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Abstract—Model Driven Engineering promotes models as
the core assets of projects and hence model transformations
become first-class citizens in this approach. Likewise, the de-
velopment of large scale transformations necessitates a system-
atic engineering process and supporting modelling notations.
However, although many languages have been proposed to
implement transformations, few allow their specification at a
higher level of abstraction.

In this paper we present a visual, formal, declarative spec-
ification language to express model-to-model transformations
and their correctness properties. The language supports the
two main approaches to model-to-model transformation –
trace-based and traceless – with a unified formal semantics.
Moreover, we provide a compilation of specifications into OCL
as this has many practical applications, e.g. it allows injecting
assertions and correctness properties for automated testing of
transformation implementations based on OMG standards.

Keywords-model-driven engineering; model-to-model trans-
formation; specification languages; transformation testing

I. INTRODUCTION

Model Driven Engineering (MDE) is a software engineer-

ing approach that seeks increasing productivity and quality

by raising the level of abstraction at which engineers work.

For this purpose, models (in contrast to programs) are key

assets in the development, and hence model transformations

are the pillars of the process. A model transformation

receives one input model and produces one output model, in

the simplest case. If both models conform to the same meta-

model the transformation is called endogenous, whereas

if the meta-models are different it is called exogenous or

model-to-model (M2M) transformation [1].

In order to become useful in industrial practice, engineers

need methods and tools to analyse, design, implement and

test complex and large M2M transformations. However,

although many languages have been proposed to implement
transformations [1], [2], [3], there is a lack of methods,

notations and tools to cover further stages of the complete

transformation life-cycle.

In standard software development, specification languages

are commonly used to express desired properties about

the applications to be built [4]. They focus on what the

application should do without stating how to do it. Hence,

they are closer to the system analysis (which could also

be refined into design) than to its actual implementation.

Formal specification languages like Z [4] or Alloy [5] have

a mathematical underpinning that allows formal reasoning,

refinement, proof, and specification-based testing of imple-

mentations [6].

In this paper we propose a high-level, formal, visual,

declarative language to specify M2M transformations. Its

purpose is not to implement transformations, but to express

what the transformation is to do (but not how), as well

as properties that transformed models should satisfy. In

this sense, the role of our language for transformations is

similar to the role of Z for software: providing support to

the analysis and design of transformations. The language

provides constructive and non-constructive primitives to

specify relations that should hold between the input and

output models, or forbidden situations. It also supports the

two usual approaches to M2M transformation: trace-based,

where explicit mappings define relations between the input

and output models (as e.g. in QVT-Core [7] and triple graph

grammars [8]), and traceless (as e.g. in QVT-R [7], ATL [2]

and ETL [3]). Specifications can be used in two ways: (i)

as a functional, potentially loose, definition of (part of) the

expected behaviour of transformation implementations; and

(ii) to provide correctness properties of the transformation.

Fig. 1 outlines our approach. First, the transformation

designer uses our specification language to define the trans-

formation behaviour, verification properties, and require-

ments on the valid input models (label 1). This specification

has a formal semantics and can be analysed to discover

redundancies, contradictions, and to measure coverage of

the involved languages (label 2). Next, the developer uses

the specification as a high-level model to implement the

transformation (label 3). This implementation is tested by

injecting assertions automatically derived from the speci-

fication (label 4). Assertions act as an oracle describing

structural invariants that output models should satisfy, and

are used for automated testing (labels 5, 6). They are also

used to test whether a model can be used as input for the

transformation.

Altogether, the contributions of this paper are the fol-

lowing. We propose a novel, visual specification language

for M2M transformation, supporting both trace-based and
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Figure 1. Scheme of our approach.

traceless styles. This language can be used in initial stages of

the transformation development cycle (analysis and design)

and enables the automated verification of implementations.

To the best of our knowledge, no such language has been

proposed before. We also provide a compilation of specifi-

cations into OCL. This enables the injection of correctness

assertions in order to automate testing of implementations

for QVT and other languages based on OMG standards, such

as ATL or ETL. Since complex, large-scale transformations

are frequently encoded using textual languages, we aim

at keeping the best of visual and textual transformation

languages. Finally, we report on an Eclipse-based prototype,

and illustrate the injection of OCL assertions for testing ETL

transformations.

