
UNIVERSIDAD CARLOS III DE MADRID

Doctorado en Ciencia y Tecnología Informática

PhD Thesis

Information Leakage and Steganography: Detecting and
Blocking Covert Channels

Author:
Jorge Blasco Alís

Supervisors:
Dr. Julio César Hernández Castro

Dr. Pedro Peris López

Computer Science Department
May 21, 2012

I was just guessing
At numbers and figures

Pulling the puzzles apart

Questions of science
Science and progress

Do not speak as loud as my heart

Coldplay - The Scientist

To my parents

Agradecimientos

Escribir estas líneas es a la vez lo más fácil y lo más difícil de todo este camino. En estos
últimos años han sucedido muchas cosas. He reído y he llorado. He sentido la soledad, pero
también el más cálido de los abrazos y la mejor de las compañías. Durante este camino,
cada una de las personas con las que he compartido un instante de mi vida me ha aportado
un granito de arena para convertirme en la persona que soy ahora. Pero no sólo eso. Sé con
certeza que si no fuese por cada uno de vosotros, nunca habría llegado al final del camino.

En primer lugar tengo que dar gracias a mis tutores Julio y Pedro. Julio, me acuerdo
perfectamente cuando decidí empezar esta aventura. Te preguntaba en una de nuestras
reuniones si existía la posibilidad de hacer un doctorado, qué era estar en la universidad y si
merecía la pena. Acertaste de pleno y sinceramente, te doy las gracias por haberme hecho
elegir este camino. Gracias por tu guía y por apoyarme tanto en los ratos buenos, como en los
ratos malos, que realmente es cuando más lo he necesitado. Gracias por esos viajes, por esa
experiencia increíble de Inglaterra y por ser además de mi tutor un gran amigo. Pedro, gracias
por llevarme hasta el final de este camino como lo has hecho. Me has ayudado más de lo
que crees a llegar a este punto. Lo mejor de todos estos años es que no sólo he aprendido
de vosotros como tutores, también como personas, pero sobre todo como amigos.

Tengo que dar gracias también al grupo de investigación con el que he trabajado durante
todos estos últimos años y en especial a Arturo por darme la oportunidad de iniciar este
camino en la universidad. Gracias también a Benjamín, Anabel, Almudena, Esther y Javi. Sin
daros cuenta, todos me habéis enseñado algo durante estos años con vosotros. Juan, quería
darte las gracias de forma especial por toda la ayuda que siempre me has ofrecido y todo lo
que he aprendido de ti. Agustín, gracias por acogerme y hacerme sentir cada día como si
estuviese en casa. Jose, gracias por saber sacar una sonrisa hasta en los momentos más
difíciles. Tienes un corazón casi tan grande como tus pies. Isra, gracias por estar ahí siempre
y por decirme siempre lo que piensas.

Chema, empezamos este camino juntos sin conocernos y creo que lo acabamos de la
mejor forma posible. Ni en mi visión más optimista de las cosas pensaba que podría encontrar
un compañero tan bueno. Ha sido un gran placer compartir todo este camino contigo, pero
no te vas a librar de mi tan fácilmente. Sé que nos queda muchísimo camino por recorrer,
gracias. Sergio y Noelia, gracias por escucharme y por hacerme sentir tan querido a vuestro
lado. Realmente sois capaces de hacer sentir a la gente como si realmente valiese millones.
Guille, simplemente, ¿Dónde carajos has estado tú todo este tiempo? Gracias por ayudarme
a levantarme y por apoyarme cuando me encontré aquella piedra en el camino. No sé que
habría sido de mí sin tu ayuda.

Tampoco me puedo olvidar de toda la gente que he tenido el placer de conocer en la
Universidad durante este tiempo. Teresa, Pablo, Mario, Dani y Juanma gracias por acom-
pañarme en durante el camino que pronto también va a acabar para vosotros. Kike, gracias

viii Jorge Blasco Alís

por ser el amigo que está ahí siempre que salgo del despacho. Ester, no podía imaginar que
en tan poco tiempo una persona pudiese llegar a marcarme tanto, gracias de corazón.

A los de siempre también os tengo que dar las gracias. Luismi, Josete, Borja, Fer y
Jimmy. Habéis estado siempre ahí, aunque yo no estuviese y eso dice mucho de vosotros.
Mil gracias. Susana, contigo compartí un periodo de mi vida muy importante en el que aprendí
mucho de ti y de mi mismo. Sin ti hoy no estaría escribiendo estas líneas. Gracias.

No me quiero dejar tampoco a aquellos que en estos años me habéis aportado esos
pequeños granitos de arena. Gracias Esther, Alvarito, Charlie, Javitchu, Luis Recuenco, Luis
Martín y otros tantos que me habéis enseñado muchas cosas sin saberlo.

También tengo que dar las gracias a mis familias inglesas. Gracias a mi familia del sur:
Nacho, Cris, Pablo y Andreu. No os imagináis la suerte que he tenido de encontraros tan
lejos, pero a la vez teneros tan cerca. Gracias a mi familia del norte: Javi, Pili, Diego y
Erika. Pasen los años que pasen, siempre estáis ahí como el primer día. Sois únicos. Y por
último, gracias a mi familia londinense: Pedro e Irene. Os descubrí de casualidad y me habéis
acogido, escuchado y ayudado sin pedir nada a cambio.

Evidentemente no me puedo olvidar de los que pusieron el primer granito de arena para
que yo estuviese hoy aquí. Mamá, Papá gracias por haberme educado y convertido en quien
soy. Gracias por esos cinco minutos de reflexión por mis trastadas y gracias por todo el
cariño y apoyo incondicional que me habéis dado siempre. Sin vosotros por encima de todo,
no sería quien soy hoy. Gracias a Luis y a Judit, por todo vuestro apoyo y por esos dos
regalos inesperados que nos habéis dado a todos. Tampoco me puedo olvidar de María y
Nachete, gracias por darnos la alegría y la vida que nos falta a los demás a veces. Gracias
Yaya y todos mis mallorquines por vuestro apoyo y ánimos.

Por último me gustaría dar las gracias a dos personas que no ya están ni estarán, pero
que aunque se hayan ido, les llevo en el corazón como si aún estuviesen aquí. Una por
enseñarme lo que son las ganas de vivir. Gracias Javivi. La otra por enseñarme a ser mejor
persona y quererme siempre con todo su corazón. Gracias Avi.

Gracias a todos por convertirme en la persona que soy hoy.

Jorge

Abstract

This PhD Thesis explores the threat of information theft perpetrated by malicious insiders. As
opposite to outsiders, insiders have access to information assets belonging the organization,
know the organization infrastructure and more importantly, know the value of the different as-
sets the organization holds. The risk created by malicious insiders have led both the research
community and commercial providers to spend efforts on creating mechanisms and solutions
to reduce it. However, the lack of certain controls by current proposals may led security ad-
ministrators to a false sense of security that could actually ease information theft attempts.

As a first step of this dissertation, a study of current state of the art proposals regarding
information leakage protections has been performed. This study has allowed to identify the
main weaknesses of current proposals which are mainly the usage of steganographic algo-
rithms, the lack of control of modern mobile devices and the lack of control of the action the
insiders perform inside the different trusted applications they commonly use. Each of these
drawbacks have been explored during this dissertation.

Regarding the usage of steganographic algorithms, two different steganographic systems
have been proposed. First, a steganographic algorithm that transforms source code into in-
nocuous text has been presented. This system uses free context grammars and to parse
the source code to be hidden and produce an innocuous text. This system could be used
to extract valuable source code from software development environments, where security re-
strictions are usually softened. Second, a steganographic application for iOS devices has
also been presented. This application, called “Hide It In” allows to embed images into other
innocuous images and send those images through the device email account. This applica-
tion includes a cover mode that allows to take pictures without showing that fact in the device
screen. The usage of these kinds of applications is suitable in most of the environments which
handle sensitive information, as most of them do not incorporate mechanisms to control the
usage of advanced mobile devices. The application, which is already available at the Apple
App Store, has been downloaded more than 5.000 times.

In order to protect organizations against the malicious usage of steganography, several
techniques can be implemented. In this thesis two different approaches are presented. First,
steganographic detectors could be deployed along the organization to detect possible trans-
missions of stego-objects outside the organization perimeter. In this regard, a proposal to
detect hidden information inside executable files has been presented. The proposed detector,
which measures the assembler instruction selection made by compilers, is able to correctly
identify stego-objects created through the tool Hydan. Second, steganographic sanitizers
could be deployed over the organization infrastructure to reduce the capacity of covert chan-
nels that can transmit information outside the organization. In this regard, a framework to
avoid the usage of steganography over the HTTP protocol has been proposed. The presented
framework, diassembles HTTP messages, overwrites the possible carriers of hidden informa-

x Jorge Blasco Alís

tion with random noise and assembles the HTTP message again. Obtained results show that
it is possible to highly reduce the capacity of covert channels created through HTTP. However,
the system introduces a considerable delay in communications.

Besides steganography, this thesis has also addressed the usage of trusted applications to
extract information from organizations. Although applications execution inside an organization
can be restricted, trusted applications used to perform daily tasks are generally executed
without any restrictions. However, the complexity of such applications can be used by an
insider to transform information in such a way that deployed information protection solutions
are not able to detect the transformed information as sensitive. In this thesis, a method to
encrypt sensitive information using trusted applications is presented. Once the information
has been encrypted it is possible to extract it outside the organization without raising any
alarm in the deployed security systems. This technique has been successfully evaluated
against a state of the art commercial data leakage protection solution. Besides the presented
evasion technique, several improvements to enhance the security of current DLP solutions are
presented. These are specifically focused in avoiding information leakage through the usage
of trusted applications.

The contributions of this dissertation have shown that current information leakage protec-
tion mechanisms do not fully address all the possible attacks that a malicious insider can com-
mit to steal sensitive information. However, it has been shown that it is possible to implement
mechanisms to avoid the extraction of sensitive information by malicious insiders. Obviously,
avoiding such attacks does not mean that all possible threats created by malicious insiders are
addressed. It is necessary then, to continue studying the threats that malicious insiders pose
to the confidentiality of information assets and the possible mechanisms to mitigate them.

Resumen

Esta tesis doctoral explora la amenaza creada por los empleados maliciosos en lo referente
a la confidencialidad de la información sensible (o privilegiada) en posesión de una orga-
nización. Al contrario que los atacantes externos a la organización, los atacantes internos
poseen de acceso a los activos de información pertenecientes a la organización, conocen la
infraestructura de la misma y lo más importante, conocen el valor de los mismos. El riesgo
creado por los empleados maliciosos (o en general atacantes internos) ha llevado tanto a la
comunidad investigadora como a los proveedores comerciales de seguridad de la información
a la creación de mecanismos y soluciones para reducir estas amenazas. Sin embargo, la falta
de controles por parte de ciertas propuestas actuales pueden inducir una falsa sensación de
seguridad en los administradores de seguridad de las organizaciones, facilitando los posibles
intentos de robo de información.

Para la realización de esta tesis doctoral, en primer lugar se ha realizado un estudio de
las propuestas actuales con respecto a la protección de fugas de información. Este estudio
ha permitido identificar las principales debilidades de las mismas, que son principalmente
la falta de control sobre el uso de algoritmos esteganográficos, la falta de control de sobre
dispositivos móviles avanzados y la falta de control sobre las acciones que realizan los em-
pleados en el interior de las organizaciones. Cada uno de los problemas identificados ha sido
explorado durante la realización de esta tesis doctoral.

En lo que respecta al uso de algoritmos esteganográficos, esta tesis incluye la propuesta
de dos sistemas de ocultación de información. En primer lugar, se presenta un algoritmo
esteganográfico que transforma código fuente en texto inocuo. Este sistema utiliza gramáticas
libres de contexto para transformar el código fuente a ocultar en un texto inocuo. Este sistema
podría ser utilizado para extraer código fuente valioso de entornos donde se realiza desarrollo
de software (donde las restricciones de seguridad suelen ser menores). En segundo lugar, se
propone una aplicación esteganográfica para dispositivos móviles (concretamente iOS). Esta
aplicación, llamada “Hide It In” permite incrustar imágenes en otras inocuas y enviar el estego-
objeto resultante a través de la cuenta de correo electrónico del dispositivo. Esta aplicación
incluye un modo encubierto, que permite tomar imágenes mostrando en el propio dispositivo
elementos del interfaz diferentes a los de a cámara, lo que permite tomar fotografías de forma
inadvertida. Este tipo de aplicaciones podrían ser utilizadas por empleados malicios en la
mayoría de los entornos que manejan información sensible, ya que estos no suelen incorporar
mecanismos para controlar el uso de dispositivos móviles avanzados. La aplicación, que ya
está disponible en la App Store de Apple, ha sido descargada más de 5.000 veces.

Otro objetivo de la tesis ha sido prevenir el uso malintencionado de técnicas esteganografi-
cas. A este respecto, esta tesis presenta dos enfoques diferentes. En primer lugar, se pueden
desplegar diferentes detectores esteganográficos a lo largo de la organización. De esta
forma, se podrían detectar las posibles transmisiones de estego-objetos fuera del ámbito

xii Jorge Blasco Alís

de la misma. En este sentido, esta tesis presenta un algoritmo de estegoanálisis para la
detección de información oculta en archivos ejecutables. El detector propuesto, que mide la
selección de instrucciones realizada por los compiladores, es capaz de identificar correcta-
mente estego-objetos creados a través de la herramienta de Hydan. En segundo lugar, los
“sanitizadores” esteganográficos podrían ser desplegados a lo largo de la infraestructura de
la organización para reducir la capacidad de los posibles canales encubiertos que pueden ser
utilizados para transmitir información sensible de forma descontrolada.. En este sentido, se
ha propuesto un marco para evitar el uso de la esteganografía a través del protocolo HTTP. El
marco presentado, descompone los mensajes HTTP, sobrescribe los posibles portadores de
información oculta mediante la inclusión de ruido aleatorio y reconstruye los mensajes HTTP
de nuevo. Los resultados obtenidos muestran que es posible reducir drásticamente la capaci-
dad de los canales encubiertos creados a través de HTTP. Sin embargo, el sistema introduce
un retraso considerable en las comunicaciones.

Además de la esteganografía, esta tesis ha abordado también el uso de aplicaciones
de confianza para extraer información sensible de las organizaciones. Aunque la ejecución
de aplicaciones dentro de una organización puede ser restringida, las aplicaciones de confi-
anza, que se utilizan generalmente para realizar tareas cotidianas dentro de la organización,
se ejecutan normalmente sin ninguna restricción. Sin embargo, la complejidad de estas apli-
caciones puede ser utilizada para transformar la información de tal manera que las soluciones
de protección ante fugas de información desplegadas no sean capaces de detectar la infor-
mación transformada como sensibles. En esta tesis, se presenta un método para cifrar infor-
mación sensible mediante el uso de aplicaciones de confianza. Una vez que la información
ha sido cifrada, es posible extraerla de la organización sin generar alarmas en los sistemas
de seguridad implementados. Esta técnica ha sido evaluada con éxito contra de una solución
comercial para la prevención de fugas de información. Además de esta técnica de evasión, se
han presentado varias mejoras en lo que respecta a la seguridad de las actuales soluciones
DLP. Estas, se centran específicamente en evitar la fuga de información a través del uso de
aplicaciones de confianza.

Las contribuciones de esta tesis han demostrado que los actuales mecanismos para la
protección ante fugas de información no responden plenamente a todos los posibles ataques
que puedan ejecutar empleados maliciosos. Sin embargo, también se ha demostrado que es
posible implementar mecanismos para evitar la extracción de información sensible mediante
los mencionados ataques. Obviamente, esto no significa que todas las posibles amenazas
creadas por empleados maliciosos hayan sido abordadas. Es necesario por lo tanto, con-
tinuar el estudio de las amenazas en lo que respecta a la confidencialidad de los activos de
información y los posibles mecanismos para mitigar las mismas.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 3
1.3 Goals . 4
1.4 Methodology and Planning . 5

1.4.1 Phase 1: Review and Analysis of State of the Art Proposals 5
1.4.2 Phase 2: Design and Analysis of Steganographic Algorithms and Other

Attacks for Information Theft . 7
1.4.3 Phase 3: New Protection Mechanisms for Information Leakage Protection 8
1.4.4 Phase 4: Thesis Preparation . 9

1.5 Contributions . 9
1.6 Evaluation Methods . 10
1.7 Document Organization . 11

2 Information Leakage Protection 13
2.1 Introduction . 13
2.2 Information Leakage . 14

2.2.1 Information as an Asset . 14
2.2.2 Sensitive Information Identification and Classification 14
2.2.3 Information State and Organization . 17
2.2.4 Information Leakage Vectors . 18

2.2.4.1 Physical Leakage Vectors . 18
2.2.4.2 Information Systems Leakage Vectors 19

2.3 International Standards and Recommendations 20
2.4 Malicious Insider Detection Systems . 21

2.4.1 Predictive Proposals . 22
2.4.2 Reactive Proposals . 23
2.4.3 Information Leakage Detection Proposals 24

2.4.3.1 Research Community Proposals 25
2.4.3.2 Commercial Solutions . 26

2.5 Drawbacks of Current Proposals . 27

3 Steganography and Covert Channels 29
3.1 Introduction . 29
3.2 Principles of Steganography . 29

3.2.1 Definitions . 30
3.2.2 Desired properties for Steganographic Systems 31

ii Jorge Blasco Alís

3.2.2.1 Capacity . 31
3.2.2.2 Security . 31
3.2.2.3 Robustness . 31

3.3 Covert Channels . 32
3.4 Steganography in Digital Media . 32

3.4.1 Steganography in Unstructured Carriers 33
3.4.2 Steganography in Structured Carriers 34

3.4.2.1 Cover generation schemes . 34
3.5 Fighting Against the Usage of Steganography 34

3.5.1 Steganalysis . 34
3.5.2 Definitions . 35
3.5.3 Steganalysis in Digital Media . 36
3.5.4 Active Warden Techniques . 37
3.5.5 Computer Forensics . 38

3.6 Summary . 38

4 Attacks on ILP Systems Using Steganography 41
4.1 Introduction . 41
4.2 Steganography of source code in text . 41

4.2.1 Related Work . 42
4.2.2 General Model . 42

4.2.2.1 Hiding Grammar Generation 44
4.2.2.2 Creating the Recovery Grammar 45
4.2.2.3 Specific Programming Languages Issues 46

4.2.3 Hiding C Source Code . 46
4.2.3.1 Fragment Extraction . 46
4.2.3.2 Parser Generation . 50
4.2.3.3 Covering Process . 51
4.2.3.4 Recovering Process . 51

4.2.4 Evaluation . 52
4.2.4.1 Experimental setup . 52
4.2.4.2 Experimental Results . 52

4.2.5 Summary . 54
4.3 Stegnography for Mobile Devices . 55

4.3.1 Related Work . 57
4.3.2 Capabilities . 58

4.3.2.1 Hiding information . 58
4.3.2.2 Revealing information . 60
4.3.2.3 Cover mode . 61

4.3.3 Evaluation . 61
4.3.3.1 Security . 61
4.3.3.2 Performance . 65

4.3.4 Summary . 68
4.3.4.1 Improvements . 69

TABLE OF CONTENTS iii

5 Detecting the Usage of Steganography to Avoid Information Leakage 71
5.1 Introduction . 71
5.2 Steganalysis of Hydan . 72

5.2.1 Previous Work . 72
5.2.2 Basics of Hydan . 73
5.2.3 Steganalysis of Hydan . 74

5.2.3.1 Statistical Analysis of Clean Executable Files 75
5.2.4 Distinguisher Design . 79
5.2.5 Results . 80
5.2.6 Summary . 81

5.3 Active Warden Techniques . 81
5.3.1 Related Work . 83
5.3.2 Covert Channels over HTTP . 83
5.3.3 A model to hinder steganography over HTTP 84
5.3.4 Working Scenario . 85

5.3.4.1 Definitions . 86
5.3.4.2 Model Overview . 86
5.3.4.3 Components . 87
5.3.4.4 HTTP Message Sanitization Process 88
5.3.4.5 Security Analysis . 90

5.3.5 Evaluation . 91
5.3.5.1 Implemented Sanitizers . 91
5.3.5.2 Experimental Setup . 93
5.3.5.3 Results . 94

5.3.6 Summary . 96

6 Attacks on ILP Systems Using Trusted Applications 97
6.1 Introduction . 97
6.2 Information Leakage Protection Evasion Techniques 98
6.3 Evading ILP Systems with Spreadsheets Applications 100

6.3.1 Implementing a Spreadsheet Cipher . 100
6.3.1.1 Basic operations . 100
6.3.1.2 Defining Input and Constants 102
6.3.1.3 Building Lines of Code . 102
6.3.1.4 Rounds . 102

6.3.2 Stealing Information With a Spreadsheet Cipher 103
6.4 Evaluation . 103

6.4.1 Security Analysis . 104
6.4.2 Performance Analysis . 105
6.4.3 Bypassing a Commercial DLP Solution 106

6.5 Discussion . 108
6.5.1 Feasibility of current DLP evasion technique 109
6.5.2 Countermeasures to the proposed DLP evasion technique 109

6.5.2.1 Detecting the presence of cipher spreadsheets 109
6.5.2.2 Encrypted data detection . 110
6.5.2.3 Detection of abnormal behaviour 110
6.5.2.4 Security models to avoid data leaks 111

iv Jorge Blasco Alís

6.6 Summary . 111

7 Conclusions 113
7.1 Future Works . 116

7.1.1 Improvement of Steganalysis Techniques 116
7.1.2 Improvement of Active Warden Techniques 116
7.1.3 Complementary use of Steganalysis and Active Warden Techniques . . 117
7.1.4 Development of New Attacks Against DLP Solutions 117
7.1.5 Improvements to Current DLP Solutions 117

A Published Works 119
A.1 Published work directly related to this PhD . 119

A.1.1 International Conferences . 119
A.1.2 International Journals . 120
A.1.3 Registered Software . 120

A.2 Research papers not directly related to this phd 120
A.2.1 International Conferences . 120
A.2.2 International Journals . 121
A.2.3 Book Chapters . 121

B Resumen en Español 135

List of Figures

1.1 Evolution of the number of papers published regarding "Information theft" and
"Data loss prevention" in the last years . 3

1.2 Evolution of the number of papers published regarding "Steganography" in the
last years . 4

1.3 Gantt chart depicting the research plan . 6

2.1 Information types within an organization . 17

3.1 Elements of a steganographic system . 30
3.2 Example of ROC curve . 36

4.1 Proposed steganographic system (by cover synthesis) to hide source code into
text . 43

4.2 Hiding grammar construction . 44
4.3 Random fragments in hiding grammar . 45
4.4 Recovery grammar construction . 45
4.5 Random fragments in recovery grammar . 46
4.6 Parser generation process . 47
4.7 Frequency of most used tokens in the analyzed source code 48
4.8 Covering process . 51
4.9 Recovering process . 51
4.10 File size chart . 53
4.11 Compression ratio chart . 54
4.12 Comparison of character distribution . 54
4.13 Comparison of digrams distribution . 55
4.14 Weekly downloads of “Hide It In” since 25th September 2011 56
4.15 Icons of reviewed steganographic applications for iOS (including “Hide It In”) . . 57
4.16 Process followed by the user to hide an image and send it outside the organi-

zation. 60
4.17 Process followed by the user to obtain back a secret image from a stego-image 60
4.18 C4.5 classifier built (using Weka) with Simple Pair steganalysis features 65
4.19 Distribution of the mean execution time required to create an stego-image in

ten runs of the performed tests . 66
4.20 Detailed distribution of the time required to create an stego-image in ten runs

of the performed tests . 68

5.1 Frequency distribution of functionality-equivalent instructions sets 75
5.2 Frequency distribution of instructions on the toac32 set 76

vi Jorge Blasco Alís

5.3 Average chi-square statistic for each of the functionality-equivalent instructions
sets . 77

5.4 Chi-square statistics for each of the equivalent instructions sets in apt-get . . . 78
5.5 Chi-square values for each of the equivalent instruction sets in apt-get with

hidden information . 78
5.6 Distinguisher results for the three test sets of executable files 80
5.7 Working scenario diagram . 85
5.8 StegoProxy placement inside an organization to avoid outwards HTTP covert

channels . 87
5.9 StegoProxy placement to avoid the abuse of a webserver as a steganographic

mailbox . 87
5.10 StegoProxy components and process diagram 89
5.11 HTTP message sanitization process with implemented sanitizers 93
5.12 Example of image used during the experiments (Image 3) in its original form,

with embedded information through Outguess and with embedded information
through Steghide. 94

5.13 HTTP message process during the experiments and measured time gaps . . . 95
5.14 Average times measured during StegoProxy evaluation 95

6.1 A detailed view of the implementation of the first round of TEA 103
6.2 LeakProof v5.0 alerts when trying to copy sensitive cells into the clipboard . . . 107
6.3 LeakProof v5.0 alerts when trying to send a sensitive file by email 108
6.4 Social Security Numbers encrypted using the TEA spreadsheet implementation 108

A.1 Detailed timeline of published works during the research period related to this
PhD dissertation . 122

List of Tables

1.1 Most common e-crimes committed by insiders [1]. Crimes are non-exclusive
(i.e. an insider can access or use corporate information to steal intellectual
property from the organization) . 2

2.1 Information identification and classification techniques overview 17
2.2 Summary of information systems leakage vectors 20
2.3 Summary of predictive proposals to detect malicious insiders 23
2.4 Summary of main reactive proposals to detect malicious insiders 24
2.5 List of most important DLP vendors by Gartner [2] 27

3.1 Confusion matrix for classification decisions when performing steganalysis . . . 35

4.1 Frequency of C tokens in cryptographic software 47
4.2 Frequency of punctuation mark tokens in cryptographic software 48
4.3 Frequency of reserved words in cryptographic software 48
4.4 Number of random derivations per punctuation mark 49
4.5 Number of random cover-text derivations per reserved word 49
4.6 Example of generated text using a short piece of C source code with sentences

from “The First Men In The Moon” by H. G. Wells 50
4.7 Source code file properties . 52
4.8 Capacity of CSteg per test . 53
4.9 Summary of current iOS steganographic apps and its features 58
4.10 Features that can be used on their own to detect “Hide It In” stego-images

including its required detection boundary . 64
4.11 Confusion matrix for the stego-image classifier based on SP analysis features . 65
4.12 Overall time required to hide an image and store the resulting file in the device

filesystem . 66
4.13 Detailed (by phase) view of the mean time required to embed a secret and

produce a stego-image object . 67

5.1 Groups of functionality-equivalent instructions used in Hydan and number of
instructions in each set . 74

5.2 Frequency distribution of instructions on toac32 set 76
5.3 Distinguisher results for different sets of executable files 79
5.4 Distinguisher classification results for different sets of executable files 81
5.5 Test images features . 94

viii Jorge Blasco Alís

6.1 Accounted vulnerabilities of DLP software gathered from the National Vulnera-
bility Database (http://nvd.nist.gov/) until April 13th 2012 98

6.2 Performance comparison of spreadsheet and C implementations to encrypt up
to 1 Megabit of information (average of 24 runs) 106

6.3 Example of the transformation performed on a social security number to bypass
LeakProof detection mechanism . 107

http://nvd.nist.gov/

Acronyms

DLP Data Loss Prevention

PII Personable Identifiable Information

AES American Encryption Standard

BLP Bell-LaPadula

TEA Tiny Encryption Algorithm

HTTP Hyper Text Transfer Protocol

SMTP Simple Mail Transfer Protocol

P2P Peer to peer

FTP File Transfer Protocol

TCP Transmission Control Protocol

ROC Receiver operating characteristic

TPR True Positive Rate

FNR False Negative Rate

LSB Least Significant Bit

SPA Simple Pair Analysis

MRF Minimal Requisite Fidelity

IDS Intrusion Detection System

BLP Bell-LaPadula

PDF Portable Document File

IT Information Technology

VPN Virtual Private Network

XML Extensible Markup Language

LSB Least Significant Bit

PNG Portable Network Graphics

JPEG Joint Photographic Experts Group

FPGA Field Programmable Gate Array

Chapter 1

Introduction

Its just a path you haven’t taken,
A story never told,

Don’t try to start something unless you care
Something unless you care for it

Care for it
Delorentos - Care for

1.1 Motivation

Nowadays an organization patrimony is not only measured in terms of its physical posses-
sions, but also in terms of the information they hold. Buildings, computers, data storage
devices and networks are assets that provide the means to perform business activities, but
information assets enable opportunities, competitive advantages, innovation and awareness
that can be translated into increases in the organization economic growth. As any other or-
ganization asset, information is also subject to threats. These include attacks from people
outside or inside the organization that may try to affect the availability, integrity or confidential-
ity of the information assets held by the organization.

An insider can be defined as a user with legitimate access to the organization’s comput-
ers and networks [3]. Although insiders usually work on achieving the organization’s goals,
malicious insiders are becoming an increasing threat. A malicious insider is an insider who
intentionally misuses an authorized level of access to affect the confidentiality, integrity or
availability of the organizations’ assets, including both data and systems [4]. Unlike attackers
from outside the organization, malicious insiders do not have to bypass most of the security
mechanisms deployed on the organization (security controls, information security systems,
closed circuit television, etc.) to attempt a successful attack [5]. Additionally, they usually
know the organization’s computer infrastructure, the way data is stored across it and, more
significantly, its value [6]. Malicious insiders can interfere with the availability of the organi-
zation services or can put at risk the confidentiality of sensitive information such as personal
data or intellectual property. A recent survey conducted over more than 500 organizations,
stated that 51% of them had to deal with insider related security events [7].

One of the threats information assets are exposed to is information leakage, a threat that
comprises the unauthorized disclosure of confidential information. This includes any kind of
information that is essential to achieve the organization’s goals, such as blueprints, source
code, financial or investments plans, etc. Client’s private records are also considered sensi-

2 Jorge Blasco Alís

tive, as they enable the organization to access its clients and have to be protected because
of privacy regulations. Although information leakage can be originated by both insiders (acci-
dentally or maliciously) and outsiders, information leakage incidents originated by users from
within the organization are often much more severe than incidents caused by outsiders [7].
Additionally insiders are more prone to commit crimes that involve the information assets the
organization holds, as can be seen on data gathered in Table 1.1 [1].

Committed crime Percentage (non-exclusive)
Unauthorized access to / use of corporate information 63 %
Unintentional exposure of private or sensitive data 57 %
Virus, worms, or other malicious code 37 %
Theft of intellectual property 32 %

Table 1.1: Most common e-crimes committed by insiders [1]. Crimes are non-exclusive (i.e.
an insider can access or use corporate information to steal intellectual property from the or-
ganization)

Information leakage events usually result in loss of competitiveness, economic fees im-
posed by governments and loss of reputation [8]. In fact, the economic losses produced by
information theft related events have been studied extensively in several reports and surveys.
One, conducted over United States banking and financial institutions, stated that 91% of the
organizations that suffered from these threats experienced financial losses, which on 30%
of the cases exceeded 500.000 US dollars [9]. As an example, a T-Mobile employee sold
hundreds of thousands of personal data records of United Kingdom customers to rival firms
[10]. Those records were used to offer new contracts to T-Mobile customers, causing not only
a major economic impact due to reputation loss and privacy concerns, but also because of
clients that actually switched to another provider. Other reports analyzing the risks derived
from information leakage [11] estimate that the average economic cost per incident was 2.2
million Euros during 20081.

In order to mitigate the risks created by information leakage incidents, security providers
have developed a new kind of security tools usually known as DLP (Data Loss or Leakage
Protection) solutions. Vendors often claim that these tools are able to prevent both accidental
and malicious information leakage [12]. DLP solutions analyze network packets, files stored in
computers and data in use to ensure sensitive data is treated according to the organization’s
policies and regulations. In this scenario, techniques such as steganography are of special
interest. Steganography techniques allow the creation of covert channels by hiding information
inside other carriers that look unsuspicious. In this way, malicious insiders could evade current
information leakage protection mechanisms.

As the awareness on the importance of the information leakage thread rises, the efforts
spent in creating solutions to the information leakage problem have also increased. In fact,
the amount of money that organizations are spending on these solutions has increased during
the last years and is expected to continue its increase in the next years [1]. Additionally, as
can be seen in Figures 1.1 and 1.22 researchers have increased their efforts in studying

1This report only accounts for information leakage events that are related to private data, not other economic
assets such as blueprints, etc. Unfortunately, organizations try to avoid these kind of events being publicly known.

2This information has been gathered on 16th February 2012 from Google Scholar (http://scholar.google.com)
and Sciverse (http://www.sciverse.com) using the search expressions specified in the Figure and restricting the
search to the paper content and engineering and computer science areas.

1.2 Research Question 3

Figure 1.1: Evolution of the number of papers published regarding "Information theft" and
"Data loss prevention" in the last years

information leakage and steganography. Of special interest is the evolution of the increase in
the appearance of the terms "information theft" in the very last years.

The main challenge addressed by this thesis is to analyze and improve the current
mechanisms to prevent malicious information leakage. To achieve this, the PhD dis-
sertation addresses the security of current information leakage protection techniques and
mechanisms. The security of such systems is analyzed by exploring the impact of different
techniques such as the creation of covert channels by means steganography over them. If
these techniques can be successfully used to extract information from an organization, new
techniques to protect and avoid such attacks should be designed and implemented. There-
fore and to offer solutions to the security problems detected, this dissertation also addresses
the design and evaluation of mechanisms to protect against techniques that could be used by
malicious insiders to steal sensitive information from an organization.

1.2 Research Question

The work described in this PhD dissertation addresses the following Research Question:

Are the current information leakage protection mechanisms enough to protect against
malicious insiders trying to steal information from an organization?

Addressing this question inevitably requires to explore the following secondary research
questions:

4 Jorge Blasco Alís

Figure 1.2: Evolution of the number of papers published regarding "Steganography" in the last
years

• What kind of computer or not computer resources can be used by a malicious employee
to perform a malicious activity such as information theft?

• Is it possible to transform information in such a way that its usage and transmission
passes unnoticed to information leakage prevention mechanisms?

• Is it possible to use the trusted resources and applications in a computer system to leak
information?

• It is possible to control the required leakage vectors to hinder information leakage at-
tempts?

Each of these questions is addressed during this thesis dissertation. In Chapter 7 a sum-
mary of the answers found in this thesis is presented.

1.3 Goals

Although information leakage protection solutions have gained a lot of popularity during the
last years, they are still in their early development phase. The proposed research questions
serve as a starting point to address this.

In order to do so, this PhD thesis examines information leakage problem from the mali-
cious insider point of view. In particular, this thesis focuses on addressing the leakage
of sensitive information insiders have already access to. The goals of these PhD thesis

1.4 Methodology and Planning 5

haven extracted from the research questions defined in Section 1.2. Specifically, the goals of
these PhD are the following:

• Analyze the security of current proposals regarding information leakage protec-
tion systems.

• Develop new protection mechanisms to enforce the security of data within orga-
nizations and hinder the malicious leakage of information.

• Design, implement and evaluate new methods and steganographic algorithms
that could be used to create covert channels with the purpose of leaking infor-
mation from a supposedly protected organization.

• Design, implement and evaluate new active and passive techniques to fight against
the usage of steganography.

In order to achieve these goals, a work plan and methodology was defined during the PhD
proposal preparation.

1.4 Methodology and Planning

The research activities performed during this PhD dissertation can be divided into three main
blocks. The first block comprises the study and analysis of current proposals regarding in-
formation leakage and steganography. This analysis has been used as a starting point for
the second block of this thesis which comprises the creation of attacks to evade current solu-
tions to protect against information leakage. This block includes the design of steganographic
methods and other techniques to avoid information leakage protection mechanisms. Finally,
the third block of this research period has been focused on developing the mechanisms and
techniques to improve the current information leakage protection techniques in order to avoid
the previously designed attacks.

The research work involved in this thesis has been organized in different phases. Figure
1.3 shows a Gantt chart that depicts the thesis schedule. Description of each of the phases
along its tasks is given in the following lines.

1.4.1 Phase 1: Review and Analysis of State of the Art Proposals

This phase involves the review and analysis of state of the art proposals related to steganog-
raphy and information leakage protection. This phase focuses first on surveying the current
proposals regarding information leakage protection. Additionally, steganographic and stegan-
alytic algorithms and their implementations are studied. Activities included in this phase have
been performed through all the thesis duration, reviewing new proposals regarding the thesis
scope. The preparation of the PhD proposal document is included as a part of this phase.

Task 1.1: Information Gathering

This task involves the process of gathering information related to the subject of study across
multiple scholar sources. Although, this task is intended to be executed during the first months
of the thesis preparation, it has been carried out during the whole research period, assimilating
new proposals offered by other authors in the same topics.

6 Jorge Blasco Alís

Figure 1.3: Gantt chart depicting the research plan

Expected duration Activity to be performed across PhD.

Expected outcome Reference collection and bibliography.

Task 1.2: Analysis of the State of the Art Proposals Regarding Information Leakage
Protection

This task includes the analysis of systems and architectures proposed for the problem at
hand (information leakage). The result of this analysis is presented in Chapter 2 and Section
6.2. Both academic and commercial proposals to fight against information leakage have been
analyzed.

Expected duration Activity to be performed during the whole PhD.

Expected outcome Review of current proposals regarding Information Leakage Protection.

Task 1.3: Analysis of State of the Art Steaganography Techniques

This task gathers and analyzes current state of the art techniques on steganography and ste-
ganalysis. The suitability of these algorithms to create covert channels to extract information
from organization environments has been studied. Additionally, steganalysis, active warden
and computer forensics techniques to avoid and detect usage of current steganographic algo-
rithms have been studied.

Expected duration Activity to be performed during the whole PhD.

Expected outcome Review of current proposals regarding steganography, steganalysis and
related techniques.

1.4 Methodology and Planning 7

Task 1.4: PhD Proposal Preparation

Results of previous tasks were used for the preparation of the PhD Proposal document.

Expected duration 5 months.

Expected outcome PhD Proposal.

1.4.2 Phase 2: Design and Analysis of Steganographic Algorithms and Other
Attacks for Information Theft

This phase aims to analyze the threat that covert channels created by means steganography
and other attacks arise into organizations’ sensitive data. During this phase, new stegano-
graphic algorithms that could be used, among other applications, to steal information from
organizations have been designed. Additionally, evasion of information leakage protection
techniques by other means is addressed in this phase.This phase also involves the imple-
mentation of the developed algorithms, evaluating its feasibility in organization environments.

