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Abstract

Mobile Ad-hoc Networks (MANETs) are wireless networks without fixed
infrastructure based on the cooperation of independent mobile nodes. The
proliferation of these networks and their use in critical scenarios (like battle-
field communications or vehicular networks) require new security mechanisms
and policies to guarantee the integrity, confidentiality and availability of the
data transmitted. Intrusion Detection Systems used in wired networks are
inappropriate in this kind of networks since different vulnerabilities may ap-
pear due to resource constraints of the participating nodes and the nature of
the communication. This article presents a comparison of the effectiveness
of six different classifiers to detect malicious activities in MANETs. Results
show that Genetic Programming and Support Vector Machines may help
considerably in detecting malicious activities in MANETs.

Key words: MANET, Intrusion Detection, Genetic Programming,
Classification Algorithms

1. Introduction

Due to the inherent vulnerabilities of wireless networks, new security
measures need to be developed to efficiently safeguard them. This work fo-
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cuses on the detection of malicious activities in MANETs. Proposed ideas
for intrusion detection in these networks are required to achieve a trade-off
between accurate detection and limited consumption of resources [1] or the
lack of central management and mobility of nodes [2]. This article presents a
comparison of different classification algorithms applied to detect intrusions
in MANETs. These algorithms can help to discriminate “normal” against
“intrusive” behaviour effectively. We use six well-known classification algo-
rithms, using labelled datasets obtained from a simulated environment. The
comparison is fairly performed as several hyper-parameters were tuned and
the experiments have been performed with datasets generated under various
traffic conditions regarding the network mobility and the number of malicious
nodes. We focus on detecting four different types of attacks: Black Hole [3],
Forging [4], Packet Dropping [5] and Flooding [6].

In Section 2 we present the motivation of our work. Section 3 introduces
a review of the state of the art on intrusion detection in MANETs. Section
4 explains the details of the experimental setup and Section 5 presents the
results obtained. Finally, we conclude in Section 6.

1.1. Contribution

This article extends a previous work [7] that compares how effective
intrusions in MANETs are detected by different classification algorithms,
namely, Näıve Bayes, Gaussian Mixture Model (GMM), Multilayer Percep-
tron (MLP), Linear Model and Support Vector Machines (SVM). Accord-
ingly, two main contributions are presented. First, we analyse the promising
behaviour of a new method based on Genetic Programming. Second, different
probabilities of attacks are considered tackling a wide set of scenarios.

2. Motivation

2.1. Wireless technology

Wireless networks use the open air medium as communication channel
and electromagnetic waves to send information between participants. Nodes
in wireless networks can communicate with every other node located within
a specific distance, called transmission range. When a node wants to send a
packet to another node that does not belong in its one-hop neighbourhood
then it has to rely to intermediate nodes to forward the packets to the final
destination. Thus, efficient routing protocols are required in order to optimize
the communication paths. Security issues in wireless communication may
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also have a serious impact in other types of network architectures since several
network architectures use wireless channels. For instance, an architecture
using the 802.11 standard (usually referred as WIFI or WLAN networks)
uses a fixed infrastructure that communicates with other networks using a
wired communication, but communicates with the nodes of its own network
using a wireless channel. This architecture requires all the nodes to be placed
within the transmission range of the fixed infrastructure (access point), and
any problem regarding this central point may affect the entire network.

Wireless ad-hoc networks or Mobile Ad-hoc Networks (MANETs) do not
use a fixed infrastructure and all the nodes belonging to the network may be
mobile. There is no central node acting as an access point, and mobile nodes
share the responsibility of the proper functionality of the network, since a
collaborative behaviour is required.

2.2. Security in MANETs

The intrinsic nature of MANETs provokes the emergence of new security
risks, while some existing vulnerabilities in wired networks are accentuated.
The use of security technologies developed for wired networks in order to safe-
guard wireless networks is neither direct nor easy to perform. In the absence
of a wire connecting the nodes, any malicious node may access the network
without physical restrictions. In order to prevent fraudulent outsiders enter-
ing the network, cryptographic algorithms can be used to authenticate the
nodes. However, more complicated problems arise when an internal benign
node is compromised, that is, if any attacker impersonates the identity of a
node that is authorized in the network. Since the functionality of the net-
work is typically based on a complete confidence between the participants,
a malicious node impersonating a trusted node may cause a serious security
bridge. Most of the attacks in mobile environments focus on routing proto-
cols. These protocols were firstly designed to be efficient without taking into
account the security issues. They usually need the cooperation between the
participants and assume confidence between them. Nevertheless, a malicious
node may modify its supposed benign functionality disturbing the overall
behaviour of the protocol. Below, we present a list of attacks that we have
considered in order to evaluate the effectiveness of the employed algorithms
for the problem of intrusion detection.

