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Abstract

This paper studies the replicator dynamics in the presence of shocks. I
motivate the dynamics as the result of a process by which agents change the
strategy they use when its performance is not satisfactory. I show that un-
der these dynamics strictly dominated strategies are eliminated even in the
presence of nonvanishing perturbations. I also provide sufficient conditions for
the existence of a unique ergodic distribution and give examples that show that
the stochastic dynamics in this paper have equilibrium selection properties that
differ from those of other stochastic dynamics in the literature.



1. INTRODUCTION

The current interest in evolutive dynamics was born from a discussion of the
foundations of game theory, whose emphasis on equilibria seemed to make excessive
demands on the rationality of agents. As an alternative, it was thought that equilibrium
may be the result of the repeated interaction of agents who are less strategically
sophisticated than the traditional theory supposes. There are precedents here, since
Cournot himself gave a dynamic explanation for how the equilibrium for his oligopoly

game would come to be.

This paper studies stochastic selection systems, in the context of games. I work
with a particular dynamic system, the replicator dynamics, which I will try to show has
interpretations beyond the usual evolutionary ones. These dynamics model agents with a
very low degree of sophistication. Despite the agents’ lack of sophistication, I find that
even in the presence of stochastic shocks of several kinds the dynamics give little
asymptotic weight to strictly dominated strategies. I also give sufficient conditions for the

stochastic dynamics to have an ergodic distribution.

When considering the replicator dynamics it is useful to think of a large
population of agents who use pure strategies and are randomly matched to play against
each other. The growth rate of the proportion of players using a certain pure strategy is
the difference between the expected payoff of that pure strategy, given the proportions of
players using every pure strategy, and the average expected payoff in that population. In.

contrast to other dynamics that have been proposed, like the best-response dynamics of

Matsui [16], the fictitious play of Brown [2] and Robinson [23], or the learning papers of



Milgrom and Roberts [17] and Fudenberg and Kreps [12], the replicator dynamics have
the characteristic that the strategies whose weight in the population increase need not be
best responses to anything, in particular to past outcomes of play. And even in these
circumstances, it can be shown, (see Cabrales and Sobel [3]) that if selection operates
slowly enough or in continuous time, then all limit points of the dynamics are best
responses to time averages of past play, thus giving some support to the notion that

agents that are not rational behave as if they were.

The history of stochastic selection processes is not long, in part because the
techniques are relative newcomers also. An early article was written by M. J. Farrell [9]
at a time when most of the discussion on selection was done in terms of deterministic
dynamics. The main concern of the literature on selection dynamics was whether the
assumption of profit maximization was a sensible one to use for the theory of the firm.
One possible argument in favor of the idea was that non-profit maximizers would tend to
grow less or become bankrupt more often, thus making an ever shrinking proportion of
the industry. Winter [31] has a more extensive discussion of this argument. Farrell uses
branching processes to model a situation where several different "ability” groups are
characterized by their probability of success. He then calculates the relative
preponderance of the different groups. He also considers the introduction of new entrants
to the groups. The fate of strictly dominated actions and the implications of a stream of
disoriented new entrants are two of the fhcmes I will address. Farrell’s work is concerned
with pure decision problems in a small population setting, though. In a more recent
paper, Foster and Young [10], develop a model where perturbations, which they describe

by Wiener processes, are constantly affecting the replicator dynamics and keeping the



process within the interior of the simplex. Kandori, Mailath and Rob [14] and Young
[32] consider explicitly a case with finite populations where the randomness comes from
the stochastic replacements of agents by newcomers that start by playing something at
random. In the three previous models the processes have ergodic distributions, and the
authors arrive at predictions by looking at the limit of these ergodic distributions when
the variance of the noise goes to zero. Papers by Samuelson [24], Noldeke, Samuelson
and Van Damme [20], and Kandori and Rob [15] apply the techniques in Kandori,
Mailath and Rob [14] and Young [32] to a variety of games, including cheap talk, pure
coordination games and supermodular games. This approach has proven useful because
it has been able to discriminate between strict equilibria, something most refinements and
other dynamic systems were unable to distinguish. An exception is Crawford’s [4] paper
where he shows that in some games strategic uncertainty and adaptive adjustmerits can
give rise to systematic equilibrium selection patterns without having to depend on an
ergodic distribution. Crawford [5] shows that in finite populations evolutionary stability

is also capable of selecting between strict equilibria.

The model that I will use was first developed by Fudenberg and Harris [11], for
a two player, two strategy, symmetric game. I will study games that are not necessarily
symmetric with multiple players and strategies. Like Fudenberg and Harris, I define the
replicator dynamics in continuous time, and the state variables are points in the simplex.
One difference with the Foster and Young paper is that the source of the shocks becomes
important, and we distinguish between aggregate shocks to payoffs and mutations. In the
fourth section I show that strictly dominated strategies become rare when selection has

been operating for a long time. This extends the result found by Fudenberg and Harris for



their class of games. In the sixth section I show that for a two strategy, N-player,
symmetric game with two strict equilibria, the equilibrium selected by the dynamics used
in my paper is different from the one that the dynamics used by Kandori, Mailath and
Rob would select. In the class of games that Fudenberg and Harris study both kinds of
dynamics select the same equilibria, if mutations are possible, because in a game with

two players the payoffs are linear in the proportion of players using every strategy.

The shocks captured by the model in this paper, as in Fudenberg and Harris, are
of two types. There are individual, uncorrelated changes of strategy, produced by the
entry of uninformed players. Since I assume there is no correlation in these changes and
the population is very large, I model these shocks as deterministic shifts to the replicator
dynamics, which is how traditional models of biological selection tend to include
mutations. There are also aggregate shocks that affect payoffs in the same way for all
users of a strategy. These will not average out; they constitute the part of my model that
is explicitly stochastic. For a first approximation they are considered uncorrelated across
time. Since the model is formulated in continuoﬁs time Wiener processes are an
adequate way to model them. The sixth section extends the ergodicity result in

Fudenberg and Harris to games with multiple players and strategies.

The second section of the paper will be devoted to a description and motivation
of the replicator dynamics. I will argue that the replicator dynamics can be thought of as
the reduced form of a process of imitation or of economic survival, and present a class of
dynamic systems, first introduced by Smallwood and Conlisk [27], of which the
replicator dynamics are a special case. In the third section I will introduce the model with

shocks. In the fourth section I will prove that if the variance of the noise is not too large,



when the mutation rates are smaller and smaller the system tends to give less and less
weight to strictly dominated strategies. The fifth section deals with the existence and
uniqueness of an ergodic measure. The sixth section presents an example that highlights
the differences between the model in this paper and other stochastic dynamics. The
seventh section shows that for members of the Smallwood-Conlisk family of dynamics
other than the replicator dynamics, strictly dominated strategies need not be eliminated.
This happens even for dynamics that are close, in 2 parametric sense, to the replicator

dynamics. Then I conclude the paper.
2. REPLICATOR DYNAMICS

The game considered here will have finitely many pure strategies and players.

There are N players and the pure strategy set for the ith player is P; which-has n;

N
strategies. Player k’s payoff function is uy : IIP; & R. Let S" denote the standard n-1

i=1
dimensional simplex. uy is extended to the space of mixed strategies in the usual way,
and je P; will be identified with the mixed strategy that gives probability one to the pure
strategy j. Suppose there are N populations of agents, one for each player, and each of
them contains a continuum of individuals. The usual interpretation of the replicator
dynamics is that they describe the evolution of the proportion of members of each
population playing every strategy. Payoffs in that case represent reproductive fitness, or

the number of successors for the user of a strategy given the makeup of the population.

Let x}(t) be the proportion of members of the ith player population using

strategy j at time t. The replicator dynamics are defined as follows;



=K [wG.x©0™) - ¥ xkOukxo™)|.
k=1

To justify the dynamics imagine that the individuals are randomly matched dur-
ing period t to play the game. They learn their payoff. A small portion of them are then
taken and randomly paired with members of the same player population. They compare
payoffs and the one with lower payoff changes to the strategy of the one with higher
payoff with a probability that is proportional to the difference in payoffs. This could hap-
pen for example if the agents had an idiosyncratic uniformly distributed cost of changing
strategies, and decided to change only when the difference in payoffs were higher than
the cost of changing strategies. Nachbar [18] gives a similar interpretation for the repli-

cator dynamics.

