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Abstract

The last few decades have witnessed a surge in research activity in the area of multiperiod

portfolio optimization due to its theoretical and practical importance. One of the main issues

that researchers have confronted in the implementation of successful portfolio strategies is the

consideration of transaction costs. Characterizing the optimal portfolio policy in the presence

of transaction costs is an open area of research in portfolio optimization. In this dissertation, we

aim to investigate the portfolio policy for a multiperiod portfolio problem with multiple risky

assets and di↵erent types of transaction costs under the utility maximization framework. In

particular, we study and characterize the optimal portfolio rebalancing rules for a risk-averse

investor who incurs transaction costs in a discrete-time setting.

We begin with an analytically tractable framework where the investor has mean-variance pref-

erence and constant investment opportunity set in the presence of di↵erent types of transaction

costs. For small trades, which result in proportional transaction costs, we provide a closed-form

expression for the no-trade region that confines the investor’s optimal portfolio policy for each

period, and we further analyze how the size of the no-trade region changes with relevant model

parameters. For large trades, which can distort prices and thus result in strictly convex costs,

we show analytically that there exists a state-dependent rebalancing region for each period, such

that the optimal policy at each period is to trade to its boundary. We further study the utility

losses associated with ignoring transaction costs and behaving myopically with an empirical

dataset.

Then, we move to an analytically intractable framework where the investor has power utility

preference and predictable risky asset returns in the presence of proportional transaction costs.

We first consider an approximation to the model with power utility using a mean-variance

problem, and we propose several approximate solutions that induce low utility losses for the

mean-variance problem. Furthermore, we adapt these feasible trading strategies to the frame-

work with power utility of intermediate consumption and study numerically the associated losses

in certainty equivalent. We show that the multiperiod portfolio selection problem can be tackled

through the utilization of a duality approach.
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Chapter 1

Introduction

How to invest optimally is one of the main concerns of rational investors. The first breakthrough

work on this topic is the mean-variance portfolio model proposed by Markowitz [1952]. In this

model, the investor accomplishes her optimal portfolio based on the trade-o↵ between risk and

expected return. Markowitz measures the risk of a portfolio through the expected portfolio

variance. Specifically, let R 2 RN be the return vector of available securities. Given the

expectation µ = IE[R] of the return vector and the covariance matrix ⌃ = IE[(R � µ)(R � µ)0],

the investor allocates her capital among the N assets, forming a portfolio w 2 RN where each

component w
i

represents the fraction of total capital held in asset i. The expected return of a

portfolio and its variance are given respectively by

µ

p

= w

0
µ, (1.1)

�

2
p

= w

0⌃w. (1.2)

Markowitz’s work suggests that, for a any given level of expected return µ

⇤, the investor seeks

the vector of weights which minimizes the portfolio variance. It takes the form

min
w

w

0⌃w (1.3)

s.t. w

0
µ = µ

⇤
, (1.4)

w

0 = 1, (1.5)

where is a vector of ones with length N . In the absence of a risk-free asset (i.e., an asset

with zero return variance and zero covariance with all other assets), the optimal solution to

the above optimization for every given level of expected return µ

⇤ defines the upper edge line

(known as the e�cient frontier) of a risk-return region which consists of all combinations of

return and risk for every possible portfolio w in risk-return space. For any given point on the

e�cient frontier, it provides a rational investor with the lowest level of risk exposed to a given

target expected return µ

⇤ or equivalently, the highest expected return that can be reached for a

fixed level of risk. Without imposing the expected return constraint (1.4), the optimal solution

1



Chapter 1. Introduction 2

gives the global minimum-variance (MV) portfolio, which is depicted on Figure 1.1. When one

Figure 1.1: E�cient Frontier

This figure shows the e�cient frontier obtained from three individual assets represented by green
dots. The red dots represent the Minimum Variance (MV) portfolio and tangency portfolio respec-
tively. The risk-free rate is 2%. The blue line which joins the risk-free asset and tangency portfolio
is the Capital Market Line (CML.)

of the assets is risk-free, the diagram for the mean return and risk changes to the straight line,

which is also known as the Capital Market Line (CML). The portfolios on the CML are formed

by linear combinations of the risk-free asset and the tangency portfolio located on the e�cient

frontier. Problem (1.3)-(1.5) does not specify the the level of target return µ

⇤ which should be

decided by the investor depending on the risk she is willing to bear. Let � be a parameter that

represents the investor’s risk aversion. Markowitz [1959] introduces a formulation where the

investor maximizes her expected mean-variance utility, with the corresponding expected utility

maximization problem as:

max
w

w

0
µ� �

2
w

0⌃w (1.6)

s.t. w

0 = 1. (1.7)

This problem is equivalent to problem (1.3)-(1.5), and it admits an explicit solution which can

be attained through first-order conditions:

w =
1

�

⌃�1
µ� ◆

�

⌃�1
, (1.8)
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where ◆ is the Lagrange multiplier associated with constraint (1.7) and is defined as µ

0⌃�1 ��

0⌃�1 .

1.1 Utility Function

Problem (1.6) defines the quadratic utility based on the mean and variance of a portfolio return.

However, the investor in this model only considers an investment in one period and does not

account for a multiperiod investment. Considerable work on multiperiod portfolio management

has been conducted in subsequent years, in which a di↵erent framework of expected utility is

used: instead of the mean and variance of a portfolio, the expected terminal wealth IE(U(W ))

for a utility function is maximized. In particular, Mossin [1968] shows that the constant relative

risk aversion (CRRA) function is the only type of utility function that leads to the investment of

a fixed proportion in each of the risky assets. Specifically, for a utility function of the terminal

wealth U(W ), the Arrow-Pratt coe�cient of relative risk aversion is defined as

RRA(W ) =
�WU

00(W )

U

0(W )
. (1.9)

A CRRA utility function (which is also called power utility or isoelastic utility function) refers

to one for which RRA(W ) is a constant. Mathematically speaking, a CRRA utility function is

defined as:

U(W ) =
W

1�� � 1

1� �

, (1.10)

with � 6= 1, a constant referring to the relative risk aversion parameter. A special case of

interest is the logarithm utility: when � = 1, it has been shown that a multiperiod investor with

logarithm utility on terminal wealth will perform myopically.

In addition to its utility for terminal wealth, the CRRA utility function defined over a stream

of intermediate consumption is also a major concern of the in multiperiod portfolio optimiza-

tion literature. In this thesis, we focus on both mean-variance utility and CRRA utility of

intermediate consumption in Chapter 2 and Chapter 3, respectively.

1.2 Investment Opportunity Set

Let R

t+1 2 RN be a vector of random asset returns between t and t + 1. A certain type of

distribution of future returns is typically required for solving the multiperiod portfolio optimiza-

tion models. This section reviews the models that are most commonly used in the literature,

starting with the simple case where the investment opportunity set is constant.
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1.2.1 Constant Investment Opportunity Set

In this case, the risky asset returns for each period R

t+1 follow a log normal distribution.

Specifically, let R

f

be a constant denoting risk-free asset return. Define r

f

= log(R
f

) and

r

t+1 = log(R
t+1). The risky asset return process follows

r

t+1 � r

f

= µ0 + ✏

t+1, (1.11)

where µ0 2 RN is a vector of constant, denoting the mean of log returns in excess of risk-

free asset. ✏
t+1 is a multivariate normally distributed with mean zero and covariance matrix ⌃

✏

.

With constant investment opportunity set, Mossin [1968] shows that, for a multiperiod investor,

the myopic portfolio choice is optimal.

1.2.2 Factor Model

Factor models are used to explain the dynamics of asset returns by introducing pervasive factors

that drive returns in common. Generally, the return of asset i over the period t is decomposed

into the returns of K factor returns:

R

it

= ↵

iR

+
K

X

j=1

�

ij

f

jt

+ u

it

, (1.12)

where ↵
iR

is a regression constant, f
jt

is the j-th common factor at time t, and u

it

is a zero-mean

residual term uncorrelated with factor returns. The coe�cients �

ij

are the factor loadings of

asset i on each of the K factors.

The main advantage of factor models is that they can considerably reduce the number of param-

eters needed to be estimated. Consider a portfolio of N = 100 assets as a simple example. There

are N(N + 1)/2 = 5, 000 parameters to be estimated for the covariance matrix in Markowitz’s

mean-variance analysis. With K = 3 factors,1 the covariance matrix of the asset returns is given

by

⌃̃ = �

R

⌃
f

�

0
R

+ ⌃
u

, (1.13)

where �
R

is theN⇥K matrix of factor loadings, ⌃
f

is theK⇥K covariance matrix of the factors,

and ⌃
u

is a diagonal matrix of N residual return variances. Then the number of parameters to

be estimated reduces to K +N(K + 1) = 403 terms.

1.2.3 VAR Model

In the context of return predictability, a factor model can provide some direction in forecasting

expected asset returns by positing a dynamic model for making forecasts of the factors. Among

1 Assuming that the residuals are mutually uncorrelated and are uncorrelated with the factors.
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the dynamic models, the vector autoregression (VAR) model is the most common one for es-

tablishing the dynamics. Specifically, let F
t

be the K ⇥ 1 vector of factor returns over period t,

and ↵

R

be the vector of regression constant containing all the ↵

iR

. The related VAR model is

defined as follows:

R

t

= ↵

R

+ �

R

F

t

+ u

t

, (1.14)

F

t+1 = ↵

K

+ �

K

F

t

+ ⌫

t

, (1.15)

where ↵

K

is a vector of constant and �

K

is a matrix of first-order autoregression factors. The

⌫

t

is normally distributed white noise with mean zero. Regarding the predictive factors, Fama

and French [1989] find that dividend yield and term spread predict return components for a

cross-section of asset classes. As a consequence, the model which describes predictability of

stock returns by a single dividend yield term has been widely employed in the literature. In

Chapter 3, we will focus on this type of VAR model for log of asset returns.

1.3 Multiperiod Problems

Markowitz’s original model considers an investment in one period: the investor determines the

vector of portfolio weights at the beginning of the investment period and waits patiently until

the end of the period. In subsequent years, there has been considerable work on multiperiod

portfolio problems, pioneered by Samuelson [1969]. In the multiperiod setting, an investor

makes a sequence of decisions. At each period, she rebalances her portfolios by taking into

consideration a future changing opportunity set and the remaining investment horizon.

Specifically, consider the problem where the investor determines a vector of portfolio weights

w

t

at each time t = 0, 1, 2, · · · , T � 1. The objective is to find the allocation decisions that

maximize an expected utility function. For instance, we can consider the utility of wealth at

the final time T , given the initial wealth. That is,

max
w0,w1,··· ,w

T�1
IE0 [U(W

T

)] , (1.16)

subject to the budget constraint stating that, for each period, all the wealth is invested:

W

t+1 = W

t

(1 +R

p,t+1) (1.17)

= W

t

(1 + w

0
t

R

t+1 + (1� w

0
t

)R
f

), (1.18)

where W

t

is the investor’s wealth at time t, and R

p,t+1 is the portfolio return at period t + 1.

Note that problem (1.16) is also equivalent to the problem where at each time step t, the investor

tries to intertemporally maximize the expected utility of wealth at T , given the current wealth

W

t

,

max
w0,w1,··· ,w

T�1
IE

t

[U(W
T

)] , (1.19)
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for t = 0, 1, · · · , T�1. Moreover, constraint (1.17) describes the dynamics of wealth by specifying

that the portfolio return for period t + 1 arises from the allocation w

t

to the risky assets and

the rest (1�w

0
t

) from the risk-free asset. The investment in the risk-free asset can be negative

if we allow the investor borrow to from it. We also require the wealth at each period to be

positive, W
t

� 0.

Based on a formulation by dynamic programming, it is convenient to express (1.19) in terms of

a value function which varies according to time period, current wealth and other state variables

z

t

,

V (t,W
t

, z

t

) = max
{w

s

}s=T�1
s=t

IE
t

[U(W
T

)] (1.20)

= max
w

t

IE
t

h

max
{w

s

}s=T�1
s=t+1

IE
t+1[U(W

T

)]
i

(1.21)

= max
w

t

IE
t

h

V

�

t+ 1,W
t+1 = W

t

(1 + w

0
t

R

t+1 + (1� w

0
t

)R
f

), z
t+1

�

i

(1.22)

subject to the constraint for terminal wealth: V (T,W
T

, z

T

) = U(W
T

). Here, the expectations

at time t are conditional on the information available at time t, which depends directly on the

joint distribution of risky asset returns.

This problem does not admit, in general, an explicit solution. It can only be solved numerically
using the system of nonlinear equations obtained from the first-order conditions. However, when
an investor has the preference of power utility U(W ) = W

1��

1��

(� 6= 1), some analytic progress
can be achieved. In this case, the investor’s decision problem can be established as follows:

V (t,W
t

, z

t

) = max
wt

IE
t+1

"

max
{ws}s=T�1

s=t+1

IE
t+1



W

1��

T

1� �

�

#

(1.23)

= max
wt

IE
t+1

"

max
{ws}s=T�1

s=t+1

IE
t+1



�

W

t

Q

T�1
s=t

(1 + w

0
s

R

s+1 + (1� w

0
t

)R
f

)
�1��

1� �

�

#

(1.24)

= max
wt

IE
t+1

"

W

1��

t+1

1� �

max
{ws}s=T�1

s=t+1

IE
t+1



⇣

T�1
Y

s=t+1

(1 + w

0
s

R

s+1 + (1� w

0
t

)R
f

)
⌘1��

�

#

(1.25)

= max
wt

IE
t

h

U(W
t+1)�(t+ 1, z

t+1)
i

(1.26)

It shows that the value function is the product of the investor’s next time-step utility U(W
t+1)

and �(t+1, z
t+1), which only depends on the remaining horizon and future state variables. This

can be further expressed as

V (t,W
t

, z

t

) =
W

1��

t

1� �

�(t, z
t

), (1.27)

with the terminal period �(T, ·) = 1. Note that if the risky asset returns are independent

and identically distributed throughout time, a multiperiod investor who has power utility will

behave myopically. However, when the investment opportunity set varies over time, the above

problem can only be solved using a dynamic programming approach. In both cases, continuously

rebalancing the portfolio weights requires the payment of high transaction costs.
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1.4 Transaction Costs

In general, transaction cost is a cost incurred in making an transaction. Incorporating transac-

tion costs into the portfolio optimization model helps us converge towards the optimal portfolio

in the most profitable way. For each stage, the transaction costs can be expressed in terms of

trading vector �x. Typically, it is a convex function of �x that allows us to capture the cost

associated with both large and small trades depending on the size of the transaction.

For small trades which do not distort market prices, the transaction costs generally come from

the bid-ask spreads and other brokerage fees, which are simply modelled as a function that

is proportional to the amount traded. There are several ways to characterize proportional

transaction costs in the portfolio optimization literature. For example, Balduzzi and Lynch

[1999] model the transaction cost such that it is paid from the investor’s wealth, while Lynch

and Tan [2010] assume that it is paid by costlessly liquidating the risk-free asset.

For large trades, on the other hand, there is market price impact which is very di�cult to

measure. In general, the market impact refers to the di↵erence between the transaction price

and what the market price would have been in the absence of the transaction. Moreover,

the impact on market price can be both temporary and permanent. Market price impact is

temporary when it a↵ects a single transaction, and permanent when it a↵ects every future

transaction. The corresponding transaction costs caused by large trades are generally modelled

in a strictly convex form. For example, Gârleanu and Pedersen [2013] consider transaction costs

in a quadratic form, which is a special case for capturing temporary impact on market prices.

In this dissertation, we consider transaction costs caused by both small and large trades in

Chapter 2 and proportional transaction costs in Chapter 3.

1.5 Contributions

Ignoring transaction costs will induce an unrealistic level of trading activity. However, taking

these costs into consideration will require a higher dimension in dynamic programming, and

thus even more computation time. In this dissertation, we investigate the discrete-time port-

folio rebalancing problem where transaction costs are charged when the holding in risky assets

changes. We contribute to the existing literature in two main aspects: first, we focus on the

multiperiod mean-variance problem and we analyze the optimal portfolio policy for an investor

facing a large number of risky assets in the presence of di↵erent types of transaction costs.

Second, we propose several feasible policies that are based on optimizing simple quadratic pro-

grams to solve a portfolio optimization problem for a multiperiod CRRA investor who incurs

proportional transaction costs.

Specifically, in Chapter 2, we carry out a comprehensive analysis on the optimal portfolio policies

for an investor whose objective is to maximize her expected portfolio return penalized by the

portfolio variability. We consider a constant investment opportunity set and various types of
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transaction costs. We make several contributions in this field. First, we analytically characterize

the optimal portfolio policy for the case with many risky assets and proportional transaction

costs by providing a closed-form expression for the no-trade region. This analysis is related

to Dybvig [2005], who considers the same problem but for a single-period setting. He shows

graphically without an analytical proof that the optimal portfolio policy is characterized by a

no-trade region shaped as a parallelogram. Second, we analytically study the optimal portfolio

policy in the presence of market impact costs, and we show that the optimal policies are confined

by a rebalancing region at each period. Third, we numerically study the utility losses associated

with ignoring transaction costs and investing myopically depending on relevant parameters. We

show that the resultant utility losses can be substantial. Finally, we gauge the robustness of our

results obtained based on mean-variance utility to the use of a framework with CRRA utility,

and we show that the associated certainty equivalent losses from following the mean-variance

portfolio policy are considerably small.

In Chapter 3, we propose some approximate trading strategies for the multiperiod portfolio

selection problem for an investor who maximizes her expected CRRA utility of intermediate

consumption and su↵ers from proportional transaction costs. These feasible trading strategies

are proposed based on an approximation for the CRRA utility framework with a framework

where an investor has a mean-variance utility. We first propose some approximate trading

strategies for the mean-variance investor in the presence of predictability. We then show how to

adapt the proposed feasible strategies based on the mean-variance framework to that based on

CRRA power utility. We also show that the multiperiod portfolio selection problem with multi-

ple risky assets can be tackled through the use of the duality method developed in Brown et al.

[2010]. Finally, to evaluate the performance of the proposed trading policies, we numerically

computed the mean-variance utility losses of the associated feasible strategies as well as the

corresponding certainty equivalent losses in the CRRA power utility framework. This chapter is

related to Brown and Smith [2011], who propose some heuristic trading strategies for an investor

with power utility of terminal wealth. However, we use a di↵erent objective function, namely

the one with power utility of intermediate consumption. Moreover, our proposal of approximate

trading strategies is based on quadratic programs which are easy to solve whereas theirs rely on

approximations in the dynamic recursion of a primal problem.

We conclude and summarize the main findings of this dissertation in Chapter 4, and we also

give a short description of possible research lines in Chapter 4.2.



Chapter 2

Multiperiod Portfolio Optimization

with Many Risky Assets and

General Transaction Costs

2.1 Overview

Merton [1971] showed that an investor who wishes to maximize her utility of consumption

should hold a fixed proportion of her wealth on each of the risky assets, and consume at a

rate proportional to her wealth.1 Merton’s seminal work relies on the assumptions that the

investor has constant relative risk aversion (CRRA) utility, faces an infinite horizon, can trade

continuously and (crucially) costlessly. Implementing Merton’s policy, however, requires one to

rebalance the portfolio weights continuously, and in practice this may result in high or even

infinite transaction costs. Ever since Merton’s breakthrough, researchers have tried to address

this issue by characterizing the optimal portfolio policy in the presence of transaction costs.

Researchers focused first on the case with a single-risky asset. Magill and Constantinides [1976]

consider a finite-horizon continuous-time investor subject to proportional transaction costs and

for the first time conjecture that the optimal policy is characterized by a no-trade interval : if

the portfolio weight on the risky-asset is inside this interval, then it is optimal not to trade,

and if it is outside, then it is optimal to trade to the boundary of this interval. Constantinides

[1979] demonstrates the optimality of the no-trade interval policy in a finite-horizon discrete-

time setting. Constantinides [1986] considers the Merton framework with a single risky asset and

proportional transaction costs, and computes approximately-optimal no-trade interval policies

by requiring the investor’s consumption rate to be a fixed proportion of her wealth, a condition

that is not satisfied in general. Davis and Norman [1990] consider the same framework, show

that the optimal no-trade interval policy exists, and propose a numerical method to compute

1Meton’s result holds for either an investor facing a constant investment opportunity set, or an investor with
logarithmic utility; see also Mossin [1968], Samuelson [1969], and Merton [1969, 1973].

