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Abstract 

This paper studies the replicator dynamics in the presence of shocks. 1 
motivate the dynamics as the result of a process by which agents change the 
strategy they use when its performance is not satisfactory. 1 show that un­
der these dynamics strictly dominated strategies are eliminated even in the 
presence of nonvanishing perturbations. 1 also provide sufficient conditions for 
the existence of a unique ergodic distribution and give examples that show that 
the stochastic dynamics in this paper have equilibrium selection properties that 
differ from those of other stochastic dynamics in the literature. 
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1. INTRODUCfION 

The current interest in evolutive dynamics was born from a discussion of the 

foundations of game theory, whose emphasis on equilibria seemed to make excessive 

demands on the rationality of agents. As an alternative, it was thought that equilibrium 

may be the result of the repeated interaction of agents who are less strategically 

sophisticated than the traditional theory supposes. There are precedents here, since 

Cournot himself gave a dynamic explanation for how the equilibrium for his oligopoly 

game would come to be. 

This paper studies stochastic selection systems, in the context of games. 1 work 

with a particular dynamic system, the replicator dynamics, which 1 will try to show has 

interpretations beyond the usual evolutionary ones. These dynamics model agents with a 

very low degree of sophistication. Despite the agents' lack of sophistication, I find that 

even in the presence of stochastic shocks of several kinds the dynamics give little 

asymptotic weight to strictIy dorninated strategies. 1 also give sufficient conditions for the 

stochastic dynarnics to have an ergodic distribution. 

When considering the replicator dynamics it is useful to think of a large 

population of agents who use pure strategies and are randomly matched to play against 

each other. The growth rate of the proportion of players using a certain pure strategy is 

the difference between the expected payoff of that pure strategy, given the proportions of 

players using every pure strategy, and the average expected payoff in that population. In. 

contrast to other dynamics that have been proposed, like the best-response dynamics of 

Matsui [16], the fictitious play of Brown [2] and Robinson [23], or the learning papers of 
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Milgrom and Roberts [17] and Fudenberg and Kreps [12], the replicator dynamics have 

the characteristic that the strategies whose weight in the population increase need not be 

best responses to anything, in particular to past outcomes of play. And even in these 

circumstances, it can be shown, (see Cabrales and Sobel [3]) that if selection operates 

slowly enough or in continuous time, then all limit points of the dynarnics are best 

responses to time averages of past play, thus giving sorne support to the notion that 

agents that are not rational behave as if they were. 

The history of stochastic selection processes is not long, in part because the 

techniques are relative newcomers also. An early article was written by M. J. Farrell [9] 

at a time when most of the discussion on selection was done in tenns of detenninistic 

dynamics. The main concem of the literature on selection dynamics was whe~er the 

assumption of profit maximization was a sensible one to use for the theory of the finn. 

One possible argument in favor of the idea was that non-profit maximizers would tend to 

grow less or become bankrupt more often, thus making an ever shrinking proportion of 

the industry. Winter [31] has a more extensive discussion of this argument. Farrell uses 

branching processes to model a situation where several different "ability" groups are 

characterized by their probability of success. He then calculates the relative 

preponderance of the difIerent groups. He also considers the introduction of new entrants 

to the groups. The fate of strictIy dominated actions and the implications of a stream of 

disoriented new entrants are two of the themes I will address. Farrell' s work is concemed 

with pure decision problems in a small population setting, though. In a more recent 

paper, Foster and Young [lO], develop a model where perturbations, which they describe 

by Wiener processes, are constantIy affecting the replicator dynamics and keeping the 
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process within the interior of the simplex. Kandori, Mailath and Rob [14] and Young 

[32] consider explicitly a case with finite populations where the randomness comes from 

the stochastic replacements of agents by newcomers that start by playing something at 

random. In the three previous models the processes have ergodic distributions, and the 

authors arrive at predictions by looking at the limit of these ergodic distributions when 

the variance of the noise goes to zero. Papers by Samuelson [241, Noldeke, Samuelson 

and Van Damme [20], and Kandori and Rob [15] apply the techniques in Kandori, 

Mailath and Rob [14] and Young [32] to a variety of games, including cheap ta1k, pure 

coordination games and supermodular games. This approach has proven useful because 

it has been able to discriminate between strict equilibria, something most refinements and 

other dynamic systems were unable to distinguish. An exception is Crawford's [4] paper 

where he shows that in sorne games strategic uncertainty and adaptive adjustments can 

give rise to systematic equilibrium selection pattems without having to depend on an 

ergodic distribution. Crawford [5] shows that in finite populations evolutionary stability 

is also capable of selecting between strict equilibria. 

The model that I will use was first developed by Fudenberg and Harris [11], for 

a two player, two strategy, symmetric game. I will study games that are not necessarily 

symmetric with multiple players and strategies. Like Fudenberg and Harris, I define the 

replicator dynamics in continuous time, and the state variables are points in the simplex. 

One difference with the Foster and Young paper is that the source of the shocks becomes 

important, and we distinguish between aggregate shocks to payoffs and mutations. In the 

fourth section I show that strictly dominated strategies become rare when selection has 

been operating for a long time. This extends the result found by Fudenberg and Harris for 
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their class of games. In the sixth section I show that for a two strategy, N-player, 

symmetric game with two strict equilibria, the equilibriurn selected by the dynamics used 

in rny paper is different frorn the one that the dynamics used by Kandori, Mailath and 

Rob would select. In the class of garnes that Fudenberg and Harris study both kinds of 

dynamics select the sarne equilibria, if rnutations are possible, because in a game with 

two players the payoffs are linear in the proportion ofplayers using every strategy. 

The shocks captured by the rnodel in this paper, as in Fudenberg and Harris, are 

of two types. There are individual, uncorrelated changes of strategy, produced by the 

entry of uninfonned players. Since I assurne there is no correlation in these changes and 

the population is very large, I rnodel these shocks as detenninistic shifts to the replicator 

dynamics, which is how traditional rnodels of biological selection tend to include 

rnutations. There are also aggregate shocks that affect payoffs in the same way for all 

users of a strategy. These will not average out; they constitute the part of rny rnodel that 

is explicitIy stochastic. For a first approxirnation they are considered uncorrelated across 

time. Since the rnodel is fonnulated in continuous time Wiener processes are an 

adequate way to rnodel thern. The sixth section extends the ergodicity resolt in 

Fudenberg and Harris to games with rnultiple players and strategies. 

The second section of the paper will be devoted to a description and rnotivation 

of the replicator dynamics. 1 will argue that the replicator dynamics can be thought of as 

the reduced fonn of a process of irnitation or of economic survival, and present a class of 

dynamic systerns, first introduced by Srnallwood and Conlisk [27], of which the 

replicator dynamics are a special case. In the third section I will introduce the rnodel with 

shocks. In the fourth section I will prove that if the variance of the noise is not too large, 
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when the mutation rates are smaller and smaller the system tends to give less and less 

weight lO strictly dominated strategies. The fifth section deals with the existence and 

uniqueness of an ergodic measure. The sixth section presents an example that highlights 

the differences between the model in this paper and other stochastic dynarnics. The 

seventh section shows that for members of the Smallwood-Conlisk farnily of dynarnics 

other than the replicator dynamics, strictly dominated strategies need not be eliminated. 

This happens even for dynamics that are close, in a parametric sense, to the replicator 

dynarnics. Then 1 conclude the papero 

2. REPLICATOR DYNAMICS 

The game considered here will have finitely many pure strategies and players. 

There are N players and the pure strategy set for the ith player is Pi which ·has ni 

N 
strategies. Player k's payoff function is uk : .llPi ~ R. Let Sn denote the standard n-l 

1=1 

dimensional simplex. Uk is extended to the space of mixed strategies in the usual way, 

and je Pi wiil be identified with the mixed strategy that gives probability one to the pure 

strategy j. Suppose there are N populations of agents, one for each player, and each of 

them contains a continuum of individuals. The usual interpretation of the replicator 

dynarnics is that they describe the evolution of the proportion of members of each 

population playing every strategy. Payoffs in that case represent reproductive fitness, or 

the number of successors for the user of a strategy given the makeup of the population. 

Let xj(t) be the proportion of members of the ith player population using 

strategy j at time 1. The replicator dynarnics are defined as follows; 
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To justify the dynamics imagine that the individuals are randomIy matched dur-

ing period t to play the game. They learn their payoff. A small portion of them are then 

taken and randomIy paired with members of the same player population. They compare 

payoffs and the one with lower payoff changes to the strategy of the one with higher 

payofI with a probability that is proportional to the difIerence in payoffs. This could hap-

pen for example if the agents had an idiosyncratic uniformIy distributed cost of changing 

strategies, and decided to change only when the difference in payoffs were higher than 

the cost of changing strategies. Nachbar [18] gives a similar interpretation for the repli-

cator dynamics. 

