN( )

The effect of mean-correction is analyzed in the following lemma
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LEMMA 6. Under the assumptions of Theorem 2, NNIf(0) — f(0)) =
An, WhereAy has bounded moments of all orders and\g ] = —27K(0) f (0) +
O(MN™tlog?N).

The distribution ofVN/Mf(0) is affected to a second orddM/N)¥2, by
the mean correction so the studentized mean might be affected to Myéler
The bias is the same as found by Hanr{a@58 in spectral estimation after
trend removal Of course the asymptotic relationship of this bias with the
smoothing bias studied in Lemma 2 depends on the degree of smoothing given
by M. We substitutef(0) in all definitions involvingf(0) and denote the stu-
dentized mean usinf(0) by

M —-1/2
Y,\T=Y,\T(u*)=u1<1+b,(,+a§u§/ﬁ> :

whereus, by, oy, agd all quantities with & superscript are as previoushut
defined in terms oWV = 271 (0).

LEMMA 7. Under the assumptions of Theorem g, as the same Edge-
worth expansion as,Yfor convex Borel sets, up to the ord@d/M) %2,

It follows that the distribution of the sample mean studentized by the “mean-
corrected” spectral estimaf¢0) can be approximated by the same Edgeworth
approximation up to ordeiN/M)~¥2 as wherf (0), based on a known meais
used However the expansion for the distribution af can differ from that for
the distribution ofu in terms of ordeXN/M)~%? as we investigate in Section 6

5. EMPIRICAL APPROXIMATION

The preceding approximations to the distribution of the studentized naeain
to optimal bandwidth choicelepend on the unknowi{0) and derivative (4 (0).
These may be estimated in standard plug-in fasliising an initial choice of
bandwidth to achieve an empirical Edgeworth approximation and approxi-
mately optimal bandwidthThis section proposes nonparametric estimates of
the derivatives of and proves their consistendf coursef has to be smoother
than is necessary in estimation faf) but again only around frequency zero
We introduce the class of kerndls,r) » = 0,1,...,r — 1 to estimate theth
derivative following Gasser et al1985. Define the functionV, of order(v,r)
such that

0, j=0,...,v—=1Lv+1..,r—1
fv,,(x)xjdx= (—D¥!, j=uw;
" 9 #0, j=r,

with support[—, 7] and satisfying a Lipschitz condition of orderlf » = 0
then we estimate the function itsglind \; has equivalent properties to the
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kernelK we used to estimatie(compare this with Assumptions 3):-fxamples
of the class of kernelév, r) on[—m, 7] are

105 A4 A2
forv =2,r=4, V,(X) = 320 5?+6?—1,

315 A8 A A?
forv =2,r =6, V,(X) = Fym 77——135—+63——5
We defineV,, (x) = m,V,(m,x), x € [-, 7], for a sequence of integens, =
m,(N), satisfyingm,* + m,N~* — 0 asN — oo. We estimate *(0) by

f(0) = (my)”f Vin, (D) 1(A)dA.

LEMMA 8. Under Assumption 1, & v + a, o = 0, and a kernel of order
(v,v + a), for some integer & 2, and (m,)™ + N7*(m,)”logN — 0 as
N — oo, E[ f®(0)] — f®(0) = O((m,)”[N"*logN + m;*~3]).

LEMMA 9. Under the assumptions of Lemma 8, wi(tnnv)‘l +
Nt(m,)?*t + N~'m,log®N — 0 as N — oo, Nm,? " Var[ f ¥(0)] =
47t 2(0)|V,[3 + o(2).

Then with the conditions of these two lemmas it is possible to obtain valid em-
pirical Edgeworth expansions because the correction terms are of( dden /2
and consistent estimates fbandf (@ introduce only aro,((M/N)¥?) errot
Using the same techniques as for the cumulant§@f (cf. Lemma 3 we can
show that thes-order cumulant off *)(0), ky(s), is of order of magnitude
N1=sm3»*D~1 and its fourth moment is therefoBe= E[ f ) (0) — f *)(0)]

E(f®(0) — ™ (0)* = 9 Var[ f (0)]% + ky(4) + 4ky (3)B + 7B*
= O(M*"2N"2 + m¥ N *log* N + mj 42), (7)

from Lemmas 8 and .9Thenf ) (0) — f (0) almost surely from the Borel—
Cantelli lemma and Markov’s inequality {f7) is O(N~17¢) for somee > 0.
Given the MSE-optimain, ~ CN¥@»+2a+D "this holds ifa > » + 3 and valid
empirical Edgeworth expansions are thus available witiM/N)¥?) error, al-
most surely

The same results hold ff*)(0) is replaced by *)(0), which employs mean-
corrected quantities in the mannerf@D), whereas the distribution of deriva-
tive estimates can be studied in the same way as thfldéfese estimates can
also be used for plug-in rules of bandwidth choibeit estimates oM can
affect higher-order properties dfand t-ratios though first order asymptotics
are likely to remain the samef. Robinson 1991).
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6. THIRD-ORDER APPROXIMATION

In this section we concentrate on obtaining a third-order approximaétien
including terms of ordeM/N) to the distribution of the studentized sample
mean The previous results are insufficient to prove the validity when there is
mean-correction in the nonparametric spectral estinfsgeseen in Section,4
the mean-correction introduces a term of orfly/N)Y/? in the expansion for
\A'N/MT(0), so it will have an effect of ordel/N in a third-order approxima-
tion for the studentized meaAs before we denote by a star superscript all
quantities wherf(0) is used instead df(0). First we study the biashe follow-

ing lemma simply extending Lemma 2 using Lemma 6

LEMMA 10. Under Assumptions 1, 3, 4, 5, 6 and M+ N~ *MlogN — 0
as N— oo,

- f(@(0) B M
E[ (0] -f(0) = al Ha(K)M d—27Tf(0)K(0)ﬁ
logN 4w M 2
+O(T+M d +[N] IogZN>.

The second term on the right hand side is due to the mean corregton
analyze the cumulants of we can write it compactly as a quadratic fqri
u; = X'QxX — E[X'QNX], whereQf = AvQn AN, An = Iy — 11/N is the
mean-correctedersion ofQy. We first analyze the cumulants of the joint dis-
tribution of u™.

LEMMA 11. Under Assumptions 1, 3, 4y65) — 0 as N— oo, for s> 2,

N

def (s-2)/2 d .
&n[0,s] = kN[O, ﬂ(ﬁ) = ZOVJ- [0,s]M 7T + O(ey(9)),
=

def N \(s-2/2
RKI[Z,S_Z] = KI:J[Z’S_Z:I(M) :O(eN(S)),

whereV;[0,s] are defined as in Lemma 3.

The cumulantsy[0, s] of u; thus have the same asymptotic approximations
as thexy[0,s], and all conclusions about the variance and optimal bandwidth
with known mean assumed still holtHowever the cross-cumulantsi[2, s]
are asymptotically(1) after normalizationTherefore on the basis of cross-
cumulants of any ordemu; andu; are asymptotically independerand vari-
ance estimation is asymptotically independent of mean estimation as if the
sequenceX; were exactly independent

We now fix the order needed for the expansions of the cumulants to obtain
a third-order Edgeworth expansion for the distributionudf when Assump-
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tion 7 holds We need to consider terms in the expansionkf0,3] up to
orderM 9" such that ifd* < d, thenM 9"~ = o((M/N)¥2), and ifd* =

thenM 972 = o((M/N)¥2), the errors being negligible iff > 1/(1 + 2d +
2p). The following theorem establishes validity of the third-order Edgeworth
approximationQ\* {B! = [ ¢,(U)q" (u)du, for the distributionP}; of u*,
where

1/ M\2d
ad*(u) = 1+ é<ﬁ> > M71V,[0,3]H5(uy)
j=0

i M 0.3 2 i 0
+ 72 N {Vo[ ,3]“Hg(uy) + a1 Vol ,4]H4(U2)}-

THEOREM 3 Under Assumptions 1, > 1), 3,4, 7(1/(1 + 2d + 2p) <
q<1),foray=(NM)"* 1< p < 3/2, and every class of Borel seR?, as
N — oo,

. @* | Ny | 4 @
sup|Pi(B) —Qn (B)| = of | — + 7 sup Qu{(9B)*}.
BEB2 M

3 Ben?

Next we consider the studentized sample m&grusing the nonparametric
estimatef (0). To obtain a linear approximation fofy, the main problem is the
bias

M M ]2
b,Q=b1M*d+b2N+O N tlogN+ M 92+ N log® N,

with b, = —27K(0). To makeby negligible up to ordeM/N we cannot em-
ploy the MSH f(0)]-optimalM but instead require that

. M
lim — M9 >0, (8)
N

N— oo

which guarantees that the bias term of orlierd is at most of ordeM/N and
that the termO(M ~972) does not affect the third-order approximation under
Assumption 7This of course implies a significant undersmoothiagM needs

to increase much faster thah/2*29  at east likeNY "9 Then incorporat-
ing the bias of orde®(MN 1), the third-order linear approximation ¥ is

Yot =u, |1 1|oM’d 1bM ot M>1/2+34 IK15( *)2'\/I
B 222N T 2ontz\ g “IRI2U2)T g |

(9)
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and we justify the validity of a third-order Edgeworth expansion for the distri-
bution of Y with

X2_1+12 IIKHZx“—6x2+3
2 EL PV

(10)

THEOREM 4 Under Assumptions 1, @ > 1), 3, 4, 5, 7 and (8), for con-
vex Borel sets C, as N> oo,
&)
=o|— ).
N

In particular for the distribution function we obtajruniformly iny,

rn(x) = [47[K][3 + 277K (0) — by NM~*7¢]

M
Prob{Yy € C} —f d(X) {1+ Iy (X) ﬁ] dx
C

sup
C

1
Prob{YJ =y} = ®(y) — > d(y)(y* = y)w|K[ZMN~?

+3 b, NM 91 — 477|K |2 — 277K (0)] MN 2
2y<;5(y)[ 1 w|K[5 — 27K (0)]

+0o(M/N). (11)

The coefficients of the polynomial)(x) depend only orK, except for the term
b; NM~1=9 which involvesf (0) andf (9(0). This is due to the moments 6f0)
being proportional td (0), so the normalized distribution af* has constant
variance and higher-order cumularitg to first ordej with respect tof (0).
The term inb, disappears with sufficient undersmoothjnigat is if in (8) the
left hand side is infiniteOf course the largerM, the worse the approximation
from the point of view of theM/N corrections More informative expansions
for the bias can be obtaingdsing higher-order derivatives of the spectral den-
sity at the origin and appropriate conditions on the kerfiaken (8) could be
relaxed allowing the term inb; to be of larger order of magnitude thafyN
and also permitting MSE-optimdll, ;.

