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BINARY PARTICLE SWARM OPTIMIZATION 

IN CLASSIFICATION 

Alejandro CenJantes. Inés Galván. Pedro lsasi* 

Abstract: Purposc oC this work is lO show that lhe Particle Swarm Optimization 
Algorithm may improve the results of same wel! known ~Iachine Learning methods 
in the resolution of discrele classification problems. A binary version of lhe PSO 
algorithm is uscd to obtain a set oí logic rules that map binary masks (that represent 
thc attributc values), lo l he avnilable classes. This algori thm has been tested both 
in a single pass mode and in an iterated mode on a well-known set of problems, 
called the MONKS sel, lo compare lhe PSO results against lhe results reported 
COc thal domaill by lhe applicalion oC some comlllon ~Iachine Learning algorithms. 
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1. Introduction 

The Particle Swarm Oplimization (described in [11) algorithm is motivated by a 
social analogy. It can be relatoo to t he Evolutionary Computation techlliques. 
basicallv with Genetic Algorithms 8nd Evolutionary Strategies. A good review of 
PSO fields of applicatioll can be found in [21, aud a theoretical stlldy of a generalist'd 
PSO is in 131. 

The algorithm is population-bascd: a set oí potclltial solutiollS evolves to ap­
proach a cOIl\'enient solution (or sel of solu lions) for a problcm. Bcing aa opti­
misation method, lhe aim is finding the global optimum of a real-valuoo function 
(fitness function) defined. in a given space (search space). 

The social metaphor that loo to this algorithm can be summarized as follows: 
rhe individllals lhal are part of a society hold an opinion that is part of a "be­
Iief space" (the search space) sharcd by every possible individual ; individuals may 
modify tbis ·'opinioll state" based 011 rhe knowledge of the way jt fits lhe ellviron­
ment, thejr previous history of states, sud lhe previous history of sttues of a set of 
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other individualli called their neighbourhood, meant to represent the relatives or 
members of the social network whose opinions a re taken into account in order to 
build onesclf apillian. 

In PSO terms, each individual is ca1led a "partic1e", and is subject to a move­
ment in a. multidimensional space t hat represents t he belief space. Part ic1es hav(l 
memory, thus retaining part of their previotls state. There is no rest.riction Cor 
partic1es to share t.hc same point in bclicf spaec, bul. in any case their intl ividuality 
is preserved. Eaeh particle's movement is the composition of an initia.l random vc­
locity and two randomly weighted influcnces; individuality, or tendency to rcturn 
lO the partide's best previous position, and sociali ty, or tendency to ll10ve towards 
the neighbourhood's best previous position. 

The base PSO algarithm uses a real-valued multidimcnsional space us beJief 
space, and evolves the position of each particJe jn that space using Lite Eq.l and 
Eq.2: 

(1) 

(2) 

V:d: Component in dimension d of the ith-particJe 
velocity in iteratian t. 

x: ParticJe position. 
e] ,C2: Constant weight faet.ors. 
p,: Best position achieved so long by particle i. 
Pg: Best position found by t he neighbours 

of particle i . 
. t¡}] ,1f!2: Random factors in the [0,1] interval. 
w: Inertia wcight. 

A constraint (vm(¡x) is imposed on v:d to ensure convergence. lts value is usual!y 
kept within the inlerval [-x::l(¡X ,x;d(¡x], x;:t" being l he lIlaximum value for the 
particle position [4J. 

The inertia weight is usual!y decreased linearly from an initial value cloS(> tO 1. 

The PSO algorithm requires tu ning oC some parameters: the individual and 
sociality weights, alld lhe incrtia factor. However, both theoretical anel empirical 
st udies a re available to help in selection of proper values [1][3][4][5J . 

A binary PSO algorithm has becn developed in [1][6]. This version has aLtractt.--d 
much lesser attention in previous work. In the binar)' version, tiJe partide position 
is not a real value, buc either the binary O or 1 Thc logistic function of the 
partide velocity is used as the probability distributiOIl for lhe positioIl . t hat ¡s, t-he 
part ide position in a dimension is randomly generated using that distribution. The 
equation t hat updates the particle position becames Eq. 3: 
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athcr individuals caBed their neighbourhood, mcant to represenL tbe relalives or 
melllbers of the social network whose opinlans IHe tJlken into acoount in arder to 
build oncsclf opinlon. 

