—

BINARY PARTICLE SWARM OPTIMIZATION
IN CLASSIFICATION

Alejandro Cervantes, Inés Galvdn, Pedro Isasi®

Abstract: Purpose of this work is to show that the Particle Swarm Optimization
Algorithm may improve the results of some well known Machine Learning methods
in the resolution of discrete classification problems. A binary version of the PSO
algorithm is used to obtain a set of logic rules that map binary masks (that represent
the attribute values), to the available classes. This algorithm has been tested both
in a single pass mode and in an iterated mode on a well-known set of problems,
called the MONKS set, to compare the PSO results against the results reported
for that domain by the application of some common Machine Learning algorithms.

Key words: Evolutionary computation, particle swarm optimization, pattern
clussification, swarm intelligence

Received: March 18, 2005
Revised and accepted: June 6. 2005

1. Introduction

The Particle Swarm Optimization (described in [1]) algorithm is motivated by a
social analogy. It can be related to the Evolutionary Computation techniques,
basically with Genetic Algorithms and Evolutionary Strategies. A good review of
PSO fields of application can be found in [2], and a theoretical study of a generalised
PSO is in [3].

The algorithm is population-based: a set of potential solutions evolves to ap-
proach a convenient solution (or set of solutions) for a problem. Being an opti-
misation method, the aim is finding the global optimum of a real-valued function
(fitness function) defined in a given space (search space).

The social metaphor that led to this algorithm can be summarized as follows:
the individuals that are part of a society hold an opinion that is part of a “be-
lief space” (the search space) shared by every possible individual; individuals may
modify this “opinion state” based on the knowledge of the way it fits the environ-
ment, their previous history of states, and the previous history of states of a set of

*Alegjandro Cervantes, Inés Galvian, Pedro Isasi
Computer Science Department, Universidad Carlos 111 de Madrid, Avda. de la Universidad 30,
28011-Leganés. Madrid, Spain. E-mail: alejandro.cervantes@uc3m.es, ines.galvan@uc3m.es,
isasi@ia.uc3m.es

@©ICS AS CR 2005 229

Neural Network World 3/05, 229-241

other individuals called their neighbourhood, meant to represent the relatives or
members of the social network whose opinions are taken into account in order to
build oneself opinion.

In PSO terms, each individual is called a “particle”, and is subject to a move-
ment in a multidimensional space that represents the belief space. Particles have
memory, thus retaining part of their previous state. There is no restriction for
particles to share the same point in belief space, but in any case their individuality
is preserved. Each particle’s movement is the composition of an initial random ve-
locity and two randomly weighted influences: individuality, or tendency to return
to the particle’s best previous position, and sociality, or tendency to move towards
the neighbourhood'’s best previous position.

The base PSO algorithm uses a real-valued multidimensional space as belief
space, and evolves the position of each particle in that space using the Eq.1 and
Eq.2:

”::1 =w-vig+ 1 (Pfy —Thg) +c2- Y- (P;a —zhy) (1)
b1t Lt
Tig = Tig T Uy (2)
vt Component in dimension d of the ith-particle
velocity in iteration t.

I Particle position.
¢y w020 Constant weight factors.
Pit Best position achieved so long by parrticle 7.
Dot Best position found by the neighbours

of particle 1.
tn ;. Random factors in the [0,1] interval.
w: Inertia weight.

A constraint (Vg) is imposed on vfd to ensure convergence. Its value is usually
kept within the interval [—z[**.x%*], [}** being the maximum value for the
particle position [4].

The inertia weight is usually decreased linearly from an initial value close to 1.

The PSO algorithm requires tuning of some parameters: the individual and
sociality weights, and the inertia factor. However, both theoretical and empirical
studies are available to help in selection of proper values [1][3][4][5].

A binary PSO algorithm has been developed in [1][6]. This version has attracted
much lesser attention in previous work. In the binary version, the particle position
is not a real value, but either the binary 0 or 1. The logistic function of the
particle velocity is used as the probability distribution for the position, that is, the
particle position in a dimension is randomly generated using that distribution. The
equation that updates the particle position becomes Eg. 3:

(3)

41 1 'J:f '?;'L’g < —}Iqr
Iid = 1+e id

0 otherwise

230

Neural Network World 3/05, 229-241

other individuals called their neighbourhood, meant to represent the relatives or
members of the social network whose opinions are taken into account in order to
build oneself opinion.