To obtain the Edgeworth expansion of Theorem 4 we can simply calculate
the formal expansion for the distribution ¥ based on the moments of or
we can proceed in an alternative wgcause we found in Lemma 11 tH&0)
is asymptotically independent & we can write

Pr(Y$ =y) = Pr(u, = S¥2y) ~ E, [®(SY?y)],

whereS =1 + b + us o3 (M/N)Y? and regardingi; andu as exactly inde-
pendentThen we can expand (SY2y) around®(y),

1
D (SY2y) = d(y) + H(Y)y(S¥? 1) - > y3p(y)(S¥? - 1)?

1
*3 ((y)2=Dy3(y)(SY2-1)3 (12)
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wherey’ is in the line segment betwegnand S2y. Now

1 1 1 M
SYV2 =1+ 5 by + 5 UEO'N(M/N)U2 - é u%a,ﬁ ﬁ + &N,
where E|&y] = O(MN™Y)¥2 + (b%)?) andbf ~ byM 9 — 27K(0O)MN %,
obtaining

E(SY2—1) = Sbi— = of = + o b + =
2N 8NN N/’

1 M M
E(Sl/2 — 1)2 = Z 0',3 ﬁ + O<(b,(])2 + ﬁ)
Therefore taking expectations i(12) and grouping terms in powers gf we
obtain the same approximation for{®g = y} as in(11),

1 1 M
E, [®(SY2y)] = & (y) + yo(y) (5 bt~ 5 o N)
_y_3 () 2M+ (b*'f-M)

8 ¢ y ON N 0 N N ’
with a truncating erro©(E|(SY2 — 1)|3), proceeding as in the lemma of Rob-
inson(1995h.

Following Hall (1992 Sec 2.5) and using Theorem,4ve can also obtain
a Cornish—Fisher approximation for the quantiles of the distribution of the
studentized mearYy to construct for example confidence intervals with
improved asymptotic coverage by estimating the unknown terntg (R) as
proposed in Section.8Nrite w, = w,(N, M) for the a-level quantile ofYy,
determined by, = inf{x: Prob{Yy = x} = a}, and letz, be thea-level stan-
dard normal quantilegiven by ®(z,) = «. Then immediately we have the
following theorem

THEOREM & Under Assumptions 1, @p > 1), 3, 4, 5, 7 and (8), w=
Zo — 'n(Z)M/N + 0(M/N), uniformly ine < a < 1 — € for eache > 0, where
ry is defined as before.

7. NON-GAUSSIAN TIME SERIES

Though our development depends heavily on the Gaussianity assumption we
here analyze informally the consequences up to third order of the Gaussianity
relaxation This may be achieved by considering distributions with Gram—
Charlier representations incorporating corrections for skewness and kuftosis
related referencesee Phillips 1980.

The lack of Gaussianity affects in the first instance the joint characteristic
function ofu, for which we would require some regularity conditioeé. Lem-
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mas 14 and 15 in Appendix)BThis regularity involves the distribution of;
and would also require summability conditions on higher-order cumulants or
mixing type conditions as in Gotze and Hipp983. Then the lack of Gauss-
ianity shows up in the asymptotic approximations to the distributions in terms
of the higher-order cumulants of the sequepgelt is well known (e.g., Han-
nan 197Q p. 280) that fourth-order cumulants do not affdett first ordej the
asymptotic variance of smoothed estimaféd), and the same can be shown
for higher-order cumulants of the normalized statistiggnd u,.

Thus if we assume higher-order stationarityXqfand that the higher-order
spectral densities

fk()\l,...,Ak_l) = (27T)17k' 2 "" 2 Cum(XO, ley""xjkfl)’
J1T7%  Jk-1T7®

fo(A) = f(A), are smooth enough at the origin in all their argumgthen
simple results can be obtainedhis condition on the higher-order spectral
densities holds jffor example X; is a linear process; = X2 a; €., where
the e, are ii.d. with enough moments and the transfer functier) =
2Zoa;explilj) is sufficiently smooth at = 0; sufficiently strong summa-
bility conditions ong; provide uniform smoothnes3hen we can show that
the normalized cumulants of, <\[a,b], are of the same magnitude as under
Gaussianitywith identical leading termdecause higher-order cumulant spec-
tra only appear in higher-ordeo(1), terms in their asymptotic expansions
Thus up to errors of orde®(M~2 + ey(a + b)), we obtain

ikn[3,0] = V27 f (M2
7y [4,0] = 27, (O)M 1

(see e.g., Gotze and Hipp1983, wheref(0) = f(0)f "¥2(0). For the spectral
density estimate we obtain thaf = 47||K|3 + 2#f,(0)M 2, using the tech-
nigues of Bentku$1976, and with similar arguments the first cross-cumulants
of u are

kn[11] = 2 (M Y2

Lk
\/ill [
7n[2,1] = VazK(0)| K[zt + O(M™1),

and ky[1,2] = O(M~%2), so higher-order spectra affegt,[a,b] at most to
orderM %2 Then lack of Gaussianity affects neither the terniMN ~1)Y/2 of

the Edgeworth approximation for the distribution wf(cf. qﬁf)*) nor the term

in MN~1 for the distribution ofYy (cf. ry), as in this last case the approxima-
tion only depends on the leading termsigf{2,1] and ky[1,1] (which remain

the samg apart from the bias of (0), which does not depend on higher-order
cumulants ofX;. In the case of mean-corrected estimates some contributions

cancel outas the leading term ofy[2,1] (cf. Lemma 1).
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We can also estimate the MSE of stochastic approximationé tand ana-
lyze the higher-order effects of the bandwidth choice when Gaussianity is not
assumedFrom the third-order linear approximation ¥ under condition(8),

) 11 M\v2 3 , LM
YN = Up 1_§b1M _EUNUZN +§47T||K||2U2ﬁ,

whereay ~ V47| K|, can be expanded up to erro¢((MN~1)¥2), and we ob-
tain for non-Gaussian series that

ELVY]=

—@@(@N-M +o(N2)

so BiagY\1? = (7/2)f2(0)N~* + o(N~1), and

1 M2 3 5 M
——UNKN[l,l]ﬁ +57T”KH2KN[1’2]N

M \1/2
M
+ amKIAL+ ky[22) 3y +ONY)

_ M .M
=1-b,M %+ 47 (K| - K(0) Nt 0<M 4+ ﬁ)'

Similar conclusions can be obtained for mean-corrected spectral estimation
incorporating in the third-order stochastic approximatigtt (see (9)) the
mean-correction bias of ord&N 2% b, = —27K(0), which remains the same
up to that orderThus bias BiaBYyt]? has the same expression as without
mean-correctionbecauseci[1,1] = xkn[1,1](1 + O(MN™1)), but the term in
K(0) in the variance is now differenbecausexy[2,1] = o(1) from Lemma 11
and hence

1 M M
Var{Yit] = 1= b, M~ + 4x [K[3+ S K(©O) ) 17 +o(M~+ ).

Note that whereas the leading terms in the expansions for the variances de-
pend on the properties dfA) at A = 0 and onK, the bias only depends on
f3(0), the relative skewness at zero frequenEyom an MSE(of Yy or YY)
point of view the main focus is then on the variance contributiand to make
the two leading terms of its asymptotic expansion of the same order of magni-
tude we can sem ~ CN¥Y®*% for some positive constar (so M satisfies
condition(8)). This implies a clear undersmoothing reduce the bias dt(0),
and that the normal approximation for the distributionsygfor YJ is asymp-
totically correct up to erro©(MN™1), apart from the skewness correction by
#n[3,0], which is of orderO(N~Y2) as for non-Gaussian standardizéand
does not depend on spectral estimatipa, on M or K).
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8. SPECTRAL ESTIMATION AND STUDENTIZATION
AT NONZERO FREQUENCIES