In PSO ter m8, each individual is called a ·'p;).rticJe~, and i5 5ubj(,'Cl to a movo­
mento in a ll1ult idimensional spacc thal rcprcscnls ~hc bclief spact'. Particles hayc 
memory, thus retaining part of t heir prcviolls state. There is no restriction for 
particlcs to shure the saJlle point in belief space, but in any case thcir illdividualily 
i8 j)rt.'srrved. Each particle's movement is thc composition of aB illitial randOIl1 ve­
locity and two randomly wcightcd influcllccs: individuality, or tendency te return 
to thc parLiclc's bcst prCViO\lli posi tioll, 1'ind sociality, or tcndcncy t.o move t.owards 
the neighbourhood's best previous position. 

T he base PSO algorithm uses a reaJ-Vl:llu~ 1 multidimensional spacc as belicf 
spacc, and evoh-es the position of each particle in that space usillg lhe &1.1 and 
Eq.2, 

.~L+I _ ,..1 + v'" "'w - .L,d id 

1J:d : Component. in dimension d oí thc ¡Lh-partido 
ve10city in iteration t. 

x: Partidc positioll. 
C¡ ,c::!: Constallt w(,ight factors. 
PI: Best posilioll achie\'ed so long by particle i. 
rg: Best position found by thc ncighbours 

of particlc i. 
w¡ ,~: Ralldom f¡u; tors in the {O,l] intcrvnl. 
lI': Inertia weight. 

(1 ) 

(2) 

A cOIHitrai nt (v",az) is imposed on vtd t;o ensu l"c convcrgcm:e. Tts value is usually 
kept within the interval [ x::tZ ,x:Jaz ), x~a% being the ma.x imum \'alue for thc 
partidc positioll [4]. 

'fhe illertia weight is uSIla.lly decreascd 1incllrly from <ti! ini t ia] value c10se to l. 
The PSO algorithm rcquircs tUlling of sonw parameters: the individuul aud 

sociality wcights, and lhe illerlia fac tor. However, both thooretical und empiricHI 
sludics are uvuiluble to he!}) in flelection of proper values [1][3][4][5J. 

A billa.ry PSO algorithm lws bccn dcvclolll'd in [1][6]. T his version has attractcd 
much lcsscr atlention in prcviomi work. In tiJe binary version, thc particlc position 
is lIot fI 1"1'81 valuc, but either the binary O or 1. The logistic function of the 
partide velocity is uscd as the probability di fll rihution for the position, that is, tlll' 
partidc position in a dirnellsion is ra.ndom ly gcncratcd using tbaL disLrilJllLioll. T he 
equatioll ! ha.! updatps the partidc positioll becOIllCS Eq. 3: 

,+, {l if 1/13 < ~.n:1 
X. d = I+~ . d 

I O othcrwis(~ 
(3) 
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V~d : Component in dimension d of the ith-particle 
velocity in iteration t. 

x: Particle position. 
1/J3: Random factor in the [0,11 inlerval. 

T his means that a binary PSO without ind ividual and social influences 
(CJ = C2 = 0.0) would still perform a random search on the spRce (lbe position in 
cach dimension would have a 0.5 chance of being a ZeTO or one). 

The selcctioll of parameters fOI the billary version of the PSO algorithm has 
not been a subject of deep study in known work. 

The COlltinuous version of lhe PSO algorithm is lhe one that has received greater 
attention, maiuly to resolve opt imisation problems and trailling of Neural Networks 
[7,8, 9, lOJ. Not much work has been done yet using the binar)' P SO. 

One previous work [11] also addresses classification problems, using a d ifferent 
perspective and codi ng from the ones used in the presenL work. In that case each 
particle eJJcodes a single rule and an iteration proccss is requircd to generate the 
full classificr. 

T he aim of t his work is to evaluate the capacity of the binary PSO algorithm 
in classification tasks. With this purpase, we have tested the binary PSO in two 
nll1ning modes: the single pass mode, lhat evolves a set of rules that tries to 
match the whole training setj and the iterated mode, that perfornls several cycles 
with a rcduccd set of rules, each of which tries te classify the patterns not already 
matched in the prcvious cycles. A refercnce set of problems has becn chosell foc tests 
and the results have been compared lo those obtained by common classificatiOIl 
techniques. 