For an economist it is difficult to accept an explanation for a model that makes 

agents behave on the basis of information that is so limited, instead of using more sophis-

ticated infonnation gathering and processing techniques. Not everybody shares this 

belief, however. Nisbett and Ross [19] report experimental results in which the opinions 

cornmunicated in person by others have a stronger effect on decision makers than written 

infonnation that is statistically more relevant In rny opinion, the weakness of the replica-

tor dynamics lies in the fact that the scope of the agents' research is limited, both in the 

number of people consulted, and the amount of past experience used; and in the unifor-

mity of the leaming rule assumed for all the population. The result in section 4 extends 

one conclusion obtained for the replicator dynamics to a perturbed version of the model, 

and the example in section 7 shows the necessity of additional assumptions to extend the 

conclusions even further. This implies that for practical applications the particular way in 
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which agents adapt needs to be taken into consideration. 

I want to consider now a different interpretation for the replicator dynamics, 

which may help in connecting them to other selection models in the economic literature 

and illuminate the results in the remaining sections of the paper. The main behavioral 

hypothesis for this interpretation is that human economic agents are satisficers, and 

change their actions only when the action they are currentIy taking does not perfonn 

better than a preset standard. Winter [31], for example, proposes a model with this 

characteristic as an alternative to profit maximization by finns. In a consumers' choice 

model, proposed by Smallwood and Conlisk [27], the task is to choose between N 

di1ferent brands, differentiated by their probabilities of perfonning unsatisfactorily, b¡ for 

brand i. A consumer that owns a product that doesn't break down in a certain period pur-

chases the same brand in the next periodo If the product breaks down, he chooses next 

period's brand randomly. One possibility would be to give the same weight to all brands, 

another would be to purchase the most popular brand. In general the consumer could be 

somewhat sensitive to market popularity, without necessarily adopting such extreme pro-

cedures. Maybe the procedure consists of picking the first brand in the shelf and shelf 

space is only partially sensitive to market power. Smallwood and Conlisk summarlzed 

these possibilities by parametrizing the model in the following way. Let the market share 

of brand i be mi, then the probability that a consumer chooses i is 
m~ 

1 
N ' where a. ~ O 

l:m~ 
k=l 

is the parameter that controls the importance of popularity. When a. = O popularity is 

unimportant for the consumers' choice; when a. is infinity only the most popular brand 

will be chosen; when a is exactly one the probabilities are exactIy the same as the market 
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shares. Given that the individuals ehoose independentIy, if the total number of eonsumers 

is large, the law of large numbers guarantees that the error made in identifying the fre-

queneies with which aetions are taken in the population with the probabilities that eaeh 

individual will take them is small. Then the dynamies that regulate the evolution of 

market shares can be expressed, 

m¡(t)a 
m·(t+l) = m·(t)(l - b·) + "'t'b·m·(t) . 

1 1 1 t J J l)nr(t)a 
r 

Now suppose that instead of a eonsumer ehoosing a brand we are looking at 

player i in our game who is choosing strategies. Total payoffs for strategy j are given by 

UiG,X-i) plus an idiosyncratic uniformly distributed random shock with support [a, b]. 

This is intented to model the faet that people are taking many decisions at the same time 

and knowledge about their payoffs in a particular case can be gathered only imperfectIy. 

Agents change their strategies when total payoff is less than a certain acceptable level, 

call it c. Let's assume that the constants a and b are such that ~ax uiG,k) ~ c - a and 
I,J,k 

~ikn uiG,k) ~ c - b. With these constraints on a and b any strategy at any time can either 
1,], 

give a payoff above the acceptable level or fail to do so with positive probability. If the 

performance of a strategy is adequate agents keep using it. If it is not they choose stra­

tegy j in the next period with probability (xit . The probability that strategy j fails 
L(x~)a 
k 

for a player is equal to 
(j -1) C - ui ,x - a 

b-a 
and the probability that it doesn't is 

b-c+u·G x-i) 
b l' • The dynamics that result for the population shares are, 
-a 
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If a = 1 we can rewrite the expression in the following way, 

. . ~OO . .. 
x'(t+l) = xJ'(t) + --[ u¡(j,x-1(t» - U¡(x1(t),X-1(t»]. 

J b-a 

This is the discrete time version of the replicator dynamics. By reducing the 

period length, and simultaneously reducing the probability of failure at a particular 

period (say raising b), in the appropriate way, we can obtain the continuous time version 

that I will work with in subsequent sections. 

3. THE MODEL WITH SHOCKS 

1 want to consider now the introduction of shocks to the replicator dynamics. 

The mst type of shocks includes those that affect the payoffs of a11 users of a strategy in 

the same way. They could be random changes in total demand in an oligopoly game 

where oligopolists face the same demand curve, or changes in the legal system that make 

certain strategies more costly, or changes in factor prices that alter the cost of using a 

technology. The sum of these shocks will be modeled as a Wiener process. These are 

continuous-time stochastic processes with almost surely continuous sample paths and sta-

tionary independent increments with mean zero. Let W be a d-dimensional Wiener pro­

cess, <Jj a d-dimensional vector of positive constants. The instantaneous payoff for the 

user of strategy j of population i at time t is, 

. d . 
dü¡(j, t) = uiG,x-1(t»dt + LCJj1dW1(t). 

1=1 

At a particular instant in time a player in the ith population is matched with a . 

player from each of the other N-l populations. The probability that a randornIy chosen 

member of the kth population uses strategy j is xf(t). The payoff for a player in the ¡th 
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d . 

population using strategy j will be U¡U,x-¡(t»dt plus a random quantity Lcrj1dW1(t). 
1=1 

These random quantities are independent over time, have a zero mean and constant vari-

ance. W¡(t) is independent of Wj(t), when i is different from j, and dWi(t) does not 

depend on x(t). 

If payoffs have this structure and x(t) evolves according to the replicator dynam-

ics, x(t) will be an Ito diffusion which is the name given to stochastic processes satisfying 

a stochastic differential equation, in this case; 

[ 

d ni nid .. 1 
dxj(t) = xj(t) Ui U,x-i(t»dt + L crjl dW1 (t) - L X~(t)Ui (k,x-i(t»dt - 1: 1:x~(t)crbdWI (t) . 

1=1 k=1 k= 11= 1 

One of the characteristics of replicator dynamics is that if a strategy disappears 

or is never in the population it will never reappear again. This happens because you can-

not imitate a strategy that nobody is using, or inherit it in a biological context And it will 

be true independently of the payoff of that strategy, thus the shocks I modeled above will 

not change that. A strategy that is represented in the population at the initial time will not 

disappear, almost surely, in finite time with the replicator dynamics. The reason is that 

the dynamics are defined in terms of the growth rates, and growth rates are finite, 

although perhaps negative, so the fastest possible decreasing path for a variable is a 

negative exponential one, which is zero only in the limit In similar finite-state models, 

by contrast, extinction is a definite possibility. For the stochastic dynamics in Farrell's [9] 

paper, for instance, there is a positive probability that even the users of the best strategies 

become bankrupt, although the expectation of their share of the total wealth in the market 

goes to one as time goes to infinity. 
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1 want to incorporate in the model the possibility that strategies that are not used 

by anybody in a given period stan to be used in later periods, while retaining the assurnp-

tion that the agents are not sophisticated. For this reason 1 assurne that new players 

replace pan of the population at all times and sorne of thern adopt strategies in a randorn 

way that is independent of the actions of both old players and other new players. 1 rnodel 

the effect of these new players in the dynarnics as a deterministic shock that rnodifies the 

transition rates for all periods. The aggregate effect of the newcorners that take actions at 

random is modeled in a deterministic fashion because their actions are assumed to be 

uncorrelated across individuals and the population is so large that we can invoke the law 

of large numbers to assurne that the average of these actions is not random. By the next 

time these new players can change their strategies they start behaving like other members 

of the population. By analogy with the biological literature I call these newcomers 

mutants, and their actions, mutations. Samuelson and Zhang [25] discuss the issues that 

come up when mistakes occur at the irnplementation stage, so that people don't a1ways 

choose the strategy they intend, but sorne other. These mistakes don't persist and are not 

inherited. The distinction appears to be important for the purpose of predicting whether 

outcomes ruled out by perfectness and other tremble-based refinements will persist in 

evolutionary contexts. In particular, the presence of mutations does not rule out imperfect 

equilibria as limit points of the dynarnics, while implernentation mistakes do. 

