
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Solution of Bi-objective Competitive Facility
Location Problem Using Parallel Stochastic

Search Algorithm

Algirdas Lančinskas† , Pilar Martínez Ortigosa∗, Julius Žilinskas†

†Vilnius University, Lithuania ∗University of Almeria, Spain
algirdas.lancinskas@mii.vu.lt ortigosa@ual.es

julius.zilinskas@mii.vu.lt

Keywords Parallel Computing, Multi-Objective Optimization, Stochastic Search, Facility Location.

I. Introduction

The Facility Location (FL) deals the optimal placement
of the facilities providing goods or services in a cer-
tain geographical area with respect to maximize the
utility and/or minimize an undesirable effect of the
facility being located. There is a variety of FL mod-
els proposed which varies on their ingredients such
as location space, attractiveness of the facilities, or
customers’ behavior when choosing the most attrac-
tive facility [1, 2, 4, 5]. A lot of attention is paid for
the Competitive Facility Location Problems (CFLPs)
in which determination of the optimal location for the
new facilities involves consideration of their possible
competition for the market share with the preexisting
facilities.

Real-world CFLPs usually require to simultane-
ously consider two or several objectives when locating
the new facilities; e.g. maximize the market share of
the new facilities while minimizing costs for their es-
tablishment or maintenance of the facility; minimize
distance between facilities and customers in accor-
dance with requirements for the minimal distance to
urban areas (actual for semi-obnoxious facilities).

Our research is focused on the Competitive Facil-
ity Location Problem for Firm Expansion (CFLP/FE)
where a firm already in the market is planning to es-
tablish a set of new facilities in order to increase its
market share.

II. CFLP for Firm Expansion

Consider an expanding firm FA having nA preexisting
facilities and its competitor – the firm FB having nB
preexisting facilities – both servicing a discrete set I
of demand points in a certain geographical area. The
firm FA is expected to locate a set X of nX new fa-
cilities with respect to maximize the market share of
the new facilities taking into account the competition
with the facilities owned by FB. Despite the attraction
of new customers from the competitor FB, the newly
established facilities can also attract customers from
the facilities already owned by the expanding firm FA
thus giving rise of the effect of cannibalism. Therefore
the firm FA faces a bi-objective optimization problem
with the following objectives: (f1) to maximize the
market share of the facilities being located and (f2) to
minimize the loss of market share of the preexisting
facilities of FA (the effect of cannibalism).

Due to conflicting objectives usually it is impossi-
ble to find a single solution which would be the best
by both objectives, but rather a set of compromising
(non-dominated) solutions, called Pareto set; the corre-
sponding set of the objective functions’ values is called
Pareto front. Determination of the exact Pareto front
usually is a hard and time consuming task. On the
other hand solution of practical CFLPs usually does
not require to find the exact Pareto front, but rather its
approximation by a set of non-dominated solutions.

1

Algirdas Lančinskas, Pilar M. Ortigosa, Julius Žilinskas 7

Book paper template • September 2014 • Vol. I, No. 1

III. Parallel Multi-Objective
Stochastic Search

Multi-Objective Stochastic Search (MOSS) is a random
search algorithm suitable for approximation of the
Pareto front of a multi-objective optimization problem.
MOSS is derived from its precursor Multi-Objective
Single Agent Stochastic Search (MOSASS) algorithm
proposed in [3].

The algorithm begins with an initial archive A of so-
lutions which are non-dominated among themselves.
The new solution x′ is generated by applying slight
modifications to the solution x randomly sampled
from A, where the strength of the modification de-
pends on the repetitive successful and failed iterations;
see [3] for details of the generation of the new solution.
If the newly generated solution x′ is not dominated by
any one in the archive A, then A is updated by includ-
ing x′ and removing all solution which are dominated
by x′, and the algorithm goes to the next iteration. Oth-
erwise, if x′ is dominated in A, then a symmetric (in
relation with x) solution x′′ is evaluated in the same
way as x′. If the archive is updated either by x′ or x′′,
then iteration is assumed to be successful; otherwise,
the iteration is assumed to be failed.

The main computational effort of the algorithm usu-
ally is devoted to the evaluation of objective func-
tion values. The evaluations of the objective values
of different solutions can be considered as indepen-
dent tasks thus giving availability to distribute the
computational work among different processors. In
such a distribution of tasks the information about all
non-dominated solutions found so far (the archive A)
as well as values of other parameters of the algorithm
must be accessed by all processors. Moreover if one of
the processors is updating a parameter or the archive,
access to it is blocked for any other processor in order
to keep memory and data consistency.

Two parallel algorithms ParMOSS/OMP and Par-
MOSS/MPI suitable for shared- and distributed-
memory parallel computing systems, respectively, has
been developed under considerations above.

The ParMOSS/OMP algorithm begins with the ini-
tialization of the parameters of the algorithm as well
as the data and parameters of the optimization prob-
lem to be solved. This part of the algorithm is a single

processor – the master. Further each of the slaves ran-
domly selects an individuals from the archive A and
evaluates its objective values as well as the dominance
relation in A (as it is described above). If any of pro-
cessors is accessing the archive or any other parameter
of the algorithm, the access to that parameter or the
archive is blocked for all other processors.