This pa~r is organised as fo11ows: section 2 describes how the particles in lile 
binary PSO algorithm may encode the 8Olution to a c1assification problem, and 
the fi tness function that is uscd to evaluatc t he solutionsj seetion 3 details the 
experimental selti ng and rcsults of experimclltation; fillully, scction 4 disclIsst.'S our 
oonclusions and future work related to the present study. 

2 . Binary PSO and classification problems 

2.1 Binaryencoding 

The pso algorithm will be tcsted on binary (two c1asses) c1assification problcms 
with discretc attributcs. The $olution will be expresscd in tcrms of rules. The PSO 
will evolve a set of rules Ihat are able to assign a class (rom the set 0.1 to a pattern 
set, part of which is used lo t rain the system (train set). Quality of the solution 
is cvaluatcd testing lhe clnssification that the solutioll does of set of patteros (test 
set) not used for the system evolution. Patterns are sets of values for each of the 
attributes in the domain. 

Patterns and rules codillg is tukclI from the GABIL sysLcm [121 and summariscd 
below. 

A pattern is a binary array with a set of bits roc each altribute in the domain, 
plus one bit ror its expected dassification. Each altribute contribules a number of 
bits corresponding to the number of different values that the attribute may tako. 
For each of the attributes, a single bit is set, corresponding lo the value of the 
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attribute fo r that pattern. The class bit is set to O if the pattern expected cJass is 
cJass O, and 1 if noto 

A rule is an array of the same length and Sl ructure as pat.terns. Tite sets of 
bits for tile attributes are interpreted as a conjunction of conditions over the set of 
attributes, and will be called '·attribute masks". Each condition refers to a single 
attribute; each bit set for an attribut.c IIlCRIIS that thc rule '·matches" patt.crns with 
the corresponding value for that attribute. Attribute masks may have more thall 
one bit seto Finally, the cJass bit of the rule is the cJass that the rule assigns to 
c\"cry pattern it. matches. 

For instance, if the doma in has two attr ibutes (X, Y) and three (Vo':, Vi'", 
V:t:) and two (v¡f,vl/) valucs respectivcly for t he attributes, a bit string such as 
'·011 10 1" represents lhe following rule: If (X = V{ or V:l:) and (Y = VoY) then 
c1ass is 1. The representation of lhis sample is as follows: 

Attributes E {X, Y} 
Vaiues(X) E {vo,vf,v2'} 
Values(Y) E {v~,vn 
Classes = {a, l} 

011101 
vó vfv2" v8vr 1 

Rule: (X = vf V X = v~) 1\ Y = vg ----> Class = 1 

In [111 an alternative encoding is used, where rules express only one condition 
for each attribute: the atlribute cither has a spccific value (instead of using a sct 
of possible valucs) or i1.8 value is indifferent to lhe rulc. 

2.2 Setiing of t he binary P SO algori t hm 

2.2.1 Particle encodin g of t h e solu t ions a nd particle evaluation 

Each partic\e in a binary swarm will encode one or more rules. The rules are 
encodcd in order (left to r ight) and evaluated in that arder to provide the c1ass 
that tlle partide assigns lo a pattern . The firs t rule (from lhe lcft) t hat mil.lches 
a pattern assigns the class in its c1ass part to the pattern, ancl c\as.'lification stops; 
if no rule cJassifics the pattern the pattern can be markcd as "ullc1assrncd". As 
an option, all extra bit (thnt has to be cllcodcd as part of the rule sct) might be 
use<! to assign a given "default cJass" to lhe paltern . This is tcsled in one of lhe 
experiments. Ir any of the rules in apartide classify the pattern, we say that lhe 
particle "matchcs" tlle pattern. 

As tile partidp dimension has lo be det:iclt..--d al start, this means thal the max­
imum number of different rules ill a sollltion has to be estimatcd in advance snd 
becomcs a ne\\! parameter for this method. 

2.2.2 S ingle pass mode o r ilerated mod e 

\Ve have tcstcd two diffcrenL modcs on one of the problems. 'fhe first one just trics 
lO evolve a set of rules that matches the whole training sel. 
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T ite second operates with 1\ reduced partide (t hat ma.y encode only a subset 
of rules) but executes se\·eral training cyclcs. After cach cycle, lhe best partide 
in lhc swarm i5 5aved alld l he pa tterns tlmt \Vere dassilled by that partide are 
cxcluded from l he trai ning set for l he next cycle. This loop continucs unt il either 
El IIxefl number of cycles is mn , or therc are no training po.ttcrns left llucJassifi ed. 
T he iterated algorithm procccd.s as follows: 

1. lnitializc the traini ng 1.\IId t{.-:-;t ~eL 

2. For ca.ch c)'ele from 11.0 nUlxcycles, 

(a) 1f nO llnclassificd ¡mtl.erns remain, go to 3. 