The new rnodel is then, 

[ 

d ni 

dxj(t) = xj(t) UiG,x-i(t»dt + LajldWl(t) - LX~(t)Ui(k,x-i(t»dt 
1=1 k=l 

(1) 

- ~ ix~(t)abdWl(t)l + ~ A.jkx~(t)dt - ~ A.~jxj(t)dt. 
k= 11= 1 k=l k=l 
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A.k is the probability that a member of population i that is using strategy k will be 

replaced in a given period by a player who chooses randomly strategy j . 1 will call the 

A.k 's mutation rates. Notice that 1..1 can have any value without affecting the dynamics. 1 

will choose to make 1..1 = mi~A.jk to economize notation in the proofs of the propositions. 
k:FJ 

4. STRIC1LY DOMINATED STRATEGIES 

One of the first questions to arise when considering selection dynamics that 

come from less than rational behavior is whether the outcomes generated resemble the 

ones predicted from a rationality perspective, so that as-if-rational type arguments can be 

made. 1 will need some definitions for this discussion. 

Strategy x'e Sn¡ is strictly dominated in MiC Sn¡ relative to M.-ic nSnj !f there 
p!1 

exists xeSn¡ such that u¡(x, y) > u¡(x', y) for a1l ye~¡. Let Di(Mi , ~i) be the set of 

mixed strategies in Mi that are not strictly dominated in Mi relative to ~i' The strategy 

X' eSDi survives strict iterated admissibility (SIA) if there exist sequences of the fonn 

Di -
S = MiO, Mi ..... , MiT and [!Mk.O = M.-iO, M.-il, ... , M.-iT where Min+l = Di(Min, M.-in) 

and M-in = II Mkn • 
k:¡ti 

Strategies which do not survive SIA are not justifiable for a rational playero so if 

a nonnegligible pan of the population plays them a nonvanishing proportion of the time 

the dynamics cannot be thought of as behaving in a way that mimics the traditional 

economic notion of rationality. The usual justification for strong rationality assumptions 

is that in the long-ron behavior is close to rational due to unspecified selection processes. 

It is interesting, then, to find whether the replicator dynamics eliminate a1l but 
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admissible strategies in the long runo This is true for continuous time replicator dynamics 

but not for the discrete time case, as shown in Dekel-Scotchmer [6]. Nevertheless, 

Cabrales and Sobel [3] show that the result can be partially recovered and give sufficient 

conditions for discrete time dynamics to avoid in the limit strategies which do not survive 

SIA. The question now is whether a similar result is true for a model like the one pro­

posed in last section. 

The payoff function with respect to which 1 consider the strict domination is the 

average payoff function, u¡(j,x). Total payoff, ü¡(j,x), which ineludes the aggregate 

shocks to payoffs, can be different from u¡ (j,x), although on average they coincide. 1 wiIl 

show that the elimination of non-SIA strategies by the replicator dynamics is maintained 

even when transitory payoff perturbations and mutations are added to the model. 

Proposition 1 demonstrates that if mutation rates are small, and selection has 

been operating for a long time, the probability that nonnegligible proportions of the 

population are playing a non-SIA strategy is small. 1 cannot say that the weight of a 

strictIy dominated strategy will be small with probability one because it could happen 

that a streak of good luck makes the proportion of users of a generally bad strategy grow 

fora while. 

This result does not depend on the existence of an ergodic distribution, and it is 

not necessary for variances to be infinitely small. This is interesting because many other 

results in the literature of stochastic dynamics concem the limit of the ergodic distribu­

tion as the variance of the aggregate shocks goes to zero. 

Let r be any n¡ xl vector and 
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ni 

Vr(t) = n (xj(t))ri . 
J=1 

Suppose that r is a strategy vector for player i. If r is a non SIA strategy and V r 

is zero at least one of the pure strategies that have positive weight under r has to be zero. 

Proposition 1 

Let strategy pe Sni faíl strict iterated admissibility. If M~x(A.~)(Min(A.~)rl is 
J J 

bounded for all k having positive weight under p, as we let 1..-+0, there is ap such that if 

i -
~.ax{ (Jjl } < (Jp 
J,1,1 

lim [ limsup E( V 2p( t»] = O 
I..~ l-+-

The proposition shows that the probability that the weight of a strictIy dominated 

strategy (or that of at least one member of its carrier in the case of a mixed strategy) is 

larger than any given positive number K, which may be as small as we want, will be very 

close to zero when selection has been operating for a long enough time provided that the 

variance of the noise is below a certain bound and the mutation rates are both small and 

not orders of magnitude apart from one another. 

1 don't need lO assume that (J goes to zero, but 1 need lO have a bound on it The 

smaller the advantage of the dominating strategy the stricter the bound The assumption 

about mutation rates is always satisfied in the games that Fudenberg and Harris study. In 

games with two strategies the only mutation rate to, say, strategy one is 1..12 , (remember 

that 1..11 is assumed to be equal to the mínimum over j :F- 1 of A.lj), so the maximum and 

the minimum coincide. They do have an assumption about ratios of mutation rates, but it 
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refers to ratios of rnutation rates to different strategies and it is not used to ensure that 

strictly dominated strategies have little weight asyrnptotically. They use it to ensure that 

the probability of getting out of a certain equilibriurn depends rnainly on the size of 

payoffs, and not on an increasing asyrnmetry of rnutation rates. 

I need four lernmas and sorne notation before I can proceed with the proof of the 

proposition. The first one is a direct application of standard theorerns on linear stochastic 

. 
differential equations, and the proofs of the other ones are given in the appendix. 

Let rnj( x, A.) = Ui(j, x-i ) - Ui( xi, x-i ) -l:A.~j . 
k 

The function rnj(x, A.) gathers all the terms in dxj that are rnultiplied by xj. 

M = M~{ I rnj( x" A.) I } , 
x, A.. J 

G = ~.ax{ Gjl } . 
J,I,I 

Let &tj = O if k :¡¡i: j and ().ij = 1. 

ni d t 

Ajs = LL J( &cj - xj(u) )Gj1dW1(u). 
j=ll=l s 

A~ gathers all the stochastic terms in dxj and integrates thern frorn S to t. 

Let r be any nix1 vector, and, 

ni . 

Vr(t) = .II(xj(t)tj • 
J=1 

By Ito's formula, which is the analog in differential stochastic calculus to the 

chain rule in ordinary calculus, 

ni 

dVp(t) = LPjrnj(xi(t»Vp(t)dt 
j=l 
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+ li i i [i (Ojm - X~(t»xj(t)cr~ll [i (~- X~(t»Xk(t)cr~ll [xf~t) x:~t) - Ojk X!~!)2]VP(t)dt 
2 J=1k=1l=1 m=1 m=1 J k J 

+ i + [LAjkXk(t)]Vp(t)dt + ii i (Ojm - X~(t))xj(t)cr~l X¡~t) Vp(t)dW1(t). 
j=1 Xj (t) k J=11=1m=1 J 

1 am going to collect now sorne terms and give them a name to save space. 

A(P)! collects the stochastic terms in dVp and integrates from s to t 

The function crp collects the detenninistic terms which are multiplied by the 

variances of the stochastic shocks. These are the terms that appear in stochastic caJ,culus 

but would not appear in detenninistic calculus when using the chain rule. 

In the remainder of the section 1 will suppress the superindex when it is clear 

that we are referring to strategies for player i. 

Lemmal 

b) V p(t) = exp [Íl:p'i m; (x(s), A) + o¡, (s) J ds + A(P)t ] V p (O) (3) 

+ ! exp [ti :p'iffiiX(U), A) + <Jp(+u + A(P)~ 1 r x;tS) [p~",,(S) lv p(s)ds . 
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+ l exp [I [rPjffij(X(U). A.) - f(x(u)) + "p(U) 1 du + A(P)~ 1 r x~tS) [f-A.jkXk (s) ]v. (s)ds 

+ 1 exp [1 [~pjmj(x(u), A) - f(x(u» + ap(u) )dU + A(P)~lf(X(S»Vp(S)dS . 
o s J 

Proof: See Gihman and Skorohod [13] p.37 

It is easy to see by differentiating that the solution to the ordinary differential 

equation; 

y(t) = a(t)y(t) + f(t); y(O) = y, (4) 

is given by 

y( t) = exp [la(s )ds 1 y + ! [lar u)du 1 f(s)ds. (5) 

The x(t) process is the solution of equation (1), which is the stoehastic 

differential version of equation (4). 1.'0 go from (1) to (2), which is the stochastic analog 

of (5), since you cannot use differentiation it is necessary to use ItO's rule. Something 

similar applies to Vp(t). 

Lemma2 

a) E( exp ~A~) ~ exp [ dn2~2a2( t- S)]. 

b) E( exp ~A(P)~ ) ~ exp [ dn4~2a2( t - s )]. 

Proof: See the appendix. 

The proof of the proposition is going to proceed by taking expectations in equa-

tions (2) and (3). The assumption that strategy p is strictly dominated will make the • 

terms in those equations that contain the mj functions small, but we still need to know 

what happens with the term that contains the noise. The assumption on the variance plus 
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Lemma 2 assures that the noise terrn does not change the conclusions. 

