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Abstract: We suggest a new value-at-risk (VaR) framework using EGARCH (exponential generalized autore-
gressive conditional heteroskedasticity) models with score-driven expected return, scale, and shape filters.
We use the EGB2 (exponential generalized beta of the second kind), NIG (normal-inverse Gaussian), and Skew-
Gen-t (skewed generalized-t) distributions, for which the score-driven shape parameters drive the skewness,
tail shape, and peakedness of the distribution. We use daily data on the Standard & Poor’s 500 (S&P 500)
index for the period of February 1990 to October 2021. For all distributions, likelihood-ratio (LR) tests indicate
that several EGARCH models with dynamic shape are superior to the EGARCH models with constant shape.
We compare the realized volatility with the conditional volatility estimates, and we find two Skew-Gen-t
specifications with dynamic shape, which are superior to the Skew-Gen-t specification with constant shape.
The shape parameter dynamics are associated with important events that affected the stock market in the
United States (US). VaR backtesting is performed for the dot.com boom (January 1997 to October 2020), the
2008 US Financial Crisis (October 2007 to March 2009), and the coronavirus disease (COVID-19) pandemic
(January 2020 to October 2021). We show that the use of the dynamic shape parameters improves the VaR
measurements.

Keywords: dynamic conditional score (DCS); generalized autoregressive score (GAS); score-driven shape
parameters; value-at-risk (VaR); VaR backtesting.

JEL Classification: C22; C52; C58.

1 Introduction

When conditional probability distributions that include scale and shape parameters are estimated for financial
returns, then all those parameters influence volatility. A leading example of the use of those distributions
for volatility modeling is the Student’s t-distribution (Bollerslev 1987), in which the degrees of freedom
parameter influences the tail shape of the distribution. The scale parameters are dynamic in all classical
volatility models (e.g. Engle 1982; Bollerslev 1986, 1987; Nelson 1991; Harvey, Ruiz, and Shephard 1994), but
the shape parameters are constant (or not used) in most of those models. The dynamic modeling of the shape
parameters is practically relevant, because the tail shape of the conditional probability distribution varies
over time, and the dynamic models of tail shape may anticipate extreme losses on portfolios, or they may
improve the pricing of financial derivatives.

Studies in the body of literature on the tail shape dynamics of financial returns use several econometric
methods and statistical tests. An important paper is the work of Hansen (1994), in which the Skew-Gen-t
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(skewed generalized-t) distribution with dynamic degrees of freedom and skewness parameters is used,
and which we extend in the present paper. Dynamic shape parameters are also considered in the work of
Quintos, Fan, and Phillips (2001), which suggests tests of tail shape constancy that are later applied in the
work of Galbraith and Zernov (2004). Similarly, the work of Bollerslev and Todorov (2011) focuses on the
tail-behavior of the probability distribution by suggesting a nonparametric method for estimating the jump
tails of Itd semimartingale processes. Those works focus on the tail-behavior and the statistical tests allow
an unknown breakpoint. A contribution of our work, with respect to the statistical method of Quintos, Fan,
and Phillips (2001), Galbraith and Zernov (2004), and Bollerslev and Todorov (2011), is that in the present
work the whole probability distribution is modeled (and not just of the tail). Using panel data models, Kelly
and Jiang (2014) identify a common variation in the tail shape of United States (US) stock returns. Those
authors note that dynamic tail risk estimates are infeasible in a univariate time series model due to the
infrequent nature of outliers. For this reason, they use a panel estimation approach that captures common
variation in the tail risks of individual firms. In the present paper, we suggest a feasible univariate time series
model which provides dynamic tail risk estimates by using information on the whole probability distribution.
In addition, options data for the estimation of dynamic tail shape are used in several works in the body
of literature (e.g. Bakshi, Kapadia, and Madan 2003; Bollerslev, Tauchen, and Zhou 2009; Backus, Chernov,
and Martin 2011; Bollerslev and Todorov 2014; Bollerslev, Todorov, and Xu 2015). Nevertheless, options data
may not be available for the all financial assets for which tail shape dynamics are estimated. The econometric
method of the present paper directly uses the time series financial asset returns for the estimation of tail
shape dynamics.

As aforementioned, we extend the work of Hansen (1994), by suggesting score-driven dynamics for the
location, scale, and shape for the Skew-Gen-t distribution. Score-driven time series models are introduced
in the works of Creal, Koopman, and Lucas (2008, 2011, 2013), Harvey and Chakravarty (2008), and Har-
vey (2013). All score-driven filters are observation-driven models (Cox 1981), which are updated by using the
partial derivatives of the log conditional density of the dependent variable with respect to dynamic parame-
ters (Harvey 2013). The updating terms are named score functions. In the work of Blasques, Koopman, and
Lucas (2015), it is shown for univariate score-driven filters, such as Beta-t-EGARCH, that a score-driven update
of a time series model, asymptotically and in expectation at the true values of the parameters, reduces the
Kullback-Leibler distance at every step. The authors show that only score-driven updates have this property.
The work of Blasques, Lucas, and van Vlodrop (2020) presents simulation-based results, which also support
the use of the score-driven models for finite samples.

In this paper, news on asset value updates volatility not only through scale but also shape, because
the conditional volatility filters of this paper depend on dynamic scale and dynamic shape parameters. We
extend the model of Blazsek and Monteros (2017), which to the best of our knowledge is the first paper
in the literature with score-driven shape parameters, in which the use of the Beta-t-EGARCH (exponential
autoregressive generalized conditional heteroskedasticity) model (Harvey and Chakravarty 2008) with a
score-driven degrees of freedom parameter is suggested. We also refer to a previous version of the present
paper, Ayala, Blazsek, and Escribano (2019), in which the idea of the extension of the model of Blazsek and
Monteros (2017) and some preliminary results are presented.

The issue of modelling the shape parameter is also addressed in other recent papers in the literature on
score-driven models. The works of Massacci (2017) and Schwaab, Zhang, and Lucas (2020) use an extreme
value theory approach to model the tail of the conditional distribution of financial returns. In the work
of Schwaab, Zhang, and Lucas (2020), tail shape dynamics are modeled by using a two-step estimation
procedure for the generalized Pareto distribution with score-driven shape parameters. In the present paper,
the score-driven tail shape, skewness, and peakedness of financial returns are estimated in one step. The
major contribution of the present work, with respect to the papers of Massacci (2017) and Schwaab, Zhang,
and Lucas (2020), is that we model the shape parameter of the whole distribution (and not just of the tail). Due
to this point, our paper can be seen as an extension of the work of Hansen (1994), and also an improvement
of the econometric methods of Massacci (2017) and Schwaab, Zhang, and Lucas (2020), providing an elegant
representation of tail shape dynamics for financial returns.
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We use the EGB2 (exponential generalized beta of the second kind) (Caivano and Harvey 2014),
NIG (normal-inverse Gaussian) (Barndorff-Nielsen and Halgreen 1977), and Skew-Gen-t (McDonald and
Michelfelder 2017) distributions with dynamic location, scale, and shape parameters. Thus, we extend the
works on score-driven EGARCH models with constant shape parameters from the literature (e.g. Harvey 2013;
Caivano and Harvey 2014; Harvey and Sucarrat 2014; Harvey and Lange 2017). We present technical details
of the score-driven EGARCH with dynamic shape parameters models for all probability distributions, and we
also present the score functions which update the score-driven filters in closed form. The score-driven models
are estimated by using the maximum likelihood (ML) method, and we present the stochastic properties of the
score functions. For each score-driven specification, the correct specification of the probability distributions
of financial returns is tested up to the fourth conditional moment, by using the martingale difference sequence
(MDS) test of Escanciano and Lobato (2009). The consistency of the ML estimator of the score-driven shape
filters is also studied, by performing Monte Carlo (MC) simulation experiments for known data generating
processes.

For control data, daily log-return time series observations are used from the Standard & Poor’s 500 (S&P
500) index for the period of February 14, 1990 to October 21, 2021. The application of the S&P 500 data is
relevant, for example, for investors of (i) well-diversified US equity portfolios, (ii) S&P 500 futures and options
contracts, and (iii) exchange traded funds (ETFs) related to the S&P 500 index. The full sample period includes
data for three periods with high stock market volatility and extreme observations: (i) dot.com boom (January
2, 1997 to October 9, 2002), (ii) 2008 US Financial Crisis (October 1, 2007 to March 31, 2009), and (iii) part of
the coronavirus disease (COVID-19) pandemic (January 9, 2020 until the end of the sample period, i.e. October
21, 2021).