We consider in this section nonparametric spectral estimates at a frequency of
interestA, € (0,7), because the cask, = = is similar to estimation at the
origin and we need not consider negative frequencies by symmaysup-

pose in this section that Assumption 1 holds in a neighborhood, oNow all

the arguments we have used for the analysig@fcan be carried over tA,),

M (Ao) X,
27N

N 1 N
f(Ao) = 2, E < )7(€)cos€A =X —
(=1—
[WM()\O)]r e = [WM]r <scoqr — s)A,, if we keep the symmetry of the estimate
f(0) by writing f(1,) = fuKu(a — Al (@)da = [;Hu(a)l (a)de, where
Hu(a) = Hu(asAo) = 3(Ku(a — Ag) + Ky(a + Ag)). Now Hy(a) is even
and periodic likeKy (a), and higher-order cumulants 6f),) are determined
by the fact that folN large enough the kernel§, (a — A,) andKy (a + A,) do
not overlap forA, > 0. However we cannot expetf\) to be symmetric around
nonzeroa, as it automatically is around the origiso existing odd derivatives
of f(A) at A, are not zero in general and the expansion for momenfs xf)
might contain additional term$urthermorethere is less reason in general to
expect a spectral peak at an arbitrarily chosen nonzero frequesrttyan at the
origin, so interpretation of correction terms may be less immediate

Define the discrete Fourier transform aasw(A) = N2 3N, X, exp(iAt),
so X = w(0), and denoten(A) = wR(A) + iw'(A) for the real and complex
components oW(A). Then fori, > 0

Wi o) & VarTVNW (1)) = 5 V(o) + O(N*logN),

def

whereVy (Ao) = S5 (1 = [j[/N)y(j)cosjr, = 27f (Ao) + O(N"logN),
using Assumption 1 as in Lemma. Then for any A, and N such that
ViR(A,) > 0, we set

i) & Y
O VR ()

and we can defin®(1,) = Var[VNw'(A,)] = 2Vi(Ao) + O(N~tlogN) and
ui(A,) similarly for w'(A,). The studentized statistic at frequentyis

def R )\
YE(Ag) = v\—[\v/v(_;)

7t (Ao) vz
= uf(A ><1+bR<AO>+ ViR )aNu )uz(m,)f)

~ N(0,1),
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HereV(A,) = 7f(A,) and

N ﬁ V(Ao) = EIV(A,)]
U] T M T (o (h)

are common for studentization of bot¥f¥(A,) andw'(A,), whereo2(A,) and
bR(A,) are now the “relative” variancéwith respect towf(\,)) and bias
of V(A,), respectively The bias estimation follows as fok, = 0 with
bR(Ao), bL(Ag) = by(AgM @ + O(M 92 + N~tlogN), and

f((Ag) g (K)
f(Ag)d!

We can analyze the joint distribution offA,) = (UR(A,), Ul (A), Ux(Ay))
under Gaussianity using the same definitions as Xgr= 0 but in terms
of the matrix Qu(A,) = (MN)™Y2(gn(Ao)7f (X)) *Wy(A,) and the
vectors £R(A,) = (cosAo,...,cosN)\o)’/\[NVNR()\O) and £&4(A,) =
(sinAg,...,sin NAO)’/\/ NV{(A,). The characteristic function af(A,) is

lﬁlﬁo(tf’ t::_’ t2) = || - 2it22QN()‘o)|71/2

1
X exp{—a Ee(0) (1 = 2it3Qu (X)) T EERR(D) — it, EN(/\O)},

bl()\o) =

Elo(t) = tRER(A,) + t1€L(A,), and the only cumulants differing from zero are
kpela,b,s] for a + b = 0,2, s = 0. Thus for example «}°[1,1,s] =

2581 (ER(X0)) (ZQN(X))%2€N(Ay), s = 0, and setting ki°[a,b,s] =
kie[a,b,s](NM~1)(sta+tb=2/2 we optain the following lemma

LEMMA 12. Under Assumptions 1, 3, 4y6s) — 0 as N— oo, for s > 2,

d
#4°[0,0,s] = X V}°[0,s]M T + O(ey(s)),
j=0

d
#°[2,0,s— 2], &¢[0,2,5— 2] = X Ve[2,5— 2]M T + O(ey(9)),
j=0

and k{°[1,1,s — 2] = O(en(9)), s = 2, whereV}'°[0,s] and V{[2,s — 2] are
bounded and depend on K and the derivatives of Xatout not on N or M.

Now Vge[0,s] = (2m)s 2/2(s — DI|K|;°[K[S, on(Ae) ~ V2 [K], and
Vae[2,8] = (27)¥2sK3(0)|K|;® becauseHy(A,) = 3Ky (0) for N large
enough andy, > 0.

WhenEX, is unknown we can use the sample mean-corrected stdtisitig,
and definingAy(A,) = NM~1(f(A,) — f(A,)) we can follow the arguments
of Lemma 6 to find that iff (A) is also smooth ath = 0, E[AN(AL)] =
O(MN™tl0g?N), so by(A,) = 0, and VafAn(Ag)] = O(MN™tlog?N), be-
causeHy (0) = Ky (A,) = 0 for N large enough and, > 0. Therefore mean-
correction does not affect spectral estimation or studentizatiag #t0 at third-
order MN . However a similar result to Lemma 6 holds if residuals from
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a least squares cosinusoidal regression at the same frequgnane used
Also the expansions of Lemma 12 are still valid for the mean-corrected cumu-
lants k3*°[0,0,s], whereas the cross-cumulant§*[2,0,s] and k$*°[0,2,s]
areo(1) as for A, = 0, leading again to asymptotic independenceubfi,),
UT(Ao), anduz(A).
Using Lemma 12 we can construct a valid Edgeworth expansion for the dis-
tribution of u*(A,) under the assumptions of TheorepmaBd justify the valid-
ity of an Edgeworth approximation for the distribution 4§*(A,) in terms of
that foru*(A,) under the conditions of Theorem 4 with
x2 x*—6x2+3
24

~1
+67|K|3

(9 = [2] K[ ~ by(1o)NM+4] =

(cf. (10)), coinciding again with the formal Edgeworth expansion deduced from
a linear approximation t&*(A,). This approximation differs from estimation

at A, = 0 with respect to the asymptotic variance and negligible bias effect of
mean-correction for spectral estimation at nonzero frequencies
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APPENDIX A: PROOFS

We postpone the proofs of Lemmas 1 and 2 to Appendix B
Proof of Lemma 3. We obtain fors > 0, ky[0,s8] = 25 1(s — D)!(on V) S X
(MN)~¥2Tracd(2yWy)®]. Then using Proposition 1 in Appendix B we have that

s 1(a_ 2s-1 d
2 (DT S (M + Ofen(9)). (A1)
(o) j=0

knL0,s] =

Applying Proposition 1 to evaluaig? under the same set of assumptigss= 2),

: W _ N

2 d B

N 2m? = M @aN)? Tracd(S Wy )21 = 47720 L;(2M T+ O(ey(2)),

wherg for example Lo(2) = f2(0)uo(K?) = f2(0)|K|3, Li(2) = 0, and L,(2) =
3u2(K2)f2(0). Now as 0< Lo(2) < oo and allL;(2) are fixed constants independent
of N or M, we can write for some constanig’s)
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s d
(UN A) = (4m)"%2 3 J(IM T + O(ey(2), (A-2)
2 i=0

where Jo(S) = Lo(2)"¥2 and so on Denoting C(0,s) = (47)2/2(s — 1)! we
can obtain from(A.1) and (A.2) the foIIowmg expansion in powers dfl = for the
normalized cumulantsiy[0,s] = C(0, s)E, oj(SM T+ O(en(s)), whereTi(s) =
Si_od(s) L;_((s) are constants not depending Nror M, and depending only ohand
K, with Ty(s) = 0, Ix(s) = Jp(s)Ls(s) + J(S)Lg(s), and so onThen the lemma fol-
lows, settingV;[0,s] = C(0,s)I(s). |

Proof of Lemma 4.We have xy[2,s] = 25I(MN) 2NV S logs X
1'(ZyWy)®2n 1. Then using Proposition 2 in Appendix B the normalized cumulants
are

(47)°slf(0)°K(0)® + O(ey (s + 2)),

R[2.5] - [ 2 T 27f(0)

W\ OoN W
asKy (0) = MK(0) given the compact support &f. Substituting the expansion for the
value ofVyon and using Lemma,lwe obtain

_ Vvon |7 _
kn[2,8] = [?] [1+ O(N~tlogN)](47)ss f (0)3K (0)S + O(ey(s+ 2))

d
= (47) " ¥?(41)%s T (0)K (0)® E Jj(S)M_j + O(ey(s+2),
i=0

where theJs(j) are as beforeThe lemma follows withV;[2,s] = (4m) ¥2 X
(47)%s! (0)°K (0)°F(9).