Lemma3 

Let c > O and C(M,cr) = ecMC}'2 exp[ 6c2ctn2a2], where Cl is a constant 

independent of both the time index and the particular stochastic process we considero 

E( Xk (t)-C ) ~ C( M, cr)( Min[ Ajk ] )-c. 
J 

Proof: See the appendix. 

Proof of Proposition 1 : 

~ - -
Let A¡ = {pe SI: p fails SIA and for all cr > O there is a cr < cr with 

N 
limlimsupE(V2p(t» > Ol, and assume that .uA¡ :1: 0 for a contradiction. Let K(pl be 
l.-tO t-+oo 1=1 

N 
such that p'eMiI{(p,)nMfK(p'}+l. Let p be a minimizer of K(P) on .uA¡. Let r=K(p). 

1=1 

Since pe Mir nM;+ 1 there is p 'e Mir such that 

u¡(p, x) - u¡(p', x) < O for all xe M-ir. (6) 

so that p' strictIy dominates p relative to M-ir. Let X consist of all those xe nSD
¡ such 

b¡ 

that xt > O only if le MIcr. It follows by equation (6) that 

u¡(p, x) - u¡(p', x) < O for all xeX. (7) 

Let the set <;r = {xe PjnM~ l· c., is the set of pure strategies for player j that are not in 

Mjr. Let Xc = 1: 1: xf, that is, the sum of the weights of pure strategies (of players 
bijE 4r 

other than i) which are not in the sets CIcr . 



Let Mpp' = I Ma~[u¡(p, x) - u¡(p', x)] I + 1 . 
xensDJ 

j"; 

Then by equation (7) 

Since 

U¡(p, x)-U¡(p', x)-Mpp'xc <O forallxepSnj. 
J¡t¡ 

For the rest of the proof consider only A. small enough that 

L(Pj - p'j)mj( x, A.) - Mpp'Xc < O. 
j 

L(Pj - p'j)mj( x, A.) = u¡(p. x) - u¡(p'. x) - LL(Pj - P'j)A.~j. 
j j k 

this is satisfied when 

By the restriction placed on A.. m < O. 
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The function V 2(p-p, is something like a ratio of the weights of the dominated to 

the dominating strategy. Lernma 4 is going to show that the expectation of V2(p-p, is 

bounded. 

Lenuna4 

E(V2(p-p,)(t» ~ exp[2(m + 2crn4d)t]V2(p_p,(O) (8) 

+ [2M"". N + 2rC(M.cr)~)-1 M.axA.jk 1 [2(m + 2.r.4 d) ti [1 -exp [2(m + 2.rn4d)t]J. 
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Proof: See the appendix. 

Samuelson and Zhang show that strictIy dominated strategies disappear by 

showing that V p-p' goes to zero when there are no shocks. 1 can't do that because rnuta-

tions prevent the weights of strategies frorn becoming arbitrarily srnall. But at least 1 can 

show that E(V 2(P-p'» has a bound that is independent of the rnutation rates, if these are 

not orders of rnagnitude aparto This happens because far frorn the boundaries the dynam-

ics tend to make V p-p' srnall, and so the first term in equation (8) is srnall, but near the 

boundaries the rnovernent depends on rnutation rates to a greater extent, and the second 

term in equation (8) reftects thal 

Lemma 4 shows that there will always be enough users of the dominating stra­

tegy so that it can be imitated by the users of the dominated strategy. The nuniber of 

agents that play the dominated strategy could increase for two reasons. Sorne new 

players (rnutants) choose it by chance and sorne agents who were doing sornething else 

switch to the dominated strategy because they don't know of the dominating strategy. 

The rest of the proof of Proposition 1 dernonstrates that the accurnulation of those two 

types of players is slower than the losses of players who discover that the dominating 

strategy is better. 

Let b < l By Lemma lb, 

Then by the positivity of A, p', x and the exponential function, 
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By lernma lb' 

v 2p(t) = exp I! [2(fPjffij(X(S), A) - Mpp'Xc(s» + "2p(s) 1 ds + A(2P)L] V 2p(b) 

+ J exp 11 [2(~pjmj(x(u), A) - Mpp'xc(U» + (J2P(U»)dU + A(2P)t] ~ ~p(j) [LAjkXk(S)]V2P(S)dS 
b s J J XJ S k 

+ J exp IJ [2(~pjmj(x(u), A) - Mpp'Xc(u» + (J2p(U) )dU + A(2P)t]2Mpp'Xc(S)V2P(S)dS. 
b s J 

Now 1 divide the first line in the previous equation by, 

and since we showed that the last expression is less than one, 

V 2pO) ,; exp [[ [2q:(Pj - P 'j)ffij (x(s), A) - Mpp' Xc (s» + ">(p-p) (s) J ds + A(2(p-p '»~ lv 2(P-P) (b) 

+ J exp J [2(LPjmj(x(u), A) - Mpp'Xc(u» + (J2p(U) )dU + A(2p)~ L Lp. [~AjkXk(S) Jds 
t [t 1 2p· 

b s j j Xj (s) l k 

+ i exp [i [2~pjmj(x(u), A) - Mpp'Xc(u» + (J2p(U) )dU + A(2P)~l2Mpp,Xc(S)ds. 
b s J 

Taking expectations and applying lernmas 2 and 3, by definition of M, and taking the 

surnmation over j only over those indices for which Pj is strictly positive, 

E(V2p(t» ~ exp[(2m + 4a2n4d)(t - b)]E(V2.{p-pl(b» (9) 

+~C(M,(J)201inAjk)-(1-P¡)MkaxAjk [2(M+2a2n4d) J-1 [-l+exp [2(M+2a2n4d)(t-b) J] 
J 

+2Mpp'L L (MaxE(4(s»2)1/2 [2(M+2a2n4d)]-1 [-I+exP [2(M+2a2dn4)(t-b)J] 
j*i ke Cjr se (b. t) 
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1 have to show that for any positive nurnber <l, for all t larger than sorne tu and A 

srnaller than sorne Aa, E(V2p(t)) is srnaller than <l. Lernrna 4 shows that E(V2(p_p')(b)) is 

bounded by a constant C which depends only on rn, M and () when b is aboye sorne bao 

Choose t' such that t' - ba > O and 

Then for all t> t' choose b such that t - b = t' - bao This guarantees that the first line in 

equation (9) is strictIy srnaller than <l. Having chosen b, notice (MinAjkf(l-Pi)MaXAjk 
k k 

[ 

MinAjk j-(l-Pi) 

= M~jk M:XA~ so by taking A' sufficiently srnall, if t> t', for all A < A' the 

surn of the first two lines in equation (9) will be srnaller than a. The third line in equation 

(9) can also be rnade as srnall as needed for all A srnaller than sorne AN when t is larger 

than sorne t N > t' because for all j;ti and all k in Cjr, lirnlirnsupE(xi(tP) = O. Let tu be 
t..-.<> t-+oo 

larger than t", and A smaller than A' and A" and the result follows. 

The following interpretation can be given to the proof. The first line of equation 

(9) says that few of the initial users of strategy p are still using it or have been replaced 

by imitators. The second says that the inexperienced new players and their imitators can-

not replace them, unless the initial level of p-strategists was very low. The third line 

allows us to extend the argument to strategies that are strictly dominated only after other 

strictIy dominated strategies have been eliminated. 

5. ERGODICITY 

Stochastic dynamics sornetirnes have the property that the time average of the 
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probability that the process hits a certain set goes to a limit that is independent of the 

starting point. This is useful beca use it allows the modeler to malee unique limiting pred-

ictions. It is also interesting because deterministic dynamics don't have that property 

unless there is global convergence, so ergodicity sets stochastic dynamics apart from 

detenninistic dynamics. The processes in the papers by Foster and Young [10], Kandori, 

Mailath and Rob [14] and others, have ergodic distributions. The authors proceed to 

identify the most likely states of the population when mutation rates are small. When 

mutation rates are small, however, the time that is necessary for the system to wipe out 

the influence of the initial condition may be very long. Ellison [8] shows that changing 

the matching technology from random matching to more general types·of interaction, can 

change the amount of time needed to converge to the ergodic distribution. Foster and 

. 
Young point out that for applications it may be more fruitful to estimate the variances of 

the shocks and the size of the mutation rates rather than to obtain the limit distributions 

when variances and mutations go to zero. 

I wil1 give sufficient conditions for the process defined in equation (1) to have an 

ergodic distribution. The context will determine whether these conditions are sensible. 

