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a b s t r a c t

The autocorrelation function (acf) of powered absolute returns and their cross-correlations
with original returns are derived, for any value of the power parameter, in the context of
long-memory stochastic volatility models with leverage effect and Gaussian noises. These
autocorrelations and cross-correlations generalize and correct recent results on the acf of
squared and absolute returns.

1. Introduction

An increasingly popularmodel to represent the dynamic evolution of the volatility of financial returns is the long-memory
stochastic volatilitymodelwith leverage effect, denoted by A-LMSVmodel. Thismodel is able to explain the high persistence
often observed empirically in the sample autocorrelation function (acf) of squared returns, and the asymmetric response
of volatility to positive and negative shocks; see Nakajima and Omori (2008) and Takahashi et al. (2008) for recent results
on the importance of asymmetry in stochastic volatility models. On the other hand, in order to characterize adequately the
dynamics of conditionally heteroscedastic returns, it is important to know not only the acf of squared returns but also of any
power of absolute observations; see, for example, He et al. (2002), Karanasos and Kim (2003, 2006) and Franq and Zakoïan
(2008) for references where the autocorrelations of powers of absolute returns are of interest. Furthermore, the presence
of an asymmetric response of volatility to positive and negative returns shows up in non-zero cross-correlations between
original returns and future powers of absolute returns. Recently, Ruiz and Veiga (2008) derive the properties of the A-LMSV
model with Gaussian errors and compare them with those of the FIEGARCH model. In particular, they derive, among other
moments, the acf of powers of absolute observations, |yt |c , and the cross-correlations between yt and |yt+k|c , for c = 1 and
2, where c is the power parameter. However, the acf in expression (5) of their paper is not valid when c = 1, i.e. for absolute
observations, although it is still valid when c = 2, i.e. for squared observations. In this note, we derive the expressions of
the acf of the power-transformed returns, |yt |c , and of the cross-correlations between yt and |yt+k|c for any positive power
c > 0. Therefore, we generalize the results in Ruiz and Veiga (2008) allowing a more precise description of the dynamics of
returns generated by A-LMSV models. Furthermore, when c = 1, we obtain, as a particular case, the acf of absolute returns
which corrects the wrong expression in Ruiz and Veiga (2008). Finally, when c = 2, the acf of squared returns comes up and
coincides with the expression given in Ruiz and Veiga (2008).

The rest of the note is organized as follows. Section 2 derives the acf and cross-correlations of |yt |c . In Section 3, we obtain
the particular cases of the autocorrelations for c = 1 and 2. Section 4 concludes the note.
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2. The acf of power-transformed returns and their cross-correlation with returns

Consider the Asymmetric Long-Memory Stochastic Volatility, A-LMSV(1, d, 0), model proposed by Ruiz andVeiga (2008),
given by

yt = σ∗σtεt , (1)

and

(1− φL)(1− L)d log σ 2
t = ηt , (2)

where yt is the return at time t and σ∗σt is its volatility. The parameter σ∗ is a scale parameter that avoids the inclusion
of a constant in the log-volatility equation, (2); see So et al. (1997) for an interpretation of this parameter as the volatility
obtained when conditioning upon an average level of information arrival to the market. L is the lag operator such that
Lxt = xt−1. The disturbances (εt , ηt+1)

′ are assumed to have the following bivariate normal distribution
(

εt
ηt+1

)

∼ NID

[(

0
0

)

,

(

1 δση

δση σ 2
η

)]

,

where δ, the correlation between the noises, represents the leverage effect and induces correlation between returns and
future volatilities; see Harvey and Shephard (1996). The parameters φ and d satisfy the stationarity conditions, i.e. |φ| < 1
and |d| < 0.5.

As wementioned above, the dynamic properties of conditionally heteroscedastic series with leverage effect are reflected
in the acf of |yt |c , and in the cross-correlation function between yt and |yt+k|c . Next, we derive both functions for the
A-LMSV(1, d, 0) model in (1) and (2).

2.1. Autocorrelations

Consider first the autocorrelation of order k of |yt |c which is given by

ρc(k) =
γc(k)

γc(0)
,

where γc(k) = Cov(|yt |c , |yt+k|c) and γc(0) = Var(|yt |c). Denote by ht the log-volatility process, i.e. ht = log σ 2
t . Then, the

power-transformed returns can be written as

|yt |c = σ c
∗ exp

(

cht

2

)

|εt |c .