(b) Run l he PSO algorith m. 

({:) Select the besl partide and 5..'WC it. 

(d) Classify thc trnining sct according to lhal parlic1c. 

(e) llcmove the patlcrns already c1ussified from the lraining seL 

J. For ench snvcd partide, 

(a) C1assifr each undassificd pattern in l he test sd usin¡t, l il e> rules in lhe 
partide. 

4. Evaluate t he classificnt ion mndc in 3 (calcula tc the suecess jlt>rcent.i.ge). 

Arter lhe fi na l cycle, the test S('t is c1assified using th(' 5aVOO panic1cs, starting 
witll tite TIlles in t he firs t saved pa.rticle (from the first cycle), and cOlltiuu ing until 
a. rule matchcs the pattern (otherwisc, it is left unclassificd). 

2.2.3 F itncss functio n 

T he fitness fuuction used to eyaluatc a particle i5 a measuIc of ho ...... well lhe rules 
in t he pan icle c1nssify the trai uing !>et. Purticle fitness is c81cllhtl,e{l using Eq . ..1 in 
t ile :-.i uglc pass mode, ami Eq. 5 in r he iterated mode. 

In l he single pass mode, fitncss t.akcs into account only lhc nUlILber of patterns 
that the partidc classifies in t ile riRht dass ("good c1assificat.iollfl·'). Unclassified 
puttl' I"US are pan of the "total pfllterns" in the denominator, so t he)' are considcroo 
as ha.d ly chl..~sified. 

P
. Good cla5s ifications 
tllW"I.~ ..,.., I 

Tota patterns 
(4) 

In the iteralcd modc, lhe prdt'.·red solutLons are t hose that den't misclassify 
]llltt c rW$ ("lwJ dassificatiolls·'). h is better te leave patterns unclassificd, as thc)' 
can be rorrE'Ctly classified in s ubscquellt cycles. Aftcr SO IlL C cmpirical testi ng, l he 
fitncss fu nct ion was chungcd lO Eq. 5 for the it:.crat.ed mode. 

Cood. classiJicutions ~ 2· BwJ c1(lssijú'(¡/.iofl 
Fitness = (5) 

Total patterns 

\VJ¡"Tl jwrforming the evalllation of the test set, Eq. 4 is lIsed itl hoth lllodes. 
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2.3 Pararneter selection 

As said before, the binary swarm has not been given as mm:h altention as the 
continllOIlS version in previous work. This leads to uncertainty about how the 
knowledgc from the continuous version can be extrapolated to the binary version. 

One known difference is that the vclocity conslraint Vmo.:t operates in a different 
way in the binary version . This value gives the mínimum probability for each valuc 
of the parlicle position, so if this value is low, it becomes more difficult for lhe 
particle to remain in a given position. Being -Vmo.:!." the minimum velocity, this 
probahility may be calclllated from Eq. 3: 

(6) 

3. Experimentation 

3.1 The Monk's problem s 

The ~'Ionk's set. [13J is used to evaluate lhe binary PSO algorithm described in 
previous sections. Several tech niques used in machine learning \Vere tested on 
thesc problems in [13} and those resu lts are used for comparison. 

The Monk's problems use a domain with 6 attributes (Ao, Al , A2, A3, .. 14 , A,,), 
with respectivcly 3,3,2,3,4 and 2 discrete values (represented by integers), and 
two classe5 ror c1assificatioll. There are 432 differcnt possible attribute paUerns in 
the set. 

3.1.1 Monk's 1 

The first Monk's problem provides a t rain ing set of 124 patterns and a test set of 
432 patterns (the whole pattern set). Pattcrns include neither unknown altributes 
llar nolse. The solution to the problem can be expressed as: "Class is 1 if Aa = Al 
or A4 = 1, O otherwise" . 

In our rule syntax this cond ition may be expressed by the following set of rules: 

• A4 = 1 ...... Class 1 

• Ao=Ol\A 1 =O ...... Class1 

• Ao = 1 1\ Al = 1 ...... Class 1 

• Ao = 2 1\ Al = 2 ...... Class 1 

• Extra rules ror dass O or a final rule that matches al! the patterns and assigns 
dass O. 