9
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it. Dumas and Luciano [1991] consider a continuous-time investor who maximizes utility of

terminal wealth, and show how to calculate the boundaries of the no-trade interval for the

limiting case when the terminal period goes to infinity.

The case with multiple risky assets is less tractable, and the bulk of the existing literature relies

on numerical results for the case with only two risky assets. Akian et al. [1996] consider a multi-

ple risky-asset version of the framework in Davis and Norman [1990], and for the restrictive case

where the investor has power utility with relative risk aversion between zero and one2 and risky-

asset returns are uncorrelated, they show that there exists a unique optimal portfolio policy.

They also compute numerically the no-trade region for the case with two uncorrelated stocks.

Leland [2000] considers the tracking portfolio problem subject to proportional transaction costs

and capital gains tax, and proposes a numerical approach to approximate the no-trade region.

Muthuraman and Kumar [2006] consider an infinite-horizon continuous-time investor and pro-

pose an e�cient numerical approach to compute the no-trade region. Their numerical results

show that the no-trade region for the case with two risky assets is characterized by four corner

points, but these four corner points are not joined by straight lines, although their numerical

experiments show that a quadrilateral no-trade region does provide a very close approximation.

Lynch and Tan [2010] consider a finite-horizon discrete-time investor facing proportional and

fixed transaction costs, and two risky assets with predictable returns. Using numerical dynamic

programming, they show that for the case without predictability the no-trade region is closely

approximated by a parallelogram, whereas for the case with predictability the no-trade region

is closely approximated by a convex quadrilateral.3

Most of the aforementioned papers assume an investor with CRRA utility of consumption who

faces borrowing constraints. These assumptions render the problem untractable analytically,

and hence they generally rely on numerical analysis for the case with two risky assets. A

notable exception is the work by Liu [2004], who obtains an analytically tractable framework

by making several restrictive assumptions.4 Specifically, he considers an investor with constant

absolute risk aversion (CARA) and access to unconstrained borrowing5, who can invest in

multiple uncorrelated risky assets. For this framework, Liu shows analytically that there exists

a box-shaped no-trade region.

Recently, Gârleanu and Pedersen [2013], herein G&P, consider a more tractable framework

that allows them to provide closed-form expressions for the optimal portfolio policy in the

2Janeček and Shreve [2004] show that relative risk aversion parameters between one and zero lead to intolerably
risky behavior.

3Brown and Smith [2011] also consider the case with proportional transaction costs and return predictability.
Specifically, they propose several heuristic trading strategies for a finite-horizon discrete-time investor facing
proportional transaction costs and multiple assets with predictable returns, and use upper bounds based on
duality theory to evaluate the optimality of the proposed heuristics.

4Another important exception is Muthuraman and Zha [2008] who use a simulation-based numerical opti-
mization to approximate the optimal portfolio policy of a continuous-time investor who maximizes her long-term
expected growth rate for cases with up to seven risky assets. Also, in their early paper Magill and Constantinides
[1976] conjecture the existence of a box-shaped no-trade region for the case where the portfolio weights are small.

5He does impose constraints to preclude arbitrage portfolio policies.
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presence of quadratic transaction costs. Their investor maximizes the present value of the mean-

variance utility of her wealth changes at multiple time periods, she has access to unconstrained

borrowing, and she faces multiple risky assets with predictable price changes. Several features

of this framework make it tractable. First, the focus on utility of wealth changes (rather than

consumption) plus the access to unconstrained borrowing imply that there is no need to track

the investor’s total wealth evolution, and instead it is su�cient to track wealth change at

each period. Second, the focus on price changes (rather than returns) implies that there is no

need to track the risky-asset price evolution, and instead it is su�cient to account for price

changes. Finally, the aforementioned features, combined with the use of mean-variance utility

and quadratic transaction costs places the problem in the category of linear quadratic control

problems, which are tractable.

In this section, we use the tractable formulation of G&P to study analytically the optimal

portfolio policies for general transaction costs. Our portfolio selection framework is both more

general and more specific than that considered by G&P. It is more general because we consider

a broader class of transaction costs that includes not only quadratic transaction costs, but also

the less tractable proportional and market impact costs. It is more specific because, consistent

with most of the literature on proportional transaction costs, we consider the case with constant

investment opportunity set, whereas G&P focus on the case with predictability. Specifically,

we consider independent and identically distributed (iid) price changes, whereas G&P consider

predictable price changes.

We make four contributions. Our first contribution is to characterize analytically the opti-

mal portfolio policy for the case with many risky assets and proportional transaction costs.

Specifically, we provide a closed-form expression for the no-trade region, which is shaped as a

multi-dimensional parallelogram, and use the closed-form expressions to show how the size of

the no-trade region shrinks with the investment horizon and the risk-aversion parameter, and

grows with the level of proportional transaction costs and the discount factor.

Moreover, we show how the optimal portfolio policy can be computed by solving a quadratic

program—a class of optimization problems that can be e�ciently solved for cases with up to

thousands of risky assets.

Our second contribution is to study analytically the optimal portfolio policy in the presence

of market impact costs, which arise when the investor makes large trades that distort market

prices.6 Traditionally, researchers have assumed that the market price impact is linear on

the amount traded, see Kyle [1985], and thus that market impact costs are quadratic. Under

this assumption, Gârleanu and Pedersen [2013] derive closed-form expressions for the optimal

portfolio policy within their multiperiod setting. However, Torre and Ferrari [1997], Grinold and

Kahn [2000], and Almgren et al. [2005] show that the square root function is more appropriate

for modeling market price impact, thus suggesting market impact costs grow at a rate slower

than quadratic. Our contribution is to extend the analysis by G&P to a general case where we

6This is particularly relevant for optimal execution, where institutional investors have to execute an investment
decision within a fixed time interval; see Bertsimas and Lo [1998] and Engle et al. [2012]
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are able to capture the distortions on market price through a a power function with an exponent

between one and two. For this general formulation, we show analytically that there exists a

state-dependent rebalancing region for every time period, such that the optimal policy at each

period is to trade to the boundary of the corresponding rebalancing region.

Our third contribution is to use an empirical dataset with the prices of 15 commodity futures to

evaluate the losses associated with ignoring transaction costs and investing myopically, as well as

identifying how these losses depend on relevant parameters. We find that the losses associated

with either ignoring transaction costs or behaving myopically can be large. Moreover, the losses

from ignoring transaction costs increase in the level of transaction costs, and decrease with the

investment horizon, whereas the losses from behaving myopically increase with the investment

horizon and are unimodal on the level of transaction costs.

Finally, our analysis relies on certain assumptions underlying the G&P framework such as focus

on price changes and multiperiod mean-variance utility. Our fourth contribution is to gauge the

robustness of our results to the use of a framework with iid returns and CRRA utility. To do

this, we consider an investor who maximizes her CRRA utility of terminal wealth by investing in

a risk-free and a risky asset with iid returns, in the presence of proportional transaction costs.

We compute the investor’s optimal portfolio policy numerically, and show that the certainty

equivalent loss from following the G&P-type portfolio policy is typically smaller than 0.5%.

Our work is related to Dybvig [2005], who considers a single-period investor with mean-variance

utility and proportional transaction costs. For the case with multiple risky assets, he shows that

the optimal portfolio policy is characterized by a no-trade region shaped as a parallelogram, but

the manuscript does not provide a detailed analytical proof. Like Dybvig [2005], we consider

proportional transaction costs and mean-variance utility, but we extend the results to a multi-

period setting, and show how the results can be rigorously proven analytically. In addition, we

consider the case with market impact costs.

This section is organized as follows. Section 2.2 describes the multiperiod framework under

general transaction costs. Section 2.3 studies the case with proportional transaction costs, Sec-

tion 2.4 the case with market impact costs, and Section 2.5 the case with quadratic transaction

costs. Section 2.6 evaluates the utility loss associated with ignoring transaction costs and with

behaving myopically for an empirical dataset on 15 commodity futures. Section 2.7 studies nu-

merically the robustness of our modelling framework, and Section 2.8 concludes. Appendix A.1

contains the figures, Appendix A.2 contains the tables, and Appendix A.3 contains the proofs

for all results in the chapter.

2.2 General Framework

Our framework is closely related to the one proposed by G&P. Like G&P, we consider an

investor who maximizes the present value of the mean-variance utility of excess wealth changes

(net of transaction costs), by investing in multiple risky assets and for multiple periods, and
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who has access to unconstrained borrowing. Moreover, like G&P, we make assumptions on the

distribution of risky-asset price changes rather than returns. One di↵erence with the framework

proposed by G&P is that, consistent with most of the existing transaction cost literature, we

focus on the case with constant investment opportunity set; that is, we consider the case with

iid price changes.

As discussed in previous section, these assumptions render the model analytically tractable.

The assumptions seem reasonable in the context of institutional investors who typically op-

erate many di↵erent and relatively unrelated investment strategies. Each of these investment

strategies represents only a fraction of the institutional investor’s portfolio, and thus focusing

on excess wealth changes and assuming unconstrained borrowing is a good approximation. The

stationarity of price changes is also a reasonable assumption for institutional investors who often

have shorter investment horizons—because they operate each investment strategy only for a few

months or at most a small number of years, and discontinue the investment strategy once its

performance deteriorates.

The assumptions underlying our framework, however, do not seem suitable (a priori) to model

individual investors who finance their lifetime consumption from the proceeds of their invest-

ments. These investors face constraints on borrowing, and have long investment horizons (their

lifetime), during which one would expect returns, rather than price changes, to be stationary.

To gauge the severity of our assumptions for the case of an individual investor, in Section 2.7

we compute numerically the optimal portfolio policy of an investor who faces a risk-free and a

risky asset with iid returns, and who maximizes her CRRA utility of terminal wealth with a

ten year horizon. We find that the certainty equivalent loss from using the G&P-type portfolio

policy derived from our framework is less than 0.5% for a broad range of problem parameters.

Finally, there are three main di↵erences between our model and the model by G&P. First, we

consider a more general class of transaction costs that includes not only quadratic transaction

costs, but also proportional and market impact costs. Second, we consider both finite and infinite

investment horizons, whereas G&P focus on the infinite horizon case. Finally, we assume iid

price changes, whereas G&P focus on the case with predictable price changes. We now rigorously

state this assumption. Let r

t+1 denote the vector of price changes (in excess of the risk-free

asset price) between times t and t+ 1 for N risky assets.

Assumption 1. Price changes, r

t+1, are independently and identically distributed (iid) with

mean vector µ 2 IRN and covariance matrix ⌃ 2 IRN⇥N .

The investor’s decision in our framework can be written as:

max
{x
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where x
t

2 IRN contains the number of shares of each of the N risky assets held in period t, T is

the investment horizon, ⇢ is the discount factor, and � is the absolute risk-aversion parameter.7

The term k⇤1/p(x
t

� x

t�1)kpp is the transaction cost for the tth period,8 where  2 IR is the

transaction cost parameter, ⇤ 2 IRN⇥N is the symmetric positive semidefinite transaction cost

matrix, and ksk
p

is the p-norm of vector s; that is, kskp
p

=
P

N

i=1 |si|p. This term allows us to

capture the transaction costs associated with both small and large trades. Small trades typically

do not impact market prices, and thus their transaction costs come from the bid-ask spread and

other brokerage fees, which are modeled as proportional to the amount traded. Our transaction

cost term captures proportional transaction costs for the case with p = 1 and ⇤ = I, where I is

the identity matrix.

Large trades can have both temporary as well as permanent impact on market prices. Market

price impact is temporary when it a↵ects a single transaction, and permanent when it a↵ects

every future transaction. For simplicity of exposition, we focus on the case with temporary

market impact costs, but our analysis can be extended to the case with permanent impact costs

following an approach similar to that in Section 4 of G&P. For market impact costs, Almgren

et al. [2005] suggest that transaction costs grow as a power function with an exponent between

one and two, and hence we consider in our analysis values of p 2 (1, 2]. The transaction cost

matrix ⇤ captures the distortions to market prices generated by the interaction between the

multiple assets. G&P argue that it can be viewed as a multi-dimensional version of Kyle’s

lambda, see Kyle [1985], and they argue that a sensible choice for the transaction cost matrix

is ⇤ = ⌃. We consider this case as well as the case with ⇤ = I to facilitate the comparison with

the case with proportional transaction costs.

Note that, like G&P, we also assume the investor can costlessly short the di↵erent assets. The

advantage of allowing costless shortsales is that it allows us to obtain analytical expressions for

the no-trade region for the case with proportional transaction costs, and for the rebalancing

regions for the case with market impact costs. We state this assumption explicitly now.

Assumption 2. The investor can costlessly short the risky assets.

Finally, the multiperiod mean-variance framework proposed by G&P and the closely related

framework described in Equation (2.1) di↵er from the traditional dynamic mean-variance ap-

proach, which attempts to maximize the mean-variance utility of terminal wealth. Part 1 of

Proposition 2.1 below, however, shows that the utility given in Equation (2.1) is equal to the

mean-variance utility of the change in excess of terminal wealth for the case where the dis-

count factor ⇢ = 0. This shows that the framework we consider is not too di↵erent from the

traditional dynamic mean-variance approach. Also, a worrying feature of multiperiod mean-

variance frameworks is that as demonstrated by Basak and Chabakauri [2010] they are often

7 Because the investment problem is formulated in terms of wealth changes, the mean-variance utility is defined
in terms of the absolute risk aversion parameter, rather than the relative risk aversion parameter. Note that the
relative risk-aversion parameter equals the absolute risk-aversion parameter times the wealth.

8The pth root of the positive definite matrix ⇤ can be defined as ⇤1/p = QTD1/pQ, where ⇤ = QTDQ is the
spectral decomposition of a symmetric positive definite matrix.
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time-inconsistent: the investor may find it optimal to deviate from the ex-ante optimal policy as

time goes by. Part 2 of Proposition 2.1 below, however, shows that the framework we consider

is time consistent.

Proposition 2.1. Let Assumption 1 hold, then the multiperiod mean-variance framework de-

scribed in Equation (2.1) satisfies the following properties:

1. The utility given in Equation (2.1) is equivalent to the mean-variance utility of the change

in excess terminal wealth for the case where the discount factor ⇢ = 0.

2. The optimal portfolio policy for the multiperiod mean-variance framework described in

Equation (2.1) is time consistent.

2.3 Proportional Transaction Costs

We now study the case where transaction costs are proportional to the amount traded. This

type of transaction cost is appropriate to model small trades, where the transaction cost orig-

inates from the bid-ask spread and other brokerage commissions. Section 2.3.1 characterizes

analytically the no-trade region and the optimal portfolio policy, and Section 2.3.2 shows how

the no-trade region depends on the level of proportional transaction costs, the risk-aversion pa-

rameter, the discount factor, the investment horizon, and the correlation and variance of asset

price changes.

2.3.1 The no-trade region

The investor’s decision for this case can be written as:

max
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The following theorem characterizes the optimal portfolio policy.

Theorem 2.2. Let Assumption 1 hold, then:

1. It is optimal not to trade at any period other than the first period; that is,

x1 = x2 = · · · = x

T

. (2.3)

2. The investor’s optimal portfolio for the first period x1 (and thus for all subsequent periods)

is the solution to the following quadratic programming problem:

min
x1

(x1 � x0)
>⌃ (x1 � x0) , (2.4)

s.t k⌃(x1 � x

⇤)k1  

(1� ⇢)�

⇢

1� (1� ⇢)T
. (2.5)



Chapter 2. Multiperiod Portfolio Optimization with Multiple Risky Assets and General
Transaction Costs 16

where x0 is the starting portfolio, and x

⇤ = ⌃�1
µ/� is the optimal portfolio in the absence

of transaction costs (the Markowitz or target portfolio).

3. Constraint (2.5) defines a no-trade region shaped as a parallelogram centered at the target

portfolio x

⇤, such that if the starting portfolio x0 is inside this region, then it is optimal

not to trade at any period, and if the starting portfolio is outside this no-trade region, then

it is optimal to trade at the first period to the point in the boundary of the no-trade region

that minimizes the objective function in (2.4), and not to trade thereafter.

A few comments are in order. First, a counterintuitive feature of our optimal portfolio policy is

that it only involves trading in the first period. A related property, however, holds for most of

the policies in the literature. Liu [2004], for instance, explains that: “the optimal trading policy

involves possibly an initial discrete change (jump) in the dollar amount invested in the asset,

followed by trades in the minimal amount necessary to maintain the dollar amount within a

constant interval.” The “jump” in Liu’s policy, is equivalent to the first-period investment in

our policy. The reason why our policy does not require any rebalancing after the first period is

that it relies on the assumption that prices changes are iid. As a result, the portfolio and no-

trade region in our framework are defined in terms of number of shares, and thus no rebalancing

is required after the first period because realized price changes do not alter the number of

shares held by the investor. Finally, our numerical results in Section 2.7 show that the certainty

equivalent loss from using the G&P-type policy given in Theorem 2.2 for the case where returns

are iid is small.

Second, inequality (2.5) provides a closed-form expression for the no-trade region. This expres-

sion shows that it is optimal to trade only if the marginal increment in utility from trading

in one of the assets is larger than the transaction cost parameter . To see this, note that

inequality (2.5) can be rewritten as

� e  (�(1� ⇢)(1� (1� ⇢)T )/⇢)⌃(x1 � x

⇤)  e, (2.6)

where e is the N-dimensional vector of ones. Moreover, because Part 1 of Theorem 2.2 shows

that it is optimal to trade only at the first period, it is easy to show that the term in the middle

of (2.6) is the gradient (first derivative) of the discounted multiperiod mean variance utility
P

T
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�

with respect to x1. Consequently, it is optimal to trade at the

first period only if the marginal increase in the present value of the multiperiod mean-variance

utility is larger than the transaction cost parameter .

Finally, inequality (2.5) shows that the no-trade region is a multi-dimensional parallelogram

centered around the target portfolio. Mathematically, this property follows from the linearity

of the first derivative of the multiperiod mean-variance utility with respect to the portfolio

x1; that is, the linearity of the middle term in (2.6). Our result contrasts with the findings

of Muthuraman and Kumar [2006], who show (numerically for the case with two risky assets)

that the no-trade region is a convex quadrilateral (rather than a parallelogram), and it is not

centered around the target portfolio. Mathematically, the reason for this is that the CRRA
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utility they consider results in a value function whose first derivative is not linear. In addition,

they impose constraints on borrowing, which adds to the nonlinearity of the boundary con-

ditions defining the no-trade region.9 Economically, Muthuraman and Kumar [2006] consider

an investor who maximizes CRRA utility of intermediate consumption and with constraints on

borrowing. Consequently, the investor in Kumar and Muthuraman’s framework is more willing

to trade (and thus incur higher transaction costs) when she holds large positions on the risky

assets, in order to guarantee a more stable level of wealth to finance her ongoing consumption.

As a result, the no-trade region in Kumar and Muthuraman’s framework is not centered around

the target portfolio, and instead it is biased towards the risk-free asset.

Third, the optimal portfolio policy can be conveniently computed by solving the quadratic

program (2.4)–(2.5). This class of optimization problems can be e�ciently solved for cases with

up to thousands of risky assets using widely available optimization software. As mentioned

in the introduction, most of the existing results for the case with transaction costs rely on

numerical analysis for the case with two risky assets. Our framework can be used to deal with

cases with proportional transaction costs and hundreds or even thousands of risky assets. To

gain understanding about the quadratic program (2.4)–(2.5), Figure A.1 depicts the no-trade

region defined by inequality (2.5) and the level sets for the objective function given by (2.4) for

a case with two assets with mean and covariance matrix equal to the sample estimators for two

commodity futures on gasoil and sugar, which are part of the full dataset of 15 commodities

described in Section 2.6. The figure shows that the optimal portfolio policy is to trade to the

intersection between the no-trade region and the tangent level set, at which the marginal utility

from trading equals the transaction cost parameter .