For an economist it is difficult to accept an explanation for a model that. makes
agents behave on the basis of information that is so limited, instead of using more sophis-
ticated information gathering and processing techniques. Not everybody shares this
belief, however. Nisbett and Ross [19] report experimental results in which the opinions
communicated in person by others have a stronger effect on decision makers than written
information that is statistically more relevant. In my opinion, the weakness of the replica-
tor dynamics lies in the fact that the scope of the agents’ research is limited, both in the
number of people consulted, and the amount of past experience used; and in the unifor-
mity of the learning rule assumed for all the population. The result in section 4 extends
one conclusion obtained for the replicator dynamics to a perturbed version of the model,
and the example in section 7 shows the necessity of additional assumptions to extend the

conclusions even further. This implies that for practical applications the particular way in
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which agents adapt needs to be taken into consideration.

I want to consider now a different interpretation for the replicator dynamics,
which may help in connecting them to other selection models in the economic literature
and illuminate the results in the remaining sections of the paper. The main behavioral
hypothesis for this interpretation is that human economic agents are satisficers, and
change their actions only when the action they are currently taking does not perform
better than a preset standard. Winter [31], for example, proposes a model with this
characteristic as an alternative to profit maximization by firms. In a consumers’ choice
model, proposed by Smallwood and Conlisk [27], the task is to choose between N
different brands, differentiated by their probabilities of performing unsatisfactorily, b; for
brand i. A consumer that owns a product that doesn’t break down in a certain periqd pur-
chases the same brand in the next period. If the product breaks down, he chooses next
period’s brand randomly. One possibility would be to give the same weight to all brands,
another would be to purchase the most popular brand. In general the consumer could be
somewhat sensitive to market popularity, without necessarily adopting such extreme pro-
cedures. Maybe the procedure consists of picking the first brand in the shelf and shelf
space is only partially sensitive to market power. Smallwood and Conlisk summarized

these possibilities by parametrizing the model in the following way. Let the market share
mZ
of brand i be m;, then the probability that a consumer chooses iis *—, where .20

X my
k=1

is the parameter that controls the importance of popularity. When o =0 popularity is
unimportant for the consumers’ choice; when « is infinity only the most popular brand

will be chosen; when a is exactly one the probabilities are exactly the same as the market
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shares. Given that the individuals choose independently, if the total number of consumers
is large, the law of large numbers guarantees that the error made in identifying the fre-
quencies with which actions are taken in the population with the probabilities that each
individual will take them is small. Then the dynamics that regulate the evolution of

market shares can be expressed,

m; (H)°

m;(t+1) = my(t)(1 - b;) + Zb mi() o Z 0%

Now suppose that instead of a consumer choosing a brand we are looking at
player i in our game who is choosing strategies. Total payoffs for strategy j are given by
ui(i,x'i) plus an idiosyncratic uniformly distributed random shock with support [a, b].
This is intented to model the fact that people are taking many decisions at the same time
and knowledge about their payoffs in a particular case can be gathered only impc&cctly.
Agents change their strategies when total payoff is less than a certain acceptable level,

call it c. Let’s assume that the constants a and b are such that Ma}‘x u;(j,k)Sc—-a and
‘s]y

Ml{l u;(j,k) 2 c — b. With these constraints on a and b any strategy at any time can either

Lj,

give a payoff above the acceptable level or fail to do so with positive probability. If the

performance of a strategy is adequate agents keep using it. If it is not they choose stra-

1\a

tegy j in the next period with probability *2—(('J—)— The probability that strategy j fails
Xk
k
c- ui(j,x‘i) -a
b-a

for a player is equal to , and the probability that it doesn’t is

b-c+yG.x)
b-a

. The dynamics that result for the population shares are,

b—c +u;(,x (1) . xi(®)® i)

c—y A,x7i()-a
b-a Txi®* 4 ‘
k

b-a

xh(t+1) = x}(®
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If o = 1 we can rewrite the expression in the following way,

HO I o
—, LG x ) - u X O))

: , X
xj(t+1) = xj(®) + "

This is the discrete time version of the replicator dynamics. By reducing the
period length, and simultaneously reducing the probability of failure at a particular

period (say raising b), in the appropriate way, we can obtain the continuous time version

that I will work with in subsequent sections.
3. THE MODEL WITH SHOCKS

I want to consider now the introduction of shocks to the replicator dynamics.
The first type of shocks includes those that affect the payoffs of all users of a strategy in
the same way. They could be random changes in total demand in an oligopoly game
where oligopolists face the same demand curve, or changes in the legal system that make
certain strategies more costly, or changes in factor prices that alter the cost of using a
technology. The sum of these shocks will be modeled as a Wiener process. These are
continuous-time stochastic processes with almost surely continuous sample paths and sta-
tionary independent increments with mean zero. Let W be a d-dimensional Wiener pro-
cess, G} a d-dimensional vector of positive constants. The instantaneous payoff for the

user of strategy j of population i at time t is,
o~ - d 3
du; @, 1) = u;G,x'())dt + ¥ o dW(1).
=1

At a particular instant in time a player in the ith population is matched with a .
player from each of the other N-1 populations. The probability that a randomly chosen

member of the kth population uses strategy j is x}‘(t). The payoff for a player in the ith
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. d
population using strategy j will be u;(j,x'(t))dt plus a random quantity ¥ Gj;dW(D).
I=1

These random quantities are independent over time, have a zero mean and constant vari-
ance. W;(t) is independent of W;(t), when i is different from j, and dW;(t) does not

depend on x(t).

If payoffs have this structure and x(t) evolves according to the replicator dynam-
ics, x(t) will be an Itd diffusion which is the name given to stochastic processes satisfying
a stochastic differential equation, in this case;

. . . d n . nd | .
dxj(t) = xj(®) |u; G, x7'(1))dt + Elogl dWi(t) - Elxi(t)ui (k,x7'(t))dt — Eu:):ixi(t)oiddwl ®]-

One of the characteristics of replicator dynamics is that if a strategy disappears
or is never in the population it will never reappear again. This happens because you can-
not imitate a strategy that nobody is using, or inherit it in a biological context. And it will
be true independently of the payoff of that strategy, thus the shocks I modeled above will
not change that. A strategy that is represented in the population at the initial time will not
disappear, almost surely, in finite time with the replicator dynamics. The reason is that
the dynamics are defined in terms of the growth rates, and growth rates are finite,
although perhaps negative, so the fastest possible decreasing path for a variable is a
negative exponential one, which is zero only in the limit. In similar finite-state models,
by contrast, extinction is a definite possibility. For the stochastic dynamics in Farrell’s [9]
paper, for instance, there is a positive probability that even the users of the best strategies
become bankrupt, although the expectation of their share of the total wealth in the market

goes to one as time goes to infinity.
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I want to incorporate in the model the possibility that strategies that are not used
by anybody in a given period start to be used in later periods, while retaining the assump-
tion that the agents are not sophisticated. For this reason I assume that new players
replace part of the population at all times and some of them adopt strategies in a random
way that is independent of the actions of both old players and other new players. I model
;hc effect of these new players in the dynamics as a deterministic shock that modifies the
transition rates for all periods. The aggregate effect of the newcomers that take actions at
random is modeled in a deterministic fashion because their actions are assumed to be
uncorrelated across individuals and the population is so large that we can invoke the law
of large numbers to assume that the average of these actions is not random. By the next
time these new players can change their strategies they start behaving like other members
of the population. By analogy with the biological literature I call these newcomers
mutants, and their actions, mutations. Samuelson and Zhang [25] discuss the issues that
come up when mistakes occur at the implementation stage, so that people don’t always
choose the strategy they intend, but some other. These mistakes don’t persist and are not
inherited. The distinction appears to be important for the purpose of predicting whether
outcomes ruled out by perfectness and other tremble-based refinements will persist in
evolutionary contexts. In particular, the presence of mutations does not rule out imperfect

equilibria as limit points of the dynamics, while implementation mistakes do.
The new model is then,

. . . d . n .
dx;j () = x;() [ui(i,x“ O)dt + ¥ 63dWi (D) — ¥, xi (Du; (k,x™ (D)dt 1)
=1 k=1

nd . . n noo, .
- Z lek(t)oid dw, (t)] + z k;k Xi( (tdt - Z )‘iq X} (t)dt.
k=1l=1 k=1 k=1
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k}k is the probability that a member of population i that is using strategy k will be

replaced in a given period by a player who chooses randomly strategy j . I will call the
}k’s mutation rates. Notice that li, can have any value without affecting the dynamics. I

will choose to make li] = minl}k to economize notation in the proofs of the propositions.
k#)

4. STRICTLY DOMINATED STRATEGIES

One of the first question‘s to arise when considering selection dynamics that
come from less than rational behavior is whether the outcomes generated resemble the
ones predicted from a rationality perspective, so that as-if-rational type arguments can be

made. I will need some definitions for this discussion.