• Packet Dropping attack: In this attack, the attacker rejects Route Error

packets leading legitimate nodes to forward packets in broken links [5].
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• Flooding attack: The malicious node broadcasts forged Route Request

packets randomly to all nodes every 100 msec in order to overload the
network [6].

• Black Hole attack [3]: In this attack a malicious node advertises itself as
having the shortest path to other nodes of the network. Nevertheless,
as soon as it receives packets destined for other nodes, it drops them in-
stead of forwarding to the final destination. In our simulation scenario,
each time a malicious black-hole node receives a Route Request packet
it sends a Route Reply packet to the destination without checking if it
really has a path towards the selected destination. Thus, the black-hole
node is always the first node that responds to a Route Request packet.
Moreover, the malicious node drops all Route Reply and Data packets
it receives if the packets are destined to other nodes.

• Forging attack [4]: A malicious node modifies and broadcasts to the
victim node Route Error packets leading to repeated link features.

3. State of the art

3.1. Intrusion detection in MANETs

Intrusion Detection Systems (IDS) are software or hardware tools (even
a combination of both) that automatically scan and monitor events in a
computer or network, looking for intrusive evidence [8]. When designing an
IDS to be used in a MANET, some considerations must be taken into account.
There are several differences in the way the detection engine must behave
with respect to a wired network IDS. A rather complete survey about this
topic can be found in [2], where Anjum et al. present the main challenges to
secure wireless mobile networks. More recently, Sen et al. [9] have presented
a survey about existing intrusion detection approaches for MANETs.

Traditional anomaly-based IDSs use predefined “normality” models to de-
tect anomalies in the network. This is an approach that cannot be easily de-
ployed in MANETs, since the mobility and flexibility of MANET nodes, make
hard the definition of “normal” and “malicious” behaviour. Furthermore, the
mobility of nodes leads to changes of the network topology, increasing the
complexity of the detection process. Additionally, since the MANET nodes
have no fixed location, there is no central management and/or monitoring
point where an IDS could be placed. This implies that the detection process
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may be distributed into several nodes, as well as the collection and analysis of
data. Consequently IDS are classified into collaborative or independent (non-
collaborative) [9]. Independent IDSs are composed of IDS agents placed into
the nodes of the network and being responsible for monitoring their neigh-
bours and sending alarms whenever they detect any suspicious activity. The
major problem of this architecture is deciding the location of the IDS agents,
since nodes are mobile, and some zones of the network may not be monitored
(for example, if the node hosting an IDS agent of one zone moves to another,
the first remains uncovered). Another problem is that some resources such as
bandwidth, CPU and/or power are scarce in these environments. Therefore,
nodes hosting the IDS agents should be those having more resources and
moreover, a larger transmission range. Maximising the detection rate sub-
ject to resource limitation is an NP-complete problem and some algorithms
have been proposed to approximate the solution [2].

Several IDS architectures have been proposed to be used in mobile net-
works. Zhang et al., initially in 2000 [10], and later in 2003 [11], proposed a
distributed and collaborative detection architecture. Every node in the net-
work monitors their local neighbours, locally and independently, to detect
any sign of intrusion. The key idea is that they may share information to
perform this intrusion search. Each IDS agent is structured in several pieces
or modules. Initially a data collection module gathers audit traces and ac-
tivity logs. Then, a local detection engine analyses the data to look for local
anomalies. Two modules are responsible for performing the response actions:
the local and global response modules. To share information, an extra se-
cure communication module is used to provide trusted communications. In
these approaches [10, 11], Zhang et al. use classifiers to detect anomalies.
They use entropy and conditional entropy to describe the characteristics of
“normal” traffic and classification algorithms to build models of “normal”
behaviour. Therefore classifiers are trained using “normal” data, to predict
what is normally the next event given the previous n events. If a detector
node monitors an event which is not what the classifier has predicted, an
alarm is triggered.