In t he rules aboye, if an attribllte is not present, its yaluc is meaningless (the 
attrihute Illusk for the rules has all its bi ts set) . 
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3.1.2 Mon k's 2 

This problem is considcroo the hllrdc:,;t ofthe three, being a parity-like classification. 
The solution may be cxpresse<1 as fo ltows: "Ir exactly two of lhe uttribu tes have 
its first valuc, c1ass is one, otherwise O". This classificuliou has lO be expressed as 
lIIally rules of the form: 

• Ao = O 1\ Al = 01\ A2 = 1/\ (Al"'" 1 V A3 = 2) 1\ (~ = 1 V ~ = 2) 1\ A5 = 
= 1 --> Class 1, etc. 

E ither t heir complementary rules for cJllSS O or 8. fina l rule that matches all the 
patterns and assigns c1ass O are also required. 

'rhe training seL is oompúsed of 169 patterns taken randomly, and the 432 
patterns are used as te6t seto 

3.1.3 Monk 's 3 

'l'his problem is similar in complexity to Monk's 1, but the 122 training patterns 
(takell random ly) have a 5% of misclassifications. 'fhe whole pattern set is used for 
testing. 'fhe inl".ention is to check the algorithm's behaviour in presence of noÍ5c. 
'fhe solution is: 

• A:)=O/\A,¡-2-+Classl 

• (Al =OVA I - l)A(~ =üVA,¡ = 1 VA1 = 2) -+ Cl<lSS 1 

Again, cithcr their complementllIy rules for c1ass O or a final rule that lUutchcs 
aH the patterns Rlld ussigns cJass O are also required. 

3.2 Experimental sett ing for the single pass mode 

A set of six expcriments, named El LO Ea, has been enrried out. 'fhe firsL expcri­
ments (E!, E2 IIJld E3) are a base referencc for compnl"isoll with other algorithms, 
oue for each of the Monk's datasct.s (Monk's 1, Mouk's 2, Monk's 3). E4, t;5 and 
E6 use the Monló 2 scl lo perform additional experimcnts in order lo study the 
cm .. "Ct of changes in the PSO pararneters. 

E4 is the same expcriment as E2, usillg 20 rules and R. greater numocr of itero 
ations. It is performcd lo check if incrfO..a.sing the partidc dimension can improve 
thc reslllts. T he fiOl ution to the Monk's problem 2 rcquires al least 15 mle.c;, so 
E2 c8n't really obta.in the optimum. in this experimcnl. t lle particle dimension is 
enough to hold thc global SOlutiOIl, but lhe aJgorithm takes much longer aud has 
a much greater spacc lo search. 

E5 i5 the same experiment as E4 using a defnult c1as5 bit, as described in 
previous sections. 'fhis is lhe equi\'lllclll lo a. ru le that matches all t he pnttcrns (1111 
mask bits are 1), but placed lo the right side of the partide (so it is ollly ta.ken 
illtu IlCcount when the rest of the rules docsn't match 11 givcn pattern). Tnstcad of 
letti ng this rule evolvc, it can be enforn .. "Ú just by adding a single bit to the partide, 
so the cost is noL great. 

Er. i5 the same experiment as E6, but uses a Iincarly decreasing inertia weight 
(pRrll.meter w). It starts at the vruuc of 1.2 /}ud decreases to O. 
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As shown in experiment Et;, the inclusion of the variable inertia weight signif­
iCllntly reduces the numbcr of itcrations al which the PSO rcaches ¡Ls best res ult, 
hut also decreases the success rateo 

The last two columns in the roble show lhe number of times the optimum was 
faund for both the training and the test seL The swarm finds lhe optimum about 
50% of lhe time in El, aud only 1 time (out of 25) in E:J. 

Fig. 1 shows the convergence curve for the best swarm in expcriments El and 
E3 (E3 was run again with 5000 iterations lo perform this comparison) . Oyer 90% 
success rate is achieved al about iteration 600 (on average). 

100 .. ;--~--~--~--_---, 

,,% 
90 % 

"o, 

SO% 

75% 

l1ernlions 

Fig. 1 Best partide success rate on the test set, experiments El and E3, single-pass 
moac. 