For example, it will be important for the result that the mutation rates are bounded away 

from zero. If the game is played always by the same people, you cannot invoke inexperi-

enced new players lo justify mutations. The justification of mutations in terms of experi-

mentation also becomes harder in that case. It is also important that the matrix of the 

varlance of the noise has fuIl rank. This implies that the sources of randomness have lo 

be somewhat independent between the different strategies. If strategies are, say, produc-

tion levels, it seems implausible to assume that a shock that affects the cost of producing 
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a certain amount of goods has no effect in the cost of producing a different amount. A 

trivial case in which the shocks are not sufficiently uncorrelated is the one in which the 

cost of production changes randomly for all strategies in the same amount. The 

differences between the payoffs to all strategies are not affected, and since the dynamics 

depend on the difference between the payoff to a strategy and the average population 

payoff, the dynamics are not affected by this type of shock. If the resulting deterministic 

dynarnics are not globally convergent there is not a unique limiting ergodic distribution. 

Nontrivial cases arise when the shocks are more complicated than this simple additive 

one but still not sufficiently diverse in origin to generate a regular variance matrix. 

The process 1 presented in equation (1) is ergodic when the matrix of the vari-

anee tenns has a rank higher than or equal to the total number of pure strategies. in the 

game and all the mutation rates are different from zero. The reason for this is that if the 

varianees satisfy the rank condition the process can move in every direction when it is in 

the interior of the simplex, and the mutation rates move the process away from the boun-

darles. In other words, as long as people are myopic and each strategy is being used by 

somebody (which is guaranteed by the presence of mutations) a string of suceesses or 

failures for different strategies due purely to random fluctuation in payoffs, can cause the 

population to reach all conceivable states infinitely often. 

and let 

Let x(t) be the solution to equation (1), which 1 will write 

dx(t) = a(x(t»dt + B(x(t»dW(t). 

ni 

Il = {X: O S xj S 1 for j=l ..... ni. i=l ..... N. and l:xj=l for all i=l ..... N}. 
1 
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ni . 

The process x(t) belongs to /1 almost surely if x(O) belongs to /1 since Ldxj(t) = O for 
j=l 

i=l, ... , N, and dxj = O for xj equal to zero and one, for all i and j. I will only consider 

x(O) belonging to /1. 

Let P(s, x, E) be the probability that the process, starting at x, is at time s in the 

set E. Let r be the [i ni] xd rnatrix whose [~nk + j] th row is the d vector aj. 
_1 b1 

N 
Proposition 2 If the rank of r is equal to L ni, there exists an invariant measure 1t for 

k=l 

the process x'(t), and for all xe /1 and all Ee BA (the set of Borel subsets of /1 ) 

Proof: 

t 

lim 1. f P(s, x, E)ds = 1t(E). 
t-+oo t o 

The process x(t) has an invariant measure by Theorem 21 from Skorohod [26], 

because it is a Markov process in a compact metric space, /1. To show uniqueness 1 will 

apply Theorem 5.1 in Arnold and Kliemann [1]. Once the existence of a unique invariant 

distribution is established the result follows by Birkhoff's ergodic theorem (see Skorohod 

[26] theorem 1, or Arnold and Kliemann [1] p. 54). For the details of the proof of unique-

ness see the appendix. 

6. RELATIONSHIP WITH OTHER STOCHASTIC DYNAMICS 

In this section I present an example which shows that the stochastic dynamics 
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can have an ergodic distribution whose weight is concentrated, when both mutation rates 

and the variances of the stochastic shocks are small, on an equilibrium which is not the 

one with the largest basin of attraction for the deterministic replicator dynamics. Further-

more, the ergodic distribution would concentrate its weight on a different equilibrium for 

the dynamics that Kandori, Mailath and Rob study. The distinction appears only when 

games with more than two players are considered. With two strategies and two players 

the stochastic dynamics of Kandori, Mailath and Rob and Fudenberg and Harris have 

ergodic distributions that put most of the weight on the same equilibrium for small vari-

ances and mutation rates. Young and Foster [33] consider an example in which the equili-

brium with the largest basin of attraction would not be the one to which the ergodic dis-

tribution gives the highest weight. In their example, however, the dynamics of Kandori, 

Mailath and Rob would have the same limiting ergodic distribution. 

Suppose now that members of the population are randomIy matched every 

period in groups of N players to playa game that has two strategies. The strategy played 

by player i is denoted Xi and Xi can be either 1 or 2. PayofIs are 

U¡(Xl' ••• , XN) = a mJn Xj - bx¡. 
J 

Given the random matching structure of the game, if we let X be the proportion 

of people in the population using strategy 2, the payoff to strategy 1 given x will be 

u(1, x) =a- b and the payoff to strategy 2 will be 

u(2, x) = 2axN + a(1 - xN) - 2b = axN + a - 2b. 

The game has two strict equilibria in pure strategies that are Pareto ranked. The 

detenninistic replicator dynamics converge to one of them from all initial states except 
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from the unstable mixed strategy equilibrium. The basin of attraction of the Pareto supe-

rior equilibrium is smaller when N is large. 

In the presence of mutants and random shocks to payofIs, if the changes in x are 

slow enough, its evolution can be modeled as, 

dx(t) = [X(t)(l - x(t»(ax(t)N - b) +A2(1 - x(t» - Al X(t») dt + x(t)(1 - x(t»cr dW(tX.10) 

Proposition 3 

a) The process x(t) defined in equation (10) has an ergodic distribution. 

b) If a> 2b the limit of the ergodic distribution puts probability one on the state x = 1 

where all the population is using the high efIort strategy, as A¡, A2 and cr go to zero, if 

Al . 
A2 IS bounded. 

Proof: 

See the appendix. 

The equilibrium that has more weight under the ergodic distribution is the one 

for which the temporary shocks to payofIs that will convince the people to switch to the 

other equilibrium are less likely to arise. In this model the difficulty in changing from a 

state where most of the people are playing one strategy to one where mostIy the other 

one is played, líes in getting the first few people to defect from the popular strategy, 

because it is more difficult to imitate something that almost nobody is doing. The first few " 

defectors have to see that playing the other strategy has been good lately, and that will 

happen when payofIs sufIer a shock that makes the strategy that is played by the majority 
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have a lower payoff than the altemative strategy. Then it is necessary to compare how 

likely are the shocks that move the dynamics from the different equilibria to know how 

the ergodic distribution looks like. When a > 2b the shocks necessary to move the 

dynamics from the Pareto dominant equilibrium to the other one are much more unlikely 

than the shocks that produce the opposite transition, if the variance of the shocks is small. 

Thus the Pareto dominant equilibrium has more weight under the ergodic distribution. 

In the model of Kandori, Mailath and Rob the factor that detennines which 

equilibrium has more weight under the ergodic distribution is the number of mutations 

necessary for the rest of the population to start thinking that it is a good idea to change 

their action. When N is large, less mutants are necessary to change from the Pareto dom­

inant equilibrium to the Pareto inferior equilibrium than the ones necessary to. do the 

opposite transition. Thus the Pareto dominated equilibrium has more weight under the 

ergodic distribution. 

When there are only two players in each match the two criteria, size of the 

shocks and number of mutants, coincide, which is why the papers of Fudenberg and 

Hanís and Kandori, Mailath and Rob give the same conclusions. 

The game presented in this section was studied experimentally by Van Huyck, 

Battalio and Beil ([29], [30)). The equilibrium selected in most of the experiments was 

the Pareto inferior one, contrary to what Proposition 3 would suggest This is not surpris­

ing since in the experimental setup there were no random shocks to payotIs and agents 

did not adjust their strategies in ways that were consistent with any of the stories 1 used to 

motivate the replicator dynamics. The model in Crawford [4] seems better adapted to 
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model the experimental framework. The model presented in this paper could be better 

suited for decisions where the payoffs to different choices are nol given lo the players in 

advance and are small compared to the cost of a careful consideration of the problem or 

of the difficulty of gathering information. 

7. THE SMALLWOOD-CONLISK DYNAMICS 

Section 4 showed that the result that replicator dynamics eliminates strictIy 

dominated strategies is robust to the presence of sorne types of shocks. In this section I 

present an example which shows that this result does not necessarily hold for more gen­

eral models of selection dynamics, even for sorne dynamics that are arbitrarily close to 

the replicator dynamics, in a parametric sense that 1 will specify latero 

1 will use the Smallwood-Conlisk dynamics 1 described in section 2. As I 

showed in that section the replicator dynamics are a member of that family of dynamics, 

when the parameter a takes the value of one. Smallwood and Conlisk [27] characterize 

completely the set of limit points for the dynamics of their consumer choice problem. 

The game theoretic setup does not allow such a complete analysis as the consumer 

choice case, because the function that determines payoffs may depend on the proportions 

of the population that use every strategy in a game, but in the Smallwood and Conlisk 

model quality does not change with the proportion of people using a product. Neverthe­

less, the following can be said about the game dynamics. 

Proposition 4 
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Every pure strategy profile is a fixed point of the breakdown dynamics. a) For 

(l < 1 it is locally unstable, b) for (l > 1 it is locally stable. 