An advantage of the use of the EGB2, NIG, and Skew-Gen-t probability distributions is their flexibility,
by which they can capture asymmetric features of the probability distribution of returns, and they can also
set heavy tails for the distribution to capture possible extreme observations. Motivated by the literature,
we estimate all EGARCH models with score-driven expected return and score-driven volatility with leverage
effects (Harvey 2013). Moreover, with respect to the shape parameters of the distributions, we estimate all
possible combinations of time-invariant and dynamic (i.e. score-driven) shape parameters, to find the correct
specification of the shape parameters for each distribution.

The statistical performances of alternative score-driven models are compared by using likelihood-ratio
(LR) tests, which indicate that several specifications with score-driven shape are superior to the score-driven
models with constant shape. The LR tests are performed for the periods of February 14, 1990 to October 21,
2021 and January 3, 2000 to October 21, 2021. The use of the chi-squared distribution-based LR test is valid for
the score-driven models of this paper, because the score-driven models with constant shape are special cases
of the score-driven models with dynamic shape.

The volatility estimates for the score-driven models are compared with the 5 min realized volatility, where
the use of the latter as a proxy of true volatility is motivated by the works of Liu, Patton, and Sheppard (2015)
and Harvey and Lange (2018). With respect to realized volatility, we also refer to the seminal works of Andersen
and Bollerslev (1998) and Hansen and Lunde (2006). We use the squared error (SE) and absolute error (AE) loss
functions, to compare the realized volatility with the estimated volatility for each model. Realized volatility
data are for the period of January 3, 2000 to October 21, 2021, for which realized volatility of the S&P 500
is available. Based on the loss functions, a robust in-sample volatility forecasting accuracy comparison test
indicates the superiority of two dynamic shape specifications for the Skew-Gen-t distribution.

VaR forecasting performances of the score-driven Skew-Gen-t with constant and dynamic shape speci-
fications are compared. For the score-driven EGARCH model with dynamic shape all shape parameters are
score-driven. VaR forecasting is performed for the periods of the dot.com boom, 2008 US Financial Crisis, and
COVID-19 pandemic, by using 99% confidence level and 1 day time horizon MC-VaR estimates. For VaR back-
testing, we use the Kupiec test (Kupiec 1995), the Christoffersen test (Christoffersen 1998), and the framework
of the Basel Committee (1996), which indicate that the VaR measurement performance of the Skew-Gen-t
with dynamic shape specification is superior to that of the score-driven Skew-Gen-t with constant shape
specification for all backtesting periods.
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The in-sample statistical performance results, the in-sample volatility forecasting performance results,
and the out-of-sample VaR backtesting results suggest that the score-driven EGARCH with dynamic shape
parameters is superior to the score-driven EGARCH with constant shape parameters. This may motivate the
practical application of the extended score-driven shape specifications for the anticipation of extreme losses
in the US stock market. The remainder of this paper is organized as follows: Section 2 presents the econometric
tool of the new method. Section 3 describes the control data. Section 4 presents the method implementation
and results. Section 5 concludes.

2 Econometric tool of the new method

2.1 Econometric models with score-driven shape parameter filters

The score-driven models of the daily log-return of the S&P 500 index y, are formulated as:
Ve = pe + Uy = pp + exp(Aye; (1)

where yu, and exp(4,) are the location and scale parameters, respectively. The error term ¢, is specified
according to the following conditional distributions: (i) ¢,|F,_; ~ EGB2[0, 1, exp(&,), exp({)]. If &, = ¢, then
the probability distribution is symmetric, if &, > {, then the probability distribution is skewed to the right,
and if &, < ¢, then the probability distribution is skewed to the left. Different values of &, and {, may imply
tail-thickness on the left or right side of the probability distribution. For this conditional distribution all
moments are finite, and the log of the conditional density of y, is:

ln f()/t|rt—1; 8) = eXP(ft)F«t - /lt - ln F[eXp(ft)] - 11’1 F[eXp(Ct)] (2)
+ InT'[exp(&,) + exp({)] — [exp(&,) + exp(£)] In[1 + exp(e,)]

where I'(x) is the gamma function. (ii) €,| F,_; ~ NIG[O, 1, exp(v,), exp(v,) tanh(#,)], where tanh(x) is the hyper-
bolic tangent function, and the absolute value of parameter exp(v,)tanh(z,) is less than parameter exp(v,),
as required for NIG. For this error term v, controls for tail-thickness. Moreover, if 77, = 0 then the probability
distribution is symmetric, if #, > O then the probability distribution is skewed to the right, and if #, < 0 then
the probability distribution is skewed to the left. For this conditional distribution all moments are finite, and
the log of the conditional density of y; is:

1/2
In f(y,|F,_1;®) = v, — 4, — In(x) + exp(v,) [1 - tanhz(n,)]

+ exp(v,) tanh(z,)e, + In K [exp(vt) 1+ etz] — %ln(l +€?) 3)

where K(l)(x) is the modified Bessel function of the second kind of order 1. (iii) The third probability distri-
bution is ¢,|F,_; ~ Skew—Gen-t[0, 1, tanh(z,), exp(v;) + 4, exp(#,)], where the degrees of freedom parameter,
exp(v;) + 4, is higher than four. For this error term, v, controls for tail-thickness and #, controls for the
peakedness of the center of the probability distribution. Moreover, if 7, = O then the probability distribution
is symmetric, if 7, > 0 then the probability distribution is skewed to the right, and if 7; < 0 then the proba-
bility distribution is skewed to the left. For this conditional distribution the fourth moment is finite, and the
log of the conditional density of y, is:
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In f(y|F_:0©)

= 1, — 4, — In(2) — 1DIeXBM) +4] _mF[eXP(Vt)H

] — InTlexp(=n)]

exp(n,) exp(n,)
exp(v,) + 5] _exp(v) +5 { le, |exP0 }
’ lnr[ exp(r) |~ expr) "\ 1+ tanh(z) sene) o x fexp(v) + 4]

(4)

where sgn(x) is the signum function. The density functions for the EGB2, NIG, and Skew-Gen-t distributions
with alternative shape parameters are presented in Figure 1. Further technical details for each distribution
are presented in Appendix A.

For the shape parameters, we use the general notation p,, for k=1,...,K, for each distribu-
tion. For example, EGB2 [0, 1, exp(&,), exp(¢,)] = EGB2 [0, 1, exp(p; ), exp(p, )], where K =2 is the num-
ber of shape parameters. In the specifications of the conditional distributions of ¢, we use F,_; =
[y, Ay (115 -5 PR1)s (Vs -5 Veoy)], i.e. we condition on the initial values of all filters.

In the following, the score-driven filters for y;, 4;, and p, , are presented. First, 4, is specified as:

He=CH Ppe_y +0u, ®)

where |¢| < 1and u,, is the scaled score function of the log-likelihood (LL) with respect to y, (Appendix A
and Section 2.4). The score-driven filter for y, is named the first-order quasi-autoregressive QAR (1) model

(Harvey 2013). Second, 4, is specified as:
M=o+l +au,, ;+a sgn(—e,_)u,;,;+1) (6)

where |f| <1, u,, is the score function of the LL with respect to A, (Appendix A and Section 2.4). This
specification measures leverage effects (Black 1976), by using parameter a* in the score-driven EGARCH model
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Figure 1: Density functions for the EGB2, NIG, Skew-Gen-t (thick lines), and standard normal (thin lines) distributions.
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(Harvey 2013). The score-driven EGARCH models with constant shape parameters that use EGB2, NIG, and
Skew-Gen-t distributions are named EGB2-EGARCH (Caivano and Harvey 2014), NIG-EGARCH (Blazsek, Ho,
and Liu 2018), and Beta-Skew-Gen-t-EGARCH (Harvey and Lange 2017), respectively. Third, p, . is specified
as:

Prt = Ok + ViPre1 + Killppe @

where |y, | <1, and u, is the score function of the LL with respect to p;, (Appendix A and Section 2.4).
For each distribution the constant shape parameter model, i.e. p; ; = 6, is used as the benchmark, which
we name the econometric tool of the existing method. Lags of exogenous explanatory variables may also be
included in Egs. (5)-(7), to extend the models of this paper.

Different ways of initialization are considered for the filters. For the results reported in the present paper,
M, is initialized by using pre-sample data, 4, by using parameter 4,, and p; , by using its unconditional mean
6, /(1= v,). Nevertheless, the results of this paper are robust to other ways of initialization. For example, the
results for the case where parameters i, and p; o were used in this study for the initialization of x, and py,
are similar to the results reported in this paper.