Strategy x’e S™ is strictly dominated in M;c S™ relative to M_;c I1S™ if there
i

exists xe S™ such that u;(x, y) > u;(x’, y) for all yeM_;. Let D;(M;, M_;) be the set of
mixed strategies in M; that are not strictly dominated in M; relative to M_;. The strategy
x’eS™ survives strict iterated admissibility (SIA) if there exist sequences of the form

S" =My, M;;, ..., M and Mo = Mo, Meit, .. MoiT Where Miny; = D;(My,, M_;)

and M—in = kI-IMkn
#1

Strategies which do not survive SIA are not justifiable for a rational player, so if
a nonnegligible part of the population plays them a nonvanishing proportion of the time
the dynamics cannot be thought of as behaving in a way that mimics the traditional
economic notion of rationality. The usual justification for strong rationality assumptions
is that in the long-run behavior is close to rational due to unspecified selection processes.

It is interesting, then, to find whether the replicator dynamics eliminate all but
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admissible strategies in the long run. This is true for continuous time replicator dynamics
but not for the discrete time case, as shown in Dekel-Scotchmer [6]. Nevertheless,
Cabrales and Sobel [3] show that the result can be partially recovered and give sufficient
conditions for discrete time dynamics to avoid in the limit strategies which do not survive
SIA. The question now is whether a similar result is true for a model like the one pro-

posed in last section.

The payoff function with respect to which I consider the strict domination is the
average payoff function, u;(j,x). Total payoff, u;(j,x), which includes the aggregate
shocks to payoffs, can be different from u;(j,x), although on average they coincide. I will
show that the elimination of non-SIA strategies by the replicator dynamics is maintained

even when transitory payoff perturbations and mutations are added to the model.

Proposition 1 demonstrates that if mutation rates are small, and selection has
been operating for a long time, the probability that nonnegligible proportions of the
population are playing a non-SIA strategy is small. I cannot say that the weight of a
strictly dominated strategy will be small with probability one because it could happen
that a streak of good luck makes the proportion of users of a generally bad strategy grow

for a while.

This result does not depend on the existence of an ergodic distribution, and it is
not necessary for variances to be infinitely small. This is interesting because many other
results in the literature of stochastic dynamics concern the limit of the ergodic distribu-

tion as the variance of the aggregate shocks goes to zero.

Let r be any n;x1 vector and
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V() = ).
=

Suppose that r is a strategy vector for player i. If r is a non SIA strategy and V.

is zero at least one of the pure strategies that have positive weight under r has to be zero.

Proposition 1

Let strategy pe S™ fail strict iterated admissibility. If M_ax(l}k)(Ngin(X}k))—l is
J

bounded for all k having positive weight under p, as we let A—0, there is ap such that if

Max{ ¢} } <G
Max{ § 1<%

tim [ timsup E( Vap(1))] =0

The proposition shows that the probability that the weight of a strictly dorr;inatcd
strategy (or that of at least one member of its carrier in the case of a mixed strategy) is
larger than any given positive number K, which may be as small as we want, will be very
close to zero when selection has been operating for a long enough time provided that the
variance of the noise is below a certain bound and the mutation rates are both small and

not orders of magnitude apart from one another.

I don’t need to assume that 6 goes to zero, but I need to have a bound on it. The
smaller the advantage of the dominating strategy the stricter the bound. The assumption
about mutation rates is always satisfied in the games that Fudenberg and Harris study. In
games with two strategies the only mutation rate to, say, strategy one is A;2, (remember
that A1, is assumed to be equal to the minimum over j # 1 of A;;), so the maximum and

the minimum coincide. They do have an assumption about ratios of mutation rates, but it
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refers to ratios of mutation rates to different strategies and it is not used to ensure that
strictly dominated strategies have little weight asymptotically. They use it to ensure that
the probability of getting out of a certain equilibrium depends mainly on the size of

payoffs, and not on an increasing asymmetry of mutation rates.

I need four lemmas and some notation before I can proceed with the proof of the
proposition. The first one is a direct application of standard theorems on linear stochastic

differential equations, and the proofs of the other ones are given in the appendix.

Let m;(x, A) =y(j, x ) —=u;( xi, x7 ) -zlij .
k

The function m;(x, A) gathers all the terms in dx,i that are multiplied by x}

M=£/I}z:)§{ | mj(x,,A) 1},

6 = Max{ 0}] }.
il
Let&; =0ifk#jand §; = 1.

n d : . .
AL =33 [(8; - xi(w))ohdWi ().

j=ll=ls

A}s gathers all the stochastic terms in dxji and integrates them froms to t.
Letr be any n;x1 vector, and,
n; 3 .
Vi(t) = .HI(X}(t))"-
J=

By Ito’s formula, which is the analog in differential stochastic calculus to the

chain rule in ordinary calculus,

dV, () = 3 pm; (K () V, ()t
=1
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1o i - i i (i Pi _Px Pi |y (v
+ —E:lkz_:u_zl [mz- (8_|m - xm(t))x (t)cml Z_, (Skm - xm(t))xk(t)o-ml [ i(t) X%((t) 8_)1( ‘(t)2 (t) t
n 3 . np d n
+ Y [): xXk® | Vp@dt + 33 Y G - xm(t))xj(t)o:nl‘—l'!—vp(t)dwl (©).
arg G j=li=1m=1 HO,

I am going to collect now some terms and give them a name to save space.

n 4 0t
Let A =37 T JGm - xm(u))x,(u)o:m—f’(l—)dwl(u).

Jj=ll=lm=1s
A(p); collects the stochastic terms in dV,, and integrates froms to t.

Pj ‘ -5 .pj )
x}(t) xx(® * x}(t)2

3" (Bem — Xia (XL (DO

m=1

Let G,(t) = wz';z';z 2(5 — xby )Xy

2 Sk=ti=1 [m=1

The function o, collects the deterministic terms which are multiplied by the
variances of the stochastic shocks. These are the terms that appear in stochastic calculus

but would not appear in deterministic calculus when using the chain rule.

In the remainder of the section I will suppress the superindex when it is clear

that we are referring to strategies for player i.

Lemma 1

%ljk Xk (S)dS (2)

t t t
a) x;(t) = exp [ Jmi(x(s), A )ds + Al |x;(0) + Jexp [ Jmy(x(), 1 )du + A
0 0 s

Vp(0) €))

t
b) Vp(t) = exp [I [ij my (x(s), A) + Gp(S)]dS + A(p)f)

Z J( 5) [Z?"jk Xk (S)] Vp (s)ds .

+ I exp [I [}:p, m;(x(u), A) + Gp(u)]du +A@)

V@ @3

t
b) V) =exp [£ [Zp,-mj (x(s), A) — £(x(s)) + Gp(s)]ds +A)H
J
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P [y
Zj; %() [%%k Xk (s)] Vp(s)ds

t t
+ .[ €Xp [J [Epjmj (x(u), A) — f(x(u)) + cp(u)]du +A(D)d
0 sV
t t
+ f exp [f [Epjmj (x(u), A) - f(x(u)) + cp(u)] du + A(p)g]f(x(s))vp(s)ds .
0 sV)
Proof: See Gihman and Skorohod [13] p.37

It is easy to see by differentiating that the solution to the ordinary differential

equation;
y(®) =a@®y() +£(t); y©0) =y, @
is given by
t tIt
y(t) = exp [Ia(s)ds}§+I [Ja(u)du]f(s)ds. S)
0 0is

The x(t) process is the solution of equation (1), which is the stochastic
differential version of equation (4). To go from (1) to (2), which is the stochastic analog
of (5), since you cannot use differentiation it is necessary to use Itd’s rule. Something

similar applies to Vp ().

Lemma 2

a) E(exp BAj; ) Sexp [dnzﬁzcz( t; s )] .

b) E(exp PA(p): ) Sexp [dn‘ﬁzcz( t—s )].
Proof: See the appendix.

The proof of the proposition is going to proceed by taking expectations in equa-
tions (2) and (3). The assumption that strategy p is strictly dominated will make the ~
terms in those equations that contain the m; functions small, but we still need to know

what happens with the term that contains the noise. The assumption on the variance plus
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Lemma 2 assures that the noise term does not change the conclusions.

Lemma 3
Let ¢ > 0 and CM,0) = eCMC%/2 expl 6c2dn®0?], where C, is a constant
independent of both the time index and the particular stochastic process we consider.