In PSO terms, each individual is called a “particle”, and is subject to a move-
ment in a multidimensional space that represents the belief space. Particles have
memory, thus retaining part of their previous state. There is no restriction for
particles to share the same point in belief space, but in any case their individuality
is preserved. Each particle's movement is the composition of an initial random ve-
locity and two randomly weighted influences: individuality, or tendency to return
to the particle’s best previous position, and sociality, or tendency to move towards
the neighbourhood’s best previous position.

The base PSO algorithm uses a real-valued multidimensional space as belief
space, and evolves the position of each particle in that space using the Eq.1 and

Eq.2:

v = w vy e (Dl —) + 2 - we - (Phy — o) (1)
Tig' = Tia+vig (2)
Uiy Component in dimension d of the ith-particle
velocity in iteration t.

T Particle position.
¢y 2 Constant weight factors,
Pit Best position achieved so long by particle 7.
Pyt Best position found by the neighbours

of particle 1.
iy ,2: Random factors in the [0.1] interval.
w: Inertia weight.

A constraint (2maz) is imposed on v, to ensure convergence. Its value is usually
kept within the interval [—2[}** a[%], 271°F being the maximum value for the
particle position [4].

The inertia weight is usually decreased linearly from an initial value close to 1.

The PSO algorithm requires tuning of some parameters: the individual and
sociality weights, and the inertia factor. However, both theoretical and empirical
studies are available to help in selection of proper values [1](3][4][5].

A binary PSO algorithm has been developed in [1][6]. This version has attracted
much lesser attention in previous work. In the binary version, the particle position
is not a real value, but either the binary 0 or 1. The logistic function of the
particle velocity is used as the probability distribution for the position, that is, the
particle position in a dimension is randomly generated using that distribution. The
equation that updates the particle position becomes Eq. 3:

1 if ys < —Luy
,-;c:;'l = ! ¥ 1+e "id (3)
0 otherwise

230

Cervantes A., Galvan [., Isasi P.: Binary particle swarm optimization in...

vj;: Component in dimension d of the ith-particle

velocity in iteration ¢,
o: Particle position.
3: Random factor in the [0,1] interval.

This means that a binary PSO without individual and social influences
(c1 = ea = 0.0) would still perform a random search on the space (the position in
each dimension would have a 0.5 chance of being a zero or one).

The selection of parameters for the binary version of the PSO algorithm has
not been a subject of deep study in known work.

The continuous version of the PSO algorithm is the one that has received greater
attention, mainly to resolve optimisation problems and training of Neural Networks
[7. 8,9, 10]. Not much work has been done yet using the binary PSO.

One previous work [11] also addresses classification problems. using a different
perspective and coding from the ones used in the present work. In that case each
particle encodes a single rule and an iteration process is required to generate the
full classifier.

The aim of this work is to evaluate the capacity of the binary PSO algorithm
in classification tasks. With this purpose, we have tested the binary PSO in two
running modes: the single pass mode, that evolves a set of rules that tries to
match the whole training set; and the iterated mode, that performs several cycles
with a reduced set of rules, each of which tries to classify the patterns not already
matched in the previous cycles. A reference set of problems has been chosen for tests
and the results have been compared to those obtained by common classification
techniques.

This paper is organised as follows: section 2 describes how the particles in the
binary PSO algorithm may encode the solution to a classification problem, and
the Atness function that is used to evaluate the solutions; section 3 details the
experimental setting and results of experimentation; finally, section 4 discusses our
conclusions and future work related to the present study.

2. Binary PSO and classification problems

2.1 Binary encoding

The PSO algorithm will be tested on binary (two classes) classification problems
with discrete attributes. The solution will be expressed in terms of rules. The PSO
will evolve a set. of rules that are able to assign a class from the set 0.1 to a pattern
set, part of which is used to train the system (train set). Quality of the solution
is evaluated testing the classification that the solution does of set of patterns (test
set) not used for the system evolution. Patterns are sets of values for each of the
attributes in the domain.