2.3.2 Comparative statics

The following corollary establishes how the no-trade region depends on the level of proportional

transaction costs, the risk-aversion parameter, the discount factor, and the investment horizon.

Corollary 2.3. The no-trade region for the multiperiod investor satisfies the following proper-

ties:

1. The no-trade region expands as the proportional transaction parameter  increases.

2. The no-trade region shrinks as the risk-aversion parameter � increases.

9For the case where the investor maximizes her long-term expected growth rate, Muthuraman and Zha [2008]
also find that the no-trade region is a quadrilateral that is not centered around the Merton portfolio. Essentially,
maximizing the long-term growth rate is similar to maximizing a logarithmic utility function, which again results
in a value function that has a nonlinear derivative. For the case with a single risky asset, Constantinides [1986]
considers CRRA utility and constrained borrowing and also finds that the no-trade interval is not centered
around the Merton portfolio. Dumas and Luciano [1991], on the other hand, consider the case with a single risky
asset and an investor with constrained borrowing and CRRA utility of terminal wealth. For the case where the
investor’s horizon goes to infinity, they find that the no-trade interval is centered. Although Dumas and Luciano
[1991] consider a nonlinear utility function and constrained borrowing, the focus on terminal wealth when the
investment horizon goes to infinity results in a centered no-trade interval.
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3. The no-trade region expands as the discount factor parameter ⇢ increases.

4. The no-trade region shrinks as the investment horizon T increases.

Part 1 of Corollary 2.3 shows that, not surprisingly, the size of the no-trade region grows with

the transaction cost parameter . The reason for this is that the larger the transaction costs,

the less willing the investor is to trade in order to diversify. This is illustrated in Panel (A)

of Figure A.2, which depicts the no-trade regions for di↵erent values of the transaction cost

parameter  for the two commodity futures on gasoil and sugar.10 Note also that (as discussed

in Section 2.3.1) the no-trade regions for di↵erent values of the transaction cost parameter are

all centered around the target portfolio.

Part 2 of Corollary 2.3 shows that the size of no-trade region decreases with the risk aversion

parameter �. Intuitively, as the investor becomes more risk averse, the optimal policy is to move

closer to the diversified (safe) position x

⇤, despite the transaction costs associated with this.

This is illustrated in Figure A.2, Panel (B), which also shows that, not surprisingly, the target

portfolio shifts towards the risk-free asset as the risk-aversion parameter increases.

Part 3 of Corollary 2.3 shows that the size of the no-trade region increases with the discount

factor ⇢. This makes sense intuitively because the larger the discount factor, the less important

the utility for future periods and thus the smaller the incentive to trade today. This is illustrated

in Figure A.2, Panel (C).

Finally, Part 4 of Corollary 2.3 shows that the size of the no-trade region decreases with the

investment horizon T . To see this intuitively, note that we have shown that the optimal policy

is to trade at the first period and hold this position thereafter. Then, a multiperiod investor

with shorter investment horizon will be more concerned about the transaction costs incurred at

the first stage, compared with the investor who has a longer investment horizon. Finally, when

T ! 1, the no-trade region shrinks to the parallelogram bounded by ⇢/((1 � ⇢)�), which is

much closer to the center x⇤. When T = 1, the multiperiod problem reduces to the single-period

problem studied by Dybvig [2005]. This is illustrated in Figure A.3, Panel (A).

The no-trade region also depends on the correlation between assets. Figure A.3, Panel (B) shows

the no-trade regions for di↵erent correlations11. When the two assets are positively correlated,

the parallelogram leans to the left, reflecting the substitutability of the two risky assets, whereas

with negative correlation it leans to the right. In the absence of correlations the no-trade region

becomes a rectangle.

Finally, the impact of variance on the no-trade region is shown in Panel (C) of Figure A.3,

where for expositional clarity we have considered the case with two uncorrelated symmetric

10Although we illustrate Corollary 2.3 using two commodity futures, the results apply to the general case with
N risky assets.

11Because change in correlation also makes the target shift, in order to emphasize how correlation a↵ects the
shape of the region, we change the covariance matrix ⌃ in a manner so as to keep the Markowitz portfolio (the
target) fixed, similar to the analysis in Muthuraman and Kumar [2006].
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risky assets. Like Muthuraman and Kumar [2006], we find that as variance increases, the no-

trade region moves towards the risk-free asset because the investor is less willing to hold the

risky assets. Also the size of no-trade region shrinks as the variance increases because the

investor is more willing to incur transaction costs in order to diversify her portfolio.

2.4 Market Impact Costs

We now consider the case of large trades that may impact market prices. As discussed in

Section 2.2, to simplify the exposition we focus on the case with temporary market impact

costs, but the analysis can be extended to the case with permanent impact costs following an

approach similar to that in Section 4 of G&P. Almgren et al. [2005] suggest that market impact

costs grow as a power function with an exponent between one and two, and hence we consider a

general case, where the transaction costs are given by the p-norm with p 2 (1, 2), and where we

capture the distortions on market price through the transaction cost matrix ⇤. For exposition

purposes, we first study the single-period case.

2.4.1 The Single-Period Case

For the single-period case, the investor’s decision is:

max
x

(1� ⇢)(x>µ� �

2
x

>⌃x)� k⇤1/p(x� x0)kp
p

, (2.7)

where 1 < p < 2. Problem (2.7) can be solved numerically, but unfortunately it is not possible

to obtain closed-form expressions for the optimal portfolio policy. The following proposition,

however, shows that the optimal portfolio policy is to trade to the boundary of a rebalancing

region that depends on the starting portfolio and contains the target or Markowitz portfolio.

Proposition 2.4. Let Assumption 1 hold, then if the starting portfolio x0 is equal to the target

or Markowitz portfolio x

⇤, the optimal policy is not to trade. Otherwise, it is optimal to trade

to the boundary of the following rebalancing region:

k⇤�1/p⌃(x� x

⇤)k
q

pk⇤1/p(x� x0)kp�1
p

 

(1� ⇢)�
, (2.8)

where q is such that 1
p

+ 1
q

= 1.

Comparing Proposition 2.4 with Theorem 2.2 we observe that there are three main di↵erences

between the cases with proportional and market impact costs. First, for the case with market

impact costs it is always optimal to trade (except in the trivial case where the starting portfolio

coincides with the target or Markowitz portfolio), whereas for the case with proportional trans-

action costs it may be optimal not to trade if the starting portfolio is inside the no-trade region.

Second, the rebalancing region depends on the starting portfolio x0, whereas the no-trade region
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is independent of it. Third, the rebalancing region contains the target or Markowitz portfolio,

but it is not centered around it, whereas the no-trade region is centered around the Markowitz

portfolio.

Note that, as in the case with proportional transaction costs, the size of the rebalancing region

increases with the transaction cost parameter , and decreases with the risk-aversion parameter.

Intuitively, the more risk averse the investor, the larger her incentives to trade and diversify

her portfolio. Also, the rebalancing region grows with  because the larger the transaction cost

parameter, the less attractive to the investor is to trade to move closer to the target portfolio.

The following corollary gives the rebalancing region for two important particular cases. First,

the case where the transaction cost matrix ⇤ = I, which is a realistic assumption when the

amount traded is small, and thus the interaction between di↵erent assets, in terms of market

impact, is small. This case also facilitates the comparison with the optimal portfolio policy for

the case with proportional transaction costs. The second case corresponds to the transaction

cost matrix ⇤ = ⌃, which G&P argue is realistic in the context of quadratic transaction costs.

Corollary 2.5. For the single-period investor defined in (2.7):

1. When the transaction cost matrix is ⇤ = I, then the rebalancing region is

k⌃(x� x

⇤)k
q

pkx� x0kp�1
p

 

(1� ⇢)�
. (2.9)

2. When the transaction cost matrix is ⇤ = ⌃, then the rebalancing region is

k⌃1/q(x� x

⇤)k
q

pk⌃1/p(x� x0)kp�1
p

 

(1� ⇢)�
. (2.10)

Note that, in both particular cases, the Markowitz strategy x

⇤ is contained in the rebalancing

region.

To gain intuition about the form of the rebalancing regions characterized in (2.9) and (2.10),

Panel (A) in Figure A.4 depicts the rebalancing region and the optimal portfolio policy for a

two-asset example when ⇤ = I, while Panel (B) depicts the corresponding rebalancing region

and optimal portfolio policy when ⇤ = ⌃. The figure shows that, in both cases, the rebalancing

region is a convex region containing the Markowitz portfolio. Moreover, it shows how the

optimal trading strategy moves to the boundary of the rebalancing region.

2.4.2 The Multiperiod Case

The investor’s decision for this case can be written as:

max
{x

t

}T
t=1

T

X

t=1

h

(1� ⇢)t
⇣

x

>
t

µ� �

2
x

>
t

⌃x
t

⌘

� (1� ⇢)t�1
k⇤1/p(x

t

� x

t�1)kp
p

i

. (2.11)
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As in the single-period case, it is not possible to provide closed-form expressions for the optimal

portfolio policy, but the following theorem illustrates the analytical properties of the optimal

portfolio policy.

Theorem 2.6. Let Assumption 1 hold, then:

1. If the starting portfolio x0 is equal to the target or Markowitz portfolio x

⇤, then the optimal

policy is not to trade at any period.

2. Otherwise it is optimal to trade at every period. Moreover, at the tth period it is optimal

to trade to the boundary of the following rebalancing region:

k
P

T

s=t

(1� ⇢)s�t⇤�1/p⌃(x
s

� x

⇤)k
q

pk⇤1/p(x
t

� x

t�1)kp�1
p

 

(1� ⇢)�
, (2.12)

where q is such that 1
p

+ 1
q

= 1.

Theorem 2.6 shows that for the multiperiod case with market impact costs it is optimal to

trade at every period (except in the trivial case where the starting portfolio coincides with

the Markowitz portfolio). This is in contrast to the case with proportional transaction costs,

where it is not optimal to trade at any period other than the first. The reason for this is that

with strictly convex transaction costs, p > 1, the transaction cost associated with a trade can

be reduced by breaking it into several smaller transactions. For the case with proportional

transaction costs, on the other hand, the cost of a transaction is the same whether executed at

once or broken into several smaller trades, and thus it makes economic sense to carry out all

the trading in the first period to take advantage of the utility benefits from the beginning.

Note also that for the case with market impact costs at every period it is optimal to trade to

the boundary of a state-dependent rebalancing region that depends not only on the starting

portfolio, but also on the portfolio for every subsequent period.

Finally, note that the size of the rebalancing region for period t, assuming the portfolios for the

rest of the periods are fixed, increases with the transaction cost parameter  and decreases with

the discount factor ⇢ and the risk-aversion parameter �.

The following proposition shows that the rebalancing region for period t contains the rebalancing

region for every subsequent period. Moreover, the rebalancing region converges to the Markowitz

portfolio as the investment horizon grows, and thus the optimal portfolio x

T

converges to the

target portfolio x

⇤ in the limit when T goes to infinity. The intuition behind this result is again

that the strict convexity of the transaction cost function for the case with p > 1 implies that it

is optimal to trade every period, but it is never optimal to trade all the way to the Markowitz

portfolio, and thus the investor’s portfolio converges to the Markowitz portfolio only as time

goes to infinity.

Proposition 2.7. Let Assumption 1 hold, then:
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1. The rebalancing region for the t-th period contains the rebalancing region for every subse-

quent period,

2. Every rebalancing region contains the Markowitz portfolio,

3. The rebalancing region converges to the Markowitz portfolio in the limit when the invest-

ment horizon goes to infinity.

The next corollary gives the rebalancing region for the two particular cases of transaction cost

matrix we consider.

Corollary 2.8. For the multiperiod investor defined in (2.11):

1. When the transaction cost matrix is ⇤ = I, then the rebalancing region is

k
P

T

s=t

(1� ⇢)s�t⌃(x
s

� x

⇤)k
q

pkx
t

� x

t�1kp�1
p

 

(1� ⇢)�
. (2.13)

2. When the transaction cost matrix is ⇤ = ⌃, then the rebalancing region is

k
P

T

s=t

(1� ⇢)s�t⌃1/q(x
s

� x

⇤)k
q

pk⌃1/p(x
t

� x

t�1)kp�1
p

 

(1� ⇢)�
. (2.14)

To gain intuition about the shape of the rebalancing regions characterized in (2.13) and (2.14),

Panel (A) in Figure A.5 shows the optimal portfolio policy and the rebalancing regions for the

two commodity futures on gasoil and sugar with an investment horizon T = 3 when ⇤ = I,

whereas Panel (B) depicts the corresponding optimal portfolio policy and rebalancing regions

when ⇤ = ⌃. The figure shows, in both cases, how the rebalancing region for each period

contains the rebalancing region for subsequent periods. Moreover, every rebalancing region

contains, but is not centered at, the Markowitz portfolio x

⇤. In particular, for each stage, any

trade is to the boundary of the rebalancing region and the rebalancing is towards the Markowitz

strategy x

⇤.

Finally, we study numerically the impact of the market impact cost growth rate p on the optimal

portfolio policy. Figure A.6 shows the rebalancing regions and trading trajectories for investors

with di↵erent transaction growth rates p = 1, 1.25, 1.5, 1.75, 2. When the transaction cost matrix

⇤ = I, Panel (A) shows how the rebalancing region depends on p. In particular, for p = 1 we

recover the case with proportional transaction costs, and hence the rebalancing region becomes

a parallelogram. For p = 2, the rebalancing region becomes an ellipse. And for values of p

between 1 and 2, the shape of the rebalancing regions are similar to superellipses12 but not

centered at the target portfolio x

⇤. On the other hand, Panel (B) in Figure A.6 shows how

the trading trajectories depend on p for a particular investment horizon of T = 10 days. We

observe that, as p grows, the trading trajectories become more curved and the investor converges

12The general expression for a superellipse is
��x
a

��m +
�� y
b

��n = 1 with m,n > 0.
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towards the target portfolio at a slower rate. To conserve space, we do not provide the figure

for the case ⇤ = ⌃, but we find that for this case the trajectories are less curved as p grows,

and becomes a straight line for p = 2.

2.5 Quadratic Transaction Costs

We now consider the case with quadratic transaction costs. The investor’s decision is:

max
{x

t

}T
t=1

T

X

t=1

h

(1� ⇢)t(x>
t

µ� �

2
x

>
t

⌃x
t

)� (1� ⇢)t�1
k⇤1/2(x

t

� x

t�1)k22
i

. (2.15)

For the case with quadratic transaction costs, our framework di↵ers from that in G&P in two

respects only. First, G&P’s work focuses on impact of predictability, whereas consistent with

most of the existing literature on transaction costs we assume price changes are iid. Second,

G&P consider an infinite horizon, whereas we allow for a finite investment horizon. The next

theorem adapts the results of G&P to obtain an explicit characterization of the optimal portfolio

policy.

Theorem 2.9. Let Assumption 1 hold, then:

1. The optimal portfolio x

t

, x

t+1, . . . , xt+T�1 satisfies the following equations:

x

t

= A1x
⇤ +A2xt�1 +A3xt+1, for t = 1, 2, . . . , T � 1 (2.16)

x

t

= B1x
⇤ +B2xt�1, for t = T. (2.17)

where

A1 = (1� ⇢)� [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1⌃,

A2 = 2 [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤,

A3 = 2(1� ⇢) [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤,

with A1 +A2 +A3 = I, and

B1 = (1� ⇢)�[(1� ⇢)�⌃+ 2⇤]�1⌃,

B2 = 2[(1� ⇢)�⌃+ 2⇤]�1⇤,

with B1 +B2 = I.

2. The optimal portfolio converges to the Markowitz portfolio as the investment horizon T

goes to infinity.

Theorem 2.9 shows that the optimal portfolio for each stage is a combination of the Markowitz

strategy (the target portfolio), the previous period portfolio, and the next period portfolio.
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The next corollary shows the specific optimal portfolios for two particular cases of transaction

cost matrix. We consider the case where the transaction costs matrix is proportional to the

covariance matrix, which G&P argue is realistic.13 In addition, we also consider the case where

the transaction costs matrix is proportional to the identity matrix; that is ⇤ = I.

Corollary 2.10. For a multiperiod investor with objective function (2.15):

1. When the transaction cost matrix is ⇤ = I, then the optimal trading strategy satisfies

x

t

= A1x
⇤ +A2xt�1 +A3xt+1, for t = 1, 2, . . . , T � 1 (2.18)

x

t

= B1x
⇤ +B2xt�1, for t = T (2.19)

where

A1 = (1� ⇢)� [(1� ⇢)�⌃+ 2I + 2(1� ⇢)I]�1⌃,

A2 = 2 [(1� ⇢)�⌃+ 2I + 2(1� ⇢)I]�1
,

A3 = 2(1� ⇢) [(1� ⇢)�⌃+ 2I + 2(1� ⇢)I]�1
,

with A1 +A2 +A3 = I, and

B1 = (1� ⇢)�[(1� ⇢)�⌃+ 2I]�1⌃,

B2 = 2[(1� ⇢)�⌃+ 2I]�1
.

with B1 +B2 = I.

2. When the transaction cost matrix is ⇤ = ⌃, then the optimal trading strategy satisfies

x

t

= ↵1x
⇤ + ↵2xt�1 + ↵3xt+1, for t = 1, 2, . . . , T � 1 (2.20)

x

t

= �1x
⇤ + �2xt�1, for t = T. (2.21)

where ↵1 = (1�⇢)�/((1�⇢)�+2+2(1�⇢)), ↵2 = 2/((1�⇢)�+2+2(1�⇢)), ↵3 =

2(1�⇢)/((1�⇢)�+2+2(1�⇢)) with ↵1+↵2+↵3 = 1, and �1 = (1�⇢)�/((1�⇢)�+2)

�2 = 2/((1� ⇢)� + 2) with �1 + �2 = 1.

3. When the transaction cost matrix is ⇤ = ⌃, then the optimal portfolios for periods t =

1, 2, . . . , T lay on a straight line.

Corollary 2.10 shows that, when ⇤ = ⌃, the solution becomes simpler and easier to interpret

than when ⇤ = I. Note that when ⇤ = ⌃, matrices A and B in Theorem 2.9 become scalars

↵ and �, respectively, and hence the optimal portfolio at period t can be expressed as a linear

combination of the Markowitz portfolio, the previous period portfolio and the next period

13Note that although G&P argue that the case ⇤ = ⌃ is realistic, they also solve explicitly the case with general
transaction cost matrix ⇤.
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portfolio. For this reason, it is intuitive to observe that the optimal trading strategies for all

the periods must lay on a straight line.

To conclude this section, Figure A.7 provides a comparison of the optimal portfolio policy for the

case with quadratic transaction costs (when ⇤ = ⌃), with those for the cases with proportional

and market impact costs (when ⇤ = I), for a multiperiod investor with T = 3. We have also

considered other transaction cost matrices, but the insights are similar. The figure confirms

that, for the case with quadratic transaction costs, the optimal portfolio policy is to trade at

every period along a straight line that converges to the Markowitz portfolio. It can also be

appreciated that the investor trades more aggressively at the first periods compared to the

final periods. For the case with proportional transaction costs, it is optimal to trade to the

boundary of the no-trade region shaped as a parallelogram in the first period and not to trade

thereafter. Finally, for the case with market impact costs, the investor trades at every period to

the boundary of the corresponding rebalancing region. The resulting trajectory is not a straight

line.

2.6 Empirical Analysis

In this section, we study empirically the losses associated with ignoring transaction costs and

investing myopically, as well as how these losses depend on the transaction cost parameter, the

investment horizon, the risk-aversion parameter, and the discount factor. We first consider the

case with proportional transaction costs, and then study how the monotonicity properties of

the losses change when transaction costs are quadratic. We have also considered the case with

market impact costs (p = 1.5), but the monotonicity properties for this case are in the middle

of those for the cases with p = 1 and p = 2 and thus we do not report the results to conserve

space.