In distributed-memory computing systems informa-
tion about solutions in A and values of algorithm
parameters must be transfered by passing messages
using Message Passing Interface (MPI). In order to
guarantee consistent communication between proces-
sors, one of them is devoted for the management
of the communication and overall process of the al-
gorithm. Thus the parallel version of MOSS algo-
rithm ParMOSS/MPI for distributed-memory parallel
computing systems is developed following the master-
slave strategy.

The master processor selects a random solution xi
from A, generates a pair of new solutions (x′i, x′′i) (as
it is described above), and sends it to the i-th proces-
sor (the slave) with the request to evaluate the first
solution x′i. Here i varies from 1 to the number proces-
sors p thus ensuring that the pair will be generated for
each processor. After all slaves are equipped by a pair
of solutions, the master proceeds to the main loop and
waits for the response from any of the slaves with an
evaluated solution. Although all slaves are requested
to evaluate x′i, some of them can also be requested
to evaluate x′′i in the later stage of the algorithm. In
general the master processor proceeds depending on
whether evaluation of x′i or x′′i is received and the fit-
ness of the received solution with respect to solutions
in the archive A.

IV. Numerical Experiments

The developed parallel algorithms ParMOSS/OMP
and ParMOSS/MPI have been experimentally investi-
gated by solving different instances of CFLP/FE: 5000,
1000, 500, and 100 demand points for ParMOSS/OMP;
5000 and 1000 demand points – for ParMOSS/MPI.
The Pareto front of a single instance has been ap-
proximated by 25000 function evaluations. The av-
erage duration of a single approximation by sequen-
tial MOSS was around 728 seconds using 5000 de-

2

8 Solution of Bi-objective Competitive Facility Location Problem Using Parallel Stochastic Search Algorithm

Book paper template • September 2014 • Vol. I, No. 1

mand points, around 145 seconds – using 1000 de-
mand points, around 73 – using 500 demand points,
and around 14 seconds – using 100 demand points.

The obtained results showed that the shared-
memory algorithm ParMOSS/OMP has almost linear
speed-up on up to 16 shared memory processors for
all instances of the problem: 5000, 1000, 500, and 100
demand points; further reduction of the number of
demand points is not reasonable in practical CFLPs.

Similar experiment has been performed for the
distributed-memory algorithm ParMOSS/MPI. The
Pareto front of CFLP/FE with 1000 demand points has
been approximated using 2, 4, 8, and 16 processors.
Results of the experimental investigation showed that
speed-up of ParMOSS/MPI increases linearly with the
increment of the number of processors. The speed-
up of ParMOSS/MPI is lower than speed-up of Par-
MOSS/OMP exactly by one independent on the num-
ber of processors due to an idle time of the master
processor which has no computational work. These re-
sults show that the shared-memory algorithm has no-
table advantage against the distributed-memory one.
On the other hand the shared-memory computing
systems have hardware limitations in the sense of
number of shared-memory processors, whereas the
distributed-memory algorithm can be executed on a
significantly larger number of processors.

The performance of ParMOSS/MPI has been also
investigated using from 32 to 192 processors. Results
of the investigation showed that the approximation
of the Pareto front of the problem with 5000 demand
points has been performed with almost linear speed-
up of the algorithm – the speed-up on 192 processors
was around 186. The approximation of the Pareto
front of the problem with 1000 demand points has
been performed with notably lower speed-up, com-
paring with previous instance – the speed-up on 192
processors is around 155 which corresponds to 80% of
effectiveness of the processors. On the other hand the
speed-up of the algorithm on 96 processors is around
89 which corresponds to 93% of effectiveness of the
processors when performing the computations; fur-
ther increment of the number of processors is not rea-
sonable for approximation of the Pareto front of a real-
world CFLP as the approximation on 128 processors
has been performed within 2 seconds.

Acknowledgment

The work has been partially supported by EU under
the COST Action IC1305 “Network for Sustainable Ul-
trascale Computing (NESUS)”.

References

[1] R. Z. Farahani, S. Rezapour, T. Drezner, and S. Fal-
lah. Competitive supply chain network design:
An overview of classifications, models, solution
techniques and applications. Omega, 45(0):92–118,
2014.

[2] T.L. Friesz, T. Miller, and R.L. Tobin. Competitive
networks facility location models: a survey. Papers
in Regional Science, 65:47–57, 1998.

[3] A. Lančinskas, P. M. Ortigosa, and J. Žilinskas.
Multi-objective single agent stochastic search in
non-dominated sorting genetic algorithm. Nonlin-
ear Analysis: Modelling and Control, 18(3):293–313,
2013.

[4] Frank P. Static competitive facility location:
An overview of optimisation approaches. Euro-
pean Journal of Operational Research, 129(3):461–470,
2001.

[5] C. S. ReVelle, H.A. Eiselt, and M .S. Daskin. A
bibliography for some fundamental problem cate-
gories in discrete location science. European Journal
of Operational Research, 184(3):817–848, 2008.

3

Algirdas Lančinskas, Pilar M. Ortigosa, Julius Žilinskas 9