Patterns and rules coding is taken from the GABIL system [12] and summarised
below.

A pattern is a binary array with a set of bits for each attribute in the domain,
plus one bit for its expected classification. Each attribute contributes a number of
bits corresponding to the number of different values that the attribute may take.
For each of the attributes, a single bit is set, corresponding to the value of the

231

Neural Network World 3/05, 229-241

attribute for that pattern. The class bit is set to 0 if the pattern expected class is
class 0, and 1 if not.

A rule is an array of the same length and structure as patterns. The sets of
bits for the attributes are interpreted as a conjunction of conditions over the set of
attributes, and will be called “attribute masks”. Each condition refers to a single
attribute; each bit set for an attribute means that the rule “matches” patterns with
the corresponding value for that attribute. Attribute masks may have more than
one bit set. Finally, the class bit of the rule is the class that the rule assigns to
every pattern it matches.

For instance, if the domain has two attributes (X,Y) and three (V{, V7.
V) and two (Vy,V}Y) values respectively for the attributes, a bit string such as
“011 10 1" represents the following rule: If (X = V¥ or V&) and (Y = V') then
class is 1. The representation of this sample is as follows:

Attributes € {X,Y}
Values(X) € {v§,vf, v3}
Values(Y) € {vg,v{}
Classes = {0,1}

0 1 1 1 0 1

T

1E] v
1‘5 125 'Ug T..O ‘Ul 1

Rule: (X =vfVX=v)AY =v] — Class=1

In [11] an alternative encoding is used, where rules express only one condition
for each attribute: the attribute either has a specific value (instead of using a set
of possible values) or its value is indifferent to the rule.

2.2 Setting of the binary PSO algorithm
2.2.1 Particle encoding of the solutions and particle evaluation

Each particle in a binary swarm will encode one or more rules. The rules are
encoded in order (left to right) and evaluated in that order to provide the class
that the particle assigns to a pattern. The first rule (from the left) that matches
a pattern assigns the class in its class part to the pattern, and classification stops:
if no rule classifies the pattern the pattern can be marked as “unclassified”. As
an option, an extra bit (that has to be encoded as part of the rule set) might be
used to assign a given “default class” to the pattern. This is tested in one of the
experiments. If any of the rules in a particle classify the pattern, we say that the
particle “matches” the pattern.

As the particle dimension has to be decided at start, this means that the max-
imum number of different rules in a solution has to be estimated in advance and
becomes a new parameter for this method.

2.2.2 Single pass mode or iterated mode

We have tested two different modes on one of the problems. The first one just tries
to evolve a set of rules that matches the whole training set.

232

Cervantes A., Galvan 1., Isasi P.: Binary particle swarm optimization in. ..

The second operates with a reduced particle (that may encode only a subset
of rules) but executes several training cycles. Alfter each cycle, the best particle
in the swarm is saved and the patterns that were classified by that particle are
excluded [rom the training set for the next cycle. This loop continues until either
a fixed number of cycles is run, or there are no training patterns left unclassified.
The iterated algorithm proceeds as follows:

1. Initialize the training and test set.
2. For each cycle from 1lto maxcycles,

(a) If no unclassified patterns remain, go to 3.

(L) Run the PSO algorithm.

(¢) Select the best particle and save it.

(d) Classify the training set according to that particle.

(e) Remove the patterns already classified from the training set.

3. Ior each saved particle,

(a) Classify each unclassified pattern in the test set using the rules in the
particle.

4. Evaluate the classification made in 3 (calculate the success percentage).

After the final cycle, the test sef is classified using the saved particles, starting
with the rules in the first saved particle (from the first cycle), and continuing until
a rule matches the pattern (otherwise, it is left unclassified).

2.2.3 Fitness function

The fitness function used to evaluate a particle is a measure of how well the rules
in the particle classify the training set. Particle fitness is calculated using Eq. 4 in
the single pass mode, and Eq. 5 in the iterated mode.