For each type of transaction cost (proportional or quadratic), we consider three di↵erent portfolio

policies. First, we consider the target portfolio policy, which consists of trading to the target or

Markowitz portfolio in the first period and not trading thereafter. This is the optimal portfolio

policy for an investor in the absence of transaction costs. Second, the static portfolio policy,

which consists of trading at each period to the solution to the single-period problem subject

to transaction costs. This is the optimal portfolio policy for a myopic investor who takes into

account transaction costs. Third, we consider the multiperiod portfolio policy, which is the

optimal portfolio policy for a multiperiod investor who takes into account transaction costs.

Finally, we evaluate the utility of each of the three portfolio policies using the appropriate mul-

tiperiod framework; that is, when considering proportional transaction costs, we evaluate the

investor’s utility from each portfolio with the objective function in equation (2.2); and when

considering quadratic transaction costs, we evaluate the investor’s utility using the objective

function (2.15). These utilities are in units of wealth, and to facilitate the comparison of the

di↵erent policies, we report the percentage utility loss of the suboptimal portfolio policies with
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respect to the utility of the optimal multiperiod portfolio policy. Note also that, as argued by

[DeMiguel et al., 2009, Footnote17], it can be shown that the mean-variance utility is approxi-

mately equal to the certainty equivalent of an investor with quadratic utility, and thus although

we report utility losses in this section, they can be interpreted equivalently as certainty equiva-

lent losses.

We consider an empirical dataset similar to the one used by Gârleanu and Pedersen [2013].14 In

particular, the dataset is constructed with 15 commodity futures: Aluminum, Copper, Nickel,

Zinc, Lead, and Tin from the London Metal Exchange (LME), Gasoil from the Intercontinental

Exchange (ICE), WTI crude, RBOB Unleaded gasoline, and Natural Gas from the New York

Mercantile Exchange (NYMEX), Gold and Silver from the New York Commodities Exchange

(COMEX), and Co↵ee, Cocoa, and Sugar from the New York Broad of Trade (NYBOT). The

dataset contains daily data from July 7th, 2004 until September 19th, 2012. For our evaluation,

we replace the mean and covariance matrix of price changes with their sample estimators.

2.6.1 Proportional Transaction Costs

Base Case

For our base case, we adapt the parameters used by G&P in their empirical analysis to the

case with proportional transaction costs. We assume proportional transaction costs of 50 basis

points ( = 0.005), absolute risk-aversion parameter � = 10�6, which corresponds to a relative

risk aversion of one for a small investor managing one million dollars15, annual discount factor

⇢ = 2%, and an investment horizon of T = 22 days (one month). For all the cases, the

investor’s initial portfolio is the equally weighted portfolio; that is, the investor splits her one

million dollars equally among the 15 assets.

For our base case, we observe that the utility loss associated with investing myopically (that

is, the relative di↵erence between the utility of the multiperiod portfolio policy and the static

portfolio policy) is 60.46%. This utility loss is large because the no-trade region correspond-

ing to the static portfolio policy contains the equally-weighted portfolio, and thus the static

portfolio policy is to remain at the starting equally-weighted portfolio, which attains a much

lower multiperiod mean-variance utility than the multiperiod portfolio policy. The utility loss

associated with ignoring transaction costs altogether (that is, the relative di↵erence between

the utility of the multiperiod portfolio policy and the target portfolio policy) is 49.33%. This

loss is large because the target portfolio policy requires a large amount of trading in the first

period that results in large transaction costs. Summarizing, we find that the loss associated

14We thank Alberto Martin-Utrera for making this dataset available to us.
15Gârleanu and Pedersen [2013] consider a smaller absolute risk aversion � = 10�9, which corresponds to a

larger investor managing M = 109 dollars. It makes sense, however, to consider a smaller investor (and thus a
larger absolute risk-aversion parameter) in the context of proportional transaction costs because these are usually
associated with small trades.
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with either ignoring transaction costs or behaving myopically can be substantial.16 The next

section confirms this is also true when we change relevant model parameters.

Comparative Statics

We study numerically how the utility losses associated with ignoring transaction costs (i.e.,

with the static portfolio), and investing myopically (i.e., with the target portfolio) depend on

the transaction cost parameter, the investment horizon, the risk-aversion parameter, and the

discount factor.

Panel (a) in Figure A.8 depicts the utility loss associated with the target and static portfolios

for values of the proportional transaction cost parameter  ranging from 0 basis point to 460

basis points (which is the value of  for which the optimal multiperiod policy is not to trade).

As expected, the utility loss associated with ignoring transaction costs is zero in the absence

of transaction costs and increases monotonically with transaction costs. Moreover, for large

transaction costs parameters, the utility loss associated with ignoring transaction costs grows

linearly with  and can be very large.17 The utility losses associated with behaving myopically

are unimodal (first increasing and then decreasing) in the transaction cost parameter, being

zero for the case with zero transaction costs (because both the single-period and multiperiod

portfolio policies coincide with the target or Markowitz portfolio), and for the case with large

transaction costs (because both the single-period and multiperiod portfolio policies result in

little or no trading). The utility loss of behaving myopically reaches a maximum of 80% for a

level of transaction costs of around 5 basis points.

Panel (b) in Figure A.8 depicts the utility loss associated with investing myopically and ignoring

transaction costs for investment horizons ranging from T = 5 (one week) to T = 260 (over one

year). Not surprisingly, the utility loss associated with behaving myopically grows with the

investment horizon. Also, the utility loss associated with ignoring transaction costs is very

large for short-term investors, and decreases monotonically with the investment horizon. The

reason for this is that the size of the no-trade region for the multiperiod portfolio policy decreases

monotonically with the investment horizon, and thus the target and multiperiod policies become

similar for long investment horizons. This makes sense intuitively: by adopting the Markowitz

portfolio, a multiperiod investor incurs transaction cost losses at the first period, but makes

mean-variance utility gains for the rest of the investment horizon. Hence, when the investment

horizon is long, the transaction losses are negligible compared with the utility gains.

16 We find that the multiperiod portfolio policy contains short positions of around 30% of the total wealth
invested. We acknowledge that it would be more realistic to assume that there is a cost associated with holding
short positions. However, the Assumption 2 allows us to provide closed-form expressions for the no-trade region,
and helps to keep our exposition simple. We have computed numerically the no-trade region for the case with
shortsale constraints and find that the qualitative findings about the shape and size of the no-trade region continue
to hold in the presence of shortsale constraints.

17In fact, the utility of the target portfolio policy is negative (and thus the utility loss is larger than 100%) for
 larger than 69 basis points because of the high transaction costs associated with this policy.
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2.6.2 Quadratic Transaction Costs

In this section we study whether and how the presence of quadratic transaction costs (as opposed

to proportional transaction costs) a↵ects the utility losses of the static and target portfolios.

The Base Case

Our base case parameters are similar to those adopted in Gârleanu and Pedersen [2013]. We

assume that the matrix ⇤ = ⌃ and set the absolute risk aversion parameter � = 10�8, which

corresponds to an investor with relative-risk aversion of one who manages 100 million dollars18,

discount factor ⇢ = 2% annually, transaction costs parameter  = 1.5⇥10�7 (which corresponds

to � = 3⇥10�7 in G&P’s formulation), investment horizon T = 22 days (one month), and equal-

weighted initial portfolio.

Similar to the case with proportional transaction costs, we find that the losses associated with

either ignoring transaction costs or behaving myopically are substantial. For instance, for the

base case with find that the utility loss associated with investing myopically is 28.98%, whereas

the utility loss associated with ignoring transaction costs is 109.14%. Moreover, we find that the

utility losses associated with the target portfolio are relatively larger, compared to those of the

static portfolio, for the case with quadratic transaction costs. The explanation for this is that

the target portfolio requires large trades in the first period, which are penalized heavily in the

context of quadratic transaction costs. The static portfolio, on the other hand, results in smaller

trades over successive periods and this will result in overall smaller quadratic transaction costs.

Finally, we have carried out comparative static analysis similar to those for proportional trans-

action costs, but the qualitative insights we have obtained are similar to those for proportional

transaction costs, and thus we do not report the results to conserve space.

2.7 Model robustness

To gauge the robustness of our results to the use of a framework with iid returns and CRRA

utility, we consider an investor who maximizes her CRRA utility (of either terminal wealth or

intermediate consumption) by investing in a risk-free asset and a risky asset with iid returns, and

who is subject to proportional transaction costs. We compute the investor’s optimal portfolio

policy using a numerical procedure similar to that used by DeMiguel and Uppal [2005], and

find that the certainty equivalent loss from following the G&P-type portfolio policy given in

Theorem 2.2 is typically smaller than 0.5%.

18Gârleanu and Pedersen [2013] choose a smaller absolute risk aversion parameter � = 10�9, which corresponds
to an investor with relative-risk aversion of one who manages one billion dollars. The insights from our analysis
are robust to the use of � = 10�9, but we choose � = 10�8 because this results in figures that are easier to
interpret.
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We consider a base case similar to that considered by DeMiguel and Uppal [2005]: the investor

has a risk-aversion parameter � = 3, faces a risk-free asset with annual rate of return of 6% and

a risky asset with mean return of 10% and return volatility of 20%. The investor has an initial

endowment of $1 invested in the risk-free asset, faces proportional transaction costs of 50 basis

points, rebalances her portfolio once a year, and has an investment horizon of ten years.

For the base case where the investor maximizes her CRRA utility of terminal wealth, we find

that the certainty equivalent loss from using the G&P portfolio policy is only 0.20%.19 To

understand why this loss is so small, note that the main di↵erence between the optimal portfolio

policy and the G&P policy is that the optimal portfolio policy requires rebalancing, whereas

the G&P policy is a buy-and-hold policy. Nonetheless, we find that, because of the presence of

transaction costs, even the optimal portfolio policy requires very little rebalancing (on average

the investor trades only 2% of her wealth per year), and thus the optimal and G&P policies are

quite similar.

Table A.1 shows how the certainty equivalent loss of the G&P-type portfolio policy depends on

the risk-aversion parameter, the stock return volatility, and the transaction cost parameter for

the case where the investor maximizes her CRRA utility of terminal wealth. We find that the

certainty equivalent loss decreases with risk aversion (because the amount invested in the risky

asset, and thus the optimal amount of rebalancing, decreases), increases with the stock return

volatility (because the optimal amount of rebalancing increases), and decreases with transaction

costs (because the optimal amount of rebalancing decreases). For all values of these parameters

that we try, we find that the certainty equivalent loss is below 0.50%.

We then consider an investor who maximizes her CRRA utility of intermediate consumption. To

be able to make a sensible comparison, we augment the portfolio policy given by Theorem 2.2

by assuming that the investor’s consumption to wealth ratio is equal to that of an investor

who maximizes her CRRA utility of intermediate consumption, but ignores the presence of

transaction costs.20 We find that the certainty equivalent loss for our base case with intermediate

consumption is 0.14%, and thus even smaller than that for the case where the investor maximizes

utility of terminal wealth. The reason for this is that the investor progressively liquidates her

wealth to finance consumption, both for the optimal and G&P policies, and thus the amount

of trading required to rebalance the risky asset position is smaller.

Table A.2 shows how the certainty equivalent loss for the case with intermediate consumption

depends on the risk-aversion, volatility, and transaction costs. As in the case without inter-

mediate consumption, we find that the certainty equivalent loss decreases with risk aversion

19Note that the G&P-type portfolio policy given by Theorem 2.2 is a buy-and-hold policy. We compute the
number of shares to be held by this policy by solving problem (2.4)–(2.5). Because we assume the starting
price of the risky asset is $1, the mean and covariance matrix of excess price changes is equal to the mean and
covariance matrix of excess returns. It is straightforward to generalize this procedure to the case where the risky
asset starting price is di↵erent from $1, and it is easy to show that the certainty equivalent loss from using the
G&P-type portfolio policy does not depend on the risky asset starting price.

20In particular, we use the investor’s consumption to wealth ratio given by [Ingersoll, 1987, p. 243], after fixing
the the well-known typo in the book. This is a conservative choice because this consumption to wealth ratio is
not optimal in the presence of transaction costs.
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because the amount invested in the risky asset and thus the optimal amount of rebalancing

decreases. We find that the certainty equivalent loss is not very sensitive to the stock return

volatility because volatility has two opposite e↵ects on the amount of rebalancing. On the one

hand, higher volatility implies smaller allocation to the risky asset, and thus less rebalancing.

On the other hand, higher volatility implies higher fluctuations on portfolio weights, and thus

more rebalancing. These two opposite e↵ects seem to be of roughly similar strength and thus

the certainty equivalent loss is not very sensitive to volatility. Finally, we find that the cer-

tainty equivalent loss increases with transaction costs (unlike in the case without intermediate

consumption). The reason for this is that the particular procedure we have used to augment

the G&P policy to finance intermediate consumption requires a large amount of trading on the

risky asset, and thus large transaction costs. Nevertheless, we find that the certainty equivalent

loss incurred from using the G&P-type policy is always below 0.50%.

Finally, we consider a case with two risky stocks with return correlation of 50%, and an invest-

ment horizon of 8 years, and find that the certainty equivalent loss of using the G&P policy is

0.11%. Overall, our results show that although the G&P-type policy relies on the assumptions

of iid price changes and multiperiod mean-variance utility, it provides a reasonable approxima-

tion for the optimal portfolio policy for the case with iid returns and CRRA utility, and thus

we think our analysis provides insights that are interesting beyond the G&P framework.

2.8 Summary

We study the optimal portfolio policy for a multiperiod mean-variance investor facing multiple

risky assets subject to proportional, market impact, or quadratic transaction costs. For the case

with proportional transaction costs, we provide a closed-form expression for a no-trade region

shaped as a parallelogram, and use these closed-form expressions to show how the no-trade

region shrinks with the investment horizon and the risk-aversion parameter, and grows with

the level of proportional transaction costs and the discount factor. Moreover, we show that the

optimal portfolio policy can be conveniently computed by solving a single quadratic program

for problems with up to thousands of risky assets. For the case with market impact costs, the

optimal portfolio policy is to trade to the boundary of a state-dependent rebalancing region. In

addition, the rebalancing region converges to the Markowitz portfolio as the investment horizon

grows large. We also show numerically that the losses associated with ignoring transaction costs

or investing myopically may be large, and study how they depend on the relevant parameters.

Finally, we compute the optimal portfolio policy for a case with CRRA utility and iid returns,

and show that the G&P-type policy that we study provides a good approximation to this case.



Chapter 3

Portfolio Selection with Transaction

Costs and Predictability

3.1 Overview

Dynamic portfolio choice is one of the most important practical problems in finance since the

work of Merton [1971], which examines an investor who wishes to maximize her utility of

consumption, and has access to multiple risky assets with a constant investment opportunity

set.1 Merton’s policy indicates that an investor should continuously rebalance her portfolio

weights in order to hold a fixed proportion of her wealth in each of the risky assets. However,

continuously portfolio rebalancing requires high transaction costs. Since Merton’s seminal work,

researchers have tried to characterize the optimal portfolio policy in the presence of transaction

costs.

The case with a single risky asset and proportional transaction costs is now well understood.

Magill and Constantinides [1976] first consider proportional transaction costs and conjecture

that for a finite-horizon continuous-time investor, the optimal trading policy can be charac-

terized by a no-trade interval : if the portfolio weight on the risky asset is inside this interval,

then it is optimal not to trade, and if the portfolio weight is outside, then it is optimal to

trade to the boundary of this interval. Constantinides [1979] studies a general discrete-time

model and demonstrates the optimality of no-trade interval policy with CRRA power utility of

intermediate consumption and a single risky asset. Constantinides [1986] considers an infinite

horizon problem with proportional transaction costs, and computes approximately-optimal no-

trade intervals by assuming the investor’s consumption rate is a fixed proportion of her wealth,

a condition that is not satisfied in general. Davis and Norman [1990] address the same problem,

establish analogous results on a no-trade interval, and provide a numerical method to calculate

the optimal policy. Muthuraman [2007] develops an e�cient computational scheme for the same

problem.

1Merton also studies the case where the investor has logarithmic utility in the presence of predictability.

31
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The case with multiple risky assets and proportional transaction costs is generally intractable

analytically. With a constant opportunity set, Akian et al. [1996] prove the existence and

uniqueness of the optimal portfolio policy for a CRRA investor who has power utility with

relative risk aversion between zero and one and uncorrelated risky asset returns . They also

present some numerical results for the case of two uncorrelated risky assets. Liu [2004] considers

a constant absolute risk aversion (CARA) investor who has access to unconstrained borrowing

and faces uncorrelated risky asset returns. He analytically shows that there exists a box-shaped

no-trade region and numerically solves the case of two risky assets with a small correlation

value. Muthuraman and Kumar [2006] propose an e�cient numerical approach to compute the

no-trade region for an infinite-horizon CRRA investor who makes decisions continuously.

In the presence of predictability, the case with multiple risky assets and proportional transaction

costs is much more di�cult to solve, and a small number of papers deal with this problem.

Balduzzi and Lynch [1999] study the impact of return predictability on the utility costs and

the optimal rebalancing rules for a single risky asset case. They show the costs of ignoring

predictability can be substantial for a CRRA investor with a finite life. Lynch and Tan [2010]

numerically investigate the model with two risky assets and predictable returns for a multiperiod

CRRA investor who maximizes her power utility of intermediate consumption. Using numerical

dynamic programming, they show that for each state, there is a quadrilateral-shaped no-trade

region that confines the transaction. The numerical methods employed in their paper are based

on a grid discretization of the state space; as such, their approach would run into the curse of

dimensionality with more risky assets. Brown and Smith [2011] provide several heuristic trading

strategies for a finite-horizon discrete-time investor facing proportional transaction costs and

multiple risky assets in the presence of return predictability. They evaluate the optimality of

the proposed heuristics based on upper bounds obtained through a dual approach. The dual

method based on information-relaxation is initially developed in Brown et al. [2010] and provides

a technique to construct valid dual bounds for any approximated solution.

The aforementioned papers show that, for a CRRA power utility investor facing a small number

of risky assets (up to two), the model that incorporates return predictability with transaction

costs generally admits only a numerical solution. With more risky assets, only an approximate

solution can be obtained due to the curse of dimensionality. Gârleanu and Pedersen [2013],

hereafter G&P, consider a more analytically tractable framework that allows them to achieve

a closed-form solution for the optimal portfolio policy in the presence of quadratic transaction

costs. Specifically, their investor maximizes the present value of the mean-variance utility of

her wealth changes at multiple time periods, has access to unconstrained borrowing, and faces

multiple risky assets with predictable price changes. With quadratic utility and quadratic

transaction costs and no portfolio constraints, the model is formulated as a linear quadratic

control problem which is straightforward to solve.

In this chapter, we consider the problem of dynamic portfolio selection in a discrete-time, finite-

horizon setting. In our model, the investor maximizes her expected CRRA utility of intermediate

consumption. We further assume that she faces multiple risky assets with predictable returns
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and constraints on borrowing, and incurs proportional transaction costs. We propose several

approximate trading strategies that are based on solving simple quadratic programs and evaluate

the sub-optimality of these strategies through the dual approach proposed by Brown et al.

[2010]. In order to propose these approximate strategies, we first approximate our model for a

CRRA power utility investor with the mean-variance problem considered in G&P. But instead

of a model with infinite investment horizon and quadratic transaction costs, we considered

a more realistic framework with finite investment horizon and proportional transaction costs.

We then find some approximate solutions that induce low utility loss for the mean-variance

problem. Finally, we adapt these approximate solutions for the mean-variance problem to the

CRRA problem. Our numerical experiment suggests that these adapted approximate strategies

perform reasonably well.

We make three contributions to the dynamic portfolio choice and transaction cost literature.