Proof: 

Rewriting the dynamics in the way Smallwood and Conlisk do, 

. . x;(t)a ¡ C - U¡(j,x-¡(t» - a ¡ [ [ c - U¡(j,x-¡(t» - al [x~(t) la-1ll 
x~(t+1)-x~(t)+ ~ x·(t) 1- . . . 

J - J LX~(t)a ~ b - a J c - u¡(r,x-1(t» - a xj(t) 
It 

If xj(t) is sufficientIy close to one, and (l is more than one then the second tenn is 

positive and therefore xj(t+l) > xj(t). lterating this argument yields the desired conelu-

sion about local stability. A similar argument proves the local instability of pure strategy 

profiles when (l < 1. 

The local stability and instability of pure strategy profiles when (l is greater than 

and less than one respectively, is independent of the precise magnitude of payoffs. And 

so it is possible for the dynamies to converge to a strietIy dominated strategy when (l is 

greater than one and to diverge from a strict equilibrium when (l is less than one. This 

happens because if nearly everybody uses the same strategy, users of other strategies 

who decide to ehange will do it with high probability 10 the "leading" strategy. At the 

same time, many agents are eeasing to use the "leading" strategy, because even a very 

good strategy will sometimes faíl to perform satisfaetorily due 10 random faetors. The 

parameter (l eontrols which of these effeets dominates. When neither dominates, superior 

quality can overcome the effects of popularity and random failure. The elimination of 

strietIy dominated strategies is sensitive to the formulation of the model. In faet, strietIy 
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dominated strategies need not be eliminated even for parameter values that are arbitrarily 

close to one, the case of replicator dynamics. 

One possible criticism to this result is that while functions with a similar a 

parameter are close by in the sense that Max I fa(x) - fa,(x) I is small when a-a' is close 
xed 

to zero, the first derivative of f I and fa are very different near the vertices of the simplex, 

even for values of a very close to 1, and the result depends on the behavior near the ver-

tices of the simplex. 

Another criticism is that when the parameter is close to but greater than one the 

basin of atttaction of the equilibrium where everybody is playing a strictIy dominated 

strategy is small. In the presence of stochastic shocks one could conjecture that the 
. 

population would get knocked very easily out of an equilibrium with a small basin of 

attraction, and therefore the system would spend on average very little time near that 

equilibrium, even if the dynamics are not precisely the replicator dynamics. 

The example I will present next is intended 10 show that this is not necessarily 

the case. The reason is that for stochastic dynamics there are factors other than the size of 

the basin of attraction that determine the distribution of future outcomes. In particular, 

myexample depends on the form of the variance term. 

Suppose that in a game with two strategies instantaneous payoffs are determined 

as follows, 

dÜl (t) = ul (Xl (t), X2(t» + X2(t)Gl dW 1 (t), 

dÜ2(t) = U2(X2(t), Xl (t» + X2(t)G2dW2(t), 

where (JI ~ O and (J2 > O. 
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The variance of the shocks in this case, unlike in the model presented in section 

3 depends on the number of players using strategy 2. 

The se model when there are two strategies can be written, 

X2(t)XI (t)a 

Xl (t)a + X2(t)a ' 

and X2(t) = 1 - Xl (t) . 

The continuous time version with shocks to payoffs and mutations wiIl be then, 

and dxl (t) = - dx2(t) . If Xl (O) + X2(0) = 1, then Xl (t) + X2(t) = 1, for all t 

Let's define now, 

The process W(t) thus defined is a one dimensional Wiener process. The pro-

cess x(t) = Xl (t) = 1 - X2(t) can be studied using the theory of one-dimensional lro 

processes, which allows us to know the exact fonn of the ergodic distribution if one 

exists. 

Suppose that UI (x, 1-x) = u and u2(l-x, x) = U for all XE [O, 1], and u < U. Let 

e -U - a (J2Iy2(a-I) + (J~(l- y)2(a-l) 
c - u - a _ B - A R(X) - , and 

b-a - , b-a - '1-' - (ya + (l_y)a)2 



36 

We have then, 

dx(t) = o(x(t»dt + x(t)(1- X(t»2~1/2dW(t). (11) 

Proposition S 

a) The process x(t) defined in equation (11) has an ergodic distribution. 

b) The limit of the ergodic distribution of x(t) as A¡, A2' (JI and (J2 go to zero gives all 

(JI (J2 Al A2 
the weight to x = 1 if a > 1 and - , -, -;¡- , -;¡- are bounded. 

(J2 (JI A2 Al 

Proof: 

See the appendix. 

In this example, for small values of the variances and the mutation rates, the pro-

cess will spend very little time outside the areas where x is close to one, provided that the 

popularity parameter is bigger than one. This happens despite the fact that the basin of 

attraction of the equilibrium where x is one will be very small if (J is close 10 one. The 

reason for this is that the first strategy is worse on average, but it rarely fails for a lot of 

people at the same time, which is what you need in this framework to escape from a state 

in which a strategy is used because it it the most popular. The second strategy is usually 

better but in sorne periods it performs badly. Hit does so for a suf6ciently long time the 

first strategy will become very popular and from then on its steady perfonnance will 

make it hard to beat. 

The variance of shocks on this example could depend on Xl and X2 in a more 

general way. For example, instead of X2(t)(Jl dWl (t) we could have 
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(010 + 011 Xl (t) + 012X2(t)dW 1 (t). If 010 or 011 were different from zero the example 

would not be possible. The purpose of the example is to show that thinking that the sto-

chastic dynarnics will spend less time near equilibria which have small basins of attrac-

tion under detenninistic dynarnics than near equilibria with large basins of attraction is 

wrong unless additional assumptions are made. 

The problem now is finding examples of situations with the required variance 

structure. One such situation arises when deciding whether to participate or not in a game 

of bingo, where each participant pays a fixed amount and the randomIy selected winner 

receives a portion of the total amount paid by the participants. Sorne scientific endeavors 

also have the property that the value of the research done increases with the number of 

scientists working in the field, but only one or a few lucky researchers will receive credit . 
for the discoveries. More precisely, suppose that M individuals have to choose between 

participating or not in a lottery. Denote by N the number of people who decide to partici-

pateo If they don't participate they get nothing and pay nothing. If they do, they obtain the 

prize, wonh N/2, with a probability of l/N, and the cost of entering the contest is 1. 

Under these conditions the payofffor a contestant is -1/2 + «N-1)/4)1/2w, where w is a 

random variable with mean O and variance 1. If we denote the nonparticipation strategy 

by one and the proportion of nonparticipants by X, u(l, x) = O and u(2, x) = -1/2 + 

(M(N-1)/4N)1/2x1/2w. 

De Long, Shleifer, Surnrners and Waldmann [7] have a model for the stock 

market where sorne of the agents (noise traders) have an expectation about the price of a 

stock that deviates from the rational expectation by a random amount The rest of the 

agents have rational expectations. With this setup the payoff to both types of agents has a 
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variance that depends on how many noise traders there are. Another game where the 

variance of the payofIs depend on the number of users of a strategy would be one in 

which producers in a market choose between two technologies. One of those technolo­

gies produces goods with a random quality that changes over time, but is identical for all 

users of that technology. The quality of the goods produced with the alternative tech­

nique doesn't change. Costs are also deterministic. Demand depends on average quality 

in the whole market. If the proportion of users of the random technique is x, the price is 

P((l-x)+xw), where w is the random quality of the technique. The variance of payoffs 

will depend on x through price in this case. 

8. CONCLUSIONS 

In this paper 1 extend to games with more than two players and strategies 'which 

are not necessarily symmetric two results found by Fudenberg and Harris [11]. First, 1 

show that strictIy dominated strategies have little asymptotic weight even in the presence 

of shocks to payoffs if mutation rates are small. Then 1 show that unique ergodic distribu­

tions exist Nevertheless, at the present stage it doesn't seem easy to say much about the 

transition probabilities on large time intervals analytically, unless one assumes that the 

variances go to zero. 

The present approach is complementary to the one Kandori, Mailath and Rob 

[14] or Young [32] use, because it studies very large populations, where their model is 

less powerful, because independent mutations are much less likely to take the process 

very far from the basin of attraction of a stable equilibrium, even for nonnegligible muta­

tion rates. As Ellison [8] studies, if the matching technology were difIerent, for example 
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if the chances of being matched with a few individual s were not very small, then low 

mutation rates wouldn't be that much of a problem. In such a case the potential for 

supergame effects is much larger,though. 

Foster and Young introduced the study of stochastic evolutionary dynamics. As I 

have said, their model did not discriminate between mutations and shocks to payoffs. For 

their purposes, establishing the existence of a unique ergodic measure, and analyzing the 

limit of that measure when variances are taken to zero, this is not very important But it 

becomes more relevant if one wants to distinguish whal are the factors thal cause ergodi-

city, and which ones are nOl essential, especially if one thinks that ergodicity is a coun-

terintuitive property for sorne situations. 