In the single pass mode, fitness takes into account only the number of patterns
that the particle classifies in the right class (“good classifications”). Unclassified
patterns are part of the “total patterns” in the denominator, so they are considered
as badly classified.

Good classifications

Fitness =
i Total patierns

(4)

In the iterated mode, the preferred solutions are those that don’t misclassify
patterns (“bad classifications”). It is better to leave patterns unclassified, as they
can be correctly classified in subsequent cycles. After some empirical testing, the
fitness function was changed to Eq. 5 for the iterated mode.

Good classifications — 2 - Bud classi fication

Fitness =
] 2 Total patterns

(5)

When performing the evaluation of the test set, Eq. 4 is used in both modes.

233

Neural Network World 3/05, 229-241

2.3 Parameter selection

As said before, the binary swarm has not been given as much attention as the
continuous version in previous work. This leads to uncertainty about how the
knowledge from the continuous version can be extrapolated to the binary version.

One known difference is that the velocity constraint v, operates in a different
way in the binary version. This value gives the minimum probability for each value
of the particle position, so if this value is low, it becomes more difficult for the
particle to remain in a given position. Being —vs. the minimum velocity, this
probability may be calculated from Eq. 3:

[)
FUD ¢ - . S
P! =1)> 1 (6)

3. Experimentation

3.1 The Monk’s problems

The Monk's set [13] is used to evaluate the binary PSO algorithm described in
previous sections. Several techniques used in machine learning were tested on
these problems in [13] and those results are used for comparison.

The Monk’s problems use a domain with 6 attributes (Ag, A1, Ag, Az, Ay, As),
with respectively 3,3,2,3,4 and 2 discrete values (represented by integers), and
two classes for classification. There are 432 different possible attribute patterns in
the set.

3.1.1 Monk’s 1

The first Monk’s problem provides a training set of 124 patterns and a test set of
432 patterns (the whole pattern set). Patterns include neither unknown attributes
nor noise. The solution to the problem can be expressed as: “Classis 1 if 45 = 4,
or Ay =1, 0 otherwise”.

In our rule syntax this condition may be expressed by the following set of rules:

e Ay=1—Class 1

A;=0AA;=0—Class 1

Ag=1AA;=1—=Class 1

Ag=2nA1 =2 - Class 1

Extra rules for class 0 or a final rule-that matches all the patterns and assigns
class (.

In the rules above, if an attribute is not present, its value is meaningless (the
attribute mask for the rules has all its bits set).

234

Cervantes A., Galvén L., Isasi P.: Binary particle swarm optimization in...

3.1.2 Monk’s 2

This problem is considered the hardest of the three, being a parity-like classification.
The solution may be expressed as follows: “If exactly two of the attributes have
its first value, class is one, otherwise 0”. This classification has to be expressed as
many rules of the form:

e Ap=0ANA1=0AA=1A(A3 =1V Az =2)A (A4 =1V AL =2)AAs =
=1 — Class 1, etc.

Either their complementary rules for class 0 or a final rule that matches all the
patterns and assigns class 0 are also required.

The training sef is composed of 169 patterns taken randomly, and the 432
patterns are used as test set.

3.1.3 Monk’s 3

This problem is similar in complexity to Monk’s 1, but the 122 training patterns
(taken randomly) have a 5% of misclassifications. The whole pattern set is used for
testing. The intention is to check the algorithm’s behaviour in presence of noise.
The solution is:

e A3=0AA;=2— Class 1
o (A1 =0VA =1)A(A43=0VA =1V A;=2)—= Class 1

Again, either their complementary rules for class 0 or a final rule that matches
all the patterns and assigns class 0 are also required.

3.2 Experimental setting for the single pass mode

A set of six experiments, named E; {o Ejg, has been carried out. The first experi-
ments (E1, E2 and F3) are a base reference for comparison with other algorithms,
one for each of the Monk’s datasets (Monk's 1, Monk's 2, Monk’s 3). Ey, L5 and
Eg use the Monk’s 2 set to perform additional experiments in order to study the
effect of changes in the PSO parameters.