E(x®)*)<C(M, o) Mjin[ A 1)

Proof: See the appendix.

Proof of Proposition 1 :

Let A;={peS™: p fails SIA and for all 6>0 there is a 0<0 with

N .
ll'l_l)lloh{n_)SllpE(V2p(t)) >0}, and assume that iglAi # @ for a contradiction. Let K(p”) be

N
such that p’e Mikp)NMikp)+1- Let p be a minimizer of K(p) on Y A;. Let r=K(p).
1=

Since pe M; \M§,; there is p’e M;; such that
u; (p, x) —u;(p’, x) <0 forall xe M_;. ©6)
so that p” strictly dominates p relative to M_;;. Let X consist of all those xe giS"‘ such
that xX > 0 only if le My,. It follows by equation (6) that
u;(p, x) —ui(p’, x) <0 for all xe X. ¥))

Let the set C; = {xeP; MM, }. C;; is the set of pure strategies for player j that are not in

M;. Let x = k§1 . zc:k x}‘, that is, the sum of the weights of pure strategies (of players
JE Lk,

other than i) which are not in the sets Cy,.
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Let My, = |Ma§[ui(p, )-uy(p,x)]l +1.
xe [1S™

i
Then by equation (7)

u; (p, X) — 4 (p", X) = Mpyx. <0 for all xe [1S™.

J#
For the rest of the proof consider only A small enough that

2@ —pmj(x, A ) - Mpp-x. <0.
j

Since

2@ —pmj(x, 1) =@, x) - (", x) “XX® - Py
J J

this is satisfied when

Max {u;(p", X) - 0;(p, X) - Mppx.} > I3 (7 - pj)Ak-
xe[1s™ jk

™
Let m=Max |55 - pmy(x, 1) - Myprxe J
oL
By the restriction placed on A, m<0.

The function Vy, ) is something like a ratio of the weights of the dominated to
the dominating strategy. Lemma 4 is going to show that the expectation of Vop-p is

bounded.

Lemma 4

E(Vap-p) (1) < exp[2(m + 26?n*d)t]V,(p_p(0) (8)

+ |2MypN + 23.0(M, 0) Minhge) ™ Maxh [Z(m ¥ 20‘2n4d)]—1 [ 1-exp [Z(m " 20‘2n4d)t] J
J
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Proof: See the appendix.

Samuelson and Zhang show that strictly dominated strategies disappear by
showing that V,,_- goes to zero when there are no shocks. I can’t do that because muta-
tions prevent the weights of strategies from becoming arbitrarily small. But at least I can
show that E(V3p+) has a bound that is independent of the mutation rates, if these are
not orders of magnitude apart. This happens because far from the boundaries the dynam-
ics tend to make Vpp- small, and so the first term in equation (8) is small, but near the
boundaries the movement depends on mutation rates to a greater extent, and the second

term in equation (8) reflects that.

Lemma 4 shows that there will always be enough users of the dominating stra-
tegy so that it can be imitated by the users of the dominated strategy. The number of
agents that play the dominated strategy could increase for two reasons. Some new
players (mutants) choose it by chance and some agents who were doing something else
switch to the dominated strategy because they don’t know of the dominating strategy.
The rest of the proof of Proposition 1 demonstrates that the accumulation of those two
types of players is slower than the losses of players who discover that the dominating

strategy is better.
Letb <t. By Lemma 1b,

V2p’ )

t
Vap(t) = exp [I [2(zp',—m,-(x(s), A) + Uzp'(s)]ds +AQp)}

+ I €xp [j [2(Ep “jmy(x(u), D)+ C2p’ (ll)] du + A(ZP’)b] E x;(5) [ijkxk(s)] Vap-(s)ds

Then by the positivity of A, p’, x and the exponential function,
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V2p’(b)-

t

12 V() 2 exp [j [Z(Zp'jmj(x(s), A) + Gzp'(s)]ds +A2P)}
bl

By lemma 1V’

Vap(b)

t
Vo, (t) = exp [J [Z(Epj m;(x(8), A) — Mpp-xc(8) + ozp(s)] ds + A2p)y
bl

t t
+ j exp [j [Z(Epj m;(x(u), A) = Mpp-xc(0)) + O'zp(u)] du+ A(2p)f,] [ijkxk(s)] Vop(s)ds
b H }

2
= x(5)

2Mpp-xc () Vop(s)ds.

t
| [2();pj my(x(0), A) — MpprXe () + ozp(u)]du + AQp);
st

t
+ _[ exp
b
Now I divide the first line in the previous equation by,

V2p ‘ (b)

t
exp [f [Z(Zp “m;(x(s), A)) + czp»(s)]ds +A2ph
LI
and since we showed that the last expression is less than one,

t
Vap(t) < exp [f [Z(Z(pj = P’jmj(x(s), ) = Mpp-xc(s)) + oz(,,_p')(s)] ds + A(2(p—p'))|t,] Vap-pr ()
b L4
t t ! 2
+ { exp [I [2(ijmj(x(u), A) = Mpp-x . (u) + ozp(u)]du + A(2p)3] Z;;f; [ijkxk(s)]
s j i X
t t
+ { exp [." [2(ij m;(x(u), A) = Mpp-x.(u)) + ozp(u)] du+ A(2p)8] 2M-x(s)ds.
s J v

Taking expectations and applying lemmas 2 and 3, by definition of M, and taking the

summation over j only over those indices for which p; is strictly positive,

E(V2p(0) S expl(2m + 46%nd)t = BIE(Vagp (&) )
+ZC(M,0)2(Min7\.jk)_(l'p‘)Maxlk [2(M+20‘2n4d)]_l [Freeno [2ats20%*ar-b)|

+2Mp,, 3 3 (MaxEade))"” [2(M+202n4d)] B [2(M+20'2dn4)(t—b)]]

i keCj;
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I have to show that for any positive number o, for all t larger than some t, and A
smaller than some Ay, E(V2,(1)) is smaller than . Lemma 4 shows that E(Vap-pr (b)) is
bounded by a constant C which depends only on m, M and 6 when b is above some by.

Choose t” such that t” — by > 0 and
exp[(2m + 46°n*d)(t” - be)]C < .

Then for all t > t” choose b such that t —b =t" — by. This guarantees that the first line in
equation (9) is strictly smaller than o. Having chosen b, notice (Niinljk)_(l_p‘)MExkjk

L{lnxjk —(1-p;)
M]?xl.jk

fokj‘ﬁ so by taking A" sufficiently small, if t>t’, for all A <A the

sum of the first two lines in equation (9) will be smaller than a. The third line in equation
(9) can also be made as small as needed for all A smaller than some A”* when t is larger

than some t** > t” because for all j#i and all k in C, {i_r_,nolimsupE(xL(t)z) =0. Let t, be
t—poo

larger than t”*, and A smaller than A" and A" and the result follows.

The following interpretation can be given to the proof. The first line of equation
(9) says that few of the initial users of strategy p are still using it or have becn‘rcplaccd
by imitators. The second says that the inexperienced new players and their imitators can-
not replace them, unless the initial lc§c1 of p-strategists was very low. The third line
allows us to extend the argument to strategies that are strictly dominated only after other

strictly dominated strategies have been eliminated.

5. ERGODICITY

Stochastic dynamics sometimes have the property that the time average of the
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probability that the process hits a certain set goes to a limit that is independent of the
starting point. This is useful because it allows the modeler to make unique limiting pred-
ictions. It is also interesting because deterministic dynamics don’t have that property
unless there is global convergence, so ergodicity sets stochastic dynamics apart from
deterministic dynamics. The processes in the papers by Foster and Young [10], Kandori,
Mailath and Rob [14] and others, have ergodic distributions. The authors proceed to
identify the most likely states of the population when mutation rates are small. When
mutation rates are small, however, the time that is necessary for the system to wipe out
the influence of the initial condition may be very long. Ellison [8] shows that changing
the matching technology from random matching to more general types of interaction, can
change the amount of time needed to converge to the ergodic distribution. Foster and
Young point out that for applications it may be more fruitful to estimate the variances of
the shocks and the size of the mutation rates rather than to obtain the limit distributions

when variances and mutations go to zero.