Task 2.1: Design of Steganographic Algorithms and Other Techniques for Information
Theft

This task is about designing new steganographic algorithms focused on overpassing current
protection techniques against information theft. A specific focus on the usage of trusted appli-
cations for information theft purposes is given. A study of its possibilities and digital artefacts
(evidence) generated by those applications will be performed.

Expected duration 7 months.

Expected outcome Design of new steganographic algorithms and attacks to information
leakage protection systems.

Task 2.2: Implementation and Evaluation

The designed attacks and steganographic algorithms have been implemented as part of this
task. This has served to experimentally evaluate the performance, robustness, security and
capacity of the different proposals.

Expected duration 5 months.

Expected outcome Results and feedback for task 2.1.

Task 2.3: Documentation

All documentation generated during Phase 2 has been carried out in this task. This includes
the software registration processes that was carried out during this PhD.

Expected duration 8 months.

Expected outcome Research papers and documentation.

8 Jorge Blasco Alís

1.4.3 Phase 3: New Protection Mechanisms for Information Leakage Protec-
tion

The purpose of this phase is to improve the current protection mechanisms to avoid infor-
mation leakage. In this way, detected vulnerabilities in current information leakage protection
mechanisms have been addressed. In this phase new steganalysis, active warden and com-
puter forensic related techniques have been proposed. Implementation and evaluation of
proposed techniques have been also carried out during this phase.

Task 3.1: Design of Techniques to Avoid the Usage of Steganography

This task addresses the design of new techniques to avoid the usage of steanography inside
organization environments. In this task active warden techniques as well as other techniques
such as steganalysis and mechanisms to avoid the usage of steganography inside organiza-
tion environments have been addressed.

Expected duration 7 months.

Expected outcome Techniques to avoid the usage of steganography in organization envi-
ronments.

Task 3.2: Design of New Techniques to Detect and Avoid Information Leakage in Orga-
nization Environments

In this task, techniques to avoid attacks detected in Task 2.1 have been addressed. Designed
mechanisms serve to complete the protection mechanisms included in current information
leakage protection solutions.

Expected duration 7 months.

Expected outcome A set of techniques and mechanisms to improve current information
leakage protection solutions.

Task 3.3: Implementation and Evaluation

Proposed techniques have been implemented and experimentally evaluated. This phase also
includes the experiment design. Specifically, attacks designed in Task 2.1 have been evalu-
ated against the new developed protection mechanisms.

Expected duration 4,5 months.

Expected outcome Results and feedback for Task 3.1.

Task 3.4: Documentation

Results gathering and documentation has been carried out in this Task.

Expected duration 7 months.

Expected outcome Documented results and research publications.

1.5 Contributions 9

1.4.4 Phase 4: Thesis Preparation

During this phase results obtained on previous stages of the thesis have been gathered to
built the dissertation document. Although the contributions on the previous stages can be
incorporated directly in the thesis document, it has been required to spent time gathering and
consolidating the work done during the whole research period. This kind of work is out of the
scope of the previous stages so it will be carried out separately.

Task 4.1: Results gathering and Document Definition

Previous documentation and publications have been gathered. Additionally, with the gathered
information, a PhD dissertation structure has been defined.

Expected duration 1 months.

Expected outcome Necessary material and PhD Template document.

Task 4.2: Thesis Writing and Revisions

Previous defined structure has been filled up with the results of the different stages and re-
views. All the generated publications and documentation have been modified and integrated
into the dissertation.

Expected duration 5 months.

Expected outcome PhD dissertation.

1.5 Contributions

The work performed during this PhD has resulted in several contributions in the field of infor-
mation leakage protection and steganography. The first contribution of this work is a survey in
current information leakage protection systems. Although academic authors and informa-
tion security providers have developed several approaches to deal with information leakages
(accidental or malicious), no survey has been performed. This survey has served to identify
the pitfalls of current approaches, serving as a starting point for the next contributions of this
thesis.

Based on the previous contribution a set of attacks and techniques to avoid current infor-
mation leakage protection mechanisms have been developed, producing the following contri-
butions:

• A method to transform source code into natural language text [13]. This method
would allow to transform information that is usually identified as sensitive (source code)
into innocuous literary texts fragments from books that can not be identified by current
DLP solutions as sensitive.

• A steganographic application for mobile phone devices [14]. As part of this PhD,
an application for mobile devices (specifically for iOS devices) was developed. The
application, which source code has been registered, has been downloaded more than
5000 times worldwide (since 25th September 2011).

10 Jorge Blasco Alís

• A method to evade information leakage protection mechanisms through the use
of trusted applications [15]. An attack over current DLP solutions that could be used
by malicious insiders to steal information inadvertently has been identified. In this at-
tack, a malicious insider uses a trusted application in the organization environment to
modify sensitive data in order to render the information leakage protection mechanisms
unusable.

To prevent previous attacks, new methods and mechanisms to protect against information
leakage and most specifically steganography have been developed. The main contributions
under this scope are:

• A new method to hinder the usage of steganography through HTTP [16]. Using
an active warden role, incoming and outgoing HTTP messages can be sanitized. This
reduces the capacity of covert channels created by means of steganography. The pro-
posed method could be easily adapted to other network protocols.

• A new steganalytic method to detect the existence of hidden information in exe-
cutable files [17]. The proposed method is able to detect if a tool named Hydan has
been used to hide information inside executable files.

• A set of indicators and mechanisms that could be used to improve current infor-
mation leakage solutions to avoid information leakage attempts using trusted ap-
plications [15]. If implemented, these indicators could be used to detect if an employee
is maliciously using a trusted application to steal information from the organization.

1.6 Evaluation Methods

Several of the contributions and proposals of this thesis have required an evaluation. Stegano-
graphic methods proposed in Chapter 4 have been evaluated in terms of security and robust-
ness. Additionally, the developed mobile application has been evaluated in terms of efficiency.
Both properties have been evaluated experimentally. Several stego-objects were created with
both tools (“CSteg” and “Hide It In”) and compared with models of clean objects.

To evaluate the usage of trusted applications to leak information, an attack using a cipher
was implemented into a spreadsheet program. Several aspects of the proposed evasion tech-
nique have been evaluated. A security evaluation (from the point of view of the attacker) was
performed. The goal of this evaluation was to compare the security of the proposed algorithm
implementation with standard implementations of cryptographic algorithms. Additionally, the
performance and efficiency of the evasion method have been evaluated. Spreadsheet en-
cryption times have been compared with encryption times of a C standard implementation.
Complexity in terms of space (memory usage) was analytically obtained. Finally, a experi-
mental test against a commercial DLP solution was performed in order to prove the validity of
the proposed attack.

Protection mechanisms developed to fight against information leakage have been experi-
mentally evaluated. The framework to hinder the usage of steganography through the HTTP
protocol was implemented in Java. First, a statistical evaluation of the amount of hidden in-
formation that could survive the sanitization process used by the framework was performed.
Then, several experiments were carried out. In these experiments, random information was

1.7 Document Organization 11

hidden using several steganographic programs and uploaded to Twitter3. During the experi-
ments the security and performance of the Java implementation were evaluated.

The steganalysis technique presented in Chapter 5 has been experimentally evaluated
using executable files included in an Ubuntu distribution. A set of executable files was used to
hide information using “Hydan”. The proposed technique was used to compare the set of ex-
ecutable files with a set of non modified executable files. The experimental evaluation served
also to establish a threshold to maximize the effectiveness of the steganalytic technique.

Details about each of the evaluation processes can be found in the corresponding Chap-
ters of this document.

1.7 Document Organization

This dissertation assembles the work related to information leakage protection and steganog-
raphy performed during the entire PhD studies. Some of the work presented in this disser-
tation comes from papers that have been published during this period of time. Specifically,
Chapter 3, Chapter 6 and Chapter 5 take most of its contents from published papers that have
been adapted to give an improved reading experience. The remainder of this dissertation is
divided in six different Chapters and a reference Section. They are organized as follows:

• Chapter 2 introduces the reader to the field of information leakage protection. This
Chapter includes a survey of current proposals to deal with information leakage. Both
academic approaches and commercial solutions have been studied. The purpose of this
Chapter is to summarize all proposals related to information leakage protection. This
Chapter serves as a starting point for the rest of the work performed in this thesis.

• Chapter 3 introduces the reader to the fields of steganography. The formal model of
steganography is defined along the most important characteristics of steganographic
algorithms. Additonally, covert channels are defined and steganalysis techniques are
presented. A review of steganographic and steganalysis proposals is given.

• Chapter 4 presents contributions of this thesis related to steganography. A stegano-
graphic method to transform C source code into text is presented. Additionally, a
steganographic application for smartphones is also introduced. Both contributions could
be used to evade information leakage protections mechanisms and to steal information.

• Chapter 5 gathers the protection mechanisms that have been developed to fight against
the attacks described in Chapters 4 and 6. Specifically, a set of techniques to detect the
exfiltration of information through the use of trusted apps is presented. This techniques
could be included in future developments of information leakage protection solutions.

• Chapter 6 describes a method to evade current information leakage protection solutions
by means of trusted applications. The proposed method is experimentally evaluated
against a commercial information leakage protection solution. Additionally, the security
of the proposed method (from the point of view of the malicious insider) is also analyzed.

• Chapter 7 summarizes the work achieved during this PhD. This Chapter presents the
concluding remarks regarding the areas of steganography and information leakage pro-
tection. A summarized answer to the research questions presented in Section 1.2 is

3http://www.twitter.com

12 Jorge Blasco Alís

given. Finally, open questions left out of the work of this thesis and further research on
both areas directly related to this dissertation are also presented.

• Appendix A describes the works published during the research period related to this
PhD. This Chapter includes works done regarding this dissertation, but also works done
in collaboration with other authors during this research period.

Chapter 2

Information Leakage Protection

In the city
Where I’m from

Lions in cages just for fun.
But you will passé around your cage

And wait for night to come
Wolf Gang - Lions in Cages

2.1 Introduction

In this chapter the threat of information leakage is introduced along an analysis of the current
proposals to fight it. As information leakage is a threat created by insiders, proposals that
address the insider threat (in a general form) have also been taken into account. The review
performed in this chapter aims to check if current proposals, address the threats created by
malicious insiders that steal information they have access to by means of covert channels.

The first step to address the information leakage threat is to acknowledge it. The Infor-
mation security management and organizational methodologies for information security that
are used to implement security mechanisms must address and acknowledge the threat of
information leakage in order to recommend the necessary controls to avoid them. As these
methodologies drive deployment of security mechanisms in an organization, a not proper
analysis of the threat will produce pitfalls in the rest of the process.

Although information leakage is a threat of enough entity to be treated separately from
other insider threats, several proposals have focused on detecting malicious insiders in gen-
eral [18, 19, 20, 21, 22, 23]. These systems try to detect malicious insiders whether they try to
sabotage the organization infrastructure, steal information, or perform other attacks to the or-
ganization. In fact, information theft is a threat that can be originated by malicious insiders and
outsiders. In the case of malicious outsiders, they previously have to gain access to the organi-
zation infrastructure by some mean (social engineering, software vulnerabilities, etc.). There-
fore, once an outsider has gained access to the organization (and overpass the security at the
edge of the organization) she can be considered as an insider. Nevertheless, the character-
istics of this insider are very different from the real insider. In one hand, the intentions of this
insider are clearly malicious. On the other hand, she is not acquainted with the organization
infrastructure and security policy. Therefore, in her attempt to perform malicious activities she
will perform tasks that real insider will not perform. This kind of insiders are called masquer-
aders, and have been widely studied in the literature [20, 22, 24, 25, 26, 27, 28, 29, 30, 31].

14 Jorge Blasco Alís

Section 2.4.2 addresses current proposals in this regard.
Finally, this Chapter analyzes the current proposals that have been specifically developed

to fight the information leakage threat. This includes the researchers’ proposals, but also the
commonly known DLP solutions offered by information security providers.

2.2 Information Leakage

An information leakage event happens when an information asset is revealed to unauthorized
parties. Although this thesis is focused on malicious leakages (i.e. information theft), the
purpose of this Section is to present a general view of the information leakage threat. This
Section briefly describes the basic concepts related to information leakage such as the value
of information assets, how they can be identified, its possible states and the leakage vectors
that can be used to steal them.

2.2.1 Information as an Asset

Nowadays organizations hold huge amounts of assets in different forms and shapes, being
information one of their most valuable assets due to the high cost and difficulties to produce
or replace it.

Organizations usually hold two different kinds of information assets, personal information
assets and business information assets. Personal information assets are defined as any kind
of asset that includes Personable Identifiable Information (PII), which is any kind of information
that could be used to uniquely identify, contact or locate a single person. Unfortunately, the
definition of PII depends on countries legislations, varying from one country to another.

Business information assets can be defined any kind of information that is essential to
achieve the organization objectives. These includes blueprints, source code, financial, invest-
ments plans, etc. This kind of assets are tremendously heterogeneous, as they can be in
many different shapes (text file, design, presentation) and formats (PDF, DOC, DOCX, PPT,
OPT, CATIA, etc.).

2.2.2 Sensitive Information Identification and Classification

Identifying sensitive information hold in an organization is the first step to protect against its
leakage. This can be an extremely slow and time consuming task if it is performed manually.
Automatic information identification and classification techniques allow the identification and
classification of sensitive information across the organization infrastructure.

Additionally, information assets may suffer modifications due to business process or an
attack by a malicious insider. In this case, identification techniques have to take into account
that information may suffer this kind of changes in order to effectively identify information
assets. In the worst scenario, an information asset may have been hidden using steganog-
raphy inside an innocuous carrier. In this case, techniques to identify sensitive information
are useless. Steganalysis techniques, which are presented in Section 3.5.1, should be used
to identify such files and avoid information thefts. In this regard, information assets can be
classified as clear information assets, which express sensitive information explicitly; modified
information assets, which contain sensitive information, but not explicitly; and hidden informa-
tion assets, which contain sensitive information, but inside other innocuous works (which may
not be identified as sensitive).

2.2 Information Leakage 15

Although not specifically designed for identifying sensitive information, the use of the fol-
lowing techniques has been observed in the literature and commercial products.

Keyword Matching and Pattern Recognition Techniques

In some cases, information assets may include certain words or properties that may allow
their identification as sensitive documents through keyword matching (names, surnames, the
word confidential, etc.). Keyword matching may be also used to search through file metadata
for sensitive information.

Pattern recognition techniques are part of automaton theory and computational theory
introduced by Kleene in [32]. Nowadays regular expressions are a common mechanism to
identify patterns through textual files, being implemented in most programming languages.

Keywords and patterns can be used only when information assets contain explicit sensitive
information (they can not be used with modified or hidden information assets). However,
keywords and patterns must be carefully selected, as they may detect as sensitive documents
that are not (false positives) [33].

Document Fingerprinting

When used to identify sensitive information, fingerprinting, is a technique which tries to extract
signatures from documents in such a way that those signatures can be later used to identify
versions, and other documents with similar contents. As the goal of this kind of fingerprinting is
identifying similar documents, usually these kinds of fingerprints are also called approximate
fingerprints [34]. Fingerprinting techniques may serve to detect clear information assets and
modified information assets. Nevertheless, the level of malicious modifications this techniques
allow has not been deeply studied.

Classical document similarity measures are based on document indexing and similarity
research [35, 36]. The Vector Space Model proposes the use of vectors to represent docu-
ments, in such a way, that comparison of documents is performed by comparing the vectors
represented by them. To compare vectors, classical concepts of vector theory such as the
inner product or the cosine angle between vectors are used (Equation 2.1).

Similarity(A,B) = cos(A,B) =
A •B
| A ‖ B |

=
Σn
i=0WAiWBi√

Σn
i=0W

2
Ai

√
Σn
i=0W

2
Bi

(2.1)

Where A and B are the documents which similarity is being checked and WXi is the
component value i of vector (document) X. As the components of the vector (term frequency)
become similar, the cosine value will approach to one, as the vector angle will approach to
zero. Although is one of the classical measures of document similarity, the cosine measure is
not used as it has several drawbacks [37].

Furthermore, unsupervised techniques such as Self Organizing Maps (SOM) have been
also used to cluster similar documents [38]. A Self Organizing Map is built using the frequency
of normalized words inside each document to be clustered.

The usage of cryptographic hash functions has also been explored to detect document
similarities [34, 39, 40, 41, 42]. To be able to work properly, these techniques require a
preprocessing step in which the structure and the formatting of the document is separated
from the content (which will be the part compared). Hash functions based techniques usually
divide the document into chunks. To find a similar document, those chunks are compared

16 Jorge Blasco Alís

against the chunks of the possible similar document. Depending on the number of hash
values that match it can be considered as co-derivative, similar, etc.

Forensic Hash Functions

Forensic hash functions (also known as fuzzy hashes) are a family of hash functions which
main aim is to determine the similarity and correlation between different pieces of information
[43]. Although mechanisms for similar document identification were previously proposed by
Brin et al. [41], these were first addressed as a forensic tool by Kornblum [43]. Regarding
information leakage protection, these kinds of techniques could be used to trace sensitive
information, even after it has been modified.

Examples of forensic hash functions are SSDep and SDHash. SSDep uses rolling hashes
and stores the 6 least significant bits of each of the hashes that are in accordance with the
file context (the part of the file being hashed). To obtain similarity between two files, the
edit distance between the two signatures (the amount of changes to go from one signature
to the other) is measured. Kornblum proved that for small modifications of files, signature
comparisons helped in identifying files as similar. When comparing two random files, the
probability of having two equal signature characters is 2−6. Thus, as the signatures are greater
(for greater files) the probability of having similar signatures decreases. More details regarding
SSDep can be found in [43].

SDHash is another forensic hash function proposed by Roussev [44]. In this case, for each
part of the file, the 64 byte sequence with the lowest number of occurrences is hashed and
stored in a bloom filter. File signatures are constructed using several bloom filters, requiring
approximately 2% of the original file size. To check file similarity, Bloom filters are compared
using a Hamming distance based approach. This allows to detect common 64 byte sequences
(with a low probability to appear) between the two files.

In [45] an evaluation of previous forensic hash functions is performed. Tests regarding
the identification of embedded objects inside other files, and block correlation between files
are performed. Overall, SDHash performed better in all tests. In fact, the authors conclude
that the capacity of SSDeep to detect similarities is very dependent on finding large blocks
of common data between files, while SDHash is less dependent on this fact. However, in the
best case (SDHash) the minimum amount that two files have to share to correlate them is 16
KB in the worst scenario. If information is fragmented in smaller sizes and embedded into
other objects, it would not be recognized as related by these tools.

Watermarking

Watermarking techniques embed information in the document about the document itself. Wa-
termarking techniques have been widely explored, mostly in multimedia content, due to its
possibilities regarding copyright protection [46]. Nevertheless, watermarking has been ex-
plored in many other domains such as CAD Designs [47], executable code [48, 49], XML files
[50], etc. Although adding watermarks is not a suitable solution for identifying sensitive doc-
uments, it could be used to monitor modified documents and to define document properties
such as sensitiveness, confidentiality, etc.

An overview of the previous presented identification and classification techniques is shown
in Table 2.1.

2.2 Information Leakage 17

Technique Detects variable content Tracks changes Modifies content
Keyword matching No No No
Pattern recognition Yes No No
Document fingerprinting Yes Yes No
Forensic hash functions Yes Yes No
Watermarking Yes Yes Yes

Table 2.1: Information identification and classification techniques overview

INTERNET

Data in Motion

Data in Motion

Data in Use

Data in Motion

Data at Rest

Data at Rest

Figure 2.1: Information types within an organization

2.2.3 Information State and Organization

An organization IT infrastructure is usually composed by servers, desktops and mobile devices
(laptops and smartphones) connected through the organization’s network (and the different
branches connected through the Internet via a Virtual Private Network). Every day information
assets flow through the organization’s network (information in motion), are used by employees
(information in use) and are stored in each of the organization’s systems (information at rest),
as shown in Figure 2.1. As information can be found in each of these states and each state is
treated differently by information systems, different controls and countermeasures should be
implemented to avoid information leakages.

18 Jorge Blasco Alís

Information at Rest

Information assets that are stored, but not in use, at the organization infrastructure are con-
sidered information at rest. Information assets in this state are usually stored in hard drives,
memory cards, solid state disk and any other physical support for digital data. Logically, in
servers this information is usually stored in databases, file repositories, data warehouses,
etc. On desktops and mobile devices (laptops, smartphones and portable drives) it is usually
stored directly in the file system in form of documents (pdf, Word, Excel, OpenOffice, etc.),
graphic designs (CAD, Catia, etc.), text files (source code, etc.) and binaries (images, etc.).

Information in Use

Any information asset being used at any workstation or server is considered information in
use. Although information being used is in most cases also stored in a storage device, the
information being used by the computer program is stored in the system’s memory, creating
new threats that must be addressed. Furthermore, the access and manipulation possibilities
of the programs using the information must be taken into account when designing protection
mechanisms to avoid information leakage. These programs can also be used to create new
information assets that are stored in the system’s memory before being properly saved.

Information in Motion

As business process are performed, organization members need to access information assets
located in some remote locations of their own organization and share them with other team
mates. Any information asset that travels through the organization network is considered infor-
mation in motion. These assets, although being also stored in some other location (thus being
considered as information at rest), can be sent through the network, being possible to produce
an uncontrolled copy of a sensitive document (if the information reaches an unauthorized or
uncontrolled device without the proper protection mechanisms). One of the challenges on
controlling information in motion is to be able to control the wide number of protocols that can
be used to send information such as HTTP, HTTPS, SMTP, P2P protocols, FTP, etc.

2.2.4 Information Leakage Vectors

In terms of computer science, a leakage vector can be defined as the means by which some
information asset is revealed to unauthorized users, whether the leakage was produced in-
tentionally or not. Although information assets have been historically leaked and robbed by
physical means, the widespread adoption of IT has eased the way information is copied and
transmitted, allowing new ways of information leakage. In the following lines a description of
both kinds of leakage vectors is given, focusing on the ones produced by information systems,
as they are the ones to be studied in this dissertation. These leakage vectors must be used
also when techniques such as steganography are used to hide the information theft attempt.

2.2.4.1 Physical Leakage Vectors

Although nowadays most of the information inside an organization is stored electronically,
the containers of this information (hard drives, USB drives, cds, etc.) are physical devices
susceptible of being stolen physically. The other most important information asset container is

2.2 Information Leakage 19

paper, which can be stolen easily, as it is not feasible to implement restriction on organizations’
infrastructure to control the flow of information in printed formats [51].

Avoiding leakages by means of these requires to implement physical security measures,
that do not allow the extraction of organization’s equipment. Nevertheless, to enforce the in-
formation security leaving the organization, some mechanisms such as hard drive encryption
may be implanted on information systems.

2.2.4.2 Information Systems Leakage Vectors

The same mechanisms insiders use to perform their usual business task can be also used
to steal information assets. Techniques that transform sensitive information with the purpose
of not being detected are not considered as leakage vectors. A leakage vector specifies the
way information can be disclosed from a computer system. In order to avoid leakages and
information theft, protection mechanisms and countermeasures must be placed into these
leakage vectors.

Leakages Through the Organization’s Network

Organizations’ networks are an essential part of organizations IT infrastructure, enabling col-
laboration and communication between employees, clients, providers, etc. An organization
network can be used for inside to inside, outside to inside and inside to outside commu-
nications. Inside to inside communications cover all communications that happen within the
organization network. These includes corporate mails and messaging, internal server access,
etc. Although these kinds of communications usually do not increase or produce information
leaks, information transferred by these mechanisms can be sent to unauthorized recipients
inside the organization, producing an information leak inside the organization.

Outside to inside communication covers any communication which starting outside the
organization has its destination at some point inside the organization network infrastructure.
These communications include Virtual Private Networks (VPN), connections to public services
such as Web, FTP, etc. and incoming mails. This kind of communications are susceptible to
produce information leakages, as sensitive information can be misplaced on a public access
server, as described by [52]. Furthermore, these servers can also be hacked by outsiders
giving them access to information stored in them. Classical security tools such as IDS, IPS,
Firewalls and Antivirus protect information systems from these kinds of external threads.

Inside to outside communication involves any connection started within the organization
boundaries which destination is outside the organization. These usually include a wide range
of services (protocols such as HTTP, SMTP, FTP, P2P, instant messaging, etc.) that are used
by employees to communicate to the outside world. All these services can be used to steal
information as an insider can post sensitive information into a social network, send a sensitive
file through email or upload it to an FTP server. Furthermore, a malicious insider could dis-
tribute the sensitive information asset through a P2P network. Additionally, a malicious insider
might use a steganography technique that takes advantage of a network covert channel (such
as the ones described in Chapter 3) to steal information.

Leaks Through the Organization’s Printer

Printing information converts an electronic file into a sensitive piece of paper. In this regard,
printing should not be considered as a leakage vector itself, but is one of the main procedures

20 Jorge Blasco Alís

that can be used to transform digital information into a physical container such as paper,
allowing its physical extraction, which in most of the cases may leave few evidence.

Leaks Through Organization’s Portable Media

Usage of external hard drives, USB drives, etc. has spread in recent years, as they allow
easy transportation of files, backups, etc. Besides the loss of this kind of devices that can
lead to information leakage, these devices can be used by insiders to steal information from
the organization, saving copies of sensitive files to unsupervised portable storage systems.
These removable drives can be plugged into computers usually through USB ports (but any
other method such as Bluetooth, infrared, etc. can be also used).

Leaks Through Personal Mobile Devices

Along with external devices, the usage of smartphones and other personal mobile devices
has increased tremendously during the last years. These devices are capable of performing
complex operations and even can be compared in terms of computational power with some
personal computers. Although these devices allow to improve the employee’s productivity,
they also create new leakage vectors. These devices are usually configured to access the or-
ganization infrastructure (even if they are personal devices), but are not configured according
the security policy of the organization (for example, forbidding the use of the camera). In this
way, they are a new leakage vector that should be taken into account.

Network Printer Port. Media Mobile Device
Allows encryption Yes No Yes Yes
Requires physical access No Yes Yes No
Leakage object Data Paper Data Data
Monitored Yes Yes Yes Partially
Lockable Yes Yes Yes Partially

Table 2.2: Summary of information systems leakage vectors

Table 2.2 shows a summary of the previous described leakage vectors. Both researchers
and information security providers have spent lots of efforts in developing systems and tech-
niques to mitigate leakages through these leakage vectors. In the next Sections, the main
proposals are described and analyzed.

2.3 International Standards and Recommendations

Although this dissertation is focused on technical aspects of information security, managing
information security is a complex task that involves not only technical controls but also process
management and other areas of the organization. In this regard, the 27001 of the ISO/IEC
standard specifies a set of recommendations, processes, methodologies and controls that
any information security management systems should take into account [53]. Although ev-
ery information security management system adapts to the organization needs, this standard
allows to define a baseline that can be evaluated both internally and externally.

2.4 Malicious Insider Detection Systems 21

Different works have analyzed the suitability of the 27001 standard to handle insider
threats. These works do not analyze the information theft threat specifically, but all the threats
that an insider comprises to the security of the information systems of the organization.

In [54], Humphreys analyzes the 27001 standard regarding the threat posed by insiders
(including the information theft as an insider threat). The author identifies a set of controls that
are defined in the standard and should be used to address insider threats. These includes
technical controls such as "Access Control" (point A.11 of the standard) and non technical
controls such as "Human Resources Control" (point A.8 in the standard). However, the au-
thors misses other controls and recommendations in the standard that should also be used
to improve the awareness against insider attacks, and more specifically against information
leakage attacks. Specifically, network security management controls (A.10.6 in the standard)
should be used to control and handle all the network exchanged data. In the same way,
exchange of information (A.10.8) and monitoring controls (A.10.10) should also be used to
monitor information flow and detect possible transmissions of sensitive information outside
the organization boundaries.

Nevertheless, as pointed out by other authors [55], these standards present some weak-
ness and more importantly, do not describe clearly the controls that a security management
system should implement to avoid information leakage. In fact, recommendations about the
CISSP security certifications [56] warn that the insider threat is not usually taken into account
when developing the information security policy. Nevertheless, no specific recommendations
to protect against these insider threats are given.

Besides the ISO/IEC standards, researchers have also proposed methodologies to exclu-
sively prevent from the insider threat. In [57] the authors propose a methodology that allows
to produce a specific set of requirements that address the insider threat. Additionally, au-
thors design two deliverable documents to provide awareness in organizations environments
against the insider threat. However, the use of such methodologies is compatible with the use
of information leakage prevention systems. In fact, these methodologies and standards do not
provide actual implementable mechanisms to fight against information leakage (and generally
insider threat), but gather a set of recommendations that in most of the cases will involve the
implementation of one of the previous mentioned systems.

2.4 Malicious Insider Detection Systems

Research in malicious insiders aims to find the mechanisms, procedures and techniques to
detect malicious insiders in the scope of an organization. Malicious insiders may misuse IT
systems, steal information, commit sabotage or any other action harmful to the interests of the
organization.

Insider detection is an information security area that has gained a lot of interest in the
last years (see Section 1.1). In fact, it is a field with extensive research that has offered
several proposals to deal with insiders. As part of the work required to answer the research
question presented in this thesis a review of current proposals to fight malicious insiders has
been performed. Although, this dissertation focuses specifically in the information leakage
threat, works that deal with the insider threat (without specifying which one) have also been
considered.

The first works to propose solutions to handle the insider threat range from 2001. Since
then, several different proposals have been presented. The performed review has allowed to

22 Jorge Blasco Alís

identify a set of properties that can be used to characterize each proposal. First, a temporal
property has been identified. While a group proposals focuses on trying to alert from the
insider risk prior any possible security breach, other proposals detect the insider incident at
the time it happens. Second, presented proposals differ on the granularity of the insider threat
they detect. While some proposals may detect a specific insider threat, others just detect the
malicious insider as a general threat.

Analyzed proposals have been categorized using the previously presented characteristics.
Proposals have been categorized using the temporal property. This organization allows to
present in more detail proposals that focus on detecting the information leakage threat. This
categorization is a contribution of this dissertation and has not been taken from any other
author.

2.4.1 Predictive Proposals

Predictive techniques try to identify malicious insiders before they can commit any action that
is harmful for the organization. Reviewed proposals in this regard include the information
leakage threat as part of the malicious insider threat. That is, they do not identify the specific
threat created by the insider. The output of these techniques can be used to improve the
security controls of the organization, modify assigned privileges or help the human resources
department during hiring processes. Schultz et al. [19] defined a set of indicators (mostly
behavioural) to asses the risk posed by insiders. These, which are not clearly defined and can
not be quantified objectively, included verbal behaviour, personality traits and computer usage
among others. Applying a weight to each indicator, a general risk assessment could be given
for each employee. The main problem of this proposal is the difficulty to generate methods
to measure the used indicators. Additionally, selecting the weights for each indicator seems
a very difficult task. Existing insider security events could be used to define a set of weights,
but it is not clear whether those can change between organizations or not.

In [18], the authors propose a system that gathers information only from the IT infrastruc-
ture, such as file system events, memory and other IT related possible events. Based on the
collected information, the system creates a “threat profile” for each user in the organization
infrastructure. The granularity of the predictions given by the system enables only to differ-
entiate between accidental and malicious threats. The final assessment is given taking into
account, not only the IT related events, but also the role of the user in the organization and its
level of access. Authors explain that their proposal is not currently implemented (and there-
fore not evaluated) because is not considered adequate and requires a better architecture
description, algorithm development and integration with other security systems.

Other proposals use concepts brought from criminology such as criminal profiling. These
are based on predicting the probable characteristics of a criminal offender based on the be-
haviours exhibited by previous offenders in the commission of a crime [58]. In [59], Nykodym
et al. presented guidelines to construct insider profiles including some examples such as the
saboteur and the spy. As an example, they state that spies are usually confident persons, who
are comfortable in their positions and steal just for money, not for personal revenge or hate.
The main problem of proposals in this regard (as well as other prediction techniques) is the
difficulty to test that their assessments are right and also the lack of experimental results that
back up the proposed frameworks. Table 2.3 summarizes the previously presented techniques
to predictively detect malicious insiders.

2.4 Malicious Insider Detection Systems 23

Magklaras et al. [18] Schultz et al. [19] Nykodym et al. [59]
Year 2001 2002 2005
System? Yes No No
Methodology? No Yes Yes
Detect. Granularity Malicious or accidental threads Mal. insider Mal. insider profiles

Table 2.3: Summary of predictive proposals to detect malicious insiders

2.4.2 Reactive Proposals

Reactive techniques detect the malicious insider at the moment she commits the attack against
the organization. These systems can be seen as a kind of intrusion detection system in the
way that they detect possible security incidents that violate the organization security policy
(in this case they detect internal incidents). Although some of the reviewed proposals do
not differentiate between the threats created by malicious insiders, some address directly the
information leakage threat. In fact, Data Leakage Protection (DLP) solutions developed by
information security providers are included in this category of proposals. Nevertheless, due to
its relevance in the context of this PhD, they are analyzed in a separate Section.

Schonlau et al. [20] built a simulation network in which 70 insiders (20 of them malicious)
performed different actions (simulating working hours) during several days. Using the UNIX
acct auditing tool, they collected over 15000 executed commands per each user. 5000 first
commands were left intact while the rest of the commands were mixed with malicious insiders
commands. Detection methods should have to be able to detect correctly those injected
blocks. Schonlau dataset has been widely used by researchers studying insider detection
mechanism [25, 26, 27, 28, 29, 30, 31].

Similar systems have also been proposed in Windows based systems [60]. In this case,
registry entries are used as audit data to perform detection. To detect possible attacks by
insiders, a weighted vote system is used. During training, each collected property of the
windows registry votes (with a weight) to decide if there is an insider attack going on. If the
assessment is wrong, the weights of each of the wrong votes are adjusted. As authors state,
for each employee an instance of the system must be trained with that user’s data. After
training, if the system detects abnormal behaviour (through the weighted voting system) it will
raise an alarm.

The works of Schonlau and Shavlik addressed a specific kind of insider which is called
masquerader. These are outsiders who, by some mean, have gained the access to insider
credentials. Although the purpose of this kind of insider is obviously malicious, they are very
different to the insiders studied in this PhD. Masqueraders usually do not know the organiza-
tion infrastructure and moreover the information they have access to.

As well as IDS techniques have been used to detect malicious insiders, other techniques
to detect malicious attacks from outside the organization have been adapted to work with
insiders. One proposal in this regard is derived from the concept of honeypots. A honeypot
is a vulnerable information system created with the purpose of learning how intruders attack
information systems. In 2003 Spitzner [21] introduced the term honeytoken, which describes a
piece of fabricated information that seems valuable to an information system attacker (insider
or outsider).

Bowen et. al [22, 24] took the concept described by Spitzner and designed a system
which placed different decoy documents (honeytokens) along all the organization infrastruc-

24 Jorge Blasco Alís

ture. Additionally, several agents were placed along the organization to detect the usage
of these documents. To be able to distinguish these from regular documents, authors used
three different approaches. First, all documents were inserted with a random HMAC. Only
the HMAC of fabricated documents was stored, so when that document was being opened or
transmitted it raised an alarm. Additionally, documents without the random HMAC also raised
an alarm. Second, decoy documents included information about bogus accounts that were
constantly monitored. Finally, decoy documents loaded remote information (such as images)
from a specific server. Therefore, when an insider opened such a document, a connection
from the insider to the alert server would be generated. Although this system can detect some
attempts to steal information, the main goal of the system is to detect insiders that go outside
of their scope of action. In fact, this system is not able to detect insiders who steal documents
they usually have access to (but are sensitive too).

While this approach is specially suitable for masquereders, who don’t have knowledge of
the organization valuable information, malicious insiders who have already knowledge that
such systems are operating inside the organization will be more suspicious of finding valuable
information unprotected, reducing its efficacy.

Monitoring network usage can serve to detect sensitive files leaking or raising alerts of
suspicious behaviours by some employees. The most complete proposal in this direction was
presented by The MITRE Corporation. They developed a system called ELICIT [61, 23], that
takes into account network related events to detect insiders. ELICIT’s goal is to detect employ-
ees who perform actions inside their privileges, but outside their actual scope, violating the
need-to-know policy [62]. ELICIT translates user generated network traffic into information-
use-events, that describe document level operations, such as searching, reading, writing,
deleting, printing, etc. These events and a social network based on contextual information
were used to built suspicion detectors, which detected specific activities that might be suspi-
cious for insiders. Detectors were created by humans experts based on previous real insider
cases. Overall, authors defined 76 detectors which feed a Bayesian Network, weighted by hu-
mans. The Bayesian Network produced a value which assessed the probability of user activity
being malicious. ELICIT was though only for detecting users who violated need-to-know. As a
consequence, neither users misusing their usual accessible files and the usage of steganog-
raphy would be detected (as in other previously analyzed proposals). Table 2.4 summarizes
the main previously presented techniques to reactively detect malicious insiders.

Schonlau et al. [20] Caputo et al. [61] Bowen et al. [22]
Year 2001 2008 2009
System? Yes Yes Yes
Input Unix commands Social network and Decoy documents and

network related events related events
Detect. Granularity Masqueraders Need-to-know violations Need-to-know violations

Table 2.4: Summary of main reactive proposals to detect malicious insiders

2.4.3 Information Leakage Detection Proposals

Besides studying the malicious insider threat as a whole, researchers have also addressed
specific threats imposed by insiders. This Section analyzes those related to the information
leakage thread specifically. Works that focus on other insider threats are not described nor
analyzed as they are outside the scope of this PhD.

2.4 Malicious Insider Detection Systems 25

2.4.3.1 Research Community Proposals

Although, the proposals that analyze the malicious insider threats acknowledge the threat of
information leakage, the amount of research addressing it specifically is nowadays small.

In [63], the authors propose an architecture (called SSID) to implement several steganaly-
sis techniques to detect steganographic content transmitted through network protocols in real
time. The proposed architecture is divided into three layers. The first layer is in charge of
extracting the network traffic and classifying it depending on the application used to generate
it (network protocol). The second layer extracts content from the network packets according
to a content database. This layer also checks if some of the extracted content matches the
critical repository (sensitive information) database. Finally, extracted content is also passed
through a steganalysis process. If hidden content is found, this layer tries to extract if from
the cover and compare it against the critical repository database. The approach is tested
against video covert channels, but authors acknowledge the limitations on the scalability of
their system when targeting multiple steganographic algorithms.