Huang et al. [12] presented a cluster-based IDS, in order to combat
the resource constraints of MANETs. The authors use a set of statistical
features obtained from routing tables and apply a classification decision tree
algorithm, the C4.5, in order to discriminate “anomalous” against “normal”
traffic. This approach allows the identification of the source of the attack,
if the attack occurs within one-hop. Later, in 2004 [13] they proposed a
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hybrid system where they use both specification-based and anomaly-based
detection, by using a taxonomy of anomalous activities and a finite state
machine, which represents the correct behaviour of the Ad-hoc On Demand
Distance Vector (AODV) [14] protocol.

In 2003 Karchirski and Guha [15] proposed the use of multiple collabo-
rative sensors, where each sensor acts as a lightweight mobile agent. Each
agent has a different role: network monitoring, host monitoring, decision-
making and action-taking. The nodes are divided into clusters, and each
cluster has a head node which monitors packets. Nodes vote to select their
cluster head, based on the connectivity data received after a broadcast step.
Karchirski and Guha focus on minimizing the use of resources by the nodes
in the network. However, they do not give details about how the detection
process is performed.

Sun et al. [16] have also dealt with the problem of cooperativeness be-
tween nodes and presented a non-overlapping zone-based IDS. In their ap-
proach, the nodes of the network are grouped into zones, such that some of
the internal nodes of a zone act as gateways to other zones. The nodes of
the network use Markov Chains to detect intrusions and they send alarms
to their corresponding gateway when they detect some abnormal activity,
using the proposed MANET Intrusion Detection Message Exchange Format
(MIDMEF).

Recently, Su [17] has proposed a cooperative intrusion detection system
where some nodes monitor their neighbours in order to detect packets that
are suspicious of being part of a Black Hole attack. When the number of
such suspicious packets sent by a node exceeds a threshold, the detector
node broadcasts a block message to all the nodes in the network. This block
message is firstly authenticated with the ID of the detector node, and carries
information indicating that the packets sent by the malicious node should be
ignored. Our approach is different since we do not detect Black Hole attacks
with a specific threshold, but we study the use of classifiers.

Sen et al. [18] has presented different evolutive approaches to detect
intrusions. More precisely, the authors use simulated networks to obtain
the data they use to evolve the programs, implementing different attacks.
First, in [18] a grammatical approach is used to detect Packet Dropping ,
Flooding and Route Disruption attacks. They achieve good detection rates for
the three types of attacks, but with a rather high false positive rate in the
Packet Dropping and Flooding attack. They argue that this is due to packet
losses that usually occurs in these networks, and differentiating packet losses
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from malicious droppings is not an easy task. Secondly, in [19] they use Ge-
netic Programming with a multi-objective approach to obtain programs that
maximize the detection rate and minimise both the false positive rate and
the energy consumption, which is one of the main constraints in MANETs.
They evaluate their approach for two types of attacks, the Flooding attack
and the Route Disruption attack. In both works, different intrusion detection
approaches are employed for each kind of attack and again almost all the
attacks are detected. Our work is different in several ways. First, although
the attacks are similar, the behaviour of malicious nodes in our experiments
is different. For instance, in their Packet Dropping attack, malicious nodes
drop Data packets whereas our malicious nodes drop Route Error packets,
that is a more general situation that reflects how cheating nodes maintain
broken links. Second, Sen et al. work evolve one classifier for each attack
(resulting in 3 different programs), while in our work we only generate one
classifier to detect all the attacks studied, which entails a lesser consume
of resources and better performance for constrained devices. Third, some
experimental settings used in our work are different. For example, we use
the GlomoSim simulator program whereas they used NS-2, the pause time
between movements of nodes is different (5, 20 and 40 vs 0, 20, 400 and 700),
etc.

3.2. Classification models

The classification models we have considered are six well known classifiers
i.e., the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian
Mixture Model (GMM), the Näıve Bayes classifier, Support Vector Machine
(SVM) model and Genetic Programming (GP) algorithms employed as clas-
sifiers.

