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Abstract

Gathering knowledge of supply curves in electricity markets is critical to both
energy producers and regulators. Indeed, power producers strategically plan
their generation of electricity considering various scenarios to maximize profit,
leveraging the characteristics of these curves. For their part, regulators need
to forecast the supply curves to monitor the market’s performance and identify
market distortions. However, the prevailing approaches in the technical literature
for analyzing, clustering, and predicting these curves are based on structural
assumptions that electricity supply curves do not satisfy in practice, namely,
boundedness and smoothness. Furthermore, any attempt to satisfactorily cluster
the supply curves observed in a market must take into account the market’s
specific features.

Against this background, this article introduces a hierarchical clustering
method based on a novel weighted-distance that is specially tailored to non-
bounded and non-smooth supply curves and embeds information on the price
distribution of offers, thus overcoming the drawbacks of conventional clustering
techniques. Once the clusters have been obtained, a supervised classification
procedure is used to characterize them as a function of relevant market variables.
Additionally, the proposed distance is used in a learning procedure by which
explanatory information is exploited to forecast the supply curves in a day-ahead
electricity market. This procedure combines the idea of nearest neighbors with
a machine-learning method. The prediction performance of our proposal is
extensively evaluated and compared against two nearest-neighbor benchmarks
and existing competing methods. To this end, supply curves from the markets
of Spain, Pennsylvania-New Jersey-Maryland (PJM), and West Australia are
considered.
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1. Introduction

The electricity market in many countries allows electricity producers to offer
bids at different prices, generally related to their marginal costs. After the system
operator forms the supply curve by bids from all participants, each participant
will be remunerated to the marginal prices, the intersections of the supply and
demand curves.

The economic and technical particularities of the electricity supply industry,
together with the high level of market concentration and oligopolistic conditions
that still prevail today in some countries (see, e.g., [25] for a critical and quanti-
tative analysis on market concentration in European countries), facilitate the
exercise of market power in electricity markets [28]. Consequently, the knowledge
of the aggregate supply curve of the market proves to be very valuable to both
power producers (with the ability and willingness to exercise market power) and
to regulators, although evidently for opposite reasons [31, 42].

On the one hand, clustering and characterizing electricity supply curves are
vital in the power generation business to maximize profit in varying scenarios.
From a technical point of view, the analysis of general curves has been intensively
studied in the well-known branch of statistics called Functional Data Analysis
(FDA) [39]. Based on the premise that each observation is a smooth function on
a continuous common domain [a, b], FDA has produced a wealth of clustering
methods ([24]), sparking a currently active area of research [33]. Nonetheless,
to our knowledge, none of these methods is specifically suited to the nature
of the supply curves in the the electricity industry: step curves defined on an
unbounded domain. Functional data is often recorded at some discrete common
observation points of the domain and some clustering methods work directly with
the raw discrete observations or require the curves to be evaluated on a bounded
common grid [see, e.g., 10, 11]. Others first approximate the curves using a
finite basis set of functions or are based on dimension reduction techniques
assuming that the curves are smooth functions rather than step functions [see,
e.g., 1, 38, 30, 26, 13, 16]. Finally, distance-based FDA methods [see, e.g.,
43, 17, 14, 23] use clustering algorithms that rely on specific distances for FDA
that do not cover the case of unbounded domains or have the flexibility to
include additional information on the bidding distribution of the market. For its
part, the literature focused on energy has not extensively studied the problem of
clustering energy supply curves. On the contrary, clustering approaches have
been proposed for household load curves with a focus on the shape of the curves
([2], [15], [27] and [44]). However, it is important to note that load curves have a
completely different nature than energy supply curves: load curves are functions
defined on all 24 hours of the day, typically recorded for a common grid (hourly,
half-hourly, etc.) whereas energy supply curves are step functions of prices
on an unbounded domain of quantities, these quantities not being recorded
on a common grid but determined by the aggregate generation bids ordered
in increasing price (merit order supply curve). This hampers the use of these
methods, which have been successfully applied to load curves, to energy supply
curves, because they require common grids and a bounded domain as the FDA
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approach discussed above.
On the other hand, methods for prediction that can provide reliable and

realistic future supply curves are also important to reduce market uncertainty in
decision-making. However, the technical literature on such methods is scarce.
Much more effort has been put into the prediction of the market equilibrium
price, as in [45, 35, 41, 34, 20]. In particular, [45] focuses on electricity price
forecasting by modeling the supply and demand separately. Then the market
equilibrium is estimated by the intersection between the predicted demand and
supply, referring to this procedure as the X-Model: it is based on discretizing the
prices into 16 classes, which are subsequently modeled as autoregressive processes
estimated by Ordinary Least Squares with LASSO penalty. They achieve good
prediction results by including lags and weekday dummy variables as exogenous
information for the equilibrium price, but little attention has been paid to the
accuracy of the individual supply or demand curves. In [35], a Bayesian inference
approach based on Markov Chain Monte Carlo and sequential Monte Carlo
techniques is proposed to infer the supply curve of an electricity market from
the observed clearing prices and quantities. Therefore, their approach does
not require market participants’ historical bids or marginal costs. In contrast,
they fail to account for the time dynamics of the supply curves, i.e., they seek
to estimate an “average” supply curve. [41] and [34] approach the prediction
problem from the FDA standpoint using Functional Time Series models able
to capture the temporal evolution. Specifically, [41] proposes a nonparametric
Functional Autorregresive Model (NPFAR) that leads to a statistically significant
improvement in the forecasting accuracy in the Italian Market. In the same vein,
[34] considers a double-seasonal SARMAHX functional model able to characterize
the temporal daily and weekly dependency and able to incorporate exogenous
variables. Although these two methods provide promising prediction results,
these FDA approaches require assuming a common bounded domain for the
supply curves and, more importantly, their predicted curves are smooth functions.
This might not impact performance metrics, but it does produce unrealistic
smooth supply curve shapes with a potential information loss for some purposes.