Note that, by definition, ht and εt are contemporaneously independent. Therefore, using the properties of the log-normal
distribution, the variance of |yt |c can be derived as follows

γc(0) = E(|yt |2c)−
[

E(|yt |c)
]2

= σ 2c
∗ E[exp (cht)]E

(

|εt |2c
)

− σ 2c
∗

[

E

(

exp

(

cht

2

))]2

[E(|εt |c)]2

= σ 2c
∗ [E(|εt |c)]2 exp

(

c2σ 2
h

4

)[

κc exp

(

c2σ 2
h

4

)

− 1

]

, (3)

where κc = E(|εt |2c )
[E(|εt |c )]2

and E(|εt |c) = 2c/2
Ŵ

(

c
2
+ 1

2

)

Ŵ

(

1
2

) , where Ŵ(·) is the Gamma function. The expression of σ 2
h , the variance of

the log-volatility process, which is an ARFIMA(1, d, 0) process, can be found in Hosking (1981). Note that the expression of
Var(|yt |c) given by Ghysels et al. (1996) and subsequently by Ruiz and Veiga (2008) is not correct.

The autocovariance of order k of the power-transformed returns is given by

γc(k) = E(|yt |c |yt+k|c)− E(|yt |c)E(|yt+k|c)

= σ 2c
∗ E

(

|εt+k|c
)

{

E

[

exp

(

c(ht + ht+k)

2

)

|εt |c
]

− exp

(

c2σ 2
h

4

)

E(|εt |c)
}

. (4)

The first expectation within the squared brackets in (4) cannot be directly decomposed into the product of expectations
due to the correlation between ηt+1 and εt . Consequently, in order to isolate the disturbance ηt+1 in ht + ht+k, we consider

the following AR(∞) representation of the log-volatility, ht =
∑∞

i=1 λiηt+1−i, with λ1 = 1 and λk =
k−1
∑

i=0

Ŵ(i+d)

Ŵ(i+1)Ŵ(d)
φk−1−i.
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Note that in the short-memory case, when d = 0, λk = φk−1. Then, it turns out that ht + ht+k−λkηt+1 can be written down
as the following linear combination

ht + ht+k − λkηt+1 =
k−1
∑

i=1

λiηt+1+k−i +
∞
∑

i=1

(λi + λk+i)ηt+1−i,

which is independent of ηt+1 and Gaussian. Therefore, adding and subtracting λkηt+1 in the corresponding expectation in
(4), we obtain the following result

E

[

exp

(

c(ht + ht+k)

2

)

|εt |c
]

= E

[

exp

(

c(ht + ht+k − λkηt+1)

2

)]

E

[

|εt |c exp
(

cλkηt+1

2

)]

. (5)

The first expectation in (5) can be obtained by noting that ht + ht+k − λkηt+1 is normal with zero mean and variance

Var(ht + ht+k − λkηt+1) = 2σ 2
h [1+ ρh(k)]− λ2

kσ
2
η ,

where ρh(k) is the autocorrelation of order k of the log-squared volatility, ht ; see Hosking (1981) for the expression of this
autocorrelation. Then, using once more the properties of the log-normal distribution, it turns out that

E

[

exp

(

c(ht + ht+k − λkηt+1)

2

)]

= exp

(

c2σ 2
h [1+ ρh(k)]

4

)

exp

(

−c2λ2
kσ

2
η

8

)

. (6)

The second expectation on the right-hand side of (5) can be obtained from Proposition 1 in the Appendix, as follows

E

[

|εt |c exp
(

cλkηt+1

2

)]

= exp

(

c2λ2
kσ

2
η (1− δ2)

8

)

Ŵ(c + 1)

Ŵ
(

c
2
+ 1

)2−c/2Φ

(

c + 1

2
,
1

2
;
c2A2

k

2

)

, (7)

where Ak =
λkδση

2
and Φ(·, ·; ·) is the degenerate hypergeometric function; see Section 9.21 of Gradshteyn and Ryzhik

(1994).
Now, replacing (6) and (7) into (5), putting (5) back into (4) and using formula 8.335.1 of Gradshteyn and Ryzhik (1994),

the following expression of the autocovariance of |yt |c is obtained after some straightforward algebra

γc(k) = σ 2c
∗ exp

(

c2σ 2
h

4

)