Proof of Theorem 1. To prove the validity of an Edgeworth expansion for the dis-
tribution of u we check that the characteristic function of the expansion approximates
well the true oneWe first construct the approximation fgi (t). We discuss the gen-
eral casgbecause the same arguments will be used later for the proof of Theovksn 4
in Taniguchi (1987 pp. 11-14, using the fact that only the cumulanks,[0,s] and
kn[2,s] are nonzerpthe cumulant generating function is

T7+1 N/M (2—9)/2 gl
logyn (1) = 5 H e+ 2 ( )

3 Al et i) + Ry,
rl=s F1: T2

(A.3)

wherer = (rq,r5)’, with ry € {0,2} and|r| =r4 + r,, and

N \-7/2
Ry(7) = <M> [Ro,-r+2(it2)7+2 + szr(itl)z(itz)f], T even

N )77/2 1 (r+2)(r+1)

v ()

M [RN [0,7 + 2](it,)""2 +

&[2,7](ity)?(itp)” ]

N\ - (r+1/2 _ _ _
+ <M> [Ro,r+3(|t2)ﬁ3 + R2,7+1(|t1)2(|t2)7+1], 7 odd,
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where theR, j andR; ; are boundedThus from Lemmas 3 and,4og ¢ (t) is

T+1 (N/M )(2—5)/2
|

itz + |Futostt)+ 52 k- 2107 |+ Ru(o)

s=3

l T7+1 N (2—9)/2
=3 lit]? + §3<ﬁ> [Bu(s 1) + {(it)° + (ity)*(it2) > 2}O(en ()] + Ry (7),

where we have grouped terms in powerdvbf?! in By(s,t),

s(s—1)
2

18 .
Bu(st) =g > M {Vj [0,s](it5)* + Vi[2,s— 2](it1)2(it2)5’2}.
> =0

The approximation of the characteristic functionwfising its cumulant generating
function, Ay(t,7), has leading term exXg|it|?}, multiplied by a polynomial irt, de-
pending on the cumulants of andN andM,

n

1 7+1 N (2—-jy)/2 T+1 1
— Zlitl2 i | —
AN(taT) - exp{z Hlt” }|:1+]23<M> 2 :3[BN(n,t)] r3!'”r7+1!:|7

wherer = (rs,...,r,4+1)’, rn € {0,1,...}, and the summation is over all satisfying
t3(n—2)r, =] — 2. We need only keep terms up to a certain powe(NfM ) ¥/2,
so some terms in high powers bf~* in By(n,t) may be included in the general error
term, without increasing its magnitude
To obtain a second-order Edgeworth expansion werset2, including in Ay (t,2)

terms up to orde(N/M)~¥2,

1 _ N —1/2
Ay(t,2) :exp{5||it|\2}[l+ BN(3,t)<M> ], (A.4)

where inBy(3,t) only the leading terntin M°) is kept in the expansion for the cumu-
lants of order 3

To measure the distance between the true distribution and its Edgeworth approxima-
tion, we apply the smoothing Lemma 13 due to Bhattacharya and(Reitg pp. 97—
98, 113), with kernel ¥. Lemma 14 studies the Edgeworth approximation for the
characteristic function foft| = §;VN/M (note that the characteristic function of the
measureQ?{-} is An(t,2)), whereas Lemma 15 analyzes its tail behavierst,

I(Py — Q) * W,

=2 sup [(Py—QP)*W, |+2 sup [(Py—QY)*w,|,

BCB(0,ry)° BCB(0,ry)
wherery = (N/M)Z, (8 > 0 to be chosen latgrand here|-| denotes the variation

norm of a measutex means convolutionand B¢ is the complementary set &. For
B C B(0,rn)¢ we have uniformly

(Py— Q) * W, | = [Py * W, [+ Q7 * v, |

= Prob{uf = ry/2} + 2%, {B(0,ry/2)°} + 2QP{B(0,ry /2)°}.
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Now Q@{B(0,ry/2)¢} = o(N/M) Y2) as this is the measure of a polynomial in

Gaussian variabledlso Prol|u| = ry/2} = o((N/M)~Y/2), becauseau has finite mo-
ments of all ordersFinally, from (B.19)

W, {B(0,ry/2)°} = O([an /ry]®) = O((N/M) 32 *A)) = o((N/M)~2),
because + B8 > . For B C B(0,ry) we have by Fourier inversion

[(Py = Q) * W, | = (2m) 21mr§ f [Py = QPN (T, (D) dt, (A5)

whereP denotes the characteristic function of a probability measurso Py = ¢y (1)
andQ\? = Ax(t,2). Using Lemma 14(A.5) is bounded by

N \28—1/2 , )

O((M) M7=+ eN(3>]> f le ARt ], (1] dt (A.6)
tl=8,VN/M

+ O((N/M)?) [(Py — Q) (), (0)]dt, (A.7)

5. VN/M <|t[=a’ (N/M)?

because fron{B.20) ¥ is zero for|t] > a’(N/M)? anda’ = 8 X 243713 _Then for
(A.6) to beo((N/M)~%2) it is necessary to choogg = ; (because of the definition of
ex(3) andp < a/(1 - q)).

Finally, from Lemma 15and fors;my < [t| and also fors;VN/M < |t|, because
my = VN/M for N large enougtifrom the first element in the minimum of the defini-
tion of my), we have thatA.7) is

O((N/M)?8) e %"t + o((N/M)V2),
81NV N/M <|t|=a’(N/M)”

and thus (A.7) is dominated by O((N/M)2+2r)e=®%m + o((N/M)¥2) =
o((N/M)~Y2), because with Assumption D < q < 1, we have thatfor somee > 0
depending org andp, my = eN°®. Applying Lemma 13 the proof is complete B

Proof of Lemma 5. Set the neighborhood of the origidy = {u:|uj| < ¢ N#,
0< u<d/(3(1+ 2d)),i=1,2}, wherec; are some fixed constantand expandyy (u)
aroundO in Qy, with |6] = 1:

Yy = Uy — 28803 Uy Uy (N/M) Y2 + Z (D) (N/M) 74, A.8
2

where Zy(1) = 3(1 + by + on0U(N/M)Y2)"¥252u,u3 and 6y = (1 + by) Y2
Substituting foroy and 8y and their powerswe can writeYy = Y& + Zy(N/M)™2,
where Zy = 3%,74(j), Zy(2) = u;0(MlogN + NM~"97¢)  and Zy(3) =

u U, O((N/M)Y2[M 2 + ey(2)]). Now we use Theorem 2 of Chibisofd972 to
prove that the error in the previous linear approximation can be neglected with error
o((M/N))V2 if

3 1
Prob{|Zy| > pyVN/M} = > Prob{|ZN(j)| > 3PN N/M} =0((N/M)~2)  (A.9)
j=1
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for some positive sequenggy — 0 and pyVYN/M — co. Choosingpy = 1/logN,
writing

(N/M)~¥2Z(2) = u; O((N/M)Y2[N " logN + M~9-2]), (A.10)
(N/M)"/2Z(3) = u;u,0(M 2 + ey (2)), (A.11)

and applying Chebyshev’s inequaligsu; andu, have finite moments of all orders we
see that forlA.9) to hold it is sufficient that the error terms in the right hand sides of
(A.10) and (A.11) be O((N/M)~#), for someu > 0, which is true as a result of As-
sumption 7q = 1/(1 + 2d).

To check Chibisov conditiofA.9) for Zy (1) we bound ProfiZy (1) > pn(M/N)~Y2}
by

Prob{| Ry (D[ (M/N)¥* > pi(?} + Prob{| Ry (2) [ (M/N)* > p{{?} = P, + P,,

say where Ry(2) = 203u,u3 has bounded moments of all ordemow P, =
o((M/N)¥2) applying Chebyshev’s inequalitBecauseby = O(M~¢ + N~tlogN)
and (M/N)Y% Y5 5 0 asN — oo, P, = Prob{|1 + by + on0u(N/M)"V2| <
o YP(M/N)Y10Y and applying again Chebyshev's inequality this is less than
C Prob{|ux(M/N)¥?| > ¢} = o((M/N)¥?), for some positive constans andc. B

Proof of Theorem 2. We follow Taniguchi(1987). Consider the transformatian=

(s1,52)" = (M (Ug,Up),U;)" = Yiy(u), say and its inversar = Yyi(s) = (Uj(S1,S,),S,)"
Then we writg using(1+ x)™t =1 — x + x2 — x3 + ... for |[x| < 1, uniformly in the
setQy, defined as in the proof of Lemma 5

ui(s) = Sl[1+ %blM*d + %WHKHZSZ(N/M)’UZ] + o((N/M)~¥2),

where the truncation of the term ig s3O((N/M)~%) with error o((N/M)~Y2) is
allowed because of the definition of the s@f,. Writing for convex setsC,
Prob(Yy € C} = Prob{u € Y 1(C X R)}, it follows from Lemma 1 thatasYy is a
C* mapping onQy),

supProb{u € YR1(C X R)} — QP{YRX(C X R)}
C
= 0((N/M)~¥2) + const sumZ{(aYR1(C X R))2en}, (A.12)
C

whereay = (N/M)™7, 1 < p < 1. Also, from the continuity ofYy, we can obtainfor
somec > 0,

QPHOYRMC X R)Z*} = QPH(YRH(9C)®™ X R))} (A.13)

and

o viC x ) = |

ONNYNH(CXR

Bo()a¢ () dx + o((N/M)~2)
)

= f e R}¢2<Y*l<s>>q<N2><ml<s>>|J\ds+o((N/M>*1/2>,
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where ¢,(-) is the bivariate standard normal densifyy = Yn(Qy), and |J] is
the Jacobian of the transformatioWe can obtain neglecting terms that contribute
o((N/M)~Y/2) to the integralsthat

_ 1 B M \1/2
b2(YN'(9) = d(s1) b(s,) <1f ESE[blM 4+ \/EHKHZSZ<N> ])

M\¥2 1
A (Yk(9) = 1+ (N) 31 {Vo[031Hs(s,) + Vo[2,1]Ha(s) Ha(s,)},
and|J| =1+ 3b;M 9 + 3V47|K|,s,(M/N)*¥2 Thus if pj(s) denote polynomials not
depending o\ or M,