The cvolution of the sUCC(S.<¡ rate in expcrimellt.s 1:."4, E" ami Eij, is comparoo 
in Fig. 1. This c1early shows how experiment. Et> (with decreasing inertia weight) 
converges faster but stays at a lowcr succcss rate. 

3.4 Experimental setting [or the iterated mode 

This mode has only been tcstcd on the Monk's problem 2, in an at.tempt to aehieve 
a more eompctitive result. \\'e mn 50 simulatiollS for each experimcnt. For all 
the experimems in this section, inertia is kepL constant alld equal to 1.0. The 
velocity constraint vmax is still removed. From the typica! val ucs suggcsted for 
the ind ividual alld social weights in the litcmture [1 , 3, 4, 51, we have ChOSCll 
Cl = 0.5, C2 = 0.5, that gavp the best results in preliminary t,e,l ing. The rI..'"St of 
the parameters are summarized in Tab. l IT . 

• Experimellt 1h is the base cxpcrimcllt. \".'e only plan a reduced Bumber of 
iterations in each cycle to keep this number in the .'lame order oí magnitude 
of the expe<:tcd number of itcrations in the single pass cxperimcnts . 

• Expcriment Es t ries to find t he cffect oí increasing the llumber oí it.erations 
for E-,. 
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69.5 % 

69% 

68.5 % 

" ,,% 
" 

...... 
~ 

• 67.5 % " ~ , 
61% ~ 

66.5 % 

,,% 
E 

65.5% 
O 2000 4000 6000 8000 10000 

[tcrauons 

Fig. 2 Best parlicle success rote lar experiments E4 , Es and Es, single-pass mooe.. 

Exp. ~Iax. Rule; per N of N.of Neighbors 
Iter. particle particles cydes 

E, 500 4 20 8 5 
S, 1000 , 20 8 5 
E, 500 , 30 8 10 

Tab . In Parame.ters lar tAe experimeflts In iterated made. 

• Expeeimcnt Eg tries to measure the effcct of inceeasing the number of parti­
des. 

\\re must note that the final classificr will Illlve a numbcr of rules cqual to the 
rules in a single partide, t.imes tile lIumber of cydes actually performed. 

The total maximum numbcr of iterations can be calculatoo multiplying the 
maximum numbcr of iterations per cycle times Lhe numbcr of cyclcs. 

Howeyer, this mode is much raster in comparison to the single pass mode due to 
two eeasons; particle dimension is a fraction of the former, and each cycle rooucL-'$ 
tite number of patterns in the t raining seto 

3.5 Experimental results for the iterated mode 

Tab. IV summarizes the results foe thc iterated mode experiments, in terms of 
average succcss rale and pcrccntuge of instanccs where a given SUCL'ffiS rate was 
achieved. For com parisoll, tlle samc mensures are provided for single pass experi­
mcnr.s E4 , Es and 1:.6 . 

AH thc cxperimcllts show u significaut improvement over the single pass lIlode 
experiments. Experiments E7 and Es also found good solutions (aver 75% success 
catc) rclatively often. \Ve may condudc that 500 it;erations per cyde and 20 par­
t ides are good enough settillgs for this problcm. A1'>O, incrensing lhe nUlIlber of 
particles in Es does nOL necessarily provide better results by itself. 
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Max. Aver . Std. Better Betler Better 
Exp. Iter. success Dev. t han t han t han 

70% 75% 80% 
Iter- E, 4000 71.25% 0.042 00% 18% 4% 
"ro E, 8000 70.81% 0.039 62% 14% 

E, 4000 70.38% 0.032 58% 4% 
Single S, 10000 68.44% 0.027 40% 
p"" E. 10000 68.88% 0.029 44% 4% 

E. 10000 67.55% 0.027 20% 

Tab. IV Experimental results tn itemted mode and companson with single pass mode. 

Learning t.lollk's 1 Monk's 2 t.lonk's 3 
Algorithm 
AQJ7 100 92.G-l00 94.2-100 
AQ15 100 86.8 100 
AAAistant Prol. 100 81.3 100 
MFOIL 100 69.2 100 
eN2 100 69.0 89.1 
Cascade Cor. 100 100 97.2 
ANN (backprop.) 100 100 93.1-97.2 
1D3 98.6 67.9 94.4 
IDL 97.2 66.2 
AQR 95.9 79.7 87 
ID5R-hat 90.3 65.7 
Pn.IS~1 86.3 727 003 
103 (no window) 83.2 69.1 95.6 
ECOB\VEll 71.8-82.7 67.4-71 3 68.0-68.2 
10511 79.7-81.7 69.2 95.2 
TDIOT 75.7 66.7 
CLASSWEB 63-71. 8 57.2-64.8 75.2-85.4 

Tab. V Results of other leaming a/gorithms on the Mom 's problems. 