‘I will give sufficient conditions for the process defined in equation (1) to have an
ergodic distribution. The context will determine whether these conditions are sensible.
For example, it will be important for the result that the mutation rates are bounded away
from zero. If the game is played always by the same people, you cannot invoke inexperi-
enced new players to justify mutations. The justification of mutations in terms of experi-
mentation also becomes harder in that case. It is also important that the matrix of the
variance of the noise has full rank. This implies that the sources of randomness have to
be somewhat independent between the different strategies. If strategies are, say, produc-

tion levels, it seems implausible to assume that a shock that affects the cost of producing
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a certain amount of goods has no effect in the cost of producing a different amount. A
trivial case in which the shocks are not sufficiently uncorrelated is the one in which the
cost of production changes randomly for all strategies in the same amount. The
differences between the payoffs to all strategies are not affected, and since the dynamics
depend on the difference between the payoff to a strategy and the average population
payoff, the dynamics are not affected by this type of shock. If the resulting deterministic
dynamics are not globally convergent there is not a unique limiting ergodic distribution.
Nontrivial cases arise when the shocks are more complicated than this simple additive

one but still not sufficiently diverse in origin to generate a regular variance matrix.

The process I presented in equation (1) is ergodic when the matrix of the vari-
ance terms has a rank higher than or equal to the total number of pure stratcgies.in the
game and all the mutation rates are different from zero. The reason for this is that if the
variances satisfy the rank condition the process can move in every direction when it is in
the interior of the simplex, and the mutation rates move the process away from the boun-
daries. In other words, as long as people are myopic and each strategy is being used by
somebody (which is guaranteed by the presence of mutations) a string of successes or
failures for different strategies due purely to random fluctuation in payoffs, can cause the

population to reach all conceivable states infinitely often.

Let x(t) be the solution to equation (1), which I will write

dx(t) = a(x(t))dt + B(x(t))dW(t),
and let

n; A ‘
A={x:0sx;<1 forj=1,., n, i=1,..,N, and Y xj=1 foralli=1l,..,N}.
1
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n; .
The process x(t) belongs to A almost surely if x(0) belongs to A since de}(t) =0 for
=1

i=1, ..., N, and dxji =( for x} equal to zero and one, for all i and j. I will only consider

x(0) belonging to A.

Let P(s, x, E) be the probability that the process, starting at x, is at time s in the

N

xn

=1

i-1
xd matrix whose [ ¥ ny +]
k=1

set E. Let I be the th row is the d vector 0'}.

N
Proposition 2 If the rank of I is equal to Y’ n;, there exists an invariant measure 7 for
k=1

the process x’(t), and for all xe A and all Ee B, (the set of Borel subsets of A )
1 t
tim— | P(s,x, E)ds = n(E).
toeo t 0

Proof:

The process x(t) has an invariant measure by Theorem 21 from Skorohod [26],
because it is a Markov process in a compact metric space, A. To show uniqueness I will
apply Theorem 5.1 in Arnold and Kliemann [1]. Once the existence of a unique invariant
distribution is established the result follows by Birkhoff’s ergodic theorem (see Skorohod
[26] theorem 1, or Arnold and Kliemann [1] p. 54). For the details of the proof of unique-

ness see the appendix.

6. RELATIONSHIP WITH OTHER STOCHASTIC DYNAMICS

In this section I present an example which shows that the stochastic dynamics
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can have an ergodic distribution whose weight is concentrated, when both mutation rates
and the variances of the stochastic shocks are small, on an equilibrium which is not the
one with the largest basin of attraction for the deterministic replicator dynamics. Further-
more, the ergodic distribution would concentrate its weight on a different equilibrium for
the dynamics that Kandori, Mailath and Rob study. The distinction appears only when
games with more than two players are considered. With two strategies and two players
the stochastic dynamics of Kandori, Mailath and Rob and Fudenberg and Harris have
ergodic distributions that put most of the weight on the same equilibrium for small vari-
ances and mutation rates. Young and Foster [33] consider an example in which the equili-
brium with the largest basin of attraction would not be the one to which the ergodic dis-
tribution gives the highest weight. In their example, however, the dynamics of Kandori,

Mailath and Rob would have the same limiting ergodic distribution.

Suppose now that members of the population are randomly matched every
period in groups of N players to play a game that has two strategies. The strategy played
by player i is denoted x; and x; can be either 1 or 2. Payoffs are

u;(xy, ..., XN) = a min x; — bx;.
i

Given the random matching structure of the game, if we let x be the proportion
of people in the population using strategy 2, the payoff to strategy 1 given x will be
u(l,x)=a->b and the payoff to strategy 2 will be

u(2, x) =2axN +a(1 - xN)-2b=axN +a-2b.

The game has two strict equilibria in pure strategies that are Pareto ranked. The

deterministic replicator dynamics converge to one of them from all initial states except
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from the unstable mixed strategy equilibrium. The basin of attraction of the Pareto supe-

rior equilibrium is smaller when N is large.

In the presence of mutants and random shocks to payoffs, if the changes in x are

slow enough, its evolution can be modeled as,
dx(t) = [x(t)(l — x(@)ax(®N - b) +Ao(1 - x(8) = A, x(t)]dt +x(0(1 - x(0)c dW(L10)
Proposition 3

a) The process x(t) defined in equation (10) has an ergodic distribution.
b) If a > 2b the limit of the ergodic distribution puts probability one on the state x = 1

where all the population is using the high effort strategy, as A;, A, and ¢ go to zero, if

A
— 1s bounded.
Ay

Proof:
See the appendix.

The equilibrium that has more weight under the ergodic distribution is the one
for which the temporary shocks to payoffs that will convince. the people to switch to the
other equilibrium are less likely to arise. In this model the difficulty in changing from a
state where most of the people are playing one strategy to one where mostly the other
one is played, lies in getting the first few people to defect from the popular strategy,
because it is more difficult to imitate something that almost nobody is doing. The first few .
defectors have to see that playing the other strategy has been good lately, and that will

happen when payoffs suffer a shock that makes the strategy that is played by the majority
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have a lower payoff than the alternative strategy. Then it is necessary to compare how
likely are the shocks that move the dynamics from the different equilibria to know how
the ergodic distribution looks like. When a > 2b the shocks necessary to move the
dynamics from the Pareto dominant equilibrium to the other one are much more unlikely
than the shocks that produce the opposite transition, if the variance of the shocks is small.

Thus the Pareto dominant equilibrium has more weight under the ergodic distribution.

In the model of Kandori, Mailath and Rob the factor that determines which
equilibrium has more weight under the ergodic distribution is the number of mutations
necessary for the rest of the population to start thinking that it is a good idea to change
their action. When N is large, less mutants are necessary to change from the Pareto dom-
inant equilibrium to the Pareto inferior equilibrium than the ones necessary to do the
opposite transition. Thus the Pareto dominated equilibrium has more weight under the

ergodic distribution.

When there are only two players in each match the two criteria, size of the
shocks and number of mutants, coincide, which is why the papers of Fudenberg and

Harris and Kandori, Mailath and Rob give the same conclusions.

The game presented in this section was studied experimentally by Van Huyck,
Battalio and Beil ([29], [30]). The equilibrium selected in most of the experiments was
the Pareto inferior one, contrary to what Proposition 3 would suggest. This is not surpris-
ing since in the experimental setup there were no random shocks to payoffs and agents
did not adjust their strategies in ways that were consistent with any of the stories I used to

motivate the replicator dynamics. The model in Crawford [4] seems better adapted to
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model the experimental framework. The model presented in this paper could be better
suited for decisions where the payoffs to different choices are not given to the players in
advance and are small compared to the cost of a careful consideration of the problem or

of the difficulty of gathering information.

7. THE SMALLWOOD-CONLISK DYNAMICS

Section 4 showed that the result that replicator dynamics eliminates strictly
dominated strategies is robust to the presence of some types of shocks. In this section I
present an example which shows that this result does not necessarily hold for more gen-
eral models of selection dynamics, even for some dynamics that are arbitrarily close to

the replicator dynamics, in a parametric sense that I will specify later.

I will use the Smallwood-Conlisk dynamics I described in section 2. As I
showed in that section the replicator dynamics are a member of that family of dynamics,
when the parameter o takes the value of one. Smallwood and Conlisk [27] characterize
completely the set of limit points for the dynamics of their consumer choice problem.
The game theoretic setup does not allow such a complete analysis as the consumer
choice case, bgcause the function that determines payoffs may depend on the proportions
of the population that use every strategy in a game, but in the Smallwood and Conlisk
model quality does not change with the proportion of people using a product. Néverthe-

less, the following can be said about the game dynamics.

Proposition 4
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Every pure strategy profile is a fixed point of the breakdown dynamics. a) For

a < 1 it is locally unstable, b) for a > 1 it is locally stable.