Additionally, [52] introduced a framework to avoid information leakage through public web
servers. Their system uses a warden that must allow a document to be published into a public
web server. The warden (which may be a human or a machine) is in charge of checking if the
document contains sensitive information (as defined in the organization security policy). Any
document not previously vetted is filtered by a gateway that has direct communication with the
warden. All documents that are not allowed to leave the organization are divided into chunks
of 1024 bytes, calculating and storing its hash value. In order to decided if a document is
allowed to leave the organization, the network stream is also divided into chunks of 1024 and
its hash is compared with the critical data hashes repository. To avoid information leakage
through a compromised web server, authors propose to sanitize HTTP connections, normal-
izing headers of all HTTP messages sent by the web server. This sanitization which disables
covert channels through the HTTP protocol is performed at the gateway. Nevertheless, the
content of the HTTP messages is not sanitized, as it is vetted by the warden. Although ste-
ganalysis algorithms are not considered for the warden, they could also be implemented as
part of the vetting process.

Multilevel security models allow the classification of information into different levels in such
a way that only users in possession of the necessary clearance level can get access. The Bell-
LaPadula model [64], which was originally designed for military environments, establishes a
security level to every subject and document. The BLP model establishes two mandatory
premises for access control. First, no process may read information from a higher security
level. Second, no process may write information to a lower security level. Taking this into
account, if a process is able to read a sensitive information file, it means that the subject has
clearance to read sensitive information files. In such a case, and following the BLP model,
she would not be able to downgrade the security level of the file using that process. This,
along with mechanisms to avoid extraction of sensitive files could be used to stop information
leakages.

Although models such as BLP can serve to fight against information leakage, they also
create a series of problems that make its use in organizations infeasible [65]. First, considering
that the security level of a process is upgraded according to the files it accesses and the
security level of the subject, if a sensitive file is opened, the next opened files will have to
be written at the same level, independently of the level they came from. This leads to an
overall increase of the security level of all files that are opened with that process. Therefore,

26 Jorge Blasco Alís

besides stopping potential data leaks, this model can lead to employees being stopped from
doing their jobs. Additionally, in order to work properly, applications and systems have to pass
through major (and often costly) modifications [66].

Process colouring is a technique devised to detect and trace the propagation of worms
across a system [67]. Each process susceptible of being exploited is uniquely coloured. Pro-
cess interaction (read, write, etc.) with other objects such as files or processes results in the
propagation of the color. In this way, if a worm infects a process, all interactions made by the
infected process can be traced back to the original source. Although the presented technique
is focused on processes, it could be adapted to track sensitive information. Assume that,
apart from assigning colors to processes, each sensitive file is given a unique color. Using
process colouring, each process will get coloured by the colors of the sensitive files they in-
teract with (colors can be accumulated). If a coloured process writes into another file, that file
will also gain the process colors. To avoid leaks of sensitive information, the security policy
could define a set of colors that cannot be transmitted outside the organization by any means.

The usage of this kind of technique involves certain drawbacks. First, process colouring,
as presented by Jiang et al., is a technique that works over processes. A color is assigned
to each process, but documents and other operating system elements are colorless until a
process interacts with them. In order to track sensitive information, additional colors should
be initially assigned to sensitive files. Besides, even after assigning colors to sensitive files it is
unclear if once an application is closed, colors should remain on its processes. For example,
an employee could use a text editor to modify a sensitive file. Later on, the same user could
open again the same application and use it to create a personal document. Additionally,
depending on the amount of sensitive information to manage, the numbers of colors can
saturate the system, hindering the sensitive information tracing process [68].

2.4.3.2 Commercial Solutions

The information security industry has acknowledged the importance of the information leakage
threat by developing specific solutions to fight it. Data Leakage Protection (DLP) solutions
are commercial products composed by a set of components (sensors, information discovery
agents, content filtering agents, etc.) which are deployed in the organization infrastructure
to avoid information leakages. DLP solutions are not only used to avoid information leakage
originated by malicious insiders, but also accidental leakages that may be produced due to
insider mistakes. Table 2.5 shows a list of the top solutions, as classified by Gartner [2].
Additionally, there exists an open source DLP solution that has been recently released and at
the time of the writing of this document and is being actively maintained1.

DLP solutions try to cover the information leakage problem as a whole, not only detecting
possible leakages but also providing employee education, forensic evidence, management
systems and response procedures. These solutions first identify the sensitive information an
organization holds. Once configured, they monitor leakage vectors to avoid the transmission
of previously identified sensitive information. In this regard, each time a piece of data is placed
into a leakage vector, it is checked against the sensitive information database. This includes
keyword matching, pattern recognition and fingerprinting checks. If any of them marks the
information as sensitive, the DLP solution will block the information transmission. Additionally,
some of them allow to restrict the set of applications an insider can execute, only allowing to
executed applications that are trusted by the organization. Furthermore, these solutions also

1http://code.google.com/p/opendlp/

2.5 Drawbacks of Current Proposals 27

Vendor Solution Name
Websense Data Security Suite
Trend Micro Leak Proof 5.0
RSA Data Loss Prevention Suite
Symantec Data Loss Prevention 9
McAfee Total Protection
Palisade Systems Palisade DLP
Verdasys Digital Guardian 5
Computer Asociates CA DLP v6
Fidelis Security Systems Fidelis XPS
GTB Technologies GTB Data Loss Platform
Safend Safend Data Protection Suite
Trustwave Trustwave DLP

Table 2.5: List of most important DLP vendors by Gartner [2]

usually include information discovery appliances which are used to analyze and automatically
detect sensitive information in organization’s servers and workstations.

Besides the increase of concern and research efforts by IT security industry, there are still
issues to be solved regarding these new kinds of solutions. Reducing the number of false
positives produced by actual DLP solutions is a challenging task for security administrators,
as they produce a high overhead in the security analyst due to the necessary manual review
of false positive cases [69]. Additionally, none of these solutions takes into account the us-
age of steganography or other technique to transform information to hide information prior
to extracting it from a organization. Therefore, they do not provide the necessary protection
mechanisms against some kind of malicious insiders. A review of current evasion techniques
against these kinds of solutions is described in Section 6.2.

2.5 Drawbacks of Current Proposals

This Chapter has presented the problem of information leakage and analyzed the current
proposals (both academic and commercial) to fight it. Some of those proposals address
the information leakage threat as part of the malicious insider threat, while others address
it specifically. As reviewed, current approaches to mitigate information theft (or the malicious
insider threat) do not take into account specific challenges and techniques that may use ma-
licious insiders to steal information. In the following lines the detected drawbacks of current
research in information leakage protection are summarized:

• Most of the current proposals do not consider the possibility of using techniques such
as steganography to hide sensitive information. These techniques allow to hide informa-
tion in such a way that proposed systems would not be able detect sensitive files being
stolen. Current identification techniques for sensitive information (Section 2.2.2) do not
allow to identify steganographic objects as sensitive, even when they include sensitive
information. Current forensic hash functions do not allow to identify embedding of small
data fragments as the ones generated by steganographic algorithms during the embed-
ding procedure. While forensic hash functions require at least 16 KB of common data

28 Jorge Blasco Alís

between compared files, steganographic algorithms divide the secret to embed in much
smaller bit streams. The use of these techniques has been acknowledged in [70].

• Proposals considering the usage of steganography to steal information only address
this problem partially [52]. As a consequence, organizations may have a false sense of
security that may ease the information theft.

• Current proposals classify applications used during business activities as trusted or not
because their usefulness to perform business activities, not the actual usage given by
the employee. This means that some applications that could be used for malicious
purposes are not considered as such, and therefore are not properly controlled. As an
example, an application such as Excel could be used to bypass current DLP solutions
and extract information from an organization. This is described in more detail in Chapter
6.

• Advanced Mobile devices such as smartphones are not controlled by current propos-
als. Although the threat to information confidentiality of this kind of devices seems fairly
evident, there is no proposal to enforce the proper usage of these devices in an organi-
zation environment. In fact, as stated in [71], only 34% of surveyed organizations have
a mobile device security strategy defined. Additionally, the restrictions imposed by their
operating systems makes difficult to install the same kind of agents that are installed in
desktop workstations.

These drawbacks show that current proposals to fight against information leakage (or ma-
licioius insiders) are not ready to stop some attacks committed by malicious insiders. The
following Chapters of this dissertation, show the existence of these drawbacks, but also pro-
pose mechanisms to mitigate them.

Chapter 3

Steganography and Covert Channels

Hold, Hold your talk now And let them all Listen to your silence
The Ting Tings - Silence

3.1 Introduction

Steganography is the art and science that tries to hide the existence of messages [72].
Steganography shall not be confused with cryptography, which main aim is to conceal the
content of the message by performing different transformations on it, so only authorized per-
sons can read it. The use of steganography is specially suitable when there is a necessity to
hide that the communication is taking place. In this regard, cryptographic techniques are only
able to hide the content of the messages transmitted, not its existence.

Steganographic techniques were first mentioned by Herodotus [73]. He described the
story of Demaratus, an exiled Spartan who wanted to warn them about a Persian invasion led
by Xerxes. Demaratus sent a warning message to Sparta written on a wooden table covered
by wax. The message was able to pass all the guards and controls, and to safely arrive to
Sparta, enabling them to better prepare the defence.

The ability of sending secret messages can be useful for several purposes. On one hand,
in a country under a totalitarian government steganography could be used to circumvent cen-
sorship [74], and in a more general setting it could be instrumental for whistleblowers. On
the other hand, steganography can also be used to commit malicious or criminal activities. In
fact, it could be used by an employee stealing sensitive information from an organization in a
case of industrial espionage. Before transferring this valuable information, the employee may
hide it into innocuous looking documents. In this way, any security check or data leakage pre-
vention tool would not detect sensitive information leaving the organization. Steganography
can also help exchange illegal content (such as child pornography) using public resources like
web servers or P2P networks as repositories, without the knowledge of the owners of those
resources.

3.2 Principles of Steganography

The first informal model for steganography was described by Simmons [75] as the prisoners
problem. Simmons described two prisoners (Alice and Bob) who want to plot an escape plan.
As they are not in the same cell, they must communicate through a warden (Wendy), that

30 Jorge Blasco Alís

will analyze any communication between them. If Wendy ever suspects that Alice and Bob
are planning to escape she will put them into isolation cells and the escape will be frustrated.
In this scenario, Alice and Bob would not be able to use directly cryptography as messages
between them will raise suspicions on Wendy. In order to achieve their goal, Alice and Bob
should hide their messages into innocuous ones, so Wendy will see meaningless messages
between prisoners.

However, if Wendy is aware of the existence of steganography she may be able to detect
the presence of hidden messages, destroy the covert channel between Alice and Bob or even
further impersonate them. On one hand, if Wendy just checks the messages and forwards
them to its recipient, then Wendy is a passive warden. In this case, Wendy only verifies if the
message contains hidden content or not. On the other hand, if Wendy has high suspicions
of Alice and Bob planning an escape through their messages, but she is not able to obtain
proof, she may modify slightly the message contents trying to perturb the hidden information.
In this case, Wendy is an active warden. Finally, if Wendy is able to embed information into
the message in the same way Alice and Bob do, she may be able to impersonate both of
them. In this case, Wendy is a malicious warden. These scenarios must been considered
when designing steganographic algorithms, so its quality can be measured by means of the
difficulty to detect its content and the possibility that hidden information is not lost even if the
transmitted object suffers some modifications.

3.2.1 Definitions

The prisoners problem depicted by Simmons shows the different elements that take part in a
steganographic communication. These elements are formally described next (Figure 3.1).

!"#$%%&'()
*+',-.')

!

Fe

/$,0$1)

!

(M)

!

(C')

!

(K)23445.0%)

6'4$,+0$)783''$9)

/1$(.:.#;$,1) /$,0$1)

!

(M)
7.<$0)

!

(C)

=$<$39&'()
*+',-.')

!

Fr

Figure 3.1: Elements of a steganographic system

Let M be the secret message to be covertly sent. Let C be the innocuous message
(cover) used to embed the secret. Let KS be a previously shared password known by both
the sender and the recipient of the message. The embedding function, Fe(M,C,KS) = C ′,
takes as input the cover C, the secret message M and the password KS and outputs a stego-
object C ′ which looks like the original cover and should be statistically indistinguishable from
the set of all possible covers SC = C1, C2, . . . , Cn. As part of the embedding process, Fe

usually encrypts the secret message before embedding it into the cover. The stego-object
is sent to its recipient through an insecure channel that may be controlled by an adversary
(Wendy). On reception, the revealing function, Fr(C

′,KS), is applied. Fr takes as input the
stego-object C ′ and the password KS and outputs the secret message M . The cover used

3.2 Principles of Steganography 31

to transmit the message is usually discarded, as its only purpose is to transmit the message
covertly.

Besides the previously presented model, there exists a slightly modified model of stegano-
graphic system that instead of requiring a cover, automatically generate them for each secret
to hide. These systems are called steganography systems by cover synthesis [46]. These
systems do not take a cover as an input but a definition of a model of acceptable covers.
Usually, these kind of systems are able to generate covers that can hold up any amount of
information, while standard steganographic systems usually have finite capacity.

3.2.2 Desired properties for Steganographic Systems

According to the prisoners problem described by Simmons, to establish a proper covert com-
munication channel the steganographic algorithm used by Alice and Bob should posses some
desired properties. These are capacity, security and robustness.

3.2.2.1 Capacity

The capacity of a steganographic system defines the amount of practical information that can
be embedded into a cover. That is, the amount of the secret that can be hold by the cover. The
capacity of a steganographic system can be measured in terms of the ratio of bits of secret
that can be embedded per bit of cover. The capacity (or ratio) of a steganographic algorithm
can be defined then as Equation 3.1.

R(stegosystem) =
bitssecret
bitscover

(3.1)

In the case of steganographic systems by cover synthesis, bitscover shall be replaced by
bitsstego−object.

3.2.2.2 Security

All security requirements for cryptographic systems should also be considered for stegano-
graphic systems. This means that the security of the steganographic algorithm should not rely
itself on the algorithm, which should be public, but on the secrecy of the key. This restriction
does not apply only to the difficulty of recovering the embedded content without the key. In
steganography, it should not be possible to distinguish a clean cover from a stego-object if
the key is unknown. If it is possible to distinguish a cover from a stego-object, the purpose of
steganography has been defeated.

For this to happen, the modifications performed to the cover in order to embed the secret
should not modify the statistical properties (or model) of the set of possible covers. The area
that studies the security of steganographic systems is known as steganalysis. This area is
described in more detail in Section 3.5.1.

3.2.2.3 Robustness

The purpose of robustness in a steganographic algorithm is to be able to resist attacks from
active wardens. If a modification of a cover file has generated a valid cover that is supposedly
indistinguishable from a innocuous cover, the warden can introduce few modifications to that
cover creating also an undistinguishable cover. If the algorithm is not robust, the embedded

32 Jorge Blasco Alís

information will be lost. At least, and to avoid the malicious warden (who impersonates Alice
or Bob) the algorithm should be able to detect modifications to the transmitted data.

Although this property is considered as important for steganographic algorithms, the lit-
erature and research in steganography has underestimated it, as other authors acknowledge
[46].

3.3 Covert Channels

A covert channel can be defined as an already existent communication channel that allows to
inadvertently transmit information between two processes outside its original purpose [76]. Al-
though the covert channel is supposed to transmit information in such a way that its transmis-
sion is not detectable, it is possible to detect the existence of those covert channels. According
to [77], there exist several classifications for covert channels regarding its characteristics. Re-
garding the usage of storage for creating the covert channel, they can be classified in timing
or storage covert channels.

A timing covert channel can be defined as any channel that allows covert communication
by modulating the time between messages transmitted and received [78]. A hard drive could
modify the time it takes to read a block of data to transmit sensitive information to a process
installed on the host machine. In the same way, a maliciously modified keyboard could mod-
ify its response time in such a way it transmits hidden information (i.e. keys pressed) to a
malicious operating system. Network protocols such as TCP and IP [79, 80, 81] can also be
used to encode secret messages. Depending whether a packet is received or not in a spe-
cific time interval, a different bit value is transmitted. A generalization on the steganographic
possibilities of ordered channels was presented in [82].

A storage covert channel is any covert channel that involves the direct or indirect writing of
information into a storage device by a process. In this regard, most steganographic algorithms
can be used to created storage covert channels (as they produce stego-objects that will be
later sent through the network or read by another process). In fact, covert channels created by
steganographic applications allow transmission of sensitive information without leaving explicit
traces that the sensitive information has been transmitted. These kind of technologies can
be used by malicious insiders to steal information from a supposedly protected organization
rendering the insider protection mechanisms useless [70]. The easy access to these kind
of applications (hundreds of them are available on the Internet) allows non skilled malicious
insiders to use these methods to steal information, extending the possible base of suspects.

Although, eliminating the existence of covert channels is infeasible, their capacity can be
limited by normalizing or restricting the changes that can be introduced by the covert chan-
nel. In this regard, normalization techniques and active warden techniques (that may include
for example noise addition to timing protocols) can be used for such a purpose. These are
addressed in Section 3.5.4.

3.4 Steganography in Digital Media

Due to the great interest on information hiding techniques to protect intellectual property
(mostly granted by the digital content industry), steganography in images, video and audio
has been widely explored by the research community [72]. Fisk et al. [83] defined the con-
cepts of structured and unstructured carriers. A carrier specifies the feature or characteristics

3.4 Steganography in Digital Media 33

used to hide the information in the cover. In this regard, a structured carrier is defined as a
carrier which structure is well defined (XML, PDF, network protocols, etc.), while unstructured
carriers do not have a well defined structure (images, video, natural language, etc.).

Although this definition may be similar than the definition of cover, it is necessary to dis-
tinguish the concepts of cover and carrier. The cover is the object where the information is
hidden, while the carrier is the specific feature of the cover used to hide information. In fact, a
specific cover can include several kinds of carriers. As an example, within a HTML document
(the cover), information can be hidden using HTML tags (structured carrier) or the natural
language text included in the document (unstructured carrier).

The goal of this Section is to show the great amount of carriers and mechanisms that
enable the use of steganography. Therefore, there is not a deep analysis of each of the
presented techniques. However, all of them could be used (in the appropriate context) by a
malicious insider to extract information from an organization.

3.4.1 Steganography in Unstructured Carriers

Least Significant Bit (LSB) techniques are among the best known steganographic techniques
for images. These are based on hiding information into the least significant bits of covers [84].
Depending on the data representation, least significant bits can be the last bits of the RGB
composition or the last significant bits of the DCT transform, etc. The amount of information
embedded in the image generally sets the amount of distortion that results in the cover im-
age. Due to the size of image files, image steganography usually provides high capacity. A
comprehensive description of several image steganography techniques can be found in [85].

An example of steganographic system based on images that can be used for information
leakage is presented in [86]. The authors propose the usage of image steganographic algo-
rithms to create a covert channel through an image sharing website (i.e. Flickr). Authors built a
software that is capable to hide secret messages into images that are then uploaded to Flickr.
Users who want to read a secret message have just to configure a client application to access
the Flickr profile of the sender and use a pre-shared password. Images are uploaded through
HTTP connections. Although authors propose their system mainly to avoid censorship, it could
also be used to exfiltrate sensitive information from an organization network.

Audio steganography techniques allow to hide information in compressed (MP3, ACC, etc.)
or uncompressed (WAV, etc.) audio files. In this regard, the concept of LSB steganography
can be also used in the audio domain. Changing the least significant bit on each audio sample
allows to encode information without generally creating an audible difference in the audio file.
Depending on its configuration, an audio file may hold up to 44100 audio samples for every
second, making uncompressed audio a very high capacity carrier [87]. Audio steganography
can be performed also in compressed audio files like MP3s [88].

Besides image and audio, another widely used way to represent information is text. The
authors of [89], propose to embed information into the noise and errors produced by automatic
translation systems. In this way, new errors and noise detected on the steganographic text
would be attributed to the automatic translation system. Particular language and expressions
used in some contexts can be also used to introduce hidden information. As an example,
[90] proposes to take advantage of the language used on short text messages to hide secret
messages.

34 Jorge Blasco Alís

3.4.2 Steganography in Structured Carriers

Although network protocols can be used as unstructured carriers (i.e. timing channels), the
network protocol structure also allows to create covert communication channels. Fisk et al.
identified some methods to embed hidden information on TCP, UDP, ICMP or IP header fields
[83]. Fields such as options or padding could be used to insert additional hidden information.
A complete survey of structured network covert channels can be found in [91].

Games can also be considered structured carriers, as they follow a fixed set of rules. The
usage of games to create covert communications is extremely suitable due to the difficulty of
modelling the players behaviour and the fact that it is difficult at first to suspect of a game as
a covert channel. A general methodology to use games as a covert channel was described in
[92] (with an implementation for the game of Go).

Document formats such as Microsoft Word [93] and PDF files [94, 95] can also be used to
hide information. In the former article, the authors propose to actually hide information using
redundancy in the Microsoft Office 2007 document format (OOXML), which is based on XML.
Specifically, authors use unknown relationships and parts, which are elements of the OOXML
that are not shown by any Office program, but are saved and can not be modified within the
Office suite. In the latter proposal, information is embedded inside imperceptible changes on
character, word, and line spacings.

3.4.2.1 Cover generation schemes

Most steganographic systems embed the secrets to hide in redundant and not semantically
significant parts of the covers. However, there exists other kind of steganographic systems
that directly generate the cover with the secret embedded (steganographic systems by cover
synthesis). The embedding function of these systems uses a set of rules to generate the
stego-object in such a way that it is similar to the set of covers. The most relevant proposals
in this regard are in the area of text steganography. These are reviewed in Section 4.2.1.

3.5 Fighting Against the Usage of Steganography

The prisoners problem depicted by Simmons can be used to extract the main mechanisms and
techniques to fight against the usage of steganography. Specifically, most of these techniques
can be extracted from the warden behaviour of Simmons’ scenario. This is, she can try to
detect the presence of the covert channel (acting as a passive warden) or destroy it (acting as
an active warden).

3.5.1 Steganalysis

Steganalysis is the area of steganography which analyzes the security of steganographic
algorithms. It may be possible to think that the goal of steganalysis techniques is also to
extract the hidden information from stego-objects. Nevertheless, as previously mentioned,
that is not the focus of steganalysis. Steganalysis studies methods to detect whether an object
carries or not hidden information (as the passive warden in the Simmons’ model). Therefore,
in order to perform steganalysis over digital objects it is required to control the medium used
to transmit those objects [75].

3.5 Fighting Against the Usage of Steganography 35

A Steganographic algorithm is considered secure if it is not possible to distinguish stego-
objects (generated by the steganographic algorithm) from clean objects (covers with no hidden
information) with a higher probability than a random guessing [96]. Once hidden information
has been detected, the purpose of steganography has been defeated, as in the warden case,
so the algorithm is considered broken and insecure (its usage to communicate covertly would
be detectable) [46].

Depending whether the steganalysis focuses on one steganographic algorithm or just tries
to detect hidden information, steganalysis techniques can be classified as targeted or blind.
Targeted steganalysis aims to distinguish clean objects from stego-objects created with one
specific algorithm while blind steganalysis tries to distinguish if a cover hides information in-
dependently of the algorithm used to embed the information.

3.5.2 Definitions

The application of steganalysis can be described as a decision problem, in which given a spe-
cific object it is required to state if it hides a secret message or not. In the case of steganalysis,
the steganalysist is prone to two different kinds of errors:

• A steganalist may decide that a certain object does not hold secret information when the
object actually holds that secret information. This kind of error is called false negative
(Table 3.1). The probability of committing such an error is called the missing probability
β [97].

• A steganalysist may decide that a certain object holds secret information when analyz-
ing an object that does not contain any hidden information. This kind of error is called
false positive (Table 3.1). The probability of committing such error is called false positive
probability α [97].

Classified as innocuous Classified as stego-image
Innocuous True Negative False Positive
Stego-image False Negative True Positive

Table 3.1: Confusion matrix for classification decisions when performing steganalysis

Taking this into account, the detection probability can be defined as the probability of
detecting hidden information inside objects that really hold hidden information and its value
is 1 − β and it is. The goal of steganalysis techniques is to reduce both α and β, to be
able to detect as much stego-objects as possible, but without classifying innocuous objects as
steganographic ones.

However, steganalysis techniques usually do not output a binary decision, they output a
value that measures some feature in which the steganalysis is based (such as the used ca-
pacity, amount of secret bits, etc.). In these cases, a decision threshold must be defined to
establish which results will be considered as stego-objects and which not. Obviously, varia-
tions of this threshold will have a repercussion on α and β. If such is the case, ROC (Receiver
operating characteristic) curves can be used to adjust the steganalsysis decision (Figure 3.2).
These curves are used to compare the possible values of the true positive rate and the false
positive rate, depending on the decision system configuration.

36 Jorge Blasco Alís

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0,6	

0,7	

0,8	

0,9	

1	

0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	 0,7	 0,8	 0,9	 1	

Tr
ue

	 P
os
i*
ve
	 R
at
e	

False	 Posi*ve	 Rate	

Figure 3.2: Example of ROC curve

The True Positive Rate (TPR) is defined as the amount of detected true positives among
the total amount of positives (Equation 3.2).

True Positive Rate =
True Positives

True Positives+ False Negatives
(3.2)

The False Negative Rate (FNR) is defined as the amount of false negatives among the
total amount of positives (Equation 3.3).

False Negative Rate =
False Negatives

True Positives+ False Negatives
(3.3)

As a point in the ROC curve is selected (a threshold or configuration for the decision
system), TPR and FNR change, changing also α and β. Although the ROC curve can be
used to compare the behaviour of the decision system depending on its settings (threshold),
the optimum settings highly depend on the problem domain. Some problems may require to
optimize the TPR while others require a trade-off between the TPR and FNR.

3.5.3 Steganalysis in Digital Media

Blind and targeted steganalysis techniques have been greatly studied in digital images [98].
The great amount of algorithms available for image steganography has also generated a lot
of works in image steganalysis. Regarding LSB steganography, there exist several proposals
that address its detection. In [99], Fridrich et al. propose the usage of a technique called
RS Analysis. This technique allows to detect, not only the presence of hidden information,
but also its amount. Based on a similar principle, authors of [100] present another method

3.5 Fighting Against the Usage of Steganography 37

to measure the amount of hidden information. This method is named Simple Pair Analysis
(SPA). Both methods, RS Analysis and SPA are explained in more detail in Section 4.3.3.1.

Another kind of image steganalysis is performed by Bell et al. in [101]. In this case, in-
stead of performing statistical analysis of image sets, authors use the signatures generated by
steganographic software to detect stego-objects. As authors point out, steganographic algo-
rithms implementations include a series of errors that allow to detect the presence of hidden
information very easily. The main error identified by the authors is that most steganographic
software creates a new file where the cover data is copied before embedding. Instead of in-
corporating the cover file metadata, all stego-objects have the same metadata included by the
steganographic application. This allows to easily create a signature of the metadata inserted
by the steganographic application. Authors obtained a 100 % of True Positive Rate with pro-
grams such as Invisible Secrets [102], Outguess [103] and STools [104]. The True Positive
Rate for MP3Stego [88] (not an image steganographic program, but also vulnerable to this
attack) was 90%.

Audio steganalysis has also used both approaches (targeted and blind). In [105], authors
identify audio quality metrics as a statistically distinguishable feature between stego-objects
and cover audio files. Using a genetic algorithm, they were able to build a distinguisher that
told apart up to 80 % of stego-audio files. Targeted approaches such as [106] have also been
proposed, enabling in this case, to detect hidden information through the tool MP3Stego.

The security of text steganography has been addressed by studying the statistical prop-
erties of normal texts. Although tools such as NICETEXT allow to generate texts with sense,
they usually do not follow all statistical properties of natural language texts, enabling a fast
and reliable detection, as the presented in [107].

Although, previously presented techniques enable to detect different varieties of hidden
content inside different covers, most of those works are based on statistical models con-
structed using a finite set of samples. Making such generalizations from a finite set is always
a risky decisions. The selection of the finite set (for example the set of images where to hide
information) may have very important implications on the result of the decision system. This
means, that even after testing a given detector, it is not possible to ensure that its detection
rate, etc. will hold for any kind of object that passes through it. However, in most of the cases,
the usage of finite sets is the only way to provide some kind of detector for hidden information.

3.5.4 Active Warden Techniques

Active warden techniques take advantage of the low robustness of steganographic systems
(See Section 3.2.2.3). These techniques try to limit the covert channel bandwidth by normaliz-
ing it or overwriting the possible hidden information. The main issue of this kind of techniques
is how to eliminate the hidden information without changing the perception of the transmitted
object, as the purpose is to break the cover communication, but not to render the allowed
channel unusable. The most common active warden technique is to hide random information
into the transmitted message in such a way that there will be a high probability of overwriting
the original hidden message.

The process of eliminating the covert channel is also called steganographic sanitization
[70]. In 1997 Petitcolas released Stirmark [108], a tool for testing watermarking algorithms
robustness. Although Stirmark is a watermarking evaluation tool, most of the transformations
done by the software could be used as active warden attacks to steganographic systems. In
fact, any tool used to test the robustness of watermarking algorithms could be used to delete

38 Jorge Blasco Alís

steganographic content from transmitted objects. In the same context in [70], the authors
sanitized image data by overwriting all possible hiding areas of images (LSB, DCT, and DWT).
Their approach showed no visual impact on the sanitized images. The little process required
for the sanitization process (average of 175 milliseconds per image), made it suitable for use
on networks.

Nevertheless, as previously mentioned, modifications performed to transmitted objects are
limited in such a way that the object still maintains its semantic value. In [83], the authors pro-
posed the term Minimal Requisite Fidelity (MRF) to delete hidden information from structured
carriers such as TCP. MRF measures the degree of fidelity that is both acceptable for the
end user and the communication. On structured carriers MRF can be quantified, as changes
on the carrier structure may preclude the comunication (in case of network protocols) or do
not allow the document interpretation (in case of html documents or other structured docu-
ments). On images and videos (unstructured), the MRF has to be calculated through human
perception. In their work, authors identify features of TCP and IP packets that may lead to
covert communications such as the window size, packet order, source ports, padding bits,
etc. They described a sanitization process to delete the hidden information that was inside
the boundaries of the MRF for TCP, UDP and ICMP communications.

As opposite to stegangalysis techniques (passive warden), active wardens can actively
eliminate possible covert channels, thus stopping possible data leakages through stegano-
graphic algorithms. In fact, they can be applied to any file independently of being a carrier or
not. Nevertheless, parameters such as scalability, transparency, efficacy and efficiency have
to be taken into account when designing and implementing such systems in an organization
environment.

3.5.5 Computer Forensics

Outside the steganography field, Computer forensics are also used to fight and detect usage
of steganography. In this regard, researchers [109] have identified main forensic artefacts of
steganographic applications. These artefacts along forensic software such as Encase1 or The
Coroner’s Toolkit2 may allow the detection of steganography applications providing a way to
alert and even take countermeasures such as forbidding the execution of those applications.

3.6 Summary

Steganography allows to hide information into innocuous covers to establish covert communi-
cation channels. During the last years, there has been a great interest in developing stegano-
graphic techniques. In fact, as previously described, there has been extensive research in
developing steganographic algorithms for a very different variety of covers, going from the
classical images and audio covers to more “exotic” ones such as games, network packets,
etc.

However, steganalysis and active warden techniques are developed at the same time
steganography techniques are proposed. This, fosters the security of steganograhic systems,
but also can be used to avoid and detect its usage in malicious scenarios. In this regard,

1http://www.guidancesoftware.com/
2http://www.porcupine.org/forensics/tct.html

3.6 Summary 39

Chapter 5 describes a steganlysis technique that could be used to fight against the usage of
steganography (specifically applied to steganography in executable code).

Chapter 4

Attacks on ILP Systems Using
Steganography

I want to break free
I want to break free

From your lies
You’re so self satisfied

I don’t need you
Queen - I Want to Break Free

4.1 Introduction

The usage of steganography in organization environments creates a risk to the confidentiality
of sensitive information. Using steganography, this information could be hidden into innocuous
covers and extracted from the organization premises.

In fact, the usage of steganography recently reached public media coverage when a group
of spies from Russia were uncovered [110]. As the FBI report describes [111], the spies, who
infiltrated into some United States Government agencies, used a steganographic program to
conceal their intelligence reports into digital images. Those were later uploaded to public web
servers, so the Russian intelligence at Moscow could download them and extract the secret
messages (intelligence reports) after the use of a pre-shared key.

In this Chapter some steganographic techniques that could be used to bypass current
information leakage protection mechanisms are presented. Specifically, a steganographic
scheme to hide C source code and a mobile steganographic application are presented.

4.2 Steganography of source code in text

In order to avoid information leakage, one of the first policies implemented by organization is to
restrict the applications that can be executed on an insider workstation [69]. These is done by
defining a set of trusted applications that can be executed on the computer system. Any other
application not granted by the system administrator (or the DLP agent) can not be executed
or will raise an alarm. In this way, steganographic or cryptographic applications can not be
used to hide sensible information assets. Nevertheless, there exist some work environments in
which these restrictions are not feasible. As an example, programmers and software designers

42 Jorge Blasco Alís

require more flexibility, as they require to test the programs they are creating. Additionally, the
ability to create programs and execute them without restrictions offers more opportunities to
leak information without being noticed.

In this Section, a steganographic system to transform source code into text is presented.
An instantiation of this model could be used by malicious insiders to transform high valuable
source code into text to extract it from the organization. This program takes advantage of the
reduced restrictions in software designers and programmers workstations. Transformed text
can be exfiltrated, as it is not recognized as a valuable asset by the organization data leakage
protection systems. An example of such attack to extract information is the one that affected
Google and other major software companies in the US, which was named Operation Aurora
[112]. In this, compromised computers downloaded images hiding malicious programs, which
looked for source code to send it outside the organization.

The software that implements this steganographic system for the C programming language
(Csteg) has been uploaded to SourceForge.net 1. Csteg has been developed under GPLv2
license, so its source code can be modified and improved by any interested person.

4.2.1 Related Work

Although several proposals modify text structure to embed information, the most relevant pro-
posals for text steganography have been based on the concept of mimic functions [113]. Using
mimic functions, NICETEXT [114] is able to transform a secret message M into a seemingly
innocuous text T which contains sentences in natural language.

Other text steganography systems based on context-free grammars have been developed
in the past: Spammimic [115] can convert a short text message into an email Spam message.
In 2001 Marttila [116] conceived a system to hide source code inside a text generated by
a context-free grammar, but limited its use to only one cryptographic algorithm. Martilla’s
c2txt2c is very limited as it was not able to hide another cryptographic algorithm except for
Blowfish [117]. Although this system is not a really steganographic system it is based on the
same principles an could be used to create a steganographic system. In fact, this system has
been the origin of a steganographic system to hide source code presented in this thesis (See
Section 4.2).

4.2.2 General Model

The presented steganographic system is not based in the standard cover replacement mech-
anisms of steganogrpahy but on cover synthesis mechanisms such as the one presented by
Wayner [118]. This is, it does not modify a cover to embed the message, but uses a context-
free grammar to generate stego-objects (texts in this case) based on a certain input. This
approach allows hiding files of any size. Although this approach uses context-free grammars,
it is not based on the work of Wayner. Instead, the proposed model is based on the ap-
proach by Martilla [116]. In this, a grammar describing the C programming language is used
to transform source code into text.

Using context-free grammars to produce stego-text has its drawbacks. As the information
to be hidden increases, producing meaningful texts is harder. Martillas work produced a very
short amount of texts and only accepted C source code as input. Stego-texts generated by
the proposed system depend on the introduced parameters (the same secret does not always

1http://sourceforge.net/projects/csteganography

4.2 Steganography of source code in text 43

generates the same stego-text). Additionally, the proposed scheme allows to hide any kind of
source code that can be described through a context-free grammar. As in Martilla’s work, the
usage of this steganographic system is constrained to hide source code and can not hide any
other kind of file.

In this case, the steganographic system definition is not as described in Figure 3.1. The
proposed steganographic system requires three elements as input: A grammar description
(G), a plain text to use as cover (C) and a secret (S) which is a source code file (Figure 4.1):

• The grammar description G, describes grammar of the programming language to hide.

• The cover-text C, is the text that will be used as base to generate the stego-texts. In or-
der to produce meaningful stego-texts, the content of the text file should have sense and
meaning. Additionally, a cover-text can be divided in fragments C = {f1, f2, . . . , fn},
which are parts of the text that are different each other. Fragments can be selected
based on grammatical rules (words, sentences, paragraphs, etc.) or by other mecha-
nisms.

• The secret S, is the information to be hidden. It must be inside the language generated
by G. That is S ∈ L(G).

Figure 4.1: Proposed steganographic system (by cover synthesis) to hide source code into
text

The proposed steganographic system uses the plain text C and the grammar description
G to build a parser that will translate the source code into text. In this way, source code files
(secrets S) of any length can be converted into innocuous text (stego-text C ′). In order to
produce a different stego-text with the same secret, the plain text file C must be modified.

To recover the original source code, the steganographic system needs the stego-text C ′,
the same input text file C that was used to hide the source code and the grammar description
G (Figure 4.1). In this way, C is required to obtain back the original source code. During the
recovery process a grammar to translate the innocuous text C ′ into the original source code
is generated. The steganographic system and the grammar generation process is explained
in detail in the next Sections.

44 Jorge Blasco Alís

4.2.2.1 Hiding Grammar Generation

The hiding grammar is used as input to a parser generation process that will result in an exe-
cutable file. That executable file will receive as input the source code to be hidden, generating
as output the innocuous text file (stego-text). After the stego-text is generated, the executable
file can be deleted.

LetG = {ΣN ,ΣT , P, S} be a context-free grammar describing the programming language
to be hidden. ΣN = {S,N1, . . . , Nn} is the set of non terminal symbols required to form
the language. ΣT = {t1, t2, . . . , tm} is the set of terminal symbols (words) that are part of
the language (e.g in C if, else, while {, }, etc). Let P = {P1, P2, . . . , Pk} be the finite set
of productions that generate the programming language. The hiding grammar generation
process adds to each of the productions in P an output rule to be executed during the parsing
process. In this way, every time that a production is activated (when reading a source code
file to be hidden), a certain output is generated.