An instance of an MLP can be considered as a function g : X → Y , where
g can be defined as a composition of other functions zi : X → Z. This decom-
position can be written as g(x) = Kw′z(x) where x ∈ X , w is a parameter
vector and K denotes a kernel and the function z(x) = [z1(x), z2(x), ...] is
called hidden layer. For each of those hidden layers, it holds zi(x) = Ki(v

′
ix)

where each vi is a parameter vector, V = [v1, v2, ...] denotes the parameter
matrix of the hidden layer and Ki denotes an arbitrary kernel. For the prob-
lem of intrusion detection we use an MLP m, as a model for the conditional
probability given the observations i.e., :

P(Y = y|X = x,M = m), y = g(x).
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If there is no hidden layer then it holds zi = xi and the model m corresponds
to the Linear model.

The GMM model is used to model the conditional observation density of
each class y i.e., :

P(X = x|Y = y,M = m).

This is achieved by using a separate set of mixtures Uy for modeling the
observation density of each class y. Thus, for a given class y the density
at each point x is calculated by marginalizing over the mixture components
u ∈ Uy, for the class, i.e., :

P(X = x|Y = y) =
∑

u

P(X = x|U = u) P(U = u|Y = y).

The likelihood function P(X = x|U = u) has a Gaussian form with para-
meters the covariance matrix

∑
u and the mean vector µu, while the term

P(U = u|Y = y) represents the component weight. Finally, by estimating
P(Y = y) from the data, we obtain the conditional probability given the
observations, i.e., :

P(Y = y|X = y) =
1

Z
P(X = x|Y = y) P(Y = y)

where Z =
∑

y ∈ Y P(X = x|Y = y) P(Y = y) does not depend on y.
The Näıve Bayes model can be derived from the GMM model when there

is only one Gaussian mixture.
We have also used the Support Vector Machine (SVM) [20] model that

uses Lagrangian methods to minimise a regularised function of the empirical
classification error. The SVM algorithm finds a linear hyperplane separation
with a maximal margin in this hyperspace. The points that are lying on the
margin are called support vectors. The main parameters of the algorithm
is c which represents the trade-off between the size of the margin and the
number of violated constraints and the kernel K(xi, xj). More precisely, we

use SVMs with a gaussian kernel of the form K(xi, xj) = 1√
2πσ

exp(
−‖xi−xj‖2

σ2 ),
∀xi, xj ∈ X , where X is the observation space.

Given a problem, Genetic Programming (GP) performs a heuristic search
for an optimal solution over a big exploration space [21]. It manages a pop-
ulation of individuals (programs), randomly initialized, which are evolved
regarding natural selection procedures. Each program (individual) has a
tree structure where the root and intermediate nodes are functions and leafs
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are terminals. In each step or generation of the algorithm, programs are
evaluated using a fitness function that tests the individuals, thus establishing
an order of the individuals. At each generation a new population is ob-
tained by selecting the best individuals from the previous generation (the
first generation is randomly established). Some individuals are mutated
(changing an internal subtree by any other) or crossed (interchanging sub-
trees from two different individuals). After a given number of generations
the algorithm stops, and the best individual of the last generation is given
as the optimal solution.

Genetic Programming has been proven to be a good paradigm in the
scenario of Network Intrusion Detection Systems (NIDS) development [22,
23, 24]. The main reason is that the functions used by GP can be defined
ad hoc for a particular scenario and then the algorithm selects and combines
them in order to optimize the solution to the given problem. Accordingly, it
is appropriate for the complex intrusion detection domain. For instance, in
a recent work Kavitha et al. [25] use GP along with Neutrosophic Logic (a
generalization of fuzzy logics) to generate intrusion detection rules. GP has
also been used to model the internal behaviour of a NIDS considered as a
black box [26].

4. Experimental setup

The main goal of this work is to analyse the performance of six classifiers
when trying to detect fraudulent actions that may occur in a MANET. These
classification models can be used in an independent detection engine, where
nodes hosting the IDS engine (agent), work independently to detect malicious
activities.