QIIHCK RN = [ 4oL+ pu(9 (M) Y2 + py(9M ]as

QNN{CXR}

+0((N/M)¥/2)
= fcd’(%) { fR [1+ pu(9)(N/M) V2 + p2<s>M-d]¢<s2>dsz} ds,
+0o((N/M)~"?)
= fc¢(sl)[1 +1,(5) (N/M) Y2 + 1,(s,)M 9] ds; + 0((N/M)~Y/2),

wherer;(s;) are polynomials ins;, with bounded coefficients ifN. Integrating with
respect tos, in R we obtain thatr;(x) = 0 andr,(x) = —2by(x? — 1). The proof

is completed by recallingA.12), (A.13), and Lemma 5As in Bhattacharya and
Ghosh(1978 this expansion coincides with the formal Edgeworth expansion obtained
calculating the first three cumulants of the linear approximadgn= s, to Yy up to
erroro((N/M)~%2) becausé[s,], E[ss] = o((N/M)"Y2), andE[s?] =1 — byM 9 +
o((N/M)~2), u

Proof of Lemma 6. We obtainf(0) — f(0) = —2Zy + Ry, whereRy = (27N)~1 X
X21'Wy 1 andZy = (27N) " IX'Wy 1X = (27N2) " IX'Wy 11X = X'An X, with Ay =
(2mN?)"1Wy 11 an N X N matrix. The lemma follows directly from Lemmas 17 and
18, because

Cumy[Zy] = c Tracd(SyAy)S] = cs<%>s[27rf (0)K(0)]® + O((%)S+1 log? N),

wherecs = 2571(s — 1)! (so (N/M)Zy has bounded moments of all order§hen as
Xn ~ N(O,Vy/N) and from Lemma 1 under Assumption 1Vy = 27f(0) +
O(N~tlogN), it follows that (N/M)Ry has bounded moments of all orders.too M

Proof of Lemma 7. We can writeus = u, + (N/M)~Y2A},, where the random vari-
able A, has moments of all orders as,. Now Yy = Yy + [Zy + AL (N/M) L where
AY, depends omy;, u;, andu, and has moments of all orderso it can be neglected
when we approximat¥y with Y. u

The proofs of Lemmas 8 and 9 are postponed to Appendix B
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Proof of Lemma 11. The proof of Lemma 11 follows as for Lemmas 3 and 4 using
Propositions 3 and.4 |

Proof of Theorem 3. The proof of Lemma 3 follows as for Theorem Hirst, we
approximate the joint characteristic functionwf = (u,,u3). Define

1o M2 [ 1, M
A;,(t,3):exp{5\||t|\ }[l+ B,‘:,(3,t)<ﬁ> +{B;,(4,t)+EBN(3,t) }ﬁ]’

where we include inBj the expansions for the corresponding cumulants up to the
order M~9", but in B}, only the leading terms are kepso By(3,t) = (1/3!) X
Ef;oM*jVj[O,?)](itZ)S, BX(3,t) = (1/3)Vy[0,3](it»)%, and BY(4,t) = (1/4!) X
Vo[0,4](it2)% Now the theorem follows as Theorem 1 using Lemmas 19-21 instead of
Lemmas 14-16 u

Proof of Theorem 4. We getsy = (1 — bg)~V2
=1 lb M- 1b M +O(N"tlogN+M~972 + M 2I 2N>
N 5P 5 P2 0g N 0g )
andoy = oy + ey = V47| K|, + ey, whereey = O(M ™2 + ey(2)). Therefore we can
write Y = Y3t + Zy(N/M) %2 where Yt is defined in(9) andZy(N/M)~%2 can be
neglected in an approximation to the distribution¥gf up to orderM/N. Now we can
use the same arguments as before to justify the Edgeworth approximatiofy fior

terms of that foru*, becausgunder condition(8), E[s;], E[s’] = o(M/N), and ne-
glecting termso(M/N),

M
E[sf]=1-b,M ¢+ N [—b, + 47| K]3],
M
E[s{]=3-6b,M ¢+ N [—6b, + 367[K|Z],

so the theorem follows with the definition of;(x). u

APPENDIX B: TECHNICAL LEMMAS

We first introduce the multiple Fejér kernel as in Bentki872 or Dahlhaug1983 for
tapered serigs

B 1 sinNx, /2 sinNx,/2
T @m)"IN sinx, /2 sinx,/2

D (Xgs ooy X))

1 N n
=—— i tx o,
e N, 2 1exp{' & ’X’}

..... [

with x, = =375 x;. Forn = 2 this is Fejér's kerneMe have followed the same con-

vention as in Keenafl986 p. 137): although the function®]” depend here on only

n — 1 argumentswe refer ton variables with the restrictionZij = 0(mod2r). Then
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@ﬁ,”)(xl,...,xn) is integrable in1"~1, integrates to one for aN, and has the following
properties
For6 >0,N=1

log"~* N)

Lc|®f\,”)(x1,...,xn)\dxl...dxn,l= O<Nsin5/2

(B.1)

where D¢ is the complement inlI""* of the setD = {x € " *:|x| = g,
ji=21...,n—1}
Forj=1,...,n—1,

Jf 1 || (Xgs -y Xp) | AXg... A%, = O(N~*log" t N). (B.2)
11 I
These properties follow as a result of

‘q):\ln)(xlw-wxn)' = [on (X)) Ten (X2 Ton (Xn)], (B.3)

1
(27)" N

wherepy (x) = SN, explitx} is the Dirichlet kernglwhich satisfies

w00l = miniN2Ix Y [ len(0ldx=Olog). (B.4)

Proof of Lemma 1. Applying the mean value theore@WVT ) for f(A) in an interval
[—€,€], e > O, for some|d| = 1 depending on\, because/y = 27 [ f(/\)q)ﬁ,z)()\)d/\
andf,, ®Z(A\)dr =1,

— 4T =27 _ %)
[y = 271 (0)] = 2 [L<e+f.“>j£'f(” f(0)[| @1 (A)] dA
:O<L< I/\If’(/\e)|<I>,§2)(/\)|d/\+[|f|1+f(0)]N—1>,

which isO(N~tlog N) using the integrability of (implied by stationarity, its differen-
tiability around the originand |®Z(A)| = O(N1), if [A| = € > 0, from (B.3) and
(B.4). |

Proof of Lemma 2. Writing the spectral estimate aS0) = [ Km(A) 1(A)dA
where|(A) has expectatiofE[1(A)] = [; ®Z(A — a)f(a)da we obtainE[ f(0)] =
T K W) J @2 (a) F(A + a)dadA. Then

f0) pa(K)
d M

E[f(0)]—f(0) —

:f KM(A)f D2 (a)[ (A + @) — f(A)] dadA

£@(0)
d!

+ f KM(/\)[f(A)—f(O)— ,LLd(K)Md]dA

=b, +b,,
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say where we have used the fact thidtintegrates to onelntroduce the set® =
{lal,|A| = €/2}, and D¢, its complement ifI2. Let by, andb,, be the contributions to
b, corresponding t® and D¢, respectively Then for |6| = 1, depending on, by, =
Jo Ky @2 () /(A + 6a)a]dadr and

Kuldr [ Jal|9 (@)]da = O *logN)

|a|=e/2

|byq| = ‘f‘uplf’()«)l

|A|=e/2

To studyb;, note first thatD® C A; U A, whereA; = {|a| > €/2} andA, = {|A| >
€/2, |a| = €/2}. Then the contribution td,, from A, is

‘f | /2J;1 KuWI F(A + @) = f ()] dAdy (@) da

= O<N1J2KM(A)[ F(A+a) — ()]l d/\da>

- o<N1[1+f KM(A)f(A)|d)\]>, (B.5)
[A|=e

which isO(N™1f;;|Ky(A)|dA) = O(N™1), as the integral ovei\ | > e vanishes in(B.5)
asM — oo. On the other handeasoning in a similar wayor M sufficiently large the
contribution tob,, from A is

U f Ky (D@2 (a)[ f(A + @) — F(A)] dad)\‘ =0, (B.6)
[A|>e/2Y |a|=€/2

because of the compact supportkafThusb;, = O(N™1),

Now for b, splitting the integral in two parts fdi\| = € and|A| > €, denoted a®,;
andb,,, respectivelywe have constructing a Taylor expansidwith |6| = 1, depend-
ing on ),

< A Y f@(
b21=f KM(A)[E f(0) — + @ (6A) ©
[A]|=e j=1

i i Md(K)M—d]dA

-1 1 _
=> f<J>(0)j—|f MKy (A)dA +f Ky (D[ @ (0A) — @D (0)]A%dA
j=1 s Jn

|Al=m/M
= O<f |Km(/\)||/\|d+gd/\> =0(M~"2),

as all the integration is withifi-¢, €] becauseM — co and using the Lipschitz property
of f (@, As by, is zero as a result of compact supportkgfthe lemma is proved B

PROPOSITION 1 Under Assumptions 1, 3, 4y &s) — 0, for s= 2,
d
Tracd(Sy Wiy )ST = N(@2m)27 1 > Lj(s)MS 17T + O(NMS ey (29)),
j=0

where &(s) = N"*Mlog 2s™*N and L(s) = (1/j") ;(K®)f1(0) with |L;(s)| < oo and,
as uj(K?), the constants |(s) only differ from zero for j evefj = 0,...,d).
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Proof of Proposition 1. The proof is in two steps
First step We boundA = |Tracd(2yWy)S] — N(27)25 L[, fS(A)KS(A)dA|. First
write, asi1 =1y,

s Mo — ojs
Tracd(XyWy)®] = E HY(rzj—l_ rzj)w<2]—2]1>

1=ry,...,16=N j=1 M
s 2s

= 2 H {F (A1) Ky (Ay )}EXp{i 2 Ay — rj+1)} dAa
roJn%sj=1 j=1

= NEem [ Gulh WK () () dAda,

n2s

whered™ (u) = O (p1, ... i), Gu(Ad ) = F(X = o — -+ = pog) Ki(A — s —
- = pog) ... F(A — wog), du = dus ... duss, dA = dA1 ... Aos and we have made the
change of variables