Our first contribution is to provide several approximate trading strategies for a mean-variance

utility investor who faces proportional transaction costs and predictability. Specifically, these

approximate trading strategies are proposed using G&P’s tractable mean-variance framework

and can be conveniently computed by solving simple quadratic programs.

Our second contribution is to show how to adapt the strategies based on the mean-variance

framework to a strategy based on a CRRA power utility. To do this, we consider an investor

who wishes to maximize her CRRA utility of intermediate consumption with predictable returns,

in the presence of proportional transaction costs. We numerically compute the corresponding

upper bounds to the certainty equivalent of the investor and show that the certainty equivalent

losses from using these approximate policies are reasonable.

Finally, in our third contribution we show that the multiperiod portfolio selection problem with

multiple risky assets in the presence of predictability and proportional transaction costs can

be tackled through the use of a duality method developed in Brown et al. [2010] based on in-

formation relaxation. The dual methods can be used to compute dual bounds on the optimal

value function of dynamic portfolio selection problem through introducing proper penalty func-

tions. We show that these dual bounds can significantly improve the bounds computed when

no penalty function is considered.

Our work is related to Brown and Smith [2011] and DeMiguel et al. [2014]. Like Brown and

Smith [2011], we propose some approximate trading strategies for a multiperiod investor with

CRRA power utility, but instead of approximating the dynamic programming recursion (the

continuation value functions) of the primal problem, we approximate the primal problem for

each period with a quadratic program that can handle problems with more risky assets. In

addition, we consider an investor who maximizes her power utility of intermediate consumption

while Brown and Smith [2011] consider an investor who maximizes her utility of terminal wealth.

DeMiguel et al. [2014] consider a mean-variance investor who faces general transaction costs and

a constant investment opportunity set. For the case with proportional transaction costs, they

give closed-form expressions for the no-trade region. In this chapter, we propose the approximate
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trading strategies based on their analysis on no-trade regions but we consider a more realistic

case where there is predictability.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce the dynamic

portfolio selection problem in the presence of proportional transaction costs and predictability.

In Section 3.3, we describe our approximate trading policies for a mean-variance investor and

evaluate these approximate strategies under the mean-variance framework. Section 3.4 describes

how to adapt these approximate strategies to a CRRA power utility framework and numerically

evaluates these strategies. The evaluation is based on information relaxations that allow us to

obtain dual bounds. Section 3.5 concludes. Appendix B.2 contains the tables. Appendix B.1

contains the derivation of the aim portfolio of linear policy while Appendix B.3 contains the

derivation of the penalty function. In Appendix B.4 we describe how to approximate the con-

sumption for each period for the model with transaction costs.

3.2 General Framework

We now describe the basic portfolio selection problem of an investor who needs to decide the

portfolio weights for N risky assets. Assume time is discrete and indexed as t = 1, · · · , T with

t = 1 being the current period and t = T being the terminal period. There is also a risk-free

asset being traded in the market and the risk-free rate R

f

is assumed to be constant over time.

From time t�1 to t, the risky asset returns are stochastic and denoted by R

t

= [R
t,1, · · · , Rt,N

],

where R

t,i

� 0 is the gross return on asset i. Based on the asset returns up to t, the investor

then determines the decision vector x
t

= [x
t,1, · · · , xt,N ], where x

t,i

is the weight of the ith asset

hold in period t. Throughout this manuscript, we will use x
t

to denote the N ⇥ t vector of

decision variable, [x1, · · · , xt] and we always use x to denote [x1, · · · , xT ].

Trading costs are imposed in the problem, and we assume that short selling is not allowed for

risky assets. In this chapter, we will focus on the special case where the transaction cost for

each period is proportional to the amount of trade. This type of transaction cost is realistic

to model small trades, where the transaction costs come from the bid-ask spread and other

brokerage fees. Let x
t,+ be the vector of allocation to the risky assets inherited from period t,

that is

x

t,+ =
x

t

·R
t+1

R

p,t

, (3.1)

where · denotes component-wise multiplication and R

p,t

is the portfolio return which is defined

as

R

p,t+1 = x

>
t

R

t+1 + [1� x

>
t

e� kK(x
t

� x

t�1,+)k1]R
f

, (3.2)

with e a vector of ones of length N . The term kK(x
t

�x

t�1,+)k1 is the proportional transaction

costs that the investor incurs. Here K is a N⇥N diagonal matrix with elements in the diagonal
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diag(K) = [1, · · · ,N ]. Each 

i

denotes the proportional transaction-cost rate parameter for

asset i. Taking transaction costs into account, the law of motion for the investor’s wealth is

given by

W

t+1 = W

t

(1� c

t

)R
p,t

, (3.3)

where W

t

is the investor’s wealth at t, and c

t

is the fraction of wealth consumed at period t.

The above law of motion assumes that the transaction costs are paid by costlessly liquidating

the risk-free asset.

Let C
t

be the total consumption, that is C
t

= c

t

W

t

. The investor’s objective is to maximize the

expected utility of the intermediate consumption over all the periods:

max
{c

t

,x

t

}T
t=1

IE1

h

T

X

t=1

⇢

t

U

t

(C
t

)
i

, (3.4)

where ⇢ 2 (0, 1) is the discount factor and U

t

is the power utility function

U

t

=
C

1��

t

� 1

1� �

, (3.5)

with relative risk aversion parameter � � 1. In (3.4), IE1(·) denotes the expectation conditioned

on the information at the beginning of initial period t = 1.

Let {F
t

}T
t=1 denote the filtration generated by the risky asset returns as well as other state

variables in the model. This filtration is an indexed set that describes the investor’s state of

information that evolves over time. Each F
t

represents the set of events that describes the

investor’s state of information at the beginning of period t and we require F
t

✓ F
t+1 for all

t < T so the investor does not forget the past.

In our model, the investor must choose an x

t

from a set P

t

at each period t. Let P (u) ✓
P1 ⇥ · · · ⇥ P

T

denote the set of all feasible action sequences x = [x1, · · · , xT ] for any given

scenario of state variable u. A feasible policy is the one where each individual action x

t

depends

on previous actions [x1, · · · , xt�1] for all t. Let P denote the set of such policies. Besides

feasibility, in our model, the investor’s choice is also required to be nonanticipative such that

the decision choice x

t

for each period t must depend only on the information known at the

beginning of t. To make the problem realistic, we assume action x

t

satisfies the nonanticipativity

constraints. Let PF be the set of nonanticipative feasible policies. With all of these definitions,

we can now introduce the considered dynamic portfolio choice problem:

max
(c,x)2PF

IE1

h

T

X

t=1

⇢

t

C

1��

t

1� �

i

(3.6)

s.t. W

t+1 = W

t

(1� c

t

)R
p,t

, (3.7)

x

t

� 0, c
t

� 0. (3.8)
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Several comments are in order here. When we allow the presence of predictability, this portfolio

optimization problem can be formulated as a stochastic dynamic program where the state

variables include the current wealth level and portfolio position as well as the market state

variables. Note that for the power utility function, the wealth level W
t

can be factored out for

each period; if we let S
t

denote the vector of state variables, the Bellman equation for each

period faced by the investor is,

�

t

(S
t

, x

t�1,+)

1� �

= max
(c

t

,x

t

)2P
t

(xt�1)

⇢

c

1��

t

1� �

+
(1� c

t

)1��

1� �

IE
h

�

t+1
�

S
t+1, xt,+

�1��

R

1��

p,t+1

i

�

, (3.9)

for t = 1, · · · , T �1. Note also that the above equation is solved by backward iteration, starting

with t = T � 1 and �

T

= 1. In Section 3.2.1, we will introduce the model for the market state

variables S
t

. Note that solving the dynamic program requires discretizing the state variables

and the iteration in (3.9) involves the expectation of �
t+1, while the dimension of the state space

leads to the curse of dimensionality especially when there are more than two risky assets. In

Section 3.3.1, we introduce the G&P framework that allows us to deal with many risky assets.

3.2.1 Predictability Model

As in Campbell and Viceira [1999], we assume the dynamics of asset returns and state variables

follow a restricted first-order vector auto-regression model (VAR). With this model, the risky

asset returns can be predicted by the log of the dividend-price ratio, which is the only state

variable needed to forecast the risky asset dynamics. The restricted VAR model is also used in

Balduzzi and Lynch [1999], Lynch and Tan [2010], Brown and Smith [2011] and Gârleanu and

Pedersen [2013].

Specifically, let r
t

be a vector consisting of the log of risky asset returns, r
t

= log(R
t

). Denote

D

t

the predictive variable (dividend yield) and let d
t

= log(1 +D

t

). We assume that r
t

and d

t

follow the given VAR model (expressed in terms of percentages):

r

t+1 = A

r

+B

r

d

t

+ e

t+1, (3.10)

d

t+1 = a

d

+ b

d

d

t

+ ✏

t+1. (3.11)

Here, A
r

is a N ⇥ 1 vector, a
d

is a scalar, B is a N ⇥ 1 vector and b

d

is a scalar. Moreover,

[e
t+1 ; ✏

t+1] is a i.i.d. vector of mean-zero disturbances with constant covariance matrix ⌃
e✏

.

Without loss of generality, the mean of {d}T
t=1 can be normalized to 0 and the variance to 1.

3.3 The Mean-Variance Approximation

In this section we propose several methods for constructing feasible sub-optimal trading strate-

gies for a CRRA investor with objective (3.6). To avoid solving the dynamic program in (3.9)

which may result in the curse of dimensionality, we will base our feasible strategies on the
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mean-variance framework adapted from G&P. Note that the performance estimates of these

strategies can be obtained through simulation and these estimates provide lower bounds to the

mean-variance utility. To test the sub-optimality of the approximate strategies, we also compute

valid upper bounds for the utility of the mean-variance model by relaxing future information in

Section 3.3.3.

3.3.1 Mean-variance Framework

As discussed in Section 3.2, problem (3.6)-(3.8) is di�cult to solve even numerically when

there are more than two risky assets. Heuristic trading strategies are proposed in Brown and

Smith [2011] based on solving simpler optimization problems. These heuristic strategies help

the investor to solve the dynamic program more e�ciently based on an approximation in the

continuation value function. But still, a significant amount of time is required to evaluate the

quality of the heuristic strategies.

Compared with the power utility framework, the framework proposed by G&P is more analyt-

ically tractable. With quadratic transaction costs, the closed-form expressions for the optimal

number of shares can be obtained based on their framework. With proportional transaction

costs and a constant investment opportunity set, DeMiguel et al. [2014] analytically study the

properties of optimal trading strategies and provide a closed-form expression for the no-trade

regions based on the G&P framework. They also show that the certainty equivalent loss incurred

from using a mean-variance utility instead of a CRRA utility of intermediate consumption is

small. This implies that the optimal policy based on a quadratic utility specified in Gârleanu

and Pedersen [2013] provides a reasonable approximation for the optimal policy implied by a

CRRA utility in the presence of transaction costs. With the presence of predictability in price

changes, the objective function for an investor with quadratic utility is

max
x2PF

IE1

(

T

X

t=1

h

⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1
i

)

, (3.12)

where x
t

denotes the number of shares, µ
t

is the conditional expectation of price change, ⌃ is the

covariance matrix of price changes, assumed to be constant, and � is the absolute risk-aversion

parameter.

With proportional transaction costs, it is still impossible to obtain a closed-form solution. But

we can formulate the problem as a stochastic dynamic program with state variables consisting

of the current number of shares in risky assets and the expected price changes conditional at

the current period. To do that, note that the value function for the last period is:

V

T

(x
T�1, µT

) = ⇢

T (x>
T

µ

T

� �

2
x

>
T

⌃x
T

)� ⇢

T�1kK(x
T

� x

T�1)k1, (3.13)
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and from (3.13), we can define the value functions for previous periods recursively using the

Bellman equation

V

t

(x
t�1, µt

) = max
x

t

2P
t

(xt�1)
⇢

t(x>
t

µ

t

� �

2
x

>
t

⌃x
t

)� ⇢

t�1kK(x
t

� x

t�1)k1 + IE
t

[V
t+1(xt, µt+1)] ,

(3.14)

for t = 1, · · · , T �1. Still, the numerical solution is di�cult to obtain when there are more than

two risky assets. However, under the G&P framework, we only need to track the wealth change

at each period instead of tracking the evolution of total wealth. Besides, unlike the model with

power utility, the focus on price changes implies that there is no need to track the risky-asset

price evolution. Hence, instead of considering the power utility framework, in this section, we

are going to propose trading strategies based on the G&P framework. Later, in Section 3.4, we

are going to adapt them to the CRRA utility framework.

3.3.2 Approximate Strategies

To avoid the di�culties we may be confronted with when solving the portfolio optimization

model with predictability and transaction costs, we will propose several trading strategies to

approximate the optimal trading strategy for (3.12). As in the G&P framework, we assume the

dynamic of price changes follows the model specified in (3.10)-(3.11).

Simple Policy

First, we consider a deterministic approximation that ignores model predictability and simply

follows the optimal trading strategy recommended by a deterministic model. In this model, the

investor ignores the innovations in the predictability model. The resultant model becomes a

deterministic problem which can be solved based on quadratic programming:

max
{x

t

}T
t=1

T

X

t=1

h

⇢

t(x>
t

µ̃

t

� �

2
x

>
t

⌃x
t
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t�1kK(x
t

� x

t�1)k1
i

, (3.15)

where µ̃
t

is the expectation of price changes conditional at the initial stage, that is µ̃
t

= IE1(µt

).

The corresponding simple policy is defined as the solution to the deterministic portfolio prob-

lem (3.15). It is intuitive that the simple policy will perform well in practice when the volatility

in the predictability model is small.

Linear Policy

Second, we consider the linear approximation where the investor trades linearly towards a next-

period target. Gârleanu and Pedersen [2013] show that for an infinite-horizon investor who

faces quadratic transaction costs and predictability, the next-period optimal number of shares
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is a linear combination of the existing position and the next-period target when transaction

costs are quadratic. Moreover, the aim portfolio is a linear combination of the current optimal

portfolio in the absence of transaction costs and the expected future aim portfolios. With a

finite horizon and a constant opportunity set, DeMiguel et al. [2014] show that the optimal

policy is a linear combination of the Markowitz portfolio, the previous period portfolio and the

next period portfolio. The combination of the Markowitz strategy and the next period portfolio

can be considered as the investor’s target for the next period.

In this policy, we assume the investor has an aim portfolio at each period, and she chooses to

trade partially to this aim portfolio based on the procedure that is optimal for the model with

quadratic transaction costs. Specifically, following Gârleanu and Pedersen [2013], define the aim

portfolio for period t < T as

aim
t

= z Markowitz
t

+ (1� z)IE
t

(aim
t+1), (3.16)

where z = c

�+c

and c =
��⇢��(1�⇢)+

p
(�⇢+�(1�⇢))2+4��⇢2

2⇢ . For t = T , define the aim portfolio as

the optimal portfolio in the absence of transaction costs; that is,

aim
T

= (�⌃)�1
µ

T

. (3.17)

We define the linear policy as

x

t

= (1� c

�

)x
t�1 +

c

�

aim
t

. (3.18)

As in Gârleanu and Pedersen [2013], � denotes the quadratic transaction cost parameter. Since

we use (3.18) as an approximation to the model with proportional transaction costs, we propose

to calibrate � such that the realized utility is maximized. With the specified dynamics of price

changes in (3.10)-(3.11), the aim portfolio for each period is

aim
t

= (�⌃)�1(A
r

+ b

T�t

d

B

r

d

t

) + z(�⌃)�1
B

r

d

t

f

t

(b
d

), (3.19)

where f

t

(b
d

) = (1� z)b
d

f

t+1(b
d

) + 1� b

T�t

d

and f

T

= 0.

No-trade Region Policy

Third, we consider the no-trade region approximation where, in each period, the investor’s

portfolio choice is confined by a no-trade region. DeMiguel et al. [2014] show analytically that

the optimal trading strategies are confined by a no-trade region centered at a target portfolio

in the presence of proportional transaction costs and they give a close-form expression for the

no-trade region when there is no predictability. With predictability, Lynch and Tan [2010]

numerically find the optimal rebalancing rule for each period to be a no-trade region with

rebalancing to the boundary.
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In the same spirit, we consider the investor’s target position as the center of the no-trade region.

But instead of trading linearly towards the aim portfolio, the investor will trade to the boundary

of the no-trade region centered at the aim portfolio. Besides, following DeMiguel et al. [2014]

and Lynch and Tan [2010], we assume the size of the no-trade region shrinks when the number

of remaining periods increases. For each period, we define the no-trade region policy as the

solution to the following optimization problem

min
x

t

(x
t

� x

t�1)
>⌃(x

t

� x

t�1) (3.20)

s.t. kK�1⌃(x
t

� aim
t

)k1  1

⇢�

1� ⇢

1� ⇢

T�t+1
, (3.21)

where aim

t

denotes the aim portfolio for each period which is defined in (3.16), x
t�1 is the

position from the previous period. Note that the aim portfolio aim
t

is specified in (3.19) as the

dynamic of price changes follows (3.10)-(3.11).

Rolling Optimize-and-Hold Policy

Finally, we consider an approximate policy that assumes the investor has a buy-and-hold strat-

egy at each stage. In Section 3.3.2, we assume the investor has an aim portfolio for each period

and she trades to the boundary of the no-trade region centered at the aim portfolio. Taking

into account that the aim portfolio is defined as the one under quadratic transaction costs and

the optimal trading strategy for the model without predictability is a buy-and-hold strategy,

we define the rolling optimize-and-hold approximation by assuming that the investor can trade

only in the next period, but subsequently she will not be allowed to trade until time T .

Starting with the period before the last t = T � 1, and assuming the investor does not trade at

t = T (which means x
T

= x

T�1), the value function for the last period is
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The optimal strategy at t = T � 1 is the solution to the following problem
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In DeMiguel et al. [2014], they show that problem (3.23) is equivalent to the following con-

strained optimization problem

min
x

T�1
(x
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T�2) (3.24)
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where x

C

T�1 =
1

�

T�1
⌃�1

µ

0
T�1, �T�1 = (1 + ⇢)� and µ

0
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T |T�1. Analogously,

assume trading only occurs in period t. In this case, in each period, the investor selects her

portfolio by solving the following optimization problem
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µ

0
t

= µ

t

+ ⇢µ

t+1|t + · · ·+ ⇢

T�t

µ

T |t. (3.29)

In (3.29), each µ

t+j|t refers to the mean price changes for period t + j conditioned on the

information at period t. For each period, we define the rolling optimize-and-hold policy as the

solution to problem (3.26)-(3.27) and the investor’s transaction is confined by the no-trade region

defined in (3.27). Also note that the center of the no-trade region x

C

t

is a linear combination

of all future optimal portfolios conditional at the current period in the absence of transaction

costs.

3.3.3 Evaluation

In this section, we numerically study the performance of the proposed feasible policies. For

each policy, we compare the realized utility with the upper bounds obtained from the perfect

hindsight solution. Specifically, given the convexity of the objective function in (3.12), it is

straightforward that
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In deriving the upper bounds for problem (3.12), we will focus on the perfect information

relaxation that assumes the investor knows all market states and price changes before making

any investment decisions. We obtain an estimate of the upper bound given on the right of (3.30)
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using simulation. In each trial of the simulation, we solve the following deterministic problem
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where we do not require x to be nonanticipative. The estimate of the upper bound is then

obtained by averaging the optimal values from the above problems across all the sample paths.

We first generate a scenario tree for dividend yield and mean price changes. Consider the

model with an investment horizon of T periods. Given any value of dividend yield d

t

, n

d

di↵erent values of dividend yields for the next period are generated according to the specified

predictability model. Besides, the values of mean price changes are calculated at each node

based on the specific price changes model. When evaluating the utility of each of the feasible

policies, we calculate the utility for each period at each node and then average over all the

branches for a given period. The realized utility is calculated by adding up the utilities for each

period. Notice that the scenario tree defines nT�1
d

di↵erent sample paths for dividend yield and

mean price changes, and the upper bound is then obtained by averaging the realized utilities

over all the sample path.