4.1. Dataset

We have simulated a mobile ad-hoc network (MANET) using the Glo-
mosim [27] library. We assume that the network has no pre-existing in-
frastructure and that the employed ad-hoc routing protocol is the Ad-hoc
On Demand Distance Vector (AODV) [14]. We have simulated a network of
50 nodes placed randomly within a 850× 850 m2 area. These conditions are
similar to those used by Sen and Clark [18]. Each node has a radio propaga-
tion range of 250 meters and the channel capacity is equal to 2 Mbps. The
nodes move according to the ‘random way point model’. The minimum and
maximum speed is set to 0 and 20 m/s, respectively and the pause times at
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Table 1: Features of the dataset
Name Description

RREQ Sent/Received Number of Route Request packets sent/received.
RREP Sent/Received Number of Route Reply packets sent/received.
RError Sent/Received Number of Route Error packets sent/received.
Data Sent/Received Number of bytes sent/received.
# of neighbours Number of one-hop neighbours of each node.
PCR Percentage of the changed routed entries in the

routing table of each node.
PCH Percentage of the changes of the sum of hops of

all routing entries for each node [28].

0, 200, 400 and 700 sec. The simulation time of the experiments was 700 sec,
thus a pause time equal to 0 sec corresponds to the continuous motion of the
node and a pause time of 700 sec corresponds to the time that the node is
stationary. Each node generates Constant Bit Rate (CBR) network traffic
while the size of the packets varies from 128 to 1024 bytes what simulates a
demanding and realistic case scenario. Additionally, we have generated dif-
ferent datasets depending on the number of malicious nodes that exist in the
network 5, 15 or 25 malicious nodes while the sampling interval (i.e., time
period after which data are collected from each node of the network) is 15
sec.

Finally, in order to discriminate “normal” and “attack” network activity
we have used the features described in Table 1.

In intrusion detection, the prevalence of attacks, defined as the number
of traces belonging to one class divided by the total number of traces, is
critical to compare the effectiveness of different proposals. The original gen-
erated dataset had 80% of attacks, which means that 80 out of 100 events
in the network are hostile. Although the possibilities of being attacked in
mobile networks are considerably greater than in wired networks [18], this is
a pessimistic view, as most of the events are malicious. In order to study our
approach in different environments, we have modified the original dataset by
reducing the prevalence. We have run the experiments three times to study
different scenarios with different prevalence of attacks (both in training and
testing subsets): 80% (the original dataset), 4% and 1%. Although these
environments are simulated, they represent real situations where different
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  Figure 1: Setup of the datasets

security measures may be applied. On the one hand, a MANET can be
physically accessible by everyone. In this case, several attackers can access
the network and perform a huge number of attacks thus raising the prevalence
of the attacks. On the other hand, if the access to the network is restricted
with some authentication method or access control, fewer attackers may ac-
cess it. This could be the case of a private MANET inside a corporation. In
such a case, fewer number of attacks would be expected with respect to the
total number of events in the network.

4.2. Two-class classification

Figure 1 shows a schematic view of the different datasets used. The
original dataset contains labelled packets; labels may be normal (non-malicious
behaviour) or any of the four attacks performed in the simulated network. In
order to study two-class classification (normal or attack), we have modified
the dataset by representing any attack with the label 1 (malicious trace) and
the remainder, non malicious, with the label 0. With this dataset our aim
is to identify hostile actions in the network without identifying the specific
type of attacks. Summarizing, we have studied four different scenarios, one in
which we have to identify the exact type of attack (multi-class classification)
when the percentage of attacks in the dataset is 80%, and three scenarios
where the classifiers may detect attacks without identifying the exact type
of them (i.e. binary classification) when the percentage of attacks in the
dataset is 80%, 4% and 1%.
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4.2.1. Performance Comparison Metrics

When comparing algorithms, it is important to use the same measure of
quality. We make the comparison of the different classifiers in terms of two
different measures: the classification error (CE) and the intrusion detection

capability (Cid).
For a given classification algorithm f : X → Y , where X is the observation

space and Y is the set of classes, the classification error (CE) measured over
an independent set D is given by:

Ê(CE|D) =
1

|D|

∑

d∈D

CE(f(xd), yd)

where xd is the observation of example d and yd is its class and CE(y′, y) = 0
when y = y′ and 1 otherwise.