E, is the same experiment as Ej, using 20 rules and a greater number of iter-
ations. It is performed to check if increasing the particle dimension can improve
the results. The solution to the Monk’s problem 2 requires at least 15 rules, so
Fy can't really obtain the optimum. In this experiment the particle dimension is
enough to hold the global solution, but the algorithm takes much longer and has
a much greater space to search.

E5 is the same experiment as Ejy using a default class bit, as described in
previous sections. ‘This is the equivalent to a rule that matches all the patterns (all
mask bits are 1), but placed to the right side of the particle (so it is only taken
into account when the rest of the rules doesn't match a given pattern). Instead of
letting this rule evolve, it can be enforced just by adding a single bit to the particle,
so the cost is not great.

Eg is the same experiment as Es, but uses a linearly decreasing inertia weight
(parameter w). It starts at the value of 1.2 and decreases to ().

235

Cervantes A., Galvan L., Isasi P.: Binary particle swarm optimization in. ..

As shown in experiment Eg, the inclusion of the variable inertia weight signif-
icantly reduces the number of iterations at which the PSO reaches its best result,
but also decreases the success rate.

The last two columns in the table show the number of times the optimum was
found for both the training and the test set. The swarm finds the optimum about
50% of the time in E;, and only 1 time (out of 25) in Fj.

Fig. 1 shows the convergence curve for the best swarm in experiments £, and
Ej3 (E3 was run again with 5000 iterations to perform this comparison). Over 90%
success rate is achieved at about iteration 600 (on average).

100 %
95 %
o 90 % r
2
2 BS% G
j5]
E
v 80 % 3
5% |]
— El
~——— [H
70 % - - -
0 1000 2000 3000 4000 5000
Tterations
Fig. 1 Best particle success rate on the test set, experiments £y and Eq, single-pass
mode.

The evolution of the success rate in experiments Ey, F; and FEjg, is compared
in Fig. 1. This clearly shows how experiment Eg (with decreasing inertia weight)
converges faster but stays at a lower success rate.

3.4 Experimental setting for the iterated mode

This mode has only been tested on the Monk’s problem 2, in an attempt to achieve
a more competitive result. We ran 50 simulations for each experiment. For all
the experiments in this section, inertia is kept constant and equal to 1.0. The
velocity constraint vmax is still removed. From the typical values suggested for
the individual and social weights in the literature [1, 3, 4, 5], we have chosen
c; = 0.5, 2 = 0.5, that gave the best results in preliminary testing. The rest of
the parameters are summarized in Tab. ITL.

o Experiment E7 is the base experiment. We only plan a reduced number of
iterations in each cycle to keep this number in the same order of magnitude
of the expected number of iterations in the single pass experiments.

» Experiment Ejg tries to find the effect of increasing the number of iterations
for F5.

237

e e i

Neural Network World 3/05, 229-241

69.5 % T T T .
69 % I
68.5% |
68 % |

67.5%

Success Rate

67T % |
66.5 % |

6% | 7

655 % + ! : 3
0 2000 4000 6000 8000 10000

lierations
Fig. 2 Best particle success rate for experiments Ey, Es and Eg, single-pass mode.

Exp. Max. Rules per N.of N.of Neighbors
Iter. particle particles cycles

Ey 500 4 20 8 5

Es 1000 4 20 8 5

Es a00 4 30 8 10

Tab. III Parameters for the experiments in iterated mode.

s Experiment Eg tries to measure the effect of increasing the number of parti-
cles.

We must note that the final classifier will have a number of rules equal to the
rules in a single particle, times the number of cycles actually performed.

The total maximum number of iterations can be calculated multiplying the
maximum number of iterations per cycle times the number of cycles.

However, this mode is much faster in comparison to the single pass mode due to
two reasons: particle dimension is a fraction of the former, and each cycle reduces
the number of patterns in the training set.

3.5 Experimental results for the iterated mode

Tab. IV summarizes the results for the iterated mode experiments, in terms of
average success rate and percentage of instances where a given success rate was
achieved. For comparison, the same measures are provided for single pass experi-
ments Ey, E5s and Eg.