[E(|εt |c)]2
[

exp

(

c2σ 2
h ρh(k)

4

)

exp

(

−
c2A2

k

2

)

Φ

(

c + 1

2
,
1

2
;
c2A2

k

2

)

− 1

]

. (8)

Finally, dividing the autocovariance in (8) by the variance in (3), the expression of the acf of |yt |c is obtained as follows

ρc(k) =
exp

(

c2σ 2
h
ρh(k)

4

)

exp
(

− c2A2
k

2

)

Φ

(

c+1
2

, 1
2
; c2A2

k

2

)

− 1

κc exp
(

c2σ 2
h

4

)

− 1

, k ≥ 1. (9)

Note that when d = 0, the acf of the short-memory A-ARSV (1) model is obtained. On the other hand, if there is no
leverage effect, i.e. δ = 0, then Ak = 0 and Φ

(

c+1
2

, 1
2
; 0

)

= 1. In this case, the acf of the symmetric LMSV(1, d, 0) model,
derived by Harvey (1998), is obtained as a particular case of (9).

2.2. Cross-correlations

The cross-correlation of order k between returns and future power-transformed absolute returns is given by

Corr(yt , |yt+k|c) =
Cov(yt , |yt+k|c)√
Var(yt)Var(|yt+k|c)

. (10)

The variance of |yt |c has been derived above and it is given by expression (3). On the other hand, the marginal variance of
returns is given by

Var(yt) = σ 2
∗ exp

(

σ 2
h

2

)

. (11)

Finally, the cross-covariance between yt and |yt+k|c can be derived by taking into account that E(yt) = 0 and using
similar arguments to those used to derive the acf above, as follows

Cov(yt , |yt+k|c) = E(yt |yt+k|c) = σ c+1
∗ E

[

exp

(

ht + cht+k

2

)

εt |εt+k|c
]

= σ c+1
∗ E(|εt+k|c)E

[

exp

(

ht + c(ht+k − λkηt+1)

2

)]

E

[

εt exp

(

cλkηt+1

2

)]

. (12)
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To obtain the second expectation in (12), note that ht + cht+k− cλkηt+1 is normal with zero mean and variance given by

Var(ht + cht+k − cλkηt+1) = (1+ c2)σ 2
h + 2cσ 2

h ρh(k)− c2λ2
kσ

2
η .

Hence, using the properties of the log-normal distribution, it turns out that

E

[

exp

(

ht + c(ht+k − λkηt+1)

2

)]

= exp

(

σ 2
h [1+ c2 + 2cρh(k)]

8

)

exp

(

−c2λ2
kσ

2
η

8

)

. (13)

Now, the last expectation on the right-hand side of (12) is obtained by using Proposition 2 in the Appendix and it is given
by

E

[

εt exp

(

cλkηt+1

2

)]

= cAk exp

(

c2λ2
kσ

2
η

8

)

, (14)

where Ak is the same as in Section 2.1. Now, putting back (13) and (14) into (12), the following expression for the cross-
covariances is obtained

Cov(yt , |yt+k|c) = σ c+1
∗ E(|εt+k|c)cAk exp

{

σ 2
h [1+ c2 + 2cρh(k)]

8

}

. (15)

Finally, replacing (3), (11) and (15) into (10), the order k cross-correlation between yt and |yt+k|c is given by

Corr(yt , |yt+k|c) =
cAk exp

(

cσ 2
h
ρh(k)

4

)

exp
(

σ 2
h

8

)

√

κc exp
(

c2σ 2
h

4

)

− 1

, k ≥ 1; (16)

see Demos (2002) and Taylor (2005) for the particular case of correlations between returns and future squared returns in
the long-memory and short-memory models respectively. Note that formulae (7) and (9) in Ruiz and Veiga (2008) for the
cross-covariance and cross-correlation between current returns and future absolute and squared returns, respectively, are
immediately obtained as particular cases of (15) and (16) when c = 1 and c = 2.