Paper organization. Section II presents the syntax and

formal semantics of our language. Section III shows its

compilation into OCL. Section IV describes tool support and

an example. Finally, Section V discusses related research and

Section VI concludes.

II. A M2M SPECIFICATION LANGUAGE

Our language is used to test implementations, but it

is independent of them. It supports both trace-based and

traceless styles of specification, which allows one to express

properties for implementation languages that use an explicit

handling of traces (e.g. QVT-Core, TGGs), and also for

languages that do not make use of them (e.g. QVT-R, ATL,

ETL). The first style is closer to implementation, since it

implies creating traces for each transformed element and

its targets. Traceless specifications do not use traces, but

a mechanism to express pre- and post-conditions which

may refer to other parts of the specification. For instance,

QVT-R uses when and where constructs to define pre-

and post-conditions, respectively. Interestingly, both styles

share similar semantics and can be formalized in a unified

framework.

A. Constraint triples

A specification in our language is made of patterns. Here

we extend our theory developed in [9] for the definition

of both trace-based and traceless specifications. Patterns are

based on the concept of triple graph [8] to represent the

input, output and trace models (called source, target and

correspondence). A triple graph G = 〈GS , GC , GT , cs, ct〉
is made of two graphs GS and GT called source and target,
related through a correspondence graph GC and two graph

morphisms cs : GC → GS and ct : GC → GT . For trace-

based patterns, GC contains the traces between nodes in GS

and GT , while for traceless patterns, GC is empty.

We use symbolic graphs [10] to describe the structure

of the three graphs. Symbolic graphs are typed and have

attributed nodes and edges, but instead of having a possibly

infinite set of data values, they use a finite set of sorted

variables ν, and a formula α constraining the allowed values

for these variables. Thus, constraint triples have the form

C = 〈G, ν, α〉, where G is a triple graph whose data nodes

are replaced by variables in ν. We use constraint triples

to represent both usual models (called ground constraints,

where α restricts the attributes to take exactly one value),

as well as constraints to be satisfied by models.

Example. Fig. 2 shows examples of trace-based and trace-

less constraints, modelling part of the class-to-relational

transformation [7]. They relate persistent UML packages

with RDBMS schemas. The traceless constraint does not

show the correspondence graph as it is empty. In both cases

the formula α is shown at the bottom, we omit the conjunc-

tions between terms, and place in the left compartment the

terms containing only variables from the source graph, in the

right compartment the terms containing only variables from

the target, and in the middle the terms containing variables of

both graphs. Note that “=” denotes equality, not assignment.

We can use any logic for α, but here we use first-order logic

with OCL-like syntax.

p: Package

name=X
persistent=P

s: Schema

name=Y

Trace-based PackageSchema

s: Schema

name=Y

Traceless PackageSchema (top)

P=true P=true

m: P2S
p: Package

name=X

persistent=P

Figure 2. Trace-based and traceless constraints.

Constraint triples are related through C-morphisms

a : C1 → C2, made of a triple graph morphism with the

following conditions: the formula α2 of C2 must imply the

formula α1 of C1, and the same implication is demanded

for the source and target restrictions (α2|S ⇒ α1|S and

α2|T ⇒ α1|T ). Roughly, the source restriction α|S (resp.

target α|T ) of a formula is the formula α but considering

the variables of the source (resp. target) graph only [9]. The

source restriction C|S of a constraint triple C is made of

the source graph and the formula α|S , and similar for the

target restriction.

B. Trace-based Patterns

We use the previous concepts to build trace-based pat-

terns. We define two kinds of pattern with same structure
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but different interpretation: positive and negative (called

P-patterns and N-patterns). A pattern is made of a main

constraint triple Q (to be satisfied in the case of P-patterns,

and forbidden to occur in the case of N-patterns), and may

contain a positive pre-condition C and a set of negative pre-

conditions Ni.

Def. 1 (Trace-based pattern). A trace-based pattern P =
〈C q→ Q, Npre = {ni : Q → Ni}i∈I〉 consists of a
main constraint triple Q, a (possibly empty) positive pre-
condition C, a C-morphism q, and a set Npre of negative
pre-conditions.