Thc rcsults show lhat lhe itcratcd mode experiments achicve betLer average and 
specific resu lts than the single pass mode experi mcnts, though lo compare them 
properly, sorne additional experimentation would be uscful, trying E4 to E6 with 
more ru les per particle (up to 32). 

3.6 Analysis of results 

The PSO performance can be compared to lhe resulls obtaimxl in [13) by scvcml 
mac!Jine learni ng algorit!Jms s!Jown in Tab. V. 

The results aboye show that the single pass PSO can compete with most of the 
olher algor ithms in experiments El and E3. 80th are oollsidercd easy problems, as 
lILe solutioll CRn be expresse<1 with a low tlUlnber of rules. The mayoJ.: A}foblem in 
r.hat experiments, is that PSO has troubJe finditlg the optimum set- ófrtillY.' Bdl)g 
E3 an casier problcm lhan B¡, lroublc finding lhe optimulll may be rclaled t.o Lh~ 
Iloisy patterns. 
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Regarding the r-.Ionk's 2 problem, the experiments in the single pass mock (E2, 
E4 , Es and E6) only show a small increase in success over sorne oí the techniques 
in Tab, V. The iterated mode experiments (E7 , Es and Eg), however, outperform 
on lhe average lhe reslllts of m3ny of those techniqllcs. 

Increasing the total Ilumber of rules pec partic\e, and the number of iterations, 
gives better results in the iterated rnode, and ffiay do so in rhe single pass mode 
too. 

In Er:. and Ef" the inclusion of a default c\ass for all unclassificd patterns leads 
te slightly better results. This is u&.-'(.\ by most oC the m8.chine learning Illethods, 
but obviously prevents a second run oC a refining algorithm over the unc\assified 
patterns as uscd in the iterated mode. The inclusion of a dccreasing inertia weight 
in E6 Corees the algorithm to converge much faster but may lcad prematurely to 
a suuopt imal (evell Cor the algorithm) resulto 

The algorithm performs faidy well in experiment E3. where sorne noisc is added 
ro the paneen set. In this case, the PSO improves the results of many other 
algorithms in Tab. IlI. Tolerance Lo noise can be a quite interesting fealure of the 
algorithm. 

A main drawback of lhe algorithm is that there is no \Vay oí implementing 
variable-length particles, which mcans that the maximum number of rules [Q use 
as a solution has to be corrcctly estimatcd at the start tO fi." the particle dimensiono 
This has oc'Cn a significant problem in the Monk's 2 problcm. 1f lhe rule numbcr is 
underestimated , the algorithm will not be able lO reach the maximum success rateo 
as the solution can 't be expressed by the rules in a single particle. Tí the rule number 
is overestilllated, the algorithm is slower, as particle dimension is proportional lo 

number of rules, and the extra dimensionality makes rcaching high success rates 
much harder (it requires a greater number oí iterations). 

4. Conclusion 

The binary PSO algorithm has bcell tested as a method to rcsolvc c1assification 
problerns and its results have been cornpared to those obtained by sorne popular 
machine lenrning techniqucs in a refercncc sct of problems. The results prcviously 
obtaincd show tlmL lhe binary PSO algorithm can be compctitivc with other ma­
chine lcarning techniques, even (and more significantly) in noisy scenarios, although 
somc aspccts may be improved. The rcsults for complex problems (Monk's 2) can 
aho illlprove the results of other methods when nn iteraLed approach IS uscd. 

Howcvcr, the PSO as it slands has problems finding the optimu!ll solution in 
all cases. 

In future work we shall rey to characterize the domains thut this technique 
may fit best. Also, a mechanism tO' implcment vmiable- length solutions will be 
developed to avoid the requirement to estimate this parameter at the start. 

Furtller work conccrning the overall bchavior of the binary PSO algorithm, in 
terms of pATameter sclection and the usage of inertia weight will also be performed 
to provide guidance in the selection of proper values íor the algorithm parameters. 
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