Proof:

Rewriting the dynamics in the way Smallwood and Conlisk do,

xj(® c-uiG.x()) -a xi@) [1- c—u(Gx'()) - a ﬁi‘l]a-l] ]
X0 b= ! c-uErx M) -a | | xj®
K

xit+1) = xi(0) +
If x} (v) is sufficiently close to one, and o is more than one then the second term is

positive and therefore x} t+1)> x}(t). Iterating this argument yields the desired conclu-
sion about local stability. A similar argument proves the local instability of pure strategy

profiles when ac < 1.

The local stability and instability of pure strategy profiles when o is greater than
and less than one respectively, is independent of the precise magnitude of payoffs. And
so it is possible for the dynamics to converge to a strictly dominated strategy when a is
greater than one and to diverge from a strict equilibrium when a is less than one. This
happens because if nearly everybody uses the same strategy, users of other strategies
who decide to change will do it with high probability to the "leading” strategy. At the
same time, many agents are ceasing to use the "leading” strategy, because even a very
good strategy will sometimes fail to perform satisfactorily due to random factors. The
parameter a controls which of these effects dominates. When neither dominates, superior
quality can overcome the effects of popularity and random failure. The elimination of

strictly dominated strategies is sensitive to the formulation of the model. In fact, strictly
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dominated strategies need not be eliminated even for parameter values that are arbitrarily

close to one, the case of replicator dynamics.

One possible criticism to this result is that while functions with a similar o

parameter are close by in the sense that Man Iy (x) — fo-(x) | is small when a—a.” is close
Xe

to zero, the first derivative of f; and f, are very different near the vertices of the simplex,
even for values of o very close to 1, and the result depends on the behavior near the ver-

tices of the simplex.

Another criticism is that when the parameter is close to but greater than one the
basin of attraction of the equilibrium where everybody is playing a strictly dominated
strategy is small. In the presence of stochastic shocks one could conjecture that the
population would get knocked very easily out of an equilibrium with a small b;xsin of
attraction, and therefore the system would spend on average very little time near that

equilibrium, even if the dynamics are not precisely the replicator dynamics.

The example I will present next is intended to show that this is not necessarily
the case. The reason is that for stochastic dynamics there are factors other than the size of
the basin of attraction that determine the distribution of future outcomes. In particular,

my example depends on the form of the variance term.

Suppose that in a game with two strategies instantaneous payoffs are determined
as follows,
duy (1) = u (x1 (), X2(0) + x2()6;dW (1),

duy () = uz(x2(1), x1 (1)) + x2(1)o,dW, (1),
where 6; 20 and 6, > 0.
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The variance of the shocks in this case, unlike in the model presented in section

3 depends on the number of players using strategy 2.

The SC model when there are two strategies can be written,

c—u(x1(1), o) -a  x;(Ox (O c—uy(Xa(t), x; () —a  Xp(t)x; (D*
b-a X1 (O + x(1)* b-a X1 ()% + x()*

x1(t+1) = x () = -

and x;(t) = 1 — x; ().

The continuous time version with shocks to payoffs and mutations will be then,

i = |- c—u(x; (1), x2() -2  x;(Ox2()* Lo u(x2(t), 1) —a  X(x; ()
: b-a x1 (O + X (O b-a X1 (% + x2(1)°
x1 (D% (0 X2 ()x; (D

¥ [xzxz(t)—xlxl(t)]dw G1x2 (AW (1) - Orxa (AW, (D),

x1 (0% + x2(0 x1 (0% + x, (D%

and dx; (t) = — dxa(t) . If x; (0) + x2(0) = 1, then x;(t) + x2(t) = 1, forall t.

Let’s define now,

1
(x2 % Ve? +x, ©** Vo

dW(t) = PN [xz(t)"*‘ol AW (1) - x (t)“-‘ozdwz(o] :
2

The process W(t) thus defined is a one dimensional Wiener process. The pro-
cess x(t) =x;(t) =1-x,(t) can be studied using the theory of one-dimensional Itd

processes, which allows us to know the exact form of the ergodic distribution if one

exists.
Suppose that u) (x, 1-x) = u and uy(1-x, x) = U for all x€ [0, 1], and u < U. Let
ccu=a _p e=Usa_, po SO rodWPD
b-a ’ b-a ’ (y(l + (l_y)a)z ’
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- o-1 _ _ o1 1- A (1-v) — A
8(0) = (Ay*' - B(1-y) )—l(——’l)——y(,l+ (g TR0 by
We have then,

dx(t) = 8(x(1))dt + x(t)(1 — x(©)2P2dW(1). (11)
Proposition 5

a) The process x(t) defined in equation (11) has an ergodic distribution.
b) The limit of the ergodic distribution of x(t) as A, Ay, 6; and G, go to zero gives all

G, O Ay A
the weight to x = 1if @ > 1 and — , —=, =, == are bounded.
G, O A A

Proof:
See the appendix.

In this example, for small values of the variances and the mutation rates, the pro-
cess will spend very little time outside the areas where x is close to one, provided that the
popularity parameter is bigger than one. This happens despite the fact that the basin of
attraction of the equilibrium where x is one will be very small if 6 is close to one. The
reason for this is that the first strategy is worse on average, but it rarely fails for a lot of
people at the same time, which is what you need in this framework to escape from a state
in which a strategy is used because it it the most popular. The second strategy is usually
better but in some periods it performs badly. If it does so for a sufficiently long time the
first strategy will become very popular and from then on its steady performance will

make it hard to beat.

The variance of shocks on this example could depend on x; and x; in a more

general way. For example, instead of x;(t)o;dW;(t) we could have
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(G109 + 11 X1 (1) + O12x2()AW (1). If 61 or 6;; were different from zero the example
would not be possible. The purpose of the example is to show that thinking that the sto-
chastic dynamics will spend less time near equilibria which have small basins of attrac-
tion under deterministic dynamics than near equilibria with large basins of attraction is

wrong unless additional assumptions are made.

The problem now is finding examples of situations with the required variance
structure. One such situation arises when deciding whether to participate or not in a game
of bingo, where each participant pays a fixed amount and the randomly selected winner
receives a portion of the total amount paid by the participants. Some scientific endeavors
also have the property that the value of the research done increases with the number of
scientists working in the field, but only one or a few lucky researchers will receive .crcdit
for the discoveries. More precisely, suppose that M individuals have to choose between
participating or not in a lottery. Denote by N the number of people who decide to partici-
pate. If they don’t participate they get nothing and pay nothing. If they do, they obtain the
prize, worth N/2, with a probability of 1/N, and the cost of entering the contest is 1.
Under these conditions the payoff for a contestant is -1/2 + ((N-1)/4)2w, where w is a
random variable with mean 0 and variance 1. If we denote the nonparticipation strategy
by one and the proportion of nonparticipants by x, u(l, x) = 0 and u(2, x) = -1/2 +

(M(N-1)/4N)12x 12,

De Long, Shleifer, Summers and Waldmann [7] have a model for the stock
market where some of the agents (noise traders) have an expectation about the price ofa
stock that deviates from the rational expectation by a random amount. The rest of the

agents have rational expectations. With this setup the payoff to both types of agents has a
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variance that depends on how many noise traders there are. Another game where the
variance of the payoffs depend on the number of users of a strategy would be one in
which producers in a market choose between two technologies. One of those technolo-
gies produces goods with a random quality that changes over time, but is identical for all
users of that technology. The quality of the goods produced with the alternative tech;
nique doesn’t change. Costs are also deterministic. Demand depends on average quality
in the whole market. If the proportion of users of the random technique is x, the price is
P((1-x)+xw), where w is the random quality of the technique. The variance of payoffs

will depend on x through price in this case.
8. CONCLUSIONS

In this paper I extend to games with more than two players and strategies which
are not necessarily symmetric two results found by Fudenberg and Harris [11]. First, I
show that strictly dominated strategies have little asymptotic weight even in the presence
of shocks to payoffs if mutation rates are small. Then I show that unique ergodic distribu-
tions exist. Nevertheless, at the present stage it doesn’t seem easy to say much about the
transition probabilities on large time intervals analytically, unless one assumes that the

variances go to zero.

The present approach is complementary to the one Kandori, Mailath and Rob
[14] or Young [32] use, because it studies very large populations, where their model is
less powerful, because independent mutations are much less likely to take the process
very far from the basin of attraction of a stable equilibrium, even for nonnegligible muta-

tion rates. As Ellison [8] studies, if the matching technology were different, for example
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if the chances of being matched with a few individuals were not very small, then low
mutation rates wouldn’t be that much of a problem. In such a case the potential for

supergame effects is much larger,though.