This article aims to address the drawbacks mentioned above by proposing a
distance-based hierarchical clustering method and a distance-based prediction
method for supply curves. To measure the dissimilarity between the curves,
we propose and use a weighted distance that is particularly suitable for the
characteristics of the offers on the electricity market, i.e., a distance that 1) solves
the problem of the unbounded domain, 2) does not assume any smoothness of
the functions, and 3) provides the flexibility to incorporate market information.
Specifically, we propose to take into account the distribution of the prices of the
offers to amplify the differences in the historically most frequent price intervals.
Thus, by giving greater weight to the prices that are most frequent in the
offers, we focus on the points where the offer curves present their characteristic
jumps. Furthermore, unlike the competing procedures presented in the technical
literature to forecast electricity supply curves, our distance-based prediction
method does not assume smoothness, which is a restrictive condition far from
the very nature of these curves.
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The method of clustering is applied to the complete set of supply curves
from the day-ahead market (43 848 hourly curves for the years 2016–2020 in the
Spanish market; 43 824 hourly curves for 2018–2022 in the PJM market; 87 696
half-hourly curves for 2016–2020 in the West Australian market). Once we have
obtained the clusters of the curves, it is essential to understand how they were
formed and to determine which variables explain these clusters. This description
of the clusters obtained is carried out using a supervised classification procedure
(Random Forest) with the cluster labels as the response variable and market
and temporal variables as the explanatory variables. We have considered market
variables such as predictions of electricity generation through wind, solar, and
nuclear energy as well as the forecast demand. We have also considered time
variables such as the hour, weekday, month, year, and a dummy variable for
national holidays. We remark that these variables were only used in the posterior
analysis to explain the main characteristics of the resulting groups, not in the
hierarchical cluster procedure directly.

The forecasting exercise takes a period of four years as the training sample
and the last year as the test set. The method of prediction makes use of the
distance matrix in the training set to predict the distances in the test set. These
predictions are used to select the closest curve, which will be the predicted curve.
We perform a rolling window exercise for a day-ahead forecast, that is, for a
given day, D, we predict the curves of day D+1. After that, the training window
is extended by one day. The prediction error is the weighted distance between
the true curve and its prediction. The different approaches to the prediction are
compared through the mean of the prediction errors in the test set.

The rest of this paper is organised as follows. Section 2 discusses the weighted
distances we use to emphasize different properties in our case study. Section 3
presents the clustering results and the characterization of the obtained clusters
by market and temporal features for the Spanish market. Similar analyses and
results are shown in Appendices A and B for the PJM and West Australian
markets, respectively. Section 4 presents the prediction procedure and the results
of the prediction exercise for the three markets. Finally, in Section 5, we draw
conclusions based on performance.

2. The Definition of Distance

Define t ∈ [1, T ] as the index of the hourly supply curves, where T is the
number of observed curves. A supply curve is obtained by ordering all the offers
received from lowest to highest price and accumulating the quantities of the offers.
That is, if Ot = {(p1, q1), (p2, q2), . . . , (pnt

, qnt
)} is the set of price–quantity pairs,

where for simplicity we will assume that prices are ordered, then the supply curve
will be obtained from the representation of the set of pairs of price–cumulative
quantity, Ot = {(p1, Q1), (p2, Q2), . . . , (pnt , Qnt)}, where Qi =

∑i
j=1 qi.

In this paper, we define the supply curve at hour t as the function Ct(p) :
[0,∞] → R+ which is a non-decreasing step function of the price p, having
steps in the positions corresponding to the ordered prices of the offers. We
follow this representation because all the curves are defined in the interval [0,∞]
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whereas the most frequent representation, price as a function of quantity, can
have different definition intervals, since the maximum cumulative quantity, Qnt ,
varies across hours.

In Figure 1, we show two examples of supply curves where we can see some of
their most notable characteristics: step functions with different numbers of steps
located at different positions. Moreover, it is clear that to define an appropriate
distance between curves of this type we have to develop a way to deal with
the (infinite) difference in the last step of both curves. In the next section, we
introduce a weighted distance that resolves this inconvenience.

0 50 100 150 200

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

Price (€/MW)

Q
ua

nt
ity

 (M
W

)

Figure 1: Supply curves for 12 May 2016, 06:00 (blue) and 4 February 2017, 01:00 (black) for
the Spanish market. The considered curves are close in the interval of P=[0,75] and depart
from each other afterward. In this situation, a classical L2 distance would consider these curves
as being far from each other even though they are close in the important region. Moreover, it
is incapable of addressing the infinite difference of the last step.

Weighted distances
Given two curves, Ct and Cs, like those shown in Figure 2, an intuitive

definition of distance is the area between the curves. That is, in our case, the
sum of the areas of rectangles with a width of |pi+1−pi| and the height |qt,i−qs,i|,
where pi and pi+1 are the neighbouring jump points considering both curves and
qt,i = Ct(pi) and qs,i = Cs(pi) are the corresponding quantities. But, as we have
mentioned, there is a problem at the right ends of the curves that would take
the distance to infinity. Notice that the last rectangle starts at the maximum
bid price considering both curves and ends at infinity. That maximum bid price
may depend on the specific pair of curves considered.
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This divergence can be addressed by introducing a weight function approach-
ing zero as the price increases. In this paper, we will use the following weighted
ℓ2 distance

d(Ct, Cs)
2 =

∫ +∞

0

|Ct(p)− Cs(p)|2W (p)dp

=
n∑

i=1

∫ pi+1

pi

|Ct(p)− Cs(p)|2W (p)dp, (1)

where Ct and Cs are the curves at times t and s, W (p) is a non-negative weight
function and pi are the prices where Ct and/or Cs have a step. The set of those
prices {p1, p2, ..., pn, pn+1} satisfies the conditions 0 = p1 < p2 < . . . < pn <
pn+1 = +∞. It should be noted that the above definition of distance can be
adapted to consider negative prices by changing the limits of the integral.