. 
None of the justifications 1 gave for the replicator dynamics provide very strong 

foundations outside of the realm of biological games. Bul these slories show that with 

fairly weak assumptions on rationality one can conclude that strictly dominated strategies 

can be eliminated. However, the result seems lO depend quile sensitively on assumptions. 

More research needs 10 be done, allowing more heterogeneity in the way agents behave, 

and the amount of information they process lo be more confident about the force of 

aggregate rationality, which seems to be the basis for the belief that the behavior that 

eventualIy prevails has 10 be the best. Stahl [28] studies a model with agents who differ 

in their abilities to best respond to the present population. My paper explores a model in 

which payoffs are constantly changing around a central value. It would be interesting to 

see the results obtained when payoffs can change in more general ways, since in that case 

it may not be possible lo always use the same strategy successfully and the definition of a 

strictly dominated strategy could be a dynamic one that requires agents lo be more 
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active. 



APPENDIX 

Lemma2 

Proof: 

a) E( exp ~Ab ) ~ exp [ dn2~2a2( t - S)]. 

b) E( exp ~A(P)~ > ~ exp [ dn4~2a2( t - s>]. 
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a) Let Zt( x) = exp [L~ h~( ~j - Xj(U) )<JjldW1(u) _1. Í1: [~2~{ ~j - Xj(u) )<Jjl r dU]. 
lJ& 2&1 J 

By applying lta's rule to the exponential function we have, 

t 

Zt( x ) = 1 + 1:1: JZu( x }2~{ ~j - Xj(u) )<JjldW1(u). 
1 j I 

By Novikov's [22] sufikient condition to Girsanov's theorem Zt( x) is a martingale if . 

E [exp [ ; Ir [PJl( q.j - Xj(ul lOjl r dU]] < - fors ';t<-, 

Wbich in this case is true because o ~ Xj(t) ~1. 

IfZt( x) is a martingale E( Zt( x» = 1. Using that and H&lder's inequality, 

lfl [[ [1 t 2 ]]]lfl E( exp ~A~ ) = [E( Zt( x »] E exp "2!t [r 2~{ ~j - Xj(U»<Jjl] du S exp [ n2d~2a2( t - s) l 
lbe same argument applies for b). 

Lemma3 

E( Xt(t)~ ) S C( M, <J)( ~[ A.,;t ] )~. 
J 

Proof: 

Since "" (1) = exp [ 1""'( x(sl, A )ds + A~ 1 "" (Ol + !exp [ !"'" (X(ul, A)dU + Ab ] 1"1< ",,(s)ds. 

and by the positivity oí the exponential function, A. and x; 
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E( Xk(t)-<: ) ~ E [[ j exp [ fmk( x(u), A )du + L~( Ojk - Xj(u) )<Jj1dW1(u) ]LAjkXj(S)dS]-<: ] 
t-l s 1 J s k 

~ecM( ~nAjk )-<:E [[ J exp [L~ J( ~j - Xj(U) )<Jj1dW1(u) lds l-<: l, 
J t-l 1 J s 

which by HBlder's inequality 

,; ccM( ~ )-< { E I [ exp [ H .L ( Sr.j - Xj(u) )<>" dW, (u) 1 r Ir 
[E [[ llexp [-H .l,(~ -Xj(u) )GpdW,(u) lds r 1 r 

,; CcM( ~ )-< { E [ cxp [ H 1.< ~ -x; (u) X -2c )<>pdWI(U) l] r 
{ E I SU}) exp [1:1: j 2c( ~j - Xj(u) )<Jj1dWl(U) lllln.. 

t-1Sist 1 j t-l 

which by lernma 2 and HBlder's inequality 

S ecM( ~jk )-<: [ exp [ dn24c2cr ] ] In. 

{ E [1 SU)) exp [1:1: j 2c( &tj - Xj(u) )<JJ1dW¡(U) - 2
1 1: j [1: 2c( ~ - Xju )<JJ1 J2 ds] ]2]}1/4 

t-1Sist ¡ j t-1 ¡ t-1 j 

lE {[>-~exp [f.11 [7 2c(~ -Xi> )Gp r dslrlr· 
By tite proof of lernma 2 we know that, 

exp 1:~ J 2c( &cj - Xj(U) )<Jj1dW¡(u) - 2"1: J [~2c( &cj - Xju )<rj1 J ds [
SI I 2 1 

¡ J t-1 1 t-l J 

is a martingale. and so we can use NoviIéov's [21] martingale moment inequalities 10 

bound tite expectation of the square of its supremum. 

E( Xk(t)-<: ) S ecM( ~ )-<: [ exp [ dn24c2cr ) J In. cln. exp[ ~dn2a2]. 

Since Cl is a constant independent of both the time index and the particular martingale. 

we are done. 
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Lemma4 

E(V2(p-p')(t)) s exp[2(m + 2a2n4d)t]V2(p-p')(Q) 

+ [2Mw' N + 2rC(M,(Jl~¡-1 ~ 1 [2(m + 2o'n
4
dl r [1 -exp [2(m + 2o'n

4
dlt]]. 

Proof: 

By Lemma lb') we know, 

v 2ú>-t»( tl = exp [! [~(p; -p 'j lll1; (x(s l, Al - M,p' Xc (s» + <>2(p-p) (sl J ds + A(2(p-p ') l~ lv 2ú>-t» (O) 

+ i exp [i [2Q:(Pj - p'j)lIlj(x(u), A.) - Mpp'Xc(u» + (J2<p-p') (u) )dU + A(2(p-p'»~l2Mpp'Xc(S)V2(p-p')(S)ds 
o s J 

By the definition of m and (J2(p-p')' 

V2(p-p')(t) ~ exp[2(m + a2n4d)t + A(2(P-p'»h]V2(p-p')(Q) 

+ jexP[2(m + crn4d)(t - s) + A(2(P-p'»!] !2Mpp'N + l:-L( ) ~axA.jk]dS. 
o j Xj S J.k 

Taking expectations, 

E(V 2(p-p')(t» ~ exp[2(m + crn4d)t](E(exp[A(2(p-p'»h]»V 2(p-p')(O) 

+ jexp[2(m + crn4d)(t - s)](E(exp[2A(p-p')~])IJ2 [2Mpp,N + L lE 1+]]lfl ~lds. 
o j Xj (s) k 

which by Lemmas 2 and 3, 

~ exp[(2m + crn4d)t]exp [ 2n4da2t]V2(p-p')(O) 

+ !exp [2(m + o'n4d)(t - s) + 2n4W( t - S )1 ! 2Mpp. N + 2r C(M,(J)~)-l ~ ]ds. 

Tbe Lemma then follows by integration. 
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N 
Proposition 2 If the rank of r is equal to r, ni, there exists an invariant measure 1t for 

k=l 

the process x'(t), and for aU xe Il and aH Ee BA (the set of Borel subsets of 6) 

Proof: 

t 

tim 1.. J P(s,x,E)ds = 1t(E). 
t~ t o 

The process x(t) has an invariant measure by Theorem 21 from Skorohod [26], 

because it is a Mark.ov process in a compact metric space, 6. To show uniqueness 1 will 

apply Theorem 5.1 in Arnold and Kliemann [1]. Once the existence of a unique invariant 

distribution is established the result follows by Birkhoff's ergodic theorem (see Skorohod 

[26] theorem 1, or Arnold and Kliemann [1] p. 54). 

To establish uniqueness 1 need three lemmas and sorne definitioDS. 

Lemma5 

N 
Hx is in 6, the rank ofB(x) is equal to r,(n¡-l). 