The cover-text file C is used to generate the output of the parsing process. The output for
each production Pi of the grammar is extracted from the cover-text file (Figure 4.2). To avoid
conflicts in the recovery process, fragments f used to produce output cannot be repeated.
Each of the fragments can be attached to a terminal symbol so it will be its output in the
stego-text. Therefore, not all kind of cover-texts C are suitable for use in the proposed stego-
system, only those with a number of fragments greater than the number of terminals in G.
This is, |C| ≥ |ΣT |. Nevertheless, is not necessary to have only one fragment per terminal
symbol. A derivation with just one terminal symbol may use more than one text fragment to
produce the output. In this case, the output for that derivation will be the concatenation of
these fragments. The resulting grammar is closely related to the programming language to be
hidden.

Figure 4.2: Hiding grammar construction

Programming languages have a high redundancy. This can be exploited to mount a
steganographic attack based on frequency analysis. To reduce the feasibility of these at-
tacks, some rules of the grammar may have different number of outputs from the text file. This
output is selected randomly between the random fragments selected from the cover-text file
(Figure 4.3). In this case, the number of required fragments in C increases. In order to se-
lect the amount of outputs per production an analysis of the programming languages to hide
should be performed. In this case, an analysis of the usage of the C programming language
has been done. It can be found in Section 4.2.3.

4.2 Steganography of source code in text 45

Figure 4.3: Random fragments in hiding grammar

4.2.2.2 Creating the Recovery Grammar

The recovery grammar is used to create a parser that will read the stego-text C ′ and output the
original source code S. In order to create the recovery grammar, the programming language
grammar G and the cover-text file C are required. In this case, fragments f extracted from the
plain text file are used as terminal symbols of the grammar. This is, usingG a new context-free
grammar is created G′ = {ΣN ,Σ

′
T , P, S} being Σ′T = {f1, f2, . . . , fj} being j the required

number of fragments for the used grammar (including terminal symbol concatenations and
random productions added in the hiding grammar). In this case, the output produced by each
of the grammar rules includes the original programming language terminal symbols (Figure
4.4).

Figure 4.4: Recovery grammar construction

If additional randomness was included in the hiding grammar, its productions would be
able generate different outputs randomly. In this case, it is also required to modify the set of
productions P of G. For each of the random outputs generated by a production Pi, it will be
necessary to add a new production in P ′. This is, if a production Pi in P included l random
outputs, l new productions {P ′i0 , . . . , P

′
il
} will have to be added. All l productions will generate

the same output (Figure 4.5).

46 Jorge Blasco Alís

Figure 4.5: Random fragments in recovery grammar

4.2.2.3 Specific Programming Languages Issues

A context-free grammar describing the programming language is not enough to build stego-
text files. Source code is usually split into different files. Some programming languages, like C
and C++, may include preprocessor directives in their code. All these must be processed be-
fore the parsing process starts. Each programming language may need different approaches
to solve its specific issues. Decisions taken to solve this issue for the C programming language
are described in Section 4.2.3.1.

4.2.3 Hiding C Source Code

The previously described general stego-system has been implemented for the ANSI C pro-
gramming language. This implementation has been called Csteg. The stego-system has
been implemented using Ruby and C. Parsers are produced through Flex [119] and Bison
[120] parser generators. Cover-text files have been retrieved from Project Gutenberg2.

The description of the programming language is given in a special format that is read by
a Ruby program. The Ruby program creates the hiding and recovering grammars (G and G′)
and output rules in Flex and Bison formats. In order to create G′, terminal symbols from
from G are replaced by fragments extracted from cover-text. In the current implementation
of Csteg, a fragment can be a word, a phrase or a paragraph from the cover-text. This is,
the terminal set of G′ is composed by words phrases or paragraphs from the used cover-text.
Parser generation process is described in Figure 4.6.

4.2.3.1 Fragment Extraction

As described in Figures 4.3 and 4.5 the fragments in the cover-text are extracted in order to
create a hiding and recovery parser (Figure 4.6). Cover-texts used for hiding source code
require at least the same number of fragments as terminal symbols in the programming lan-
guage to hide, |C| ≥ |ΣT |. As in other programming languages, C has some structures that
may be more used than others. The frequency of appearance of these structures may lead to
a specific frequency appearance of cover-text terminal symbols.

2http://www.gutenberg.org - Accessed on April 7th 2012

4.2 Steganography of source code in text 47

Figure 4.6: Parser generation process

To hinder frequency-based steganalysis, random derivations have been added for the
most used C structures. To select the productions to be randomized, an analysis of the most
used structures of a group of C source code files with cryptographic purposes has been per-
formed. Depending on the source code files to be hidden, a new source code analysis may
be required. Files have been gathered from different sources including the “eStream Project”
[121], and “Applied Cryptography” [122]. The overall number of C source code files used
is 414. Measures have been made with tools taken from [123]. Comments have not been
accounted.

Token type Appearance in %
Punctuation mark 51,59
Identifier 30,02
Numerical literal 11,63
Reserved word 4,77
String literal 1,29
Preprocessor directive 0,7

Table 4.1: Frequency of C tokens in cryptographic software

Tests (Table 4.1) show that most of the terminal symbols in the analyzed source code files
are punctuation marks (comma, plus, minus, parenthesis, etc.). Identifiers and literals are
very used too. These kinds of tokens cannot be hidden simply by a grammar substitution.
Specific hiding strategies for these are described later. Reserved words appear in less than
5 % of the tokens (if, else, while, int, char, etc.). Preprocessor directives occurrence is not
significant, only 0.7 %. The frequency of punctuation marks and reserved words has been
further analyzed.

Inside the punctuation mark terminal symbol set (Table 4.2), comma (“,”) is the most used
punctuation token (nearly 21 % of the punctuation tokens are commas). As the comma, semi-
colon and parenthesis are the most repeated punctuation tokens. Equals symbol and square
brackets have a percentage of appearance above 5 %. The rest of 49 different punctuation to-
kens do not have a frequency of appearance greater than 3 %, having 40 of them a frequency
less than 1 %.

Additionally, the most used reserved word in the analyzed source code is the “if” clause
(Table 4.3). Also, the most used data types are integers and characters.

The performed analysis shows that inside each group of possible tokens (punctuators and

48 Jorge Blasco Alís

Token Frequency Token Frequency
, 21,52 -> 2,05
; 13,21 . 1,82
(12 * 1,73
) 12 | 1,34
= 5,41 # 1,19
] 4,8 v++ 1,11
[4,8 + 1
{ 2,21 *v 0,92
} 2,21 Other 10,68

Table 4.2: Frequency of punctuation mark tokens in cryptographic software

Word Frequency Word Frequency
if 14,84 static 2,93
int 13,79 register 2,84
unsigned 9,25 case 2,83
char 8,84 while 2,60
for 8,30 break 2,54
void 5,85 sizeof 1,54
else 5,09 extern 1,21
return 5,02 short 1,14
long 3,74 struct 0,98
const 3,49 Other 3,15

Table 4.3: Frequency of reserved words in cryptographic software

reserved words) there are only a few tokens which are commonly used. The rest of the tokens
are used rarely compared with the common tokens (Figure 4.7).

Figure 4.7: Frequency of most used tokens in the analyzed source code

4.2 Steganography of source code in text 49

To reduce the difference in the redundancy of fragments linked to most used programming
language terminal symbols, random derivations have been introduced. Each time a symbol
from a group is derived, its output will be chosen randomly from a group of cover-text frag-
ments.

Most used tokens in each of the analyzed sets have been grouped defining boundaries on
its frequency (Tables 4.2 and 4.3). For each group, a number of random cover-text derivations
has been added. The number of derivations added in a group is directly related with bound-
aries selected for that group. Four groups have been created for each set (punctuation marks
and reserved words). The highest appearance group will correspond to the one with more
random derivations. The last group will not have any random derivation on it. Groups created
for punctuation marks are shown in Table 4.4.

Group Additions Freq. gap Tokens
1 20 100%-14% ,
2 14 14%-6% ; ()

3 4 6%-2% = [] { } ->
4 1 2%-0% Other

Table 4.4: Number of random derivations per punctuation mark

The same procedure has been used for reserved words. The results are shown in Table
4.5.

Group Additions Freq. gap Tokens
1 10 100%-9% if, int,

unsigned
2 8 9%-5% char, for, void,

else, return
3 3 4%-1% long, const,

static, register,
case, while,
break, sizeof,
extern, short

4 1 (1%-0%] Other

Table 4.5: Number of random cover-text derivations per reserved word

There are elements inside the source code that can not be hidden with substitutions from
the cover-text. These elements have been hidden by using special techniques:

• Identifiers are replaced by names. Each time an identifier is found, a symbol table is
looked up. If the identifier is not in the symbol table, it is stored in it and associated
with an English name. The output in this case is the identifier concatenated with the
associated name. If the identifier is in the symbol table, nothing is added to the table
and the output produced is just the English name associated with that identifier.

• A String literal can use any kind of character. A simple Caesar cipher to hide the content
of this kind of literals has been implemented. The ciphered string will be imperceptible
inside the stego-text.

50 Jorge Blasco Alís

• Numerical literals that appear in the code are translated into “poems” with a substitution
algorithm. The digits of the literal are substituted by poem words. Each of the different
digits has ten different words to choose randomly for its substitution. Numbers hidden
this way can be in decimal, octal or hexadecimal format.

Table 4.6 shows an example of hiding a short piece of C source code into text using
sentences from the book “The First Men In The Moon” by H. G. Wells.

Source Code Generated Text

int example (){
return 46323+56743;}

In this he descended towards constantly more luminous caverns of the moon. What did that

matter now? A sort of languor had possession of my limbs and mind, I did not believe for a

moment that we should ever find the sphere in that vast desiccated wilderness. I returned

to my scenario. It was all amazingly petty, no doubt, but what was there remaining for me

to do? Whatever I did I was resolved that I would keep myself level and right side up. It was

horrible and delightful, and as wild as a nightmare, to go flying off in this fashion. James

And then, as soon as I had the door locked on them all, I tore off the little man’s clothes

again, shied them right and left, and got into bed forthwith. example Had I indeed heard a

sound? I felt the pressure of Cavor’s hand upon my arm. My grip upon Cavor’s foot became

convulsive at the sight of him, and we remained motionless and peering long after he had

passed out of our range. And at last, as I reached a little landing that was separated only by

ten steps or so from the supreme seat, the woven splendour of the music reached a climax

and ceased, and I was left naked, as it were, in that vastness, beneath the still scrutiny of

the Grand Lunar’s eyes. The silence, the rhythmic disappointment of the silence, came as

a fresh shock. He stretched out his hand for his blanket, thrust his head through its central

hole, and wrapped it about him. this is a poem:"sits truck right of mountain right of" It was

dawn, a gray dawn, rather overcast but showing here and there a long patch of greenish

gray. I tried to whisper to Cavor that I could hardly go without food much longer, but my

mouth had become too dry for whispering. this is a poem:"sadly cat green licks among" It

was dawn, a gray dawn, rather overcast but showing here and there a long patch of greenish

gray. And behold, they had smashed like wax and scattered like chaff, and fled and vanished

like the creatures of a dream! I rubbed my eyes, doubting whether we had not slept and

dreamt these things by reason of the fungus we had eaten, and suddenly discovered the

blood upon my face, and then that my shirt was sticking painfully to my shoulder and arm.

If, for example, a Selenite is destined to be a mathematician, his teachers and trainers set

out at once to that end.

Table 4.6: Example of generated text using a short piece of C source code with sentences
from “The First Men In The Moon” by H. G. Wells

4.2.3.2 Parser Generation

Terminal symbols extracted from the cover-text C = {f1, . . . , fj} along the programming lan-
guage grammar G are used to generate a parser description compatible with Flex and Bison.
Each time an operation (hiding or recovery) is performed only one parser is generated. A
hiding operation generates a C parser producing a stego-text as output. A recovery operation
generates a stego-text parser that produces C source code as output. To produce the parsers
the source code generated by Flex and Bison is compiled.

4.2 Steganography of source code in text 51

4.2.3.3 Covering Process

The generated C parser is able to parse any kind of C source code. Nevertheless, it can not
properly handle C preprocessor directives. These are not hidden but executed generating a
unique file including all the source code to be compiled. A special preprocessor has been
implemented. This preprocessor reads all the source code files involved in the hiding process
and creates an auxiliary file that will be the one passed to the parser to produce the stego-text
(Figure 4.8). The preprocessor reads the source code file and processes the preprocessor
directives. The resulting auxiliary file contains C source code but no preprocessor directives.
File inclusion directives are handled differently in comparison to an usual C preprocessor.
When the preprocessor finds an #include directive it checks if the file included is a system li-
brary (with<>) or a user library (with “ ”). System libraries are not included in the auxiliary file.
If system libraries were included the lines of code to be hidden would significantly increase.
Reference to system libraries is hidden like a string literal. On the other hand, user libraries
source code is included in the auxiliary file.

Figure 4.8: Covering process

The use of a C preprocessor means that most of the preprocessor directives included in
the code are lost in the recovery process. The hiding process will make that the recovered
source code will not be exactly the same source code that was hidden, but it will have exactly
the same functionality. Additionally, depending on the preprocessor directives found in the
source code, it may only be possible to execute it on a machine with the same architecture
and software configuration than the one used to hide the source code.

4.2.3.4 Recovering Process

The generated stego-text parser reads the stego-text files and generates C source code files
(Figure 4.9). In order to regain the functionality of the original source code, a post processing
is needed. If the preprocessed file was the result of some file inclusions, the source code files
which were included are created. This restores the original source code file structure.

Figure 4.9: Recovering process

52 Jorge Blasco Alís

4.2.4 Evaluation

An experimental evaluation has been performed on the C implementation of the presented
model. In this evaluation, the accordance of generated text to English has been measured.
Additionally, the redundancy of generated stego-texts (could be used as a detection feature)
has been analyzed.

4.2.4.1 Experimental setup

Overall, twelve experiments have been performed to test CSteg. Each consisted on the con-
cealment and the recovery of the source code of a cryptographic algorithm. Four different
algorithms (Table 4.7) have been chosen: Anubis, 3DES, IDEA and DECIM. Each of the algo-
rithms has been hidden using three different types of terminal symbols from the cover-text file
(words, phrases and paragraphs). Different books from Project Gutenberg’s repositories were
used as cover-texts.

Anubis 3Des Idea Decim
Size in Kilobytes 37.904 16.389 2.263 45.561
Files 2 2 2 6

Table 4.7: Source code file properties

4.2.4.2 Experimental Results

The size of the source code files, the generated stego-text, and the recovered source code
have been measured. The compression ratio, using bzip2, between the three sets of files has
been also compared. To measure the quality of stego-texts produced, character and digraph
frequency have been computed and compared against a reference model for English. Size of
source code refers to the sum of the size of all the source code files of the program.

The size of stego-texts generated (Figure 4.10) strongly depends on the kind of terminal
symbol selected. Stego-texts generated with words from the cover-text are (naturally) smaller
than stego-texts generated with paragraphs. Obviously, the average size of the terminal sym-
bols in the second case is bigger. The hiding process has removed all preprocessor directives
except file inclusions, which remain unchanged. Comments have been lost. These are the
reasons why the size of the recovered files (Figure 4.10) is generally smaller than the size of
the original source code files.

The capacity (or ratio) of CSteg for each of the tested files (Table 4.8) has been computed.
This can be used as a redundancy estimation. To perform this calculation the size of the stego-
object has been divided by the size of the recovered source code. The size of the original
source code has not been used because comments and some preprocessors directives from
the original source code are lost in the recovery process. The proposed stego-system, as
expected, has introduced a lot of redundancy into the stego-object.

Compression algorithms help to evaluate redundancy on files. Stego-text compression
ratio (Figure 4.11) compared with original and recovered source code files indicates again
that stego-text files have a considerable redundancy. Stego-text files generated with words
have much less redundancy than those generated with phrases and paragraphs. Differences
on the compression ratio between phrases and paragraphs are not significant. A redundancy

4.2 Steganography of source code in text 53

Figure 4.10: File size chart

Anubis 3Des Idea Decim
Words 0,120 0,146 0,182 0,231
Phrases 0,032 0,027 0,015 0,030
Paragraphs 0,007 0,006 0,003 0,009

Table 4.8: Capacity of CSteg per test

check by an attacker of the stego-text would rise suspicions. This security drawback could be
reduced by adding more random stego-text derivations. In the ideal situation the stego-text
would not have any repetition. In this case, the compression ratio would not be the same as
the source code but it would be less suspicious. Word generated stego-texts have the lower
compression ratio, but they only are a conjunction of generally meaningless words. Due to
the minimum differences between phrases and paragraphs stego-texts, it should be a better
choice the use of paragraphs to build the stego-texts.

In order to pass unnoticed to an automatic warden, generated stego-texts should (at least)
comply with the frequency distribution of characters in English. The frequency of appearance
of characters and digraphs in all stego-texts generated has been measured. Unfortunately,
distribution of letters in texts depends on the length, language, and the text itself. Frequency
of appearance of characters usually is similar between text of the same language and length,
but it can be easily manipulated, as in the case of lipograms3. Aside from these rare cases,
frequency distributions for characters and digraphs based on 235 different books from Project
Gutenberg have been constructed. This frequency distribution will not describe the frequency
that should follow any kind of text but it will give a good approximation of the characteristic
frequency distribution for texts in English.

The character and digraph frequency distribution of each kind of texts have been com-
pared against the distribution obtained from Project Gutenberg texts (Figures 4.12 and 4.13).
Frequency distribution of characters in stego-texts generated with words from a Project Guten-

3A lipogram is a text which does not use a specific letter. A notable example is “La Disparition” [124]. None of
the 300 pages contained the letter “e”. The English version, “A void”, did not include the letter “e” either

54 Jorge Blasco Alís

Figure 4.11: Compression ratio chart

Figure 4.12: Comparison of character distribution

berg book differs a lot from the reference distribution. Stego-texts with paragraphs and phrases
are much closer to the reference distribution. Digraphs frequency is consistent with this ob-
servation. Stego-texts generated with phrases and paragraphs fit better the reference digraph
distribution.

4.2.5 Summary

The proposed stego-system scheme allows to convert any kind of source code file (if the
required grammar is available) into text. The usage of this application in environments where
source code files are handled could allow malicious insiders to transform them into text in
order to inadvertently extract them from the organization. The reduced security constraints

4.3 Stegnography for Mobile Devices 55

Figure 4.13: Comparison of digrams distribution

inside programmers and software designers workstations could ease this attack.
The proposed stego-system has been implemented to hide ANSI C source code files

into text. Due to the generative nature of the stego-system, it can hide files of any length.
Nevertheless, as the size of the embedded data increases, the redundancy of the stego-text
also increases, reducing the security of the system against redundancy-based steganalysis.
Stego-texts carry the same functionality of the original source code files. Embedded files
lose comments and most of the preprocessor directives, but data lost does not change the
functionality of the recovered source code.

The generated stego-texts include meaningful text fragments. A human can find common
structures of the human language. This is an important issue that will help the stego-text to
pass unnoticed by a passive warden (a DLP solution). On the other hand, grammar parsers
are very sensitive to changes. Unfortunately, the stego-system inherits this drawback. A
change in the stego-text by an active attacker will probably cause the embedded data to be
lost.

The proposed scheme lacks of some security features that makes its real use infeasible for
an attacker that requires a minimum level of security. Additional features that would improve
the security of the proposed system would be the addition of a password to introduce more
randomness in the hiding process. The password could be used to randomize the fragment
extraction and output generation process. Additionally, the stego-system should be modified in
order to hide any kind of file, not only source code files. This constraint make its use feasible,
only in environments related to software development.

4.3 Stegnography for Mobile Devices

Research on steganographic algorithms has usually focused on algorithms development, but
not on the devices that execute those algorithms. In fact, from the point of view of the in-
formation leakage problem, there exist some restrictions that can be applied to employees
workstations that would not allow them to execute steganographic applications. In this re-

56 Jorge Blasco Alís

gard, mobile devices such as smartphones and tablets can be a new way to implement these
steganographic algorithms.

These devices have great computing capabilities and constant internet access. Addition-
ally, its popularity have spread their usage, not only as an organizational device to help in
business process, but also as a personal device. Although mobile devices include a range
of features that make them usable in organization environments, their operating systems also
pose some difficulties to avoid threats such as information leakage. In fact, it is very difficult
to control the capabilities of mobile devices depending on their context, and this may lead to
uncontrolled actions performed by their employees. As previously mentioned, from a survey of
500 organizations in the US, only the 34% of them had some kind of mobile managing system
implemented [71].

In order to prove the feasibility of using steganography in smartphones, a steganographic
application has been developed for the iOS platform4. The purpose of the application is to
prove that it is possible also to execute steganographic applications in other devices, and not
only in users’ workstations. The developed application, which is called “Hide It In” [14], is
available since December 2010 for free in the Apple App Store. Additionally, its source code
is registered in the “Comunidad de Madrid” registry for inventions and copyrighted material. It
has been downloaded more than 5.000 times with an average of more than 100 downloads
per week (Figure 4.14). The purpose of this application is to prove that it is possible to im-
plement widely used steganographic algorithms in other devices less controlled than insiders’
workstations such as mobile devices.

Figure 4.14: Weekly downloads of “Hide It In” since 25th September 2011

4http://www.apple.com/ios/ - Accessed on April 8th 2012

4.3 Stegnography for Mobile Devices 57

4.3.1 Related Work

“Hide It In” is not the only steganography application currently available for iOS devices. In this
Section, other steganographic applications for iOS devices are described. Each reviewed ap-
plication (which icons are shown in Figure 4.15) has been downloaded and tested. Although,
there exist more applications than the ones reviewed in this Section, only those that worked
during tests have been included. The results of the performed review are depicted in Table
4.9.

Figure 4.15: Icons of reviewed steganographic applications for iOS (including “Hide It In”)

iStego

This application is capable of hiding text or images into image covers [125]. For such a pur-
pose, it uses the LSB algorithm, generating a PNG image with the result. It does not encrypt
the secret to hide. Additionally, it does not perform capacity checks. If the secret does not
fit the cover, only a portion of the secret will be hidden into the cover. It only allows to hide
images inside the smartphone photo library.

Spy Pix

This application uses the LSB algorithm to hide images (from the photo library or taken with
the camera) into other images (also from the photo library or taken with the camera) [126].
Spy Pix does not encrypt the secret to embed. However, it allows to configure the amount of
least significant bits used to embed the secret. Generated secrets can be exported by email.

StegoSec

This application by Raffaele de Lorenzo is a reduced implementation of Outguess [103] ca-
pable of hiding text messages into images [127]. StegoSec hides the introduced secret into
the LSB of the discrete cosine transform coeficients. Therefore, stego-objects are generated

58 Jorge Blasco Alís

in JPEG format. In order to hide text secrets it is necessary to define a password that will be
used during the information hiding process.

CoverText

This application allows to hide text messages (up to 140 characters) into images [128]. Specif-
ically, it hides textual information into JPEG images, but does not require any password. This
means, that anyone using the application can extract the embedded text from an image.

Pixogram

Pixogram allows to hide a textual message into an image [129]. Pixogram uses a propri-
etary algorithm to embed up to 20.000 characters per image. Stego-images generated with
Pixogram are stored inside the application and can be sent using the device configured email
accounts.

iStego Spy Pix StegoSec CoverText Pixogram Hide It In
Secret Text and img. Img. Text Text Text Img.
Cover PNG Image PNG Image JPEG Image JPEG Image PNG Image PNG Image
Password No No Yes No Yes Yes
Encryption No No AES 128 - Proprietary AES 256
Export Method Email Email Email Email Email Email
Cover Mode No No No No No Yes

Table 4.9: Summary of current iOS steganographic apps and its features

4.3.2 Capabilities

The current version of “Hide It In” allows to hide images captured by the iOS device camera
inside other images from the Camera Roll of the device. Those images can be sent by mail
using any account configured in the device operating system. Currently, the application has
three modes: hiding, revealing and cover mode.

4.3.2.1 Hiding information

“Hide It In” implements a modified version of the LSB algorithm. “Hide It In” uses PNG files as
covers. Images from the camera roll are converted to JPEG before embedding. Additionally,
the cover image size is decreased to reduce its final size. If the image does not fit the selected
PNG file, a JPEG recompression is performed. These actions over the cover and image secret
are performed due to restrictions imposed by iOS devices. In the case of iOS devices, if an
image being sent through the mail application is bigger than a certain threshold (400 KB), the
device may ask the user to send a smaller version (optionally). In such a case the hidden
information is lost.

Each pixel of the PNG image used as cover is composed by three colour components and
one alpha component, each of them of one byte. The application embeds information to be
transmitted in the two least significant bits of each colour component, but does not modify the
alpha channel. This is due to compression changes made by the iOS system that may delete

4.3 Stegnography for Mobile Devices 59

the information sent in that channel. Before embedding, it encrypts the secret with AES 256.
The embedding function is described in Algorithm 1.

Algorithm 1: Embedding Function of Hide It In
Secret encryption
Data: S, secret image to be hidden; C, PNG image used as cover; P, password used

during encryption;
begin

Cover preparation
Set C← Normalize(S)
Secret preparation
Set S← Normalize(S)
Set S← JPEG(S)
while Size(S) > Capacity(C) do

Set S← ReduceJPEGQuality(S,0,75)
Set SignificantBits← 2
Set CurrentByteCover← 0
Set CurrentSecretBit← 0
Secret encryption
Set EncryptedSecret← AES256(SHA1(P), S)
Empedding process
for CurrentSecretBit < SizeInBits(S) do

If the current component is not the alpha component then
if (CurrentByteCover+1) mod 4 6= 0 then

Set CurrentSignificantBit← 0
for CurrentSignificantBit < SignificantBits do

Set Mask← 0xFF and GetBit(CurrentSecretBit,S)
Set C[CurrentByteCover]← C[CurrentByteCover] and Mask
Set CurrentSecretBit← CurrentSecretBit + 1
Set CurrentByteCover← CurrentByteCover + 1
Set CurrentSignificantBit← CurrentSignificantBit + 1

end

In order to hide an image, the user of the application is required to perform the following
steps (Figure 4.16):

• The user selects a secret taking a picture with the camera.

• The user selects a cover from his photo library.

• The user inputs a password to encrypt the secret before the embedding takes place.

• The secret is embedded into the cover.

• The user selects to send the stego-picture by mail, introducing the recipient, subject and
mail body. The stego-image is automatically attached.

If the user performs all the previous mentioned steps, she would able to send the cover
with the embedded secret to an email address outside the organization control. Now it is just
necessary to extract the information back.

60 Jorge Blasco Alís

Figure 4.16: Process followed by the user to hide an image and send it outside the organiza-
tion.

4.3.2.2 Revealing information

In order to extract the secret from the stego-image, the user has to open the stego-image
with “Hide It In”. To do so, it is just necessary to open the mail containing stego-image and
introduce the previously used password. The revealing function will first extract the least
significant bits from the three image components and then decrypt the stream of bits using
the provided password. The obtained image can be saved into the mobile phone photo library
or sent again by email. This process is depicted in Figure 4.17.

Figure 4.17: Process followed by the user to obtain back a secret image from a stego-image

4.3 Stegnography for Mobile Devices 61

4.3.2.3 Cover mode

In the case of iOS, taking a photography with the device camera forces the device to display
a view with the image the camera lens is capturing. Although this behaviour is useful for the
normal usage of the camera, it may be dangerous for an insider using their mobile phone
in an hostile environment. However, current frameworks for mobile application development
allow developers to customize the appearance of their applications. In fact, it is possible for a
developer to overlap the camera view shown to the user with a different view.

“Hide It In” includes a cover mode that allows to make pictures without showing the camera
view. To use this mode, the user has first to configure some default parameters. These include
the password to be used during encryption, a mail address to send the stego-object, a subject
and body for the email message and finally, an image that will be used as cover and also
shown instead of the camera view.

4.3.3 Evaluation

In this Section, the security of the generated stego-images and the performance of the appli-
cation are analyzed.

4.3.3.1 Security

Although the security of the LSB steganographic systems has been widely studied and they
are considered as broken [99], an analysis of the security of the proposed applications has
been performed. Steganalysis techniques try to detect whether objects hide any kind of in-
formation or are just innocuous. To evaluate the security of “Hide It In”, two different sets of
images are used, a set with hidden information (stego-images) and a set with no hidden infor-
mation. The steganalysis procedure should be able to detect stego-images with more than a
50 % of accuracy (random classification).

The performed steganalysis is based on feature extraction. That is, a set of features are
extracted from each image. Feature values are used to tell apart stego-images from innocuous
ones. These techniques are also explored in Chapter 5, but the security analyisis performed
in this Section requires to introduce them.

Image Set

Images generated with “Hide It In” are supposed to be sent through an iOS device. In the
information leakage scenario, an adversary would take a picture of some secret with her
device and try to send an email with the stego-image using the same device. In this case, the
adversary (the organization trying to avoid information leaks) would have to detect whether
the image sent with that device includes or not hidden information. Therefore, the image set
has been restricted to images taken with iOS devices (specifically an iPhone 4). The set of
images used for the security analysis is 210 of which 145 are clean images taken with the
iPhone 4 and the rest, 65, are stego-images that are used as cover, images taken with the
same device.

62 Jorge Blasco Alís

Features to analyze

Several features can be used for steganalysis. In this case, a selection of techniques that
obtained successful results with LSB algorithms has been selected. On [99], a technique
called RS Analysis to detect LSB steganography in images was presented. RS Analysis is
based on the concepts of Regular and Singular groups. Let G be a group of adjacent pixels:

G = {p1, . . . , pn}

Let f(G) be a function that measures the level of regularity or smoothness of a group of
pixels. Finally, Let F be an operation that flips the least significant bit of a pixel component.
Authors define a regular group as a group of pixels that follows the constrain:

f(F (G)) > f(G)

That is, the regularity of the group of pixels G once F has been applied is greater than the
regularity of the original group of pixels (they differ more from each other). A singular group is
defined as the opposite. That is, a group of pixels which regularity decreases after applying
F :

f(F (G)) < f(G)

Authors found out that, when flipping 50% of the LSB image pixels (which is the same
as embedding a random message in the image) the number or regular groups and singular
groups tends to balance (its difference gets reduced). Authors results stated that messages
requiring less more than 0.005 bits per pixel where detectable with RS Analyisis (for gray scale
images). Nevertheless, other results raise this limit to 0.01-0.02 bits per pixel [130]. Addition-
ally, this last study states that RS Analysis is highly sensitive to image compression. In fact,
if images to be analyzed have been previously compressed, the accuracy of the steganalysis
drops significantly.

Another technique to detect LSB steganography is Sample Pair Analysis [100]. In this,
authors state that in natural images, the probability of a pixel sample pair whose difference is
2m+1 beingm, 0 ≤ m ≤ 2b−1−2 b−1 having its even component greater or smaller than the
even component is the same. This statement is corroborated with the analysis of 29 natural
images. Most significant bits are equal (being b the amount of bits per sample). Sample pair
analysis performs very similar to RS Analysis. In fact, as authors state, both steganalysis are
based on the very similar principles and assumptions.

Both, RS Analysis and SPA have been used as features used to detect whether images
hold hidden information or not. Regarding RS Analysis, the number of R and S groups for each
of the three colour components (red, green and blue) has been calculated. This values are
used to estimate the hidden message length, and the percentage of modified bits. Additionally,
the same analysis is performed with overlapping groups. Finally, a mean of the two kind of
features provided by RS Analysis (i.e. percentage of flipped bits and estimated message
length) has been calculated. Overall, RS Analysis generates 14 features to aid in hidden
information detection.

Sample Pair Analysis also performs its analysis for each of the colour components of the
image. Sample pairs of pixels are selected across and down the image, and its difference
is measured. Assuming a distribution of differences as in [100], the message length and
percentage of embedded pixels are estimated. In the same way as in RS Analysis, the mean
of both kinds of values has been calculated. This allows to obtain 8 more features to help in
determining the existence of hidden information inside an image.

4.3 Stegnography for Mobile Devices 63

Along previously presented features, randomness tests are useful to analyze the random
behaviour of bit streams. These kind of measures are widely used to analyze the security of
cryptographic algorithms in terms of the randomness of their output [131]. The least significant
bits of each pixel component (with the exception of the Alpha component) have been used to
embed a random bit stream (the encrypted secret). Therefore, randomness tests over these
streams may produce different results when comparing to innocuous images (these streams
are supposed not to be random). For each image, 14 different bit streams are extracted.
Besides using the whole image as a bit stream itself, bit streams are also extracted from
last significant bits of each component, and a combination of these. For each bit stream, 7
different randomness measures are calculated. These measures are obtained by executing
ENT against the different generated bit streams [132]:

• Entropy: the amount of information per byte as defined by Shannon [133].

• Optimal compression ratio: the compression ratio in which the bit stream would be
compressed with an optimal compression algorithm.

• Chi-square test: a chi-square test is used to test the distribution of bytes in the bit stream
against a theoretical random distribution of bytes.

• Arithmetic mean: the bit stream is split in bytes and the arithmetic mean is calculated.

• Montecarlo π value: the bit stream is split in bytes and each set of 6 bytes is used as a
24 bit coordinate for a point. Measuring the distance of each point to the circle center
allows to calculate an approximate value of π. For random streams, the value obtained
with this method should approach to the real value of π. The error ratio for the obtained
value is also calculated.

• Serial correlation: this feature measures the relation of a byte of the bit stream with the
previous byte in the bit stream.

The combination of randomness measures with the different bit streams that can be ana-
lyzed, generates up to 98 different features. Added to the previous features, there is an overall
of 120 features.

Results

Features have been extracted and gathered in a feature file to be processed by a data mining
software (i.e. Weka [134]). Nevertheless, a visual analysis of the obtained results allows to
distinguish a set of features that alone could be used to detect images with hidden information.
In the case of “Hide It In” 62 out of 120 features can be used on their own to detect the
presence of hidden information. Table 4.10 shows a selection of them and its boundaries.

Although some general features such as the image entropy can be used to distinguish
stego-images, all features based on least significant bits of the image provide more accurate
boundaries. This is an expected result, as the least significant bit stream of each component
is supposed to be random, while the randomness of the image (or a color component) is
increased by the embedding, but can not be considered as truly random.

Features from RS analysis that perform secret length estimation produce false positives
and negatives, while those that estimate the percentage of hidden information work pretty

64 Jorge Blasco Alís

Feature Description Detection rule
Entropy Image entropy > 7,982098
Correlation Image correlation > -0,001399
ChiSquare Red Red component χ2 test ≤ 2483,09
ChiSquare Green Green component χ2 test ≤ 1968,15
Correlation Red Red component correlation ≤ -0,016456
Entropy Green Green component entropy > 7,991523
Correlation Green Green component correlation ≤ -0,018153
Entropy LSB Entropy of LSB stream of the three color

components
> 6,07

Compression LSB Compression of LSB stream of the three
color components

= 0

ChiSquare LSB χ2 test of the LSB stream of the three color
components

<= 812,4

Mean LSB Mean value (for bytes) of the LSB stream of
the three color components

> 124,6198

MonteCarlo LSB π value estimation of the LSB stream of the
three color components

≤ 3,250071205

MonteCarlo Error LSB π value error of the LSB stream of the three
color components

≤ 3,45

Ratio RSA Red No groups Amount of hidden information (in %) for
the red component with non overlapped RS
analysis

> 85,264

Ratio RSA Blue No groups Amount of hidden information (in %) for the
blue component with non overlapped RS
analysis

> 80,76514

Ratio RSA Green No groups Amount of hidden information (in %) for the
green component with non overlapped RS
analysis

> 93,30064

Ratio RSA Red groups Amount of hidden information (in %) for the
red component with overlapped RS analy-
sis

> 87,12815

Ratio RSA Blue groups Amount of hidden information (in %) for the
blue component with overlapped RS analy-
sis

> 86,96491

Ratio RSA Green groups Amount of hidden information (in %) for the
green component with overlapped RS anal-
ysis

> 86,25562

Mean Ratios RSA Mean value of previous RS analysis values > 89,80835

Table 4.10: Features that can be used on their own to detect “Hide It In” stego-images includ-
ing its required detection boundary

4.3 Stegnography for Mobile Devices 65

Classified as innocuous Classified as stego-image
Innocuous 111 3
Stego-image 1 64

Table 4.11: Confusion matrix for the stego-image classifier based on SP analysis features

well. In fact, each of them can be used on its own to identify stego-images (Table 4.10 rows
14 to 21).

Surprisingly, none of the features extracted using Simple Pair Analysis can be uniquely
used to detect stego-images. A C4.5 tree [135] has been build using this kind of features. The
well known Weka data mining software has been used [134]. The resulting classifier has been
tested using cross validation. The obtained tree is represented in Figure 4.18.

Figure 4.18: C4.5 classifier built (using Weka) with Simple Pair steganalysis features

The obtained classifier has a true positive rate of TPR = 0.985 and a false positive rate
of FPR = 0.026, being its confusion matrix the one represented in Table 4.11. Although the
resulting classifier is accurate, simpler classifiers obtained with randomness features obtain
better results.

4.3.3.2 Performance

One of the goals of this work is to prove that steganographic algorithms can be implemented
and executed in a reasonable time in a mobile device. For such a purpose, a performance
evaluation of “Hide It In” has been performed.

In order to test the performance of the application, the standard behaviour of the applica-
tion has been modified. Instead of hiding only one picture per execution, it performs 65 hiding
operations with the same secret, but different passwords. Overall, ten executions with different
secret bit streams have been performed. Tests have been conducted on an iPhone 4 (which
includes an A4 1 Ghz processor and 515 MB of RAM). Measures have been obtained trough
“Instruments”, an application provided by Apple to profile the software performance and other
related metrics. All tests were directly run on the device.

The performance of the whole process has been measured in terms of time. The amount
of time required to obtain the stego-image from the cover, secret and password is measured by

66 Jorge Blasco Alís

the overall hiding time. This time is more deeply analyzed in the next paragraphs. The hiding
process generates stego-images as programming language objects in the system memory. In
order to write them into the file system, it is required to obtain its PNG representation. This
time has also been measured. Finally, the time required to write the stego-image to the file
system has been measured. The time required by the smartphone in each of the previous
mentioned steps (for each run) is shown in Figure 4.19.