M1 = )\1 - /\23 AZS 11— =A- Mos
M2=Ay— Ay Azs 2= A~ Hos ™ Mos-1
2s= Az~ Az, A L= A= Upg— *or — M= A~ g

(EJ 1 = 0), setting A = Ay, and expressing all the; in terms of A and w;,
j=2,...,2s. Then

A=N@m= (6w T 0KE 20K (DO ()] dAcl. (B.7)

We split the preceding integral into two setsr small and for largeu;. Define the set
D ={u € 1% 1:sup|u;| = 1/(2sM)}. Taking into account thatx| = 77/M because of
the compact support d&€, in the setD all functionsf are boundedly differentiabl&@hen

we can use the inequality

r—1

|A...A = Bp...B | = > [By...Byl|Byis = Agial |Agia- - Al (B.8)
=0

and sup|Ky (A)| = O(M) to bound the integral ofB.7) overD by

O(NM*- 1)2 j j A= Rarzqe = tr2) = TN KW OF" () drde (B.9)

+O(NM*" 1)2 f f KA = Ba12q--- = f2s) = Ku(W] |0 () dAdpe.  (B.10)
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Then applying the MVT and usingB.2) we obtain tha{B.9) is

2s—1

O(NM*2) f K () ]dA 3 |4l 9K ()| die = O(M*"*log?**N).
n gq=2 Jnz1t

On the other handB.10) is of orderO(M*slog?s *N), using the Lipschitz property of
K. Denote byD® the complement ob in T125~1. The contribution toA corresponding to
the setD€ is bounded by

N@n™ [ [ GOm0 Gl (B.11)

+N(27)% 1 f [F3()K (M) dA J | DG ()| dpe. (B.12)
1—[ c

The expression in(B.12) is O(MSlog?s~IN), by (B.1) and [|fS(A)Kg(A)|dr =
O(Ms~1), which follows from compact support ¢€. Now (B.11) is not larger than

S
TT 1 Ag- DK (Ag) @n (Mg = Agi—1) @n (Agjiqs — Agj)| Ay dAy_y, (B.13)

D*j=1

whereD* is the corresponding set ©° with the former variables\;, j = 1,...,2s,
defined byD™* = {|A2 — Aq| > 6n} U Az — Azl > 8n} U+ U {|Ados — Aas 1| > 801,
with 8y = 1/(2sM), and a subindex 2+ 1 is to be interpreted as Note that the last
integral only differs from zero ifA,|,|A4l,...,| Ass| = 7/M. We consider only the case
where just one of the events " is satisfied | Ay — Ayj—1] > 6y (1=] = 9), say the
situation with an odd index or with more than one event being dealt with in a similar or
simpler way

First, if [Agj — Agj—1] > 6N, then|on(Ag — Ag5-1)| = O(M). Secongdwe can bound
the integrals iy and A1, With [ii|en(Agj+1 — Az))Km(Ag)|dAy = O(MlogN),
using(B.4), and

f [on(Agi—1 = Agj—p) F(Ag_)[dAgy_y = f +f . (B.14)
I [Agj-1l=e [Agj—1]>€

If [Ag-1] = € thenf(Ay_1) is boundedand the corresponding integral is of order
O(logN). If [Ag—1] > €, @as|A—o| < 7/M, we obtain thaf Ay _1 — Ay_2| > €/2, say
asM — oo, and then|n(Az—1 — Ag—2)| = O(1). Thus the second integral is finite as
a result of the integrability of. Hence(B.14) is O(logN). There ares — 1 integrals of
each typewhich can be handled in the same wakird, the remaining integral is of the
general form

JHL‘KM(AZS)f(/\l)QDN(/\l_A25)|d/\1dA25=O(IOQN),

becausgas in(B.14), the integral inA4 is O(logN) for all A,, and [|Ky (Azs)|dAss is
O(1). Summarizingthe integral oveD* is O(M*®log 2s7*N), and compiling results we
obtain thatA = O(MS 11og? N + MSlog >~ IN) = O(NMS ey (s)).
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Second steDefining Cy(s) = f:OLj(s)MS’l’i, we obtain asM — oo,

U Ka(A) (1) dA = Cy(s)

|Km (A)]dA

N
-3 5 (5 row

j=0 dA

= | Ikl

= o(supl KM(A)|sflf |A|d+g|KM(A)|dA> — O(Ms1-d0),

using the Lipschitz property df®(A) in the same way as in the proof of Lemma 2
|

PROPOSITION 2 Under Assumptions 1, 3, 4,8s + 2) — 0, for s = 1,
1(SNWw)SEn1 = NQRm) =M £(0)]5H Ky (0)]° + O(MS*tlog?s*tN).

Proof of Proposition 2. We can writel’ (3yWy )2y 1 as

S Fa) =I5
> Y(Fasi1 = Tasi2) H{V(rzj—l - rzj)w(—
j=1

O0=rgq,..., rosi2=N M

2s+1

= 2 fz f(Asi1) H{f(/\zjl)KM()lzj)}eXp{i 2 A (1 "j+1)}d/\
roJzstt j=1 j=1

= rE [ Su (e P (was, (8.19)
11 s+1

by change of variable where 5> 2 (1) = O (payeens oo — S0 1),

Su(pw) = fF(p)Ku(pe + p2) . Ku(ps + -0 + o) f(ug + oo + wasis) anddu =
dug...duosi1, dA = dAg...dAos; 1. TO study the difference between the integralBl15)
andfs*1(0)Kg(0) we divide the range of integratipll>s™1, into two setsD and its
complementD®¢, whereD is now defined by the conditio® = {|u;| = 7/[M(2s +
2)],j=1,...,2s + 1}. In this case we only need the smoothness propertids aff the
origin (inside D). For the difference in the sdd, we can use inequalityB.8), the
Lipschitz property ofK, and the differentiability of:

‘ f Su(w @ (w)dp — f S 10K (0 @™ () du
D D

2s
= O(M>*1) > 1wy ? (w)|dp = O(MS*IN~tlog?*IN),  (B.16)
HZS”j:Z

using(B.2). Focusing on the integral over the $2t of (B.15) and using(B.1), this is
bounded by

[ 1811985 2 ds + OM= 2N oge= 2N, (B.17)
DC
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As in the proof of the previous propositiptie integral in(B.17) is less than or equal to

Nfl

(277.)2$+1

S
J H f()‘zj—l)KM(/\zj)<PN()‘2j - Azj—l)‘PN()‘zjﬂ - )\2])
D*j=1

X f()\ZSJrl)QDN(/\1)9‘7N(_/\2s+1)d)t s (B.18)

whereD* = {|A4] > @/[M(2s + 2)]} U {|A; — 4] > #/[M(2s + 2)]} U ... U
{|Aos—1 + Ass] > 7/[M(2s + 2)]}. Also, the integral in(B.18) is nonzero only if
|A2|3‘A4‘3""|)‘25| = m/M.

If [Aj+1— Ajl > 7/[M(2s + 2)] for at least one indek € {1,...,2s} we can repeat
the procedure of Proposition 1 to obtain a bound of ol@éN~*MS*1log?s*1N) for
this contribution in(B.18).

We now study the case in whi¢h| > 77/[M(2s+ 2)]. First, |on(A1)| = O(M). Trun-
cating the integral atA;| = €, [ f(A1)|en(A2 — A1)|dAy = O(logN), as|Ay — A4| >
€/2 if [A1] > € and |A;] = €/[M(2s + 2)], becauseM — co. Now [i;|Ky(Ay) X
on(Az — Ap)|dA, = O(MlogN), and the integrals with respect to the remaining vari-
ables can be bounded in the same w@:18) being of orderO(N-*M3*1log?s™1N)
again

Therefore from (B.16), (B.17) and the previous discussion f0B.18), the proposi-
tion follows. |

LEMMA 13 (Bhattacharya and Rad975 pp. 97-98 113). Let P andI" be proba-
bility measures oiR? and B2 the class of all Borel subsets &7. Let @ be a positive
number. Then there exists a kernel probability measkyesuch thatsupscz2|P(B) —

I'(B)| = 2|(P—T)*W¥,| + ssumpes2 I{(0B)%*}, where¥, satisfies

¥, (BO.0)°) = o«%)) (B.19)

and its Fourier transform?¥, satisfies
¥, =0 for|t] =8x2¥37 Y3, (B.20)

Here (0B)?“ is a neighborhood of radiu« of the boundary of B | is the variation
norm of a measure in this case, ardneans convolution. |

LEMMA 14. Under Assumptions 1, 3, 4, M + N"*Mlog®N — 0, there exists
8, > 0 such that, forjt| = §;vVN/M and a number gd> 0,

N\~ 22 M
0 - A2 = expl-ault Do (7 ) M+ eu@l+ )

where F is a polynomial irt with bounded coefficients andyAt,2) is defined as in
(A.4).

Proof of Lemma 14. Similarly to Feller(1971 p. 535 we have for complexx and
Bthat|e® — 1 — B| = e¥{|a — B| + |B|%2}, wherey = max{|«/|,|8|}. We take(with
T=2in(A.3):
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1

1 . M \v/2 . .
a=loge(t)— - [it|>=| = > R [re, 2] (1) 2 (it)"™ + Ry (2)
2 N Ir|=3 rylr,l

andp = (MN~1)¥2B(3,t). Then we haveusing Lemmas 3 and 4 far= 3,

N \-1/2
la — Bl = ‘(M) O(M ™2 + ey (3))[(it5)® + (ity)3(it,)]

M
+ N [Roality)* + Ryo(ity) 2(it5)?]