It is clear that the selection of W (p) is crucial for the distance (1). There are
many possibilities for W (p). For instance, taking W (p) = 1 at a given bounded
interval (p, p) and W (p) = 0 otherwise, will focus on the differences in that
interval. However, as Figure 3 shows, the distribution of the prices of the offers
is far from the above uniform distribution defined by support (p, p). We have
preferred to give a weight proportional to the frequency of the prices in the offers.
The intent is to emphasize distances where curves typically have steps. A higher
frequency around a price means that a greater number of curves have bids at
those prices. Therefore, using a weight proportional to the frequency stresses the
differences where the curves have steps. A good approximation of the distribution
of all prices at jump points can be obtained by a mixture of Gaussian distributions.
Figure 3 also shows the obtained mixture, which has two components that have
means, standard deviations, and component weights of (43.93573, 51.01591),
(26.119500, 9.863402) and, (0.7208744 0.2791256), respectively. Figure 3 uses the
Spanish market dataset. Figure A.1 in Appendix A and Figure B.1 in Appendix
B are for the PJM and West Australian markets, respectively.

Ct

Cs

Prices

Quantity

pi

qt,i

(qs,i)

pi+1

qt,i+1

qs,i+1

pi+2

Figure 2: The distance between Ct and Cs in interval [pi, pi+1] is the area of rectangle with
width |pi − pi+1| and height |qt,i − qs,i|. Similarly, the distance in interval [pi+1, pi+2] can
be calculated as |pi+1 − pi+2| ∗ |qt,i+1 − qs,i+1|. This definition allows us to calculate the
distance by aggregating the areas of all rectangles surrounded by Ct and Cs.
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3. Hierarchical clustering with average linkage of the original curves

In this section, we aim to cluster and interpret the main features of the
resulting groups of supply curves from the Spanish day-ahead market in the
period 2016 to 2020. Similar analyses and results are shown in Appendices A
and B for the PJM and West Australian markets, respectively. The definition
proposed in Section 2 allows us to apply distance-based clustering methods to
a set of step curves defined on an unbounded domain. However, the problem
we tackle here presents the additional challenge of the amount of data: It
involves dealing with T = 43, 848 hourly supply curves, each one built from
approximately 520 bids on average. To deal with this, we tested several clustering
implementations and concluded that Hierarchical Clustering (HC) with average
linkage has the best performance/efficiency trade-off for our problem. The
remainder of this section discusses this selection and presents the main results.
Then, subsections 3.1 and 3.2 provide interpretability and insights into the
obtained clusters using supervised classification techniques.

As was mentioned before, the most insightful clustering structure was obtained
by applying hierarchical clustering to the 43, 848× 43, 848 distance matrix, ddd,
resulting in the dendrogram in Figure 4. This finding suggests a small number
of groups (see the long top clades and sorted bottom leaves) and highlights
that the clustering process merges small groups at high levels, which indicates
that the outliers are grouped into small clusters far away from the primary
clusters (for instance, see the red group at the left in Figure 4). Following ideas
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Figure 3: Histogram of the distribution of the prices of the offers and density of Gaussian
mixture model with two components. Spanish market, 2016–2020.
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from [21], to detect these clusters of outliers, we impose a cut at 0.5 (this value
corresponds to the 99th percentile of the distribution of distances where the
links of the dendrogram are made) in the first step, where the leaf nodes of the
main structure are already formed into large-size groups while outliers gather
in ones of small size. The resulting cluster sizes are summarised in Table 1.
The curves located in clusters 8–42 were discarded from the following steps for
being potential outliers. It is important to note that these clusters have an
insignificant number of members and account for only 0.5% of the total number
of curves. Finally, HC suggests four clusters, as can be concluded from the
average silhouette criterion [40] plotted in Figure 5.

Although there are a wide variety of available clustering algorithms, HC
with average linkage combines the ability to cluster high-dimensional data in
an interpretable number of groups in a reasonable computational time. Other
methods, such as density-based clustering, clustering combined with dimension
reduction techniques, Partitions Around Medoids, and Leader Algorithm, resulted
in impractical results for the Spanish Day-ahead Energy Supply Curves.

For example, the density-based clustering method highlights the existence of
one single group in our data without having great gains in terms of computational
time. In particular, we applied the OPTICS algorithm [5], a computationally
efficient density-based clustering method that searches through the distance
matrix ddd to detect dense areas and reduce the complexity of the problem.
However, the computational improvement is at the cost of requiring extra RAM
for a tree-based index [5]. In fact, in our experience with a computing platform
with 32GB of RAM, the OPTICS time performance does not surpass that of our
preferred HC, which is in line with the discussion of [7]. The same disappointing
result was obtained by combining dimension reduction techniques (such as
multidimensional scaling) and classical multivariate clustering methods, failing
to agglomerate the curves into a reasonable number of clusters.

Another unsuccessfully considered method was Partitions Around Medoids
(PAM) [29], another clustering method based on the matrix of distances ddd. In
contrast to HC, it has the drawback of requiring a predetermined number of
clusters, and the outliers shown in Table 1 make it difficult to determine the
number of clusters.

To improve scalability, one-pass strategies such as the Leader Algorithm were
also considered [22, 32, 36, 7]. This idea consists of randomly selecting initial
leaders and iteratively agglomerating curves into different clusters. However, we
found, using our data, that this strategy is in general not robust to the presence
of outliers or tiny groups, and that the final output is highly dependent on the
initial selection of the leaders.

With regard to the linkage of HC, the selection was based on the exhaustive
simulation exercise in [18], which studied the performance of a wide palette of
HC setups under a large variety of synthetic functional processes, concluding
that this configuration is recommended when the functions under analysis are
not generated by Fourier basis expansions and a small number of clusters, of
different sizes, are expected.