Figure 4.19: Distribution of the mean execution time required to create an stego-image in ten
runs of the performed tests

The mean times required for each phase are depicted in Table 4.12. The first thing to
notice is that the time required to complete one stego-image generation is in mean less than
two seconds. This is a reasonable amount of time for a smartphone and is also consistent with
responsiveness restrictions imposed by the operating system (5 seconds). Additionally, the
time to write the image into the device is negligible. This is probably because the small amount
of data to be written in the device and the fact that the storage device is a flash drive (much
faster than standard hard drives). The time required to prepare the stego-image to be written
in PNG format is less (in mean) than 250 ms. This is the approximately the 14,56 % of the
time spent during the whole process. However, the current implementation of the application
does not focus on performance. This is a good result. Even when the software development
has not focused on performance, the execution time results show that it is feasible to use the
application in a reasonable time.

Execution phase Mean time required in milliseconds Ratio in %
Overall hiding 1401 ms 85,20 %
Stego-image writing preparation 239 ms 14,56 %
Stego-image writing 4 ms 0,24 %

Table 4.12: Overall time required to hide an image and store the resulting file in the device
filesystem

4.3 Stegnography for Mobile Devices 67

Additionally, the performance of the secret hiding process has been analyzed. In this case,
the time required to hide a secret has been divided into different phases according the tasks
required by the hiding algorithm:

• The secret preparation time is the time required to prepare the secret, to be hidden. This
includes an image resize to reduce the file size and a compression in JPEG format. As
mentioned earlier, more than one JPEG compressions may be required in order to fit
the secret into the cover. In performed tests, all images selected as secrets were able
to fit all the covers.

• The cover preparation time is the time required to resize the cover to its final image size.
Additionally, this includes also the byte extraction from the image object.

• The AES encryption time accounts the amount of time used to encrypt the whole secret
using a randomly provided key.

• The secret embedding time measures the time required to embed the encrypted secret
into the normalized cover object.

• The stego-image preparation time accounts the amount of time required to create the
image object after the embedding has taken place. In the performed tests, this time is
negligible.

• The logging time measures the time the system has spent with logging messages while
performing tests.

Figure 4.20 shows average percentage of time spent by each of the previous defined
phases in while hiding a secret into an image. Of all the time required to hide a secret into
a cover, more than 50 % of that time is spent in cover and secret preparations. If this check
was not performed by the operating system, these steps would be skipped, but additional time
would be spent in embedding more information in a greater cover.

Table 4.13 shows the average amount of time spent in each of the previous defined phases
to hide one secret. Time required to prepare the secret is the highest, as additional compres-
sions may be performed in the secret image to reduce its size to fit the cover.

Execution phase Mean time required in milliseconds
Secret preparation 460 ms
Cover preparation 308 ms
AES encryption 10 ms
Secret embedding 603 ms
Stego-image preparation 0 ms
Logging 1 ms

Table 4.13: Detailed (by phase) view of the mean time required to embed a secret and produce
a stego-image object

68 Jorge Blasco Alís

Figure 4.20: Detailed distribution of the time required to create an stego-image in ten runs of
the performed tests

4.3.4 Summary

“Hide It In” is an application developed for iOS devices that allows to embed images into in-
nocuous ones to send them by email. Its current version allows to hide pictures taken with the
device camera up to 135 KB. If the size of the picture is greater the image is recompressed
with JPEG. Performance tests show that executing steganographic applications in mobile de-
vices is feasible and can be done in a reasonable time. Even further, some programming APIs
allow to covertly take images with the camera, hindering the detection of malicious usage of
the devices. Additionally, the difficulties to manage the mobile devices of the whole organiza-
tion (along the personal devices) makes this kind of devices very difficult to control. This can
led into the usage of mobile devices as a new leakage vector inside organizations.

However, the steganographic algorithm implemented in “Hide It In” is not secure. This
means, that detection mechanisms could be incorporated into the organization infrastructure
to detect (with high accuracy) the transmission of stego-images created with this software.
The feasibility of incorporating these mechanisms is not inside the scope of this PhD, but it is
an issue that should be taken into account to continue this research line. Note that “Hide It I”
is only a proof of concept. In fact, the steganographic algorithm provided by “Hide It In” can
be modified to improve its security. New performance tests and security analysis should be
performed in this case.

4.3 Stegnography for Mobile Devices 69

4.3.4.1 Improvements

The current version of “Hide It In” demonstrates that it is possible to implement usable stegano-
graphic applications in new devices such as smartphones with a reasonable performance.
Nevertheless, some of the features offered by the current version should be improved:

• Improve the security of the steganographic algorithm: Although the current version of
the application is a proof of concept tool to demonstrate the feasibility of using steganog-
raphy in smartphones, the security of the steganographic algorithm should be improved.
This could be achieved implementing more secure steganographic algorithm proposals
or by designing a new one.

• Increase the amount of data to hide: Incrementing the amount of information to be
hidden in each image would reduce the security of the stego-system. Therefore, in order
to increase the amount of information to be hidden, more images would be required as
cover. Once a user selects the secret, the number of images required to hide that secret
would have to be selected by the user. Once all the embedding has been performed, the
user would be able to send all the stego-images by mail. When recovering the secret,
the user would have to select all the images (stego-images) that contain a part of the
secret.

• Allow to hide other file types: The current version of the application only allows to hide
images taken from the camera. However, the current embedding and revealing functions
do not constraint the kind of file that can be embedded inside an image. In this regard,
it could be possible to allow the application to use other file types such as PDF, Word
documents, spreadsheets, etc. as secrets.

• Use new leakage vectors: In the current version of the application the only option to
extract the secret from the organization is by sending an email (or by keeping the image
in the phone). New options to extract the message from the organization such as posting
to social networks could be implemented. In addition to this, new phone capabilities
such as cloud synchronization could allow to automatically extract the image from the
organization.

Chapter 5

Detecting the Usage of
Steganography to Avoid Information
Leakage

You hid there last time
You know we’re gonna find you

Sick in the car seat,
Cause you’re not up to going

Out on the main streets,
Completing your mission

Two Door Cinema Club - Undercover Martyn

5.1 Introduction

Chapter 4 describes steganographic techniques that can be used to hide sensitive informa-
tion into digital media objects. Current DLP solutions analyze network traffic (also known as
data in motion) or files being used at workstations (also known as data at rest and data in
use) to detect sensitive data [69]. In this way, if sensitive information is detected being trans-
mitted outside the organization control (through a leakage vector), an alert is raised and the
information transmission is stopped.

However, as shown in Chapter 2, techniques to identify and classify information allow
DLP solutions only to track information that can be read explicitly. In fact, if information is
transformed in such a way that it is not recognized as sensitive, leakage prevention mecha-
nisms cannot prevent its transmission outside the organization. If the malicious insider uses
steganography or trusted applications to perform those changes she will hinder the detectabil-
ity and traceability of her attack (Chapters 4 and 6 [14, 13]). Therefore, steganalysis tech-
niques have to be developed, not only to study and improve the security of steganographic
algorithms, but also to provide mechanisms to detect its malicious usage.

In the case of organizations holding sensitive information, steganalysis techniques could
be implemented at both network and workstation level. Besides analyzing data looking for sen-
sitive information, data would be checked with the implemented steganalyzers (distinguishers)
to detect the existence of hidden information. In this case, any file transmission that includes
a piece of information that is detected by a steganographic distinguishers as suspicious of

72 Jorge Blasco Alís

having hidden information should be interrupted, logged into the system and deeply analyzed
before allowing its final transmission.

In this Chapter, a detector for a steganographic algorithm called Hydan is proposed. This
embeds secret information into binary executable files. Although implementing distinguish-
ers can serve as a tool to avoid the extraction of hidden information through the usage of
steganography [52], false positives have a negative effect on employees’ productivity. In this
regard, active warden techniques, that try to eliminate or reduce the bandwidth of covert
channels created by means of steganography, can serve to reduce the amount of sensitive
information that can be covertly transmitted without reducing the employee workload due to
false positives. In this Chapter, an active warden technique to avoid the usage of steganog-
raphy over HTTP is presented [16]. This proposal could be easily adapted to other network
protocols if required.

5.2 Steganalysis of Hydan

Hydan is a steganographic tool which embeds messages into executable files [136]. Stego-
objects generated with Hydan have exactly the same functionality and same size as the origi-
nal program. This allows embedding information in commonly used programs without raising
suspicions regarding its functionality or size. As CSteg, this program could be used to extract
sensitive information in software development environments (where system and security re-
strictions are softened). In this Section a steganalysis of Hydan is presented. The proposed
steganalysis is able to tell apart files that hold hidden information through the use of Hydan.

5.2.1 Previous Work

Hydan [136] is the first documented tool and scheme that directly uses executable files as
covers. Previously, other techniques have been used to insert hidden information into source
code files. The goal of these was only to watermark source code files for copyright protec-
tion purposes. Source code watermarking techniques involve access to source code, where
programmers insert copyright marks and integrity checks right inside their code. Information
inserted in this way can be used to prove the integrity and authorship of the program [137].

Besides Hydan, other works have also addressed steganography techniques to secretly
embed information inside executable files [138, 139]. In [138], the authors identify four different
executable code modification techniques that could be used to embed secret information.
Instruction Selection consists in replacing some of the instructions in the executable file for
others with the same functionality. Depending on the instructions selected, a different value
can be encoded. This approach is similar to the one used by Hydan to embed information.
Register Allocation modifies the registers used by some instructions to embed information
in the same way. Instruction Scheduling consists in changing the order of non-dependant
instructions. In this case, the information is embedded on the order of those non-dependant
instructions. Finally, Code Layout uses the order of big blocks of instructions (functions, etc.)
to embed information. All executable code modifications are done in such a way that the
resulting code still retains the exact same functionality.

The authors implemented all the proposed techniques in a tool called Stilo. A steganalysis
of Stilo is proposed in the same paper based on a concept named Code Transformation Sig-
nature, which is defined as the set of characteristics that can be used to detect the presence of
hidden information into Stilo executable files. The authors described the Code Transformation

5.2 Steganalysis of Hydan 73

Signatures for Stilo and proposed a group of countermeasures to avoid them. The authors
also mentioned Hydan, but they did not perform a steganalysis nor reveal the corresponding
Code Transformation Signatures. In this Chapter, the main properties (its Code Transforma-
tion Signatures) that can be used to detect executable-files with hidden information through
Hydan are described. Based on those properties, a very efficient distinguisher is proposed.

Apart from this work, authors of [139] propose to hide information in special sections of
Windows Portable Executable files. In their work, Shin et al. proposed the usage of the “.text”
section of an executable file to embed as much information as required. This section, which is
where the program code is hold, is modified to hold as much information as demanded (mod-
ifying also the pointers that point to the beginning of the real code). Although this approach
allows to embed as much information as required, it does not provide any kind of security, as
file size will increase exactly with the size of the secret.

5.2.2 Basics of Hydan

Hydan uses the “redundancy” on the instructions sets of executable files to introduce hidden
information. Specifically, Hydan uses the concept of functionality-equivalent instructions. A
set of functionality-equivalent instructions is a group of instructions in which any instruction of
the group can be replaced by other without loss of functionality.

Consider two instructions Ia and Ib which operate over certain registers or memory ad-
dresses (input), producing a change of state on any of them (output). Let be xi the input to
a given instruction (register, literal or memory address) and let F (I,X = {x1, x2, . . . , xn})
be the result over X of executing the assembler instruction I over X. Therefore, two instruc-
tions Ia and Ib are functionally equivalent, if F (Ia, X = {x1, x2, . . . , xn}) = F (Ib, X

′) being
X ′ = {f1(x1), f2(x2), . . . , fn(xn)} and fi are a functions that modify the value of xi. There-
fore, {I1, I2, . . . , In} is a set of functionality-equivalent instructions if F (I1, X) = F (I2, X

′) =
. . . = F (In, X

′n).
For example, to add a certain amount to a specific register it is possible to use add, r1, 8

or , equivalently, use sub, r1, -8. In this case, the add instruction could encode the bit value 0,
and the sub instruction may encode the bit value 1. Depending on the size of the functionality-
equivalent instructions sets it is possible to encode more than one bit with one instruction. A
set of four functionality-equivalent instructions would allow to codify 2 bits (00, 01, 10 and 11).
Generally, with a set of n equivalent instructions it would be possible to encode blog2(n)c bits.
Table 5.1 describes the functionality-equivalent instructions groups and number of instructions
in each of the groups for the x86 set, which is the most common and the one used by Hydan.

The embedding process of Hydan is done in two steps. First step encrypts the message to
be hidden using AES or Blowfish with a password provided by the user. In the second step, the
encrypted message is embedded into the executable file. Specifically, Hydan works as follows:
Once the message has been encrypted, Hydan searches for possible places to introduce
information. Then, Hydan generates a random number seeded with the password entered by
the user. This number is used to select which of the selected places of the executable file
will be used to hide the information. With this mechanism, the password will be needed to
recover the data and different passwords will lead to different placements of the embedded
information. The recovery process first extracts the encrypted message from the executable
file. Then, the message is decrypted using the provided password.

With Hydan, it is possible to embed (on average) 1 bit of information per 110 bits of exe-
cutable code (RHydan = 1/110). In fact, it is possible to embed different ratios of information,

74 Jorge Blasco Alís

Group N. Inst. Group N. Inst. Group N. Inst.
toac8 5 toac32 5 rrcmp8 2

rrcmp32 2 toasxc8 7 toasxc32 6
addsub8 2 addsub8-2 2 addsub32-1 2

addsub32-2 2 addsub32-3 2 xorsub8 4
xorsub32 4 add8 2 add32 2

adc8 2 adc32 2 and8 2
cmp8 2 cmp32 2 mov8 2
mov32 2 or8 2 or32 2
sbb8 2 sbb32 2 sub8 2

sub32 2 xor8 2 xor32 2
and32 2

Table 5.1: Groups of functionality-equivalent instructions used in Hydan and number of in-
structions in each set

but El-Khalil proposed the specified one as the better trade-off between security and capacity
[136].

Hydan changes perceptibly the content of the executable files with hidden information.
Therefore, if these changes lead to a specific signature, it could be possible to build a system
that is able to distinguish a Hydan executable file from any other executable file. This signature
may be shown in many different ways. Next Section discusses the possible methods to detect
a Hydan modified executable and proposes a very efficient distinguisher to detect a Hydan
covert-channel.

5.2.3 Steganalysis of Hydan

Changes introduced by Hydan into assembler code can modify different properties of the
original executable file. Hydan does not change the size of the stego-object, but it changes
the code itself. If the original program is available it will be possible to check through integrity
checks (CRCs [140], hash functions [141], etc.) if the executable file has been modified, but
these cannot be used as proof of the existence embedded information. Other properties such
as execution time, flag activation and copyright marks checks, can prove that executable code
has been modified, but again cannot be used as proof of the existence embedded information.

However, most compilers often produce similar sets of instructions. Thus, if a compiler has
to select between two instructions with the same functionality it will usually select the same
instruction. This property of most compilers allows building a profile of clean applications
based on the probability distribution of instructions inside clean programs. Changes made
by Hydan may lead to another probability distribution of instructions. If these changes can
be profiled and generalized, it would be possible to detect if an executable file has hidden
information. The proposed steganalysis of Hydan is based on this approach.

The performed steganalysis has resulted in a distinguisher that is able to detect executable
files with embedded information through Hydan. To construct this distinguisher, first a statis-
tical model of clean executable files has been built 5.2.3.1. Then, a set of concealment oper-
ations has been performed in a variety of executable files. In order to build the distinguisher,
the main differences between the set of clean executables and the set of Hydan modified
executables have been analyzed 5.2.4.

5.2 Steganalysis of Hydan 75

5.2.3.1 Statistical Analysis of Clean Executable Files

The proposed distinguisher is based on the presence of unusual sets of instructions on exe-
cutable files. A statistical analysis of a set of 1261 clean executable files has been performed.
These executable files have been retrieved from /usr/bin and /usr/sbin of an Ubuntu x86 distri-
bution. Figure 5.1 shows the frequency distribution of the functionality-equivalent instructions
sets for the set of analyzed files. This distribution specifies the probability for a random in-
struction to belong to a functionality-equivalent instruction set. Depending on this distribution,
the bandwidth of the covert channel offered by an executable may differ a lot. The bigger is
the proportion of instructions belonging to a big set of functionality-equivalent instructions, the
bigger will be the information Hydan is able to hide.

��

��

���

���

���

���

���

���

��
�
�
�

��
�
��
�
�

��
�

�

��
�

�
�
�

��
�
��
�
�

��
�
��
��
�
�

�
�
�
��
�

��
�

�
�
�
��
�

��
�

�
�
�
��
�
�
�
��
�

�
�
�
��
�
�
�
��
�

�
�
�
��
�
�
�
��
�

��
��
�
�

�

��
��
�
�
�
�
�

�
�
�

�

�
�
�
�
�
�

�
�
�
�

�
�
�

�

�
�
�
�
�
�

�

�

�

�
�
�

�
�

�

�
�
�
�
�

�
�
�

�
��
�
�

��
�

�

��
�
�
�
�

��
�

�

��
�
�
�
�

��
�
�

��
��
�
�

�
��
�
�
�
�
��
��
�
�#
�

��������	����������	��������������������

Figure 5.1: Frequency distribution of functionality-equivalent instructions sets

The performed analysis shows that all the functionality-equivalent sets of instructions are
present in the analyzed test files. Nevertheless, most of the instructions found on the ana-
lyzed files belong to a small group of functionality-equivalent instructions sets. Therefore, the
capacity of the covert channel depends on the capacity of these commonly used sets (Figure
5.1). In order to build the distinguisher statistical model, the distribution of instructions inside
each of the most frequent functionality-equivalent instructions sets has been analyzed. In this
case, all executable files are treated as a single executable in which the appearance of the
different instructions belonging to each set are analyzed.

One of the most used functionality-equivalent instructions sets is toac32. This set includes
five different instructions. Thus, it can encode blog2(5)c = b2, 32c = 2 bits. Frequency distri-
bution of instructions inside the set is shown in Figure 5.2. Results obtained in the frequency
analysis of this instruction set have been gathered in Table 5.2. In all analyzed files, only one
instruction of this set was used. In this case, a variation of the distribution of instructions within

76 Jorge Blasco Alís

Instruction Frequency
test r/m32, r32 100,0%
or r/m32, r32 0,0%
or r32, r/m32 0,0%
and r/m32, r32 0,0%
and r32, r/m32 0,0%

Table 5.2: Frequency distribution of instructions on toac32 set

this set would be easily detected.

0�

10�

20�

30�

40�

50�

60�

70�

80�

90�

100

test r/m 32, r32� or r/m 32, r32� or r32, r/m32� and r/m32, r32� and r32, r/m32�

F
re

q
u
e
n
c
y
 i
n
 %
�

Instructions�

Figure 5.2: Frequency distribution of instructions on the toac32 set

For each of the remaining sets of equivalent functions, the frequency distribution of its
instructions has been computed (as in the 5.2 set). Once the frequency distribution model
for each of the sets has been obtained, the proportion of instructions per set in each of the
executable files has also been computed. Each of the proportions computed for each file and
functionality-equivalent instructions set has been compared using a chi-square statistic (χ2)
against the frequency distribution of that functionality-equivalent instructions set calculated for
all the files. For each of the functionality-equivalent instructions sets the average χ2 statistic
(Equation 5.1) has been calculated.

Averagesetj =

n∑
i=0

χ2
filei

n
(5.1)

Where setj is a functionality-equivalent instructions set, and filei is the ith file on the

5.2 Steganalysis of Hydan 77

executable file set. Figure 5.3 shows the average χ2 for all the functionality-equivalent instruc-
tions sets. For most of the equivalent instructions sets, the distribution of its instructions has
remained constant in all the executable files. Thus, its average chi-square is 0. Functionality-
equivalent instructions sets with higher average value indicate that the frequency distribution
of that sets has more variability between executable files. Figure 5.3 shows six functionality-
equivalent instructions sets that suffer lots of variability on the distribution of its instructions
depending on the executable file.

Differences introduced by Hydan will change the frequency distribution of instructions in-
side each of the functionality-equivalent instructions sets. Comparing the new instruction dis-
tributions obtained against the reference distributions for each of the functionality-equivalent
instructions sets will allow to determine if information has been embedded into the executable
file. In fact, these will show very easily in those sets in which only one instruction was used
across the set of clean executable files.

��

"�

���

�"�

 ��

��
�
�#
�

��
�
�!

�

��
�

�
#
�

��
�

�
!

�

��
�
��
�#
�

��
�
��
�!

�

�
�
�
��
�
#
��
�

�
�
�
��
�
#
�
�

�
�
�
��
�
!

��
�

�
�
�
��
�
!

�
�

�
�
�
��
�
!

�!
�

��
��
�
�
#
�

��
��
�
�
!

�

�
�
�
#
�

�
�
�
!

�

�
�
�#
�

�
�
�
#
�

�
�
�
!

�

�
�
#
�

�
�
!

�

�
�
#
�

�
�
!

�

�
�#
�

�
�!

�

��
�
#
�

��
�
!

�

��
�
#
�

��
�
!

�

��
�#
�

��
�!

�

�
�
�
��
	
�
��

��
��
�
�
��
��
�
��
�
�

��

Figure 5.3: Average chi-square statistic for each of the functionality-equivalent instructions
sets

This can be easily seen through an example. Figure 5.4 represents the differences, in
terms of a χ2 statistic, on the frequency distribution of each functionality-equivalent instruction
set of the apt-get executable file with no embedded information. Differences obtained are
consistent with the average shown in Figure 5.3.

Inserting information into this executable file modifies the frequency distribution of instruc-
tions inside some of the sets of equivalent instructions. Figure 5.5 represents differences, in
terms of a χ2 statistic, on the distribution of instructions inside each of the equivalent instruc-
tions sets of the apt-get executable with embedded information.

The frequency distribution of instructions inside the functionality equivalent instruction sets
that highly variates between clean files has also offered high chi-square values, as in the
reference (Figure 5.3) and clean file comparison (Figure 5.4). Nevertheless, distributions of

78 Jorge Blasco Alís

��

 ��

"��

#��

$��

����

� ��

�"��

�#��

�$��

��
�
�$
�

��
�
�!

�

��
��

�
$
�

��
��

�
!

�

��
�
��
�$
�

��
�
��
�!

�

�
�
�
��
�
$
��
�

�
�
�
��
�
$
�
�

�
�
�
��
�
!

��
�

�
�
�
��
�
!

�
�

�
�
�
��
�
!

�!
�

��
��
�
�
$
�

��
��
�
�
!

�

�
�
�
$
�

�
�
�
!

�

�
�
�$
�

�

�
$
�

�

�
!

�

��
�
$
�

��
�
!

�

�
�
�
$
�

�
�
�
!

�

�
�$
�

�
�!

�

��
�
$
�

��
�
!

�

��
�
$
�

��
�
!

�

��
�$
�

��
�!

�

�
	

�
��
�
�
��
��
�
��
�
�

�������
������
������
�������������

Figure 5.4: Chi-square statistics for each of the equivalent instructions sets in apt-get

0�

20�

40�

60�

80�

100�

120�

140�

160

to
a
c
8
�

to
a
c
3
2
�

rr
c
m

p
8
�

rr
c
m

p
3
2
�

to
a

s
c
x
8
�

to
a
s
c
x
3
2
�

a
d
d
s
u
b
8
-1
�

a
d
d
s
u
b
8
-2
�

a
d
d
s
u
b
3
2
-1
�

a
d
d
s
u
b
3
2
-2
�

a
d
d
s
u
b
3
2
-3
�

x
o
rs

u
b
8
�

x
o
rs

u
b
3
2
�

a
d
d
8
�

a
d
d
3
2
�

a
d
c
8
�

a
n
d
8
�

a
n
d
3
2
�

c
m

p
8
�

c
m

p
3
2
�

m
o
v
8
�

m
o
v
3
2
�

o
r8
�

o
r3

2
�

s
b
b
8
�

s
b
b
3
2
�

s
u
b
8
�

s
u
b
3
2
�

x
o
r8
�

x
o
r3

2
�

C
h
i-
s
q
u
a
re

 v
a
lu

e
�

Functionality-equivalent instruction sets�

Figure 5.5: Chi-square values for each of the equivalent instruction sets in apt-get with hidden
information

some functionality-equivalent instructions sets have changed and its chi-square has increased

5.2 Steganalysis of Hydan 79

comparing it with the reference comparison (Figure 5.3) and the previous chi-square value
(Figure 5.4), which was 0.

The same procedure has been performed with all the executable files, obtaining for each
set a model of the frequency distribution of that set. This allows to establish which distribu-
tions of instructions inside functionality-equivalent instruction sets remain constant between
different clean executable files. These results have been used to build our distinguisher which
is explained in the next Section.

5.2.4 Distinguisher Design

The proposed distinguisher measures the changes on the distribution of instructions inside
a selection of functionality-equivalent instructions sets. These measures have been made in
terms of a χ2 statistic against the reference distribution for each of the selected functionality-
equivalent instructions sets. Functionality-equivalent instructions sets with high variability of
instruction distribution between clean files have not been selected in the calculations of the
distinguisher value. High variability may elevate the result offered by the distinguisher, produc-
ing false positives (marking some clean files as stego-objects). The distinguisher only uses
the functionality-equivalent instructions sets which its average chi-square value is 0, as calcu-
lated in Equation 5.1. Therefore, 8 sets of functionality-equivalent instructions are not used:
toac8, rrcmp32, addsub8, addsub8-2, addsub32-1, addsub32-2, addsub32-3 and xorsub8.
Mathematically, the value obtained with the proposed detector is expressed in Equation 5.2.

D(file) =
n∑

i=0

χ2
instruction seti (5.2)

Where n is the number of sets of functionality-equivalent instructions whose average chi-
square value is 0. A detection threshold that maximizes the detection rate while minimizing the
false positive rate has to be defined. for that purpose, the results the detector offers from three
sets of files; 1) a set of clean files, 2) a set of files with embedded information using a 40 % of
its capacity and 3) a set of files with embedded information using an 80 % of its capacity; has
been calculated. Each set consisted on 1063 executable files. Mean and standard deviation
of values obtained by the detector for the three sets have been used to stablish the detection
threshold. Results obtained are shown in Table 5.3.

Distinguisher Clean Hidden at 40% Hidden at 80%
Mean 0,000604 151,254608 299,039886
Standard Deviation 0,024571 12,298561 17,292770

Table 5.3: Distinguisher results for different sets of executable files

The threshold of the distinguisher has been established as the addition of the mean and
the standard deviation of the clean files set. When a file offers a value above the expected
mean and standard deviation it is marked as a stego-object. The threshold of the distinguisher
is described in Equation 5.3.

T = Meanclean + T.Deviationclean = 0, 000604 + 0, 24571 = 0, 025175 (5.3)

80 Jorge Blasco Alís

5.2.5 Results

With the selected threshold a test over three sets of files, each having 1063 files has been
performed. The first set of files is a selection of clean files from the Ubuntu 8.10 x86 distribu-
tion. Second set of files is the set of clean files with embedded information up to 40% of the
capacity of each file. Last set is composed by the first set of files with embedded information
up to an 80% of the capacity of each file. Distinguisher values obtained for each of the files
are shown in Figure 5.6.

0,00001�

0,0001�

0,001�

0,01�

0,1�

1�

10�

100�

1000�

1
�

2
6
�

5
1
�

7
6
�

1
0
1
�

1
2
6
�

1
5
1
�

1
7
6
�

2
0
1
�

2
2
6
�

2
5
1
�

2
7
6
�

3
0
1
�

3
2
6
�

3
5
1
�

3
7
6
�

4
0
1
�

4
2
6
�

4
5
1
�

4
7
6
�

5
0
1
�

5
2
6
�

5
5
1
�

5
7
6
�

6
0
1
�

6
2
6
�

6
5
1
�

6
7
6
�

7
0
1
�

7
2
6
�

7
5
1
�

7
7
6
�

8
0
1
�

8
2
6
�

8
5
1
�

8
7
6
�

9
0
1
�

9
2
6
�

9
5
1
�

9
7
6
�

1
0
0
1
�

1
0
2
6
�

1
0
5
1
�

D
is

ti
n

g
u

is
h

e
r

v
a
lu

e
 (

lo
g

a
ri

th
m

ic
 s

c
a
le

)�

File i�

no hidden information�

40% hidden information�

80% hidden information�

Figure 5.6: Distinguisher results for the three test sets of executable files

Values obtained by the proposed distinguisher for the clean files are separated from the
ones offered by files with embedded information. Although a ROC curve could be used to se-
lect this threshold, there is no need in selecting one, as Figure 5.6 shows that with a threshold
between 0,1 and 9 (logarithmic scale), the detection rate would be 1 and the false positive
rate would be 0. Some results offered by embedded information files are low, but higher than
the values returned by any of the clean files. In fact, the distinguisher has classified all the
executables correctly (Table 5.4).

In order to produce executable files that are not detected by the proposed detector some
changes should be done in Hydan. The performed analysis has shown that replacement of
functionality-equivalent instructions is not secure if the frequency distribution of instructions
inside a functionality-equivalent instruction set is constant. A first approach to secure Hydan
would be to use only the functionality-equivalent instruction sets not used by the proposed

5.3 Active Warden Techniques 81

Expected clean executables Expected embedded exec.
Predicted clean executables 1063 0
Predicted embedded exec. 0 2126

Table 5.4: Distinguisher classification results for different sets of executable files

detector. This would reduce the capacity of hidden information up to a 35% of the original
capacity. Stego-files generated this way would not be detected by the distinguiser, producing
false negatives.

5.2.6 Summary

Steganalysis techniques are needed in order to ensure and improve the security of stegano-
graphic systems in the same way cryptanalysis is needed to foster the security of cryptography
techniques. In this Chapter, the steganalysis of a tool that embeds information into binary ex-
ecutable files is described. The performed steganalysis is based on a model of files with no
hidden information. In the performed tests, the proposed technique classified correctly all
executable files in different proportions of concealment (0%, 40% and 80%).

The proposed detector could be implemented as part of current data leakagre protec-
tion solutions to avoid the extraction of senstive information through the usage of executable
files. This system could be implemented at the network level (to inspect data in motion) or
at host level (to inspect data in use and at rest). Nevertheless, improvements to Hydan or
new steganographic tools could be used to overpass the proposed detection system. In this
regard, new efforts in executable file steganalysis should be performed. For example, if the or-
ganization goals requires employees to be able to exchange and send executable files across
the network, a set of policies for compiler usage could be defined by default inside the organi-
zation.

As mentioned in Section 5.2.3, compilers tend to select always the same kind of instruction
from certain functionality-equivalent instruction sets. In this case, a model of the instruction
distribution of the default compiler could be created. Any executable file that is transmitted
but does not match the created compiler model should generate a security alert to the sys-
tem administrator. Although some information could be embedded in executable files without
raising alarms (depends on the detection threshold), the amount of information that can be
embedded would has to be dramatically reduced, hindering the extraction of useful amounts
of information.

5.3 Active Warden Techniques

The usage of steganalytic techniques allows to detect hidden content on transmitted objects.
Literature review (Section 3.5.1) shows that proposals in this regard usually address the de-
tection of specific algorihtms. In order to avoid information leakage through the usage of
steganography, a system including several steganalytic methods (even for the same carrier)
should be designed. Each piece of information leaving the organization would be passed
through this detector. Depending on the quality of the steganalytic methods, several results
can be given. For example, several steganalytic methods can raise an alarm for the same car-
rier, generating conflilcts and requiring greats amounts of time to perform forensic and audit

82 Jorge Blasco Alís

task in order to clarify the situation.
The goal of active warden techniques is to delete the steganographic content by overwrit-

ing the possible hidden content of each transmitted object. In this way, the covert channel
created by means of steganographic algorithms can be hindered or destroyed. In this regard,
active warden techniques seem a more general approach to eliminate the usage of steganog-
raphy, as different overwriting operations can be performed over the same object with the
same result. Additionally, steganalysis techniques can be used to select only best candidates
to be sanitized. In fact, if there are suspicions that an object can include information hidden by
several carriers, it is possible to execute several sanitization processes over the same object.
In this way, and depending on the quality of the used sanitizers, it would be possible to destroy
or reduce the capacity of covert channels created by the usage of steganography

Although steganography can be used to create a covert channel through any kind of net-
work protocol, this Sections focuses on the restriction of HTTP for several reasons:

• The restriction of HTTP traffic through firewalls is infeasible as it is essential for Internet
communications. HTTP provides access to multiple kinds of services such as news,
search engines, web mail, social networks, multimedia, etc. but also provides enterprise
services such as Business to Business services, reference, documentation, etc. which
are essential for organizations and cannot be simply blocked.

• HTTP allows users to access plenty of information and consumption services (YouTube,
Flickr, etc.). These kinds of services can be easily used by steganography users as
cover repositories and anonymous mailboxes to upload, store and download hidden
information [86]. In this regard, URL filtering software could be used to restrict the
amount of sites a potential steganography user is able to connect. Due to the great
amount of these, it is unlikely that the security administrator will be able to block all of
the sites.

• The usage of HTTP provides a higher anonymity level, in comparison with other com-
mon organization wide network protocols such as SMTP. Although HTTP communica-
tions are not anonymous, only the web server administrator or network nodes between
the user and the web server may posses enough information to identify who accessed
the server resources. This allows to identify the possible recipients of the hidden mes-
sages, but not the actual recipient. Other protocols such as SMTP explicitly specify the
recipient of the information when communicating to an intermediary server, so they are
easier to trace.

• Finally, the usage of third party web servers as part of the steganographic communica-
tion usually involves a violation of these servers’ terms of use. This kind of abuse may
induce unnecessary overloads that should be actively avoided by system administrators.

This proposal enables the normal usage of HTTP connections, while hinders the cre-
ation of covert channels through these. This would allow organizations to avoid information
theft through HTTP. Additionally, the proposed scheme may allow service providers to ensure
clients perform an authorized usage of their services (i.e. they are not used to covertly store
unauthorized material). Although this proposal is focused on HTTP, it may be easily adapted
to other protocols such as SMTP, FTP, etc.

5.3 Active Warden Techniques 83

5.3.1 Related Work

Active warden techniques try to eliminate possible hidden information from communications
without disrupting legitimate message exchange (See Section 3.5.4). The active warden of
Simmon’s scenario uses these kind of techniques to hamper covert communication between
Alice and Bob [75]. The main issue in these kind of techniques is how to eliminate the hid-
den information without changing the perception of the transmitted object, as the purpose
is to break the cover communication, but not to render the legitimate channel unusable. The
most common active warden technique is overwriting possible hidden information carriers with
random noise.

Section 3.5.4 of this dissertation describes some proposals regarding the usage active
wardens to avoid the creation of covert channels through the usage of steganography. The
performance of the sanitization of image data has been studied in [70] with satisfactory results
(175 miliseconds per image). Additionally, some proposals to avoid information leakage (see
Section 2.4.3) partially use active warden techniques. In [52], HTTP headers are normalized
to avoid data leakage through compromised servers.

On other contexts, commercial proxies, such as SafeSquid1, allow content and URL filter-
ing based on security policies defined by the organization. This kind of proxies are focused
on limiting the resources the employee access (i.e. social networks, personal sites, etc.) from
inside the organization as well as protecting them from accidentally downloading viruses, etc.
from malicious web sites. Nevertheless, to the best of the author knowledge there is not any
implementation of such proxies that eliminates steganographic content of HTTP connections.

Although previous approaches have studied methods and techniques to limit the capacity
of steganography based covert channels, none of them have proposed an actual solution
that may avoid its usage in real scenarios (such as communicating covertly through HTTP).
Previous presented approaches have allowed improvements on the active warden scenarios,
but they are not able to protect against covert channels through HTTP communications, as
they only take into account some of the possible features where information might be hidden.

5.3.2 Covert Channels over HTTP

The Hyper Text Transfer Protocol (HTTP) is defined in RFC 2616. HTTP is a widely used
application protocol that supports transmission of any object that can be defined through a
MIME type. It is a stateless protocol that works over TCP connections. It works on a re-
quest - response basis. Each time a client requests a resource, the HTTP server replies with
a response for that resource. The version 1.1 of the protocol allows to maintain the TCP
connection between different pairs of request-responses.

HTTP request and responses are very similar in their structure. A message is composed
by a message start line, a set of headers and a message body. The message body is sep-
arated from the headers by an empty line ended with \r\n. The message start line depends
whether the message is a request or a response. On requests, the start line is named request
line and is composed by the method to use, the universal identifier (URL) of the requested re-
source and the HTTP version (actually 1.1). On responses, the start line is named response
line and is composed by a status code followed by a description of that code and the HTTP
version used. HTTP headers are pairs of header name - value separated with ’:’. The mes-
sage body is used to transmit any data associated with the request or the response. HTTP

1http://www.safesquid.com

84 Jorge Blasco Alís

uses MIME types to describe the message body contents.
The composition of HTTP messages may allow the covert exchange of information be-

tween two users. Depending on the users and the intended applications, there are two main
possibilities. First, a user establishes a covert communication between him and a web server.
In this case information can be hidden in both the content transmitted and the structure of
the HTTP messages. Second, a user establishes a covert communication between him and
another user. In this case, both use the HTTP server as a hosting service (intermediary) for
exchanging their messages. The HTTP server is usually unaware of the fact that it is being
used for an unauthorized purpose. In this scenario, information is exchanged using the body
of the HTTP messages, as the other party does not have access to the HTTP headers. This
model was described in some depth by [142].

The usage of steganography through the HTTP protocol has already been proposed to
avoid censorship on the web [74]. In this, a web server authorized by the censors, but outside
their control, works as a conscious intermediary between the client and unauthorized web
servers. To perform a request to censored content, the client sends an innocuous request to
the accomplice web server. The unauthorized URL is hidden inside the URL of the innocuous
request. The accomplice web server accesses the censored content and hides it (using image
steganography) on an image that is sent back to the client as response to the innocuous URL
request.