Example. Fig. 3 shows our concrete visual syntax for

a trace-based P-pattern, which contains a main constraint

(named ClassTable), a negative pre-condition (denoted by

N(Parent)), and a positive pre-condition (annotated on the

main constraint with 〈〈param〉〉). The pattern states that

each persistent class should be related to a table, when the

class has no parent (negative pre-condition) and if the class’

package is mapped to a schema (positive pre-condition).

c: Class
name=X
persistent=P

t: Table
name=Y

n:C2T

Y=‘T_’+XP=true

c: Class

pa: Class
parent

N(Parent)
p: Package m:P2S

«param» «param»
ClassTable

s: Schema
«param»

Figure 3. Example of trace-based P-pattern.

Fig. 4 shows an N-pattern. While the P-pattern can be used

to specify constructively a transformation, this N-pattern

expresses an invariant, i.e. a verification property reflecting

the beliefs of the designer about the properties that should

hold in all related models. The N-pattern states that if a

class has no two attributes with same name (negative pre-

condition N(AttrDup)) then the associated table should not

have duplicated columns (main constraint N(ColDup)). This

property is indeed false, if attributes of children classes are

stored in the same table, and classes can redefine attributes.

N(AttrDup)

a: Attribute
name=A

A=B

c: Class c: Class
persistent=P

P=true

N(ColDup)

C=D

m:C2T

b: Attribute
name=B

c1: Column
name=C

t: Table

c2: Column
name=D

Figure 4. Example of trace-based N-pattern.

Sometimes, M2M transformations are not designed to

cope with every valid source model, but to work with a

subset of models of the source language. Our patterns can

also be used to explicitly express the conditions that we

ask the source models to qualify for the transformation.

As an example, Fig. 5 shows an N-pattern that forbids

attribute redefinition (operation ancestors returns the set

of ancestors of a given class). Similarly, we can also use

patterns to specify properties that any output model of the

transformation should fulfill.

N(AttribRedef)

a: Attribute

name=A
c: Class

b: Attribute

name=B
c1: Class

ancestors(c1).includes(c)

A=B

Figure 5. N-pattern constraining the source language.

In M2M transformation, we are interested in know-

ing whether a target model is a correct translation of a

source model, or vice-versa. For this purpose we inter-

pret patterns either source-to-target or target-to-source (for-

wards/backwards). In the former case, we check that each

forward-enabled pattern is actually satisfied, and similar for

the backward case. If two models satisfy the patterns both

forwards and backwards, we say that they are synchronized.

We start by defining enabledness of a pattern for the forward

case; the backward case is symmetrical.

Def. 2 (Forward pre-condition). Given a pattern P , its
forward positive pre-condition F+(P ) = C +C|S Q|S
is given by the pushout of its positive pre-condition C
and the source restriction of the main constraint Q, while
its set of forward negative pre-conditions is F−(P ) =
{qS : F+(P ) → NS

i , with NS
i = C +C|S Ni|S}i∈I .

Example. Fig. 6 shows the forward positive pre-condition

of pattern ClassTable, F+(ClassTable), which results from

merging C (objects p, s and m) and Q|S (objects p, c and

their link) through C|S (object p). This is called a pushout in

category theory. In our case, pushouts are made like in triple

graphs, and then taking the conjunction of the formulae [9].

The pattern has one forward negative pre-condition NS
1 ,

depicted to the left.

parent

s:Schemam :
P2S

p:Package

pa: Class

c: Class
persistent=P

N s
1 F  (ClassTable)−

m :
P2S

p:Package

c: Class
persistent=P

F  (ClassTable)+

p:Package m :
P2S

n :
C2T

s:Schema

t: Table
name=Y

c: Class
name = ’Person’
persistent=true

p:Package
name = ’Pkg’

a: Attribute

type = ’int’
name = ’Age’

m:P2S

n:C2T

o:A2C co: Column

type = ’NUMBER’
name = ’Age’

s:Schema
name = ’S_Pkg’

t: Table
name =’T_Person’

c: Class
name = X
persistent=P

P=true

s:Schema

P=true

Q

P=true Y=’T_’+X
M

Figure 6. Trace-based forward satisfaction example.
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A pattern P is forward-enabled in a constraint triple M
(not necessarily ground) if an occurrence of its forward pos-

itive pre-condition F+(P ) is found in M , and no occurrence

of its negative forward pre-conditions is found. A P-pattern

(N-pattern) is satisfied at an enabled match, if the match can

be (cannot be) extended to the pattern’s main constraint Q.