¡=l 

Proof: 

Let B '(x) be the matrix formed by suppressing from B(x) the rows correspond-

ing to the last sttategy, ni, of aIl players, and suppose the rows in B'{x) are not linearly 

independent. Then there exist aj for j = 1, ... , n¡-l, i = 1, ... , N, such that 

i i 1 

ajxj [aj - 1: x~a~l = O, 
l=lFl k=l 

and there is sorne aj ~ O. The coefficient that multiplies a~ in the previous expression is 



45 

¡n¡-1 1 equal to -X~i ~ ajxi . Since all xl *0 by assurnption for j = 1, ... , ni, and i = 1, ... , N 
. J=1 

and sorne aj*Ü also by assurnpúon, there is an i such that -X~i ~ ajxj *Ü, which ¡n.-1 1 
J=1 

N 
implies that the rank of r is not equal to L ni. This is a contradicúon. 

k=1 

Lemma6 

Let x' be in the neighborhood of radius O around x, N6(X), and let 

e = I Ix - x' I l. Let r' be the first exit time of the systern, 

x(t) = a(x(t» + B(x(t»C, x(o) = x' 

o-e 
fromN6(X), then M M <r', where aM =Max{ l&i(u) I l, BM = Max {IBij(u)l} 

a +B le I i.ueA i.j,ueA 

and ICI = ~IC¡ 1. 
1 

Proof: 

o-e 
Let t S; M M ' then, 

a +B ICI 

so 

l 

o - e ~ (aM + BM le I)t ~ 11 J(a(x(s» + B(x(s»C)ds 1 1 
o 

l 

o ~ 11 J(a(x(s» + B(x(s»C)ds 11 + II x' - xii 
o 

l 

~ 1I x' + ¡(a(x(s» + B(x(s»C)ds - x 11 = Ilx(t) - x II 
o 
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Por a set UcA, 1 denote U, intU, UC and au, the closure, the interior, the com-

plement and the boundary of U in A respectively. Let the deterministic control system 

a~~t) = a(c¡,(t» + B(c¡,(t))u(t), (12) 

where the admissible controls u:R + ~Rd are the piecewise constant functions. Let 6+ (x) 

be the set of points reachable from x forward in time, 

6+ (x) = u6+ (t,x), 
t>O 

6+(t,x) = (y: there exists an admissible u:R+ ~Rd such that y = c¡,(t;u,z) 1, where 

,(t;~x) = solution of (12) starting from x at time O and using control function u. 

DEFlNITION. A set ~ in A is called invariant control set for (12) if 

6+(x) = D 'VxeD, 

and D is maximal with respect to inclusion. 

Lemma 7. 

For all xe A, 6+ (x) = A. 

Proof: 

Suppose that for sorne z, 6+ (z) * A. 

If ze iotA there is ye A and r > O such that Nr(y)()6+ (z) = 0, where Nr(y) is the 

ball of radius r around y. We can choose y and r such that é)Nr(Y)na9+ (z) = x, for sorne-

xe iotA such that x + e(x-y)e 6+(z) for all e greater than zero and smaller than sorne e'. 
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In the proof of Lernma 5 I showed that the rows of the matrix B '(x), formed by 

suppressing from B(x) the rows eorresponding to the last strategy, ni, of a11 players, are 

N 

l:<n¡-l) 
independent for a11 xe intA. Then for a11 ve Ri-l there is a v' e Rd sueh that 

B'(x)v' = v. This, together with the faet that the row of B(x) eorresponding to the last 

strategy, ni, of a1l players is equal to the sum of the preceding ni - 1 rows, and also that 

the element of the vector (x - y + a(x» eorresponding to the last strategy, ni, of a1l 

players is equal to the sum of the preceding ni - 1 elements, implies that there is a vector 

C sueh that, a(x)+B(x)C = -(x-y). 

By eontinuity of a(.) and B(.) there is sorne a> o, sueh that for a1l x' with 

Ilx-x'll<a 

r 
Ila(x) - a(x) + B(x) - B(x')ell < 2" (13) 

Let e<Min! M ~ , e'}. Let x"=x+e(x-y). Since e<e', 
2(a +B lel) + 1 

je"e e+(z), and sinee e < a, x"e N6(X). For the de.terministie control system in (12), let 

+(0) = x", and u(t) = e, then 

t 

+(t) = x + e(x-y) + /(a(+(8» + B(+(s»C)ds. 
o 

Since a(x) + B(x)e = - (x - y), 

t t 

+(t) - y = (x-y)(1+e) - /(x-y)ds + /(a(.(s»-a(x) + (B(.(s» - B(x»C)ds. 
o o 

For t < r" , 8inee .(t)e N6(X), (13) holds, thU8 
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O-E .-
For t * = M M ' which by Lernma 6 is smaller than r 

a +B lel 

Since E < M ~ ,(14) implies that C\>(t*)e Nr(y). But since C\>(t*) can 
2(a +B lel) + 1 

be reached from x" by an admissible control, e, and x"ea+(z), x(t)ea+(z). So 

Nr(y)na+ (z)~. This is a contradiction. 

Suppose instead that for sorne ze dA, a+ (z) ~ A. In the deterministic control sys-

tem in (12) let C\>(O) = z and let u(t) = O. Then, 

t 

c!>(t) = z + Ja(c!>(s»ds 
O 

For t small enough c!>i (t) > O if z¡ > O. Since a¡ (z) > O for i such that z¡ = O. by 

continuity c!>¡(t) > O for t small enough. So for t small and u(t) = O, c!>(t. u; z)eA. But Ijust 

showed that a+ (x) = A for x in the interior of A. Thus a+ (z) = A, which is a contradiction. 

Lemma 7 establishes that there is on1y one control set in A. Lemma 5 proves that 

B(x) 's rank is at least the dimension of A if x is in the interior of A. So Lemmas 5 and 7 

show that the assumptions needed lO apply Theorem 5.1 in Arnold and Kliemann are 

satisfied for our process. Thus there is a unique invariant distribution. 

Proposiüon 3 

a) The process x(t) defined in equation (10) has an ergodic distribution. 

b) If a > 2b the limit of the ergodic distribution puts probability one on x = 1 as 

A 
Al, A2 and (J go to zero, if A: is bounded. 
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Proof: 

This proof, as well as that of the next proposition borrows heavily from the proof 

of propositions 3 and 4 in Fudenberg and Harris [8], so that readers familiar with their 

work can follow my proofs more easily. 

a) Let O(x) = x(1 - x)(axN - b) - AIX + 1..2(1- x). Let an arbitrary ZE (O, 1), and 

x(O) x O(y) 
11 = J exp {-2J r 2~ dy}dx, 

o z (l-y) 

1 x §<y) 
12 = J exp {-2J r 2~ dy)dx, 

x(O) z (1-y) 

2 JX O(y) 
D(x) = 2 2.-2 exp 2 . .2 2-'- dy . 

x (l-x) o- z 1 (l-y) o-

The process x(t) is ergodic (see Theorem 1.17 of Skorohod [26]), if 11 and 12 are 

1 

infinitc and ID(x)dx is finite. 
o 

O(y) . A Al 
But . .2 2.-2 dy, IS of order -:2 around y = -O and of order - 2 

1 (l-y) o- y (l-y) 

around y = 1. Thus 11 and 12 are infinite. D(x) is of order exp(-Al/x)/x2 in a neighbor-

1 

hood of x = O and of order exp( -~/(l-x»/(1-x)2 in the vicinity of x = 1 , so ID(x)dx is 
o 

finite. 

b) The density of the ergodic distribution is proportional to, 

x 
2 J §(y) 

D(x) = 2 2-'- exp 2 . .2 2.-2 dy. 
x (l-x) o- 7.1 (l-y) o-



This implies, as 1 showed in the last example, 

x :y(y) 
Let -y(y) = o(y) + (2y - l)y(l - y)a2, and F(x) = exp2j .¡. 2a2 dy. 

z (l-y) 

Let Yl be the smallest ye [O, 1] such that -y(y) = O. 

Since -y(y) > -by -AIY + A2(1-y) - cry then Yl> ~ cr 
b+ Al + 

Since 1\)') > O for y < Yl ,F(y) < F(Y1). 
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Al 
Choose Y2 so that ayr - b > b + k for some k > O. Let Y3 = 1 - b+k' Since 

1\)') > O in [Y2. Y31. then F(y) is increasing in that intervalo 

Letnowxe[y¡. Y2) and x'e(Y2. Y31. 

.ffU. - ex 2 :y(y) d + :y(y) d 

I
x. Y2 1 

F(x) - p L '¡'(1_y)2cr Y ! '¡'(1_y)2cr Y 

~ ~ b+k 1 d b+o- + l d 

I

x. [ A 1 IY2[.-2 A. 1 1 
exp cr L y(l-y) - y(1- y)2 Y - ! y(l-y) y(l _ y)2 Y 

2 [ A.I 1 ~ exp cr -(b+k)(ln(1-x')-ln(1-Y2» + (b+a2+AI)lnx + (b+cr)ln(1-Y2) + A,l ln(1-X')- (l-x') 

b+t/4 

If x' ~ 1 - Al b+k then given the definition of x' and YI. 
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[

XJ' A2Y(1-Y)-AIY YJ2 (B+Al +2a~)y 1 
~ exp 2 . .2 4 2 dy - . .2 4 2 dy 

Y2 Y (l-y) aM x Y (l-y) a m 

A a Al~ 
Since '\ 1 and ~ is bounded, if x' > 1 - -T- and Al is small F(x') > F(x). Given that 

1\.2 am A 

for y < Yl , F(y) < F(YI) and that F(y) is increasing in the interval [Y2, Y3], this implies 

that F(x') > F(y) for all y < x'. 

Now let the ratio of probabilities under the ergodic distribution, 

Since the previous expression tends to infinity as A¡, ~, al, a2 tend to zero all 

thc probabiIity mISS tends 10 be concenttared in thc interval [1 - ~: • + Since A, 

goes to zero the result follows. 
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