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Abstract

We propose a vector autoregressive moving average process as a model for daily weather
data. For the rainfall variable a monotonic transformation is applied to achieve marginal
normality, thus defining a latent variable, with zero rainfall data corresponding to cen-
sored values below a threshold. Methodology is presented for model identification, esti-
mation and validation, illustrated using data from Mylnefield, Scotland. The new model,
a VARMA(2,1) process, fits the data and produces more realistic simulated series than
existing models due to Richardson (1981) and Peiris and McNicol (1996).
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1 Introduction

Weather variables have a significant influence on crop growth, and therefore, it is of interest to
have meteorological variables as inputs in most agricultural models. However, long daily records
are rare at most agricultural sites and many scientists solve this lack of historical data by using
of weather generators, such as WGEN (Richardson and Wright, 1984), LARS-WG (Racsko
and Semenov, 1995) or SIMMETEO (Geng et al., 1986). Existing daily weather generators
treat rainfall differently from other weather variables, either by simulating it first and then
conditionally simulating the remaining variables, or conversely by simulating other variables
and then conditionally simulating rainfall (Peiris and McNicol, 1996). In particular, Richardson
(1981) simulates rainfall as a Markov chain-exponential model and then the other variables are
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generated depending on whether the day is wet or dry, whereas Peiris and McNicol (1996) first
simulate all variables but rainfall and then use logistic regression to model the probability of a
dry day conditional on the other variables.

Many models have been proposed for rainfall, including those based on point processes for
the onset of storms (Le Cam, 1961; Rodriguez-Tturbe et al., 1988), those constructed in two
stages, first a binary rain/no-rain process and then a gamma distribution applied to wet peri-
ods (Richardson, 1981; Stern and Coe, 1984; Katz and Parlange, 1995), and those that apply a
monotonic transformation to rainfall data to achieve marginal normality (Bell, 1987; Hutchin-
son, 1995; Glasbey and Nevison, 1997; Sanso and Guenni, 1999). This last approach defines
a latent Gaussian variable, with zero rainfall data corresponding to censored values below a
threshold, and simplifies the joint modelling of rainfall and other weather variables. Here we
extend this method to joint modelling of rainfall and other weather variables, such as temper-
ature, radiation, wind speed and relative humidity.

In §2 we fit a vector autoregressive moving average process to daily weather at a single site,
estimating the parameters by minimising the sum of squares of differences between the expected
and sample cross-correlations at a range of time lags (Glasbey and Nevison, 1997; Glasbey et al.,
1998). Then, in §3 we simulate from the model and compare the results with those from the
original data and from simulations of the models in Richardson and Wright (1984) and Peiris
and McNicol (1996). Finally, we discuss the results in §4.

2 Model identification and estimation

We followed Peiris and McNicol (1996) in modelling six daily weather variables at Mylnefield,
Scotland. A detailed description of the data is given in Peiris and McNicol (1996). There are
20 years of data, but we omitted the last 3 years from our analysis because of abnormalities
in radiation measurements. We use yi(t) to denote the value of variable k at time ¢, for
k=1,...,K and t = 1,...,T, where, in our case, K = 6 and T" = 365 x 17. The variables
were: y; for maximum temperature, y, for minimum temperature, y3 for log-transformed solar
radiation, y4 for wind speed, y5 for relative humidity, and yg for rainfall, after a transformation.
A log-transformation was sufficient to normalise the distribution of solar radiation, but rainfall
needed something more complicated.

Daily UK rainfall is clearly a non-Gaussian variable as its distribution has a peak at zero and

a long upper tail. We followed the approach of Glasbey and Nevison (1997) and used the
quadratic power relationship

| ap +anr(t) + agr(t)* if r(t) >0 B

yr(t) = { . otherwise for t=1,...,T. (1)

as an analytically-invertible monotonic transformation, where r(¢) denotes rainfall on day ¢ and
‘“*’ denotes a censored value when rainfall is zero. Figure 1 shows the normal probability plot
for the 17 years of daily rainfall data. Superimposed in Figure 1 is the least squares fit of (1),
with & = (—0.053,0.529, —0.027), 4 = 0.597. This transformation fits the data well, except for
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Figure 1: Normal probability plot for 17 years of daily rainfall data for Mylnefield, Scotland (-
- -), and the fitted curve, a quadratic function of power-transformed rainfall (—).

values of rain over 42.8mm, however this value was exceeded only on four occasions in 17 years.
Figure 2 illustrates the transformation.

All six weather variables presented a trend due to annual cyclic patterns, which we accounted
for by finite Fourier series:
21y

J t
ye(t) ~ N(ue(t),02),  where p(t) = Bro+d By cos (@W) k=1, Kit=1,..T
Jj=1 4
(2)

We estimated parameters 3 and o2 by maximum likelihood and used likelihood-ratio tests to
select the value of .J. In all cases, for these data, J = 1 or 2. Table 1 shows the results. In the
case of rainfall, we do not know the value of the variable below the threshold, therefore, ordinary
likelihood cannot be used to estimate the parameters in the equation above. A modified version
of the likelihood was used instead, as described in Appendix A.