In the next section, we characterize the main characteristics of the four
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Figure 4: The dendrogram before discarding small groups. By cutting it at a height of 0.5,
42 groups were generated with sizes presented in Table 1. The colour of a branch is that of
the cluster to which it belongs. The two largest clusters are highlighted by red blocks in the
colour bar. Spanish market, 2016–2020.

obtained groups. To do this, we use a supervised classification procedure with
the cluster labels of the four groups of the curves as the target variable. This
approach has been used by [4] when classifying the time series of electricity
demand by domestic customers. The popular Random Forest (RF) classification
procedure is employed by us. Of course, other supervised classification procedures
can be used. We have chosen RF for its versatility and simplicity. Operating in a
supervised manner, an RF model classifies the labels (in our case, the previously
assigned cluster) using the explanatory features. The set of explanatory features
may vary, depending on the order of training timing ttrain and publish time tpub
of curves. If the curve of the hour t is unknown until tpub, i.e., tpub > ttrain,
the model includes the day-ahead cluster labels, cluster_24lag, predicted as
the most recently observed label based on the assumption of high temporal
dependency on the historical curves. Otherwise, when tpub ≤ ttrain, extra
geometrical features can be included in the RF and obtained from the already
observed curve. Subsection 3.1 presents the model in the former situation,
termed the non-concurrent model. Subsection 3.2 explores the concurrent model,
which handles the latter case. The design of these two models is two-fold; first,
they provide insight into the main drivers that explain the clusters and, second,
although this is not exploited in this paper, they could be used to forecast the
cluster of a new incoming curve.
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Figure 5: The average silhouettes at two and four clusters are approximately equivalent. We
use four to obtain more diversity in terms of the behaviour of the explanatory variables.

Table 1: Cluster sizes before discarding small groups by cutting the dendrogram at height =
0.5. Spanish market, 2016–2020.

Clusters Member
amounts Clusters Member

amounts Clusters Member
amounts

1 1476 15 4 29 2
2 8457 16 6 30 4
3 5631 17 2 31 4
4 12596 18 4 32 4
5 10460 19 6 33 10
6 3887 20 4 34 4
7 1111 21 5 35 2
8 13 22 6 36 5
9 18 23 5 37 2
10 42 24 7 38 10
11 4 25 4 39 6
12 7 26 6 40 2
13 6 27 4 41 10
14 8 28 2 42 2
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3.1. Non-Concurrent model: Market variables, temporal variables, and lagged
labels.

Table 2 presents the variables involved in the characterization process using
the non-concurrent model. These features span from January 2, 2016, to Decem-
ber 31, 2020, to align with the 24-hour lagged variable cluster_24lag, which is
the cluster of the curve 24 hours before. This lagged variable aims to take into
account temporal dependency and data accessibility in reality. One challenge
in acquiring the cluster_24lag variable is the absence of labels from curves
discarded as outliers. It was addressed by assigning those outliers to the cluster
whose centroid is the closest, ensuring that every curve has a cluster label history.
Additionally, other variables are included with different intentions. Temporal
variables aim to capture the seasonality and dynamics throughout the year,
during different seasons, and during different days of the week. Market variables
aim to capture the market conditions, such as renewable generation, nuclear gen-
eration, and demand. Finally, the adjusted seasonal GDP is included as a global
economic control variable, which is particularly useful to capture the general
market activity during the pandemic. As to the setting of the hyper-parameters
of the RF model, we update the uniform cutoff values of each cluster with its
samples’ percentage to avoid the impact of imbalanced clusters. The out-of-bag
error of the final fitted RF model is 8.44%. That is, we correctly classified
more than 90% of the curves. This error decreases to 0.005% by fitting the
non-concurrent model with the West Australian market features. Remarkably,
the error reaches 0% with data from the PJM market. It should be noted that
only two clusters were selected for the PJM and Western Australian markets,
so classification is easier than for the Spanish market, where four clusters were
selected. Keeping the number of clusters as four, the errors are 8.84% in the
West Australian market and 0.81% in the PJM market. Figure 6 shows the
ranking of the importance of the variables under different criteria. The amount
of wind power generation and cluster labels with 24-hour lags perform the most
significant roles in terms of the measure of Mean Decrease accuracy (MDA) and
Mean Decrease Gini (MDG), respectively. It is worth noticing the consistency of
the clusters of a curve and its ‘ancestor’ at the same hour of the previous day
(see Figure 7b). For the first three groups, the majority of members (> 75%)
remain in the same groups as in the previous 24 hours. The fourth group seems
to disprove this observation but this group shows a very different mean value
of gen_wind than the others (see Figure 7a)), which suggests the high impact
of generation from wind, and that wind power varies from one day to another.
Then it is reasonable to find that the curves within the fourth group have lagged
labels indicating other clusters.

3.2. Concurrent model: Including geometrical features of the supply curve
In this subsection, we will discuss another situation in which we train a

concurrent RF model once we obtain the supply curves for a day. The convenience
of this model is that geometrical features, i.e. quantity at price zero, the maximum
quantity, and price, can be extracted from each known curve. Introducing these

11



Table 2: Description of the explanatory variables for the Spanish market.

Variable name Description

Temporal variables

hour Integer. The hour of day of the sup-
ply curve;

month Factor. The month of the supply
curve;

year Factor. The year of the supply
curve;

weekday Factor. The day of the week of the
supply curve;

holiday Factor. If a supply curve is for a
public holiday;

Market variables

gen_Solara Numeric. Predicted solar power gen-
eration (including solar photovoltaic
and solar thermal generation);

gen_Winda Numeric. Predicted wind power gen-
eration;

gen_Nucleara Numeric. Predicted nuclear power
generation;

pred_demanda Numeric. The predicted electricity
demand for the hour of the supply
curve;

adjusted_GDPb Numeric. Seasonally adjusted GDP;
Lagged label cluster_24lag Factor. The clusters with 24-hour

lags.
Source:

a https://www.esios.ree.es/en/generation-and-consumption
b https://www.ine.es/en/

12

https://www.esios.ree.es/en/generation-and-consumption
https://www.ine.es/en/


holiday
year
hour
cluster_24lag
pred_demand
weekday
gen_Nuclear
adjusted_GDP
gen_Solar
month
gen_Wind

200 400 600 800
Mean Decrease Accuracy

holiday
year
weekday
adjusted_GDP
gen_Nuclear
month
pred_demand
gen_Solar
hour
gen_Wind
cluster_24lag

0 4000 8000 12000
Mean Decrease Gini

Variable importance of non-concurrent RF model
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variables is useful to capture the general steepness, magnitude, and shape of the
curves. With these additional geometrical features, the OOB of the concurrent
RF model decreases to 5.73% while the hyper-parameters remain the same as in
the non-concurrent case. In the case of two clusters, the OOB errors reach 0%
and 0.002% in the PJM and the West Australian markets, respectively. When
selecting four clusters, the models for the PJM and West Australian markets
surpass the Spanish market model as they reduce the OOB errors to 0.51% and
4.78%, respectively.