Dyatlov et al. [143] describe different characteristics of HTTP messages that may be
used to transfer information in a covert fashion. These include modifications on header order,
structure and contents. As an example, [144] proposes the usage of Entity tag headers (which
value is determined by web server implementations) to send information to clients. Entity
tag headers are used to know if a specific website content requires to be downloaded again
(through the usage of the "if-no-match?" header). Clients may also modify the entity tags they
sent to transmit cover information to the web server.

Besides previous presented approaches, a HTTP packet can hide information in the fol-
lowing elements:

• HTTP Version: Both client and server may modify the version of the HTTP protocol they
are using to communicate in order to transmit some bits of information. However, this
kind of behavior would be easily detected by a careful observer, as it would not be usual
to change the HTTP version of the protocol during consecutive requests from the same
machines, so this approach is not recommended.

• Content: Section 3.4 describes some techniques to hide information in carriers such as
images, audio, text or document files. As HTTP allows to transmit these in the mes-
sage body, hiding information in such carriers would allow to establish a covert channel
through HTTP. This approach is used in [86] with images uploaded to Flickr as carriers.

5.3.3 A model to hinder steganography over HTTP

The proposed model, which has been named StegoProxy, aims to forbid the usage of covert
channels through HTTP. In this Section, the working scenario for the proposed model is pre-
sented (Section 5.3.4) along the definitions of concepts which are used to build the model
(Section 5.3.4.1). Section 5.3.4.3 describes the functional components of the model. The
HTTP message sanitization process is explained in Section 5.3.4.4. Finally, the security of the
proposed model is analyzed in Section 5.3.4.5.

5.3 Active Warden Techniques 85

5.3.4 Working Scenario

To illustrate the aims of the proposed system, the following scenario is considered (Figure
5.7). A disgruntled employee Alice who has access to organization’s sensitive information
wants to transmit it to an unauthorized recipient (Bob). Alice may directly send the sensitive
documents to Bob by mail, but traces at the mail server would indicate that Alice contacted
an outsider and sent him sensitive information. This would ease Alice’s prosecution. Instead,
Alice could use a steganographic program to conceal the sensitive information and send it as
an innocuous looking message (i.e. image) to Bob. If the malicious behaviour is discovered,
an audit may find Alice suspect, as she has sent strange messages to an unknown recipient.
However, Alice could upload the hidden sensitive information (in an innocuous image) to a
public web server (i.e. Twitpic2) (1). If Bob (the intended recipient for Alice hidden messages)
is the administrator of the web service used by Alice, he will just have to extract the hidden
information from Alice messages (3b). If Bob is another web service user, he will have to
access as any other user but also extract the hidden information (3a). In this case, his identity
will only be revealed to the web service where the hidden content is stored. Therefore, his
identity remains unknown to Alice’s organization, as many other users may have accessed
the same information (2).

Figure 5.7: Working scenario diagram

Based on the previous scenario, the proposed system can be placed at a network in-
frastructure for two purposes: destroy any possible hidden communication going outside a
specific network, or eliminate any kind of covert communication coming into a network. In the
former, a malicious insider might be using the network to transfer sensitive information out-
side an organization. It is necessary to assume that the insider has not enough privileges to
change packet routing, which is a reasonable assumption in most cases. In the latter, a com-
puter resource such as a public web server may be used to transfer that sensitive information.

2This service is used by Twitter users to share images and other multimedia content such as videos.
http://www.twitpic.com

86 Jorge Blasco Alís

As these two networks will probably be controlled by different organizations, they both must
protect against these kinds of attacks separately. The proposed framework takes this issue
into account as it allows to filter both incoming and outgoing HTTP connections. Besides the
previous scenario description, the following constraints are assumed:

• Systems used inside a controlled network can not be fully accessed or controlled. This
may be reasonable in most scenarios because of law restrictions on employees’ privacy.
Thus, it is only possible to control network communications.

• Usages of unknown or not explicitly allowed network protocols inside the controlled net-
work can be forbidden. Otherwise, these protocols could be used to establish additional
covert channels.

• Protocols such as SMTP, IMAP, etc. are not taken into account. Nevertheless, our
framework could be easily adapted to work under those protocols.

5.3.4.1 Definitions

The proposed model eliminates steganographic content by sanitizing possible carriers of
steganographic information. For such a purpose, the framework is based on the concepts
of Steganographic Unit and Minimum Request Fidelity.

Definition 1 A Steganographic Unit is defined as the minimum amount of semantic informa-
tion that allows the transmission of hidden information, thus, the creation of a covert channel.

Any part of a HTTP message that can be changed without modifying the semantics of
the message can be considered as a steganographic unit. Steganographic units shall not
be confused with the information carriers. As an example, two unstructured carriers in the
form of text can refer to different steganographic units: the user agent definition and the text
from a web page. Additionally, a steganographic unit may hold up more than one carrier. In
fact, an image may have embedded information into their DCT coefficients (or other image
characteristic) or in its textual metadata.

Definition 2 The Minimum Request Fidelity (MRF) describes the maximum changes an ob-
ject can support until it can not be considered semantically the same object [83].

In this case, MRF is applied to steganographic units. As HTTP allows both structured and un-
structured carriers, the proposed system takes into account the MRF for both kind of carriers.

5.3.4.2 Model Overview

Once deployed in an organization, the proposed model hinders the usage of steganogra-
phy through HTTP. Each time a message arrives to StegoProxy, it is fragmented in several
steganographic units. Each steganographic unit passes through a sanitization process that
may include the execution of several sanitizers (one per possible steganographic carrier).
Once all steganographic units have been sanitized, the HTTP message is built back and sent
to the destination web server.

Depending on the organization’s aim, StegoProxy can be deployed in different network
placements. If the main goal of StegoProxy is to stop possible information leakages through

5.3 Active Warden Techniques 87

HTTP connections, it should be placed as a transparent proxy at the Internet gateway (Figure
5.8). To reduce the added overload, several StegoProxies can be deployed to work in par-
allel. In this way, all HTTP messages from inside the organization will have to pass through
StegoProxy. On the other hand, if the aim is to ensure that a web service is not being used
as an anonymous mailbox for covert communications, the proxy may be placed after the web
server captures the request, but before it is processed and passed to the web application (as
in Figure 5.9).

Figure 5.8: StegoProxy placement inside an organization to avoid outwards HTTP covert
channels

Figure 5.9: StegoProxy placement to avoid the abuse of a webserver as a steganographic
mailbox

5.3.4.3 Components

As shown in Figure 5.10, the proposed system comprises four main components: the HTTP
inspector, the steganographic detectors, the steganographic unit sanitizers and the HTTP
assembler.

HTTP Inspector

This component analyzes incoming packets and divides the HTTP messages into stegano-
graphic units SUi that will be later processed. Steganographic units are created using a

88 Jorge Blasco Alís

database that can be expanded when new carriers are discovered on HTTP communications.
Steganographic units can transport hidden information using more than one carrier. As an ex-
ample, a text may have embedded information in the number of spaces it has or in the usage
of uppercase letters.

Steganographic detectors

A Steganographic unit may use several carriers to covertly transmit information. A stegano-
graphic detector implements a steganalysis distinguisher for a specific carrier (it may use blind,
targeted or both kinds of steganalyisis). Each steganographic unit carrier is passed through
its detector to detect possible steganographic content. If hidden information is detected, the
carrier is sanitized.

However, current steganalysis algorithms produce non negligible false positives and nega-
tives [145, 146]. Thus, if a steganalysis algorithm is not accurate enough, it would be possible
to transmit practical amounts hidden information. As the goal of the proposed model is to re-
duce the steganographic capacity of HTTP, the usage of steanographic detectors is optional.
If not used for a specific carrier, all steganographic units including such carrier have to pass
through a sanitization process.

Stego Unit Sanitizers

A Sanitizer Sj removes the steganographic information that may be transmitted through a
carrier j. In order to remove all possible steganographic communications through the carrier j
a sanitizer may implement more than one sanitization process. A targeted sanitization process
(as in targeted steganalysis) is defined as the process that removes, from a steganographic
unit SUi, information hidden through a specific steganographic algorithm. A blind sanitization
process is defined as the process that removes information hidden in a specific carrier j
independently of the algorithm used.

If a sanitizer includes more than one sanitization process, they must be executed sequen-
tially over each steganographic unit (Figure 5.10). Both kinds of sanitization processes must
take into account the MRF when performing their modifications to the steganographic unit.
Additionally, as a steganographic unit can hide information in more than one information car-
rier, some steganographic units may have to pass through several sanitizers. In such a case,
sanitizers are also applied sequentially. It must be taken into account that sanitizers may be
not deterministic (i.e. adding random noise to steganographic units).

HTTP Assembler

This component assembles all sanitized steganographic units and builds back the HTTP mes-
sage. The sanitized HTTP message is then delivered to its recipient.

5.3.4.4 HTTP Message Sanitization Process

The proposed model allows to eliminate steganography from incoming and outgoing HTTP
connections. The sanitization process is independent from the communication direction, as it
works over HTTP messages. The following lines describe the process performed by Stego-
Proxy (Figure 5.10):

5.3 Active Warden Techniques 89

HTTP
Message

Sanitized
HTTP

Message

Inspector	 Assembler	

… …

Sanitized Stego-Unit1

SC1	

Stego-Unit1

C1	 Detector1	

Sanitized Stego-Unit2

SC3	

SC2	

Stego-Unit2

C3	

C2	
Sani7zer2	 Sani7zer3	

Stego-Uniti

Cj	

Ck	

…

Sanitized Stego-Uniti

SCj	

SCk	

… Sani7zerk	 Detectorj	 …	

Sani7zer1	

true

false

Sani7zer1	

true

false

Figure 5.10: StegoProxy components and process diagram

• The HTTP message M is disassembled by the Inspector I in steganographic units:
I(M) = {SU1, SU2, . . . , SUi}. Each steganographic unit may hold different carriers
SUi = {C1, C2, . . . , Cj}.

• For each carrier in each steganographic unit, check for hidden information with a stegano-
graphic detector. If SD(Cj) = true or SD(Cj) does not exist, apply sanitizer for carrier
Cj .

– Apply a sanitizer Sj to a steganographic unit to remove its steganographic payload:
Sj(SUi) = Sj({C1, C2, . . . , Cj}) = {C1, C2, . . . , Sj(Cj)} = {C1, C2, . . . , Cj−1}.
A sanitizer is composed by a set of sanitization processes (targeted or blind) which
are applied sequentially Sj = {Sj1 , Sj2 , . . . , Sjk , }.

– Once a steganographic unit SUi has passed through all its corresponding sanitiz-
ers S1, S2, . . . , Sj according to their carriers, it results in a sanitized steganographic
unit SSUi.

• Once all steganographic units have been sanitized, the Assembler A ensembles the
HTTP message using all steganographic sanitized units: A(SSU1, SSU2, . . . , SSUi) =
Ms

Algorithm 2 describes the message sanitization process. This version of the algorithm
includes the usage of steganographic detectors. Nevertheless, depending on the accuracy of
a given steganographic detector SDj , it may be necessary to pass all steganographic units
that include that carrier Cj through the steganographic sanitizer Sj .

90 Jorge Blasco Alís

Algorithm 2: HTTP message sanitization algorithm
Data: M, HTTP message received by StegoProxy; SUDB, Steganographic unit

databse; CDB, Carrier Database; S, Set of available sanitizers; I, HTTP message
inspector; A, HTTP message assembler

begin
HTTP Message inspection
Set SU = {SU1, SU2, . . . , SUi} ← I(M)
Set SU ′ ← SU
Sanitization. For each steganographic unit
for SUi in SU ′ do

For each carrier inside the steganographic unit
for Cj in SUi do

if SDj exists for Cj then
if SDj(Cj) = true then

Set SUi ← Sj(SUi)

else
Set SUi ← Sj(SUi)

Message Assembly
Set M ′ ← A(SU ′)

end

5.3.4.5 Security Analysis

The proposed framework allows to sanitize both incoming and outgoing HTTP connections.
Under the presented scenario, an attack can be considered successful if any user is able to
establish a usable covert communication channel through the HTTP protocol. Three main at-
tacks may lead to this situation: denial of service attacks, usage of non identified or removable
information carriers and circumventing StegoProxy.

A denial of service (DoS) attack tries to interrupt the authorized access of legitimate users
to a resource or server. A DoS could overload StegoProxy in such a way that it is not able
to sanitize connections in real time, drastically slowing the navigation speed. To avoid being
unable to use a fundamental network protocol, StegoProxy should be disabled, being the
HTTP traffic unchanged. This kind of attack, when performed outside the organization, could
be detected using security solutions such as Intrusion Detection Systems (IDS). An attack of
such kind from inside the organization would be infeasible, as it would leave traces on network
systems that could lead easily to the inside attacker.

Another way to stop StegoProxy from hampering the creation of covert channels through
HTTP would be to use HTTP fields which modification is beyond the MRF for HTTP. [74] pro-
pose a system to evade censorship on the web. They use the Uniform Resource Locator
(URL) of each request sent to an accomplice web server to hide the real URL the user wants
to connect. The content of real URL is hidden in an image that is transmitted to the censored
client through the HTTP response. The proposed framework is able to eliminate hidden con-
tent from the image included in the response, but can not eliminate the hidden URL transmitted
by the client. Using this scheme authors required an average of 4 HTTP requests to hide an
URL. Therefore, the transmission of sensitive information would require a huge number HTTP

5.3 Active Warden Techniques 91

request to the same server.
In our scenario description (Section 5.3.4) we specify that the attacker does not have con-

trol over the network configuration. Nevertheless, HTTP messages could be encapsulated
through other protocols such as DNS [144]. Using other protocols for such a purpose is
equivalent to use them as covert channels. Applying the proposed framework to those proto-
cols or restricting its usage through firewall rules would enforce that all HTTP messages pass
through StegoProxy.

5.3.5 Evaluation

In order to evaluate the validity of this proposal, StegoProxy has been implemented as an
HTTP Proxy. This implementation, in Java, is a proof-of-concept tool, not focused on providing
optimum performance, despite the fact that StegoProxy is able to handle several HTTP request
at the same time, as a standard HTTP Proxy3.

The efficacy and efficiency of the StegoProxy implementation have been evaluated using
sanitizers for several kinds of images and HTTP headers. The current implementation of
StegoProxy does not use steganographic detectors. In terms of efficacy, it has been evaluated
if StegoProxy is able to remove steganographic content from images sent through HTTP to
web services. In terms of efficiency, the delay that the HTTP sanitization process introduces
in the HTTP message exchange process has been weighed up.

5.3.5.1 Implemented Sanitizers

The current StegoProxy implementation is focused on eliminating steganographic content in
images (which is the most popular steganographic carriers) and headers. Specifically it fo-
cuses on eliminating least significant bit (LSB) steganography on BMP, JPG and GIF images
[147] together with steganography based on GIF shuffling [148]. Additionally, a sanitization
process for different headers such as Server, User Agent, etc. has been included.

LSB BMP

Least significant bit techniques modify the least significant bits of a certain part of an image to
embed information. Embedded information (which is usually encrypted) introduces statistical
changes in the least significant bits that makes it possible to detect it [149]. However, several
approaches such as randomization of the embedding location and reducing the image capac-
ity can be used to difficult the detection of steganographic content using LSB in BMP images
[150].

The proposed LSB BMP sanitizer rewrites randomly the 2 least significant bits of the three
components of random selected pixels. One quarter of the image pixels are randomly rewrit-
ten. Under these constraints, the probability of not modifying an image pixel that was used
to embed information would be pnot modified = pembedding · (1 − psanitizing) where pembedding

is the probability of embedding information into one pixel of the image and psanitizing is the
probability of overwriting the least 2 significant bits of a pixel (in this case psanitizing = 1/4).
The implemented sanitizer is able to destroy hidden information of stego-images created with
“Hide It In” (Section 4.3).

3StegoProxy is available at http://stegoproxy.sourceforge.net/

92 Jorge Blasco Alís

The implemented sanitizer overwrites a quarter of the total number of pixels pnot modified =
pembedding · 0, 75. Therefore, in this scenario the probability of an image not having any pixel
with hidden information modified is ppixelsnot modified = (pembedding ·0, 75)pixels where pixels is the
number of pixels in the image.

LSB JPG

This image format uses a lossy compression algorithm to reduce image size in bits. To com-
press an image, a discrete cosine transform (DCT) is applied to 8x8 pixel blocks. Then, the
obtained amplitudes of the frequency components are quantified. Low frequency compo-
nents are stored with higher resolution than high frequency components. Least significant
bit steganography in JPG format uses the same philosophy as the LSB on BMP images, but
instead changes the least significant bits on the high frequency components of the DCT trans-
forms to embed information. In our sanitizer, we overwrite the 2 least significant bits of the
bitmap generated by the BMP image as in the LSB BMP, and compress again the gener-
ated image. This modifies the DCT coefficients eliminating the possible hidden information.
Modifications to the least significant bits on JPG images have more impact than modifications
performed on same bits of BMP images. This is perfectly natural, due to the smaller degree
of redundancy as a consequence of the higher compression.

GIF

The Graphics Interchange Format (GIF) enables 256 color images. In a GIF image, first a
set of 256 colors is defined as an index. Each pixel is mapped to the color index using a
byte. When using LSB GIF steganography, the least significant bits used to define a color in
the index are changed, thus, changing all the appearance of all pixels pointing to that color.
As GIF images usually include a very specific set of colors, the detection of steganographic
images using this technique is difficult. The proposed sanitizer avoids GIF steganography by
overwriting with random information the least significant bits of the defined colors.

Another steganographic technique used in GIF images is modifying the order of the 256
color index. Modifying color index can be used to encode information and does not change the
real appearance of the image, as pixels are modified to point to the new color index. To defeat
this steganographic technique, the color index is randomly shuffled, eliminating any possible
information encoded in the order of the colors.

HTTP Headers

As mentioned in Section 5.3.2, HTTP headers can also be used to transmit information. In
the presented implementation, two sanitizers have been implemented for HTTP headers. The
content of the following headers in each HTTP messages have been rewritten:

• User-Agent : is rewritten with a predefined user agent defined in StegoProxy.

• Date: if it does not fit the local time or a modification allowed by other time zone is
randomly modified.

• Server : It is normalized against a set of possible servers (i.e. All servers referencing an
Apache server are normalized to “Apache Server”).

5.3 Active Warden Techniques 93

• Accept : It is rewritten with a predefined header defined in StegoProxy.

• Accept-Encoding: It is rewritten with a predefined header defined in StegoProxy.

• Accept-Language: It is rewritten with a predefined header defined in StegoProxy.

Additionally, the order in which headers are transmitted is randomly modified to avoid the
transmission of hidden information through the order of HTTP headers.

Figure 5.11 depicts the HTTP message sanitization process for the implemented Stego-
Proxy.

HTTP
Message

Sanitized
HTTP

Message

Inspector	 Assembler	

BMP

BMP-‐LSB	 BMP-‐LSB	 Sani7zer	
Sani7zed	
BMP	

JPG

JPG-‐LSB	 JPG-‐LSB	 Sani7zer	
Sani7zed	

JPG	

GIF

GIF-‐LSB	 GIF-‐LSB	
Sani7zer	

Sani7zed	
GIF	

GIF-‐Order	

GIF-‐Order	
Sani7zer	

Headers

User	 Agent	
User	 Agent	
Sani7zer	

Sani7zed	
Headers	 Header	

Order	

Header	 Order	
Sani7zer	

…
…

Figure 5.11: HTTP message sanitization process with implemented sanitizers

5.3.5.2 Experimental Setup

The experimental setup covers the first mentioned scenario. That is, a malicious employee
that tries to steal information from its organization using a steganographic program to hide
information into images and then transmit those images to a web service. In this scenario, the
proxy will be placed at the organization gateway filtering all the outgoing traffic. The second
scenario, in which a web server is protected against unfair use, is equivalent to the first one
with the only difference that instead of sanitizing requests, StegoProxy processes web server
responses.

Tests have been performed using five different images. For each image, a random mes-
sage using "Steghide" and "Outguess" (Table 5.5) has been embedded. Additionally, random
information was embedded in the implemented HTTP headers content and order. All gen-
erated images were uploaded to Twitpic. Figure 5.12 shows the original image used in the
experiments along the versions with hidden information through the aforementioned stegano-
graphic programs.

94 Jorge Blasco Alís

Table 5.5: Test images features

Original Size Outguess Size Steghide Size Pixel Size

Image 1 2,2 MB 837,7 KiB 2,2 MB 2592x1936

Image 2 2,0 MB 746,3 KiB 2,0 MB 2592x1936

Image 3 2,5 MB 938,8,3 KiB 2,5 MB 1936x2592

Image 4 2,1 MB 820,1 KiB 2,1 MB 2592x1936

Image 5 1,9 MB 708,5 KiB 1,9 MB 2592x1936

Figure 5.12: Example of image used during the experiments (Image 3) in its original form, with
embedded information through Outguess and with embedded information through Steghide.

The time consumed to complete the POST request when using and not using StegoProxy
has been measured. For the experiments performed with StegoProxy, it has also been cal-
culated the time it took to dissemble the HTTP requests, to sanitize and to ensemble them
again. Figure 5.13 shows graphically the aforementioned time gaps. Each image upload was
repeated 5 times. In the performed experiments, StegoProxy runs on a Core 2 Duo machine
at 3 Ghz while requests are generated by other computers in the same network segment (with
no significant traffic at the time when experiments were performed).

5.3.5.3 Results

All images sent to Twitpic were later downloaded to check for hidden content. It was not pos-
sible to extract the hidden content from images sent through StegoProxy. Information trans-
mitted inside the HTTP headers was lost due to the header rewriting operation performed by
the HTTP header sanitizer. Results show that StegoProxy is able to eliminate steganographic
content from images transferred through the network without interrupting HTTP communi-
cations or introducing any human perceptible distortion on sanitized images. However, the
sanitization process increased significantly the time required to upload the images to Twitpic.

Figure 5.14 shows the average time measured with the three kinds of images used during
the experiments. Approximately, the image upload process takes up to three times more.

5.3 Active Warden Techniques 95

Client StegoProxy Twitpic

Post request

Post response
time

Diassembly time

Sanitization time

Assembly time

Response
generation

time

Sanitized Post request

Response

Response

Figure 5.13: HTTP message process during the experiments and measured time gaps

Although Outguess images are smaller in file size, the sanitization times is very similar to
other images as the sanitization process does not depend on the file size but on the number
of pixels.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

No	 StegoProxy	 	 	 	 	 	 	 	 	 	
Total	 5me	

StegoProxy	 	 	 	 	 	 	 	 	 	
Disassembly	 5me	

StegoProxy	 	 	 	 	 	 	 	 	 	 	 	
Sani5za5on	 5me	

StegoProxy	 	 	 	 	 	 	 	 	 	
Assembly	 5me	

StegoProxy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Total	 5me	

m
ili
se
co
nd

s	

Original	

Steghide	

Outguess	

Figure 5.14: Average times measured during StegoProxy evaluation

Although this result may reduce the feasibility of the proposed approach, images used
during the experiments were high resolution images up to 2,5 MB. Using smaller images would

96 Jorge Blasco Alís

reduce the amount of time required for sanitization. Additionally, an improved implementation
or its usage on a specific purpose machine would obviously improve the measured results
by a large margin. It is also important to note that StegoProxy can be deployed in multiple
machines to improve its performance.

5.3.6 Summary

In this Section the usage of steganography over popular network protocols such as HTTP
has been addressed. A framework to limit the usage of steganography and covert channels
through HTTP has been proposed. Using steganography over HTTP could allow malicious
employees to steal sensitive information from their organizations. Depending on the scenario,
HTTP steganography can take advantage of certain web services such as photo sharing sites
as remote storage, using the aforementioned services for unauthorized purposes. However,
current security policies cannot block this kind of covert channels effectively, as the HTTP
protocol is almost essential for network communications and Internet connectivity.

A general framework that reduces the steganographic possibilities of the HTTP protocol
has been proposed. This framework allows to implement different sanitizers that eliminate hid-
den content from any kind of information transmitted through HTTP. Although the framework
reduces drastically the amount of information that can be sent covertly, it does not eliminate
all covert channels. Low bandwidth covert channels are still available. This approach allows
to control both incoming and outgoing HTTP requests, being able to mitigate the malicious
insider and the computer misuse risk.

The evaluation results show that the usage of StegoProxy introduces perceptible delays
to users communications. Nevertheless, this implementation is far from perfect. An improved
(non Java-based) implementation and a better hardware environment would significantly in-
crease the overall performance of the current implementation. On the other hand, the main
goal was achieved: it was not possible to recover any of the hidden information sent through
StegoProxy. This could be useful to protect organizations from attacks such as information
theft, also providing unaware intermediaries (such as web servers) a mean to protect against
an unauthorized usage of their services.

Chapter 6

Attacks on ILP Systems Using
Trusted Applications

Break me in
Teach us to cheat

And to lie, cover up
What shouldn’t be shared?

All the truth unwinding
Scraping away

At my mind
Muse - Citizen Erased

6.1 Introduction

In Chapter 4, two steganographic techniques to maliciously extract information from an or-
ganization were presented. Other techniques such as cryptography could be used to steal
information from an organization. Nevertheless, the goal of the presented techniques is to
obtain steganographic objects that can be transmitted and extracted from the organization
without being detected at the moment of the information extraction or during a post-event
analysis.

As stated on Chapter 2, the high value of information assets has led organizations to im-
plement mechanisms to prevent information leakages. One of those mechanisms are Data
Leakage Prevention (DLP) solutions (Section 2.4.3.2), which are systems that are usually,
installed and deployed by security vendors. To avoid the previous attacks to information confi-
dentiality, some of these solutions implement mechanisms to restrict the applications that can
be executed to a small set of applications that are strictly required by employees to perform
their daily business tasks. Any other application that a user tries to execute can be stopped or
raise an alarm to the security administrator of the organization.

Under this new scenario (in which a DLP solution is installed), it is much more difficult
to extract information for a malicious insider. In fact, there are, to the best of the author
knowledge, two available options for him to proceed.

First, the malicious insider could take advantage of a vulnerability or software misconfigu-
ration to override the restriction imposed by these solutions or other security software (Table
6.1). Although these kind of attacks are feasible, the technical knowledge required by the
attacker restricts its plausibility to scenarios where insiders have high technical knowledge.

98 Jorge Blasco Alís

DLP Solution CVE Origin Consequence CVSS Security
RSA Data Loss Prevention CVE-2011-1423 XSS1 HTML Injection 4.3 (Medium)
Symantec Data Loss Prevention CVE-2011-0548 Buffer overflow Arbitrary code execution 9.3 (High)
Symantec Data Loss Prevention CVE-2009-3037 Buffer overflow Arbitrary code execution 9.3 (High)
Symantec Data Loss Prevention CVE-2008-4564 Buffer overflow Arbitrary code execution 9.3 (High)

Table 6.1: Accounted vulnerabilities of DLP software gathered from the National Vulnerability
Database (http://nvd.nist.gov/) until April 13th 2012

Second, the malicious insider could use the set of trusted applications to help him in the
information extraction process. Trusted applications used to perform daily tasks are generally
executed without any restrictions. However, some of these applications offer a rich function-
ality and can be programmed to help an insider in carrying out an information leakage attack.
In this Chapter, the usage of trusted applications to bypass current DLP systems is analyzed.
A simple but effective method that could enable malicious insiders to steal information from a
supposedly protected organization is shown. The presented evasion method is based on mod-
ifying the original purpose of an application using its built-in functionality. This technique does
not require high technical skills or gaining administrative privileges. The presented evasion
technique relies on common applications in corporative environments (i.e. Microsoft Excel) to
transform sensitive information into encrypted data. Information transformed in this way can
be transmitted outside the organization premises without being detected by current systems
that would not allow the download or usage of any encryption software. The security and
performance of this evasion method is analyzed. Additionally, the evasion technique has been
tested against a well known commercial state-of-the-art DLP solution. The proposed method
has been published in the Journal Computers & Security [15].

6.2 Information Leakage Protection Evasion Techniques

When DLP systems are deployed in an organization, the risk of information leakage is drasti-
cally reduced, as they are capable of properly handling most accidental information leakages.
Nevertheless, the perspective of high economic benefit and the sense of entitlement to infor-
mation of some employees can motivate them to steal data, even when they perceive a risk of
being caught [6, 151].

Depending on the position of the malicious insider inside the organization, it may be easier
for him to steal information. On one hand, system administrators and other IT-related staff
usually have direct access to most systems inside the organization. This allows them to steal
information more easily. As an example, during 2006 and 2007 an HSBC employee was able
to steal 24.000 records from private banking clients in Switzerland [152]. Client records were
delivered to French authorities to prosecute tax dodgers. On the other hand, users with limited
privileges may be able to steal only the information they can access. In this case, in order to
pass unnoticed to deployed protection systems they will have to use a non controlled leakage
vector or an evasion technique.

The search of uncontrolled leakage vectors is a difficult task (that should be done on a
test environment to avoid detection) but the complexity of current computer systems makes
also difficult to control all of them. In fact, there exist some DLP solutions that do not correctly
handle all the system’s leakage vectors. In [153], an attack to extract information using non
controlled leakage vectors is described. The author configures the DLP solution (TrendMicro

http://nvd.nist.gov/

6.2 Information Leakage Protection Evasion Techniques 99

LeakProof 2) to avoid the transmission of credit card numbers and the keywords “Boards of
directors”. The DLP solution successfully stops leakages through email, but is not able to stop
the transmission of the keywords and credit card numbers through the Gmail3 and Facebook4

chats. To the best of the author knowledge, these leakage vectors remain uncontrolled.

Regarding the usage of evasion techniques, current DLP solutions use simple pattern
recognition techniques and keywords to automatically detect sensitive information (Section
2.2.2). Transforming sensitive information in such a way that patterns do not match the modi-
fied information could be used to bypass them. In fact, simple transformations (such as char-
acter or word replacing or simple mathematical operations) produce this effect. However, the
security of these transformations (from the point of view of the malicious insider) is poor, as
they can be easily reversed. However, simple transformations to sensitive information could
be easily detected through the use of forensic hash functions (Section 2.2.2). These have
been proven to correctly identify similar files that share common bit streams.

Cryptography and steganography perform transformations on information in such a way
that it is necessary to know the value of a secret key to recover the original information,
provided that the used algorithm is secure enough. Cryptographic suites such as GnuPG
[154] or OpenSSL [155] could be used to encrypt sensitive information files. In the same
way, steganographic programs such as JPHS [156] and MP3Stego [88] could hide sensitive
information files into innocuously looking images or audio files. Such applications are free and
easy to find on the Internet and do not require high technical skills. In this case, fingerprinting
techniques and forensic hash functions (Section 2.2.2) would not detect the output of this
tools as sensitive. When using cryptography an output that is completely not related to the
input data is produced, and therefore not detected as sensitive. Regarding steganography, its
embedding procedures embed data fragments into covers that are too small to be identified
by forensic hash functions.

As previously mentioned, to avoid the execution of such applications, operating systems
and DLP solutions allow system administrators to restrict application execution. These mech-
anisms allow system administrators to define the applications that users can run inside the
organization’s computing environment. This forbids the usage of the aforementioned tools
and limits the allowed ones to a very small number of trusted applications. Moreover, forensic
evidence left by these tools could be used to trace back the malicious insider [109].

Nevertheless, such restrictions are not applied to programs approved for use by employ-
ees. Depending on the organization’s activity and the user role, a wide variety of programs
can be approved for execution, including text processors, CAD programs, spreadsheets, etc.
These applications are extremely complex systems that are constantly used for the creation
and manipulation of information. DLP solutions do not consider the possibility of using these
applications for malicious purposes. However, the information manipulation features included
in these programs are so advanced that it is possible to transform them into cryptographic
applications. Thus, users could have access to modern cryptographic algorithms that are pre-
sumably restricted. This point is proven with an Excel implementation of two widely known
block ciphers: TEA and AES.

2TrendMicro LeakProof http://us.trendmicro.com/us/products/enterprise/data-loss-prevention
3http://www.gmail.com
4http://www.facebook.com

http://us.trendmicro.com/us/products/enterprise/data-loss-prevention

100 Jorge Blasco Alís

6.3 Evading ILP Systems with Spreadsheets Applications

The goal of this Section is to describe a method to bypass information leakage protection
systems through the usage of common trusted applications. This method uses a commonly
trusted application, Microsoft Excel, to transform sensitive information in such a way that it
will no longer be recognized as sensitive. Other trusted applications could be used for the
same purpose. Nevertheless, spreadsheet applications allow to implement standard ciphers
as transformations, increasing the security (from the malicious insider point of view) and hin-
dering the detection of the sensitive information. Transformations can only be reversed with
the knowledge of the secret key used to encrypt the information. This enables a successful
extraction of the data from the organization without detection by current DLP technologies.

6.3.1 Implementing a Spreadsheet Cipher

Spreadsheet applications allow the usage of cells to perform data manipulation, calculations
through formulas and data representation for different purposes: mathematics, statistics, man-
agement, etc. This evasion method is based on the usage of spreadsheet cells to implement
modern ciphers. This proposal does not rely on the use of Visual Basic Scripts, as its execu-
tion can be easily blocked by system administrators. Sensitive information can be encrypted
through the usage of these “encrypting” cells, being able to export the encrypted information
and use it with no restrictions. This DLP evasion technique hinders the prosecution of mali-
cious insiders, as a secret key is needed to reveal the real nature of the extracted information.

Apart from this trivial use, we believe that this technique could be used in other envi-
ronments. For example, cipher spreadsheets may be used to export certain cryptographic
primitives to countries with export restrictions. As the spreadsheet cells do not constitute a
program itself, export restriction laws could not be applied to it. Additionally, they could be
used to encrypt information without leaving any evidence of having an actual encryption pro-
gram in the computer. This could mislead computer forensic investigators and hinder criminal
investigations.

The Tiny Encryption Algorithm (TEA [157]) and the Advanced Encryption Standard5 (AES
[158]) have been implemented. Both algorithms are good candidates for a proof of concept
implementation because of their simplicity. Nevertheless, it must be acknowledge that TEA
has been proven to be insecure [159, 160, 161]. The resulting spreadsheets are freely avail-
able, so other researchers can analyze these constructions and update them with new cryp-
tographic algorithms.6.

6.3.1.1 Basic operations

Spreadsheets applications such as Microsoft Excel operate with decimal numbers and do
not include binary operations such as shift, rotations, bitwise XOR, etc. Standard ciphers
extensively use these kind of basic operations. Thus, it is necessary to define such operations
inside a spreadsheet environment. Basic bitwise transformations have been implemented
using standard operations (addition, multiplication, modulo, etc.) over decimal numbers.

5The AES implementation is restricted to 128 bits key length.
6Available at http://www.sciencedirect.com/science/article/pii/S0167404812000120

http://www.sciencedirect.com/science/article/pii/S0167404812000120

6.3 Evading ILP Systems with Spreadsheets Applications 101

Shifts

A shift operation is equivalent to a multiplication or division by 2b, with b being the number of
positions to be shifted. IfA is the number to be shifted, a right shift operation can be described
as Equation 6.1.

A >> b =
A

2b
(6.1)

This can be implemented in Excel through the following formula:

=QUOTIENT(A;POWER(2;b))

Similarly, the left shift operation is given by Equation 6.2.

A << b = (A ∗ 2b) mod 232 (6.2)

which can be implemented as:

=MOD(A*(POWER(2;b));POWER(2;32))

Rotations

Rotations are quite similar to shift operations, but bits shifted out are inserted at the other end
of the number. Implementing this in decimal format requires to add the shifted bits to the result
previously obtained from the shift operation. The right rotation would then look like Equation
6.3.

A >>> b =
A

2b
+ (A mod 2b) ∗ 232−b (6.3)

This could be implemented with the following formula:

=QUOTIENT(A;POWER(2;b))+(MOD(A;POWER(2;b))*POWER(2;32-b))

Similarly, left rotation is given by Equation 6.4.

A <<< b = (A ∗ 2b) mod 232 +
A

232−b
(6.4)

And can be implemented as:

=MOD(A*(POWER(2;b));POWER(2;32))+QUOTIENT(A;POWER(2;32-b))

Exclusive OR (XOR)

Bitwise operations require to convert numbers stored in cells into vectors, so bit-to-bit compar-
isons can be performed. Using an auxiliary vector (P), a decimal number can be converted
into a bit vector to perform the XOR operation. Equation 6.5 describes the implementation of
the XOR operation in a spreadsheet environment. Let P = {21, 22, . . . , 231}.

A⊕B = Σ32
i=0(((d

A

Pi
e − 2 ∗ d

d APi
e

2
e) + (dB

Pi
e − 2 ∗ d

d BPi
e

2
e)) mod 2) ∗ Pi (6.5)

This can be implemented in a spreadsheet cell by:

102 Jorge Blasco Alís

=SUMPRODUCT(MOD(INT((A/P)-2*INT(INT(A/P)/2))
+(INT(B/P)-2*INT(INT(B/P)/2));2);P)

For the sake of clarity P has been defined as a reference in the formula presented in this
paper. Anyway, in any spreadsheet, the vector P can obtained by replacing its reference with
the following:

P = 2^(32-ROW(INDIRECT("A1:A32")))

These three operators suffice to implement both TEA and AES. Different bitwise opera-
tions present in other algorithms can be implemented accordingly. In the following the imple-
mentation process is described in more detail.

6.3.1.2 Defining Input and Constants

While TEA works with 32-bit integers, AES works with 8-bit integers. This means that in the
spreadsheet implementation, a cell used to implement TEA will hold 32-bit integers and a cell
used to implement AES will hold 8-bit integers. Therefore, depending on the algorithm to be
implemented a different number of cells will be required to define its input and constants. In
this implementation, 2 cells are required to define each plaintext block for TEA and 16 cells
are required for AES.

As most ciphers, the cipher implementation receives its input as integer numbers, pro-
ducing also numbers as output. Depending on the data to encrypt, it may be necessary to
preprocess the input before passing it to the cipher. This process can also be performed using
the spreadsheet application. Text to be encrypted can be transformed to integers using the
CODE() function, which converts characters to its ASCII value. To get back the original text,
the CAR() function can be used. By using these functions, the spreadsheet can encrypt any
sensitive information field in numeric or textual form. Furthermore, if data is not be disposed
in blocks (cells) of the required length (32 bits for TEA and 8 bit for AES), the MOD() function
can be used to divide the input integer in the required n bit blocks. This approach has been
used to leak several fictional (but valid) social security numbers from a system protected by a
modern DLP solution (see Section 6.4.3).