A vector autoregressive moving average (VARMA) was used to model jointly all detrended
weather variables, denoted z, where

2 (t) _ Yk (t) — Hi (t) .

The general form of a VARMA process of order (p, q) is:
2(t) =Aiz(t— 1)+ ...+ A2(t —p) + e, — Mye(t —1) — ... — Mye(t — q) (3)
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Figure 2: Plot of the latent variable with threshold at zero (top) and the corresponding values
for rainfall (bottom).

k variable Bro Bro 015 B0 O, O
1 Daily max. temp. 11.72 6.72 2.75 2.87
2 Daily min. temp. 5.03 —5.28 —-0.48 —0.55 1.84  2.98
3 log,(Radiation+1) 1.16 0.79 9.63 —-0.06 —-0.45 0.75
4 Relative humidity 78.55 7.32 0.21 1.75 —-1.06 10.79
5 Wind speed 3.37 043 —-0.61 2.22
6 Rainfall 0.0 0.13 0.31 —0.04 242 1.00

Table 1: Parameter estimates for annuals trends



L 10°x m.s.e.
3 412
4 421
5) 416
6 279
7 195
8 213
9 312
10 307
11 418
12 522
13 491
14 521

Table 2: Mean square error of parameter estimates in VARMA (2,1) model when L correlation
terms are used.

where z(t) = (z1(¢),...,2x(t))" is a (K x 1) random vector, A; and M; are fixed (K x K)
coefficient matrices and e is a K-dimensional white noise process with e ~ N(0,X). The
parameters in the latent Gaussian model are estimated by an ad hoc procedure previously used
by Glasbey and Nevison (1997): we minimise the sum of squares,

=1 k=1I1=

(Pix (1) = pir (D), (4)

where pi, (1) and py (1) are the sample and expected cross-correlations between series ¢ and k at
lag [ (for details on the calculation of the expected cross-correlations, see Liitkepohl, 1991). The
sample cross-correlations between rainfall and the other weather variables cannot be calculated
directly by ordinary maximum likelihood. In Appendix B we explain how these were obtained.
Parameters were estimated using different numbers of lags, L, and a simulation study was
performed to choose the optimal number of lags for a particular model. The lag chosen was
the one that minimised the mean square error of parameter estimates. Table 2 shows the mean
square errors for the VARMA(2,1) model, indicating that L = 7 is optimal in this case.

The order of the process (p,q) was determined by comparing the autocorrelations with 95%
confidence intervals obtained by simulation, for a range of values of p (p = 1,2) and ¢ (¢ = 0, 1).
Figure 3 shows the results for (p,q) = (2,1)2, the model of lowest order which was acceptable
on this criterion. This order of VARMA process was also chosen in Peiris and McNicol (1996),
but with rainfall omitted. The simulation study chose L = 7 as the optimal number of lags
to be used in the estimation of the parameters in the VARMA(2,1) model for these data. The
estimated matrices A;, Ay, M; and ¥ in model (3) are given in Table 3.
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Figure 3: Autocorrelations for the siz weather variables (—) and simulation-based 95% confi-

dence interval based on the fitted VARMA (2,1) model.
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1.212 —-0.425 0.084  0.097 —0.161 —0.169

0.516 0324 —-0.215 0.146 —-0.156  0.150
A, = 0.314 —0.215 0.286 —0.033  0.098 —0.290
—0.562  0.266  0.782  0.959 -0.230  0.719
0.131 —-0.203 -0.179  0.064 1.290 —-0.072
0.846 —0.565 —0.869  0.055 —0.352  0.996
—-0.200  0.209 -0.012 -0.014 0.082  0.156
—-0.052  0.037  0.027 —-0.007  0.067 —0.038
A, = —0.102  0.088  0.049 0.008 —0.017  0.181
0.257 —-0.091 —-0.188 —0.082  0.132 —-0.435
—-0.036  0.094 0.004 -0.009 —0.289 —0.024
-0.193  0.073  0.026 —-0.019 0.392 —-0.162
—0.030 —5.072 —1.483 1930 —0.188 —2.560
0.708  0.367 —0.907  2.211 -0.515 —-2.130
N = 1.583  4.410 1.030 —0.543 0.006  0.751
—2.873 —6.825 —-0.406 1.779 -0.010 —-0.801
0.448  0.108 —0.383  0.276  0.909 —0.503
3.403  7.300 0.421 —-0.589 —0.346  1.989
0.293
—0.114  0.056
S 0.218 —0.153  0.849
—0.035  0.009 —0.154 0.358
0.017  0.005 —0.055 0.059 0.615

—0.042  0.033 —-0.441 0.346 0.052 0.521

Table 3: Parameter estimates in VARMA(2,1) model.