We assume the predictability models for dividend yield and price changes are the ones given

in (3.10)-(3.11) and that the initial dividend yield is neutral (i.e., d1 = 0). We further assume

that the investor has an initial wealth of $1. With these assumptions, the absolute risk-aversion

parameter under the mean-variance framework described in Section 3.3.1 is equivalent to the

relative risk-aversion parameter under the power utility framework.

As an illustrative example, we consider the model with two risky assets.2 Following the same

example in Lynch and Tan [2010], we consider a model with two risky assets where we take a

12-month dividend yield on the value-weighted New York Stock Exchange (NYSE) index as a

proxy for the predictive variable D. For these two risky assets, the first is the monthly rate of

return on the value-weighted NYSE index while the second is the high BM portfolio which is

formed from the six value-weighted portfolios SL, SM, SH, BL, BM and BH.3 The parameters

for the predictability model in (3.10)-(3.11) are estimated using ordinary least squares (OLS)

with A

r

= [0.83; 0.54], B
r

= [0.47; 0.30], a
d

= 0, b
d

= 0.98 and stable state covariance matrix

for both risky assets ⌃ = [0.0054 0.0037; 0.0037 0.0030].

In our numerical experiment, we consider the model for annual price changes by annualizing the

parameters for the model of monthly price changes. Specifically, let A

Y

r

= 12A
r

, BY

r

= 12B
r

and the slope for the annualized d

t

model be b

d

= 0.75.

2Our approximate trading strategies can also be applied to the case with many risky assets. But the evaluation
of the approximate strategies is computationally demanding since it requires us to discretize the state variable
space for each of the assets. The resultant sample path is large especially when we use a scenario tree to capture
the return dynamics.

3The notation S(B) indicates that the firms in the portfolio are smaller (larger) than 50% of NYSE stocks.
The notation L indicates that the firms in the portfolio have BM ratios that place them in the bottom three
deciles for all stocks; analogously, M indicates the middle four deciles and H indicates the top three deciles. The
high BM portfolio is an equal-weighted portfolio of SH and BH.
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The Base Case

For our base case, we consider a time horizon of six years, that is T = 7. We assume absolute

risk aversion parameter � = 5, matrix of proportional transaction cost K = [0.0050 0; 0 0.0050],

annual discount rate ⇢ = 1
R

f

, and the investor starts with zero shares in both assets. Let the

number of branches at each node n

d

= 4. With T = 7, we have 46 = 4096 di↵erent sample

paths.

For the simple policy, the expectation µ̃

t

is µ̃
t

= IE1(µt

) = A

Y

r

+ B

Y

r

b

t�1
d

d1. Given the value of

b

d

, the innovation term ✏

t+1 is with zero mean and variance 1� b

2
d

. Notice that with higher b
d

,

there is lower volatility in d

t

.

For the linear policy, the value of � is calibrated such that it provides maximum value of realized

utility. Figure 3.1 depicts the utility of linear policy for values of �. For the no-trade region

policy and the rolling optimize-and-hold policy, the center of the no-trade region for each period

can be calculated based on the conditional mean at each node.

For our base case, the realized utilities for the feasible policies and the associated upper bound

are reported in Table 3.1. We observe that the utility loss associated with adopting the simple

policy (that is, the relative di↵erence between the utility of the simple policy and the upper

bound obtained from perfect hindsight solution (3.30)) is as much as 18.27%. This utility loss

is relatively large because the simple policy ignores the existence of volatility in the predictabil-

ity model. The utility loss associated with trading linearly (that is, the relative di↵erence

between the utility of the linear policy and the upper bound obtained from perfect hindsight

solution (3.30)) is 3.89%. To understand this result, it is important to note that this policy

combines the previous stage position with the current stage target, and at each period it trades

at a lower rate towards the target. The no-trade region policy, on the other hand, outperforms

the other proposed strategies with the associated utility loss less than 0.91%. This result can

be explained as follows: the approximate policy takes the target portfolio in linear policy as the

center of the no-trade region and the existence of the no-trade region leads to a higher trading

rate towards the target compared with linear policy. Finally, the utility loss associated with

using rolling optimize-and-hold policy is 2.17%. This utility loss is relatively larger than that

associated with the no-trade region policy. This is because compared with the target portfolio

in linear policy, the center of the no-trade region may deviate from the true target for each

period with the assumption that trade only occurs in the next period.
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Table 3.1: Realized Utilities - The Base Case

This table shows the realized utilities for an investor with objective (3.12) based on the approximate

policies proposed in Section 3.3.2. Columns 2-5 show the utilities obtained based on the simple

policy(S-P), the linear policy(L-P), the no-trade region policy(NTR-P) and the rolling optimize-and-

hold policy(ROH-P) respectively. The last column denotes the upper bounds to the utilities obtained

based on a perfect hindsight solution. The values of the realized utilities are reported in the first

row and the second row shows the corresponding gaps with respect to the upper bounds (in %).

The gaps are computed by (U
bounds

� U

heuristic

)/U
bounds

.

Policies S-P L-P NTR-P ROH-P Bounds

Utilities 0.0893 0.1050 0.1082 0.1068
0.1092

Utility losses (in %) 18.27 3.89 0.91 2.17

Figure 3.1: Utility of Linear Policy Depending on �

This figure plots the realized utilities for the linear policy depending on the value of � while the

other model parameters are fixed as  = [0.0050; 0.0050], discount factor 1
Rf

, risk-aversion parameter

� = 3 and the investment horizon T is fixed at T = 8.

Comparative Statics

We study numerically how the utility loss associated with ignoring predictability (i.e., with the

simple policy), trading linearly (i.e, with the linear policy), the no-trade region policy and the

rolling optimize-and-hold policy depends on the transaction costs parameter, the risk-aversion

parameter and the slope of predictability model for dividend yield.

Table B.1 shows how the utility loss of proposed approximate policies depends on di↵erent values

of the above mentioned parameter. We find that regardless of the value of b
d

, the realized utilities
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decrease monotonically for all policies as  increases. The utility loss associated with ignoring

uncertainty in the predictability model (i.e., the simple policy) is high for all the parameters we

try especially when b

d

is small (i.e., high volatility in dividend yield). Taking into account that

bigger b

d

indicates lower volatility in dividend yield, we observe that the utility loss in simple

policy decreases dramatically when we increase b

d

to 0.98. The reason is that the conditional

mean µ̃

t

in simple policy can approximate future means better when there is lower volatility in

dividend yield. We also find that the utility loss associated with simple policy decreases as 

increases. This occurs because higher  leads to less trade in risky assets, and thus predictability

plays a less important role in the model.

When there is high volatility in d

t

, the utility loss associated with trading linearly decreases

with . As we explained in our discussion of the base case, linear policy indicates a slower

trading rate compared with the other policies. The slower trading rate leads to partial loss in

utility. As  increases, there is less trade in risky assets. A slow trading rate in linear policy

can compensate for the trade amount in subsequent periods. When there is low volatility in the

predictability model, the utility loss first decreases and then increases slightly as  increases.

To understand this result, it is important to recognize that there is less trade involved in the

optimal strategy when  keeps increasing. The linear policy, however, incurs extra transaction

costs because it trades at every period, which leads to the increment in utility loss.

The utility loss associated with the no-trade region policy increases as  increases for both values

of b
d

. After looking into the solution, we find that for each sample path, the no-trade region

policy encourages trading more frequently compared with the perfect information relaxation

which incurs extra transaction costs. It is worth noting that the utility loss is low in both cases,

with the highest loss no more than 1.5%.

When there is high volatility in dividend yield, the utility loss associated with the rolling

optimize-and-hold policy is higher than that associated with no-trade region policy. Note that

in this policy, the center of no-trade region depends directly on the assumption that there is no

trade in future periods. With high volatility, the center of no-trade region defined in this policy

cannot approximate accurately the true center. We also find that the trading rate in rolling

optimize-and-hold policy decreases slower than that in the upper bound as  increases. When

there is low volatility, the center of no-trade region is more accurate, and the utility loss comes

from the extra transaction costs incurred from extra trading, which leads to increment in utility

loss as  increases.

Finally, we find that the relative utility losses associated with the approximate policies do not

depend on the risk-aversion parameter.

To conclude, the no-trade region policy and rolling optimize-and-hold policy perform quite well

for all the values of  (the utility loss is below 3% for all the values of  when b

d

= 0.75 and

below 1% when b

d

= 0.98). For the simple policy, it results in higher utility loss compared

with the other policies. Based on the above robustness check, the benefits of the proposed

approximation can be summarized as follows:
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1. For the simple policy, if there is low volatility in dividend yield (hence the mean price

changes conditional at the first period can predict the real conditional price changes at

each period very well), it can perform well.

2. For the linear policy, it has lower utility loss than the simple policy but higher loss than the

no-trade region policy and the rolling optimize-and-hold policy regardless of the volatility

in dividend yield. The loss is always below 5%. So it can still be used as an approximation

to the optimal solution.

3. For the no-trade region policy, it performs constantly well for all the cases. The utility loss

for all cases is low. It can be used as a robust approximation for the optimal solution for

the mean-variance portfolio model in the presence of proportional transaction costs and

predictability. The gap between its realized utility and upper bound is relatively small for

all cases.

4. For the rolling optimize-and-hold policy, just like the no-trade region policy, it can be a

robust approximation for the optimal solution for the mean-variance portfolio model in

the presence of proportional transaction costs and predictability. The gap between its

realized utility and upper bound is relatively small for all cases.

3.4 Moving to the CRRA Framework

We now adapt each of the approximate trading strategies that are proposed for the mean-

variance problem to the framework with CRRA power utility. Campbell and Viceira [2003]

show that when the risky asset returns are lognormal, the portfolio choices resulting from

the power utility and mean-variance frameworks are consistent. In the absence of transaction

costs, the investor trades o↵ mean against variance for a single period in both cases. In the

presence of transaction costs, DeMiguel et al. [2014] show that the certainty equivalent loss

from adapting the mean-variance framework is typically smaller than 0.5% for the case with a

constant investment opportunity set.

In this section, we consider an investor who maximizes her CRRA utility of intermediate con-

sumption by investing in a risk-free asset and N risky assets in the presence of predictability,

and who is subject to proportional transaction costs (i.e, with preferences (3.6)-(3.8)). In Sec-

tion 3.4.1, we obtain several approximate solutions for portfolio optimization problem (3.6)-(3.8)

by adapting the feasible policies proposed based on the G&P framework. We check the robust-

ness of these approximate policies by evaluating the certainty equivalent losses in Section 3.4.3.

3.4.1 Adapting the Mean-variance Framework to the CRRA Framework

Under the G&P framework, the proposed feasible policies in Section 3.3.2 provide a sub-optimal

number of shares that the investor needs to hold for each period. Besides, there is no risk-free
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asset and consumption. In order to assess the robustness of these policies properly, we make

several assumptions to adapt the feasible policies to the power utility framework.

First, we assume that the investor’s consumption to wealth ratio for each period, c
t

, is given by

the model without transaction costs. Given the risky asset return dynamics in (3.10)-(3.11), the

optimal solution to model (3.6)-(3.8) in the absence of transaction costs can easily be computed

numerically using dynamic programming by discretizing market state variables. Note that this

is a conservative choice since the consumption to wealth ratio given by this model is not optimal

for the model in the presence of transaction costs. Second, we assume that the investor has

an initial wealth of $1 invested in the risk-free asset. With this assumption, the absolute risk

aversion parameter in model (3.12) under the mean-variance framework equals the relative risk

aversion parameter in (3.6)-(3.8) under the power utility framework. Consequently, for each

period, the amount of money invested in the risk-free asset is

W

f

t

= W

t

(1� ĉ

t

)� Ŵ

t

(1� ĉ

t

)x̂>
t

P

t

� Ŵ

t

(1� ĉ

t

)kK(x̂
t

� x̂

t�1,+)k1, (3.32)

where ĉ

t

is the consumption to wealth ratio in the absence of transaction costs and x̂

t

= x

t

./P

t

is the number of shares that the investor can hold when the price is P

t

instead of $1. Here ./

refers to the component-wise division of two vectors. The investor’s wealth W

t+1 in each period

is the sum of the total holdings across the risky assets and risk-free asset, i.e.,

Ŵ

t+1 = W

f

t

R

f

+ Ŵ

t

(1� ĉ

t

)x̂>
t

P

t+1. (3.33)

For each approximate policy, the realized power utility is

U

h = IE1

h

T

X

t=1

⇢

t

ĉ

1��

t

Ŵ

1��

t

1� �

i

. (3.34)

To evaluate the expectation, we first generate a scenario tree with M sample paths for risky

asset returns. Starting with any given initial dividend yield d1, we generate n

d

di↵erent values

for d2 based on (3.11) and save the realizations for the values of ✏2. The first period risky asset

returns R2 can be generated based on (3.10).4 For each subsequent time period at each node,

we repeat the process until we arrive at the final period t = T .

Assume that the initial price for each risky asset is $1. Taking into account P

t+1 = P

t

R

t+1

for each period, the scenario tree for the price P

t

can also be generated based on the scenario

tree of risky asset returns. In each sample path, we compute the realized power utility for each

feasible policy as

U

h

(m) =
T

X

t=1

⇢

t

ĉ

1��

t,(m)Ŵ
1��

t,(m)

1� �

, (3.35)

4Following Balduzzi and Lynch [1999], in order to make sure d
t

is the only state variable to predict risky asset
returns, a regression between e

t+1 and ✏
t+1 is designed when estimating the parameters in model (3.10)-(3.11).
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for m = 1, 2, · · · ,M . Note that in each sample path, for any value of state variables that are not

on the grid, the consumption can be computed based on interpolation. With M sample paths,

an unbiased estimate for the utility given in (3.34) can be obtained by averaging the values of

U

h

(m). Let Uh

be

U

h

=

P

M

m=1 U
h

(m)

M

. (3.36)

The certainty equivalent for each feasible policy is defined as

CE(U
h

) = ((1� �)U
h

)
1

1��

. (3.37)

Given that each feasible policy provides an approximation to the optimal solution for the port-

folio optimization problem with the CRRA power utility, the corresponding certainty equivalent

is clearly a lower bound to that of the true model. Taking into account that it is very di�cult

to numerically solve the original model, we complement these proposed feasible policies with

upper bounds on the certainty equivalent consumptions. This is based on the dual approach

which will be explained in the next section.

3.4.2 Upper Bounds

Given any feasible sub-optimal policy to the portfolio selection problem (3.6)-(3.8), we can

obtain an unbiased lower bound to the optimal power utility U

⇤ by simulating di↵erent sample

paths and taking the average of the realized utilities. However, since the optimal U⇤ is not

computable, we cannot evaluate the optimality of the feasible policy. In order to assess the

quality of a given feasible policy, it would be helpful if we could obtain a valid upper bound to

the optimal power utility.

Brown et al. [2010] show that the valid upper bound can be constructed by relaxing future in-

formation and imposing a penalty function. Specifically, the upper bounds on the optimal value

function can be obtained by relaxing the nonanticipativity constraints that require decisions to

depend only on information available at the time when the decision is made and imposing a

penalty function that punishes the violations of nonanticipativity. For each realized scenario,

they show that an ideal penalty function ⇡(x) follows

⇡

⇤(x) =
T

X

t=1

n

IE
⇥

V

⇤
t+1(xt

)|G
t

⇤

� IE
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⇤
t+1(xt

)|F
t

⇤

o

, (3.38)

where G
t

is a relaxation of filtration F
t

such that F
t

✓ G
t

. If we consider G
t

to be the per-

fect information relaxation of F
t

, for each period the investor determines the actions with full

knowledge of future scenarios. Obtaining the real optimal value function for each period is not
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practical. However, we can find an approximation of the optimal penalty function by approxi-

mating the optimal value function V

⇤
t

with V̂

t

:

⇡̂(x) =
T

X

t=1

�
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t+1(xt

)� IE
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i

 

, (3.39)

where in (3.39), we drop the conditional expectation in G
t

because when we assume perfect

information relaxation, the term inside expectation is a constant. As mentioned in Brown and

Smith [2014], weak duality implies that the upper bounds to the optimal value function V

⇤
1 (x1)

are given by

V
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:= IE1
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where I
t

(x
t

) denotes the reward function for each period. To obtain an unbiased estimate of the

expectation, we simply simulate M sample paths of the state variables and disturbances, and

solve the following maximization associated with penalty function (3.39) in each sample path,

max
c,x
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X
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s.t. W

t+1 = W

t

(1� c

t

)R
p,t

, (3.42)

x

t

� 0, c
t

� 0. (3.43)

The expected value in (3.40) is estimated by taking the average of the optimal objective function

value of problem (3.41) over all sample paths.

In (3.40), each reward function I

t

(x
t

) is concave in decision variables x, which leads to convexity

in the original DP defined by (3.9). When taking the penalty function into account, the objective

function (3.41) may not be concave and consequently, it cannot be solved computationally.

Brown and Smith [2014] study DPs that have a convex structure and consider penalties based

on a first-order approximation of the approximate value function V̂

t

(x
t�1).

For the model with power utility and intermediate consumption, we consider Ĩ

t

(x
t

) to be a

relaxation of the reward function of the original model,

Ĩ

t

(c
t

,x
t

) = ⇢

t

C

1��

t

1� �

(3.44)

subject to the law of motion for the investor’s wealth which is defined in (3.3) but without

transaction costs. With this relaxation, the realized utility for the model with reward function

Ĩ

t

(c
t

,x
t

) is greater than that for the original model. Let V̂
t

(c
t�1

,x
t�1

) denote the time t optimal

value function corresponding to the above reward functions. It is then an approximation to the
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time t optimal function V

⇤
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) for the original model. Define the penalty function as
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Following Brown and Smith [2014], weak duality implies that
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where PG denotes the set of feasible policies that are adapted to G. Like the case with mean-

variance utility, note that an unbiased estimate of the expectation on the right-hand side of

the above inequality can be obtained via Monte Carlo simulation: we randomly generate M

di↵erent sample paths of risky asset returns and in each sample path, solve the inner problem

on the right-hand side of (3.46).

To guarantee the convex structure of the problem on the right-hand side of (3.46), we take the

first-order linear approximation of V̂
t

so that the resultant penalty function is linear in decision

variables. Let ỹ

⇤
t

= (c̃⇤
t

, x̃

⇤
t

) denote the optimal policy for the no-transaction costs problem

with reward function (3.44) and W̃

t

⇤
the corresponding wealth for each period. We define the

gradient penalty as follows,5
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where rĨ

t

(ỹ⇤
t

) denotes the gradient of the reward function for each period with respect to the

decision vectors c
t

and x
t

. To obtain the upper bound in each sample path, we solve the

following deterministic problem
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s.t. W
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, (3.49)

x

t

� 0, c
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� 0. (3.50)

Let U

p

(m) be the corresponding optimal objective function from the above deterministic opti-

mization for m = 1, 2, · · · ,M and U

p

=
P

M

m=1 U
p

(m)

M

. Then, U
p

is clearly an upper bound to the

utility of the heuristic policy U

h

.

5When we take first-order approximation of the approximate value function V̂
t+1(ct,xt), the term which

is constant in actions
P

T

t=1 V̂
t+1(ỹ

⇤
t

) � IE
t

⇥
V̂
t+1(ỹ

⇤
t

)
⇤
is omitted from the penalty function ⇡(c,x). When we

calculate the upper bound for each scenario, we add the realized values for this term after (3.47), which serves
as the control variate; see Brown and Smith [2014].
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Given the fact that each reward function (3.44) is di↵erentiable in decision variables, we can

explicitly derive the penalty function in (3.47). Let the certainty equivalent be

CE(U
p

) = ((1� �)U
p

)
1

1��

. (3.51)

CE(U
p

) is clearly an upper bounds to the certainty equivalent provided by the approximate

policies.