The intrusion detection capability (Cid) is a novel measure used in the
intrusion detection domain [29]. It measures the amount of uncertainty of
the input resolved once the IDS output is obtained, and takes into account
the attack prevalence in the dataset besides the Detection rate (DR) and the
False Alarm (FA) rate [30].

This measure takes also into consideration the effect of an imbalanced
distribution. It is defined as:

Cid = −B · DR log
B · DR

B · DR + DR · FA

−B(1− DR) log
B(1− DR)

B(1− DR) + (1−B)(1− FA)

− (1−B)(1− FA) log
(1−B)(1− FA)

(1−B)(1− FA) + B(1− FA)

− (1−B)FA log
(1−B)FA

(1−B)FA + BDR

where B is the prevalence of attacks, DR the detection rate and FA the
false alarm rate, defined as:

DR =
TP

TP + FN
, FA =

FP

TN + FP
(1)

where TP, TN, FP, FN, denote the number of true (TP, TN) and false (FP,
FN) positives and negatives respectively.
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4.3. Multiclass classification

As previously stated, a GP execution produces programs that are in-
tended to solve a specific problem. As the problem faced in this work is to
classify instances, GP has been set up to behave as a classification algorithm.
A two-class classification problem, where there are only two classes, is typi-
cally less complex than a multiclass classification, where the program must
classify more than two-classes. In addition, using GP for two-class classifica-
tion benefits from the use of boolean functions (see the operators in Table 3).
In order to optimize the effectiveness of GP regarding the multi-class classi-
fication, we have slightly modified the detection algorithm. In the following
section we give details on this modification.

4.3.1. Modification of the GP algorithm

Algorithm 1 Return the class of trace

output← Program 0 (trace)
if output is 0 then

0
end if

output← Program 1 (trace)
if output is 0 then

1
end if

output← Program 2 (trace)
if output is 0 then

2
end if

output← Program 3 (trace)
if output is 0 then

3
end if4

In the multiclass scenario there are five different classes: normal (label 0),
and each of the four different attacks (labels 1, 2, 3 and 4). In order to reduce
the complexity of the problem, the five-class problem is translated into four
two-class problems following the idea presented in [31]. Thus, four different
programs were employed, each one specialised in detecting one specific class
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from the remainder, but which are intended to be executed together (thus,
it is a unique intrusion detection module):

• Program 0: determines whether the trace is class 0 (it returns 0) or
1,2,3 or 4 (it returns 1).

• Program 1: determines whether the trace is class 1 (it returns 0) or 2,3
or 4 (it returns 1).

• Program 2: determines whether the trace is class 2 (it returns 0) or 3
or 4 (it returns 1).

• Program 3: determines whether the trace is class 3 (it returns 0) or 4
(it returns 1).

Programs may return 0 (if they detect the specific class) or 1 (the trace
belongs to any other of the remainder classes). At first, the Program 0 is run,
if it outputs a 0, a 0 is returned, otherwise the Program 1 is executed. If this
outputs a 0, that means that the trace belongs to class 1, so a 1 is returned,
otherwise, the Program 2 is executed, and so on (see the Algorithm 1) .

4.3.2. Performance Comparison Metrics

As in the multi-classification problem, the dataset is composed of traces
of four different attacks, it does not make sense to talk about a single attack
prevalence. Therefore, in multi-class problems the intrusion detection capa-

bility (Cid) is not an appropriate metric (as originally presented in [29]). To
compare the classification algorithms we use the false alarm rate (FA), the
detection rate (DR) and the classification error (CE). In a multiclass scenario,
the detection rate and the false alarm rate are computed differently from the
two-class case (Equations 1).

More precisely these metrics are calculated using composed probabilities
and given by the equations below.

DR
′ =

∑n
i=1 P (Ai&Ii)∑n

i=0

∑n
j=1 P (Ai&Ij)

FA
′ =

n∑

i=1

n∑

j=0,j 6=i

P (Ai&Ij)
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Table 2: Contingency matrix showing the joint probabilities for a multi-class classifier.
Columns (Ii) represent intrusion events of type i ( 0 denotes a normal event) and rows
(Aj) correspond to the alarms of type i generated by the IDS (0 denotes the absence of
an alarm)

Intrusion
I0 I1 ... In

A0 P (A0&I0) P (A0&I1) ... P (A0&In)
IDS A1 P (A1&I0) P (A1&I1) ... P (A1&In)

... ... ... ... ...
An P (An&I0) P (An&I1) ... P (An&In)

In these equations, each P (Ai&Ij) represent the number of traces of the
class j classified as i by the detector (thus, when i = j, is a correctly classified
trace), divided by the total number of traces (n). Table 2 shows a description
of contingency matrix for this case.