Finally, we refer to the following two model specifications, which we studied as alternatives to the
specifications of this section. First, we studied two-component 4, filters, motivated by the work of Harvey and
Lange (2018), in which two-component score-driven volatility models are suggested with time-invariant shape
parameters. Second, we also studied multivariate filters involving the vector (x4, A, py . ... , px ), motivated
by the work of Blazsek, Escribano, and Licht (2022), in which multivariate score-driven filters are suggested
for (u,, A))’ with time-invariant shape parameters. For both alternatives, we find that the ML estimates are
not reliable due to numerical problems in the maximization of the LL function. Hence, the results for those
alternatives are not reported.

2.2 ML estimator
All models of this paper are estimated by using the ML method:

PN

T
1
O =arg mngL(yl, e Y13 0) = arg max T; In f(y,|F_1;©) (8)

where © = (0, ..., Q) is the vector of time-invariant parameters, and In f(y,|F,_;; ©) for the EGB2, NIG,
and Skew-Gen-t probability distributions is presented in Appendix A.
The T X S matrix of contributions to the gradient G (y, ..., yr; ©) is defined by its elements:

_a In f(y,|7—:©)

20, ©)

Gt,i(®) =
forperiodt =1,...,T,and parameteri = 1, ... ,S(Wooldridge 1994). The tthrow of G (y;, ..., yr; ®)isdenoted
by using G,(®), which is the score vector for the tth observation. The asymptotic covariance matrix of ® is esti-

N ~ -1
mated by using the information matrix {(l / T)ZtT=1 [Gt(®)’ Gt(®)] } (Blasques et al. 2022; Creal, Koopman,
and Lucas 2013; Harvey 2013). We use the following maintained assumptions:
(S1)  Asymptotically, f(y,|F,_;; ©y) = Po(y,|Fi_i; ©,) for ®, from the parameter set ® C R®, where p;, is the
true conditional density, and ©, represents the true values of ©.
(S2) Asymptotically, f(y,|F,_;; ®,) is a dynamically complete density (Wooldridge 1994).
(83) Forall® € O, || < Apax < 00,and|py | < Pymay < 0

forall t and k, where 4,,,, € R* and p; ., € R* donot depend on e, for all t. (S1) assumes an asymptotically
correct model specification, which is studied empirically by using the specification tests of Section 2.3. (S2)
assumes that the dynamics of the dependent variable are asymptotically correctly formulated for each period.
One of the consequences of (S2) is that, asymptotically, G,(0,)’ is a MDS (Wooldridge 1994). (S3) assumes the
uniform boundedness of the log-scale and all shape parameters, which implies finite moments for the score
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functions. (S2) and (S3) have consequences on the properties of the score functions of dynamic parameters
(Section 2.4).

2.3 Specification tests

We empirically study assumption (S1) for the first four conditional moments for each score-driven model.
The first four conditional moments of €, for the EGB2, NIG, and Skew-Gen-t distributions are reported in
Appendix A. We define the following auxiliary error term as:

N — E(&,|F_1:0) _ €, —E(e/leqs ..., €_1;09)

€ (10)
t Varl/ (e|F,_1:0)  Var'’’(e/e,, ....e,_1;0)

This transformation reduces the importance of those outliers that appear within €,. The robustness of
model specification tests is increased when residuals are standardized according to Eq. (10) (see Li 2004,
Chapter 4). The model specification test of the present paper uses the following properties:

E(ef|F;1:0) =E(¢lef,....ef ;0) =0 (11)

E[(e)" = 1170 = E[ () ~ 1lefs ... 6,:0] =0 (12)

E[(ej)3 — Skew(e,|F,_)|Foys @] = E[(e;*f — Skew(e |Frl€r, ... €l ; @] =0 (13)
E|(¢])" — Kurt(e| 7)) 70| = B[ ()" — Kurt(e Pl .. €l 30] =0 (14)

The random variables within the expectations of Egs. (11)—(14) are MDSs, which is tested by using the MDS
test of Escanciano and Lobato (2009) for all model specifications of our paper. The rejection of the MDS null
hypothesis of the Escanciano—-Lobato test for any of the conditional moments of Egs. (11)-(14) is evidence
against the correct model specification assumption (S1).

2.4 Score functions

We present the asymptotic properties of the score functions u, , u,;, and u,; , at © = 0.

First, we prove that all score functions, asymptotically at the true values of parameters, are MDSs. Score
function u,, ;, asymptotically at the true values of parameters, is a MDS due to the following arguments. Due
to (S2), G, (©,)', asymptotically, is a MDS:

dln f(y,|F1,0)| _ d1n f(y 7y, 0) %
E [ 00’ =E, o, X 00 0 (15)

where index t — 1 indicates expectations that are conditional on F,_;. Since (du,/ a®’) #0,
0ln F._.,0©
E,, [f %’;’l S )] Eoy (ke X 10,) = Ery () X k; = 0 16)
t

where k, is defined in Appendix A for each distribution. Thus, E,_, (u,,,) = 0. Score function u, ;, asymptoti-
cally at the true values of parameters, is a MDS due to the following arguments. Due to (S2), asymptotically,
G, (®,) is a MDS:

EH[O In f(ggft_l,@] =EH[6 ln f(ytlFt l,@)] —0 )

Since (04,/00@") #0

Et—l [alnf(yflptl’(a)] t—l(uﬂ,t) =0 (18)
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Score functions u ot fork =1,...,K, asymptotically at the true values of parameters, are MDSs because, due
to (S2), G, (©,)', asymptotically, is a MDS:

0ln f(ytlf}_l, 0) _ 0 1ln f(ytlrt—p 0) apk,t _
E,_, [d@’ =E_, apk,t X 0 0 (19)
Since (dp;,/9©") # 0,
01 Fi 1,0
E._, n f(y,|71,0) _ Et—1(”p,k,t) -0 (20)
aPk,t

Hence, E(u,,) = 0, E(u,,) = 0, and E(u,,,) = 0, asymptotically at the true values of parameters, due to the
law of iterated expectations.

Second, we prove the finiteness of the second moments and covariances of the score functions and their
derivatives, which is needed for the finiteness of the elements of the information matrix. The following results
are true for all ® € @.

The score-driven models are robust to extreme observations, because the score functions in those models
reduce the effects of outliers on the location, scale, and shape filters. Hence, outliers appear within the error
term ¢, rather than within the score functions that update the dynamic equations. By using the S&P 500
dataset, the outlier transformation of the score functions is presented in Figure 2, which shows that extreme
observations are never accentuated by the location, scale, and shape score functions. According to the figure,
the transformations of €, asymptotically go to zero, are linear, or are in accordance with a slowly increasing
function (e.g. the natural logarithm function In(x)).

In Appendix B, the derivatives of u s Wigs and u ot for k=1,...,K, with respect to u,, 4;, and p,, for
k=1,...,K are presented. Figures B1-B3 indicate that the derivatives of each score-function go to zero, are
linear, or are slowly increasing functions as |e;| — 0. In the illustrations of the score functions and their
derivatives, the unconditional mean estimates of the score-driven variables are used, but the same functional
forms of the score functions and their derivatives hold if the score-driven variables are replaced by their finite
boundaries in accordance with (S3).

The score functions and their derivatives are nonlinear transformations of €, for which the highest rate
of increase is a linear increase, as |¢,| — oo (Figures 2 and B1-B3).

This implies that, for the second moments and covariances of the score functions and their derivatives,
the highest rate of increase of the squared score function or its derivative is a quadratic increase, as |¢;| — oo.
For EGB2 and NIG all moments of ¢, are finite, and for Skew-Gen-t we assume that the fourth moment is finite.
Hence, there exist positive numbers a and b that define the intervals (—oo0, —a] and [b, 00), respectively, for
which the integrands of the fourth moment of ¢, bound the integrands of the second moments and covariances
of all score functions and their derivatives. This implies that the variances and the covariances of all score
functions and their second moments are finite for all score-driven models of this paper.

Third, scaled score function, asymptotically at the true values of parameters, u ot is white noise, because
u,, asymptotically, is a MDS and Var(u,, ;) < co. Score function u, ,, asymptotically at the true values of
parameters, is white noise, because u At asymptotically, is a MDS and Var(u A,t) < o0.Foreachk=1,... K,
score function Up s asymptotically at the true values of parameters, is white noise, because u pts ASYMP-
totically, is a MDS and Var(up’k‘t) < oo. Hence, if |¢p| < 1, |f| <1, and |y,| <1, then, asymptotically at the
true values of parameters, 4, 4,, and p, , are covariance stationary and are 7-measurable functions of ¢, for
alls < t.