6.3.1.3 Building Lines of Code

In a computer program, a line of code usually performs one or more basic operation and
assigns the result to a variable in memory. Similarly, in the case at hand, each basic operation
can be implemented using one cell and the corresponding spreadsheet formula. However,
complex operations can be also written in just one cell by replacing references to other cells
with the formula included in that cell. Thus for example, Figure 6.1 shows the implementation
of a line of code that calculates the value of the first 32 bit of round i (v0) in TEA.

6.3.1.4 Rounds

Modern ciphers extensively use the concept of rounds. While rounds can be implemented
using iterative clauses provided by computer languages (i.e. for), in the spreadsheet domain,
to add a round, it is just necessary to copy and paste the cells containing the operations from
the previous round. If references between cells are correctly defined, it will not be necessary
to perform any changes in the copied cells. Once a full version of the cipher has been created,

6.4 Evaluation 103

Figure 6.1: A detailed view of the implementation of the first round of TEA

copying the whole algorithm (i.e. the cells) to other locations of the spreadsheet will allow to
encrypt another block of information (64 bits in TEA and 128 in AES). This can be used to
encrypt several blocks of information in the same spreadsheet. The amount of information
that can be encrypted using a single spreadsheet is analyzed in 6.4.2.

6.3.2 Stealing Information With a Spreadsheet Cipher

If the spreadsheet application is trusted, which is an assumption, it will mean that its use is
required to perform business-related activities. Then, the required knowledge of the appli-
cation to carry out the attack can be taken for granted by all employees enabled to execute
it. Employees that want to steal information through this method will only require temporary
access to the information. As shown by [6], most employees (74% of analyzed cases) steal
information they have direct access to. Therefore, that access can also be taken as granted.
Algorithm 3 outlines the required steps to be performed by a malicious employee to steal
information using a cipher spreadsheet.

To decrypt the stolen information, the malicious employee would have to copy the en-
crypted cell values to the corresponding cells in the decryption sheet, using the same pass-
word used to encrypt the information. If the information was transformed (text to number) prior
to encryption, the reverse transformation should be applied on the obtained cell values.

6.4 Evaluation

This Section analyzes some aspects relative to the security and suitability of the proposed
evasion technique from the point of view of the malicious insider. To obtain experimental proof
of the success of the evasion technique, it has been tested against a commercial DLP solution.

104 Jorge Blasco Alís

Algorithm 3: Steps to steal sensitive information using a cipher spreadsheet
1. Open or import the file with sensitive information.

2. Disable the version control mechanism.

3. Download and open the cipher workbook file using the trusted application (i.e. Microsoft Excel).

4. If the clipboard is being controlled by the DLP solution

(a) Copy the cipher cells into the sensitive information file.

(b) Write the password in the corresponding cells.

(c) Reference the cells whose values are to be encrypted in the cipher plaintext cells.

5. If the clipboard is not being monitored

(a) Write the password in its corresponding cells.

(b) Copy the values from the sensitive cells to the cells referencing the plaintext cells values.

6. Copy the ciphertext values or export them to a new file. As the information being copied is meaningless,
no alert will be raised.

7. Transfer the file outside the organization through any of the available means (network, removable drive,
etc.).

8. Delete the cipher workbook file and the cipher cells from the sensitive workbook (if they were copied).

6.4.1 Security Analysis

In order to analyze the security of the proposed DLP evasion technique, the following scenario
is proposed. A disgruntled employee decides to steal sensitive information from an organiza-
tion. The security policy of the organization states that sensitive files cannot leave the organi-
zation’s boundaries by any means (printer, removable drives, network, etc.). To implement the
security policy, the organization deploys a DLP solution that executes mechanisms to auto-
matically detect sensitive information files and logs all attempts to extract sensitive information
by any of the means defined in the security policy. Additionally, the DLP solution allows to de-
fine a set of trusted applications. Only those applications can be executed on workstations
with access to sensitive information. Common applications such as the Microsoft Office suite
are included in the trusted application list. For them, the installed DLP solution only controls
actions that can directly produce an information leak (such as for example attempting to print
a file or emailing a document).

Let W = w1, w2, . . . , wn be a set of sensitive information, where wi can be described
with the regular expression expw. Let C = c1, c2, . . . , cm be the implementation of a ci-
pher in spreadsheet form where ci codifies part of the cipher Cipher(x, k). Both wi and ci
are composed by a set of symbols that are accepted as content for a spreadsheet cell. Let
Sensitivew(x) be a function that returns true if x conforms to expw and false otherwise. To
simplify it can be assumed that Sensitivew(x) is called each time a spreadsheet cell is going
to be copied into the clipboard. If Sensitivew(x) returns true, x can not be copied into the
clipboard and the incident is logged.

As all operations are performed within a trusted application, the existence of several
trusted applications being used at the same time is not considered. If a malicious insider
copies C into the clipboard, Sensitivew(x) will be called m times returning false for all
of them. When C is pasted into the spreadsheet containing W , operations defined in C
will be performed using W as input. This will result in W ′ = w′1, w

′
2, . . . , w

′
n, where w′i =

6.4 Evaluation 105

Cipher(wi, k). Depending on the specific transformations performed by Cipher(x, k), the
result of Sensitivew(w′i) will be false, enabling the malicious insider to copy W out and send
it outside the organization. In the case of most commercial DLP solutions, Sensitivew(x)
checks x against a set of defined regular expressions and keywords. Therefore, Cipher(x, k)
transformations have two requirements.

1. k must be required to obtain back x from w. If Cipher(x, k) can be easily reversed, the
malicious insider might be able to evade the restrictions imposed by the DLP solution,
but transformations could be reversed easily and new definitions of Sensitivew(x) will
be able to detect the transformed information. In this case, Cipher(x, k) implements
both TEA and AES. The difficulty to obtain back the original information is (for both
algorithms) orders of magnitude higher than any other simple transformation that could
render Sensitivew(x) unusable. To the best of the author knowledge there is no publicly
available attack on the full version of AES 128 that reduces the complexity of finding the
encryption key to significantly less than a brute force attack [162]. In the case of TEA,
[159] discovered that TEA suffers from equivalent keys. This means that each TEA key
has 3 equivalent ones, reducing its complexity to 2126. Other attacks exist, but still their
practical implications in this setting are very limited. Nevertheless, as the key has to
be introduced in the same spreadsheet, implementation attacks could be used against
this proposal. However, to be able to implement such attacks, it would be necessary to
detect that this kind of evasion is being used. This is addressed in Section 6.5.2.1.

2. It should generate a w that does not match with any of the defined regular expressions
or keywords. This is done by adding an additional transformation at the end of the ci-
phering process. This transformation ensures that the encrypted data will not match
any sensitive data pattern or keyword. In the current AES and TEA spreadsheet im-
plementations, dots are introduced between each 3 digits to avoid any possible n digit
pattern.

6.4.2 Performance Analysis

Implementing bitwise operations through standard decimal arithmetic functions increases the
computational complexity of the cipher implementation. While in usual software implemen-
tations basic bitwise operations can be translated into a single line of assembly code, in this
implementation it requires multiple operations. Spreadsheet implementations of TEA and AES
have been compared with standard C implementations. Test consisted on encrypting up to
1 Megabit of information with each implementation. During tests, the machine was not exe-
cuting any other task. To obtain average values, each encryption procedure was repeated 24
times. Average results show that the spreadsheet implementations are significantly (orders of
magnitude) slower than C implementations (Table 6.2). In the case of AES, the Excel imple-
mentation is very inefficient, mostly due to the MixColumns step. Therefore, a spreadsheet
application does not seem the optimal way to implement a cipher, and it is suitable only for
small amounts of information or a proof of concept implementation.

In terms of memory space, the TEA implementation requires 70 cells to encrypt 64 bits of
information: 2 as plaintext input, 4 as password input and 64 to implement TEA. AES requires
704 cells to encrypt 128 bits: 16 as plaintext input, 16 as password input, 512 to implement
constants and 160 to implement AES operations. To encrypt more blocks, the plaintext and
implementation cells must be copied. Therefore, with the current approach it is theoretically

106 Jorge Blasco Alís

Data Excel AES C AES Excel TEA C TEA
128 bits 0,23 sec. < 1 ms. 0,29 sec. < 1 ms.
256 bits 0,38 sec. < 1 ms. 0,33 sec. < 1 ms.
512 bits 0,66 sec. < 1 ms. 0,39 sec. < 1 ms.
1 Kb 1,35 sec. < 1 ms. 0,47 sec. < 1 ms.
2 Kb 2,70 sec. < 1 ms. 0,70 sec. < 1 ms.
4 Kb 5,28 sec. < 1 ms. 1,34 sec. < 1 ms.
8 Kb 10,53 sec. 1,6 ms. 2,68 sec. < 1 ms.
16 Kb 20,95 sec. 3 ms. 5,34 sec. < 1 ms.
32 Kb 42,23 sec. 6 ms. 10,61 sec. < 1 ms.
64 Kb 83,79 sec. 12 ms. 21,09 sec. < 1 ms.
128 Kb 171,19 sec. 25 ms. 42,22 sec. < 1 ms.
256 Kb 333,22 sec. 50 ms. 84,47 sec. 1,6 ms.
512 Kb 673,75 sec. 0,1 sec. 168,97 sec. 3,4 ms.
1 Mb 1.343,26 sec. 0,2 sec. 335,72 sec. 6,6 ms.

Table 6.2: Performance comparison of spreadsheet and C implementations to encrypt up to 1
Megabit of information (average of 24 runs)

possible to encrypt up to 240 ÷ 66 = 16659267087 bits for each available sheet (up to 1,93
GB) with TEA and up to 240 ÷ 176 = 6247225157 bits (up to 0,72 GB)7 with AES.

6.4.3 Bypassing a Commercial DLP Solution

The proposed evasion method has been tested against a commercial DLP solution from
TrendMicro (i.e. LeakProof v5.08). LeakProof is composed by a server and a workstation
agent. The LeakProof server is used by administrators to scan workstations for sensitive
information, define security policies, analyze alerts sent by LeakProof agents and generate
reports. The LeakProof agents crawl the system for sensitive information. Additionally they
monitor and control all leakage vectors (removable drives, network, etc.). The current version
of LeakProof is only able to control Windows workstations.

A simulated organization that included several workstations controlled by a LeakProof
Server was built. LeakProof uses the concepts of digital asset and company policy to estab-
lish a DLP configuration. Digital assets are defined through the use of keywords and regular
expressions. The tested version of LeakProof includes 21 keywords and 36 regular expres-
sions that allow to identify possible sensitive files such as source code files, social security
numbers, etc. Generative software was used to create personal data record files9, which
LeakProof correctly identified as sensitive. Company policies are built to control digital assets
that are transmitted through specific channels. The server company policy was configured
with compliance templates that are built in the LeakProof Server. Specifically, templates to
comply with PCI-DSS (PCI Securty Standards Council, 2010), California Senate Bill 1386 of
2002 (SB 1386) and the Gramm-Leach-Bliley Act of 1999 (GLBA) were enabled. Addition-
ally, a compliance template to avoid source code extraction and US personally identifiable
information (including social security numbers) were active.

7Excel 2007 allows a maximum 220 × 220 cell spreadsheets
8TrendMicro LeakProof v5.0 http://us.trendmicro.com/us/products/enterprise/

data-loss-prevention - Accessed on April 15th 2012
9To generate fake personal records, an Excel plugin available at http://www.codeforexcelandoutlook.

com/wkbks/RandomDataGenerator_unlocked2007.xlam was used

http://us.trendmicro.com/us/products/enterprise/data-loss-prevention
http://us.trendmicro.com/us/products/enterprise/data-loss-prevention
http:// www.codeforexcelandoutlook.com/wkbks/RandomDataGenerator_unlocked2007.xlam
http:// www.codeforexcelandoutlook.com/wkbks/RandomDataGenerator_unlocked2007.xlam

6.4 Evaluation 107

Figure 6.2: LeakProof v5.0 alerts when trying to copy sensitive cells into the clipboard

Tests performed involved three different methods to try to leak information. First, trying
to copy sensitive information from one file to another through the clipboard. Secondly, trying
to mail a sensitive file using a webmail account accessed though HTTPS. Finally, using the
proposed evasion technique to transform the sensitive information.

Copying sensitive information into the clipboard was detected by the LeakProof Agent,
as shown in Figure 6.2. During the second test, sending a sensitive file using a webmail
account, LeakProof did not allow the malicious insider to attach the sensitive file (Figure 6.3).
All these operations were logged into the LeakProof server and also reported to the security
administrator through his email account. Other operations such as copying to a removable
drive and printing the document were also forbidden and logged.

Using one of the spreadsheet ciphers and the previously defined Algorithm 3 (See Section
6.3.2), the social security numbers were successfully extracted from the simulated organiza-
tion network. Figure 6.4 shows the resulting file, encrypted using the TEA spreadsheet im-
plementation, which was transferred outside the organization using the previously forbidden
leakage procedures.

In this case, as the clipboard is actively monitored by LeakProof, the cipher cells were
copied into the sensitive file spreadsheet. The encrypted information did not match any of the
patterns defined into LeakProof policies (see Table 6.3).

SSN Pair LeakProof Search Pattern ExcelTEA Result
609-41-9684, 707-56-1016 [ˆ \d-](\d{9}|\d{3}-\d{2}-\d{4})[ˆ \d-] 214.454.815,6, 331.361.616,3

Table 6.3: Example of the transformation performed on a social security number to bypass
LeakProof detection mechanism

To leak other sensitive information such as names, address, etc., their values would need

108 Jorge Blasco Alís

Figure 6.3: LeakProof v5.0 alerts when trying to send a sensitive file by email

Figure 6.4: Social Security Numbers encrypted using the TEA spreadsheet implementation

to be translated into numeric format using the CODE() function.

6.5 Discussion

The presented attack allows malicious insiders to bypass DLP solutions and leak informa-
tion from an organization. Nevertheless, a spreadsheet implementation of a cryptographic
algorithm involves some restrictions that do not apply over specific purpose cryptographic ap-

6.5 Discussion 109

plications. This section analyzes how these restrictions affect the feasibility of this method to
evade information.

6.5.1 Feasibility of current DLP evasion technique

Executing encryption algorithms over a spreadsheet application enables the evasion of restric-
tions imposed by DLP solutions. Nevertheless, executing a cryptographic algorithm through
spreadsheet cells will not execute in the same way as executing it directly using machine code.
Specifically, this kind of implementation has two drawbacks that may affect its feasibility under
a real scenario.

Firstly, the spreadsheet implementation is computationally inefficient. As shown in Sec-
tion 6.4.2, the spreadsheet implementation of a cipher is orders of magnitude slower than a
standard C implementation of the same cipher. The spreadsheet program has to first look for
the order in which to executed the different cell operations. Then, it will interpret the different
mathematical operations before they are executed (also over the spreadsheet program). In
the case of C implementations lines of code are loaded into memory and executed directly
in the system processor. Binary operations that are translated to several decimal operations
have also an impact on the implementation efficiency. Additionally, as opposite to other cipher
implementations, the memory requirements increase with the amount of data to encrypt: a
block of cipher implementation cells is required for each block the user wants to encrypt in
the same algorithm run. Encrypting large amounts of information causes an overhead on the
spreadsheet application that could be easily identified as abnormal behaviour (see Section
6.5.2.3).

Secondly, the cipher spreadsheet is only able to encrypt information stored in spreadsheet
cells. As these cells only allow to introduce textual information, binary information such as im-
ages or other file formats that can not be easily represented by readable characters cannot
be encrypted. Thus, the presented approach only allows to extract textual information from
an organization. Encrypting binary information would require the usage of additional appli-
cations to encode the binary information into cell allowed characters. Binary file editors read
binary files and represent them with readable characters transforming binary information into
its hexadecimal representation. This kind of programs could be used to transform binary infor-
mation into spreadsheet readable information. However, its execution would be restricted in
most of the workstations environments, as these applications are only used when in software
development scenarios.

Information encryption restrictions together with the computational restrictions of the ci-
pher spreadsheet, makes the presented evasion technique suitable only for small amounts of
data such as personal data records or small text fragments.

6.5.2 Countermeasures to the proposed DLP evasion technique

Although the proposed attack enables bypassing current DLP solutions, there exist several
techniques and mechanisms that could be used to detect the usage of the proposed tech-
nique. The following subsections discuss some of them.

6.5.2.1 Detecting the presence of cipher spreadsheets

Both the Windows registry and UNIX system logs store system status information and appli-
cation messages sent to the operating system. [109, 163] proposed the use of registry entries

110 Jorge Blasco Alís

and system logs to detect malicious insiders and suspicious applications affecting information
leakage threats. Microsoft Excel generates entries on the Windows registry keys that could
be used as forensic artefacts. Using Systracer10, changes made to the Windows registry after
successfully leaking sensitive information have been obtained. The only change observed
was on the following key:

HKEY_CURRENT_USER\\Software\\Microsoft\\Office\\12.0\\Excel\\File MRU

This registry key, which stores the name of the recent opened files, changed to add the
name of the file where the cipher was placed. That name is not enough to detect a malicious
or suspicious behaviour, as it can be changed easily by the malicious insider.

Another approach to detection would be to consider the cipher spreadsheets as some
sort of malware. After all, the main purpose of the cipher workbook file is arguably to steal
information. Antivirus and Intrusion Detection Systems (IDS) may be adapted to detect the
transmission or usage these kinds of spreadsheets on a computer system. Regarding the
AES implementation, its S-Boxes could be used as a signature to detect the presence of the
Excel cipher implementation. A new IDS rule could be written to detect such content into
incoming network traffic.

Nevertheless, the proposed TEA and AES implementations are just an example. Virtu-
ally thousands of different files with the same purpose can be created and used easily, as
well as other completely different implementations of other ciphers. This implies that it will be
quite easy to develop new alternatives unknown to anti-malware software that could be em-
ployed without any risk of being detected. However, these kinds of spreadsheets share some
common characteristics that could facilitate their detection, such as the usage of a short set
of functions and the high amounts of nested formulas required to steal practical amounts of
information.

6.5.2.2 Encrypted data detection

DLP solutions inspect contents and file metadata as well as network packets to detect sen-
sitive information leaving the organization [69, 163]. One central property of modern ciphers
is the randomness of the ciphertext they produce [164]. Randomness tests could be used
to detect encrypted content being transferred out of the organization. However, spreadsheet
encrypted information could be transformed to reduce its apparent redundancy or transmitted
wrapped under file formats such as PDF, DOC, etc. This should be taken into account when
designing encryption data detectors.

Using the software “Glavlit” [52], any file to be sent outside the organization must pass
through a warden. A specific warden could be created to detect files produced with our cipher
spreadsheets, usually Microsoft Excel or other format files with random contents. However,
other innocent-looking information could be easily introduced into the file to confuse the war-
den.

6.5.2.3 Detection of abnormal behaviour

The use of the cipher spreadsheet requires the malicious insider to follow a specific procedure.
All these actions are done at the application level: opening a sensitive file, performing some
actions on it and storing the information in a new file. The generation of fine grained in-
application log data could help to detect these kinds of malicious insider attacks. Events such

10Systracer 2.0 available at http://www.blueproject.ro/systracer

http://www.blueproject.ro/systracer

6.6 Summary 111

as “user opens sensitive file”, “sensitive cells are used as input for certain cells”, etc. give
accurate information about the user behaviour. Data mining techniques could be used over
this data to build information leakage detectors. A similar approach was proposed by Schonlau
et al. to detect malicious insiders using running processes [20].

Additionally, the overhead that the cipher spreadsheet implementations produce on the
system when encrypting (Section 6.4.2) could be used as a hint to detect a malicious insider.
Nevertheless, this depends on the amount of information to encrypt. Depending on the orga-
nization’s activities, these variations can also be attributed to other legitimate Excel operations
or other user activities, such as web navigation, etc.

6.5.2.4 Security models to avoid data leaks

Implementing application level restrictions on specific user actions concerning sensitive infor-
mation may help to avoid these evasion technique (i.e. forbid to reference a cell whose value
is a piece of sensitive information). In this regard, the usage of Enterprise Digital Rights Man-
agement Solutions [165] would likely defeat the proposed attack. These solutions should be
correctly configured through the security policy. Additionally, authors should not have control
of their own documents, as they may simply reduce the security level of the document to steal
it.

Finally, the usage of multilevel security models (see Section 2.4.3) could be useful to
forbid information leakage using our evasion technique. In the Bell-LaPadula model, when the
malicious insider opens the sensitive information document he is no longer able to create non
sensitive documents. Nevertheless, as previously mentioned, work is still needed in order to
adapt these kind of models to commercial environments [66].

Other techniques such as process colouring, could be useful to trace back the origin of
the leak [68]. If an application opens a sensitive information file, it propagates its color (a
unique identifier) to other opened documents. DLP solutions could be configured to deny
transmission of certain colors outside the organization. In this case, those techniques should
be adapted to not work only over processes, but also over processes and documents.

6.6 Summary

Information leakage is one of the more rapidly growing threats that organizations face nowa-
days. This Chapter demonstrates that trusted applications may entail a threat to the confiden-
tiality of sensitive information. This threat has not been addressed by current DLP systems
and could allow malicious insiders to leak sensitive information by using trusted applications.
Specifically, it has been shown how to implement a standard cipher in a simple and widely
used spreadsheet application. As actions performed within the trusted application environ-
ment are not controlled, information can be encrypted and sent outside the organization with-
out being detected.

This approach could be used by malicious insiders to steal information from organizations
already protected by malicious insider detection or DLP systems. This evasion technique
has been tested against a commercial DLP solution, demonstrating that it is able to extract
sensitive information from a simulated organization without being detected.

Additionally, the main countermeasures that could be implemented to avoid this kind of
evasion technique have been described. Implementing such countermeasures would enable
to improve the security of DLP solutions against advanced evasion techniques.

Chapter 7

Conclusions

Weep little lion man
You’re not as brave as you were at the start,

Rate yourself and rake yourself,
Take all the courage you have left
Wasted on fixing all the problems
That you made in your own head

Mumford & Sons - Little Lion Man

Malicious insiders are an increasing concern of organizations due to the damage they are
able to inflict. In this regard, information theft is one of the most harmful actions that are usually
committed by them. The theft of sensitive information not only produces high economical
losses and competitiveness problems, but also compromises the viability of organizations [8].

In this thesis, the risk created by malicious insiders to the confidentiality of information
assets has been studied. In particular, this dissertation addresses the security of documents
and sensitive information the insider has already access to. Although insiders require access
to these sensitive information to perform their tasks, extracting them outside the organization
premises and controls should not be allowed by the security policy defined by the organiza-
tion. In this case, access control policies cannot be used to prevent the leakage, as the insider
has already access to the sensitive information. However, this is not the only risk that mali-
cious insiders introduce in organizations. They may try to sabotage other organization assets,
destroy them or use them for their own advantage. Although these are risk worth addressing,
there has already been research that has focused on these threats [19, 18, 59, 20, 24, 23].

Addressing this problem required first to analyze the security of current proposals to avoid
information leakage. A survey of current proposals regarding information leakage protec-
tion was performed (Chapter 2). During this survey, covert channels created by means of
steganography (Chapter 3) and malicious usage of trusted applications were identified as
issues that were not taken into account as a tool to steal information. To demonstrate the un-
accounted risk introduced by steganography and trusted applications, attacks to information
leakage protection mechanisms (and more specifically DLP solutions) have been developed
(Chapters 4 and 6). However, mechanisms to prevent from these attacks have also been
developed. In fact, active warden and steganalysis techniques have been studied as tools
to hinder the usage of steganography (Chapter 5). Additionally, several recommendations
to avoid information leakage through the malicious usage of trusted applications have been
given (Chapter 6).

The previously stated research path was specified in Section 1.2 establishing a set of

114 Jorge Blasco Alís

research questions. In the following and as a result of this thesis, an answer is given to each
of the presented research questions. In this case, the secondary research questions are
answered first.

Question 1

What kind of computer or not computer resources can be used by a malicious employee to
perform a malicious activity such as information theft?

In Chapter 2, concepts and definitions related to the information leakage protection field
were presented. In fact, the concept of leakage vector is defined (Section 2.2.4). A leakage
vector is any mean by which some information asset can be revealed to unauthorized users.
Therefore, any mechanisms belonging to a computer system that allow to transmit the infor-
mation outside the organization control has to be considered as a leakage vector. Specifically,
in this dissertation the following leakage vectors have been identified:

• Network

• Printers

• Portable media

• Advanced mobile devices

All these leakage vectors could be used by a malicious insider to extract sensitive infor-
mation from an organization. Although these are usually monitored by DLP solutions, they do
not consider the existence of covert channels.

Question 2

Is it possible to transform information in such a way that its usage and transmission passes
unnoticed to information leakage prevention mechanisms?

Chapter 2 describes the techniques used by DLP solutions to track sensitive informa-
tion. Due to the architecture of DLP solutions, if information going through a leakage vector
is not identified as sensitive, it can be transmitted without raising any alarm. Nowadays, DLP
solutions use keyword matching, pattern recognition, fingerprinting and watermarking as tech-
niques to recognize previously defined sensitive information [69].

Techniques such as cryptography of steganography modify information in such a way,
that previously mentioned techniques cannot detect the modified information as sensitive.
Although other techniques could be used to detect the usage of cryptography, its detection
and the differentiation from legitimate encrypted traffic can be a challenge and has not been
explored in depth. Additionally, steganography techniques can produce innocuous stego-
objects (images) that cannot be detected as sensitive.

In Chapter 4, two steganographic algorithms that could be used by a malicious insider to
leak information are presented. First, an algorithm that transforms C source code into innocu-
ous text is presented and evaluated [13]. The usage of this algorithm is specially suitable
in software developing environments. Second, a steganographic application for the iOS op-
erating system is described and evaluated in terms of security and performance [14]. This
application is a proof of concept application that can be used to hide information into images
that are later sent outside the organization infrastructure using the same mobile device.

115

Question 3

Is it possible to use the trusted resources and applications in a computer system to leak
information?

Although steganography and cryptography can be used to leak information, restrictions to
application execution can be imposed to avoid these kinds of attacks by malicious insiders.
However, employees still have access to a big set of applications, that can be very complex,
to complete their business tasks. As shown in this dissertation, if these applications, which
use is not restricted, can be used to ease the leakage of information, malicious insiders would
have a way to attack the confidentiality of sensitive information.

In Chapter 6, an scheme to leak information using trusted applications is presented [15].
The attack is built in top of spreadsheet applications, which are commonly used in lots of en-
vironments inside organizations. The spreadsheet application is used to build a cryptographic
program that can encrypt sensitive information. This can be later extracted without risk of
being detected. The security and performance of the proposed scheme have been evaluated.
Additionally, this evasion method has been successfully evaluated against a commercial DLP
solution.

Question 4

It is possible to control the required leakage vectors to hinder information leakage attempts?

Although the answers to previous questions, show that it is possible to maliciously ex-
tract information from an organization protected by a DLP solution, this dissertation has also
focused on mechanisms to avoid the presented attacks.

Steganalysis and active warden techniques can hinder the usage of steganography inside
organization environments [52]. Besides security evaluations of the steganographic systems
proposed in Chapter 4 , Chapter 5 describes a steganalyis technique to detect hidden infor-
mation inside executable files [17]. The proposal is able to detect with a 100 % accuracy
stego-files produced by Hydan. This dissertation has also addressed the usage of active
warden techniques to avoid the existence of covert channels in network communications [16]
(with a specific focus on HTTP).

Additionally, in Chaper 6, a set of recommendations to improve DLP solutions is given
(see Section 6.5.2. Implementing these recommendations into DLP solutions would avoid the
attack presented in the same Chapter.

Main Research Question

Are the current information leakage protection mechanisms enough to protect against
malicious insiders trying to steal information from an organization?

The contributions of this dissertation have shown that current ILP mechanisms do not
fully address all the possible attacks that a malicious insider can commit to steal sensitive
information. Previous proposals in the field of malicious insider detection usually address the
malicious insider as a general problem, not analyzing the possible different behaviours that
the insider can adopt. Additionally, proposals that address the leakage of sensitive information
only address attacks in which a need-to-know violation occurs [22, 23].

116 Jorge Blasco Alís

Uncontrolled actions performed by insiders also increase the risk of suffering from mali-
cious information leakages. Most Information Leakage Protection mechanisms do not take
into account the malicious usage of steganographic applications to hide sensitive information
into innocuous objects. To make things worse, mobile devices and trusted applications are not
taken into account in any case. In this way, malicious insiders could used them to inadvertently
extract information from a supposedly protected organization.

However, it is possible to hinder the extraction of sensitive information by malicious in-
siders. Steganalysis and active warden techniques could be used to detect and avoid the
usage inside organizations. While steganalysis can be used to detect the presence of hid-
den information being transmitted through leakage vectors, active warden techniques allow
to delete the possible hidden information being transmitted outside the organization. Addi-
tionally, several improvements could be made to DLP solutions in order to avoid information
leakage through the usage of trusted applications. These include, increasing the granularity
of the analysis of users actions, using a system to detect abnormal behaviour inside the group
of trusted applications and improving IDS to detect malicious files that can be used to convert
trusted applications into cryptographic or steganographic applications.

7.1 Future Works

Although this dissertation has presented several attacks to ILP mechanisms and some de-
fence strategies, information leakage threads have gained the interest of the research com-
munity during the last years (See Section 1.1). However, there are still open issues that begin
just in the point this dissertation finishes. The following lines describe the future work direc-
tions that are pointed out by this dissertation.

7.1.1 Improvement of Steganalysis Techniques

Steganalysis algorithms allow to detect stegranograhic content leaving the organization. The
creation of new steganographic algorithms requires the design of new steganalytic approaches
to detect its usage. Additionally, current steganalysis techniques have to be improved in terms
of efficiency and False Positive Rate and False Negative Rate. These improvements are
mandatory to provide feasible mechanisms to implement such detectors in a deployed DLP
solution.

7.1.2 Improvement of Active Warden Techniques

Active Warden techniques require intercepting the communication between the covert chan-
nel communicating parties and modifying the content to erase possible steganographic in-
formation. This process introduces an overhead on the communication that must be as low
as possible in order to make these techniques worth deploying. To optimize the sanitization
process performed, it is necessary to optimize its software or hardware implementation of
them. In terms of hardware, using dedicated devices such as FPGA [166] could increase the
speed of the sanitization process. Even with an increased speed, these kind of sanitization
processes have a limited bandwidth. Analysis to calculate the bandwidth limit and average
delay on communications is a crucial aspect of these techniques which has not been already
addressed.

7.1 Future Works 117

7.1.3 Complementary use of Steganalysis and Active Warden Techniques

As previously mentioned, active warden techniques introduce and overhead and delay in the
communication process. Depending on bandwidth and throughput of the network (or other
device) in which the active warden is placed, it may be infeasible to perform the sanitization
process over all messages that are transmitted.

Steganalysis techniques can be used to select the most suitable candidates in which to ap-
ply the sanitization process. A selective active warden could be implemented in high through-
put scenarios, only applying the sanitization process to suspect messages. The feasibility of
this depends on the efficiency of the used steganalysis techniques. In fact, the used steganal-
ysis techniques are required to be faster than its active warden counterparts and also faster
enough to be usable in high throughput scenarios.

This approach has been taken into account in StegoProxy (Section 5.3). However, it has
not been analyzed nor implemented to test its feasibility.

7.1.4 Development of New Attacks Against DLP Solutions

In this dissertation, attacks to avoid information leakage detection by malicious insiders have
been presented. Although previously presented future work moves in the direction of im-
proving the detection of such attacks, it is also necessary to study new ways to attack these
solutions. Advancing in this direction will allow to improve further current DLP solutions to
provide a better protection against malicious insider attacks.

7.1.5 Improvements to Current DLP Solutions

Although this dissertation describes several recommendations to avoid the presented attacks,
tests and evaluation of these defensive techniques have to be addressed. Additionally, pro-
posed steganalysis and active warden techniques should be incorporated in current DLP so-
lutions and tested. In this regard, they could be implemented as part of the workstation agents
or deployed in network nodes to directly analyze traffic. Proposals in this regard have to be
developed and evaluated, as they are a fundamental instrument to improve current DLP solu-
tions against malicious insider attacks.

Appendix A

Published Works

The work performed during this PhD has resulted in several papers being published. Research
work has been published in international conferences and journals or recognized prestige.
Additionally, a software application has been developed, registered and published in the Apple
App Store. This Section describes the published works and the impact or ranking of each of
the journals or conference where works have been published. Additionally, other works where
the author of this thesis has taken part are referenced. Overall, this research period has
produced 10 published works, which are depicted in a timeline in Figure A.1.

A.1 Published work directly related to this PhD

Overall, 4 different research papers have been published that are directly related to this PhD
dissertation. Two of them have been published in international conferences and the other two
have been published in indexed international journals.

A.1.1 International Conferences

CSteg: Talking in C code [13]

This work was coauthored by Julio César Hernández, Juan M. Estévez and Arturo Ribagorda.
The SECRYPT International conference is part of ICETE, the International Joint Conference
on e-Business and Telecommunications. The SECRYPT is ranked as a B conference by the
CORE Rankings [167].

Steganalysis of Hydan [17]

This work was coauthored by Julio César Hernández, Juan M. Estévez, Arturo Ribagorda and
Miguel Ángel Orellana. The IFIP SEC conference is an international conference organized by
the International Federation of Information Processing (IFIP). This conference is ranked as a
B conference by the CORE Rankings.

120 Jorge Blasco Alís

A.1.2 International Journals

A framework for avoiding steganography usage over HTTP [16]

This work was coauthored by Julio César Hernández, José María de Fuentes and Benjamín
Ramos. This paper was sent for consideration on May 24th 2011 and accepted for publication
on October 2nd 2011. The Journal of Network and Computer Applications has an impact
factor of 0.660.

Bypassing information leakage protection with trusted applications [15]

This work was coauthored by Julio César Hernández, Juan M. Estévez and Arturo Ribagorda.
This paper was sent for consideration on September 20th 2010 and accepted for publication
on May 28th 2012. Computers & Security has an impact factor of 0.889

A.1.3 Registered Software

Hide It In [14]

This work was coauthored by Julio César Hernández. It is available for free in the Apple App
Store. It was last updated on 14th December 2010 and has been downloaded more than 5000
times (Consulted through Apple iTunes Connect1 on April 13th 2012).

A.2 Research papers not directly related to this phd

Besides the previously presented publications, other research works, with not direct relation
with the dissertation at hand, have been published. These are mostly related to collaboration
with other authors and participation in research projects.

A.2.1 International Conferences

Automatic Rule Generation Based on Genetic Programming for Event Correlation [168]

The main author of this work is Guillermo Suárez and it is coauthored by Esther Palomar, José
Mará de Fuentes and Arturo Rigagorda. It was published in CISIS, which is ranked as a B
conference by the CORE Rankings. This work was partially supported by CDTI, Ministerio de
Industria, Turismo y Comercio of Spain in collaboration with Telefónica I+D, Project SEGUR@
with reference CENIT-2007 2004.

Improving Network Intrusion Detection by Means of Domain-Aware Genetic Program-
ming [169]

This work was coauthored by Agustín Orfila and Arturo Ribagorda. In was published in ARES,
which is ranked as a B conference by the CORE Rankings. This work was partially supported
by CDTI, Ministerio de Industria, Turismo y Comercio of Spain in collaboration with Telefónica
I+D, Project SEGUR@ with reference CENIT-2007 2004.

1iTunes Connect is a service provided by Apple to software developers and cannot be accessed by general
public - https://itunesconnect.apple.com/

https://itunesconnect.apple.com/

A.2 Research papers not directly related to this phd 121

A multi-agent scanner to detect stored-XSS vulnerabilities [170]

The main author of this work is Eduardo Galán and it is coauthored by Almudena Alcaide and
Agustín Orfila. It was published in ICITST, which is not ranked by the CORE Rankings.

A.2.2 International Journals

Analysis of update delays in signature-based network intrusion detection systems [171]

The main author of this work is Hugo Gascón and it is coauthored by Agustín Orfila. This
paper is published in Computers & Security, which has an impact factor of 0.889.

A.2.3 Book Chapters

Cross-Site Scripting: An Overview [172]

The main author of this work is Eduardo Galán and it was coauthored by Almudena Alcaide
and Agustín Orfila. This work was partially supported by CDTI, Ministerio de Industria, Tur-
ismo y Comercio of Spain in collaboration with Telefónica I+D, Project SEGUR@ with refer-
ence CENIT-2007 2004.

122
Jorge

B
lasco

A
lís

!

! ! ! ! !

! ! ! !
Csteg: Talking in C code !

Steganalysis of Hydan!

Hide It In!

A framework for avoiding
steganography usage over
HTTP!

Bypassing information leakage
protection with trusted applications!

Conference!
Conference!

App Store!
Journal!

Journal!

Analysis of update delays in
signature-based network
intrusion detection systems!

Journal!
Cross-‐Site	 Scrip-ng:	 An	 Overview	

Book Chapter!
Improving	 Network	 Intrusion	
Detec-on	 by	 Means	 of	 Domain-‐
Aware	 Gene-c	 Programming	

Conference!

A	 mul--‐agent	 scanner	 to	 detect	
stored-‐XSS	 vulnerabili-es	

Conference!

Automa-c	 Rule	 Genera-on	 Based	 on	 Gene-c	
Programming	 for	 Event	 Correla-on	

Conference!

Figure A.1: Detailed timeline of published works during the research period related to this PhD dissertation

Bibliography

[1] CSO Magazine, U.S. Secret Service, Software Engineering Institute CERT Program
at Carnegie Mellon University, and Deloitte. 2011 E-Crime Watch Survey. Technical
report, CSO Magazine in cooperation with U.S. Secret Service, Carnegie Mellon Uni-
veristy Software Engineering Institute’s CERT Coordination Center and Deloitte, 2011.

[2] E. Quellet and R. McMilla. Magic Quadrant for Content Monitoring and Filtering and
Data Loss Prevention. Technical report, 2011.

[3] Shari Lawrence Pfleeger, Joel B. Predd, Jeffrey Hunker, and Carla Bulford. Insiders
Behaving Badly: Addressing Bad Actors and Their Actions. IEEE Transactions on Infor-
mation Forensics and Security, 5(1):169–179, 2010.