Focusing on the Spanish market, again, the lagged labels variable ranks at the
top under the criterion of MDG. The other most significant variable according to
the MDA criterion is the month, which is distributed approximately uniformly
within the first three groups but centralizes itself in winter and spring in the
fourth cluster (see Figure 8). Zero-price quantities are also of great importance
in the model for both measures, MDA and MDG. The fourth cluster shows again
that it is different, with the highest average value (see Figure 9b). Bearing in
mind the high wind power generation of this cluster, the weather conditions
of winter/spring months are likely to contribute to the large ‘free’ wind power
production.

The two criteria share two moderately significant variables: the hour and the
maximum quantity. Figure 9d shows that all the curves in the first cluster are
from the early hours of the day, whereas the third and fourth clusters present a
high percentage of late hours. The maximum quantity follows a similar pattern
as the quantity at zero price, for which the average increases across clusters. The
remaining geometrical feature, the maximum price, ranks at the bottom of the
variables’ importance, as the defined weight function extends the price domain
to infinity.

4. Forecasting day-ahead electricity supply curves

A simple k-NN-based forecasting procedure consists of looking for past days
that have behaved similarly to day D and taking the curves of the following day
for those similar days as predictions. In fact, we use k = 1 since averaging or
a linear combination of supply curves produces a much smoother curve with
more steps than the actual curves. Table 3 shows summary statistics for the
number of steps in the original curves and in the curves resulting from using one,
three, and five nearest neighbors. It is clear that taking three or five neighbors,
which are commonly used values, returns predictions that are much smoother
with many more steps than the real curves. This implies that if we used 3-NN
or 5-NN, we would obtain predictions that look different from the real curves.

The 1-NN procedure is formulated as follows:

• Given the H supply curves of the day D, C(t) = {Ct−H−1, Ct−H−2, . . . , Ct},
we want to predict the H supply curves of the day D + 1, C(t + H) =
{Ct+1, Ct+2, . . . , Ct+H}.

– H = 24 for the Spanish and PJM markets and H = 48 for the
Australian market.
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Figure 8: Analysis of the importance of the variables in the concurrent model. Spanish market,
2016–2020.

Spanish market

Curves Minimum 1st Quartile Median 3rd Quartile Maximum

Original 303 419 547 594 677
1-NN 290 415 548 597 688
3-NN 901 1240 1649 1781 1999
5-NN 1470 2050 2751 2960 3287

PJM market

Curves Minimum 1st Quartile Median 3rd Quartile Maximum

Original 529 576 597 619 669
1-NN 531 576 598 619 704
3-NN 1601 1729 1793 1857 2000
5-NN 2671 2882 2989 3093 3328

West Australian market

Curves Minimum 1st Quartile Median 3rd Quartile Maximum

Original 8 23 29 36 68
1-NN 9 23 29 36 65
3-NN 31 72 86 105 182
5-NN 54 121 143 173 300

Table 3: Summary statistics of the number of steps in the original curves and in the curves
resulting from using one, three, and five nearest neighbors for the three considered markets.
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Figure 9: Descriptive analysis of month, hour, quantity at zero price and maximum quantity
by cluster. Spanish market, 2016–2020.
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• Let s∗ = argmin{s≤t−H} d(C(t),C(s)), that is, C(s∗) are the H closest
consecutive curves to C(t). The prediction is obtained by P(t + H) =
C(s∗ +H) = {Cs∗+1, Cs∗+2, . . . , Cs∗+H}.

In the previous procedure, the distance, d, between the sets of curves C(t)
and C(s) would remain to be defined. In our experiments, we used the following
choices: (B1) the sum of the distances at different hours, d(C(t),C(s)) =∑H−1

i=0 d(Ct−i, Cs−i), and (B2) the maximum daily distance, d(C(t),C(s)) =
max{d(Ct−i, Cs−i) : 0 ≤ i ≤ H − 1}. These are our benchmark models.

The study of these different distances leads us to the question of what
distance is important for the prediction, d(C(t),C(s)) or d(C(t+H),P(t+H))?
Obviously, the second of these distances is more relevant because it measures the
prediction error. However, this distance cannot be calculated a priori because
C(t+H) is not known at the time of prediction. Then, the question is whether
we can learn from d(C(t),C(s)) to predict d(C(t+H),C(s+H). Note that the
prediction of C(t+H) by the 1-NN procedure will be P(t+H) = C(s+H).

In what follows we present a distance-based learning procedure. We simplify
the problem and predict d(Ct+h, Cs+h), that is, the distance between the curves
of hour h. For two times in the training sample, s and t with s ≤ t−H, we can
calculate the following distances:

d(Ct, Cs), d(Ct−1, Cs−1), . . . , d(Ct−H−1, Cs−H−1)

d(Ct, Cs+h), d(Ct−1, Cs+h), . . . , d(Ct−H−1, Cs+h)
.

These 2H variables will be the input of a machine learning procedure to predict
the distance d(Ct+h, Cs+h). Figure 10 illustrates this procedure for all horizons
(A) and for a specific lag (B). For the case of all horizons, we predict the sum
of the distances,

∑H
h=1 d(Ct+h, Cs+h). Algorithm 1 presents the distance-based

learning procedure for a generic machine learning model. It is clear that model “g”
in step 2 of the algorithm can be any model with a numerical response variable
and numerical explanatory variables. In Tables 4–6, we present the results with
two tree-based models: Random Forest (RF) and eXtreme Gradient Boosting
(XGB) [8].