2.5 MC simulation experiments

For all MC experiments, zero mean y, = 0, unit scale exp(4,) =1, and score-driven shape parameters are
used fort =1, ..., T. Two sets of true parameter values are used: The first set assumes high persistence for the
shape parameters (i.e. y;, = 0.95 for all k). The second set assumes low persistence for the shape parameters
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Figure 2: Score functions for models with score-driven location, scale, and shape parameters. The score functions are
presented as a function of ¢, € [-250, 250], to show the asymptotic properties of the score functions for |¢;| — co. In the score
functions the dynamic parameters are replaced by their unconditional means.

(i.e. y, = 0.15 for all k). The true values of all parameters are presented in Table 1. By using those true
values, 1,000 trajectories are simulated, and each trajectory includes T = 10, 000 periods. By using the ML
method, the parameters of the score-driven models with dynamic shape parameters are estimated for each
trajectory.

We study the parameter estimates by using non-parametric methods. In Table 1, the 5, 50, and 95%
quantiles of the 1,000 parameter estimates are reported. For the high-persistence case, the medians give a
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Table 1: Monte Carlo simulation experiments.

Truevalues #1 5% quantile Median  95% quantile Truevalues #2 5% quantile Median  95% quantile

A. Score-driven EGB2

I —0.0500 —0.0721 —0.0526 —0.0375 —0.0500 —0.1045 —0.0753 —0.0413
71 0.9500 0.9307 0.9490 0.9636 0.1500 0.0004 0.1509 0.5167
Kq 0.0500 0.0399 0.0498 0.0606 0.0500 0.0331 0.0504 0.0686
0, —0.0500 —0.0596 —0.0501 —0.0415 —0.0500 —0.0468 —0.0251 —0.0065
72 0.9500 0.9407 0.9500 0.9583 0.1500 0.0002 0.1529 0.5239
K, —0.0500 —0.0582 —0.0500 —0.0424 —0.0500 —0.0678 —0.0494 —0.0304

B. Score-driven NIG

04 0.0500 0.0290 0.0616 0.1287 0.0500 0.0146 0.0642 0.1051
71 0.9500 0.8917 0.9479 0.9754 0.1500 0.0007 0.1495 0.7644
Kq 0.0500 0.0263 0.0445 0.0673 0.0500 0.0001 0.0481 0.1193
0, —0.0500 —0.0837 —0.0674 —0.0541 —0.0500 —0.1750 —0.1406 —0.0918
72 0.9500 0.9284 0.9420 0.9534 0.1500 0.0002 0.1445 0.4403
Ky 0.0500 0.0399 0.0452 0.0509 0.0500 0.0328 0.0487 0.0647

C. Score-driven Skew-Gen-t

04 —0.0200 —0.0352 —0.0294 —0.0133 —0.04 —0.1057 —0.0859 —0.0669
71 0.9500 0.9394 0.9489 0.9587 0.15 0.0002 0.1511 0.3201
Kq 0.0500 0.0445 0.0485 0.0542 0.05 0.0405 0.0494 0.0580
0, 0.0800 0.0367 0.0729 0.2177 1.3 0.5043 1.0005 1.4774
72 0.9500 0.9466 0.9495 0.9854 0.15 0.1061 0.1382 0.1524
K, 0.0500 0.0479 0.0501 0.2987 0.05 0.0404 0.0497 0.0591
05 0.0300 0.0180 0.0317 0.0709 0.05 0.0175 0.0828 0.1621
73 0.9500 0.9082 0.9492 0.9765 0.15 0.0005 0.1504 0.6737
K3 0.0500 0.0319 0.0501 0.0782 0.05 0.0040 0.0512 0.0981

Exponential generalized beta distribution of the second kind (EGB2); normal-inverse Gaussian (NIG) distribution; skewed
generalized t-distribution (Skew-Gen-t). Number of simulated trajectories: 1,000; sample size: T = 10,000. For all models, 4, =
Oandexp(4)=1fort=1,...,T.Truevalues #1 imply high persistence for the shape parameters. True values #2 imply low
persistence for the shape parameters. The data generating processes are given by: For the score-driven EGB2 model, y, ~ EGB2
[0, 1, exp(&,), exp($ ], where &, =6, + 718,y + KqUg g and §, =6, +y,{;_4 + K Ug ;4. For the score-driven NIG model, y;, ~
NIG[O, 1, exp(v,), exp(v,) tanh(y,)], where v, =6, +y,Vv,_y + KUy, and 5, =&, + ¥4 + KU, 4. For the score-driven
Skew-Gen-t model, e, ~ Skew-Gen-t[0, 1, tanh(z,), exp(v,) + 4, exp(y,)], where 7, =6, + 7,7, + KqU, g, Vi =01 +71Viq +
KUy 1, and =8, + yoi_q + KoU, 4. For the initial condition, the unconditional mean of each dynamic shape parameter is
used.

good approximation of the true values, and the 90% confidence intervals of the quantiles include all true
values. For the low-persistence case, the medians give a good approximation of the majority of the true
values; the only exceptions are some of the constant parameters, for which the true value is not within the
90% confidence interval (i.e. , for the EGB2 and NIG models). For the score-driven Skew-Gen-t model, for
all parameters, the true value is within the 90% confidence interval for both the high- and low-persistence
cases. The medians indicate that y, and «; are consistently estimated for all cases, supporting the use of the
score-driven Skew-Gen-t model.

3 Control data

Daily data are used from the opening and closing prices of the S&P 500 index, p,_; and p,, respectively, for
trading day ¢ for the period of February 14, 1990 to October 21, 2021 (source of data: Bloomberg). Daily data
of the 5 min realized volatility of the S&P 500 are obtained from the Oxford Man Institute of Quantitative
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Table 2: Descriptive statistics for daily log-returns on the S&P 500 index, y, = In (p;/ p;_,).

Full sample period RV sample period dot.comboom 2008 US Financial Crisis COVID-19 pandemic

Start date February 14,1990 January 3,2000  January 2,1997 October 1, 2007 January 9, 2020
End date October 21,2021  October 21,2021 October 9, 2002 March 31, 2009 October 21, 2021
Sample size T 7984 5487 1452 378 451

Minimum -0.1277 -0.1277 —-0.0711 —0.0947 -0.1277
Maximum 0.1096 0.1096 0.0557 0.1096 0.0897

Mean 0.0003 0.0002 0.0000 —0.0017 0.0007
Standard deviation 0.0114 0.0124 0.0133 0.0242 0.0172
Skewness —0.4146 —0.3993 —-0.1129 0.0068 —1.0344
Excess kurtosis 11.4290 11.0638 2.2434 3.6156 13.9885

Corr (yt, yt_l) —0.0870 —-0.1120 —0.0009 —0.1552 —0.3188
Corr(y2, ¥esq) —0.1035 —0.1035 —0.1453 —0.1274 —0.0802

Realized volatility (RV); United States (US); coronavirus disease (COVID-19); correlat). Source of data: Bloomberg.

Finance (https://www.oxford-man.ox.ac.uk/resources/the-realized-library/) for the period of January 3, 2000
to October 21, 2021. The 5 min realized volatility is estimated by using data when the markets are open. This
motivates the use of the log-percentage change between the opening and closing prices for each trading day. In
Table 2, descriptive statistics of daily log-returns on the S&P 500, y, = In(p,/p,_,) fort =1, ..., T (pre-sample
data are used for p,), for the full sample and the realized volatility periods, are presented. In addition, in
Table 2, we also present the descriptive statistics of y, for the dot.com boom, 2008 US Financial Crisis, and
COVID-19 pandemic subperiods, for which VaR backtesting is performed.

The positive excess kurtosis estimates suggests heavy tails of y,. The negative correlation coefficient
Corr( yf, yt_l) suggests that high volatility often follows significant negative returns, which motivates the
consideration of leverage effects within A,. The evolution of y, is presented in Panel A of Figure 3, where
extreme observations are indicated by using the i + 40 interval; 7 and o are the sample estimates of mean
and standard deviation, respectively. In Panel B of Figure 3, the high number of outliers during the dot.com
boom, 2008 US Financial Crisis, and COVID-19 pandemic subperiods are indicated. Finally, in Panel C of
Figure 3, the conditional volatility estimates for S&P 500 returns for one of the best-performing volatility
models of the present paper are shown.

4 Method implementation and results

4.1 In-sample estimation and forecasting

The in-sample parameter estimates for all models for the period of February 14, 1990 to October 21, 2021
are presented in Tables C1-C4 of Appendix C. The in-sample parameter estimates for all models for the
period of January 3, 2000 to October 21, 2021 are presented in Tables 3—-6. For most of the specifications
the ¢ and @ parameters which measure the expected return dynamics, are significantly different from zero.
For all specifications, highly significant w, «, a*, and f parameters are found for the scale. For most of the
specifications, the dynamic parameters of shape (i.e. y;, y,, and y5), and the scaling parameter of the score
function with respect to shape (i.e. k4, k5, and k) are significant. All estimates of ¢, f, ¥, v,, and y; are less
than one in absolute value.