Foster and Young introduced the study of stochastic evolutionary dynamics. As I
have said, their model did not discriminate between mutations and shocks to payoffs. For
their purposes, establishing the existence of a unique ergodic measure, and analyzing the
limit of that measure when variances are taken to zero, this is not very important. But it
becomes more relevant if one wants to distinguish what are the factors that cause ergodi-
city, and which ones are not essential, especially if one thinks that ergodicity is a coun-

terintuitive property for some situations.

None of the justifications I gave for the replicator dynamics provide very .strong
foundations outside of the realm of biological games. But these stories show that with
fairly weak assumptions on rationality one can conclude that strictly dominated strategies
can be eliminated. However, the result seems to depend quite sensitively on assumptions.
More research needs to be done, allowing more heterogeneity in the way agents behave,
and the amount of information they process to be more confident about the force of
aggregate rationality, which seems to be the basis for the belief that the behavior that
eventually prevails has to be the best. Stahl [28] studies a model with agents who differ
in their abilities to best respond to the present population. My paper explores a model in
which payoffs are constantly changing around a central value. It would be interesting to
see the results obtained when payoffs can change in more general ways, since in that case
it may not be possible to always use the same strategy successfully and the definition of a

strictly dominated strategy could be a dynamic one that requires agents to be more




active.
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APPENDIX
Lemma 2
a) E(exp BAj; ) <exp [dnzﬁzcz( t—s )].
b) E(exp BA(p). ) <exp [dn“BzoJ( t—s )].
Proof:

a) Let Zy(x)=exp zz!zls( 85— xj(0) )o,xdwl(u)——lz [z 2B( B~ )03 | du]

1 js
By applying Itd’s rule to the exponential function we have,

t
Z(x) =1+ 33 [Z,(x)2B( & - xj(u) )ogdWi(u).

1js
By Novikov’s [22] sufficient condition to Girsanov’s theorem Z,( x ) is a martingale if

E

exp [EZB(SkJ—x(u))oﬂJ du“ <o fors<t<oo,
Which in this case is true because 0 < x;(t) <1.

If Z,( x ) is a martingale E( Z,( x )) = 1. Using that and H8lder’s inequality,

2 12
E(exp BAL) = [E( Z(x )) E du <exp [ n?dp?c3(t-s )].

m[khm%

The same argument applies for b).

Lemma 3

E(x () )<SC(M,0 ) Ng,in[ A1)
Proof:

t t t
Since xe(®=exp | [m(x(s), A )ds + Afo % (0) + Jexp [ Jmy (x(), A )du + Al | S ()ds,
0 0 s i

and by the positivity of the exponential function, A and x;
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E(x()°) <E l I exp [ fmk( x(u), A )du + sz( O — x;(u) Jo dW;(u) }zk:ljkxj (s)ds

t-1 l js

< e™M(Minky B Iexp ) 1 8y; - (W) JopdWi(u) [ds
ljs
which by Hblder’s inequality
. =2c Y112
< eM( Mjnlik )~ [E exp | ¥F J(sk, - x;(u) )o,ldw,(u)] ]
1 j t=1
R

-2c

1j 1

” f exp|-¥3 f(ﬁk, = x;(u) )opdW,(u) |ds

-

exp | 23 I (8 — x;(u) )(—2¢ )odW; (u) ]

1 j ¢l
]IIZ

<eM( h@mxﬁ ) {

{ E [ t-_sltzﬂexp [22 I 2¢( &y; - x;(u) JopdW)(u) ]

1j =1
which by lemma 2 and Hblder’s inequality

<eM( Mink,k ) [cxp [(11124(:262 ] ]m
/4

[E“H&cxp zz:IZc(sk, x,(u))cﬂdwl(u)-zgtjl[zn(ah )03 | ” ”

l1j ¢l
[E [ [_S\? exp [ ) [E 2¢( & — X )Oj1 ] ] ]}
By the proof of lemma 2 we know that,
exp | ET Ilzc( 85— %j(0) )opdWi(0) - = 2 % Jl [)3 20(8 =003 | ]
) = t-

is a martingale, and so we can use Novikov’s [21] martingale moment inequalities to

bound the expectation of the square of its supremum.

12
E(xe(®™° ) <eM(Minky ) [ exp [dn24020‘2 ] ] C12 exp[ 4c?dnc?].
i
Since C; is a constant independent of both the time index and the particular martingale,

we are done.
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Lemma 4

E(V2p-p) (1)) < exp[2(m + 26°0*d)] V2pp(0)
[2(m + 201:1“(1)]_1 [1 —exp [2(m + 202 n4d)t] ] :

Proof:

By Lemma 1b’) we know,

t
Vap-p1) (1) = exp [£ [2(Z(Pj = pm;(x(s), &) = Mpprxc(s)) + 02(p-p')(s)]ds + A@(P‘P'))E)] Vap-p7(0)
j

t
+!exp
0

t
+Iexp
0

t .
+ fexpl2(m + 0?n*d)(t - 5)Elexp(2A(p—p): ) [2M,,,'N +Y |E
g .

[t
f [Z(Z(pj - p’jm;(x(u), A) — Mpprxc(w) + cz@.po(u}] du + A2(p-p))o
s

-l
I [2(Z(pj-p‘,-)mj(x(u).l)—M,,,,»xc(u)youp_m(u)
s J

ZMpp'xc(s)VZ(p-p’) (s)ds

2
du+AQ(P-P N Z'Lp‘—"— [):ljkxg(S)] V2p-py(S)ds.
k

R

By the definition of m and Gy,

Vap-pr () S exp[2(m + 6?n*d)t + AQP-p))6] V257 (0)

+ chp[z(m +2ndd)(t - s) + AQ(P-p)Y]

2Mp,p N+Z (s)Ma)O\.jk

Taking expectations,

E(V2(p—pn)(®) < exp[2(m + 6?n*d)t}(E(exp[A(2(—p))6])) V2o (0)

2 ] 12
x}(s)

J

which by Lemmas 2 and 3,

<exp[(2m + on'd)tlexp [ 2n4d0'2t] Vap-p70)

t
+ Jexp [Z(m +02ntd)(t—s) + 2n%do?(t-s )] [ZMW'N +25 C(M.c)(lvgnz,k)-‘M?xA,-k]ds.
0 j

The Lemma then follows by integration.
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Proposition 2 If the rank of T is equal to ¥ n;, there exists an invariant measure 7 for
k=1

the process x’(t), and for all xe A and all Ee B, (the set of Borel subsets of A )
1 t
lim— | P(s,x, E)ds = n(E).
t—yoo t 0

Proof:

The process x(t) has an invariant measure by Theorem 21 from Skorohod [26],
because it is a Markov process in a compact metric space, A. To show uniqueness I will
apply Theorem 5.1 in Amold and Kliemann {1]. Once the existence of a unique invariant
distribution is established the result follows by Birkhoff’s ergodic theorem (see Skorohod

[26] theorem 1, or Arnold and Kliemann [1] p. 54).

To establish uniqueness I need three lemmas and some definitions.
Lemma §

N
If x is in A, the rank of B(x) is equal to ¥ (n;—1).

i=1
Proof:

Let B°(x) be the matrix formed by suppressing from B(x) the rows correspond-
ing to the last strategy, n;, of all players, and suppose the rows in B °(x) are not linearly
independent. Then there exist &} for j = 1, ..., n;-1,i =1, ..., N, such that
No-1 o
)P a}x} [c} - Elxici] =0,

i=1j=1
and there is some a} # 0. The coefficient that multiplies of,i in the previous expression is
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equal to —x}‘i . Since all x} #0 by assumption forj =1, .., n;,andi=1, ..., N

n-1

i d

2 0yX;
1=

n-.—l

and some a}#O also by assumption, there is an i such that —xp, [Z a;x; |#0, which
past

- N
implies that the rank of I is not equal to ¥ n;. This is a contradiction.
k=1

Lemma 6

Let x” be in the neighborhood of radius & around x, Nj(x), and let

g=11x—x"1l.Lett* be the first exit time of the system,

x(t) = a(x(t)) + Bx(®)C, x(0)=x’

__8-¢ _x M _ Max ( a. M_ (0
from Nj(x), then MM |G| <t*, where a —Mﬁ“ax(ﬂ)”’B —i,l}:‘f;xA{lB“(u) }
and IC1 = MaxIC; I.

Proof:
d—¢
Lett< MM ICl , then,
l .
5-e2@ +BMICH2 | | Jac(s)) + Bo()Oas | |
0
SO

t
52 | | fatx(s)) + Bxs)Ops| | + 11x"=x11
0

t
2 | |x" + faxe) + Bx)Ods - x| | = 11x@y -x11
0
d-¢ d-¢

Thus | Ix(t)—x11 <d forall t< , therefore
© aM+BMICI aM+BM|C|
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For a set UcA, I denote G, intU, U® and 9dU, the closure, the interior, the com-

plement and the boundary of U in A respectively. Let the deterministic control system

@‘g‘fl = a(@(1)) + B@®)u(o), (12)

where the admissible controls u:R* —RY are the piecewise constant functions. Let 6% (x)

be the set of points reachable from x forward in time,

8% (x) = 0" (t.x),
0

8*(t,x) = {y: there exists an admissible u:R*—R® such that y=¢(tu,z)}, where

¢(t;u,x) = solution of (12) starting from x at time 0 and using control function u.