Def. 3 (Forward enabledness). Given pattern P and
constraint triple M , P is forward-enabled at match
mS : F+(P ) → M , written M �mS ,F P , iff ∀i ∈
I, �nS

i : NS
i → M s.t. (1) commutes in the diagram below.

NS
i

/
nS

i

(1)

��

F+(P )�� ��

mS

��
(2)

Q

m��

�����

M

Def. 4 (Forward satisfaction). Given pattern P , constraint
triple M and M �mS ,F P , P is forward-satisfied at mS ,
written M |=mS ,F P , iff ∃m : Q → M s.t. (2) commutes in
the diagram above if P is a P-pattern, or iff �m : Q → M
if P is an N-pattern. P is forward-satisfied in M , written
M |=F P , iff ∀mS s.t. M �mS ,F P , M |=mS ,F P .

Example. The pattern in Fig. 6 is forward-enabled in one

occurrence, the one identifying objects p, m, s and c in

F+(ClassTable) and M , as the forward negative pre-

condition NS
1 is not found in M . The pattern is actually

forward-satisfied by M because this occurrence can be

extended to Q.

Specifications are conjunctions of patterns, hence M
forward-satisfies a specification S (M |=F S) if it forward-

satisfies all its patterns. Two models are synchronized if each

other is a correct forward/backward translation of the other:

M |=F S and M |=B S.

C. Traceless Patterns

Similar to QVT-R, patterns in the second style of spec-

ification do not make use of traces, but provide constructs

to check if other patterns in the specification are satisfied

(when clause, a pre-condition), or to demand the satisfaction

of other patterns (where clause, a post-condition). Therefore

they need a way to express dependencies between patterns.

As for trace-based specifications, we consider P- and N-

patterns having the same structure, although for N-patterns

we demand where = ∅ (we cannot ask for additional con-

ditions on a non-existing occurrence of Q). As a difference

from trace-based patterns, we distinguish between top and

non-top patterns. The former must be satisfied always, and

the latter only when invoked from the where clause of other

patterns. Recall that we use the same underlying structure as

for trace-based patterns, but in this case the correspondence

graph is not shown because it is empty.

Def. 5 (Traceless pattern). A traceless pattern R =
〈Q,Npre = {ni : Q → Ni}i∈I , when, where, top〉 is made

of a main constraint triple Q, a set Npre of negative pre-
conditions, two sets when and where of dependencies for Q,
and a boolean flag top.

Example. Fig. 7 depicts three traceless patterns for the

specification of the class-to-relational transformation. Pattern

ClassTable is top and demands a table for each class without

parents (negative pre-condition N(Parent)). The when clause

makes this necessary only if the class’ package and the

table’s schema satisfy the PackageSchema pattern (shown

in Fig. 2). Moreover, if this is the case, then both patterns

AttributeColumn and ParentClassTable should be satisfied

for the class and table. While the former demands pairs

of attributes and columns in the given class and table, the

latter descends recursively through the inheritance hierarchy

demanding the satisfaction of AttributeColumn at each child

class.

c: Class
name=X
persistent=P

t: Table
name=Y

Y=‘T_’+X

ClassTable (top)

N(Parent)
p: Package s: Schema

when { PackageSchema(p,s); }
where { AttributeColumn(c,t);

ParentClassTable(c,t); }

a: Attribute
name=X
type=T

co: Column
name=Y
type=T1

Y=X

c: Class t: Table
AttributeColumn

ch: Class

ParentClassTable
c: Class t: Table

P=true

parent

c:Class

parent

(Collection{‘int’,’float’,’double’}.exists(z| 
z=T and T1=‘NUMBER’) or  

(T=‘string’ and T1=‘CHAR(*)’))

where { 
ParentClassTable(ch,t);
AttributeColumn(ch,t); }

pa:Class

Figure 7. Traceless patterns.

The use of when and where clauses creates dependencies

between patterns. In particular, given the main constraints

Q1 and Q2 of two patterns, a dependency is given by

Q1
d1← D

d2→ Q2, where D contains the elements passed

as parameter in a when or where clause relating them.