3.4.3 Numerical Results

In this section, we empirically study the certainty equivalent losses associated with adopting

proposed feasible policies, as well as how those losses depend on the model parameters. Starting

with an initial value of dividend yield d1 = 0, we first generate a scenario tree of risky asset

returns and dividend yield and then evaluate the realized utilities and dual bounds in each

sample path. In the numerical experiments, we consider two risky assets with the same model

parameters that we use in Section 3.3.3 for annual returns. We also consider a risk-free asset

with an annual rate of return of 6%.

The Base Case

For our base case, we consider the same parameters that are used in Section 3.3.3. That is, the

investor has a relative risk-aversion parameter � = 5, has an initial wealth of $1 invested in a

risk-free asset, faces proportional transaction costs of 50 basis points for both assets, rebalances

her portfolio once per year, and has an investment horizon of T = 7. Note that with c

T

= 1,

we only need to solve a six-period problem for the feasible policies to evaluate a T = 7 period

problem based on the CRRA power utility.

For our base case, we observe that the certainty equivalent losses associated with adopting

the simple policy (S-P), the linear policy (L-P), the no-trade region policy (NTR-P) and the

rolling optimize-and-hold policy (ROH-P) are 7.08%, 6.84%, 5.40% and 5.70% respectively. The

insights are similar to those in Section 3.3.3: the no-trade region policy is the best approximate

feasible solution to the original model among all the feasible policies, followed by the rolling

optimize-and-hold policy. Compared with the utility loss under the mean-variance framework,

the certainty equivalent loss associated with adopting the simple policy is small, indicating a

flatter utility than that of the mean-variance framework. This shows a proposed feasible policy

which has large (small) utility loss under the mean-variance framework can have a small (large)

certainty equivalent loss under the power utility framework.

Comparative Statics

In this section, we numerically study how the certainty equivalent loss associated with ignoring

volatility in predictability (i.e., with the simple policy), trading linearly (i.e, with the linear
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policy), the no-trade region policy and the rolling optimize-and-hold policy depends on the

transaction costs parameter, the risk-aversion parameter and the slope of predictability model

for dividend yield.

Note that the loss in certainty equivalent can be decomposed into three parts that are not

additive. The first part is the loss associated with adopting feasible policy instead of optimal

policy. The utility losses associated with employing these policies are presented in Section 3.3.3.

The second part is the loss from following portfolio policies that are derived based on the

mean-variance framework. DeMiguel et al. [2014] show that the certainty equivalent loss from

following such a policy is typically smaller than 0.5% when risky asset returns are i.i.d. Finally,

the third part is the loss from comparing the lower bounds on certainty equivalent with an

upper bound which is typically greater than the true optimal certainty equivalent.

Table B.2 shows how the certainty equivalent loss associated with adopting proposed approx-

imate policies depends on di↵erent values of the above-mentioned parameters. It shows that

there is significant improvement on the bounds provided based on perfect information relaxation

with the penalty function.

In line with the conclusion in DeMiguel et al. [2014], the certainty equivalent loss associated with

employing the feasible policies decreases as risk aversion parameter � increases. Given that the

risk-aversion parameter has no influence on the utility loss of the proposed approximate policies

under the mean-variance framework, it can be understood that as � increases, the amount

invested in the risky assets decreases, and thus the optimal amount of rebalancing decreases.

Moreover, we also observe that, the higher  is always associated with higher certainty equivalent

loss for NTR-P and ROH-P. This can be explained in two ways. First, the loss in mean-variance

utility increases with , and second, the procedure we have used to augment the proposed policy

to finance intermediate consumption requires a large amount of trading on risky assets, and thus

large transaction costs.

Consistent with the conclusion in Section 3.3.3, the approximate policy that ignores uncertainty

in predictability does not perform as well as the other heuristic policies, although there is less

loss in certainty equivalent compared with the loss in mean-variance utility. Moreover, when

there is high volatility in dividend yield, NTR-P performs better than ROH-P. When there is

low volatility in dividend yield, it performs as well as ROH-P.

Interestingly, di↵erent from the case for NTR-P and ROH-P, the certainty equivalent loss as-

sociated with adopting simple policy and linear policy decreases as  increases. This may be

explained by the fact that the loss in mean-variance utility for these policies decreases as 

increases.

Overall, our results show that the certainty equivalent losses associated with the proposed

feasible policies are quite acceptable with the no-trade region policy outperforming the other

approximate strategies for most of the cases. Moreover, once given the approximate strategies

for the mean-variance problem, the adapted strategies allow us to handle many risky assets
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simultaneously and the portfolio weights recommended by these adapted strategies can be de-

termined in a very short time.

3.5 Summary

We consider a multiperiod CRRA individual who faces transaction costs and who has access

to multiple risky assets in the presence of predictability. We propose some feasible trading

strategies for the individual’s multiperiod portfolio selection problem with proportional trans-

action costs, and construct lower and upper bounds on the certainty equivalent consumptions

of these policies. In particular, we propose these feasible strategies based on the G&P frame-

work which allows us to obtain the recommended portfolio weights through a quadratic problem

with constraints. Our numerical experiments show that there is very little mean-variance util-

ity loss, which indicates that some of the proposed strategies are nearly optimal in the G&P

framework. With power utility, we find that the certainty equivalent losses are reasonable, and

in addition, we can deal with the problem with many risky assets. For both cases, we have

performed some comparative statics to better understand the losses associated with adopting

the proposed approximate strategies. Moreover, we have shown how the upper bounds to the

certainty equivalent consumption can be significantly improved through duality methods based

on information relaxation.
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Conclusions and Future Research

4.1 Conclusion

Transaction cost plays an important role in optimal portfolio decision making. Ignoring trans-

action costs in the portfolio selection model clearly will lead to bankruptcy. Therefore, investors

must consider transaction costs to obtain an optimal policy that trades at a carefully chosen

discrete sequence of instances.

In this dissertation, we study the portfolio selection problem with multiple risky assets and

di↵erent types of transaction costs in a multiperiod setting. We first consider the model for

a multiperiod mean-variance investor facing general transaction costs in Chapter 2. With a

constant investment opportunity set and proportional transaction costs, we simplify the multi-

period model into a single quadratic program that can deal with many risky assets simultane-

ously, and we provide the explicit expression for the no-trade region and analyze the property

of the no-trade region based on relevant model parameters. For large trades that may impact

market price, we show that the optimal policy for each period is confined by a state-dependent

rebalancing region, and the rebalancing region converges to the Markowitz portfolio as the in-

vestment horizon grows large. Finally, we numerically study the utility loss associated with

ignoring transaction costs, and we find that it is very important to take transaction costs into

account.

We then consider the model for a multiperiod CRRA investor facing proportional transaction

costs in Chapter 3. Instead of a constant investment opportunity set, we allow predictability in

risky asset returns. In this chapter, we first approximate the model for a CRRA investor using

a more tractable mean-variance framework, and then propose several approximate optimal solu-

tions for such a framework based on solving simple quadratic programs. Numerical results shows

that there is very small mean-variance utility loss associated with adopting these approximate

strategies. In addition, we obtain several approximate solutions for the model with CRRA util-

ity by adapting the feasible policies proposed based on the mean-variance framework. Finally,

we complement the proposal of feasible policies with upper bounds to the certainty equivalent

54
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consumptions with duality methods based on information relaxation, and we show numerically

that these adapted policies result in reasonable certainty equivalent losses.

4.2 Future Research Lines

Overall, we considered the mean-variance portfolio selection problems in the presence of di↵er-

ent types of transaction costs in Chapter 2. However, for tractability reasons we make some

assumptions in order to characterize the optimal trading strategies. Specifically, our results

rely mainly on the assumption that the risky asset price changes are independently and iden-

tically distributed (iid). As a natural extension, we can relax this assumption and consider a

more general model that takes into account the predictability in the risky assets price changes.

Since Gârleanu and Pedersen [2013] already deal with predictability for the model with quadratic

transaction costs, one of the future research lines to focus on is the market impact costs case.

The same idea can apply to the extension for Chapter 3.

The above-mentioned research lines are natural extensions of this thesis and deal with the

portfolio optimization problem such that an investor does not take into account any constraints

on the transaction limit. An interesting future research line would be considering portfolio

liquidation in a limit order book (LOB) model. In this model, the investor needs to trade a

large block of orders of shares, which takes up a significant percentage of the daily traded volume

of shares, and she needs to decide the best allocation strategy for each individual placement so

as to minimize the overall price impact.

Moreover, modeling risky asset returns is attracting a great deal of interest in the literature as

well. Among all the predictability models, the factor model is the most widely used. With a

big data set, the selection of factors that can account for most of the variability of risky asset

returns is a question for future research to explore.
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Appendix to Chapter 2

A.1 Figures

Figure A.1: No-trade region and level sets for proportional transaction costs.

This figure depicts the no-trade region and the level sets when the investment horizon T = 5 for an investor facing
proportional transaction costs with  = 0.005, annual discount factor ⇢ = 2%, absolute risk-aversion parameter
� = 10�4, and mean and covariance matrix of price changes equal to the sample estimators for the commodity
futures on gasoil and sugar.

56



Appendix to Chapter 2 57

Figure A.2: No-trade region: comparative statics.

This figure shows how the no-trade region for a multiperiod investor subject to proportional transaction costs
depends on relevant parameters. For the base case, we consider a proportional transaction cost parameter
 = 0.005, annual discount factor ⇢ = 2%, absolute risk-aversion parameter � = 10�6, and mean and covariance
matrix of price changes equal to the sample estimators for the commodity futures on gasoil and sugar.

(a) No-trade regions for di↵erent 

(b) No-trade regions for di↵erent �

(c) No-trade regions for di↵erent ⇢
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Figure A.3: No-trade region: comparative statics.

This figure shows how the no-trade region for a multiperiod investor subject to proportional transaction costs
depends on relevant parameters. For the base case, we consider a proportional transaction cost parameter
 = 0.005, annual discount factor ⇢ = 2%, absolute risk-aversion parameter � = 10�6, and mean and covariance
matrix of price changes equal to the sample estimators for the commodity futures on gasoil and sugar.

(a) No-trade regions for di↵erent T

(b) No-trade regions for di↵erent correlations

(c) No-trade regions for di↵erent �2
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Figure A.4: Rebalancing region for single-period investor

This figure depicts the rebalancing region for a single-period investor subject to market impact costs. We consider
an absolute risk aversion parameter � = 10�7, annual discount factor ⇢ = 2%, and mean and covariance matrix
of price changes equal to the sample estimators for the commodity futures on gasoil and sugar. Panel (A) depicts
the rebalancing region when the transaction cost matrix ⇤ = I, the exponent of the power function is p = 1.5,
and the transaction cost parameter  = 1.5⇥ 10�8, and Panel (B) when ⇤ = ⌃, p = 1.5, and  = 5⇥ 10�6.

(a) Rebalancing region when ⇤ = I

(b) Rebalancing region when ⇤ = ⌃
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Figure A.5: Rebalancing region for multiperiod investor

This figure depicts the rebalancing region for a multiperiod investor subject to market impact costs. We
consider an absolute risk aversion parameter � = 10�7, annual discount factor ⇢ = 2%, and mean and

covariance matrix of price changes equal to the sample estimators for the commodity futures on gasoil and
sugar. Panel (A) depicts the rebalancing region when the transaction cost matrix ⇤ = I, the exponent of the
power function is p = 1.5, and the transaction cost parameter  = 1.5⇥ 10�8, and Panel (B) when ⇤ = ⌃,

p = 1.5, and  = 5⇥ 10�6.
(a) Rebalancing region when ⇤ = I, T = 3

(b) Rebalancing region when ⇤ = ⌃, T = 3
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Figure A.6: Rebalancing regions and trading trajectories for di↵erent expo-
nents p.

This figure shows how the rebalancing regions and trading trajectories for the market impact costs model change
with the exponent of the transaction cost function p. Panel (A) depicts the rebalancing regions for the single-
period investor, with transaction cost parameter  = 1.5 ⇥ 10�8, annual discount factor ⇢ = 50%. Panel (B)
depicts the multiperiod optimal trading trajectories when the investment horizon T = 10, with transaction cost
parameter  = 5⇥ 10�6, and annual discount factor ⇢ = 5%. In both cases, we consider transaction costs matrix
⇤ = I, the risk-aversion parameter � = 10�4, and mean and covariance matrix of price changes equal to the
sample estimators for the commodity futures on gasoil and sugar.

(a) Rebalancing regions depending on exponent p.

(b) Trading trajectories depending on exponent p.
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Figure A.7: Trading trajectories for di↵erent transaction costs.

This figure depicts the trading trajectories for a multiperiod investor facing di↵erent types of transaction cost.
We consider an investment horizon T = 3, a risk-aversion parameter � = 10�4, and annual discount factor
⇢ = 20%. In proportional transaction cost case, the transaction costs parameter  = 1.5⇥ 10�8. In market

impact cost case,  = 2⇥10�8, ⇤ = I, and p = 1.5. In the quadratic transaction cost case,  = 2⇥10�4 and ⇤ = ⌃.
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Figure A.8: Utility losses with proportional transaction costs.

This figure depicts the utility loss of the static and target portfolios for the dataset with 15 commodity futures
as a function of the transaction cost parameter  (Panel (A)), and the investment horizon T (Panel (B)). In the
base case, we consider proportional transaction costs parameter  = 0.0050, risk-aversion parameter � = 1e� 6,
annual discount factor ⇢ = 2% and investment horizon T = 22. The price-change mean and covariance matrix
are set equal to the sample estimators for the dataset that contains 15 commodity prices changes.

(a) Utility losses depending on .

(b) Utility losses depending on investment horizon T .
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A.2 Tables

Table A.1: Certainty equivalent loss: CRRA utility of terminal wealth

This table shows the certainty equivalent (CEQ) wealth for an investor with CRRA utility of terminal wealth
and for di↵erent values of the investor’s risk aversion parameter (�), the stock return volatility (�), and the
proportional transaction cost rate, which are given in the first three columns. The fourth column gives the
certainty equivalent of the optimal portfolio policy, and the last column gives the percentage loss in certainty
equivalent incurred by using the G&P-type portfolio policy.

Parameters CEQ CEQ Loss
� �  $ %
2 0.15 0.000 2.8756 0.19%

0.005 2.8475 0.13%
0.010 2.8206 0.08%

0.20 0.000 2.6730 0.28%
0.005 2.6565 0.18%
0.010 2.6417 0.12%

0.25 0.000 2.5857 0.45%
0.005 2.5739 0.32%
0.010 2.5640 0.25%

3 0.15 0.000 2.2643 0.19%
0.005 2.2487 0.11%
0.010 2.2342 0.07%

0.20 0.000 2.1574 0.30%
0.005 2.1479 0.20%
0.010 2.1396 0.15%

0.25 0.000 2.1103 0.40%
0.005 2.1035 0.29%
0.010 2.0980 0.24%

4 0.15 0.000 2.0720 0.19%
0.005 2.0609 0.12%
0.010 2.0508 0.07%

0.20 0.000 1.9985 0.28%
0.005 1.9917 0.19%
0.010 1.9859 0.14%

0.25 0.000 1.9658 0.34%
0.005 1.9609 0.25%
0.010 1.9570 0.21%
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Table A.2: Certainty equivalent loss: CRRA utility of intermediate con-
sumption

This table shows the certainty equivalent (CEQ) consumption for an investor with CRRA utility of intermediate
consumption and for di↵erent values of the investor’s risk aversion parameter (�), the stock return volatility (�),
and the proportional transaction cost rate, which are given in the first three columns. The fourth column gives
the certainty equivalent consumption of the optimal portfolio policy, and the last column gives the percentage
loss in certainty equivalent consumption incurred by using the G&P-type portfolio policy.

Parameters CEQ CEQ Loss
� �  $ %
2 0.15 0.000 0.0165 0.08%

0.005 0.0164 0.22%
0.010 0.0163 0.45%

0.20 0.000 0.0160 0.09%
0.005 0.0159 0.17%
0.010 0.0158 0.29%

0.25 0.000 0.0157 0.14%
0.005 0.0157 0.18%
0.010 0.0156 0.25%

3 0.15 0.000 0.0465 0.07%
0.005 0.0463 0.16%
0.010 0.0461 0.32%

0.20 0.000 0.0455 0.09%
0.005 0.0454 0.14%
0.010 0.0453 0.22%

0.25 0.000 0.0451 0.12%
0.005 0.0450 0.14%
0.010 0.0449 0.19%

4 0.15 0.000 0.0655 0.07%
0.005 0.0652 0.13%
0.010 0.0650 0.25%

0.20 0.000 0.0644 0.09%
0.005 0.0643 0.12%
0.010 0.0642 0.18%

0.25 0.000 0.0640 0.10%
0.005 0.0639 0.12%
0.010 0.0638 0.15%
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A.3 Proofs

Proof of Proposition 2.1

Part 1. When ⇢ = 0, the change in excess terminal wealth net of transaction costs for a

multiperiod investor is

W
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X
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h

x

>
t
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� x
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. (A.1)

From Assumption 1, it is straightforward that the expected change in terminal wealth is
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Using the law of total variance, the variance of change in terminal wealth can be decomposed

as
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)] . (A.3)
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and
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the variance of the change in excess terminal wealth can be rewritten as
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Consequently, the mean-variance objective of the change in excess terminal wealth for a multi-

period investor is
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Which is exactly objective function (2.1) when the value of discount factor ⇢ = 0.

Part 2. For the model with proportional transaction costs, the optimal policy is to trade at the

first period to the boundary of the no-trade region given by (2.5), and not to trade for periods

t = 2, 3, · · · , T . For an investor who is now sitting at period j with j > 0, the no-trade region

for the remaining periods t = j + 1, j + 2, · · · , T is given by

k⌃(x� x

⇤)k1  

(1� ⇢)�

⇢

1� (1� ⇢)T�j

, (A.8)

which defines a region that contains the region defined by constraint (2.5). we could infer that

the ”initial position” for stage s, which is on the boundary of no-trade region defined by (2.5),

is inside the no-trade region defined in (A.8). Hence for any ⌧ > j, the optimal strategy for an

investor who is sitting at j is to stay at the boundary of no-trade region defined in (2.5), which

is consistent with the optimal policy obtained at time t = 0.

For the model with temporary market impact costs, for simplicity of exposition we consider

⇤ = ⌃. At t = 0, the optimal trading strategy for period ⌧ is on the boundary of the following

rebalancing region
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For the investor who is now at t = j for j < ⌧ , the optimal trading strategy is at the boundary

of rebalancing region given by
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Because x

⌧ |j = x

⌧ |0 for ⌧  j and taking into account that x
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j|0, we can infer that
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defines the same rebalancing region for period j as the following one
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That is, x
⌧ |j = x

⌧ |0 for j < ⌧ , and hence the optimal policies for the model with temporary

market impact is time-consistent.

For the model with quadratic transaction costs, for simplicity of exposition we consider ⇤ = ⌃.