DEFINITION. A set D+ in A is called invariant control set for (12) if

6*(x)=D ¥YxeD,
and D is maximal with respect to inclusion.

Lemma 7.

For all xe A, 6*(x) = A.

Proof:

Suppose that for some z, 6*(z) # A.

If ze intA there is ye A and r > 0 such that N;(y) 6" (z) = @, where N, (y) is the
ball of radius r around y. We can choose y and r such that dN,(y)~36" () = x, for some:

x€ intA such that x + €(x—y)e 6*(z) for all € greater than zero and smaller than some €”.
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In the proof of Lemma 5 I showed that the rows of the matrix B“(x), formed by

suppressing from B(x) the rows corresponding to the last strategy, n;, of all players, are

N
T m-1) 4
independent for all xeintA. Then for all veR™! there is a v'’eR" such that

B’(x)v” = v. This, together with the fact that the row of B(x) corresponding to the last
strategy, n;, of all players is equal to the sum of the preceding n; — 1 rows, and also that
the element of the vector (x —y + a(x)) corresponding to the last strategy, n;, of all
players is equal to the sum of the preceding n; — 1 elements, implies that there is a vector

C such that, a(x)+B(x)C = —(x~y).

By continuity of a(.) and B(.) there is some &> 0, such that for all x” with

lIx=x"11<d

r

la(x) ~a(x) + B(x) -B(x)Cl | < >

13)

d
2@M+BMiIC)+1°

Let € <Min €f. Let x“=x+e(x-y). Since €<E’,

x"’€0*(z), and since € <§, x"“e N5(x). For the deterministic control system in (12), let

¢(0) =x", and u(t) = C, then

t
$(0) =x +e(x-y) + (I) @(9(s)) + B($(s))C)ds.

Since a(x) + B(x)C =—(x - y),

¢ t
o(t) - y = (x-y)(1+€) - (J)(x—y)ds + (I) @(9(s))-a(x) + (B(4(s)) — B(x))C)ds.

Fort<t* , since ¢(t)e N5(x), (13) holds, thus

[ lo@-y11 < 11x-yl |(1+e-t)+'§-t=r[1+£—%].



48

* 8 - € : : o
Fort = ——————, which by Lemma 6 is smaller than t* ,
ot T aMyBMiCl d

| lo®)-ylt <1 [l+e [1+ L ] 3 . (14)

2aM+BMICl) | 2@M+BMICI

S
2@M+BMICH +1

Since € < , (14) implies that ¢(t")e N,(y). But since ¢(t*) can

be reached from x”* by an admissible control, C, and x’€0*(z), x(t')e0*(z). So

N;(Y)\0* (2)#Q. This is a contradiction.

Suppose instead that for some ze dA, 6*(z) # A. In the deterministic control sys-

tem in (12) let ¢(0) = z and let u(t) = 0. Then,

t
OO =z+ {a(q»(s»ds

For t small enough ¢;(t) >0 if z; > 0. Since a;(z) >0 for i such that z; =0, by

continuity ¢;(t) > 0 for t small enough. So for t small and u(t) = 0, ¢(t, u; z)e A. But I just

showed that 6* (x) = A for x in the interior of A. Thus 8*(z) = A, which is a contradiction.

Lemma 7 establishes that there is only one control set in A. Lemma 5 proves that
B(x)’s rank is at least the dimension of A if x is in the interior of A. So Lemmas 5 and 7
show that the assumptions needed to apply Theorem 5.1 in Arnold and Kliemann are

satisfied for our process. Thus there is a unique invariant distribution.
Proposition 3

a) The process x(t) defined in equation (10) has an ergodic distribution.

b) If a > 2b the limit of the ergodic distribution puts probability one on x = 1 as

A
A1, A2 and © go to zero, if 3\% is bounded.
2
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Proof:
This proof, as well as that of the next proposition borrows heavily from the proof

of propositions 3 and 4 in Fudenberg and Harris [8], so that readers familiar with their

work can follow my proofs more easily.

a) Let 8(x) = x(1 — x)(ax™ —b) — A;x + Ay(1 — x). Let an arbitrary ze (0, 1), and

[0
I 6[ exp { 2! 2 (1-y)? 5 dyldx,
1 X
8
I = -2 dy}dx,
2 xz’;)) i -z[y (1-)')202 )

The process x(t) is ergodic (see Theorem 1.17 of Skorohod [26]), if I; and I, are

1
infinite and fD(x)dx is finite.
0

But __;8_(112__‘1), , is of order A around y =0 and of order - 2

y2(1-y)*c? y? (1-y)

around y = 1. Thus I; and I, are infinite. D(x) is of order Cxp(—l.llx)/x2 in a neighbor-
1

hood of x = 0 and of order exp(—k,zl(l--x))/(l—x)2 in the vicinityof x =1, so ID(x)dx is
0

finite,

b) The density of the ergodic distribution is proportional to,

2 o[
D= i Py
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This implies, as I showed in the last example,

[0+ @y =y -y)e® 4

2
D) = Z2(1-2)2 6% cxp21 Y (1-y)*c? 4

Let () = 8(y) + 2y - Dy(1 - y)o?, and F(x) = expzl;ﬁf’)%g y-

Let y; be the smallest ye [0, 1] such that y(y) = 0.

Since Y(y) > -by A1y +Az(1-y) - 6%y then y; > b+, +0

Since W(y) >0 fory < y; , F(y) <F(y;).

A
Choose y, so that ay) —b>b+k for some k > 0. Let y3=l—-l;+lk~ Since

¥(y) >0 in [y, y3], then F(y) is increasing in that interval.

Let now xe[y;, y;) and x’e(y2, y3).

Fx) _ __M)__
Foy P I y2 Y (1-y)*c? W ! TR

2 exp;zz—

]: btk _ M dy—
| YAy y(-y)? | YA=y)  y(1-y)?

yf[b+0'2+ M ]dy]

A
2exp 7 [—(b+k)(1n(1—X') In(1-y)) + (b+02+Ap)Inx + (b+0?)In(1-yz) + Ay In(1—x7) - ﬁ

b+k/4
Ifx"'21-24, >k then given the definition of x’ and y;,
2ex —(b+k/4)ln); + (b+A;+02)ln + (2b+k+62)In(1-y3) + A In(1-x") — -—):l—'—
Po2 02 ! ! b+x1 ¥2) + 4 (1)
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2exp2 ’} Ayly) -hiy y —yf @ +1y + 2030y
B . Y(-y)'ok . Y U-yien

oo AX(1-x)2 -\ /3 a2 Bih+ o) Inx
2>ex -
PA T Yok 20yek  (1-y'2ch
M oM . . . A . , .
Since —x— and 'G—- is bounded, if x"> 1 - -;‘2— and A, is small F(x’) > F(x). Given that
2 m

for y <y; , F(y) <F(y;) and that F(y) is increasing in the interval [y;, y3], this implies

that F(x’) > F(y) forall y < x'.
Loty = 1= M2 ety 1= M g g1 M
tx; = —Az,etxz— ~ A2 and x3 = A2

Now let the ratio of probabilities under the ergodic distribution,

Px>x) 3T min DO o )Rk
P(x < x) Max DG F(x)/02,

62(x3 — x1) A2A-x)2-M3  A2(1-xp)2 = \,/3
2 2 exp 2 32 3.2
oM (1-x1) oM (1-x2) oM

Since the previous expression tends to infinity as A, A, O}, G2 tend to zero all

xl/3
the probability mass tends to be concentrated in the interval [l - —Al—z-, l]. Since A,

goes to zero the result follows.
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