Thus, similar to the forward pre-condition notion for trace-

based patterns, we define forward dependencies for traceless

patterns generalizing the pushout construction in Def. 2 to

an arbitrary number of dependencies (not just one). Then

we take the amalgamation of all of them.

Def. 6 (Forward dependency). Given a traceless pattern
R and a dependency Q

d← D, the forward positive de-
pendency is given by F+

d (R) = F+(〈D → Q,Npre〉),
while the set of forward negative dependencies is given by
F−

d (R) = F−(〈D → Q,Npre〉), see Def. 2.

Given R and a dependency set DS = {Q dj← Dj}j∈J ,
the forward positive dependency is given by F+

DS(R) = W
as shown to the left of Fig. 8, with I the limit of {pj},
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W the colimit of {ij}, and u exists due to the limit
universal property. The set of forward negative dependencies
is F−

DS(R) =
⋃

dj∈DS

{W → NW
i }i∈I , with NW

i a pushout

calculated as shown to the right of Fig. 8.

I
i0

����
��

��
�

in

����
��

��
� Qj

F+
d0

(R)

p0

		

e0
��

����
�

. . . F+
dn

(R)

pn

��

en
��

�����

NS
i

P.O.




F+
dj

(R)

ej





�� Dj

dj





gj��

fj

��

W

u




NW
i

ni
/
(1)

W
u ��

mS





�� Q

m
(2)




Q M

Figure 8. Forward dependency set.

Next we define the conditions for a traceless pattern

R to be forward-enabled. As in the trace-based case, we

have to find an occurrence of F+(R) and no occurrence

of F−(R), but here there is no positive pre-condition but a

set of when dependencies. Thus, for a traceless pattern to

be forward-enabled, we build F+
when(R) and demand each

when dependency to be satisfied.

Def. 7 (Forward enabledness). R is forward-enabled in a
constraint triple M at match mS : W → M (with W =
F+

when(R)), written M �mS ,F R, iff �ni : NW
i → M with

(1) commuting to the right of Fig. 8, and ∀Qj
fj← Dj

dj→
Q ∈ when, SATF (Rj ,m

S ◦ ej ◦ gj , fj) (see Def. 8).

Example. Fig. 9 shows a constraint M where the pattern

ClassTable is enabled: there is an occurrence of W =
F+

when(ClassTable) (made of objects p, s and c) that

satisfies the pattern PackageSchema for the commuting

dependency F+
f1

(PackageSchema). The forward positive

dependency F+
f1

(PackageSchema) is calculated taking

D1
f1→ Q1. For simplicity we have omitted the negative pre-

condition, which avoids the pattern to be enabled in class

c2. We demand non-cyclic dependencies between patterns

as otherwise we may obtain an infinite loop when testing

the when clause.

We define the forward satisfaction of traceless patterns

using a predicate SATF with three parameters: (1) the

pattern R to be checked, (2) a morphism D → M with

which its forward positive dependency F+
when(R) has to

commute, and (3) a dependency D → Q, which may come

from a caller where section, and is actually treated as an

additional pre-condition in the when clause. In this way, the

predicate may demand the satisfaction of other patterns at

certain matches that are passed as parameters from invoking

when or where clauses, the former coming from Def. 7, and

the latter from recursive calls in Def. 8.

Def. 8 (Forward satisfaction). Given a P-pattern R, pred-
icate SATF (R,mD : D → M, d : D → Q) holds iff:
∀mS ∈ {mS : W → M | mD = mS ◦ e, with W =
F+

when∪{d}(R),M �mS ,F R, D
e→ W}, ∃m : Q → M s.t.

(2) commutes to the right of Fig. 8, and ∀Qk
fk← Dk

dk→
Q ∈ where, SATF (Rk,m ◦ dk, fk).

If R is an N-pattern, everything is the same, but we
demand the non-existence of m : Q → M s.t. (2) commutes
to the right of Fig. 8 (and nothing else as where = ∅).