[4] T. Walker. Practical Management of Malicious Insider Threat - An Enterprise CSIRT
Perspective. Information Security Technical Report, 13(4):225–234, November 2008.

[5] Howard Chivers, Philip Nobles, Siraj A Shaikh, John A Clark, and Hao Chen. Accumu-
lating Evidence of Insider Attacks. In 1st International Workshop on Managing Insider
Security Threats, pages 34–50, 2009.

[6] Andrew P Moore, Dawn M Cappelli, Thomas C Caron, Eric Shaw, and Randall F Trze-
ciak. Insider Theft of Intellectual Property for Business Advantage: A Preliminary Model.
In 1st International Workshop on Managing Insider Security Threats, pages 1–22, West
Lafayett, 2009.

[7] CSO Magazine, U.S. Secret Service, Software Engineering Institute CERT Program
at Carnegie Mellon University, and Deloitte. 2010 E-Crime Watch Survey. Technical
report, CSO Magazine in cooperation with U.S. Secret Service, Carnegie Mellon Uni-
veristy Software Engineering Institute’s CERT Coordination Center and Deloitte, 2010.

[8] Ramona R Rantala. Cybercrime Against Businesses. Technical report, U.S. Depart-
ment of Justice, July 2004.

[9] Marisa Reddy R., Michelle Keeney, Eileen Kowalsky, Dawn Cappelli, and Andrew
Moore. Insider Threat Study: Illicit Cyber Activity in the Banking and Finance Sector.
Technical Report 7, Carnegie Mellon Software Engineering Institute, January 2005.

[10] Richard Wray. T-Mobile Confirms Biggest Phone Customer Data Breach, 2009.

[11] 2008 Annual Study: U.K. Cost of a Data Breach. Technical report, Ponemon Institute,
2008.

124 Jorge Blasco Alís

[12] M. McCormick. Data Theft: A Prototypical Insider Threat. Insider Attack and Cyber
Security, 39:53–68, 2008.

[13] Jorge Blasco, J.C. Hernandez-Castro, J.M.E. Tapiador, and A.R. Garnacho. CSteg:
Talking in C code. In SECRYPT 2008, pages 399–406, Porto (Portugal), 2008. INSTICC
Press.

[14] Jorge Blasco and Julio Cesar Hernandez-Castro. Hide It In (Version 1.2) [Computer
Software], 2010. http://itunes.apple.com/en/app/hide-it-in/id401162613 -
Accessed on April 8th 2012.

[15] Jorge Blasco, Julio Cesar Hernandez-Castro, Juan E. Tapiador, and Arturo Ribagorda.
Bypassing Information Leakage Protection with Trusted Applications. Computers & Se-
curity, 31(4):557–568, June 2012.

[16] Jorge Blasco, Julio Cesar Hernandez-Castro, José María de Fuentes, and Benjamín
Ramos. A Framework for Avoiding Steganography Usage over HTTP. Journal of Net-
work and Computer Applications, 35(1):491–501, January 2012.

[17] J. Blasco, J.C. Hernandez-Castro, J.M.E. Tapiador, A. Ribagorda, and M.A. Orellana-
Quiros. Steganalysis of Hydan. In Emerging Challenges for Security, Privacy and Trust:
24th Ifip Tc 11 International Information Security Conference, SEC 2009, May 18-20,
2009, Proceedings, page 132, Paphos Cyprus, 2009. Springer.

[18] G Magklaras and S. Furnell. Insider Threat Prediction Tool: Evaluating the probability
of IT misuse. Computers & Security, 21(1):62–73, 2001.

[19] E.E. Schultz. A Framework for Understanding and Predicting Insider Attacks.
21(6):526–531, 2002.

[20] Matthias Schonlau, William DuMouchel, Wen-Hua Ju, Alan F. Karr, Martin Theus, and
Yehuda Vardi. Computer Intrusion: Detecting Masquerades. Statistical Science, 16:58–
74, 2001.

[21] Lance Spitzner. Honeytokens: The Other Honeypot. Security Focus, 21:3–7, 2003.

[22] Brian Bowen, Malek Ben Salem, Shlomo Hershkop, Angelos Keromytis, and Salvatore
Stolfo. Designing Host and Network Sensors to Mitigate the Insider Threat. IEEE Se-
curity & Privacy Magazine, pages 1–14, 2009.

[23] DD Caputo, MA Maloof, and G Stephens. Detecting the Theft of Trade Secrets by
Insiders: A Sumarry of MITRE Insider Threat Research. IEEE Security and Privacy,
6:14–21, 2009.

[24] BM Bowen, S Hershkop, AD Keromytis, and SJ. Baiting Inside Attackers Using Decoy
Documents, 2009.

[25] Wen-Hua Ju and Yehuda Vardi. Profiling UNIX Users And Processes Based on Rarity
of Occurrence Statistics with Applications to Computer Intrusion Detection. In Fourth
International Symposium on Recent Advances in Intrusion Detection, Davis, 2001.

http://itunes.apple.com/en/app/hide-it-in/id401162613

BIBLIOGRAPHY 125

[26] T. Lane and C.E. Brodley. Sequence Matching and Learning in Anomaly Detection for
Computer Security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk
Management, pages 43–49, 1997.

[27] B.D. Davison and Haym Hirsh. Predicting Sequences of User Actions. In Notes of the
AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to Time-Series
Analysis, pages 5–12, 1998.

[28] R.A. Maxion and T.N. Townsend. Masquerade Detection Using Truncated Command
Lines. In International Conference on Dependable Systems and Networks, pages 23–
26. IEEE Computer Society, 2002.

[29] Scott Coull, Joel Branch, Boleslaw Szymanski, and Eric Breimer. Intrusion Detection:
A Bioinformatics Approach. In Proceedings of the 19th Annual Computer Security Ap-
plications Conference, pages 24–34. IEEE Computer Society, 2003.

[30] Mizuki Oka, Yoshihiro Oyama, Hirotake Abe, and Kazuhiko Kato. Anomaly Detection
Using Layered Networks Based on Eigen Co-occurrence Matrix, 2004.

[31] Kwong H. Yung. Using Self-Consistent Naive-Bayes to Detect Masquerades. Advances
in Knowledge Discovery and Data Mining, 3506:329–340, 2004.

[32] S. Kleene. Representation of Events in Nerve Nets and Finite Automata, 1951.

[33] L.P. Cox and Peter Gilbert. RedFlag: Reducing Inadvertent Leaks by Personal Ma-
chines, 2009.

[34] Udi Manber. Finding Similar Files in a Large File System. In USENIX Winter 1994
Technical Conference, pages 1–10, 1994.

[35] G Salton, A Wong, and CS Yang. A Vector Space Model for Automatic Indexing. Com-
munications of the ACM, 18(11):613–620, 1975.

[36] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann, 1999.

[37] Timothy C. Hoad and Justin Zobel. Methods for Identifying Versioned and Plagiarized
Documents. Journal of the American Society for Information Science and Technology,
54(3):203, 2003.

[38] a Klose, a Nurnberger, R Kruse, G Hartmann, and M Richards. Interactive Text Retrieval
Based on Document Similarities. Physics and Chemistry of the Earth, Part A: Solid
Earth and Geodesy, 25(8):649–654, 2000.

[39] S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: Local Algorithms for Document
Fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 85–94. ACM, 2003.

[40] Y. Bernstein and J. Zobel. A Scalable System for Identifying Co-Derivative Documents.
Lecture Notes in Computer Science, pages 55–67, 2004.

[41] Sergey Brin, James Davis, and Héctor García-Molina. Copy Detection Mechanisms for
Digital Documents. ACM SIGMOD Record, 24(2):398–409, 1995.

126 Jorge Blasco Alís

[42] J.P. Kumar and P Govindarajulu. Duplicate and Near Duplicate Documents Detection:
A Review. European Journal of Scientific Research, 32(4):514–527, 2009.

[43] J. Kornblum. Identifying Almost Identical Files Using Context Triggered Piecewise Hash-
ing. Digital Investigation, 3:91–97, 2006.

[44] Vassil Roussev. Data Fingerprinting with Similarity Digests. In Kam-Pui Chow and
Sujeet Shenoi, editors, Advances in Digital Forensics VI, volume 337 of IFIP Advances
in Information and Communication Technology, pages 207–226. Springer Boston, 2010.

[45] Vassil Roussev. An evaluation of forensic similarity hashes. Digital Investigation, 8:S34–
S41, 2011.

[46] Ingemar J. Cox, Matthew Miller, and Jeffrey Bloom. Digital Watermarking and Steganog-
raphy. Morgan Kaufmann, 2nd edition edition, 2007.

[47] Ki-Ryong Kwon, Suk-Hwan Lee, Eung-Joo Lee, and Seong-Geun Kwon. Watermarking
for 3D CAD Drawings Based on Three Components, volume 4109 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006.

[48] Julien Stern, Gaël Hachez, François Koeune, and Jean-Jacques Quisquater. Robust
Object Watermarking: Application to Code, volume 1768 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2000.

[49] Akito Monden, Hajimu Iida, Ken-ichi Matsumoto, Katsuro Inoue, and K. Torii. A Practi-
cal Method for Watermarking Java Programs. In International Computer Software and
Applications Conference, pages 191–197, 2000.

[50] R. Yao, Q. Zhao, and H. Lu. A Novel Watermark Algorithm for Integrity Protection of
XML Documents. IJCSNS, 6(2):202–207, 2006.

[51] Richard Aikman. McLaren Fire Chief Designer Coughlan, 2008.

[52] Nabil Schear, Carmelo Kintana, Qing Zhang, and Amin Vahdat. Glavlit: Preventing
Exfiltration at Wire Speed. In Proc. 5th Wksp. Hot Topics in Networks (HotNets), 2006.

[53] ISO27001: Information Security Management System (ISMS) standard. Technical re-
port, International Organization for Standardization and the International Electrotechni-
cal Commission, 2005.

[54] Edward and Humphreys. Information Security Management Standards: Compliance,
Governance and Risk Management. Information Security Technical Report, 13(4):247–
255, 2008.

[55] M Theoharidou, S Kokolakis, M Karyda, and E Kiountouzis. The Insider Threat to Infor-
mation Systems and the Effectiveness of ISO17799. Computers & Security, 24(6):472–
484, 2005.

[56] James M. Stewart, Ed Tittel, and Mike Chapple. CISSP: Certified Information Systems
Security Professional Study Guide. Sybex, 2011.

[57] V.N.L. Franqueira and PAT Van Eck. Defense Against Insider Threat: A Framework for
Gathering Goal-Based Requirements. EMMSAD, 7:193–202, 2007.

BIBLIOGRAPHY 127

[58] Richard Kocsis. Criminal Profiling. Humana Press, 2006.

[59] N Nykodym, R Taylor, and J Vilela. Criminal Profiling and Insider Cyber Crime. Com-
puter Law & Security Report, 21(5):408–414, 2005.

[60] Jude Shavlik and Mark Shavlik. Selection, Combination, and Evaluation of Effective
Software Sensors for Detecting Abnormal Computer Usage. In Proceedings of the 2004
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining -
KDD ’04, pages 276–285. ACM Press, 2004.

[61] DD Caputo, G Stephens, M, and B Stephenson. An Empirical Approach to Identify
Information Misuse by Insiders. Recent Advances in Intrusion Detection, pages 402–
403, 2008.

[62] B. Aleman-Meza, Phillip Burns, Matthew Eavenson, Devanand Palaniswami, and Amit
Sheth. An Ontological Approach to the Document Access Problem of Insider Threat.
Intelligence and Security Informatics, pages 486–491, 2005.

[63] Yali Liu, Cherita Corbett, Ken Chiang, Sandia National Laboratories, Rennie Archibald,
and Dipak Ghosal. SIDD: A Framework for Detecting Sensitive Data Exfiltration by an
Insider Attack. In 42nd Hawaii International Conference on System Sciences HICSS
’09., 2009.

[64] DE Bell and LJ LaPadula. Secure Computer Systems: Mathematical Foundations and
Model. Technical Report ESD-TR-73-278, Mitre Corporation, 1973.

[65] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, 2001.

[66] H.H. Rubinovitz. Issues Associated with Porting Applications to the Compartmented
Mode Workstation. ACM SIGSAC Review, 12(4):2–5, 1994.

[67] Xuxian Jiang, Aaron Walters, Dongyan Xu, Eugene H. Spafford, Florian Buchholz, and
Yi-Min Wang. Provenance-Aware Tracing of Worm Break-in and Contaminations: A Pro-
cess Coloring Approach. International Conference on Distributed Computing Systems,
0:38, 2006.

[68] Xuxian Jiang, Florian Buchholz, Aaron Walters, Dongyan Xu, Yi-Min Wang, and Eu-
gene H. Spafford. Tracing Worm Break-In and Contaminations via Process Coloring: A
Provenance-Preserving Approach. IEEE Transactions on Parallel and Distributed Sys-
tems, 19:890–902, 2008.

[69] G Lawton. New Technology Prevents Data Leakage. Computer, 41:14–17, 2008.

[70] A. Whitehead. Towards Eliminating Steganographic Communication. In Proc. 3rd An-
nual Conference on Privacy, Security, and Trust, 2005.

[71] 2012 Global State of Information Security Survey, 2011.

[72] N.F. Johnson and S Jajodia. Exploring Steganography: Seeing the Unseen. IEEE
computer, 31(2):26–34, 1998.

128 Jorge Blasco Alís

[73] Gregory Kipper. Investigator’s Guide to Steganography. Ed. Auerbach Publications,
2004.

[74] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. Infranet: Circumventing Web Censorship and Surveillance. In Proceedings
of the 11th USENIX conference on Security, USENIX Security’02, pages 247–262.
USENIX Association, 2002.

[75] G.J. Simmons. The History of Subliminal Channels. IEEE Journal on Selected Areas in
Communications, 16(4):452–462, 1998.

[76] Butler W. Lampson. A Note on the Confinement Problem. Commun. ACM, 16(10):613–
615, 1973.

[77] V. Gligor. A Guide To Understanding Covert Channel Analysis of Trusted Systems.
Technical report, National Computer Security Center, 1993. http://handle.dtic.
mil/100.2/ADA276418 - Accessed on May 11th 2012.

[78] L Qiu, Y Zhang, F Wang, M Kyung, and HR. Trusted Computer System Evaluation
Criteria, 1985.

[79] K Ahsan and D Kundur. Practical Data Hiding in TCP/IP. In Proc. Workshop on Multi-
media Security at ACM Multimedia, volume 6, 2002.

[80] Serdar Cabuk, Carla E. Brodley, and Clay Shields. IP Covert Timing Channels. In
Proceedings of the 11th ACM conference on Computer and communications security -
CCS ’04, pages 178–187. ACM Press, 2004.

[81] John Giffin, Rachel Greenstadt, Peter Litwack, and Richard Tibbetts. Covert Messaging
Through TCP Timestamps. In Privacy Enhancing Technologies, volume 2482, pages
189–193. Springer, 2002.

[82] R. Chakinala, A. Kumarasubramanian, R. Manokaran, G. Noubir, C. Rangan, and
R Sundaram. Steganographic Communication in Ordered Channels. In Information
Hiding, pages 42–57. Springer, 2006.

[83] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating Steganography in Internet
Traffic with Active Wardens. Lecture Notes in Computer Science, pages 18–35, 2003.

[84] R.G. van Schyndel, a.Z. Tirkel, and C.F. Osborne. A Digital Watermark. In Proceedings
of 1st International Conference on Image Processing, volume 2, pages 86–90. IEEE
Comput. Soc. Press, 1994.

[85] R. Chandramouli, M. Kharrazi, and N. Memon. Image Steganography and Steganalysis:
Concepts and Practice. Lecture notes in computer science, (2939):35–49, 2003.

[86] Sam Burnett, Nick Feamster, and Santosh Vempala. Chipping Away at Censorship
Firewalls with User-Generated Content. In Proceedings of the 19th USENIX conference
on Security, USENIX Security’10, pages 29–45. USENIX Association, 2010.

[87] W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for Data Hiding. IBM Systems
Journal, 35(3):313–336, 1996.

http://handle.dtic.mil/100.2/ADA276418
http://handle.dtic.mil/100.2/ADA276418

BIBLIOGRAPHY 129

[88] Fabien A P Petitcolas. M{P3S}tego [Computer Software], 2006. http://www.
petitcolas.net/fabien/steganography - Accessed on April 7th 2012.

[89] C. Grothoff, K. Grothoff, R. Stutsman, L. Alkhutova, and M. Atallah. Translation-Based
Steganography. Journal of Computer Security, 17:269–303, 2005.

[90] M Shirali-Shahreza. Stealth Steganography in SMS. In Proceedings of the third IEEE
and IFIP International Conference on Wireless and Optical Communications Networks
(WOCN 2006), pages 11–13, 2006.

[91] Sebastian Zander, Grenville Armitage, and Philip Branch. A Survey of Covert Channels
and Countermeasures in Computer Network Protocols. IEEE Communications Surveys
& Tutorials, 9:44–57, 2007.

[92] J Hernandez, I Blasco, J Estevez, and A. Ribagorda. Steganography in Games: A
General Methodology and its Application to the Game of Go. Computers & Security,
25:64–71, 2006.

[93] B. Park, J. Park, and S. Lee. Data Concealment and Detection in Microsoft Office 2007
Files. Digital Investigation, 5:104–114, 2009.

[94] S Zhong, X Cheng, and T Chen. Data Hiding in a Kind of PDF Texts for Secret Com-
munication. International Journal of Network Security, 4:17–26, 2007.

[95] I-Shi Lee and Wen-Hsiang Tsai. A New Approach to Covert Communication Via PDF
Files. Signal Processing, 90:557–565, 2010.

[96] Christian Cachin. An Information-Theoretic Model for Steganography. In Information
Hiding, volume 1525 of Lecture Notes in Computer Science, pages 306–318. Springer
Berlin / Heidelberg, 1998.

[97] Rainer Böhme. Principles of Modern Steganography and Steganalysis. In Advanced
Statistical Steganalysis, volume 0 of Information Security and Cryptography, pages 11–
77. Springer Berlin Heidelberg, 2010.

[98] J. Fridrich and M. Goljan. Practical Steganalysis of Digital Images-State of the Art. Proc.
SPIE Photonics West, 4675:1–13, 2002.

[99] J. Fridrich and M. Goljan. Detecting LSB Steganography in Color, and Gray-Scale Im-
ages. IEEE Multimedia, 8(4):22–28, 2001.

[100] S. Dumitrescu, X. Wu, and Z. Wang. Detection of LSB Steganography Via Sample Pair
Analysis. In Information Hiding, pages 355–372. Springer, 2003.

[101] G. Bell and Yeuan-Kuen Lee. A Method for Automatic Identification of Signatures of
Steganography Software. Information Forensics and Security, IEEE Transactions on,
5(2):354–358, june 2010.

[102] Invisible Secrets [Computer Software], 2011. http://www.invisiblesecrets.com/ -
Accessed on April 7th 2012.

[103] Neils Provos. Outguess [Computer Software], 2001. http://www.outguess.org/ -
Accessed on April 7th 2012.

http://www.petitcolas.net/fabien/steganography
http://www.petitcolas.net/fabien/steganography
http://www.invisiblesecrets.com/
http://www.outguess.org/

130 Jorge Blasco Alís

[104] Andy Brown. STools [Computer Software], 2000. http://www.spychecker.com/
program/stools.html - Accessed on April 7th 2012.

[105] S. Geetha, S.S.S. Sindhu, S. Gobi, and A. Kannan. Evolving GA Classifiler for Audio
Steganalysis Based on Audio Quality Metrics. IEEE Intelligent Sensing and Information
Processing, pages 105–108, 2006.

[106] J.C. Hernandez-Castro, J.M.E. Tapiador, Esther Palomar, and A. Romero-Gonzalez.
Blind Steganalysis of MP3stego. Journal of Information Science and Engineering, To
appear:1–13, 2010.

[107] Chen Zhi-li, H. Liu-Sheng, Yu Zhen-shan, Z. Xin-Xin, and Zheng Xue-ling. Effective
Linguistic Steganography Detection. CIT Workshops, Australia, pages 2–7, 2008.

[108] M Steinebach, F A P Petitcolas, F Raynal, J Dittmann, C Fontaine, S Seibel, N Fates,
and L C Ferri. StirMark Benchmark: Audio Watermarking Attacks. In International
Conference on Information Technology: Coding and Computing, 2001., pages 49–54,
2001.

[109] R. Zax and F. Adelstein. FAUST: Forensic Artifacts of Uninstalled Steganography Tools.
Digital Investigation, 6:25–38, 2009.

[110] Chris McGreal. FBI Breaks Up Alleged Russian Spy Ring in Deep Cover, 2010.

[111] United States of America vs Anna Chapman and Mikhail Semenko. Technical report,
Federal Bureau of Investigation, 2010.

[112] McAfee Labs and McAfee Foundstone Professional Services. Protecting Your
Critical Assets: Lessons Learned from Operation Aurora. Technical re-
port, McAfee, 2010. http://www.mcafee.com/us/resources/white-papers/
wp-protecting-critical-assets.pdf - Accessed on May 17th 2012.

[113] Peter Wayner. Mimic Functions. Cryptologia, 16(3):193–214, 1992.

[114] M. Chapman and G. Davida. Hiding the Hidden: A Software System for Concealing
Ciphertext as Innocuous Text. Lecture Notes in Computer Science, 1334:335–345,
1997.

[115] Peter Wayner. Spammimic [Computer Software], 2008. http://www.spammimic.com -
Accessed on April 7th 2012.

[116] Leevi Marttila. Accurate language to inaccurate language (and back) translator,
c2txt2c v0.2.1 [Computer Software], 2001. http://www.mavi1.org/web_security/
cryptography/c2txt2c/index.html - Accessed on April 7th 2012.

[117] Bruce Scheiner. The Blowfish Encryption Algorithm. Dr. Dobb’s Journal, 1994.

[118] Peter Wayner. Disappearing Cryptography. Morgan Kaufmann, 2008.

[119] Fast Lexical Analyzer [Computer Software], 2008. http://flex.sourceforge.net -
Accessed on April 7th 2012.

http://www.spychecker.com/program/stools.html
http://www.spychecker.com/program/stools.html
http://www.mcafee.com/us/resources/white-papers/wp-protecting-critical-assets.pdf
http://www.mcafee.com/us/resources/white-papers/wp-protecting-critical-assets.pdf
http://www.spammimic.com
http://www.mavi1.org/web_security/cryptography/c2txt2c/index.html
http://www.mavi1.org/web_security/cryptography/c2txt2c/index.html
http://flex.sourceforge.net

BIBLIOGRAPHY 131

[120] Akim Demaille Paul Eggert. Bison Parser Generator, 2008. http://www.gnu.org/
software/bison/ - Accessed on April 7th 2012.

[121] ECRYPT. eSTREAM Project, 2008. http://www.ecrypt.eu.org/stream/ - Ac-
cessed on April 7th 2012.

[122] Bruce Schneier. Applied Cryptography. John Wiley and Sons, 2nd edition, 1996.

[123] Derek M. Jones. The New C Standard: A Cultural and Economic Commentary. 2003.

[124] Georges Perec. La Disparition. Gallimard, Paris, 1969.

[125] Antonio Calatrava. iStego (Version 1.0) [Computer Software], 2009. http:
//itunes.apple.com/es/app/istego-fotos-secretas/id320990210?mt=8 - Ac-
cessed on April 8th 2012.

[126] Juicy Bits. Spy Pix (Version 1.0) [Computer Software], 2009. http://itunes.apple.
com/es/app/spy-pix/id336725065?mt=8 - Accessed on April 8th 2012.

[127] Raffaele de Lorenzo. StegoSec (Version 2.0) [Computer Software], 2012. http:
//itunes.apple.com/es/app/stegosec/id339434363?mt=8 - Accessed on April 8th
2012.

[128] Rabah Rahil. CoverText (Version 1.0) [Computer Software], 2011. http://itunes.
apple.com/es/app/covertext/id460830129?mt=8 - Accessed on April 8th 2012.

[129] UnderWare LLC. Pixogram (Version 1.0) [Computer Software], 2010. http://itunes.
apple.com/es/app/pixogram/id404444977?mt=8 - Accessed on April 8th 2012.

[130] A. Ker. Quantitative Evaluation of Pairs and RS Steganalysis. Security, Steganography,
and Watermarking of Multimedia Contents VI, 5306:83–97, 2004.

[131] O. Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness, vol-
ume 17. Springer Verlag, 1999.

[132] John Walker. Ent [Computer Software], 2008. http://www.fourmilab.ch/random/ -
Accessed on April 7th 2012.

[133] C.E. Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[134] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explorations,
11, 2009.

[135] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[136] R. El-Khalil and A.D. Keromytis. Hydan: Hiding Information in Program Binaries. Infor-
mation and Communications Security, pages 187–199, 2004.

[137] William Zhu and Clark Thomborson. Recognition in Software Watermarking. In MCPS
’06: Proceedings of the 4th ACM international workshop on Contents protection and
security, pages 29–36. ACM, 2006.

http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.ecrypt.eu.org/stream/
http://itunes.apple.com/es/app/istego-fotos-secretas/id320990210?mt=8
http://itunes.apple.com/es/app/istego-fotos-secretas/id320990210?mt=8
http://itunes.apple.com/es/app/spy-pix/id336725065?mt=8
http://itunes.apple.com/es/app/spy-pix/id336725065?mt=8
http://itunes.apple.com/es/app/stegosec/id339434363?mt=8
http://itunes.apple.com/es/app/stegosec/id339434363?mt=8
http://itunes.apple.com/es/app/covertext/id460830129?mt=8
http://itunes.apple.com/es/app/covertext/id460830129?mt=8
http://itunes.apple.com/es/app/pixogram/id404444977?mt=8
http://itunes.apple.com/es/app/pixogram/id404444977?mt=8
http://www.fourmilab.ch/random/

132 Jorge Blasco Alís

[138] Dominique Chanet Bertrand Anckaert, Bjorn De Sutter and Koen De Bosschere.
Steganography for Executables and Code Transformation Signatures. Lecture Notes
in Computer Science, 3506:425–439, 2005.

[139] DaeMin Shin, Yeog Kim, KeunDuck Byun, and SangJin Lee. Data Hiding in Windows
Executable Files. In Proceedings of the 6th Australian Digital Forensics Conference,
2008.

[140] W.W. Peterson and D.T Brown. Cyclic Codes for Error Detection. Proceedings of the
IRE, 49(1):228–235, 1961.

[141] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic
Applications. In STOC ’89: Proceedings of the twenty-first annual ACM symposium on
Theory of computing, pages 33–43, New York, NY, USA, 1989. ACM.

[142] Erno Jones. Legitimate Sites as Covert Channels: An Extension to the Concept of
Reverse HTTP Tunnels, 2001. http://gray-world.net/papers/lsacc.txt Last ac-
cessed on June 2011.

[143] A. Dyatlov and S Castro. Exploitation of Data Streams Authorized by a Network Ac-
cess Control System for Arbitrary Data Transfers: Tunneling and Covert Channels over
the HTTP Protocol. Technical report, Gray-World, 2003. http://gray-world.net/
projects/papers/covert_paper.txt Last accessed on February 2011.

[144] Maarten Van Horenbeeck. Deception on the Network: Thinking Differently about Covert
Channels. In Proceedings of 7th Australian Information Warfare and Security Confer-
ence, pages 174–184, 2006.

[145] B. Li, J. Huang, and Y.Q. Shi. Steganalysis of yass. IEEE Transactions on Information
Forensics and Security, 4(3):369–382, 2009.

[146] Q. Liu, A.H. Sung, and M. Qiao. Derivative-based audio steganalysis. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMCCAP), 7(3):18,
2011.

[147] Fabien A P Petitcolas, Ross J Anderson, and Markus G Kuhn. Information Hiding: A
Survey. In Proceedings of the {IEEE}, volume 87, pages 1062–1078, 1999.

[148] Matthew Kwan. GIFShuffle, 2003. http://www.darkside.com.au/gifshuffle//
Last accessed on August 2011.

[149] J Fridrich, M Goljan, and R Du. Reliable Detection of LSB Steganography in Grayscale
and Color Images. In Proceedings of ACM Workshop on Multimedia and Security,
pages 27–30, 2001.

[150] J Mielikainen. LSB Matching Revisited. Signal Processing Letters, IEEE, 13(5):285–
287, 2006.

[151] Fariborz Farahmand. Insider Behavior: An Analysis of Decision under Risk. In 1st
International Workshop on Managing Insider Security Threats, pages 22–33, Purdue
University, West Lafayette, USA, 2009.

http://gray-world.net/papers/lsacc.txt
http:// gray-world.net/projects/papers/covert_paper.txt
http:// gray-world.net/projects/papers/covert_paper.txt
http://www.darkside.com.au/gifshuffle//

BIBLIOGRAPHY 133

[152] Haig Simonian and Sharlene Goff. Data Theft Hits 24.000 HSBC
Clients. Financial Times, page 5, 2010. http://www.ft.com/cms/s/0/
aa0b9e2e-2ced-11df-8025-00144feabdc0.html Accessed on January 2010.

[153] Alejandro Hernández. Trend Micro Data Loss Prevention 5.2 Data Leakage Through
Certain HTTP/HTTPS Channels. Technical report, 2010.

[154] Matthew Skala, Michael Roth, Niklas Hernaeus, Rémi Guyomarch, and Werner Koch.
The GNU Privacy Guard [Computer Software], 2010. http://www.gnupg.org - Ac-
cessed on April 15th 2012.

[155] M.J. Cox, R.S. Engelschall, S. Henson, B. Laurie, E.A. Young, and T.J. Hudson.
OpenSSL [Computer Software], 2001. http://www.openssl.org - Accessed on April
15th 2012.

[156] Allan Latham. JPHide and JPSeek [Computer Software], 1999. http://linux01.
gwdg.de/~alatham/stego.html - Accessed on April 15th 2012.

[157] David Wheeler and Roger Needham. TEA, a Tiny Encryption Algorithm. In Fast Soft-
ware Encryption: Second International Workshop, pages 363–366. Springer Berlin /
Heidelberg, 1995.

[158] National Institute of Standards and Technology. FIPS 197: Advanced Encryption Stan-
dard. Technical report, National Institute of Standards and Technology, 2001.

[159] J. Kelsey, B. Schneier, and D. Wagner. Related-Key Cryptanalysis of 3-Way, Biham-
DES, CAST, DES-X, NEWDES, RC2, and TEA. Information and Communications Se-
curity, pages 233–246, 1997.

[160] S. Hong, Deukjo Hong, Youngdai Ko, Donghoon Chang, W. Lee, and Sangjin Lee. Dif-
ferential Cryptanalysis of TEA and XTEA. Information Security and Cryptology-ICISC
2003, pages 402–417, 2004.

[161] Youngdai Ko, Seokhie Hong, W. Lee, Sangjin Lee, and J.S. Kang. Related Key Differen-
tial Attacks on 27 Rounds of XTEA and Full-round GOST. In Fast Software Encryption,
pages 299–316. Springer, 2004.

[162] Hans Dobbertin, Lars Knudsen, and Matt Robshaw. The Cryptanalysis of the AES - A
Brief Survey. In Advanced Encryption Standard - AES, volume 3373 of Lecture Notes
in Computer Science, pages 571–572. Springer Berlin / Heidelberg, 2005.

[163] Eunju Baek, Yeog Kim, Jinwon Sung, and Sangjin Lee. The Design of Framework
for Detecting an Insider’s Leak of Confidential Information. In Proceedings of the 1st
international conference on Forensic applications and techniques in telecommunica-
tions, information, and multimedia and workshop, e-Forensics ’08, pages 14:1–14:4.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), 2008.

[164] Juan Soto. Randomness Testing of the Advanced Encryption Standard Candidate Al-
gorithms. Technical report, National Institute of Standards and Technology, 1999.

http://www.ft.com/cms/s/0/aa0b9e2e-2ced-11df-8025-00144feabdc0.html
http://www.ft.com/cms/s/0/aa0b9e2e-2ced-11df-8025-00144feabdc0.html
http://www.gnupg.org
http://www.openssl.org
http://linux01.gwdg.de/~alatham/stego.html
http://linux01.gwdg.de/~alatham/stego.html

134 Jorge Blasco Alís

[165] Yang Yu and Tzi-cker Chiueh. Enterprise Digital Rights Management: Solutions against
Information Theft by Insiders. Technical report, Department of Computer Science, Stony
Brook University, 2004.

[166] D. Pellerin and S. Thibault. Practical FPGA Programming in C. Prentice Hall Press,
2005.

[167] The Computing Research and Education Association of Australasia. Core Confer-
ence Rankings, 2010. http://core.edu.au/cms/images/downloads/conference/
08sorttitleERA2010_conference_list.pdf - Accessed April 13th 2012.

[168] G. Suarez-Tangil, E. Palomar, J. de Fuentes, J. Blasco, and A. Ribagorda. Automatic
Rule Generation Based on Genetic Programming for Event Correlation. In Álvaro Her-
rero, Paolo Gastaldo, Rodolfo Zunino, and Emilio Corchado, editors, Computational
Intelligence in Security for Information Systems, volume 63 of Advances in Intelligent
and Soft Computing, pages 127–134. Springer Berlin / Heidelberg, 2009.

[169] Jorge Blasco, Agustin Orfila, and Arturo Ribagorda. Improving Network Intrusion De-
tection by Means of Domain-Aware Genetic Programming. Availability, Reliability and
Security, International Conference on, 0:327–332, 2010.

[170] Eduardo Galan, Almudena Alcaide, Agustín Orfila, and Jorge Blasco. A Multi-Agent
Scanner to Detect Stored-XSS Vulnerabilities. pages 1–6. IEEE, 2010.

[171] Hugo Gascon, Agustin Orfila, and Jorge Blasco. Analysis of Update Delays in
Signature-Based Network Intrusion Detection Systems. Computers & Security,
30(8):613–624, 2011.

[172] Almudena Alcaide, Jorge Blasco, Eduardo Galán, and Agustín Orfila. Cross-Site Script-
ing: An Overview. In Maria Manuela Cruz-Cunha and Joao Varajao, editors, Innovations
in SMEs and Conducting E-Business: Technologies, Trends and Solutions, chapter
Chapter 4, pages 61–75. IGI Global, 2011.

http://core.edu.au/cms/images/downloads/conference/08sorttitleERA2010_conference_list.pdf
http://core.edu.au/cms/images/downloads/conference/08sorttitleERA2010_conference_list.pdf

Appendix B

Resumen en Español

	Introduction
	Motivation
	Research Question
	Goals
	Methodology and Planning
	Phase 1: Review and Analysis of State of the Art Proposals
	Phase 2: Design and Analysis of Steganographic Algorithms and Other Attacks for Information Theft
	Phase 3: New Protection Mechanisms for Information Leakage Protection
	Phase 4: Thesis Preparation

	Contributions
	Evaluation Methods
	Document Organization

	Information Leakage Protection
	Introduction
	Information Leakage
	Information as an Asset
	Sensitive Information Identification and Classification
	Information State and Organization
	Information Leakage Vectors
	Physical Leakage Vectors
	Information Systems Leakage Vectors

	International Standards and Recommendations
	Malicious Insider Detection Systems
	Predictive Proposals
	Reactive Proposals
	Information Leakage Detection Proposals
	Research Community Proposals
	Commercial Solutions

	Drawbacks of Current Proposals

	Steganography and Covert Channels
	Introduction
	Principles of Steganography
	Definitions
	Desired properties for Steganographic Systems
	Capacity
	Security
	Robustness

	Covert Channels
	Steganography in Digital Media
	Steganography in Unstructured Carriers
	Steganography in Structured Carriers
	Cover generation schemes

	Fighting Against the Usage of Steganography
	Steganalysis
	Definitions
	Steganalysis in Digital Media
	Active Warden Techniques
	Computer Forensics

	Summary

	Attacks on ILP Systems Using Steganography
	Introduction
	Steganography of source code in text
	Related Work
	General Model
	Hiding Grammar Generation
	Creating the Recovery Grammar
	Specific Programming Languages Issues

	Hiding C Source Code
	Fragment Extraction
	Parser Generation
	Covering Process
	Recovering Process

	Evaluation
	Experimental setup
	Experimental Results

	Summary

	Stegnography for Mobile Devices
	Related Work
	Capabilities
	Hiding information
	Revealing information
	Cover mode

	Evaluation
	Security
	Performance

	Summary
	Improvements

	Detecting the Usage of Steganography to Avoid Information Leakage
	Introduction
	Steganalysis of Hydan
	Previous Work
	Basics of Hydan
	Steganalysis of Hydan
	Statistical Analysis of Clean Executable Files

	Distinguisher Design
	Results
	Summary

	Active Warden Techniques
	Related Work
	Covert Channels over HTTP
	A model to hinder steganography over HTTP
	Working Scenario
	Definitions
	Model Overview
	Components
	HTTP Message Sanitization Process
	Security Analysis

	Evaluation
	Implemented Sanitizers
	Experimental Setup
	Results

	Summary

	Attacks on ILP Systems Using Trusted Applications
	Introduction
	Information Leakage Protection Evasion Techniques
	Evading ILP Systems with Spreadsheets Applications
	Implementing a Spreadsheet Cipher
	Basic operations
	Defining Input and Constants
	Building Lines of Code
	Rounds

	Stealing Information With a Spreadsheet Cipher

	Evaluation
	Security Analysis
	Performance Analysis
	Bypassing a Commercial DLP Solution

	Discussion
	Feasibility of current DLP evasion technique
	Countermeasures to the proposed DLP evasion technique
	Detecting the presence of cipher spreadsheets
	Encrypted data detection
	Detection of abnormal behaviour
	Security models to avoid data leaks

	Summary

	Conclusions
	Future Works
	Improvement of Steganalysis Techniques
	Improvement of Active Warden Techniques
	Complementary use of Steganalysis and Active Warden Techniques
	Development of New Attacks Against DLP Solutions
	Improvements to Current DLP Solutions

	Published Works
	Published work directly related to this PhD
	International Conferences
	International Journals
	Registered Software

	Research papers not directly related to this phd
	International Conferences
	International Journals
	Book Chapters

	Resumen en Español