N\ V2 M
5F1(Ht\|)0<<ﬁ> [M +eN(3)]+N>,

whereF; is a polynomial of degree.MNow 3|8|? = F,(|t|)O(M/N), whereF, is a
polynomial of degree .6Then

2 N\-12 M
o=+ B =rao(( ) s e+ ) (8.21)

for some polynomiaF. Now to studyy, we first bound 3| for |t| = 85\/ N/M, 85 > 0:

1/ N\ V2
1Bl = ||tH2{§<M> [1%[0,3]] + 3|V0[2,1]|]”t”}

1)
= 111?{ 2 [%al031 + 3%el2.11} = 1177, (©.22)

with 0 < Tg < % on choosings; sufficiently small Now for « we can choose 8, > 0
so small thatfor |t| = §,NN/M,

1/ N\ 2
laf = ”t”2{§<ﬁ> [I%[0,3]] + 3]V, [2,1]| + O(M ™2 + ey (3))]|t]

M
+ 3 LRad + IR

19
= 117{ 22 (500031 + 3I50[2.111 + OM~2 + 6 ()] + 1 Resl + [R]1}

= Htllz{%1 +O(M*2+eN(3))}. (B.23)

From (B.22) and(B.23) we have thae” = exp{|t|?[7 + O(M 2 + ey(3))]} for [t]| =
8,N\N/M whered, = min{8,,85}. Then

1 1
exp| -5 117+ v} = exp{ 1117 - + oM 7+ a3 |} =expi-ani (829

for oned; > 0, |t| = 6,VN/M. Because our approximation io(t) = exp{3[it|% + a}
is An(t,2) = exp{3|it|2}[1 + B], using(B.21) and(B.24) the lemma is proved H
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LEMMA 15. Under Assumptions 1, 2 (somep1l), 3, 4, M + N"*Mlog3N = 0
as N— oo, there exists > 0 such that for|t| > 8:my, | (11, to)| = exp{—d, m3},
where my = min{(MN~1)¥2logN, N(P~9/P} _5 o as N— co.

Proof of Lemma 15. First, following Bentkus and Rudzki€l982 we study the char-
acteristic function of the spectral density estimathich itself appears in the joint char-
acteristic functionDefine 7 (t,) = E[exp{itous}] = 7/(to)exp{—it,E}, where

2|t2 —1/2 N /-Lj —-1/2
() = || — ——=——— 3 W, =11(1-2it, ———
7(tz) TNV vy N W H( 2x/valanN>
and u; are now the eigenvalues of the matix,Wy. Obviously |7(t;)| = |7/(t)].
Now as
L= Varlu] = —— —— 2 Tracd(SyWi)2] = — —— 3. 2.
arfu rac
27 MN V2 N MN o2V2 &

we obtain Ej'\‘:l,ujz = 303VZMN = O(MN). Also we have that maku;| =
supz=1l(EnWwz 2)| = [SnWul. From Lemma 16for a finite positive constant;
depending orf andK

max| u;| = ¢, 9y, Py = max{M log N, N@=P/2p\ 2} s oo, as N— oo.
]

Introduce now the notation; = u;[c;9n]~* where|g| = 1. We haveX[l, g2 =
02V2MN(2¢c293) %, and(noting thatNM/93 — oo, for all p > 1)

N cPgPOR \ V4 _ M ac; o\ e
r(t2>|—H<1+4t§ 2) =gy o

=1 MNo3 V2 MN od Vg

ﬁﬁ 405 —(1/8)c1 202 ViZNMIy 2
2NM o2V2

)

>(1/2>[c21+0<M2+av<2>)]NMﬂN2

= <1+t219—'%[02+0(M2+e 2))]
ZNM N

wherec, = ¢?/(m2?4xf2(0)|K|3) is a constant from the expansion @fV,Z in powers
of M~ and we have appliefll + at) = (1 + t)2, valid fort = 0, 0 = a = 1. So for all
n > 0, asN,M — oo we have that

7(t)| = (1+ n) m2NW/R (B.25)

for |t,| > nVNM /9y and forn; > 0 andn, > 0 depending om.
Then returning to the bivariate characteristic functib® modulus is equal to

1
lon(ty, t)] = |T(t2)|eXp{_§t12§f\1m(| — 2it, 3 Q) 3y fN}a (B.26)

where )t stands for real partFrom Anderson(1958 p. 161) R (St — 2it,Qn) ™t =
R — 2it,35On) 1SN is positive definite as,Qy is real (for every N). Then
N — 2,3 Qn) ISnén > 0 for all t, € R. Thus for|t,| = 6V NM/9y, for all
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8§ >0, &R — 2,3 Qn) 1SN én > € for somee > 0 fixed depending ord, be-
cause we have thd&yQn| = O((MN)2[ZyWy[) = O(MN)~¥28y), and[én =
1/Vn, with Vy — 2#f(0), 0 < f(0) < oo, asN — 0. Then

1
exp{—atffﬁm“ — 2ity 3y QN)ilszN}

1, 1 _NM
=exp ~3 tfe, + =exp ~2 €,07 52 (B.27)
N

for |t,/V2 > 8;VNM/9y and |t,|V2 = 6;\VNM/9, and somee; > 0 depending
on é;.

Thus from (B.25) and (B.27), there exists ad, > 0 such that|e(ty, ty)| =
exp{—d,(NM/93)} inside {t:|t|] > 8;VNM/9y} C By U B, where B, = {t €
R2:[t| > (8;/N2)VNM/9y} and B, = {t € R2:|t,| = (5,/\2)VNM/¥, and
[t > (61/\/5)\] NM/9y}, and the lemma follows because
NM

— = MNmin

1
I N(pfzvafl} = M2 = o,
93 {leogzN N

asN — oo. Note thatp > 2 in 2 provides no further improvement in any boubdcause
the best rate in Lemma 1@vhich follows is already attained whehis in L. |

LEMMA 16. Under the assumptions of Thequgmn}:,NWM | = ci9n, Where0 <
¢, < oo is a constant depending on f and K aftg = max{M log N, N~P/2pp1/2}
o as N— oo.

Proof of Lemma 16. Write

I=nWwl = sup
lzl=1

> z th fF(A) Ky (0) oy (A — w)e' M IV dadw
HZ

j.h

, (B.28)

sup
lzl=1

f Fn (A, 0)dAdw
H2

say whereFy (A, @) = f()Kw(w)en(A — 0)Zn(—1)Zy () and Zy(A) = 3, z el
for any vectorz with |z| = 1. In the integral in(B.28) we need consider only the inter-
valw € [—7/M, /M ], with 7/M = € by M — co. Denote the supremun éf) when

A € [—€,€] as| f.|. Then the contribution fromA| = e to (B.28) is bounded by

sup MIKL I, | [ Ton(h = 0)24(- 12y (@) ado
IJII

lzl=1

1/2
= sup MIK]..| feuwf“ goN(a)U“ Zu(—a w>|2dwf“ zN<w>2dw] da

[z|=1
< 20MIKL 1. | (el dac= (1 K)MIoGN, (B.29)
1T

wherec( f,K) is a constant depending dnand K and we have made the change of
variablea = A — w and used the fact thdt;| Zy (w)|?dw = 27. For otherA, we see that
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Al > € and|w| = 7/M imply |A — w| > €/2, say asM — oo, SO|¢n(A — w)| = const
Then for 1 < p = 2 and using sup,|Zx(A)| = VN and Hélder inequality for 1<
p = 2, the contribution from A| > € to (B.28) is bounded by

const supf f(A)|Ky(0)Zy(0)Zy(—=A)| dAdw

lzl=1

1/2
= const supU |KM(a))|2da)f IZN(w)|2dw}
11 11

lzl=1
1/p (p—1)/p
X U fp()\)d/\] U zN(A)MP—l)d/\]
11 11
= constK|ZZ2[K ]| f[,NZP/2PM Y2 = ¢’ (f,K)NZP/2PM /2, (B.30)

using sup,|Zn(A)| = VN and f;|Zy(A)[2dA = 27. Then the lemma follows from
(B.29) and(B.30). |

LEMMA 17. Under Assumptions 1, 3, 4, M + N"*Mlog?N — 0, s=1,2,...
Tracd (= Wy, 11)%] = (MN)S[(27)2f (0)K(0)]® + O((NM)S~IM2log? N).
Proof of Lemma 17. First we observe that Trafi&yWy11)%] = (1'SyWw 1)® and

U3y 1= @m0N [ Fua)K s+ )98 g ) O O (B.31)
2

Introduce the seD = {|u;| = 7/[2M], j = 1,2}. Then using Assumptions 1 and for
d=1,

‘(2w)2N f f(p) K (g + p2) DN (1, 2)dpy duy — N(277)2F (0) Ky (0)

X fD O (1, p2) Aty At

= O [ #2113 112) = FOK O [98 y 12)|ci

=ONM) > | |1 P (py, o) dyduy + O(NM?)
j=12Jm

3
X > f|/"vjq>l(\l)(/"l9/-‘2)|dl-’vldﬂ25
i=12 Ju

which isO(M?log?N). The contribution tqB.31) of the integral for the complement to
the setD can be seen to be of order of magnit@eM ?log?N), proceeding in the same
way as in the proof of Proposition 1 |

LEMMA 18. Under Assumptions 3, 4, M + N"*MlogN — 0, 27N) 11'Wy 1 =
MK (0) + O(M2N"logN).
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Proof of Lemma 18. The proof of Lemma 18 follows writing27N)"11'Wy 1 =
T KM(/\)tbﬁ,Z’(A)d/\ and using the Lipschitz property &€ and the properties of the
Fejér’s kernel |

Proof of Lemma 8. Following the proof of Lemma 2we can write the bias
E[f*®(0)] - f™(0) as

(m,)” f Vi, (1) f B2 (O)[ F(A - 0) — F(A)]dodA

(=1)"»!