4.4. Algorithmic Technical Details

Our analysis is an extension of a previous work [7], where five different
classifiers were used to detect malicious activity. In that work, it was stated
that the best classifier was the Support Vector Machine (SVM), which uses
Lagrangian methods to minimise a regularized function of the empirical clas-
sification error. In this work, we extend the comparison with a new clas-
sifier, based on Genetic Programming. In addition, we study new different
simulated environments (with a lower prevalence of attacks) and use new
performance comparison metrics (i.e., the Cid).

In order to tune the classification models, we have performed 10-fold
cross validation [32] on the training datasets, which were created with ran-
dom sampling. For each of the 10 folds we selected 1/10th of the dataset
for evaluation and the remaining for training. Finally, we use the selected
parameters for each classification algorithm to train each model.

More precisely, for the MLP we tuned three parameters, i.e., the learning
rate (η) and the number of iterations (T ) used in the stochastic gradient
descent optimization as well as the number of hidden units (nh). We kept
nh equal to 0 and selected the appropriate η among values that range between
0.0001 and 0.1 with step 0.1 and the appropriate T was selected among 10,
100, 500 and 1000. After selecting the appropriate η and the appropriate
T , we examined various values in order to select the appropriate nh. We
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selected the best among 10, 20, 40, 60, 80, 100, 120, 140, 160 and 320. For
the Linear model we used the MLP model with no hidden units.

For the GMM, we tuned three parameters, i.e., the threshold (θ), the
number of iterations (T ) and the number of Gaussian Mixtures (ng). Keeping
ng equal to 20, we selected the θ among values that range between 0.0001
and 0.1 with range 0.1 and the most suitable T among 25, 100, 500 and
1000. Finally, in order to select ng, after selecting the appropriate θ and the
appropriate T we selected the best value for ng among 10, 20, 40, 60, 80,
100, 120, 140, 160 and 320.

For the SVM algorithm we tuned two parameters, i.e., the standard de-
viation (σ) for the gaussian kernel and the regularisation parameter c which
represents the trade-off between the size of the margin and the number of
misclassified examples. For the selection of the appropriate combination of
σ and c, we examined various values for the σ (1, 10, 100, 1000) and the c
(1, 10, 100, 1000) and selected the best.

For the Genetic Programming algorithm we tuned the following parame-
ters:

• Crossover rate: Percentage of individuals on the population to be
crossed. We examined any possible decimal value between 0 and 100.

• Mutation rate: Percentage of individuals on the population to be mu-
tated. We have investigated possible values between 0 and 50.

• Size of the population: Number of individuals in the population. Values
are restricted to be greater than 500 and lower than 1300.

• Number of generations: Normally, the larger the better, but if the
evolution remains stagnant, using high values may be inefficient. The
range of possible values given is from 60 to 200.

• Tournament size: It is the number of individuals selected to perform
the tournament selection (see [21] for more information). We accept
integer values between 3 and 8.

We have run 140 experiments, with 140 different configurations. Table 3
shows the parameters obtained that finally were used in the experiments. and
the list of functions (internal nodes of the trees) used. The list of terminals,
described in Table 1, corresponds to the set of features in the dataset. As
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Table 3: GP parameters and operators used in the experiments

Number of generations 193
Size of population 942
Size of tournament 7
Crossover rate 13%
Mutation rate 49%
Operators ADD, AND, DIV, GREATER, LEAST, MULT,

OR, MAX, MIN, ROTATE LEFT, NOT

mentioned above, the fitness function is a critical component as it defines
the way the individuals must evolve to solve the problem. The experiments
were performed using two different fitness functions, i.e. minimising the
classification error (CE) and maximising the intrusion detection capability

(Cid).