The selection of these variables is motivated by the high temporal dependence
between the curves, both in the short term and in lags that are multiples of H
(see, for instance, [19]). Of course, other variables can be used. The choice of
tree-based procedures is based on its versatility in modelling non-linear relations
and interactions between variables. The same procedure will be carried out for
the different prediction horizons, h = 1, 2, . . . ,H, that is, H models are trained.
These models allow us to make predictions for the next day using the predictions
of the distances for the different forecast horizons.

Tables 4–6 show the means of the weighted distances between the real curve
and its prediction in the test sample (8,784 hours of the year 2020 for the Spanish
market, 8,760 hours of the year 2022 for the PJM market and 17,568 half-hours
of the West Australian market). In the tables, 1-NN-B1 and 1-NN-B2 correspond
to the benchmark models using the sum and the maximum of the daily distances,
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A) Distance based learning procedure for day ahead prediction (all lags)

Ct-23 Ct-22 … Ct Ct+1 Ct+2 … Ct+24

Cs-23 Cs-22 … Cs Cs+1 Cs+2 … Cs+24

B) Distance based learning procedure for specific lag ahead prediction

Ct-23 Ct-22 … Ct Ct+1 Ct+2 … Ct+24

Cs-23 Cs-22 … Cs Cs+1 Cs+2 … Cs+24

A double arrow represents an available distance 
A single arrow represents an unknown distance

s ≤ t-24

Day D Day D + 1

Day D Day D + 1

Figure 10: Distance-based learning procedure representation.

respectively; 1-NN+RF (1-NN+XGB) corresponds to the combination of 1-NN
with the random forest (extreme gradient boosting) procedure trained for all
horizons represented in Figure 10(A); and 1-NN+RF(h) (1-NN+XGB(h)) with
the random forest (extreme gradient boosting) procedure trained for horizon
h represented in Figure 10(B). We have also incorporated the results of two
classic methods for function prediction: (FAR) functional autoregression where
the response and explanatory variables are the current and lagged functions,
respectively [9], and (FPC+ARIMA), which is a two-step procedure that obtains
the functional principal components and fits seasonal ARIMA models to the time
series of the scores [6]. These procedures have been used in the prediction of
supply curves by [41] and [37]. The number of principal components was chosen
so that 99% of the variability observed in the set of curves was explained. Two,
four, and six components were chosen for the Spanish, PJM, and West Australian
markets, respectively. To compare predictions at the same time horizon in the
different markets, we select the prediction horizons h = 1, 12 and 24 for the
Spanish and PJM markets (hourly data), and h = 2, 24 and 48 for the West
Australian market (half-hourly data).

First, for the Spanish market, we see that the proposed procedure when
trained for all horizons (1-NN+RF and 1-NN+XGB) improves the two benchmark
models at horizons, h = 1 and 12. There are small differences for h = 24 between
the proposals and the two benchmark procedures. Second, when trained for
a single horizon (1-NN+RF(h) and 1-NN+XGB(h)), the proposed procedure
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Algorithm 1: Distance-based learning procedure.
Input: A T × T distance matrix, ddd with elements dt,s = d(Ct, Cs).

Forecasting horizon h.
1 For any pair of indices t and s such that H ≤ s ≤ t−H ≤ T − 2H make

up the following vector:

XXX(t, s) =
(
dt,s, dt−1,s−1, · · · , dt−H−1,s−H−1, dt,s+h, dt−1,s+h, · · · , dt−H−1,s+h

)
,

and scalar:
Y (t, s) = d(Ct+h, Cs+h).

2 Train a model g(·) such that

Y (t, s) ∼ g(XXX(t, s)).

3 For t = T , and all s such that H ≤ s ≤ T −H, obtain

Ŷ (T, s) = g(XXX(T, s)).

4 Select the index with the minimum predicted distance:

s∗ = arg min
H≤s≤t−H

Ŷ (T, s).

5 The forecast for CT+h is Cs∗+h.

improves the benchmarks at all prediction horizons so it is concluded that
training for each prediction horizon separately is significant. The reduction in
the mean of the prediction error is notable for h = 1 since it is reduced by almost
half, while for h = 12 and 24 it is close to 20%. When we compare 1-NN with
the two procedures that assume smoothness (FAR and FPC+ARIMA), we see
quite similar results, although these alternatives obtain slightly better results
for h = 1 and 12, and worse for h = 24. For the PJM and the West Australian
markets, both 1-NN+RF and 1-NN+RF(h) (1-NN+XGB and 1-NN+XGB(h))
outperform the two benchmarks. Specifically, for 1-NN+RF(h), the reductions
in the mean prediction error with respect to the best benchmark are greater
than 10% (PJM) and 15% (West Australian). We also observe that procedures
based on nearest neighbors significantly improve the FAR and FPC+ARIMA
procedures in these two markets. Generally, RF-based versions obtain slightly
better results than those based on XGB, although the differences between the
two are small.

The difference in performance between distance-based methods and methods
that assume smooth functions can be explained by two reasons: (i) the different
numbers of steps and heights of the supply curves of the three markets and (ii)
the dispersion of prices and the variability of the curves. That is, the greater the
number of steps and the lower the height, the better the smooth approximation
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Method h=1 h=12 h=24

FAR 0.1240 (0.0004) 0.2676 (0.0005) 0.2928 (0.0006)
FPC+ARIMA 0.1251 (0.0004) 0.2528 (0.0005) 0.2668 (0.0006)
1-NN-B1 0.2525 (0.0006) 0.3450 (0.0007) 0.3261 (0.0008)
1-NN-B2 0.2689 (0.0006) 0.3703 (0.0008) 0.3434 (0.0008)
1-NN+XGB 0.2270 (0.0006) 0.3050 (0.0006) 0.3610 (0.0008)
1-NN+XGB(h) 0.1580 (0.0004) 0.3350 (0.0007) 0.3080 (0.0006)
1-NN+RF 0.1929 (0.0005) 0.2902 (0.0006) 0.3368 (0.0007)
1-NN+RF(h) 0.1328 (0.0003) 0.2714 (0.0005) 0.2617 (0.0005)

Table 4: Means of the weighted distances between the actual curve and its prediction in the
Spanish market (standard errors in parentheses).