+(my)”J VmV(A)|:f()‘) - f(”)(O)] da.

Then employing the same methods of Lemma 2 with the properties of the Rérnel
this isO((m,)”N~tlogN + (m,)~?), and the lemma follows u

Proof of Lemma 9. Likewise for the discussion of the cumulants of the spectral es-
timate contained in Proposition 1 we can write

Var[ f ®(0)]

(m )21/+1
47 4 @
i P E2M,- Vi, (A = sz = ) F(A = wa) Vi, () D7 () dudA.
v 1=

(B.32)

As in Proposition 1 we have to take care of possible unboundedndssaaly from the
origin. We thus consider the set of integratibn= {u € [~m,7]%: | u;| = 1/(4M), | =
2,...,4}. Then the integral in(B.32) over the seD is

4
Fﬁj F2(A)ViZ (A)dA + O(N~*m, log® N)
' I

4
= f f2(0)f V2 (A)dA + O(N~*m, log® N + m, %),
v 11

which is 47f2(0)|V,|3 + o(1), using evenness of and its differentiability around
f(0). The integral in(B.32) over the complement to the s& can be seen to be
O(N~*m, log®N), using the finite support o¥/, and the properties ob,(\f), as in the
proof of Proposition 1 |

PROPOSITION 3 Under the assumptions of Proposition Tracd(XyWy)®] =
Tracd(2nWw)®] + O(M?®), Wi = Ay Wiy An.

Proof of Proposition 3. The proof of Proposition 3 follows as the proof of Proposi-
tion 1 The Fourier transform corresponding to the magjx is

1 (1— Dy (M)

Av(A) = —
n(d) = o— N

)7 DN(/\) = i eij)\7

j=1-N

whereDy (1)) is a version of the Dirichlet kerneDenoteay(j) =6(j =0) — N~1. We
first rewrite Trac§(SWii)S] asrasi1 =y,
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. , , o 2 ,
2 H Y1 = g—)an(rg_ — e an(ry = ra41)

1=ry,1{,...,1pe=N j=1 M
= Nf4 A= i = poes = 2D ANA = po oo — b)) Ky (A — e = )
4

PO = phe 1o = wH)AN(A = pas = was) K (A — wie) Ay (A) (27) %7
X qu(\I4S)(M1’ M;L’ AR MZs)d/\d:u"

using a change of variable as in the proof of Proposition 1 ahd =
duidusdus. .. duss.

Now we deal with the cross products implicit in the functiang( j) or Ay(A). The
product containing ndy(A) equals the integral in the case without mean-correction
(cf. Proposition 1. Then all the remaining terms have? ...,2s functionsDy(A). We
consider just one and bound its contribution to the tr&em the proof it should be
evident that similar bounds hold for the other terfbe typical term is

1 r,—r ros— I
- 2 y(rl—roﬁw( &y 3)...y<r25,1—r25>w( &y )

1=rq,r,...,rs=N

1 r,—r o — T
= _N E w( 2 3)...y(r25_1—l’25)w< 2 1)7(r1_ri),

1=ry,..., s, r1,11=N M M

which isO(NTINMS) = O(MS3), from Proposition 2and there is no additional term of
higher magnitude u

PROPOSITION 4 Under the assumptions of Proposition 2,(3Wy)32y1 =
o(Ms+l|0945+1N)_

Proof of Proposition 4. We can writel’ (2 W)y 1 as

, , 25 — rés ,
2 y(rp—rpay(ri—r)..o T an(rgs = ras1) Y (Fosi1 = Mogi2)

0=ry,r1,...,l242=N

= @)= [ FOhe) T ) Ay (-1 KO At )
sl =1

l—l4

~ q),(\jls+2)()\1’ Ny = A Ao — Ny Aogrg — Ao, —Aags1)0A4. .. DAogy g

= (277)45*1Nf H () ASY () @2 () du, (B.33)
H4S+1

say where we have changed variables as in PropositioAnd 1) = f(u)Ku(pr +

B K (g + o+ b g+ -+ posen), AT (1) = An (e + ph) .. Ay (g +

-+ + uas + ubs) grouping all the functiong\, anddu = du, du’ ... duosgy 1.

To study the difference between the integral (B.33) and fS*1(0)Ks(0) X
TAZ () @2 (w)du we divide the range of integratiofi4s*, into two setsQ and
its complement®, where() is defined by the conditiof = {|u;| = 7/[M(2s + 2)],
j=1,...,2s+1}.

In this case we only need the smoothness properti&saifthe origin(insideD). For
the difference in the se?, we can use inequalit{B.8), the Lipschitz property oK, and
the differentiability off:
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f Hy () AT () 2" (w)dp — f 310 KG (AL () 2= ? (w)dp
Q QO

2s
= O<M s+1 Squ(’\fs)(M)‘) . E |Mj ‘ ‘q)’(\‘45+2)(,u)‘du =O(MS*IN"? Iog“s*lN),
® n#sttj=2

(B.34)

using the fact that sypAZ®(u)| = O(1). Now, the integral over the se@® can be
bounded by

[ 1Al A2 )03 2 ) e+ O(M=" 21 oge= 2N, (B.35)
(9%

As in the proof of Proposition ,lthe integral over2® in (B.35) is again of order
O(N~IMs*1log?s*1N), using boundedness #Z°. Therefore from (B.33) to (B.35)
we have that

V(SN WSy 1= (27)2 N F(0)]°* [Ky (0)]° f AL () 0™ () dps

+ O(M s+1 |Og4s+lN)7

which is just O(Ms*1log**1N) becausel (Ay)?°1 = 1'Ayl = 0 because
Jueses AR () @2 () dp = ((2)**IN) 117 (Ay) %1 = 0. u

LEMMA 19. Under Assumptions 1, 3, 4, M + N M log”’N — 0 asN — oo, there
exists a positive numbé > 0 such that, for|t| = §,VN/M and a constant d> 0,

[ (1) = AN(,3)] = exp{—dy [t|}F([t])

N \-3/2 N\ L
xo<(m) +<M) M43 4 +eN<4)]),

where F is a polynomial ih with bounded coefficients.
Proof of Lemma 19. Follows as Lemma 14 u

LEMMA 20. Under Assumptions 1, @0 > 1), 3, 4, M™* + N"*Mlog®N — 0 as
N — oo, there exists a positive constant @ 0 such that fort] > &, my, [ *(t, to)]| =
exp{—d,(my)?2} with m{ = mylog™2N — oo as N— co.

Proof of Lemma 20. The proof of Lemma 20 follows as for Lemma 15 using the
fact that the asymptotic variance of the spectral estimate is unaffected by mean-correction
and using Lemma 21 u

LEMMA 21. Under the assumptions of Theorem |3, Wy | = ¢, 9, where0 <
¢, < o is a constant depending on f and K afig = 9y log®N.

Proof of Lemma 21.Write as in the proof of Lemma 16|3 Wyl =
SUPj=1|/ns Fn(A)dA|, where

Fn(A) = Zy (A (A ) Ay (A2) Ky (A3) AN (A4) Zy (Ag) on (A — Ag)
X on(Az = A2)on(Ag — Ag).
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Then changing variables and using the periodicity of all functions

s [ [ IRy
[Al=ed 3

lzl=1

= sup MIIK| .l fl..
lzl=1
X f | Zn (A1) Zn(Ag) on (A — AD)en(Az = A)on(Ag— )‘3)| da
l—[4
= HSHule”K”ooH fe‘|oof3‘¢N(M1)¢N(M2)¢N(M3)|
zl= I1
3 2 1/2
| [ e [ 2 (n- 3 ) [0 e
" I i=1

3
527M|K||w||fenm<f |¢N<a>|da> = o(1,K)MIog N,
n

with fi;]Zn(A)|2dA = 27 and (B.4). For other values of4, arguing as in the proof of
Lemma 16 and becausa;| = 7/M, we obtain that

supf f +f |Fn(A)] dA
[zl=1 J|Asl>e [ V]Az]>e/2 [Azl=e/2) J1?

=const sup | [Zy(=Ay)[f(Aq) <J [on (A — Ayl dAz) dr,
n

lzl=1 J11

X LZ‘KM(/\3)ZN()‘4)§DN(A4*/\3)|d)‘

+ const sup | |Zy(—A)f(Ay)]dAy

[z|=2 J11
X f <f [on(As— A5l dA2>|KM(/\3)ZN()\4)‘PN(/\4 —A3)|dA.
n2\Jn
Now the lemma follows using Holder inequalifyeriodicity,

sup ) [Km(A3)Zy(Ag) on(Ag — Ag)| dA

lzl=1 J11

= sup[Kul2lZyl2lenls = O(M¥2logN),

lzl=1

SURz=1JulZn(=A1) F(Ay)|dA, = O(N@~P/20)  sup|Zy| = N, and|Zy|3 = 2.
| |