M

p:Package s:Schema

c: Class

persistent=P

+
whenW = F       (ClassTable)

P=true

d1

p:Package s:Schema

D1

p:Package s:Schema

+F  (ClassTable)d1

p:Package s:Schema

+F  (PackageSchema)f1

c: Class

p:Package

t: Table
name=Y

P=true

Q

name = X
persistent=P

Y=’T_’+X

s:Schema

f 1

name = ’Pkg’
persistent = true

p:Package

c: Class
name = ’Person’
persistent = true

c2: Class
name = ’Employee’
persistent = true

s:Schema
name = ’S_Pkg’

t: Table
parent

name = ’T_Person’

s:Schema
name = Yname = X

persistent=P

Q

Y=’S_’+X

p:Package
1

P=true

=

=

Figure 9. Traceless forward satisfaction example.

Example. The forward-enabled occurrence of pattern

ClassTable in Fig. 9 is satisfied because we find an oc-

currence of the pattern’s main constraint Q and the where
dependencies are satisfied: (i) AttributeColumn is trivially

satisfied as c has no attributes, and (ii) ParentClassTable is

satisfied as we find one occurrence of it but the child class

has no attributes.

The satisfaction of a traceless specification demands the

satisfaction of all their top-level patterns.

Def. 9 (Specification forward satisfaction). Given a traceless
specification S and a constraint triple M , M |=F S iff
SATF (R, ∅ → M, ∅ → Q) ∀R ∈ S|R is top.

Satisfaction of traceless specifications can be tested on

traced models (i.e. triple graphs where the correspondence

graph is not empty). This makes such specifications more

independent of the implementation mechanism, which can

be based on traces or not. On the contrary, trace-based

specifications necessitate from traced models.

III. COMPILATION INTO OCL

In this section we provide a practical way for testing

satisfaction of our patterns by their compilation into OCL

(using the EOL syntax [11]). Our aim is generating invari-

ants to automatically check the satisfaction of specifications

by models, and which can be injected in the transforma-

tion implementations for testing purposes. We choose OCL

because it is an OMG standard and can be integrated in

transformation languages of widespread use, such as QVT,

ATL or ETL. We start by showing the compilation of
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traceless patterns, as the compilation of trace-based ones

can be expressed in terms of the former.
For traceless patterns, we generate one set of operations

from each (P- and N-) pattern, which only differ in their

parameters. In particular, one operation is generated from

each pattern call in a when or where clause, and one

additional operation without parameters is generated for

top patterns. We only show the compilation schema for

the operation without parameters, since the others are built

similarly (but omitting finding a match for the objects

received as parameter). We assume just one pattern in the

when and where clauses for readability reasons, and use the

following notation:

- p: name of compiled pattern

- when-p: name of pattern in the when clause

- where-p: name of pattern in the where clause

- when-p.param, where-p.param: objects in the call to

when-p and where-p, respectively

- check-p(...): OCL expression that checks the graphical

and attribute conditions imposed by p on the objects

received as parameter

- check-n(...): like check-p, but checks a negative pre-

condition n instead of p
The scheme of the OCL code for checking the forward

satisfaction of a traceless P-pattern is:

operation sat_p () : Boolean {
return
-- a) for each occurrence of objects a1,...,am
-- in when-p.param that satisfy when-p
a1.type.allInstances().forAll(a1 | ...

am.type.allInstances().forAll(am |
when-p(a1,...,am) implies

-- b) for each occurrence of objects b1,...,bn
-- in the source of p and not in when-p.param

b1.type.allInstances().forAll(b1 | ...
bn.type.allInstances().forAll(bn |

check-p(a1,...,am,b1,...,bn)
-- c) if it does not violate any negative pre-condition
-- of p (being c1,...,co the objects in the negative
-- pre-condition different from the a and b objects)

and not
c1.type.allInstances().exists(c1 | ...

co.type.allInstances().exists(co |
check-n(a1,...,am,b1,...,bn,c1,...,co)

-- d) then there must be an occurrence of p (being
-- d1,...,dp the objetcs in the target of p which
-- are not in when-p.param)

implies
d1.type.allInstances().exists(d1 | ...

dp.type.allInstances().exists(dp |
check-p(a1,...,am,b1,...,bn,d1,...,dp)

-- e) and satisfies where-p for the objects e1,...,eq
-- in where-p.param (already matched by a, b and d)

and where-p(e1,...,eq);
}

In the previous operation, fragments a), e) and c) are

omitted if the pattern has an empty when clause, an empty

where clause, or an empty set of negative pre-conditions,

respectively. The compilation schema for N-patterns is sim-

ilar to that for P-patterns, but the existential operator in

fragment d) is preceded by not. Finally, the compilation

for backward satisfaction implies just substituting source by

target (and vice-versa).