Moreover, we also report specification and statistical performance test results in Tables 3—6 and C1-C4.
(i) For most of the specifications, the MDS null hypothesis of the Escanciano-Lobato test is not rejected up
to the fourth moment, which supports the correct the model specification assumption (S1). (ii) In-sample
statistical performances are compared by using the LR test. For many cases, we find that the performance
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A. S&P 500 log-returns y:. The horizontal lines show [t + 47, respectively.
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C. Volatility estimates for the score-driven Skew-Gen-t model with dynamic shape parameters 7¢, v+, and 7
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Figure 3: S&P 500 log-returns y,, outliers, and volatility estimates for the period of February 14, 1990 to October 21, 2021. 1z and
o are the sample estimates of mean and standard deviation, respectively, of y,. The parameter estimates for the score-driven
Skew-Gen-t model are presented in Table C3 of Appendix C. During the sample period of 7,984 trading days there are 54
outliers, which are defined according to the 7 + 40 criterion.
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of the score-driven specifications with dynamic shape parameters are superior to the performance of the
score-driven model with constant shape parameters.

For the most general score-driven Skew-Gen-t model of this paper, the evolution of the shape parameters
tanh(z,), exp(v,) + 4, and exp(#,), and the evolution of the scale parameter exp(4,) are presented in Figure 4.
The lowest values of exp(v,) + 4 indicate the extreme events which significantly impacted the US stock market,
and the circumstances of those events are described in Appendix D.

In Tables 3-6, we also report in-sample volatility forecasting accuracy test results. As aforementioned,
we use the 5 min realized volatility at* as a proxy of true volatility (Liu, Patton, and Sheppard 2015; Harvey
and Lange 2018). The estimated conditional volatility for each model is denoted o(y,|F,_;; ®), for which
closed-form formulas are reported in Appendix A, for all probability distributions of this paper. We use
the loss functions SE;; = [6} — o(y,|F;_y; @)]2 and AE;; = |o; — o(y,|F;_;; ©)|, where i denotes the EGARCH
specification for which the conditional volatility is o (y,| F;_;; ®). We note that as alternatives we also use SE and
AE loss functions in which (a;")z and c%(y,|F,_;; ©) are included; we obtain similar in-sample forecasting
accuracy results to the ones reported in Tables 3-6.

For each probability distribution, we compare the in-sample volatility forecasting performance of the
score-driven model with constant shape parameters with that of the score-driven models with time-varying
shape parameters. We define d,(SE) = SE,, — SE, ;, wherei = cindicates the score-driven model with constant
shape parameters and i = d indicates a score-driven model with time-varying shape parameters. We also
define d,(AE) = AE_, — AE,,, where i = c indicates the score-driven model with constant shape parameters
and i = d indicates a score-driven model with time-varying shape parameters. We regress d,(SE) and d,(AE)
on a constant parameter and we estimate its standard error by using the Newey—West heteroskedasticity
and autocorrelation consistent (HAC) estimator (Newey and West 1987). A significantly positive estimate of
the constant parameter indicates that the in-sample volatility forecasting performance of the score-driven
model with dynamic shape parameters is superior to that of the score-driven model with constant shape
parameters.

In Tables 3- 6, we report the root mean SE (RMSE) and the mean AE (MAE) estimates for each specification,
and for those statistics we also report in parentheses the p-values corresponding to the constant parameter in
the linear regressions of the aforementioned loss function differences. We find two cases for the score-driven
EGARCH models with dynamic shape parameters for which the in-sample volatility forecasting performance
is significantly superior to that of the corresponding score-driven EGARCH models with time-invariant shape
parameters: (i) score-driven Skew-Gen-t model with dynamic z,, dynamic v,, and dynamic #,; (ii) score-driven
Skew-Gen-t model with constant 7,, dynamic v,, and dynamic #,. These specifications are also supported
by the LR tests, hence we consider them as the best-performing score-driven EGARCH specifications of the
present paper. We note that for the score-driven EGB2 and NIG specifications, the realized volatility-based
model performance analysis does not indicate superior performances of the score-driven models with dynamic
shape parameters.

4.2 Out-of-sample VaR backtesting

Financial institutions frequently evaluate and update their risk management systems. One of those evaluation
methods is the backtesting of VaR models, by which the predictive performance of VaR models is tested by
using out-of-sample forecasting and evaluation approaches.

In this section VaR backtesting applications are presented, for which the VaR measurements of the
score-driven models with constant and dynamic shape parameters are compared. If the score-driven shape
parameters predict tail-shape dynamics, then we will expect that the VaR predictive performance of the
score-driven models with dynamic shape parameters is superior to the VaR predictive performance of the
score-driven models with constant shape parameters. The results provide the following insight on the S&P
500 for practitioners about the quality of the VaR measurements for the new score-driven specifications. We
find that the score-driven models with dynamic shape parameters anticipate better extreme losses than the
score-driven models with constant shape parameters.
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A. Evolution of tanh(r;) for the period of February 14, 1990 to October 21, 2021
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B. Evolution of exp(v:) + 4 for the period of February 14, 1990 to October 21, 2021
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C. Evolution of exp(n;) for the period of February 14, 1990 to October 21, 2021
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D. Evolution of exp(A¢) for the period of February 14, 1990 to October 21, 2021
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Figure 4: Evolution of the shape and scale parameters for the score-driven Skew-Gen-t model with dynamic shape parameters
T;, Vg, @and ;.
The lowest extreme values of v, indicate the extreme events (Appendix D).



DE GRUYTER A. Ayala et al.: Anticipating extreme losses using score-driven shape filters = 19

Extreme observations in the S&P 500 log-returns are concentrated during the period of the dot.com
boom, 2008 US Financial Crisis, and COVID-19 pandemic, which are some of the most recent high-volatility
periods presented in Appendix D. In Table 2, we present the dates of the periods of the dot.com boom, 2008
US Financial Crisis, and COVID-19 pandemic. Moreover, in Figure 3A and B, we present the concentration of
the outliers for those subperiods of the sample. This motivates the consideration of those periods in the VaR
backtesting applications. The design of the VaR backtesting procedure of this paper is in accordance with
the framework of the Basel Committee (1996), in which a 1 day VaR is estimated out-of-sample at the 99%
confidence level. In the present paper, a VaR (1 day, 99%) is estimated for each of the trading days of the
backtesting period (Table 2).

An extending-window estimation approach is used for all score-driven models. For all VaR estimates, the
first observation of the extending-window is February 14, 1990 and the last observation is for the last trading
day before the day of the VaR estimate. VaR is approximated after the parameter estimation by using MC
simulations, for which 10,000 possible log-returns are simulated for the trading day after the last observation
of each rolling window. VaR (1 day, 99%) is defined by the 1% quantile of the log-return simulations. Motivated
by the results presented in Section 4.1, the performance of VaR is compared for the score-driven Skew-Gen-t
models with constant and dynamic shape parameters. All shape parameters are time-varying for the dynamic
shape filters. See the VaR estimates in Figure 5.

To evaluate the VaR performance of different models, we use the Kupiec test to evaluate whether the
proportion of VaR (1 day, 99%) failures is significantly higher than 1% during the backtesting period. The null
hypothesis of the Kupiec test is that the observed VaR failure rate is equal to the failure rate suggested by the
VaR confidence interval (i.e. 99% in this paper). The Kupiec test statistic is:

1= p)lh—X

) .
Tb Tb

where p = 1%, T, is the sample size for the backtesting period, and X is the number of VaR failures. Under the

null hypothesis, the probability distribution of the Kupiec test statistic is the chi-squared distribution with 1

degrees of freedom.

The number of VaR failures and the Kupiec test results for the dot.com boom, 2008 US Financial Crisis,
and COVID-19 pandemic backtesting periods are presented in Table 7. The results indicate a clear difference
between the VaR forecasting accuracy of the score-driven EGARCH model with constant shape parameters and
the score-driven EGARCH model with dynamic shape parameters: (i) For the score-driven EGARCH model with
constant shape parameters, the null hypothesis of the Kupiec test is rejected at the 1% level of significance
for the dot.com boom and it is rejected at the 10% level of significance for the 2008 US Financial Crisis and
COVID-19 pandemic. (ii) For the score-driven EGARCH model with dynamic shape parameters, the same null
hypothesis is never rejected. These results indicate for practitioners that financial institutions or investors
can anticipate extreme losses better by using score-driven models with dynamic shape parameters than by
using score-driven models with constant shape parameters.