3 Model validation

The multivariate latent Gaussian model was used to simulate 100 runs of 18 years of weather
data using the parameter values for the VARMA process given above. The first 365 days in
each run were discarded to ensure independence from the starting values. Weather variables
were then obtained by reversing the transformations applied in §2. For comparison, series were
also simulated from the models of Richardson (1981) and Peiris and McNicol (1996), again with
parameters estimated from the Mylnefield data.

Comparisons were based on monthly means of weather variables (see Figure 4), number of
wet days and total amount of rain per month (see Figure 5). The maximum and minimum
temperature of the generated data from the different models did not differ significantly from the
observed data. However, for radiation, the model of Richardson (1981) overestimated values



during summer, and relative humidity was also overestimated. The model of Peiris and McNicol
(1996) performs poorly in the aspects related to rainfall, confirming what they pointed out in
their paper. The amount of rainfall was underestimated significantly for some months. The
data generated from the latent model are generally consistent with the observed data.

Figure 3 shows a histogram of durations of wet periods per year for historical and simulated
data. The model of Peiris and McNicol (1996) does not cope with wet periods of 5 or more days
and it also underestimate the number of wet periods of duration between 2 and 4 days. The
latent and Richardson (1981) models perform well overall, although they both fail to reproduce
wet periods over 10 days.

4 Discussion

The model we have proposed provides a unified approach to the simulation of weather data: all
variables are generated simultaneously by means of a multivariate latent Gaussian process which
assumes that rainfall is a latent variable with threshold at zero. This general approach avoids
a two-stage model where some variables are simulated conditional on others. The simplicity
of the model facilitates the introduction of new weather variables and the Gaussian nature
of the model makes easier the extension to a spatio-temporal framework where data can be
interpolated between different locations.

Our model improves on the one proposed by Richardson (1981) in that the adequacy of the
simulation of the weather variables does not depend so strongly on the proper description of
the sequence of wet and dry days. The simulation study showed how the monthly average
radiation did not compare well with the observed data for some months. This might has been
a result of a poor fit of the series of wet and dry days. Another possible reason is the fact that
Scottish rainfall is not Markovian.

The main difference between our model and that of Peiris and McNicol (1996) is the link
between rainfall and the other variables. In the model of Peiris and McNicol (1996), rainfall is
a function of the non-rainfall variable. This is a disadvantage because these variables may not
capture well the correlation structure of rainfall. The latent model estimates the correlation
structure of all variables simultaneously and generates more accurate results.

The latent Gaussian model needs to be fitted to data from other locations to check for variability
of the parameters. It would also be of interest to study the influence of the number of years
used on the parameter estimation. The programs used to fit the latent model and generate the
simulated data were written in Fortran90 and they are available on request.
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Appendix A: Detrending a latent Gaussian variable

We estimate the trend for the latent Gaussian variable, yx, by numerically maximising the
log-likelihood:

{C(t)} if yg(t) = *
L= Zt:logp(t) where p(t) = { L (s0e®)  otherwise.

Here, ¢ is the Gaussian probability density function

® is the Gaussian integral

which is needed when yg is censored, and the censoring limit for z () is

C’(t) _ Qo — ,UK(t)7

OK

where «y is the censoring limit for yx, given in (1).

Appendix B: Estimation of sample auto- and cross-correlations

We estimate the auto- or cross-correlation between the detrended variables z; and z;, at time
lag [, denoted p;x(l), by numerically maximising a log-likelihood:

L= Zlogpzk(t,t — l)
t

If i,k # K, then
pir(t,t — 1) = ¢o{zi(t), zi(t = 1), pir (1) },

where ¢, is the Gaussian bivariate probability density function

1 -1

¢2(W,I,p) = QWW exp 2(1 _p2)

(w? + 2 — 2pwr)|.
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If i = K and k # K, then

prrlt b — 1) =4 Plalt=0)2 {l0@#) = praDzi(t = DI/\/1 = phr(D} if yx(t) = =
, Po{2K (1), z(t = 1), pri(l)} otherwise.

We need not consider the case i # K and k = K, because pii(l) = prrc(—I). Finally, if
1t =k = K, then

B{C(0), (- D) i yse(t) =yl — 1) = «
prk(t,t=1) = ¢ o{zx(t —1)}® {[(t) —prr(D)zg(t —1]/\/1 — p%(K(l)} if only yx(t) = *
bo{2k (1), i (t = 1), prerc (1)} otherwise.

Here, @, is the bivariate Gaussian integral

Dy (u, v, p) = /u /U do(w, x, p) dw dz.
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