Example. The compiled code for the traceless pattern

ClassTable is:

operation sat_ClassTable () : Boolean {
return
Package.allInstances().forAll(p | --------------- a)

Schema.allInstances().forAll(s |
PackageSchema(p,s) implies
Class.allInstances().forAll(c | ------------- b)

(p.class.includes(c) and c.persistent=true)
and not ----------------------------------- c)
Class.allInstances().exists(pa |
c.parent.includes(pa))

implies ----------------------------------- d)
Table.allInstances().exists(t |
s.table.includes(t) and t.name=’T_’+c.name
and AttributeColumn(c,t) ---------------- e)
and ParentClassTable(c,t))))));

}

The compilation schema of trace-based patterns is much

simpler: (i) only one operation without parameters is gener-

ated from each pattern; (ii) fragments a) and b) are merged

so that the resulting fragment looks for all matches of the

pattern pre-condition (i.e. all elements in the positive pre-

condition and the source of the main constraint which satisfy

the graphical and attribute constraints); and (iii) no fragment

e) is generated. Note that in this case, the generated OCL

conditions actually check that traces exist when they appear

in a pattern, while for traceless patterns this is not so, so

they are independent of the implementation mechanism.

Example The operation derived from the trace-based pattern

ClassTable is:

operation sat_ClassTable () : Boolean {
return
Package.allInstances().forAll(p | ---------------- a+b)

Schema.allInstances().forAll(s |
Class.allInstances().forAll(c |

P2S.allInstances().forAll(m |
(p.class.includes(c) and c.persistent=true and
m.source=p and m.target=s
and not --------------------------------- c)
Class.allInstances().exists(pa |

c.parent.includes(pa)))
implies ---------------------------------- d)
Table.allInstances().exists(t |

C2T.allInstances().exists(n |
s.table.includes(t) and t.name=’T_’+c.name
and n.source=c and n.target=t))))));

}

As stated previously, this OCL code can be used in many

ways. The next section shows an application to automated

testing of transformation implementations.

IV. TOOL SUPPORT AND EXAMPLE

We have built an Eclipse tool to define pattern specifica-

tions using a visual concrete syntax. It has been developed

with GMF, and includes a code generator to synthesise

EOL code [11] (an extension of OCL) for the chosen

scenario (forwards/backwards, either for traceless or trace-

based specifications). This code can be injected in ETL

transformation implementations in two ways: (i) assertions

coming from patterns expressing conditions on the source

model, like the pattern in Fig. 5, are tested before executing
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the transformation; (ii) patterns expressing expected proper-

ties of the target model, as well as verification or functional

properties of the transformation, are tested after executing

the transformation. Hence, given an input model, it is first

checked if it qualifies for the transformation. If it does, the

transformation is executed and the user is informed of the

patterns that are or are not satisfied, and of the rules that

should be revised.

Fig. 10 shows a verification traceless P-pattern defined

in the tool. The pattern specifies how to handle multiple

inheritance. In particular, it seeks two top-level persistent

classes c1 and c2, ancestors of a third class c. The fact

that c1 and c2 are top-level is checked by the negative pre-

conditions NoAncestor1 and NoAncestor2, whereas the fact

that c1 and c2 are ancestors of c is checked by operation

ancestors in the formula. Then, for each attribute a of

c, the pattern demands a matching column in both tables t1
and t2. This is checked in the where section by calling

the functional requirement pattern AttributeColumn for each

table. Moreover, the when section checks that t1 and t2
are associated with c1 and c2 by calling ClassTable2 (equal

to ClassTable but without where section). An additional

verification pattern checks that if a top-level class does not

have attributes with same name (e.g. no redefined attributes

in children), its associated table does not have columns with

same name.

Figure 10. Verification pattern.

After defining the patterns with the functional require-

ments and verification properties, we can generate EOL

code to verify a particular transformation implementation.