We also performed the Christoffersen test. The null hypothesis of the Christoffersen test is that the arrival
times of VaR failures are independent. If that null hypothesis is rejected, for example, due to consecutive VaR
failures within the backtesting period, then the econometric model is not updated correctly after extreme
observations. For all cases of Table 7 we find that the Christoffersen test does not provide evidence against
the model specifications.

The VAR backtesting application indicates that, during periods of high market volatility, the VaR mea-
surements of the score-driven models with dynamic shape parameters are improved, compared to the VaR
measurements of the score-driven models with constant shape parameters.

Kupiec = -2 In
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A. VaR for constant shape (thin solid); VaR for dynamic shape (thick solid) for the dot.com boom
(The backtesting period is from January 2, 1997 to October 9, 2002.)
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B. VaR for constant shape (thin solid); VaR for dynamic shape (thick solid) for the 2008 US Financial Crisis
(The backtesting period is from October 1, 2007 to March 31, 2009.)

008 012
I
|

0.04

<012 -0.08 -0.04 0.00

C. VaR for constant shape (thin solid); VaR for dynamic shape (thick solid) for the COVID-19 pandemic
(The backtesting period is from January 9, 2020 to October 21, 2021.)
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Figure 5: Log-returns on the S&P 500 (solid circles) and out-of-sample VaR (1 day, 99%) estimates for the score-driven
Skew-Gen-t model are presented. All shape parameters are dynamic for the Skew-Gen-t dynamic-shape specification.

After an extreme S&P 500 observation, for most of the cases, the VaR for dynamic shape (thick solid) predicts a more severe
potential loss than the VaR for constant shape (thin solid). For all out-of-sample VaR estimates we use an expanding window,
which starts at February 14, 1990 and ends on the trading day before each VaR estimate.
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Table 7: VaR backtesting for the score-driven Skew-Gen-t model.

VaR for constant shape VaR for dynamic shape

A. dot.com boom

Pr, probability 1% 1%
X, VaR failures 28 21
T, sample size for backtesting period 1, 452 1, 452
Kupiec test statistic 9.9407 2.5671
Kupiec test, p-value 0.0016 0.1091

B. 2008 US financial crisis

Pr, probability 1% 1%
X, VaR failures 8 6
T, sample size for backtesting period 378 378
Kupiec test statistic 3.6032 1.1176
Kupiec test, p-value 0.0577 0.2904

C. COVID-19 pandemic

Pr, probability 1% 1%
X, VaR failures 9 7
T, sample size for backtesting period 451 451
Kupiec test statistic 3.5020 1.1885
Kupiec test, p-value 0.0613 0.2756

Value-at-Risk (VaR); skewed generalized t-distribution (Skew-Gen-t); United States (US).

5 Conclusions

We have suggested the use of anew econometric method for VaR that anticipates consecutive extreme losses, by
using score-driven filters of the shape parameters for the EGB2, NIG, and Skew-Gen-t probability distributions.
The score-driven shape filters update the tail shape, peakedness, and skewness of the conditional distribution
of returns. The score-driven models have been estimated in one step by using the ML method. The consistency
of the ML estimator for the shape parameters of the Skew-Gen-t model has been supported by performing MC
simulation experiments.

As control data, daily log-returns of the S&P 500 index have been used. According to the LR test results,
the in-sample statistical performances of the score-driven shape filters have been superior to the in-sample
statistical performances of the score-driven models with constant shape parameters. According to the realized
volatility-based model performance results, the Skew-Gen-t model is superior to the EGB2 and NIG models.
VaR backtesting has been performed for the period of the dot.com boom, 2008 US Financial Crisis, and
COVID-19 pandemic, by using the backtesting framework of the Basel Committee. The VaR results have
indicated that the score-driven models with dynamic shape parameters anticipate extreme losses better than
the score-driven models with constant shape parameters.

These results motivate the use of the new econometric method for VaR measurements, in order to properly
update the VaR and anticipate potential extreme losses on the portfolios.
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Appendix A

In this appendix, for each error specification, the conditional distribution of €,, the first four conditional
moments of €;, the conditional distribution of y,, the conditional mean of y,, the conditional volatility of y,,
the log of the conditional density of y;, the scaled score function for location u wts and the score functions for
scale u, , and shape u,, ; , are presented.

(i) For the score-driven EGB2 model, ¢,|F,_; ~ EGB2[0, 1, exp(&,), exp(¢,)], where the distribution is con-
ditional on F,_; = [uy, A, (p115 -+ Px1)> W1, - Ve_y)]. The conditional mean, conditional variance,
conditional skewness, and conditional kurtosis of €, are given by:

E(e,|F_y: ©) = ¥[exp(&)] — ¥[exp(¢,)] @A)
Var(e;|F;_y: ©) = ¥V[exp(&)] + ¥V [exp(¢)] (A.2)
Skew(e,|F,_;: ©) = ¥V [exp(&)] — ¥ [exp(()] A3)
Kurt(e,|7;_;: ©) = ¥ [exp(&)] + ¥ [exp((,)] (A.4)

respectively, where © is the vector of parameters and po (x) is the polygamma function of order i. For
the score-driven EGB2 model, y,|F,_; ~ EGB2[u,, exp(—A4,), exp(&,), exp({,)]. The conditional mean and
the conditional volatility of y, are

B Fiis ©) = i, + exp(2) { WOlexp(&)] - ¥ lexp(&)] | (a.5)

o0, IF-1:0) = expli) { W lexp(&)] + ¥V exp(c] ) (A.6)

respectively. The log of the conditional density of y, is

In f(y,|F;_; ©) = exp(&)e; — A, — InT'[exp(&,)] — InT'[exp(E,)]
+ InT'[exp(&,) + exp({)] — [exp(&,) + exp(£)] In[1 + exp(e,)] (A7)

The score functions with respect to y;, 4;, &;, and ¢, are as follows. First, the score function with
respect to y;, is

0ln f(yz|7?[_1;®) _

. U, X {‘I’(” lexp(&)] + P [exp(Z)] } exp(24,) = u,,, x k, (A.8)

where

e = { P lexp(@)] + POlexo(c)] | exoli) { fexpi@) + expi@l 20 —expie) ) 09

is the scaled score function. Second, the score function with respect to 4, is

— 0 In f(ytlrt—1;®)

" €; exp(e,)
w 02

exple) + 1 —exp(&le, — 1 (A.10)
t

= [exp(&,) + exp(¢,)]
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Third, the score function with respect to &, is

— 0ln f(yt|Ft_1§®)

i PY: = exp(&)e, — exp(&) ¥ lexp(&,)]
t

+ exp(&) PO exp(&,) + exp(,)] — exp(&,) In[1 + expl(e,)]

Fourth, the score function with respect to ¢, is

— dIn f(ytlf}_l;@) _

Ug e oc, - exp(g“t)‘P(O) [exp(¢)]

+exp(¢)¥”[exp(&,) + exp(¢)] — exp(¢) In[1 + exp(e,)]

(A.11)

(A.12)

(ii) For the score-driven NIG model, €|F,_; ~ NIG[O, 1, exp(v,), exp(v,) tanh(z,)], where tanh(x) is the
hyperbolic tangent function. The conditional mean, conditional variance, conditional skewness, and

conditional kurtosis of €, are given by:

tanh(z,)

E(e/|F_1;0) = — 5
[1 - tanhz(nt)]

exp(—v,)

Var(e,|F,_y; ®) =
[1 — tanh*(y7,)

]3/2

3 tanh(zy,)

Skew(¢,|F;_1;®) =
exp(v,/2) [1 — tanh’(y,)

]1/4

3[1 +4 tanhz(nt)]

Kurt(e,|F,_1;0©) =3+ v
exp(v,) [1 - tanhz(nt)]

respectively. For the score-driven NIG model, the conditional distribution of y; is
Vel Fr_y ~ NIG[p,, exp(4,), exp(v, — 4,), exp(v, — 4,) tanh(z,)]
The conditional mean and the conditional volatility of y, are

E|Fiy; ©) = p, + SXPU) tanh(n)

1/2
[1 - tanhz(nt)]
1/2
exp(24, — v
oyl Fe;0) = p(—tt)3/2
[1 - tanhz(nt)]
respectively. The log of the conditional density of y, is
, 1/2
In f(y,|F,_1;©) = v, — 4, — In(x) + exp(v,) [1 — tanh (’h)]