Method h=1 h=12 h=24

FAR 0.1555 (0.0001) 0.2006 (0.0001) 0.1941 (0.0001)
FPC+ARIMA 0.1552 (0.0001) 0.1807 (0.0001) 0.1618 (0.0001)
1-NN-B1 0.0685 (0.0001) 0.0731 (0.0001) 0.0696 (0.0001)
1-NN-B2 0.0711 (0.0001) 0.0789 (0.0002) 0.0740 (0.0002)
1-NN+XGB 0.0673 (0.0001) 0.0679 (0.0001) 0.0654 (0.0001)
1-NN+XGB(h) 0.0650 (0.0001) 0.0679 (0.0001) 0.0650 (0.0001)
1-NN+RF 0.0616 (0.0001) 0.0633 (0.0001) 0.0617 (0.0001)
1-NN+RF(h) 0.0610 (0.0001) 0.0624 (0.0001) 0.0611 (0.0001)

Table 5: Means of the weighted distances between the actual curve and its prediction in the
PJM market (standard errors in parentheses).

Method h=2 h=24 h=48

FAR 0.2894 (0.0002) 0.3348 (0.0002) 0.3189 (0.0002)
FPC+ARIMA 0.3540 (0.0005) 0.4285 (0.0005) 0.3521 (0.0004)
1-NN-B1 0.1983 (0.0002) 0.1786 (0.0002) 0.2100 (0.0002)
1-NN-B2 0.2056 (0.0002) 0.1906 (0.0003) 0.2228 (0.0003)
1-NN+XGB 0.1825 (0.0002) 0.1616 (0.0002) 0.2058 (0.0002)
1-NN+XGB (h) 0.1696 (0.0002) 0.1560 (0.0002) 0.1926 (0.0002)
1-NN+RF 0.1766 (0.0002) 0.1581 (0.0002) 0.1931 (0.0002)
1-NN+RF(h) 0.1595 (0.0002) 0.1512 (0.0002) 0.1770 (0.0002)

Table 6: Means of the weighted distances between the actual curve and its prediction in the
West Australian market (standard errors in parentheses).

of the supply curve, and the less the variability of the curves, the easier the
prediction of that market will be.

In fact, we observe that the Spanish and PJM markets have supply curves
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with more steps (517.5 and 598.3 on average, respectively) and a lower step
height (0.0062 and 0.0059 on average, respectively). This contrasts with the
Western Australian market, which has supply curves with the lowest number
of steps (29.75 on average) and the greatest height between steps (0.0314 on
average), with distance-based methods being much superior for this market given
that they preserve the stepped nature of the curves.

Regarding the dispersion of prices, for the periods considered, the Spanish
market has prices in the range [0, 180.3], while the PJM and West Australian
markets have prices in the ranges [0, 2000] and [0, 604], respectively. We also
observe that functional principal components (FPC) necessary to explain 99% of
the variability are much lower in the Spanish market than in the other markets.
In fact, the variability explained by the first component in the three markets
was: 96.4%, 57.6%, and 89.2%. This explains why the Spanish market is easier
to predict than the PJM market although its curves have a similar number of
steps and heights of steps.

5. Conclusions

In this paper, we clustered supply curves in the Spanish day-ahead market, the
Pennsylvania–New Jersey–Maryland market, and the West Australian market,
using a weighted distance that takes into account the offer’s price distribution.
We have found four main clusters for the Spanish market that are explained
mainly by temporal variables such as month, day of the week, and hour, and
market variables such as global system demand and amount of power generated
by different technologies (wind, solar, and nuclear). Depending on the availability
of concurrent curves when training, we developed models that integrate the
explanatory variables (i.e. market variables, temporal variables, and lagged
labels) with/without geometric features, as the latter cannot be captured until
all concurrent curves are at hand. The random forest model fitted with geometric
information has the lowest out-of-bag (OOB) error of 5.73%. This suggests that
the months, quantities at zero prices, and the labels of the 24-hour-ahead
ancestor shape the profiles of the curves most powerfully. In the absence of
concurrent information, the RF model does not use geometric features and hence
characterizes the clusters with an OOB error of 8.44%. The most important
variables change to wind power generation and 24-hour lagged labels. That the
use of concurrent features reduces the errors is consistent across the other two
markets as well when aggregating into four clusters. The error decreases from
8.84% to 4.78% in the West Australian market and from 0.81% to 0.51% in the
PJM market. If the number of clusters is set to two, as suggested by the average
silhouette, model misclassifications are close to zero in the PJM and Western
Australian markets.

The availability of the distance matrix allows us to propose a forecasting
procedure based on the distances between the curves of the previous day and
the curves in the training set. We carried out a prediction exercise for all hours
(half hours) of the year in the test set, where we evaluated the behavior of the
proposed procedures and compared it with two benchmark procedures (based on
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near neighbors) and two procedures that assume that the functions are smooth.
The proposed procedure has a competitive behavior in the three considered
markets.

We are currently studying extensions of the proposed clustering and fore-
casting procedure to incorporate covariates and other distances applied in the
literature, such as [3] and [12]. As to the covariates, we will consider the
measurements of wind speed and solar radiation in a grid distributed in the
application area of each market using the availability of these data at Free
Open-Source Weather API. The problem we face is converting this spatially
distributed meteorological information into useful covariates to predict supply
curves. [3] and [12] propose combining distances and the selection of optimal
weights to improve the performance of supervised and unsupervised classification
procedures, respectively. We will study whether their proposals are extendable
to the prediction of functions.
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Appendix A. Hierarchical clustering with average linkage of the orig-
inal curves of PJM market
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Figure A.1: Histogram of the distribution of the prices of the offers and density of the Gaussian
mixture model with two components. PJM market, 2018–2022.
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Figure A.2: The dendrogram before discarding small groups. A height of 0.3 was used to cut
14 groups with sizes presented in Table A.1. The colour of a branch is that of the cluster to
which it belongs. The largest cluster is highlighted by the red block of the colour bar. PJM
market, 2018–2022.
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Table A.1: Cluster sizes before discarding small groups by cutting the dendrogram at height =
0.3. PJM market, 2018–2022.