All the experiments show a significant improvement over the single pass mode
experiments. Experiments E; and Fx also found good solutions (over 75% success
rate) relatively often. We may conclude that 500 iterations per cycle and 20 par-
ticles are good enough settings for this problem. Also, increasing the number of
particles in Ey does not necessarily provide better results by itself.

238

Cervantes A., Galvan I., Isasi P.: Binary particle swarm optimization in...

Max. Aver. Std. Better Better Better

Exp. Iter. success Dev. than than than

T0% 75% 80%

Iter- E; 4000 71.25% 0.042 60% 18% 4%
ated Es 8000 70.81% 0.039 62% 14% -

Es 4000 70.38% 0.032 58% 4% -
Single By 10000 68.44% 0.027 40% = :
Pass Es 10000 68.88% 0.029 44% 4% E
FEe¢ 10000 67.55% 0.027 20% - -

Tab. IV Ezperimental results in iterated mode and comparison with single pass mode.

Learning Monk’s 1 Monk’s 2 Monk’s 3
Algorithm

AQI1T 100 92.6-100 94.2-100
AQ15 100 86.8 100
Assistant Profl. 100 81.3 100
MFOIL 100 69.2 100
CN2 100 69.0 89.1
Cascade Cor. 100 100 97.2
ANN (backprop.) 100 100 93.1-97.2
1D3 98.6 67.9 94.4
IDL 97.2 66.2

AQR 95.9 79.7 87
ID5R-hat 90.3 65.7

PRISM 86.3 72.7 90.3
D3 (no window) 83.2 69.1 95.6
ECOBWEB 71.8-827 674-T1.3 68.0-68.2
ID5R 9.7-81.7 69.2 95.2
TDIDT 75.7 66.7
CLASSWEB 63-71.8 57.2-64.8 75.2-854

Tab. V Results of other learning algorithms on the Monk’s problems.

The results show that the iterated mode experiments achieve better average and
specific results than the single pass mode experiments, though to compare them
properly, some additional experimentation would be useful, trying E; to Eg with
more rules per particle (up to 32).

3.6 Analysis of results

The PSO performance can be compared to the results obtained in [13] by several
machine learning algorithms shown in Tab. V.

The results above show that the single pass PSO can compete with most of the
other algorithms in experiments E; and E3. Both are considered easy problems, as
the solution can be expressed with a low number of rules. The mayor-problem in
that experiments, is that PSO has trouble finding the optimum setof Fules” Being
Es3 an easier problem than £y, trouble finding the optimum may be related to ths
noisy patterns. '

239

Neural Network World 3/05, 229-241

Regarding the Monk's 2 problem, the experiments in the single pass mode (E>,
Ey, E5 and Eg) only show a small increase in success over some of the techniques
in Tab. V. The iterated mode experiments (E7, Es and Eg), however, outperform
on the average the results of many of those techniques.

Increasing the total number of rules per particle, and the number of iterations,
gives better results in the iterated mode, and may do so in the single pass mode
too.

In Ej5 and Ef, the inclusion of a default class for all unclassified patterns leads
to slightly better results. This is used by most of the machine learning methods,
but obviously prevents a second run of a refining algorithm over the unclassified
patterns as used in the iterated mode. The inclusion of a decreasing inertia weight
in Eg forces the algorithm to converge much faster but may lead prematurely to
a suboptimal (even for the algorithm) result.

The algorithm performs fairly well in experiment E3. where some noise is added
to the pattern set. In this case, the PSO improves the results of many other
algorithms in Tab. III. Tolerance to noise can be a quite interesting feature of the
algorithm.

A main drawback of the algorithm is that there is no way of implementing
variable-length particles, which means that the maximum mumber of rules to use
as a solution has to be correctly estimated at the start to fix the particle dimension.
This has been a significant problem in the Monk's 2 problem. If the rule number is
underestimated, the algorithm will not be able to reach the maximum success rate,
as the solution can’t be expressed by the rules in a single particle. If the rule number
is overestimated, the algorithm is slower, as particle dimension is proportional to
number of rules, and the extra dimensionality makes reaching high success rates
much harder (it requires a greater number of iterations).