3. Particular cases: Autocorrelations of absolute and squared returns

The acf of absolute returns, |yt |, is obtained by taking c = 1 in (9), as follows

ρ1(k) =
exp

(

σ 2
h
ρh(k)

4

)

exp
(

− A2
k

2

)

Φ

(

1, 1
2
; A2

k

2

)

− 1

κ1 exp
(

σ 2
h

4

)

− 1

, k ≥ 1,

where κ1 =
E(ε2t )

[E(|εt |)]2
= π

2
and Φ

(

1, 1
2
; A2

k

2

)

= 1+
√

π
2
Ak exp

(

A2
k

2

)

[2φ(Ak)−1]with φ(·) being the cumulative distribution

function of the standard normal distribution; see formulae 9.236.1, 9.212.1, 9.212.2 and 8.250.1 in Gradshteyn and Ryzhik
(1994). Therefore, the acf of |yt | is given by

ρ1(k) =
exp

(

σ 2
h
ρh(k)

4

) {

exp
(

− A2
k

2

)

+
√

π
2
Ak[2φ(Ak)− 1]

}

− 1

π
2
exp

(

σ 2
h

4

)

− 1

. (17)

Note that (17) is the correct expression of the autocorrelations of absolute returns in A-LMSV(1, d, 0)models and corrects
expression (5) with c = 1 of Ruiz and Veiga (2008).

Given that it is not easy to derive from (17) any conclusion about the shape of the acf of |yt |, the first column of Fig. 1
plots this acf for the same models chosen in Ruiz and Veiga (2008), namely {φ = 0, d = 0.49, σ 2

η = 0.05}, {φ = 0, d =
0.49, σ 2

η = 0.1}, {φ = 0.5, d = 0.49, σ 2
η = 0.1} and {φ = 0.98, d = 0, σ 2

η = 0.05} and δ = {0,−0.2,−0.5,−0.8}.
Observe that the curves plotted in Fig. 1 for a given model with different values of δ are hardly distinguishable from each
other. Therefore, the presence of leverage effect has a negligible effect on the acf of |yt |. The autocorrelations are nearly the
same regardless of the value of the parameter δ as far as it is negative. Second, we observe that the autocorrelations of |yt |
are always positive and decrease monotonically towards zero from the first lag; compare with the conclusions in Ruiz and
Veiga (2008) based on the wrong expression of the acf.

The acf of squared returns, y2t , is obtained by taking c = 2 in (9), as follows

ρ2(k) =
exp

(

σ 2
h ρh(k)

)

exp
(

−2A2
k

)

Φ
(

3
2
, 1

2
; 2A2

k

)

− 1

κ2 exp
(

σ 2
h

)

− 1
, k ≥ 1,
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Fig. 1. Autocorrelation function of |yt | (left column) and y2t (right column) in four A-LMSV models with different values of the asymmetric parameter:

continuous (δ = 0), dotted (δ = −0.2), dashed (δ = −0.5) and dotted-dashed (δ = −0.8).

where κ2 is the kurtosis of εt , i.e. κ2 = 3 and Φ
(

3
2
, 1

2
; 2A2

k

)

= (4A2
k + 1) exp

(

2A2
k

)

; see formulae 9.212.2 and 9.215.1

in Gradshteyn and Ryzhik (1994). Therefore, the acf of y2t is given by

ρ2(k) =
exp

(

σ 2
h ρh(k)

)

(1+ δ2σ 2
η λ2

k)− 1

3 exp
(

σ 2
h

)

− 1
, k ≥ 1, (18)

which is the same as that reported by Ruiz and Veiga (2008) in their equation 5 when c = 2. Therefore, their formula (5) is
still valid when c = 2.

Oncemore,we illustrate the shape of the acf of y2t by plotting in the right columnof Fig. 1 the acf’s in (18) corresponding to
the same models considered above; compare with the autocorrelations of squares of long-memory GARCH models derived
by Karanasos et al. (2004). Note that the conclusions are similar to those of the acf of absolute returns. The main difference
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Fig. 2. Differences between the first order autocorrelations of absolute and squared returns as a function of the correlation between εt and ηt+1 in four

A-LMSV models.

is that the autocorrelations of y2t are systematically smaller than those of |yt |. This phenomenon is known as the Taylor effect
in deference to Taylor (1986), who provided extensive empirical evidence on this characteristic of the autocorrelations. To
have a clearer picture of this effect in A-LMSV(1, d, 0) models, Fig. 2 plots, for the same four models mentioned above, the
difference between the first order autocorrelations of absolute and squared observations as a function of the asymmetry
parameter, δ. This figure shows that these differences are all positive, as postulated by the Taylor effect, and they reach their
maximum when there is no leverage effect (δ = 0) and slightly decrease with the absolute value of δ.