Fig. 11 shows part of the ETL code that implements

the forward transformation. The implementation is a re-

finement of the functional specification, as in addition

it creates primary and foreign keys and considers object

references. This implementation is incorrect because it

does not consider multiple inheritance: when an attribute

is translated into a column, the column is placed in the

table associated to the top-most class (line c.table ::=

a.owner.getTopClass();). However, the operation

getTopClass assumes single inheritance and returns a

unique class (and ::= returns its associated table). There-

fore, this implementation fails when tested with models

having multiple inheritance, and is detected by our patterns,

as the pop-up window in Fig. 11 shows. The feedback

mentions the rules to be revised because these are annotated

with the patterns they address (line @patterns=...).

Figure 11. Testing an implementation.

It is interesting to note that a specification expresses

requirements, and is independent of how the implementation

actually performs its job. In our example, the implementation

does not use recursion on children classes (like pattern

ParentClassTable does), but a method to obtain the table

of the top-most class. Second, we found it useful to clas-

sify patterns as functional or verification patterns, where

the latter usually depend on the former. Third, functional

patterns do not need to specify the behaviour of the complete

transformation and cover all requirements, but only the most

critical ones (in our example, it did not address primary or

foreign keys nor references). Moreover, we do not even have

to use the same meta-model for specification and implemen-

tation, but the meta-model of the implementation can be a

refinement of the specification one. Finally, specifications

are independent of the implementation language, and they

can be used for testing implementations written in different

languages. In particular, the approach is useful to test large

textual implementations, and we used it for the run-time

verification of a transformation of more than 1600 lines of

code in the context of a European project.

V. RELATED WORK

Our traceless language is inspired by QVT-R [7], but

enriched with N-patterns (i.e. non-constructive primitives),

7



graphical negative pre-conditions and bidirectional attribute

computations. Whereas QVT-R implementations are able

to execute parts of the standard [7], we are working in

execution support for functional patterns, but there are some

issues. First, our attribute computations are bidirectional,

which means doing either algebraic manipulation of formu-

lae or using constraint solving when the transformation is

given a direction. Bidirectional conditions like X+Y=Z+V,

which involve variables of source and target elements, are
not supported by existing QVT-R implementations (assign-

ments are supported, but not general formulae). The non-

constructive nature of N-patterns would also need constraint

solving. Finally, specifications may be loose: a source model

may have several correct target models. Implementations can

refine this behaviour choosing deterministically one solution.

The formal semantics of our traceless language is imme-

diately applicable to QVT-R. There are few attempts to give

formal semantics to QVT-R. In [12], the authors compile

simplified QVT-R into TGGs. In [13], a game-theoretic

semantics for check-only QVT-R is given, but the semantics

is given in an abstract way, neglecting issues like bindings,

pattern matching and parameter passing. There are a few

QVT-R concepts we do not cover yet though, like having

arbitrary formulae in when and where instead of sets.

Even though there are many languages to implement

transformations, very few works propose higher-level nota-

tions for transformation design [14]. To our knowledge, no

language has been proposed for specification of implementa-

tion properties, as we do in this paper. Even though there are

languages for expressing bi-directional transformations, they

are unsuitable for their use as formal specification languages.

Some of them, like QVT-R, have no formal semantics.

Others, like TGGs, are based on rules and hence they are not

suitable for testing, where a language based on constraints

is more appropriate.

Finally, our work also contributes to the area of transfor-

mation testing by providing a language that simplifies the

specification of oracles to automate the comparison of the

actual and expected results of transformations, where current

approaches require the manual specification of complex

OCL constraints [15].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a high-level M2M speci-
fication language, its formal semantics, its compilation into

OCL, tool support, and its application for M2M transfor-

mation testing. Concerning the latter, we have shown the

benefits of a visual specification language to guard the

correctness of large, textual transformation implementations.

Moreover, our traceless language has a formal algebraic

semantics applicable to QVT-R.

We are currently working on executability of specifi-

cations by combining transformation languages with con-

straint solvers. However, in some scenarios, implementations

coded by hand may be more efficient or scalable. We are

also working in the analysis of specifications, studying the

strengths and equivalence of both styles of specification, and

on methods to derive test cases from specifications.
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