+ exp(v,) tanh(z,)e, + In KV [exp(vt)\ /14 ef] - % In(1+¢7)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

where K?(x) is the modified Bessel function of the second kind of order 1. The score functions with

respect to y, 4;, v, and #, are as follows. First, the score function with respect to y, is
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0ln f(ytIT’H;@)
O,

€
exp(4)(1 +¢€7)

K© \J1+€e| +K? V146
. exp(v, — A, y [exp(vt) + et] + [exp(vt) + et]
\J1+€ 2K® [exp(vt)\ /1+ etz]

where K(O)(x) and K(z)(x) are the modified Bessel functions of the second kind of orders 0 and 2,
respectively. Define the scaled score function with respect to y;, as

= —exp(v; — 4,) tanh(y,) +

(A.21)

_ 0l fy|F1:0) | exp(24,) = dIn f(y|F,4;0)

x k1 (A.22)
GITh IR t

M.t
Second, the score function with respect to 4, is

_ oM fylFi®) _ €
e = oa, = —1 — exp(v,) tanh(z,)e, + 1+€t2

0) 2 ®)] 2
. exp(vt)ef y K [exp(vt)\ /1+ €t] +K [exp(vt) 1+ et]

\1+¢€ 2KW [exp(vt) 1+ €f]

Third, the score function with respect to v, is

(A.23)

_ dIn f(y,|Fi_y;©)

1/2
Vit 5 =1+ exp(v,) [1 — tanhz(nt)] + exp(v,) tanh(r,)e,
t

K© [exp(v[) 1+ etz] + K@ [exp(vt) 14 ef]

2K [exp(v[)\ /1+ ef]

—exp(v)y/1+ €2 X (A.24)

Fourth, the score function with respect to #, is

_ 0 1In f(y,|Fy;©)

nt on, = exp(vt)sechz(m)e[ — exp(v,) tanh(y,)sech(n,) (A.25)

where sech(x) is the hyperbolic secant function.

(iii) For the score-driven Skew-Gen-t model, €,|F,_; ~ Skew — Gen — t[0, 1, tanh(z,), exp(v;) + 4, exp(#,)].
The conditional mean, conditional variance, conditional skewness, and conditional kurtosis of ¢,
respectively, are:

exp(—n,) 2 exp(v)+3 }
2 tanh(z)[exp(v,) + 4] ‘ B{ S explr)

B{ 1 exp(v)+4 }
exp(n,)’  exp(n,)

Var(e,|F,_; ®) = [exp(v,) + 4]> ) (A.27)

E(etlf’[_l; ®) = (A26)

2 3 exp(vt)+2] 2 2 [ 2 exp(vr)+3]
5 [3 tanh“(z,) + 1]B[exp(m), ewt) | 4 tanh”(z,)B xp0r)” expln)
[ 1 exp(vt)+4] 2 [ 1 exp(v)+4

exp(n,)’  exp(n,) exp(n,)’  exp(y,)
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3 exp(—,)
Skew(e, |7, @) = 2 @nh(z)lexp(v) + 4] ‘ (A.28)
B3[ 1 exp(v[)+4]
exp(n,)”  exp(n,)

><{8 tanhz(n)B3[ 2 ,eXp(Vf)JrB —3[1+3 tanhz(Tt)]B
exp(n)”  exp(n,)

y [ 1 exp(v)+ 4]3[ 2 exp(v)+ B]B[ 3 exp(v)+ 2]
exp(n)’  exp(n,) exp(n)’  exp(n,) exp(n,)’ exp(n,)

2 > 1 exp(v,) + 4 [ 4 exp(vt)+1]}
+2[1+tanh (r[)]B [exp(m), exp(r) B o)’ expln)

4 exp(—n,)
Kurt(e,[F,._; @) = 1&Xpv) + 41" =2 {—48 tanh“(q)B‘*[ 2 explv) +3] (A.29)

4[ 1 exp(vt)+4] exp(n,)’ exp(n,)
exp('lt), exp("h)

2 2 1 exp(v,) + 4 2 exp(v,) + 3
+24 tanh(z)) [1+3 tanh (Tt)]B[exp o expf(m) ]Bz[exp m expzm) ]

[ 3 exp(v)+2
exp(n)’ exp(n,)

ol ol gy 20

[ 2 exp(v) + B]B[ 4 exp(v,) +1
exp(n,)”  exp(n,) exp(n,)’  exp(n,)

) 4 5[ 1 exp(vy) +4] [ 5  exp(v,) }
+ [1+ 10 tanh”(z,) +5 tanh (Tt)]B [exp(m)’ exp(n) B exp(n,)” exp(n)

respectively; B (x,y) = T'(x)['(y) /T'(x + y) is the beta function. For the score-driven Skew-Gen-t model,
the conditional distribution of y, is

Vel Fr_y ~ Skew — Gen — t[y,, exp(4,), tanh(z,), exp(v,) + 4, exp(n,)] (A.30)

The conditional mean of y, is

B{ 2 exp(v)+3 }
E(y,|F,_1:©) = u, + 2 exp(4,) tanh(z,)[exp(v,) + 4] x expln) ”_explr)

1 exp(v)+4 } (A31)
exp(n,)’  exp(n,)
The conditional volatility of y, is
o (y,|F_1;©) = exp(A,)[exp(v,) + 4] (A.32)
1/2
2 3 exp(v,)+2 2 2 2 exp(v,)+3
X [3 tanh(z,) + 1]B [exp(nf)’ expl,) ] _ 4 tanh’(z)B [exp(m)’ explr,) ]
B[ 1 exp(v)+4 BZ[ 1 exp(vt)+4]
exp(n)’  exp(n,) exp(n,)”  exp(r,)
The log of the conditional density of y, is
In[exp(v,) + 4] exp(v,) + 4
In f(y,|F,_;0)=n— A —1InQ) - ———t— = —InT"| =—2L | —InT[exp(—n,)] (A.33)
YelFro Me t exp(r,) exp(1,) pl—#;
exp(v,) +5| exp(v,)+5 | €| exP0re)
+InT" - In< 1+
[ exp(#,) exp(#,) [1 + tanh(z,) sgn(e,)]exPw) X [exp(v,) + 4]

First, the score function with respect to 4, is
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01In f(y,|Fi_130) _ [exp(v,) + 4] exp(A,)e,|€,|*PU—2 y exp(v,) + 5
o, le,|exPt) + [1 + tanh(z,) sgn(e,)]*P)[exp(v,) + 4] [exp(v,) + 4] exp(24,)
(A.34)
exp(v,) +5 <k
[exp(vt) + 4] exp(24, )~ Uy 2 K

where u,, . is the scaled score function. Second, the score function with respect to 4, is

u dln f (yt|7:‘t—1’®) e, 1P [exp(v,) + 5]
At = 0 le,|#xPt) + [1 + tanh(z,) sgn(e,)]exP)[exp(v,) + 4]

Third, the score function with respect to 7, is

_ 01n f(y,|F_1;0) _ [exp(v,) + 5lle,|*" sgn(e,)sech(z,)
o ar, [sgn(e,) sinh(z,) + cosh(z,)]

-1
X { €, [P 4 [1 + tanh(z,) sgn(e,)]™P") [exp(v,) + 4] }
Fourth, the score function with respect to v, is

_91In f(y|F1;0) _ _exp(v,—n)
vt v exp(v,) + 4

exp(v,) + 4]

—exp(v, \P(O)[
p(t ﬂt) exp(m)

exp(vy) +5

+ ex - ‘P(O)[
plv =) exp(r,)

exp(v, — n,)[exp(v,) + 5] ,|=®
[exp(vt) + 4]{]€,|*®0) + [1 + tanh(z,) sgn(e,)]*Pt) [exp(v,) + 4] }

( )Ind 1 e
— SXPVe T e n{ + [1+ tanh(z,) sgn(e,)]exPt)[exp(v,) + 4] }

Fifth, the score function with respect to #;, is

_ 0 ln f(y,|F,_1;0) 14 In[exp(v,) + 4] + exp(v,) + 4‘1’ [exp(vt) + 4]
t on, exp(n,) exp(n,) exp(r,)

1 ‘P(O)[ 1 ] _ exp(v) + 50 [exp(vt) +5]
exp(7,)

exp(;,) exp(n,) exp(r,)
exp(v,) + 5 In { 14 le;|*P)[1 + tanh(z,) sgn(e,)]~ <P }
exp(#,) exp(v,) + 4

[exp(v,) + 5]|€,|**P") In[1 + tanh(z,) sgn(e,)]
le, &Pt + [exp(v,) + 4][1 + tanh(z,) sgn(e,)]exptr)

3 [exp(v,) + 5]]€,|*P") In(|e, )
le, &Pt + [exp(v,) + 4][1 + tanh(z,) sgn(e,)]exptr)

(A.35)

(A.36)

(A.37)

(A.38)
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Appendix B
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Figure B1: Derivatives of score functions for the EGB2 model with score-driven location, scale, and shape parameters, as a
function of ¢, € [-250, 250].
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Figure B2: Derivatives of score functions for the NIG model with score-driven location, scale, and shape parameters, as a
function of ¢, € [-250, 250].