4. Conclusions

In this note, we extend the results of Ruiz and Veiga (2008) by deriving the autocorrelations of powers of absolute returns
and their cross-correlations with the returns themselves, for any value of the power parameter. These functions allow us
to have a richer characterization of the dynamics of LMSV models with leverage effect. We also correct a mistake in the
expression of the acf of absolute returns given by Ruiz and Veiga (2008) and, consequently, obtain different conclusions on
the shape of this acf and on the Taylor effect.
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Appendix

Proposition 1. If
(

ε
η

)

∼ N

[(

0
0

)

,

(

1 δση

δση σ 2
η

)]

,

then for any finite real number a we have that

E[|ε|c exp(aη)] = 2−c/2 Ŵ(c + 1)

Ŵ
(

c
2
+ 1

) exp

(

a2σ 2
η (1− δ2)

2

)

Φ

(

c + 1

2
,
1

2
;
a2σ 2

η δ2

2

)

, (19)

where Φ(·, ·; ·) is the degenerate hypergeometric function.
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Proof. From the law of iterated expectations we have that:

E[|ε|c exp(aη)] = E
(

|ε|cE[exp(aη)|ε]
)

. (20)

Since the conditional distribution of η given ε is N(σηδε, σ
2
η (1 − δ2)), using the properties of the log-normal distribution,

it turns out that

E[exp(aη)|ε] = exp(aσηδε) exp

(

a2σ 2
η (1− δ2)

2

)

.

Consequently, plugging this expression into Eq. (20), we have

E[|ε|c exp(aη)] = exp

(

a2σ 2
η (1− δ2)

2

)

E[|ε|c exp(aσηδε)]. (21)

Finally, the expectation on the right-hand side of (21) is given by:

E
[

|ε|c exp(aσηδε)
]

=
1
√
2π

∫ ∞

−∞
|ε|c exp

(

−
ε2

2
+ aσηδε

)

dε

=
1
√
2π

[∫ ∞

0

εc exp

(

−
ε2

2
+ aσηδε

)

dε +
∫ ∞

0

εc exp

(

−
ε2

2
− aσηδε

)

dε

]

=
1
√
2π

Ŵ(c + 1) exp

(

a2σ 2
η δ2

4

)

[D−(c+1)(−aσηδ)+ D−(c+1)(aσηδ)], (22)

where D·(·) is the parabolic cylinder function; see formula 3.462.1 in Gradshteyn and Ryzhik (1994). Now, using formula
9.240 in Gradshteyn and Ryzhik (1994), it can be proved that

D−(c+1)(−aσηδ)+ D−(c+1)(aσηδ) =
2−c/2

√
2π

Ŵ
(

c
2
+ 1

) exp

(

−
a2σ 2

η δ2

4

)

Φ

(

c + 1

2
,
1

2
;
a2σ 2

η δ2

2

)

.

Then, replacing this expression into Eq. (22) it turns out that

E
[

|ε|c exp(aσηδε)
]

= 2−c/2 Ŵ(c + 1)

Ŵ
(

c
2
+ 1

)Φ

(

c + 1

2
,
1

2
;
a2σ 2

η δ2

2

)

,

and putting back this value into (21) the result in (19) comes up. �

Proposition 2. If
(

ε
η

)

∼ N

[(

0
0

)

,

(

1 δση

δση σ 2
η

)]

,

then for any finite real number a we have that

E[ε exp(aη)] = aδση exp

(

a2σ 2
η

2

)

. (23)

Proof. The conditional distribution of η given ε is N(σηδε, σ
2
η (1 − δ2)). Therefore by the law of iterated expectations and

the properties of the log-normal distribution, we obtained the following result

E[ε exp (aη)] = E [εE (exp (aη) |ε)]

= exp

{

a2σ 2
η (1− δ2)

2

}

E[ε exp(aδσηε)]. (24)

The expectation on the right-hand side of (24) is given by

E[ε exp
(

a δσηε
)

] =
1
√
2π

∫ ∞

−∞
ε exp

(

−
ε2

2
+ aδσηε

)

dε

= aδση exp

(

a2δ2σ 2
η

2

)

; (25)

see formula 3.462.6 in Gradshteyn and Ryzhik (1994).
Finally, replacing (25) into (24), the result in (23) is obtained. �
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