For an investor sitting at period t = 0, the optimal trading strategy for a future period t = ⌧ is

given by (2.20) (when t = T , simply let ↵1 = �1, ↵2 = �2, ↵3 = 0.), that is,

x
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For the investor who is at t = j, for j < ⌧ , the optimal trading strategy is
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Because x
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which gives x
j+1|0 = x

j+1|j . By using the relation recursively, we can show that for all ⌧ > j, it

holds x
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⌧ |0. ⇤

Proof of Theorem 2.2
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where s
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The first order condition for the inner objective function of (A.17) with respect to x
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is
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where ks
t

k1  . By this means, we find the value of s⇤
t

such that x
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for all t 6= r. We

conclude that x1 = x2 = · · · = x
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satisfies the optimality conditions.
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Let s be the subgradient of kx1 � x0k1 and let ⌦ be the subdi↵erential
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If we write kx � x0k1 = maxksk1
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>(x � x0), objective function (A.22) can be sequentially
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The first order condition for the inner objective function in (A.24) is
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Note that from (A.25), we have s = (1�⇢)�(1�⇢)T+1
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Be aware of that the term �
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0 ⌃x0 is a constant term for objective function (A.28), it can be

then rewritten as:

max
x1

�

2
x

>
1 ⌃x1 � �x

>
1 ⌃x0

⌘max
x1

�

2
x

>
1 ⌃x1 � �x

>
1 ⌃x0 +

�

2
x

>
0 ⌃x0. (A.30)

It follows immediately that objective function (B.3) together with constraint (B.2) is equivalent

to

min
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s.t k⌃(x1 � x

⇤)k1  

(1� ⇢)�

⇢

1� (1� ⇢)T
. (A.32)

Part 3. Note that constraint (2.5) is equivalent to
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which is a parallelogram centered at x⇤. To show that constraint (2.5) defines a no-trade region,
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note that when the starting portfolio x0 satisfies constraint (2.5), x1 = x0 is a minimizer of

objective function (2.4) and is feasible with respect to the constraint. On the other hand,

when x0 is not inside the region defined by (2.5), the optimal solution x1 must be the point

on the boundary of the feasible region that minimizes the objective. We then conclude that

constraint (2.5) defines a no-trade region. ⇤

Proof of Proposition 2.4

Di↵erentiating objective function (2.7) with respect to x
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Note that x = x0 cannot be the optimal solution unless the initial position x0 satisfies x0 = x
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Proof of Theorem 2.6
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Specifically, given that ⇤ is symmetric, the optimality condition for stage T reduces to
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Note that x
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Summing up the optimal conditions recursively gives
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We conclude that the optimal trading strategy for period t satisfies (A.41) whenever the initial

portfolio is not x⇤. ⇤

Proof of Proposition 2.7

Part 1. We first define the function g(x) = (1 � ⇢)⇤�1/p⌃(x � x

⇤). For period T it holds

that kg(x
T

)k
q

 p



�

k⇤1/p(x
T

� x

T�1)kp�1
p

. Moreover, for the following last period it holds

kg(x
T�1)+(1�⇢)g(x

T

)k
q

 p



�

k⇤1/p(x
T�1�x

T�2)kp�1
p

. Noting that kA+Bk
q

� kAk
q

�kBk
q

,

it follows immediately that

p



�

k⇤1/p(x
T�1 � x

T�2)kp�1
p

� kg(x
T�1) + (1� ⇢)g(x

T

)k
q

� kg(x
T�1)kq � (1� ⇢)kg(x

T

)k
q

� kg(x
T�1)kq � (1� ⇢)p



�

k⇤1/p(x
T

� x

T�1)kp�1
p

,

where the last inequality holds based on the fact kg(x
T

)k
q

 p



�

k⇤1/p(x
T

� x

T�1)kp�1
p

.

Rearranging terms,

kg(x
T�1)kq  p



�

k⇤1/p(x
T�1 � x

T�2)kp�1
p

+ (1� ⇢)p


�

k⇤1/p(x
T

� x

T�1)kp�1
p

,

which implies that

kg(x
T�1)kq

pk⇤1/p(x
T�1 � x

T�2)kp�1
p

 

�

+ (1� ⇢)


�

k⇤1/p(x
T

� x

T�1)kp�1
p

k⇤1/p(x
T�1 � x

T�2)kp�1
p

,
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which gives a wider area than the rebalancing region defined for x
T

: kg(x
T

)k
q

pk⇤1/p(x
T

�x

T�1)kp�1
p

 

�

.

Similarly, kg(x
T�2) + (1� ⇢)g(x

T�1) + (1� ⇢)2g(x
T

)k
q

 

�

pk⇤1/p(x
T�2 � x

T�3)kp�1
p

, it follows



�

pk⇤1/p(x
T�2 � x

T�3)kp�1
p

� kg(x
T�2) + (1� ⇢)g(x

T�1) + (1� ⇢)2g(x
T

)k
q

� kg(x
T�2) + (1� ⇢)kg(x

T�1)kp � (1� ⇢)2kg(x
T

)k
q

,

� kg(x
T�2) + (1� ⇢)kg(x

T�1)kp � (1� ⇢)2p


�

k⇤1/p(x
T

� x

T�1)kp�1
p

,

where the last inequality holds because kg(x
T

)k
q

 p



�

k⇤1/p(x
T

� x

T�1)kp�1
p

.

Rearranging terms

kg(x
T�2)+ (1�⇢)kg(x

T�1)kp 


�

pk⇤1/p(x
T�2�x

T�3)kp�1
p

+(1�⇢)2p


�

k⇤1/p(x
T

�x

T�1)kp�1
p

,

which implies that,

kg(x
T�2) + (1� ⇢)kg(x

T�1)kp
pkx

T�2 � x

T�3kp�1
p

 

�

+ (1� ⇢)2


�

k⇤1/p(x
T

� x

T�1)kp�1
p

k⇤1/p(x
T�2 � x

T�3)kp�1
p

.

The above inequality defines a region which is wider than the rebalancing region defined by
kg(x

T�1)+(1�⇢)kg(x
T

)k
p

pk⇤1/p(x
T�1�x

T�2)kp�1
p

 

�

for x
T�1.

Recursively, we can deduce the rebalancing region corresponding to each period shrinks along

t.

Part 2. Note that the rebalancing region for period t relates with the trading strategies

thereafter. Moreover, the condition x1 = x2 = · · · = x

T

= x

⇤ satisfies inequality (2.12), we then

conclude that the rebalancing region for stage t contains Markowitz strategy x

⇤.

Part 3. The optimality condition for period T satisfies

(1� ⇢)(µ� �⌃x
T

)� p⇤1/p|⇤1/p(x
T

� x

T�1)|p�1 · sign(⇤1/p(x
T

� x

T�1)) = 0. (A.42)

Let ! to be the vector such that lim
T!1 x

T

= !. Taking limit on both sides of (A.42)

(1� ⇢)(µ� �⌃!)� p⇤1/p|⇤1/p(! � !)|p�1 · sign(⇤1/p(! � !)) = 0. (A.43)

Noting that lim
T!1 x

T

= lim
T!1 x

T�1 = !, it follows

(1� ⇢)(µ� �⌃!) = 0,

which gives that ! = 1
�

⌃�1
µ = x

⇤. We conclude that the investor will move to Markowitz

strategy x

⇤ in the limit case. ⇤
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Proof of Theorem 2.9

Part 1. For t = 1, 2, · · · , T �1, di↵erentiating objective function (2.15) with respect to x

t

gives

(1� ⇢)(µ� �⌃x
t

)� (2⇤x
t

� 2⇤x
t�1)� (1� ⇢)(2⇤x

t

� 2⇤x
t+1) = 0, (A.44)

rearranging terms

[(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]x
t

= (1� ⇢)µ+ 2⇤x
t�1 + 2(1� ⇢)⇤x

t+1. (A.45)

The solution can be written explicitly as following

x

t

=(1� ⇢)� [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1⌃x⇤

+ 2 [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤x
t�1

+ 2(1� ⇢) [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤x
t+1. (A.46)

Define

A1 = (1� ⇢)� [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1⌃,

A2 = 2 [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤,

A3 = 2(1� ⇢) [(1� ⇢)�⌃+ 2⇤+ 2(1� ⇢)⇤]�1 ⇤,

where A1 +A2 +A3 = I.

For t = T � 1, the optimality condition is

(1� ⇢)(µ� �⌃x
T

)� (2⇤x
T

� 2⇤x
T�1) = 0, (A.47)

the explicit solution is

x

T

= (1� ⇢)� [(1� ⇢)�⌃+ 2⇤]�1⌃x⇤ + 2 [(1� ⇢)�⌃+ 2⇤]�1 ⇤x
T�1. (A.48)

Define

B1 = (1� ⇢)�[(1� ⇢)�⌃+ 2⇤]�1⌃,

B2 = 2[(1� ⇢)�⌃+ 2⇤]�1⇤,

where B1 +B2 = I.

Part 2. As T ! 1, taking limit on both sides of (A.48) we then conclude that lim
T!1 x

T

= x

⇤.

⇤

Proof of Corollary 2.10

Substituting ⇤ with ⇤ = I and ⇤ = ⌃ respectively we obtain the optimal trading strategy.
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To show that the trading trajectory of the case ⇤ = ⌃ follows a straight line, noting that x
T

is a

linear combination of x
T�1 and x

⇤, which indicates that x
T

, x
T�1 and x

⇤ are on a straight line.

On the contrary, if we assume that x
T�2 is not on the same line, then x

T�2 cannot be expressed

as linear combination of x
T

, x
T�1 and x

⇤. Recall from equation (2.20) when t = T � 1 that

x

T�1 = ↵1x
⇤ + ↵2xT�2 + ↵3xT , (A.49)

rearranging terms

x

T�2 =
1

↵2
x

T�1 �
↵1

↵2
x

⇤ � ↵3

↵2
x

T

.

Noting that 1
↵2

� ↵1
↵2

� ↵3
↵2

= 1, it is contradictory with the assumption that x
T�2 is not a linear

combination of x
T

, x
T�1 and x

⇤. By this means, we can show recursively that all the policies

corresponding to the model when ⇤ = ⌃ lay on the same straight line. ⇤
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Appendix to Chapter 3

B.1 Aim Portfolio of Linear Policy

Starting from the last period, we know the aim portfolio for an investor is just Markowitz

strategy

Markowitz

T

= (�⌃)�1
µ

T

.

Given the model dynamics specified in (3.10)-(3.11), the conditional mean for each period is

µ

t

= A

r

+B

r

d

t

. The aim portfolio for the second last period is

aim

T�1 = zMarkowitz

T�1 + (1� z)IE
T�1(aimT

)

= zMarkowitz

T�1 + (1� z)IE
T�1(Markowitz

T

)

=
1

�

⌃�1(A
r

+B

r

b

d

d

T�1) +
z

�

⌃�1
B

r

d

T�1(1� b

d

). (B.1)

Analogously, the aim portfolio for period t can be derived as follows

aim

t

= zMarkowitz

t

+ (1� z)IE
t

(aim
t+1)

=
1

�

⌃�1(A
r
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t

d

B

r

d

t

) +
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�

⌃�1
B

r

d

t

f

t

(b
d

), (B.2)

where f

t

(b
d

) is a polynomial of b
d

changing along period with and f

T

(b
d

) = 0 and

f

t

(b
d

) = (1� z)b
d

f

t+1(b
d

) + 1� b

T�t

d

. (B.3)
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B.2 Tables

Table B.1: Utilities Depending on Di↵erent Parameters

This table shows the realized utilities for an investor with objective (3.12) based on the heuristic policies proposed in Sec-

tion 3.3.2. The first three columns give the values of b
d

, � and . Column 4-7 show the utilities obtained based on the

simple policy(S-P), linear policy(L-P), the no-trade region policy(NTR-P) and rolling optimize-and-hold policy(ROH-P). The

last column shows the upper bounds to the utilities obtained based on perfect hindsight solution. For each row, the realized

utilities and the gaps which are computed by (U
bounds

� U
heuristic

)/U
bounds

are given.

Parameters Utilities Upper Bounds

b

d

�  S-P L-P NTR-P ROH-P Bounds

0.75 3 0.0020
0.1504 0.1786 0.1849 0.1823

0.1864
19.29% 4.16% 0.80% 2.20%

0.75 3 0.0050
0.1488 0.1749 0.1804 0.1781

0.1820
18.27% 3.89% 0.91% 2.17%

0.75 3 0.0100
0.1460 0.1698 0.1739 0.1722

0.1759
17.03% 3.50% 1.14% 2.12%

0.75 5 0.0020
0.0903 0.1072 0.1109 0.1094

0.1118
19.29% 4.17% 0.80% 2.20%

0.75 5 0.0050
0.0893 0.1050 0.1082 0.1068

0.1092
18.27% 3.89% 0.91% 2.17%

0.75 5 0.0100
0.0876 0.1019 0.1044 0.1033

0.1056
17.03% 3.50% 1.14% 2.12%

0.75 7 0.0020
0.0645 0.0766 0.0792 0.0781

0.0799
19.29% 4.17% 0.80% 2.20%

0.75 7 0.0050
0.0638 0.0750 0.0773 0.0763

0.0780
18.27% 3.89% 0.91% 2.17%

0.75 7 0.0100
0.0626 0.0728 0.0745 0.0738

0.0754
17.03% 3.50% 1.14% 2.12%

0.98 3 0.0020
0.1425 0.1441 0.1490 0.1489

0.1497
4.83% 3.72% 0.46% 0.47%

0.98 3 0.0050
0.1408 0.1419 0.1461 0.1461

0.1469
4.13% 3.41% 0.50% 0.51%

0.98 3 0.0100
0.1381 0.1381 0.1422 0.1422

0.1430
3.42% 3.42% 0.53% 0.54%

0.98 5 0.0020
0.0855 0.0865 0.0894 0.0894

0.0898
4.83% 3.72% 0.46% 0.47%

0.98 5 0.0050
0.0845 0.0851 0.0877 0.0877

0.0881
4.13% 3.41% 0.50% 0.51%

0.98 5 0.0100
0.0829 0.0829 0.0853 0.0853

0.0858
3.42% 3.42% 0.53% 0.54%

0.98 7 0.0020
0.0611 0.0618 0.0639 0.0638

0.0642
4.83% 3.72% 0.46% 0.47%

0.98 7 0.0050
0.0603 0.0608 0.0626 0.0626

0.0630
4.13% 3.41% 0.50% 0.51%

0.98 7 0.0100
0.0592 0.0592 0.0610 0.0610

0.0613
3.42% 3.42% 0.53% 0.54%
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Table B.2: Certainty Equivalent Depending on Di↵erent Parameters

This table shows the certainty equivalents for an investor with objective (3.6)-(3.8) based on the heuristic policies

proposed in Section 3.3.2. The first three columns give the values of b
d

, the risk-aversion parameter � as well as

the proportional transaction costs parameter . Column 4-7 show the certainty equivalent based on the simple

policy(S-P), linear policy(L-P), the no-trade region policy(NTR-P) and rolling optimize-and-hold policy(ROH-P)

respectively. The last two columns show the upper bounds to the certainty equivalent obtained based on perfect

information relaxation with and without penalty function. For each row, the values of the certainty equivalent

and the corresponding gaps respect to the upper bounds with penalty function (in %) are reported. The gaps are

computed by (CE

bounds

� CE

heuristic

)/CE

bounds

. The number of investment periods T = 7.

Parameters CEQ Upper Bounds

b

d

�  S-P L-P NTR-P ROH-P Penalty No-penalty

0.75 3 0.0020
0.0691 0.0695 0.0716 0.0712

0.0778
0.0943

11.17% 10.70% 8.02% 8.53% 17.54%

0.75 3 0.0050
0.0690 0.0694 0.0712 0.0708

0.0776
0.0938

10.98% 10.55% 8.23% 8.75% 17.32%

0.75 3 0.0100
0.0693 0.0697 0.0705 0.0703

0.0774
0.0930

10.42% 9.92% 8.87% 9.11% 16.85%

0.75 5 0.0020
0.1075 0.1078 0.1097 0.1094

0.1158
0.1407

7.15% 6.89% 5.22% 5.52% 17.75%

0.75 5 0.0050
0.1074 0.1077 0.1094 0.1090

0.1156
0.1401

7.08% 6.85% 5.40% 5.70% 17.47%

0.75 5 0.0100
0.1078 0.1082 0.1090 0.1088

0.1155
0.1392

6.56% 6.27% 5.61% 5.75% 17.03%

0.75 7 0.0020
0.1248 0.1250 0.1266 0.1263

0.1317
0.1588

5.25% 5.10% 3.88% 4.08% 17.10%

0.75 7 0.0050
0.1247 0.1249 0.1262 0.1260

0.1316
0.1582

5.21% 5.08% 4.02% 4.24% 16.83%

0.75 7 0.0100
0.1251 0.1254 0.1261 0.1259

0.1315
0.1572

4.81% 4.59% 4.12% 4.23% 16.36%

0.98 3 0.0020
0.0662 0.0680 0.0690 0.0690

0.0773
0.0931

14.25% 11.96% 10.73% 10.73% 17.05%

0.98 3 0.0050
0.0662 0.0679 0.0685 0.0685

0.0771
0.0926

14.02% 11.86% 11.12% 11.12% 16.79%

0.98 3 0.0100
0.0662 0.0678 0.0679 0.0679

0.0768
0.0918

13.78% 11.70% 11.64% 11.64% 16.35%

0.98 5 0.0020
0.1051 0.1067 0.1076 0.1077

0.1153
0.1393

8.83% 7.44% 6.69% 6.68% 17.29%

0.98 5 0.0050
0.1051 0.1066 0.1071 0.1071

0.1151
0.1386

8.68% 7.38% 6.93% 6.93% 16.99%

0.98 5 0.0100
0.1051 0.1066 0.1066 0.1066

0.1150
0.1377

8.57% 7.32% 7.28% 7.28% 16.47%

0.98 7 0.0020
0.1229 0.1242 0.1249 0.1249

0.1314
0.1577

6.41% 5.41% 4.86% 4.86% 16.78%

0.98 7 0.0050
0.1229 0.1241 0.1246 0.1246

0.1312
0.1570

6.31% 5.37% 5.04% 5.04% 16.46%

0.98 7 0.0100
0.1229 0.1241 0.1241 0.1241

0.1311
0.1559

6.22% 5.33% 5.29% 5.29% 15.95%
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B.3 Derivation of Penalty Function

A brief review about duality based on information relaxation has been made in Haugh and Wang

[2014]. This approach has been explained in detail in Brown et al. [2010] as well as in Brown

and Smith [2014]. The following we are going to derive the expression for penalty function based

on approximate reward functions (3.44). Given ỹ

⇤
t

to be the optimal solution to the problem

without transaction costs, for each period the derivative for reward function is

rĨ

t
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with R

e

t

the risky asset returns excess of risk-free asset. When we solve problem (3.48) for each

sample path, ỹ⇤
t

is computed through dynamic programming by discretizing the state variable

space. Taking into account the fact that ỹ⇤
t

does not involve transaction costs, it can be solved

in short time.

B.4 Approximate Consumption for the Model with Transaction

Costs

When we adapt the heuristic policies to power utility framework, we let the consumption for

each period to be the one for the model without transaction costs. We discretize first the state

variable space in order to implement dynamic programming procedure.

The VAR model discretized using a variation of Tauchen and Hussey [1991] Gaussian quadrature

method, which has been described in Balduzzi and Lynch [1999]. The variation is designed to

ensure that d is the only state variable to predict the risky assets returns. Specifically, let ⌘ be

a N ⇥ 1 vector of coe�cients of the regression model such

e

t+1 = ⌘✏

t+1 + u

t+1, (B.6)

with u

t+1 N ⇥ 1 i.i.d. normally distributed vector which is uncorrelated with ✏

t+1.
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Following Lynch [2001] and Lynch and Tan [2010], the discretization is implemented so as

to match both the conditional mean vector and the covariance matrix for log returns at all

grid points of the predictive variable as well as the unconditional volatilities of the predictive

variables. We choose 19 grid points for the dividend yield and 3 grid points for each of the

stock-return innovations since Balduzzi and Lynch [1999] find that the resulting approximation

is able to capture important dimensions of the return predictability in the data.

In Table B.3, we reproduce the quadrature method based on the estimated VAR model given

in Lynch [2001]. The information indicated under the table ’DATA’ is the estimation from

the sample, while the values under the table ’QUADRATURE’ are the results obtained from

quadrature approximations.

Besides, the Bellman equation corresponding to problem (3.4) with utility function (3.5), with-

out transaction costs is

V

t

(d
t

)

1� �

= max
c

t

,x

t



c

1��

t

1� �

+ ⇢

(1� c
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)1��

1� �

IE
h

�

x

>
t

R

t+1 + (1� x

>
t

e)R
f

�1��

V

t+1(dt+1)
i

�

. (B.7)

Notice the above equation does not depend on previous stage position. Starting from the last

period, it costs no e↵ort to solve for the optimal consumption of each period at each node point

by backward iteration. In numerical experiments, the corresponding consumption which is not

on the grid can be computed by linear interpolation.
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