A. Ouy.¢/Op (bounded) B. Quy,/OA: (bounded) C. duy,¢ /07 (bounded) D. Ouy,/Ov: (bounded) E. Quy,:/0n: (bounded)
] o L g
J g g El g k
‘ — — )
e X RCRICRI D I I N N IEN TR B i N X RCRICR I IR R NS EN B e R K CRIER[ -
F. Oux,:/Ope (bounded) G. uxt/OX¢ (bounded) H. Qun,¢/O7¢ (bounded) 1. Qux,:/Ov: (bounded) J. Oux,t/On: (bounded)
E J i b J -
B o ki Vﬁ i
i hi '
[ 7 [ RS g g N LRI RT3 [ [ I Eg g O CHICRTS I e L g g N N CI LR RIE e T FE g g R CRICRT R E [T g N CNICHL S IE

K. Qur¢/Ope (bounded) L. Our, /O (bounded) M. dur /07 (bounded) N. Our,./Ovy (bounded) O. dur/On: (bounded)

g R r :? b 7 w
P. Quy,¢/Ope (bounded) Q. duy,i /0N (bounded) R. Ouy, /07 (bounded) S. Quy,1 /vy (slowly decreasing) T. duy,/On: (bounded)
U. Quy,t/Op (bounded) V. uy,t /OA: (bounded) W. duy,+ /07 (bounded) X. Ouy,t/Ov; (bounded) Y. Ouy,¢/On: (bounded)
g \' : JUL : w : 5 W
; t i N

Figure B3: Derivatives of score functions for the Skew-Gen-t model with score-driven location, scale, and shape parameters, as
a function of ¢, € [-250, 250].
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Appendix D

In this appendix, the circumstances of the extreme events that are referred to in Figure 4 are described. We
highlight those days for which the degrees of freedom estimates exp(v,) + 4 < 8:

February 12 and 13, 1991. The Dow Jones industrial average, increased 71.54 points on February 11, 1991
(2.5 percent increase). The increase in the US stock market indices was motivated by (i) optimism on the Gulf
War’s outcome, and (ii) the confidence of the market that the moves by the Federal Reserve Board to bring
interest rates down would pull the economy out of recession and restore consumer confidence.

November 18, 19, and 20, 1991. On November 15, 1991, the Dow Jones dropped 120.31 points. On November
15, 1991, The NASDAQ composite index declined 4.2% due to fears about the stability of the economy, a cap
on credit-card interest rates and fading biotechnology shares.

December 24 and 31, 1991 and January 2, 1992. Beginning of the Japanese asset price bubble burst.

February 17, 1993. On February 16, 1993, the S&P 500 fell by 2.4%, due to higher taxes proposed by
President Clinton.

May 19 and 22, 1995. Technology stocks moved lower due to potential tightening of monetary policy in
the face of rising inflation.

June 24 and 25, 1997. In the end of June and beginning of July, investors deserted emerging Asian
shares. Crashes occurred in Thailand, Indonesia, South Korea, and Philippines, reaching a climax in the 1997
mini-crash.

October 28, 29, and 30, 1997. Global stock market crash that was caused by an economic crisis in Asia.
It is known as the 1997 mini-crash. On October 20, 1997, the US accused Microsoft of violating a pact to stop
Microsoft forcing makers of personal computers to include its Internet browser automatically. On October 22,
1997, Compaq testified that Microsoft threatened to break the Windows 95 agreement if they showcased a
Netscape icon. On October 27, 1997, Microsoft argued it should be “free from government interference”. On
October 29, 1997, Iraq’s Revolution Command Council announced that it would no longer allow US citizens,
and US aircraft to serve with UN arms inspection teams.

December 1, 1998. Severe losses in the US stock market caused by profit taking on excellent two-week
performance by stocks. Downturn in European markets.

January 5, 6, and 7 and 10, 2000. The Nasdaq composite lowered, as investors reduced their positions in
technology stocks and invested in basic industry and financial services companies. Moreover, the investors
also have concerns of the possibility of higher interest rates. Later on March 2002, the collapse of the technology
bubble took place.

February 28, March 1 and 2, 2007. Stock prices in the US declined 3.5%, after a 9% fall in the Shanghai
market provoked worries worldwide about the global economy and the valuation of share prices. In the
US, markets had already been shrinking due to concerns about deterioration in the mortgage market. Alan
Greenspan told a conference on 26 February 2007 that a recession in the US was likely.

September 30, 2008. The US Congress rejected the Bush Administration’s USD 700 billion Wall Street
bailout plan, sending the Dow Jones industrial average down 778 points in a single day.

March 24, 2009. The Dow Jones lost 115 points (1.5%); the S&P 500 lost 17 points (2%); the Nasdaq
composite lost 40 points (2.5%). Tecnology and bank shares led the selloff.

January 31, 2011. The Dow Jones Industrial Average declined 1.39% and closed at 11,823.70. The S&P
500 fell 1.79% and closed at 1,276.34. The Nasdaq slipped 2.48% and ended the day at 2,686.89. The CBOE
Volatility Index (VIX) shot up 24.1% due to increased instability in the Middle East. Oil prices continued to
trend higher due to the ongoing tensions in Egypt.

February 23, 2011. On February 11, 2011, Egyptian Revolution culminated in the resignation of Hosni
Mubarak, and the transfer of power to the Supreme Military Council after 18 days of protests (Arab Spring).
On 14 February 2011, the 2011 Bahraini uprising commenced. On 15 February 2011, Libyan protests began
opposing Colonel Muammar al-Gaddafi’s rule. Stocks declined as oil prices surged to briefly cross the USD
100 per barrel mark amid the mounting crisis in Libya.
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August 9, 2011. On August 8, 2011 (also known as Black Monday 2011), US and global stock markets
crashed, following the Friday night credit rating downgrade by Standard and Poor’s of the US sovereign debt
from AAA to AA+. On August 9, 2011, stocks ended with huge gains after the Federal Reserve announced that
it will keep interest rates exceptionally low until 2013.

June 27, 28, and 29, 2016. On June 23, 2016, Brexit referendum, the United Kingdom voted to leave the
European Union (EU). On June 24, 2016, British Prime Minister David Cameron resigned after the UK voted
to leave the EU. On June 26, 2016, City of Falluja freed from Islamic State (IS) control after a month-long
campaign by Iraqi forces. On June 28, 2016, suicide bombings and gun attacks at Istanbul’s Ataturk Airport.

February 5, 6, and 7, 2018. On February 2, 2018, the S&P 500 fell by 2.1%, and it was followed by a fall
of 4.1% on February 5, 2018. The uncertainty was motivated by a surge in interest rates, with the benchmark
10-year yield rising as much as 2.9% to hit a four-year high.

October 11 and 12, 2018. The Dow Jones Industrial Average (D]JI) dropped 3.2%, to close at 25,598.74. The
S&P 500 dropped 3.3% to close at 2,785.68. The Nasdaq Composite Index closed at 7,422.05, plummeting
4.1%. The fall was due to concerns of rapidly rising interest rates, a possible increase in the US inflation rate,
and a slowing global growth.

February 25, 26 and 28, 2020. Global markets fell sharply amid fears that the COVID-19 was spreading.
News reports that Italy and South Korea had more than 200 new cases fueled the sell-off. This crash was part
of a worldwide recession caused by the COVID-19 pandemic.

June 12, 15, 16, and 17, 2020. The S&P 500 increased on June 12, 2020 by 1.3% and on June 16 by 1.9%.
Investors are encouraged by the prospects of more reopenings, the Federal Reserve’s expansion of its Main
Street Lending Program, and the growing sentiment that the economy is reversing course toward expansion.

September 4, 8, 9, 10, and 11, 2020. Around those days, the S&P 500 was very volatile and exhibited the
following changes: on September 3, 2020 a 3.5% fall, on September 8, 2020 a 2.8% fall, on September 9, 2020
a 2% increase, and on September 10, 2020 a 1.8% fall. The correction was mainly in the technological sector.

January 28, 2021. US stock markets closed sharply lower on the back of several weaker-than-expected
quarterly earnings results. Investors’ sentiment also took a hit after the Federal Reserve states in its latest
policy statement that the pace of economic recovery has moderated.
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