4. Conclusion

The binary PSO algorithm has been tested as a method to resolve classification
problems and its results have been compared to those obtained by some popular
machine learning techniques in a reference set of problems. The results previously
obtained show that the binary PSO algorithm can be competitive with other ma-
chine learning techniques, even (and more significantly) in noisy scenarios, although
some aspects may be improved. The results for complex problems (Monk’s 2) can
also improve the results of other methods when an iterated approach is used.

However, the PSO as it stands has problems finding the optimum solution in
all cases.

In future work we shall try to characterize the domains that this technique
may fit best. Also, a mechanism to implement variable-length solutions will be
developed to avoid the requirement to estimate this parameter at the start.

Further work concerning the overall behavior of the binary PSO algorithm, in
terms of parameter selection and the usage of inertia weight will also be performed
to provide guidance in the selection of proper values for the algorithm parameters.

240

Cervantes A., Galvan L., Isasi P.: Binary particle swarm optimization in...

Acknowledgments

This article has been financed by the Spanish founded research MCyT project
TRACER (Ref: TIC2002-04498-C05-04).

References

[1]

(2]

(3]

(4]

(10]

[11]

(12]

(13]

Kennedy J., Eberhart R. C., Shi Y.: Swarm intelligence. Morgan Kaufmann Publishers, San
Francisco, 2001.

Parsopoulos K. E., Vrahatis M. N.: Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing: an international journal, 1,
(2-3), 2002, pp. 235-306.

Clere M., Kennedy J.: The particle swarm — explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evolutionary Computation, 6, 1, 2002,
pp- 58-73.

Shi Y., Eberhart R. C.: Parameter selection in particle swarm optimization. In: Proceedings
of the Seventh Annual Coonference on Evolutionary Programming, 1998, pp. 591-600.

Shi Y., Eberhart R. C.: Empirical study of particle swarm optimization. In: Proceedings of
the TEEE Congress on Evolutionary Computation (CEC), 1999, pp. 1945-1950.

Kennedy J., Eberhart R. C:: A discrete binary version of the particle swarm algorithm. In:
Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, 1997,
pp. 4104-4109.

Yoshida H., Kawata K., Fukuyama Y., Takayama S., Nakanishi Y.: A particle swarm
optimization for reactive power and voltage control considering voltage security assessment.
IEEE Transactions on Power Systems, 15, 4, 2000, pp. 1232-1239.

Zhang C., Shao H.: An ann’s evolved by a new evolutionary system and its application. In:
Proceedings of the 39th IEEE Conference on Decision and Control, 2000, pp. 3562-3563.

Gudise V. G., Venayagamoorthy G. K.: Comparison of particle swarm optimization and
backpropagation as training algorithms for neural networks. In: Proceedings of the TEEE
Swarm Intelligence Symposium (SIS), 2003, pp. 110-117.

Zhang L., Zhou C., Liu X., Ma Z., Ma M, Liang Y.: Solving multi objective optimiza-
tion problems using particle swarm optimization. In: Proceedings of IEEE Congress on
Evolutionary Computation 2003 (CEC 2003), 2003, pp. 2400-2405.

Sousa T, Silva A., Neves A.: Particle swarm based data mining algorithms for classification
tasks. Parallel Comput., 30, 5-6, 2004, pp. 767-783.

De Jong K. A., Spears W. M.: Learning concept classification rules using genetic algorithms.
In: Proceedings of the Twelfth International Conference on Artificial Intelligence (IJCAT),
2, 1991.

Thrun S: B., Bala J., Bloedorn E., Bratko I., Cestnik B., Cheng J., De Jong K., Dzeroski S,
Fahlman S. E., Fisher D., Hamann R., Kaufman K., Keller S., Kononenko l., Kreuziger J.,
Michalski R. S., Mitchell T., Pachowicz P., Reich Y., Vafaie H., Van de Welde W., Wenzel
W., Wnek J., Zhang J.: The MONK’s problems: A performance comparison of different
learning algorithms. Technical Report CS-91-197, Pittsburgh, PA, 1991,

241