5. Results

SVM was the best classifier of the five studied previously (excluding GP)
[7]. Therefore, the comparison regarding the two-class classification is made
between SVM and the new classifier we are analysing, i.e., the one based on
GP. Figure 2 shows the comparison of SVM with the two GP individuals
obtained using the original dataset with an attack prevalence of 80%. From
now on, we denote as GP1 to the model obtained trying to maximize the
Cid, and GP2 the model obtained minimizing the classification error (CE).
GP improves the results obtained with SVM, as the classification error (CE)
of both models are lower than the SVM and the Cid is quite higher.

When the number of attacks in the dataset is reduced, we can see in both
Figure 3 (4% of attack prevalence) and Figure 4 (1% of attack prevalence)
that the classification error (CE) is lower when the GP algorithm is employed.
Regarding the Cid when using the dataset with a 1 % of prevalence (Figure
4), the Cid is better for both GP models. The GP1 model maximizes the
Cid, so it obviously achieves the best value (0.29 approximately). The GP2
model accomplishes the lower classification error (CE) in all cases. However,
as we can observe in Figure 3, regarding the Cid the SVM model has slightly
better performance than the GP algorithm.

Regarding the multiclass dataset, as stated in the Section 4.3 the com-
parison is done in terms of detection rate (DR), the false alarm rate (FA) and
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  Figure 2: Results achieved for the original two-class dataset with an attack prevalence of
80%

Figure 3: Results achieved for the modified two-class dataset with an attack prevalence of
4%

Figure 4: Results achieved for the modified two-class dataset with an attack prevalence of
1%
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Table 4: False Alarm rate (FA), Detection Rate (DR) and Classification Error (CE) in-
curred by each classifier using the multiclass dataset.

FA DR CE

GMM 0.08 0.77 0.21

MLP 0.05 0.77 0.18

LINEAR 0.05 0.76 0.19

NAIVE 0.14 0.72 0.26

SVM 0.06 0.77 0.19

GP 0.05 0.73 0.21

Figure 5: Graphical comparison of the classifiers regarding the multiclass dataset

Figure 6: Detection rates of each attack by each classifier regarding the multiclass dataset
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the classification error (CE). Figure 5 and Table 4 show the performance re-
sults for all the classifiers studied. It can be seen that the best performance
is achieved by the MultiLayer Perceptron (MLP) and the SVM, with nearly
equal performance. The GP classifier has a lower detection rate (DR), but
also a lower false alarm rate (FA), so the classification error (CE) is quite
high, as the multiclass dataset has a high prevalence (80%). Therefore, if
the GP algorithm detects an attack, it is known with a higher certainty that
this attack is actually happening, since the probability of giving false alarms
(FA) is one of the lowest for all the classifiers. Figure 6 shows the detection

rate (DR) for all the classifiers and for each attack. The attack with the
highest detection rate for the GP algorithm is the Flooding attack. It can
be seen that, although GP is not a good multiclass classifier, it has better
performance than other classifiers for some attacks. For instance, it detects
a Forging attack better than the MLP, the Linear and Näıve Bayes classifier,
and presents almost equal performance with the SVM classifier. This implies
that the technique of dividing a multi-classification problem into several two-
class classification problems may work under certain conditions or attacks.
This is a further line to investigate in the future.

6. Conclusions

Detecting malicious activities in MANETs is a complex task because of
the inherent features of these networks, such as the mobility of the nodes, the
lack of a fixed architecture as well as the severe resource constraints. There
is an urgent need to safeguard these communication networks and to propose
efficient mechanisms in order to detect malicious behaviour.

In this article we provide a comparison of the effectiveness of different clas-
sifiers that can be employed as intrusion detection algorithms in MANETs.
Results show that Genetic Programming may be a good paradigm to use
when the goal is just to detect an intruder, although if the objective is to
indicate which is the particular attack launched then it is better to use a
SVM classifier. The evaluation of the classifiers is performed considering
that the intrusion detection process is completely distributed and each node
of the network hosts an independent intrusion detection agent. As future
work we will examine which network architecture is more efficient regarding
the placement of the intrusion detection agents in the network. Additionally,
we plan to analyse new approaches to detect intrusions, such as the promising
Artificial Immune Systems (AIS) [33, 34].
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