Clusters Member
amounts Clusters Member

amounts
1 418 8 1
2 2032 9 1
3 5939 10 6674
4 23854 11 1
5 1 12 4709
6 48 13 144
7 1 14 1
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Figure A.3: The average silhouette peaks at two. PJM market, 2018–2022.
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Table A.2: Descriptions of the explanatory variables for the PJM market.

Variable name Description

Temporal variables

hour Integer. The hour of day of the sup-
ply curve;

month Factor. The month of the supply
curve;

year Factor. The year of the supply
curve;

weekday Factor. The day of the week for the
supply curve;

holiday Factor. If a supply curve is for a
public holiday;

Market variables

gen_Solara Numeric. Real solar power genera-
tion;

gen_Winda Numeric. Real wind power genera-
tion;

gen_Nucleara Numeric. Real nuclear power gener-
ation;

pred_demand_T5b Numeric. The predicted electricity
demand of the hour of the supply
curve, the prediction is performed at
05:45 of the previous day;

pred_demand_T9b Numeric. The predicted electricity
demand of the hour of the supply
curve, the prediction is performed at
09:45 of the previous day;

pred_demand_T11b Numeric. The predicted electricity
demand of the hour of the supply
curve, the prediction is performed at
11:45 of the previous day;

pred_demand_T17b Numeric. The predicted electricity
demand of the hour of the supply
curve, the prediction is performed at
17:45 of the previous day;

pred_demand_T23b Numeric. The predicted electricity
demand of the hour of the supply
curve, the prediction is performed at
23:45 of the previous day;

real_GDPc Numeric. Quarterly real GDP;
Lagged label cluster_24lag Factor. The clusters with 24-hour

lags.
Source:

a https://dataminer2.pjm.com/feed/gen_by_fuel/definition
b https://dataminer2.pjm.com/feed/load_frcstd_hist/definition
c https://apps.bea.gov/regional/
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Figure A.4: Analysis of the importance of the variables in the non-concurrent model. PJM
market, 2018–2022.
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(a) The boxplot of real GDP by cluster. PJM market, 2018–
2022.
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Figure A.5: Descriptive analysis of real GDP and lagged labels by cluster. PJM market,
2018–2022.

28



hour
holiday
pred_demand_T17
pred_demand_T23
weekday
pred_demand_T5
max_agg_quantity
pred_demand_T9
pred_demand_T11
gen_Solar
gen_Wind
gen_Nuclear
month
quantity_at_zero_price
year
max_price
cluster_24lag
real_GDP

0 10 30 50
Mean Decrease Accuracy

weekday
holiday
hour
pred_demand_T5
pred_demand_T17
pred_demand_T23
pred_demand_T9
pred_demand_T11
gen_Wind
gen_Nuclear
max_agg_quantity
gen_Solar
month
max_price
quantity_at_zero_price
year
real_GDP
cluster_24lag

0 4000 8000
Mean Decrease Gini

Variable importance of concurrent RF model (PJM market)

Figure A.6: Analysis of the importance of the variables in the concurrent model. PJM market,
2018–2022.
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(b) The percentage of years in each cluster.
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(c) Boxplot of quantity at zero price by clus-
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(d) Boxplot of maximum price by cluster.

Figure A.7: Descriptive analysis of month, year, quantity at zero price and maximum price by
cluster. PJM market, 2018–2022.
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Appendix B. Hierarchical clustering with average linkage of the orig-
inal curves of the West Australian market
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Figure B.1: Histogram of the distribution of the prices of the offers and density of Gaussian
mixture model with three components. West Australian market, 2016–2020.
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Figure B.2: Dendrogram before discarding small groups. Cutting at the height of 0.3 generated
38 groups with sizes presented in Table B.1. The colour of a branch is that of the cluster to
which it belongs. The largest cluster is highlighted by the red block of the colour bar. West
Australian market, 2016–2020.
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Table B.1: Cluster sizes before discarding small groups by cutting the dendrogram at height =
0.3. West Australian market, 2016–2020.

Clusters Member
amounts Clusters Member

amounts Clusters Member
amounts

1 1442 14 261 27 5964
2 1291 15 429 28 13
3 1032 16 4301 29 6
4 113 17 3214 30 5543
5 1189 18 2064 31 17
6 2318 19 7635 32 943
7 209 20 4788 33 12
8 1931 21 5628 34 82
9 1003 22 11132 35 979
10 6179 23 12 36 452
11 832 24 4961 37 3931
12 3075 25 6 38 4
13 4686 26 19
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Figure B.3: The average silhouette peaks at two. West Australian market, 2016–2020.
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Table B.2: Descriptions of explanatory variables for the West Australian market.

Variable name Description

Temporal variables

interval_number Integer. The semi-hour trading in-
terval for the supply curve (e.g. the
interval commencing at 8:00 am is
marked as 1, and 9:30 am as 4.);

month Factor. The month of the supply
curve;

year Factor. The year of the supply
curve;

weekday Factor. The day of the week of the
supply curve;

holiday Factor. If a supply curve is for a
public holiday;

Market variables

generationa Numeric. Real total sent out gener-
ation;

pred_demanda Numeric. The predicted electricity
demand of the hour of the supply
curve;

annual_GDPb Numeric. Annual real GDP (Chain
volume measures);

Lagged label cluster_24lag Factor. The clusters with 24-hour
lags.

Source:
a https://aemo.com.au/energy-systems/electricity/wholesale-electricity-market-wem/
data-wem/market-data-wa

b https://www.abs.gov.au/statistics/economy/national-accounts
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Figure B.4: Analysis of the importance of the variables in the non-concurrent model. West
Australian market, 2016–2020.
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Figure B.5: Descriptive analysis of cluster_24lag, year, month, and annual GDP by cluster.
West Australian market, 2016–2020.
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Figure B.6: Analysis of the importance of the variables in the concurrent model. West
Australian market, 2016–2020.
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Figure B.7: The boxplot of maximum price by cluster. West Australian market, 2016–2020.
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